SITE-RELATED WIND ANALYSIS AND ENERGY YIELD ASSESSMENT

CAUCAIA WIND FARM

Date :10/11/2019

Client

Author

Ten Project Srl

San Giorgio del Sannio (BN) via De Gasperi 61 P.IVA 01465940623

Azienda con sistema gestione qualità Certificato N. 50 100 11873

Ing. Massimo Lepore

02	NOV 2019						Layout revision
01	JUN 2019						Wind data update
00	MAY 2019						First emission
REV.	DATA	sigla	firma	sigla		sigla	DESCRIPTION
ILLV.	DAIA		REDACTION	CHECK		EMISSION	DEGORITHON
Nome	file sorgente		GE.CAU02.WAEYA.	doc	Ν	lome File stampa	GE.CAU02.WAEYApdf

	CAUCAIA OFFSHORE WINDFARM WIND ANALYSIS AND ENERGY YIELD ASSESSMENT	Code Revision Creation data Revision data Page	GE.CAU002 02/11/2018 19/11/2019 2 di 119
--	---	--	---

INDEX

1	INTRODUCTION
1.1	PREAMBLE
1.2	Performed activities
2	PROJECT SITE6
2.1	SITE SURVEY
3	METHODOLOGY
3.1	Used software
3.2	NUMERICAL MODELS
3.3	TOPOGRAPHICAL INPUTS
3.3	.1 OROGRAPHIC MAP
3.3	.2 ROUGHNESS MAP
4	WIND DATA INPUTS
4.1	WIND DATA13
4.2	Site data : TP_2839_ mast_"Caucaia"15
4.3	METEOROLOGICAL LONG TERM DATA
4.3	.1 CFSR2_W38.659_S03.578 WIND DATA
4.3	.2 ERA5_S03.512879_W038.53125 20
4.4	WIND DATA APPROACH
4.5	WIND SHEAR (MEASURED)
4.6	WIND DATA CORRELATION
4.7	WIND STATISTIC INPUT FOR SIMULATION
4.8	TURBULENCE
4.8	.1 Ambient turbulence intensity
5	SITE ASSESSMENT

C	TENPROJECT	CAUCAIA OFFSHORE WINDFARM WIND ANALYSIS AND ENERGY YIELD ASSESSMENT	Code Revision Creation data Revision data Page	GE.CAU002 02/11/2018 19/11/2019 4 di 119
5.1	WASP MODELLING			41
5.2	TECHNICAL DATA OF WIND T	URBINE		
5.3	Power curve analysis			
5.4		CATION		
6	ENERGY YIELD ESTIMATIC	DN		58
6.1	RESULTS			
6.2	ESTIMATED LOSSES			61
6.3	DETAILED RESULTS, NET AEP			63
6.4	ANALYSIS OF UNCERTAINTIES	5		69
7	SITE IEC CLASSIFICATION .			74
7.1	SITE TURBULENCE			76
7.2	VREF			77
7.3	SHEAR IEC COMPLIANCE			80
7.4	WIND DISTRIBUTION COMPL	IANCE		
8	CONCLUSIONS AND RECO	MMENDATIONS		
9	REFERENCES			
APP	ENDIX 1 : TP_2839_SITE N	/AST REPORT		
Met	EO DATA REPORT TP_2839			93
APP	ENDIX 2 : WIND RESOURC	E MAPS		114
APP	ENDIX 3 : GLOSSARY			116

1 INTRODUCTION

1.1 Preamble

BI ENERGIA LTDA has instructed Ten Project SrI to carry out an independent assessment of site specific condition and an energy yield calculation for a proposed offshore windfarm in the North East of Brasil. The installation site is located about 5 km North Est direction from Caucaia town in the North East part of Cearà region. The aim of this work is to evaluate wind data with particular attention on wind speed, turbulence and extreme wind conditions at each WTG site installation and determine the expected energy yield.

The calculation have been focused on:

- wind data evaluation, corrections and long term correlation
- assessment of wind speed statistic for the site
- assessment of expected annual energy yields
- estimation of the expected net energy output of the w.t.g, including all relevant losses
- uncertainty assessment with the exceedance levels of the calculated energy yield
- preliminary assessment of the site classification according to IEC 61400-1 ed. 3 amendment 1 with reference to:
 - o characteristic turbulence intensity calculated on the reference point at the hub height
 - o estimation of the extreme wind speed at hub height
 - topographical complexity of the site

1.2 Performed activities

For this study, the following activities were performed:

- a general review and assessment of the available meteorological data material has been performed. The raw anemological data of a 60 m meteorological mast station located on the coast and different satellite data sets were analyzed and used for the estimation. The data have been assessed regarding their quality and usability for the intended purposes.
- A simulation model has been set out based on a linear model using Wasp computer program for the assessment of energy yield estimation.
- Potential source of energy losses has been assessed and deducted from the gross annual energy production (AEP).
- Uncertainties from several sources has been quantified and, considering the variability of the future wind speed, net AEP for several confidence levels has been predicted.

2 PROJECT SITE

2.1 Site survey

The area of project development is located in the North East part of Brazil in the municipality of Caucaia, few km from the city of Fortaleza which is the capital of the state of Cearà.

Figure 1 : Site maps of Caucaia area

The project involves the installation of 48 wind turbines with nominal power (greater or equal) to 12 MW in offshore mode, and an additional 11 wind turbines up to 3.3 MW power positioned on specific piers, near the coast in semi-offshore mode.

	CAUCAIA OFFSHORE WINDFARM WIND ANALYSIS AND ENERGY YIELD ASSESSMENT	Code Revision Creation data Revision data Page	GE.CAU002 02/11/2018 19/11/2019 7 di 119
--	---	--	---

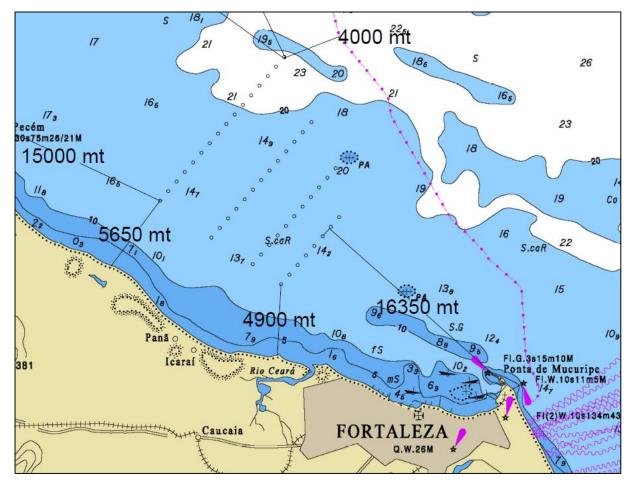


Figure 2 : Plant layout with detail of distance from the coast and bathymetry

3 METHODOLOGY

3.1 Used software

Ten Project used the following software for the investigation among several tools and programs for evaluation and correlation of the wind data:

- Wind Atlas Analysis and Application Program (WAsP), Version 12.3.16, Release A, , Risø National Laboratory, Roskilde, Denmark. [24]
- WAsP Engineering 4.00.0180 [24]
- WindPRO, version 3.3.261 2019, EMD International A/S, Denmark licence number: 7384 [23]

3.2 Numerical models

For this study the numerical approach based on WindPro / Wasp software was used, one of the main and most complete wind analysis instrument tools currently available on the market.

The Wind Atlas Analysis and Application Program (WAsP), described in detail by Mortensen et al (2003) [2], is a widely used computer program that is able to generalize a set of surface wind observations into a regionally representative set of wind statistics by modeling the wind flow across the landscape. In the analysis mode, the statistics derived from a set of long-term wind speed and direction data from a long-term reference site are used to create an Observed Wind Climate (OWC). The OWC is then extrapolated to the top of the boundary layer by fitting to a Weibull distribution and modeling the effects due to obstacles, terrain roughness and topography at the reference site. The resulting set of wind speed and direction statistics representative of the geostrophic wind over the region is known as a Wind Atlas. Applying the reverse path of the analysis process, a prediction of the wind resource at a candidate site is extrapolated down from the top of the boundary layer using the Wind Atlas data.

The input data necessary for the determination of the wind maps are [23]:

- orography of the area
- wind data (speed and direction) of at least one point in the area considered,
- "roughness" characteristics of the soil,
- obstacles

The output consists of wind atlas or a climatology of the wind in the considered area with which it is possible to elaborate a wind map of the area in question and, once the site to install the wind plant is chosen, is also capable to calculate the annual producibility of a single machine and a whole Windfarm taking into account any interference between the blades due to the trail effect and the possible presence of obstacles that can alter the wind distribution.

In detail, the WASP model is composed of a set of numerical models that have the task of correcting the anemometric measurements in order to obtain a climatology of the wind of the considered area. These models are:

• The model for stability: it is based on some corrections to be made to the logarithmic profile of the wind at changing atmospheric stability conditions and requires as input the climatological averages and the average quadratic deviations of the surface heat flow. The model is derived from the law of geostrophic resistance and the wind profile is derived from an expansion of the first order of the expression of the sensible heat flux for atmospheric neutrality conditions

• The model for the roughness change: it is based on some corrections to be made to the wind field in the case where the ground is not homogeneous. In this case roughness lengths are assigned to the ground in such a way that the wind flow, passing between two inhomogeneous surfaces, is calculated by considerations on the surface limit state. This model plays a substantial role in the estimation of the producibility of a Windfarm as it establishes what the wind speed growth factor should be with height. It is therefore essential to rigorously reproduce the roughness characteristics of the area in question by introducing a roughness map of the area [16].

• The model for the barrier effect: it comes into play considering the effects of friction caused by aerodynamic resistance due to possible obstacles with variable dimensions close to the anemometer or to the wind site. In fact, it is known that near an obstacle, at distances or dimensions comparable with its height, the wind profile is disturbed. This model thus allows to "clean" the anemometric data eliminating these effects.

• **The model for orography**: like the previous two, it is used to correct the wind data from effects due to the inhomogeneities of the surrounding terrain; in this case the effects induced by the altimetric variations of the ground around the measurement station are calculated [17], [18].

The algorithm can be represented through a flow chart:

TENPROJECT

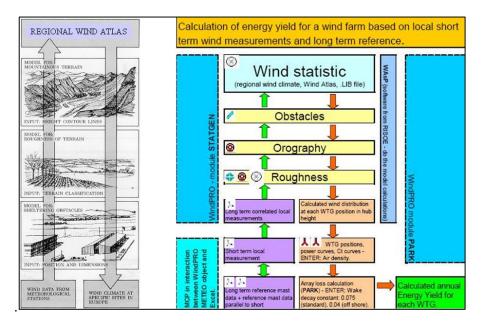


Figure 3: Wind atlas methodology flow charts both in Wasp and Wpro software

The "European Wind Atlas" [1], [9], is a calculation procedure which corrects site specific measurement data according to the influences of the topography and extrapolates these data to a general non site

specific, regional wind climate (wind atlas data, "WASP lib" data). To calculate the wind climate at another site from this general wind climate, the same procedures are used in opposite way, taking into account the site-specific topography. The model is based on the physical principals of flows in atmospheric boundary layers. It takes into account following effects: the reduction of wind speed caused by vegetation and other surface roughness, shadow effects of buildings and other obstacles and changes in wind speed as well as wind direction caused by orographic effects (mountains, valleys).

For application of this model, the surrounding of the site under consideration and of the meteorological base is described in assigning roughness lengths to the surface characteristics. The positions and heights of obstacles are determined and an orographic map of the surrounding is made. Based on this site description the average wind speed and wind statistics at the site can be calculated from the regional wind climate. In detail, for a specific height the frequency distribution of the wind speed (Weibull distribution) is calculated for each of 12 wind direction sectors. With this site-specific distributions and the power curve of each single WT the average annual energy yield is calculated. To do a correct selection and assessment of the input data, considerable experience with the principles and sensitiveness of the wind atlas method is required. The meteorological base has a great influence on the result and has to be selected appropriate concerning its location and measuring period.

To calculate the energy yield of a wind farm, the annual energy yield of the single wind turbines has to be calculated as well as the energy yield losses caused by mutual shading effects. This calculations are performed on basis of the "Park Model" developed by Risø National Laboratory, Denmark. N.O. Jensen developed the used mathematical model of the wake of WTs in Risø [2].

Basic input data for this calculation are the frequency distributions of the wind speed at each turbine position of the planned wind farm, consisting of the A and k parameters of the Weibull distributions. These quantities are calculated according to the European Wind Atlas methods (see above). The model of a wake behind a wind turbine uses impulse and mass conservation to determine the wind speed behind the rotor. A linear expansion of wake is assumed. The wind speed deficit inside the wake is calculated using the thrust coefficient curve ct. The opening angle depends on the turbulence intensity and it can be calculated using empirical relations. [3]

To calculate energy yield and farm efficiency of a wind farm the installation geometry of the farm and the overlapping of the single wakes have to be taken into account. For these tasks, the Risø model uses a method of linear wake-superposition. Summarising the calculation procedure uses the following input data:

- WTs-characteristic, i.e. power curve P(v), thrust coefficient curve ct(v), hub height and diameter of the rotor
- coordinates of each WT of the wind farm
- meteorological data for the turbine positions (Weibull distribution)

The results of the wind farm calculation are the energy yield and the wind farm efficiency, for each wind turbine and for the whole farm. The total farm efficiency is the ratio of the total electrical energy of the farm (taking into account wake losses) to the sum of the energy of all single WTs assuming an undisturbed flow.

3.3 Topographical inputs

3.3.1 Orographic map

A digital map of 45 km x 45 km was obtained from SRTM [31] database of the U.S. Geological Survey.and was checked for the area surrounding the site and a good accord was found.

Shuttle Radar Topography Mission (SRTM) data obtained, was released in the 1 arc-second resolution at the end of 2014 and South America is covered [23]. According to the USGS product description, these SRTM data meet the absolute horizontal and vertical accuracies of 20 meters (circular error at 90% confidence) and 16 meters (linear error at 90% confidence), respectively.

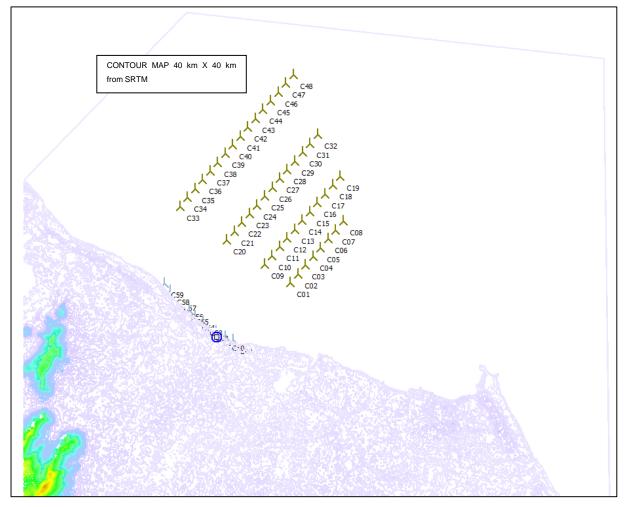


Figure 4: Characteristic of DTM file used for both simulation models, with evidence of detailed area

3.3.2 Roughness map

The land surface roughness which is determined mainly by the height and type of vegetation and buildings, has an important impact on the mean wind speed at heights of interest for wind turbines. The roughness information is based on the "GlobCover 2009" that is a global land cover dataset with a 300 m spatial resolution [32]. The dataset is developed and processed by ESA and the Université catholique

CAUCAIA OFFSHORE WINDFARM WIND ANALYSIS AND ENERGY YIELD ASSESSMENT	Code Revision Creation data Revision data	GE.CAU002 02/11/2018 19/11/2019 12 di 119
ASSESSMENT	Page	12 di 119

de Louvain (UCL) http://due.esrin.esa.int/; the digital map was adjusted resolving the conflicts of the overlapping lines and enriched with the information derived from manual input from orto-photographic maps and site survey. It covers an area of 60x60 km within the wind park area and around the site.

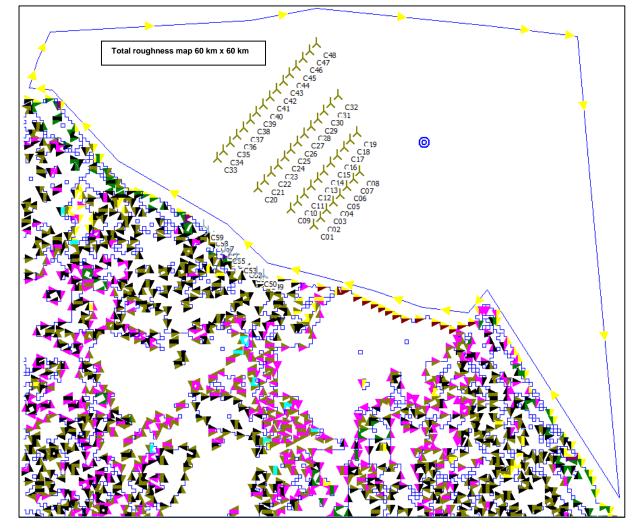


Figure 5: Roughness map used for simulation models

4 WIND DATA INPUTS

4.1 Wind data

The following table lists some information of the available met masts used for the analyzed site. The TP_2839_60 m mast, is considered as the site mast while the others are reference station found to check and stabilize wind speed on a long term period. [26], [27], [28]

ID Mast	Mast detail	Height [m]	WGS84 zone 24 Est [m] [m]	WGS 84 zone 24 Nord [m]
TP_2839_60m	Tubular mast logger NGR Synphonie	60	543279	9592142
CFSR2_W38.659_S03.578	Satellite data	10	537872	9604511
ERA5_S03.512879_W038.53125	Satellite data	100, 10	552091	9611690

Table 1: Coordinates of m	asts used for climate	assessment of site

Table 2: Detail of measuring period of met masts used for climate assessment of site

	Height [m]	First data	Last data	Months
	60,00m - 1	12/06/2009	17/12/2012	42,2
TP_2839	40,00m - 2	03/06/2009	28/11/2012	41,9
	60,00m - 3	17/05/2010	17/12/2012	31,1
ERA5 S03.512879 W38.53125	10,00m -	01/01/2000	31/12/2018	228,1
ERA5_505.512679_W36.55125	100,00m -	01/01/2000	31/12/2018	228,1
CFSR2_W38,659_S03.578	10,00m -	31/12/2011	30/09/2018	81

A detailed analysis of each single meteorological used mast is reported in the appendixes. Here is showed only a summary view of their main characteristics, in particular are synthesized: the mast configuration of channels, wind data availability, total average wind speed Vm, max wind speed Vmax, monthly wind speed, weibull parameters, detailed wind directional analysis.

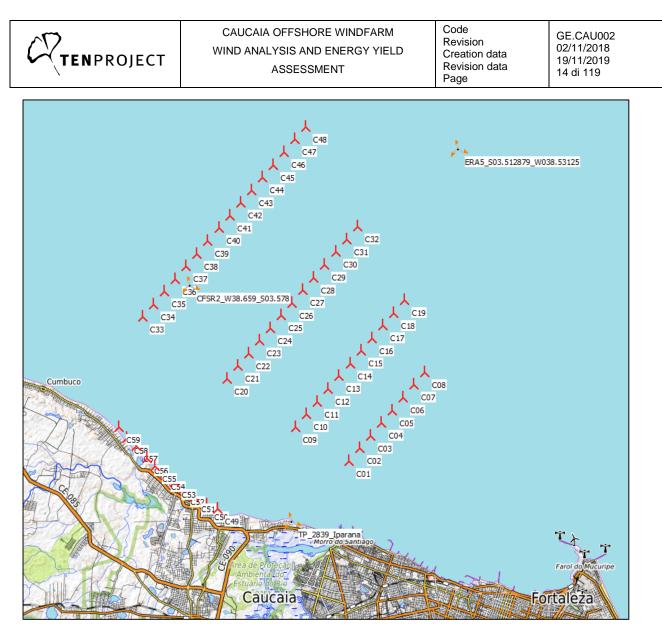


Figure 6: Locations of meteorological sources of wind data related to windfarm layout on topographic map

	CAUCAIA OFFSHORE WINDFARM WIND ANALYSIS AND ENERGY YIELD ASSESSMENT	Code Revision Creation data Revision data Page	GE.CAU002 02/11/2018 19/11/2019 15 di 119
--	---	--	--

4.2 Site data : TP_2839_ mast_"Caucaia"

The TP_2839 mast, installed on June 2009 and dismissed on December 2012, was a 60 meters mast located near the coast. It had 3 anemometers at 60-60-40 m and 2 Vane (60-40 m). It was a lattice mast installed on the coast at about 8 m a.g.l. The closest WTG position (C01) of offshore layout is at about 5 km from the mast position while the closest wtg position of coastal windfarm is at about 4 km (C49). It was used as reference mast to estimate the requested parameters at hub height on WTG positions (after a long term correction and a vertical shear extrapolation to 90 m height).

Below a summary table of all main measuring characteristics.

Table 3: Synthesis of site mast characteristics TP_2839

	Signal	Unit	Count	Of period	Mean	Std dev	Min	Max	Weibull mean	Weibull A par	Weibull k par
60,00m - 1	Mean wind speed, all	m/s	161599	87,4%	7,60		0,4	18,5	7,65	8,46	3,8304
60,00m - 1	Wind direction, all	Degrees	161599	87,4%	123		0	356			
60,00m - 1	Turbulence intensity, enabled		151098	81,7%	0,0789	0,0687	0	0,7302			
40,00m - 2	Mean wind speed, all	m/s	133260	72,7%	6,86		0,4	18	6,91	7,7	3,3203
40,00m - 2	Wind direction, all	Degrees	133260	72,7%	126,9		4	356			
40,00m - 2	Turbulence intensity, enabled		117543	64,1%	0,1148	0,0571	0,0217	0,82			
60,00m - 3	Mean wind speed, all	m/s	124684	91,6%	7,66		0,2	16,4	7,76	8,58	3,8296
60,00m - 3	Wind direction, all	Degrees	124686	91,6%	117,5		0	356			
60,00m - 3	Turbulence intensity, enabled		114890	84,4%	0,1033	0,0532	0,0222	1,2857			
60,00m - 1 Subst	Mean wind speed, all	m/s	175204	94,1%	7,53		0,2	18,5	7,58	8,4	3,7192
60,00m - 1 Subst	Wind direction, all	Degrees	175204	94,1%	123,1		0	356			
60,00m - 1 Subst	Turbulence intensity, enabled		162547	87,3%	0,0809	0,0682	0	0,7302			

In the above table, in addition to channels 1,2,3 of 60 and 40 m, there is also reported a channel with the denomination 60.0 m Subst. These lines show the information relating to channel 1 of 60 m after a series of processing performed, where possible, to analytically recover the data lost due to partial sensor malfunctions. In detail, the following calculations have been carried out:

- Step 1: substitution from CH3 to CH1 of missing and invalid wind data pair (wind speed and direction)
- Step 2: synthesizing of wind data series from 40 to 60 m using power law applied to a detailed shear table for 12 sectors and seasonal periods [29]
- Step 3: substitution from synthesized channel to CH1 of missing and invalid wind data pair (wind speed and direction)

The obtained series of wind data results in line with the original data measured at 60 m and allows to recover 13605 strings from 10 minutes corresponding to about 3 months of data, passing the availability of valid data from 87.4% to 94.1%

The average speed of the most complete data series obtained, which has 94.1% of valid data, is equal to 7.58 m / s compared to 7.65 m / s of the original series. The series obtained is considered to be congruent and has been used for subsequent processing

The following graphs synthesize the anemological characteristics of 60 m measured values referred to 60 m 1 Subst channel.

Table 4: Shear matrix used to synthsize wind data from 40 to 60 m

Refe	rence h	neight		40,00m - 3	2								
Heigl	ht [m]			60,0									
Crea	te shea	ar valu	es b	ased on ma	atrix with fo	llowing	eler	ments:					
Heig	ht			Exclusion ection start	Exclu directio			Use to find sector					
9	0,00m	- LT E					0						
C 6	0,00m	- 1			0	0	0						
✓ 6	0,00m	- 1 Si			0	0	0						
0 6	0,00m	- 3			0	0	0						
₽ 4	0,00m	- 2			0	0	۲						
<u>()</u>	Shear va	dues									_		
	Sincon re	indes .										-	
Di	rection	A	dl		▼ ÷ <	0		Neg	ative!		0	.2-0.3	L
Di	rection	A	ll			0 -0.1		×	ative! eme lov	v).2-0.3).3-0.4	ł
Di	rection	Α	JI		0			Extr			C		
					0	-0.1		Extr	eme lov		C	.3-0.4	
She	ear mei	an Co	unt	Mar-Apr	0	-0.1 .1-0.2		Extr	eme lov mal, lov		0	0.3-0.4 ≥0.4	
She	ear mei	an Co Jan-Fe	unt b	Mar-Apr	0 0 May-Jun	-0.1 .1-0.2 Jul-Aug		Extr Nor Sep-Oct	eme lov mal, lov Nov-De	ic	(> Year	0.3-0.4 >0.4	
She Diurr 00-0:	ear mei nal 1	an Co Jan-Fe C	unt b	0,27	0 0 May-Jun 0,38	-0.1 .1-0.2 Jul-Aug 0	,33	Sep-Oct 0,25	eme lov mal, lov Nov-De	/ ic ,25	(> Year	0.3-0.4 >0.4	
She Diurr 00-0: 02-04	ear mei nal . 2 4	an Co Jan-Fe C	unt b 1,26	0,27 0,35	0 0 May-Jun 0,38 0,38	-0.1 .1-0.2 Jul-Aug 0 0	,33 ,37	Sep-Oct 0,25 0,27	eme lov mal, lov Nov-De 0	ec ,25 ,28	Year	0.3-0.4 >0.4 0,28 0,31	
She Diurr 00-0: 02-0- 04-0	earmea nal : 2 4 6	an Co Jan-Fe C	unt b 1,26 1,29	0,27 0,35 0,20	0 0 May-Jun 0,38 0,38 0,27	-0.1 .1-0.2 Jul-Aug 0 0	,33 ,37 ,30	Sep-Oct 0,25 0,27 0,22	eme lov mal, lov Nov-De 0 0	,25 ,28 ,22	Year	0.3-0.4 >0.4 0,28 0,31 0,23	
She Diurr 00-0 02-0 04-0 06-0	ear meanailtean an a	an Co Jan-Fe C C C C	unt b 1,26 1,29 1,21	0,27 0,35 0,20 0,18	0 0 May-Jun 0,38 0,38 0,27 0,25	-0.1 .1-0.2 Jul-Aug 0 0 0	,33 ,37 ,30 <mark>,27</mark>	Sep-Oct 0,25 0,27 0,22 0,16	eme lov mal, lov Nov-De O O O O O	,25 ,28 ,22 ,17	Year	0.3-0.4 >0.4 0,28 0,31 0,23 0,20	
She Diurr 00-0 02-0 02-0 04-0 06-0 08-1	ear mea nal : 2 4 6 8 0	an Co Jan-Fe C C C C C C C C C	unt b 1,26 1,29 1,21 1,14	0,27 0,35 0,20 0,18 0,16	0 0 0 0,38 0,38 0,27 0,25 0,22	-0.1 .1-0.2 Jul-Aug 0 0 0 0 0	,33 ,37 ,30 <mark>,27</mark> ,18	Sep-Oct 0,25 0,27 0,22 0,16 0,13	eme lov mal, lov Nov-De 0 0 0 0 0 0	c ,25 ,28 ,22 ,17	Year	0.3-0.4 >0.4 0,28 0,31 0,23 0,20 0,16	
She Diurr 00-0: 02-0- 04-00 06-0: 08-10 10-1:	ear mean nal 2 2 4 6 8 0 2	an Co Jan-Fe C C C C C C C C C C	unt b 1,26 1,29 1,21 1,11 1,12	0,27 0,35 0,20 0,18 0,16 0,17	0 0 0 0,38 0,38 0,27 0,25 0,22 0,17	-0.1 .1-0.2	,33 ,37 ,30 ,27 ,18 ,13	Sep-Oct 0,25 0,27 0,22 0,16 0,13 0,11	eme lov mal, lov Nov-De 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	,25 ,28 ,22 ,17 ,15 ,16	Year	0.3-0.4 >0.4 0,28 0,31 0,23 0,20 0,16 0,13	
She Diurr 00-0: 02-0: 04-00 06-0: 08-10 10-1: 12-1:	ear meannail a' annail a'	an Co Jan-Fe C C C C C C C C C C C C C C C C C C C	unt b 1,26 1,29 1,21 1,11 1,12 1,12	0,27 0,35 0,20 0,18 0,16 0,17 0,16	0 0 0 0,38 0,38 0,27 0,25 0,22 0,17 0,17	-0.1 .1-0.2	,33 ,37 ,30 ,27 ,18 ,13 ,10	Extr Nor Sep-Oct 0,25 0,27 0,22 0,16 0,13 0,11 0,10	eme lov mal, lov Nov-De 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	c ,25 ,28 ,22 ,17 ,15 ,16 ,13	Year	0.3-0.4 >0.4 0,28 0,31 0,23 0,20 0,16 0,13 0,13	
She Diurr 00-0: 02-0- 04-00 06-00 06-00 08-10 10-1: 12-1- 12-1- 14-10	ear mean aal 2 4 4 6 8 0 2 2 4 4 6	an Co Jan-Fe C C C C C C C C C C C C C C C C C C C	unt b 1,26 1,29 1,21 1,11 1,12 1,10 1,12	0,27 0,35 0,20 0,18 0,16 0,17 0,16 0,20	0 0 0 0 0,38 0,38 0,27 0,25 0,22 0,17 0,17 0,17	-0.1 .1-0.2 Jul-Aug 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	,33 ,37 ,30 ,27 ,18 ,13 ,10 ,14	Sep-Oct 0,25 0,27 0,22 0,16 0,13 0,11 0,10 0,13	eme lov mal, lov Nov-De 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	rc ,25 ,28 ,17 ,15 ,16 ,13 ,14	Year	0.3-0.4 0.4 0,28 0,31 0,23 0,20 0,16 0,13 0,13 0,15	
She Diurr 00-0: 02-0- 04-00 06-03 08-10 10-13 12-1- 12-1- 12-1- 14-10 16-13	ear meen nal 2 4 6 8 0 2 2 4 4 6 6 8 8	an Co Jan-Fe C C C C C C C C C C C C C C C C C C C	unt b 1,26 1,29 1,11 1,11 1,12 1,10 1,12 1,15	0,27 0,35 0,20 0,18 0,16 0,17 0,16 0,20 0,20	0 0 0 0 0,38 0,38 0,27 0,25 0,22 0,17 0,17 0,17 0,17	-0.1 .1-0.2 Jul-Aug 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	,33 ,37 ,30 ,27 ,18 ,13 ,10 ,14 ,19	Sep-Oct 0,25 0,27 0,22 0,16 0,13 0,11 0,10 0,13 0,15	eme lov mal, lov Nov-De 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	c ,25 ,28 ,22 ,17 ,15 ,16 ,13 ,14 ,15	Year	0.3-0.4 >0.4 0,28 0,31 0,23 0,20 0,16 0,13 0,13 0,15 0,17	
She Diurr 00-02 02-04 04-00 06-03 08-10 10-13 112-14 112-14 112-14 116-13 118-20	ear mer nal : 2 4 6 8 0 2 2 4 4 6 6 8 8 0	an Co Jan-Fe 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	unt b 1,26 1,29 1,11 1,12 1,12 1,10 1,12 1,15	0,27 0,35 0,20 0,18 0,16 0,17 0,16 0,20 0,20 0,20 0,18	0 0 0 0 0,38 0,38 0,27 0,25 0,22 0,17 0,17 0,17 0,17 0,11 0,21	-0.1 .1-0.2	,33 ,37 ,30 ,27 ,18 ,13 ,10 ,14 ,19 ,22	Sep-Oct 0,25 0,27 0,13 0,11 0,10 0,13 0,15 0,17	eme lov mal, lov Nov-De 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	c ,25 ,28 ,22 ,17 ,15 ,16 ,13 ,14 ,15 ,15	Year	0.3-0.4 0.4 0,28 0,31 0,23 0,20 0,16 0,13 0,13 0,15 0,17 0,18	
She Diurr 00-0: 02-0- 04-00 06-03 08-10 10-13 12-1- 12-1- 12-1- 14-10 16-13	ear mean nal 2 2 4 6 6 8 0 2 2 4 4 6 6 8 8 0 2 2 4 2 2 2 2	an Co Jan-Fe 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	unt b 1,26 1,29 1,11 1,11 1,12 1,10 1,12 1,15	0,27 0,35 0,20 0,18 0,16 0,17 0,16 0,20 0,20	0 0 0 0 0,38 0,38 0,27 0,25 0,22 0,17 0,17 0,17 0,17 0,17 0,24 0,28	-0.1 .1-0.2	,33 ,37 ,30 ,27 ,18 ,13 ,10 ,14 ,19	Sep-Oct 0,25 0,27 0,22 0,16 0,13 0,11 0,10 0,13 0,15	eme lov mal, lov Nov-De 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	c ,25 ,28 ,22 ,17 ,15 ,16 ,13 ,14 ,15	Year	0.3-0.4 >0.4 0,28 0,31 0,23 0,20 0,16 0,13 0,13 0,15 0,17	

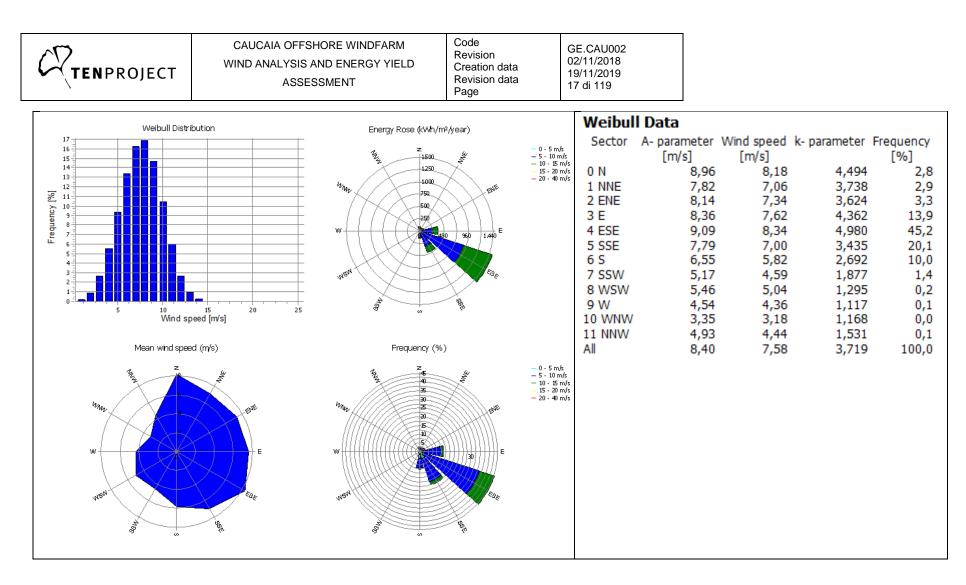


Figure 7: TP_2839 mast - directional graph reports for 60 m (60 m – 1 Subst) height measured frequency distribution, average wind speed and energy rose. Sector wise weibull distributions data.

4.3 Meteorological long term data

Long term correlation is recommended to reduce the uncertainty on the average wind speed at WTG hub height to improve the reliability of the energy production estimation. Several wind data set have been tested among satellite database such as Merra data, CFSR data, ERA5 data.

The available detailed data set of Merra data is related only to 1 year, additional data from other years are subject to payment, so this database was excluded from the analysis

Two data set were considered valid for the purpose and their detail are reported below.

4.3.1 CFSR2_W38.659_S03.578 wind data

CFS and CFSR DATA

The CFSR is a third generation reanalysis product. It is a global, high resolution, coupled atmosphereocean-land surface-sea ice system designed to provide the best estimate of the state of these coupled domains over this period. The CFSR includes (1) coupling of atmosphere and ocean during the generation of the 6 hour guess field, (2) an interactive sea-ice model, and (3) assimilation of satellite radiances.

All have a global coverage over land masses which is extended about 50 km into the sea near coastlines. The temporal resolution is 1 hour.

The CFSR global atmosphere resolution is ~38 km (T382) with 64 levels. The global ocean is 0.25° at the equator, extending to a global 0.5° beyond the tropics, with 40 levels. The global land surface model has 4 soil levels and the global sea ice model has 3 levels. The CFSR atmospheric model contains observed variations in carbon dioxide (CO2), together with changes in aerosols and other trace gases and solar variations. With these variable parameters, the analyzed state will include estimates of changes in the Earth system climate due to these factors

Signal	Height	Unit	Count	Of period	Mean	Min	Max	Weibull mean	Weibull A par	Weibull k par
Mean wind speed	10 <i>,</i> 0m	m/s	59160	100%	6,97	0,1	11,74	6,98	7,63	4,6388
Wind direction	10,0m	Degrees	59160	100%	102,4	0,2	359,1			

Table 5: Synthesis of site mast characteristics

CAUCAIA OFFSHORE WINDFARM WIND ANALYSIS AND ENERGY YIELD ASSESSMENT	Code Revision Creation data Revision data	GE.CAU002 02/11/2018 19/11/2019 19 di 119
ASSESSMENT	Page	19 di 119

Table 6: Average wind speeds of CFSR2

	CFSR2_W38.659_S03.578												
10,00m - Mean wind speed [m/s]	2011	2012	2013	2014	2015	2016	2017	2018	Mean				
January		7,13	6,64	6,85	7,1	5,02	6,51	6,56	6,54				
February		6,36	7,14	6,29	6,2	6,54	5,56	4,28	6,06				
March		6,11	6,25	5,53	5,2	5,73	5	5,14	5,57				
April		6,14	5,06	5,02	5,27	6,34	5,34	4,82	5,43				
May		6,77	6,09	4,97	6,63	6,08	5,43	5,73	5,96				
June		6,75	6,12	6,92	6,84	6,97	6,91	7,0	6,79				
July		7,85	6,65	7,54	7,81	7,78	7,15	7,18	7,42				
August		8,69	8,16	8,4	8,66	8,16	8,08	7,83	8,28				
September		8,5	8,65	7,96	8,38	8,44	8,98	8,42	8,48				
October		8,56	8,29	8,58	8,4	8,43	8,59		8,47				
November		7,1	7,96	7,42	7,34	8,19	7,64		7,61				
December	5,74	7,26	7,02	7,46	7,38	7,4	7,2		7,28				
mean, all data	5,74	7,27	7,05	6,92	7,11	7,09	6,87	6,35	6,97				

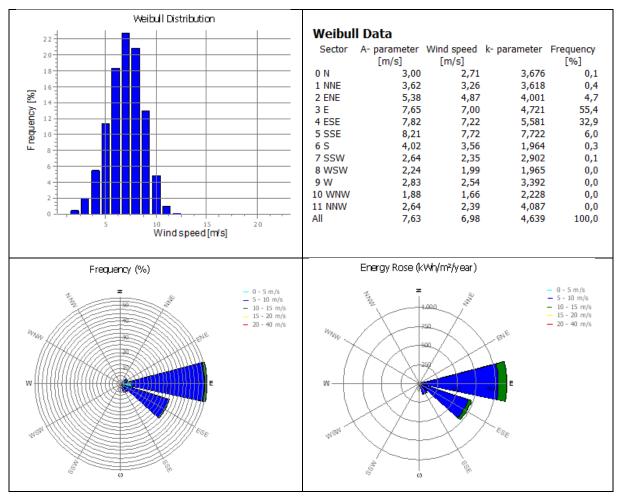


Figure 8: ERA5-measured average wind speed, directional graph reports for 100 m height measured frequency distribution, average wind speed and energy rose. Sector wise weibull distributions

4.3.2 ERA5_S03.512879_W038.53125

ERA5 is a climate reanalysis dataset developed through the Copernicus Climate Change Service (C3S) and processed/delivered by ECMWF. The dataset is intended to replace the ERA-Interim dataset from ECMWF shortly after the ERA5 dataset is complete. The ERA5 dataset has several improvements compared to ERA-Interim:

- Newer modelling system
- More observations used in the assimilation
- Higher spatial horizontal resolution (around 31 km compared to 79 km)
- Higher spatial vertical resolution

Resolution:

The model grid is a reduced gaussian grid (T620) which has a lateral resolution of 0.28125° (around 31 km). It holds hourly values. Coverage is global for land-areas and coastal regions. In windPRO, offshore coverage is expected to cover an area of approximately 300 km from the coastline.

Data Evaluation:

The hourly wind speeds from ERA5 data have been compared to measured wind speeds from 108 tall meteorological masts around the globe. The masts have sensor heights ranging from about 60m to 140m. Correlations have been calculated for all sites - and ERA5 data shows a significant improvement over MERRA2 – the average correlation is increased by 0.07 and the variation is also lower.

Signal	Height	Unit	Count	Of period	Mean	Min	Мах	Weibull mean	Weibull A par	Weibull k par
Mean wind speed, all	100,0m	m/s	166559	100,00%	8,37	0,02	15,73	8,43	9,28	4,2167
Wind direction, all	100,0m	Degrees	166559	100,00%	104	0	359,9			
Mean wind speed, all	10,0m	m/s	166559	100,00%	7,39	0,08	13,01	7,45	8,15	4,6649
Wind direction, all	10,0m	Degrees	166559	100,00%	103,8	0	359,9			

Table 7: Details of ERA5 data set

	ЕСТ	V	CAUCA WIND AN			NERGY		Cre	vision eation da vision da		02/1 19/1	CAU002 1/2018 1/2019 i 119								
ERA5_S03.512879_W03 8.53125.100,00m - Mean wind speed [m/s]	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	Mean
January	6,09	8,11	5,90	6,18	5,73	7,62	9,35	8,04	7,21	6,84	7,49	5,83	8,58	8,22	8,20	8,64	5,94	7,42	7,17	7,29
February	5,05	6,44	7,44	6,25	5,78	7,52	5,94	5,44	6,69	5,97	8,22	5,78	7,68	8,81	7,75	7,22	7,41	6,64	4,46	6,66
March	6,44	5,70	6,19	5,26	6,85	6,24	5,61	6,96	3,80	4,61	6,45	5,01	7,40	7,80	6,61	6,09	6,87	5,18	5,62	6,04
April	5,78	6,23	5,76	6,08	7,23	7,64	4,74	6,17	4,87	3,17	6,68	4,84	7,58	6,01	5,74	5,79	7,86	6,40	5,20	5,99
May	7,97	7,35	7,09	7,39	7,82	7,76	6,42	7,73	6,07	3,92	7,18	6,67	8,85	7,63	6,06	8,21	7,92	7,08	6,77	7,15
June	8,19	8,28	8,26	8,48	8,48	8,91	8,63	9,00	7,79	7,25	8,47	8,00	8,95	7,99	8,95	8,81	8,90	8,74	8,69	8,46
July	8,49	9,59	9,13	9,94	8,95	9,72	9,19	9,99	9,32	8,57	9,76	8,54	10,58	8,91	9,94	10,06	10,20	9,22	9,39	9,45
August	9,79	11,00	10,59	10,16	9,99	10,83	10,26	11,06	9,70	9,57	10,90	9,89	11,16	10,74	10,94	11,21	10,58	10,21	9,81	10,44
September	10,11	10,28	10,35	10,56	10,73	10,46	10,37	11,07	10,45	10,25	11,21	10,82	10,77	11,00	10,60	10,83	10,68	11,28	10,69	10,66
October	10,35	9,44	10,55	10,65	10,49	10,58	9,83	10,61	10,82	9,04	8,68	9,41	11,13	10,52	10,90	10,52	10,49	10,80	9,27	10,21
November	8,99	9,06	9,41	9,37	9,85	9,90	9,15	9,66	9,43	9,82	9,52	9,68	8,98	10,13	9,39	9,05	9,98	9,51	9,38	9,49
December	7,65	9,16	7,95	8,27	8,71	8,97	8,13	8,85	8,31	8,25	7,82	9,19	9,19	8,75	9,36	8,86	8,46	8,25	7,03	8,48
mean, all data	7,92	8,40	8,22	8,23	8,39	8,85	8,15	8,74	7,88	7,28	<mark>8,</mark> 53	7,82	9,25	8,88	8,71	8,79	8,78	8,40	7,81	8,37

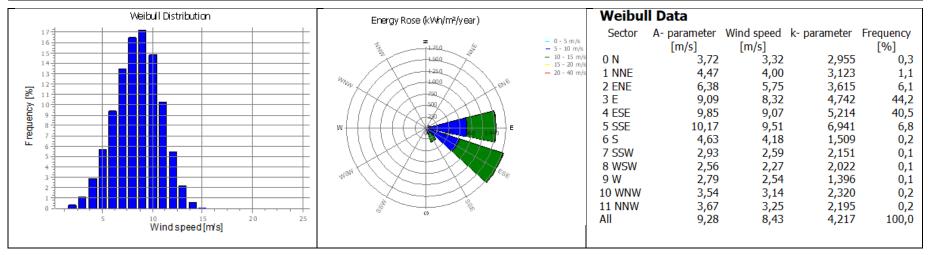


Figure 9: ERA5-measured average wind speed, directional graph reports for 100 m height measured frequency distribution, average wind speed and energy rose. Sector wise weibull distributions

4.4 Wind data approach

Regarding the mast on site, all instrumentation used for measurement has been analyzed and verified; were re-imported all raw data and for each channel has been checked the matching calibration factors with received certificates. [5]

Some gaps in data to the 60 m channels have been solved by mutually replacing the two channels at the same height (CH1 60m, CH3 60m), on the basis of the fact that the two channels have shown perfect analogy of measurement. In addition, other data were recovered from the 40 m channel by using the shear power law. The new data sets have been named CH1 60 Subst.

The 60 m Ch1 data set was extrapolated to 90 m height using shear matrix of measured values 60/40. The new 90 data set was then correlated to ERA5 long term data set to obtain a stabilized long term wind speed.

4.5 Wind shear (Measured)

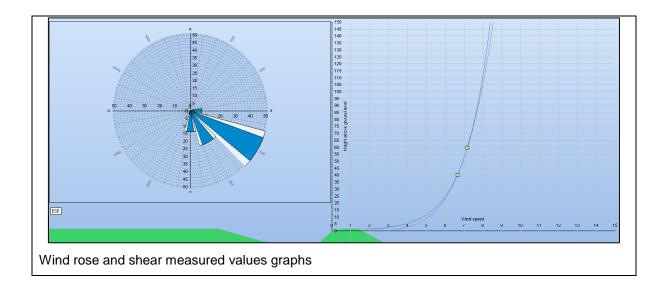
The wind profile of the atmospheric boundary layer is generally logarithmic in nature and is best approximated using the log wind profile equation that accounts for surface roughness and atmospheric stability. The equation to estimate the mean wind speed (\mathcal{U}) at height \mathcal{Z} (meters) above the ground is:

$$u_z = \frac{u_*}{\kappa} \left[\ln \left(\frac{z-d}{z_0} \right) + \psi(z, z_0, L) \right]$$

where u_* is the friction (or shear) velocity (m s-1), κ is the Von Kármán constant (~0.41), d is the zero plane displacement, z_0 is the surface roughness (in meters), and ψ is a stability term where L is the Monin-Obukhov stability parameter. Under neutral stability conditions, z/L = 0 and ψ drops out. The wind profile power law relationship is often used as a substitute for the log wind profile when surface roughness or stability information is not available.

The wind profile power law relationship is:

$$Vz/Vzr = (Z/Zr)^{\alpha}$$


where Vz is the wind speed (in metres per second) at height Z (in meters), and Vr is the known wind speed at a reference height Zr. The exponent (α) is an empirically derived coefficient that varies dependent upon the stability of the atmosphere. For neutral stability conditions, α is approximately 1/7, or 0.143.

Wind shear is strongly depending on the reference heights, wind speed range, wind directions and seasonality. More detailed results are reported in the appendix III. The following table shows the measured wind shear basing on different sensors installed on met mast TP_2839.

CAUCAIA OFFSHORE WIND ANALYSIS AND ENER WIND ANALYSIS AND ENER ASSESSMENT	Revision GL.CA0002
---	--------------------

Table 8: Measured wind shear at TP_2839 60m/40m both expressed as power law and log law for all direction

Sector	Power law exponent	Log law surface roughness length
Average	0,19	0,25
N	0,26	1,10
NNE	0,20	0,30
ENE	0,21	0,41
E	0,18	0,21
ESE	0,14	0,04
SSE	0,27	1,12
S	0,31	1,88
SSW	0,37	3,17
WSW	0,23	0,64
W	0,03	0,00
WNW	0,15	0,06
NNW	0,12	0,01

0,15 0,18 0,25 0,22 0,17 0,15 0,18 0,28 0,26 0,19 0,15 0,19 0,19 0,19 0,20 0,17 0,24 0,31 0,30 0,22 0,22 0,15 0,19 0,25 0,23 0,17 0,17 0,19 Shear matrix with detail of sasonal anddiurnal values

0,14

0,19

0,13

0,15

0,14

0,15

0,17

0,22

14-16

16-18

18-20

20-22

22-24

All

0,12

0,15

0,20

0,20

Figure 10: Wind shear graphic representation and detail

0,15

0,17

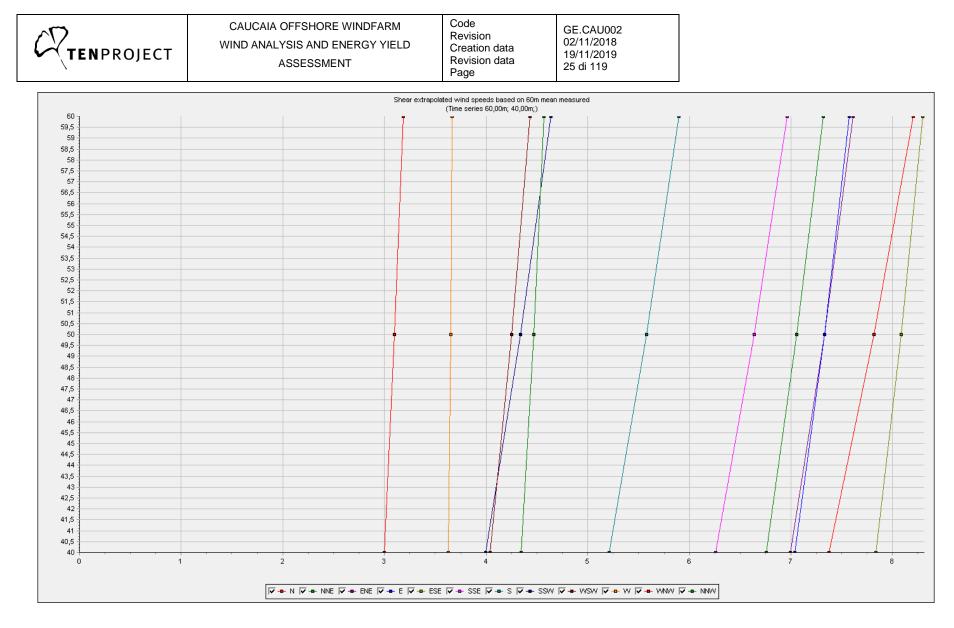
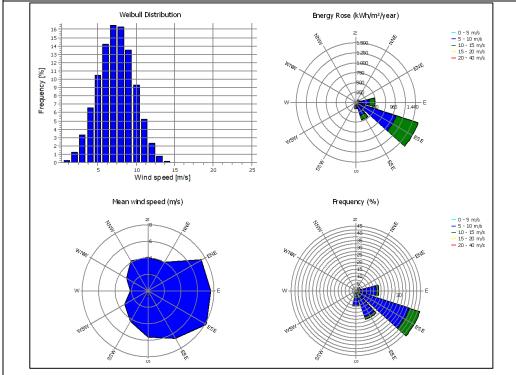


Figure 11: Extrapolated sector wise wind shear representation

	CAUCAIA OFFSHORE WINDFARM WIND ANALYSIS AND ENERGY YIELD ASSESSMENT	Code Revision Creation data Revision data Page	GE.CAU002 02/11/2018 19/11/2019 26 di 119
--	---	--	--


The measured wind profile is the main parameter used to calibrate the software simulation.

As anticipated, the shear values measured for heights 60/40 were used to extrapolate a series of data at a height of 90 m from the ground [29], this procedure is generally performed in order to prevent the simulation software from performing excessive overestimates due to vertical extrapolation. It should be emphasized that the position of the measurement station is on the coast line, in a point very close to the net change in roughness, while 48 wt are at sea over 5 km from the coast. Although there is not the problem of orographic complexity, the case is in any case not a simple model since the difference of the physical quantities of the heat flux strongly influences the wind phenomenon. The methodology is based on the assumption that the wind shear between 60/40 is similar or higher than the one that exists between the heights of 40 and 60 m, so the assumption is precautionary. It was preferred not to go beyond 90 m because beyond a certain height the real shear decreases significantly and the intake could generate overestimation effects.

On the basis of the shear matrix shown in the previous figures, the data set at 90 m has been extrapolated whose anemological characteristics are shown on the next page.

	CAUCAIA OFFSHORE WINDFARM WIND ANALYSIS AND ENERGY YIELD ASSESSMENT	Code Revision Creation data Revision data Page	GE.CAU002 02/11/2018 19/11/2019 27 di 119
--	---	--	--

	Signal	Unit	Count	Of period	Mean	Std dev	Min	Max	Weibull mean	Weibull A par	Weibull k par
90,00m - F Synth	Mean wind speed, all	m/s	175204	94,1%	8, 1 5		0,2	23,4	8,18	9,04	3,869
90,00m - F Synth	Wind direction, all	Degrees	175204	94,1%	123,1		0	356			
90,00m - F Synth	Turbulence intensity, enabled		162472	87,3%	0,0741	0,062	0	0,6763			

Sector			k- parameter	
	[m/s]	[m/s]		[%]
0 N	10,01	9,12		2,8
1 NNE	8,54	7,71	3,744	2,9
2 ENE	8,82	7,94	3,545	3,3
3 E	9,00	8,19	4,290	13,9
4 ESE	9,60	8,83	5,167	45,2
5 SSE	8,63	7,78	3,624	20,1
6 S	7,36	6,55	2,755	10,0
7 SSW	5,72	5,08	1,813	1,4
8 WSW	5,83	5,41	1,274	0,2
9 W	4,85	4,78	1,040	0,1
10 WNW	3,49	3,30	1,168	0,0
11 NNW	5,17	4,65	1,536	0,1
All	9,04	8,18	3,869	100,0

Figure 12: TP_2839 -measured average wind speed, directional graph reports for 90 m synthetized height : frequency distribution, average wind speed and energy rose. Sector wise weibull distributions

4.6 Wind data correlation

The data sets recorded on the proposed wind farm area are valid only for a relatively short period. For a long-term determination of wind speed and energy yield the long-term measurement should cover a period of at least 10 years, otherwise the results are influenced by seasonal and year-to-year wind variations. Even a medium period of a few years is generally not independent of year-to-year variations...Usually measurement data for a period of several months or years are available for the wind farm site. With long-term wind data of a suitable meteorological measurement station in the same region, the measured data of the site can be extrapolated to long-term data [19],[20].

For the extrapolation the simultaneously measured time series data of the site and the meteorological station are compared and evaluated to test whether the wind speed and the wind direction measurements of the two stations correlate i.e. whether a relation exists between them. If short-term and long-term time series do not show suitable correlation behaviour, the long-term extrapolation is carried out based on mean values of the wind speed. To assure that this long-term conversion is permitted, most of the wind directions, wind speed classes and thermal stability situations should be included in the short time measurements [4].

In order to perform a time series correlation between the measurement data of a reference station and a target station (located at the wind farm site), the time series of the measured wind data are compared. The relationships of wind speeds and wind directions between them are determined for the common, overlapping measuring period. Afterwards, the correlation parameters obtained by this method are applied on the long-time time-series of the reference station in order to calculate an artificial long-time time-series for the target station.

To determine the wind speed relationship a polynomial regression is applied on the wind speed data for certain wind direction sectors. This procedure, which is described in the following, is called advanced Measure-Correlate-Predict-algorithm (MCP).[7]; For this procedure, the wind direction sectors taken into account are variable and optimised regarding a good correlation. Starting with a first assumption, the determined wind speed relationships for all sectors are optimised regarding a good result, which is a minimal deviation of the wind speed distribution measured at the site and the wind speed distribution obtained by the MCP-method.. The parameters of this function are optimised regarding minimal deviations of wind direction distributions, also. Hence the comparison of the wind speed and wind direction distributions measured at the target site and those obtained by the MCP-method both during the overlapping period can be interpreted as self-consistency test of the correlation procedure and its parameters.

The application of the correlation parameters results in the expected wind distribution at the target site during the reference period. This is often referred as extrapolated wind distribution at the target site, which will be the base for the further wind resource assessment.

In our case study the data set extrapolated to 90 m is however only representative of the station's measurement period of about 3.5 years; according to the sector procedures, the next step was to correlate the site station with a long-term station in order to eliminate the seasonal component that could

affect the limited measurement period.

The correlations between site mast TP_2839 and described long term series were tested satisfactory results as regards the correlation factors. ERA5 and CFSR data set showed similar trend, but the ERA5 data set was chosen as long term reference because of the longer period of available wind data.

In order to perform a time series correlation between the measurement data of a reference station and the station located at the wind farm site, the time series of the measured wind data were compared. The relationships of wind speeds and wind directions between them were determined for the common, overlapping measuring period.

To determine the wind speed relationship a statistical linear regression was applied on the wind speed data for certain wind direction sectors. This procedure is called advanced Measure-Correlate-Predict algorithm (MCP).

	CAUCAIA OFFSHORE WINDFARM WIND ANALYSIS AND ENERGY YIELD ASSESSMENT	Code Revision Creation data Revision data Page	GE.CAU002 02/11/2018 19/11/2019 30 di 119
--	---	--	--

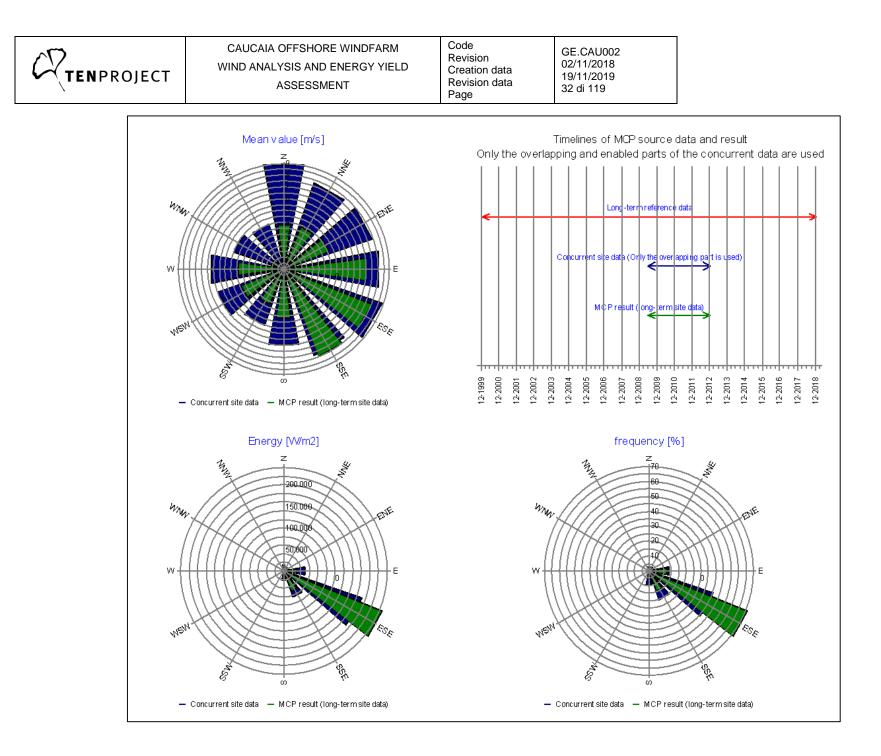

	Meteo object and he	eight				First date	Last date	Time step [min] Mean wind speed	
al measurements (site data)	TP_2839_Iparana.90	0,00m - F Synth				03/06/2009	17/12/2012	10	8,2
ng-term reference	ERA5_S03.512879_V	W038.53125.100,00m -				▼ 01/01/2000	31/12/2018	60	8,7
			MM			▼ 01/01/2000	31/12/2018		8,7 e Referen
3.5 3 2.5 2 1.5					6	9 9 8 7	Diurnal wi	ind speed profile	_
/ind speed		04/12/2007 03/12/2009 ments (site data)(speed) — 2:2:Long	03/12/2011 g-term reference(speed)	02/12/2013 02/12/2015	01/12/2017	2 1 0 1 2 1 0 1 2 3 4 3 2 1 0 0 1 2 3 4	5 6 7 8 9 1/	0 11 12 13 14 15 16 17 18 19 20 Hour of day	21 2:
0 05/12/2001 05/12/2001 find speed Averaging 1 month ind energy Show C slation (r), wind energy: 0,915 slation (r), wind speed: 0,923	✓ Days in window 6909 €		g-term reference(speed)	02/12/2013 02/12/2015		LE peeds peeds 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5 6 7 8 9 11	Hour of day	21 22

Figure 13: MCP details

	CAUCAIA OFFSHORE WINDFARM WIND ANALYSIS AND ENERGY YIELD ASSESSMENT	Code Revision Creation data Revision data Page	GE.CAU002 02/11/2018 19/11/2019 31 di 119
--	---	--	--

Figure 14: MCP details

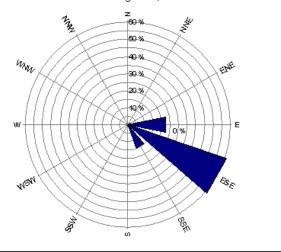
CAUCAIA OFFSHORE WINDFARM WIND ANALYSIS AND ENERGY YIELD ASSESSMENT

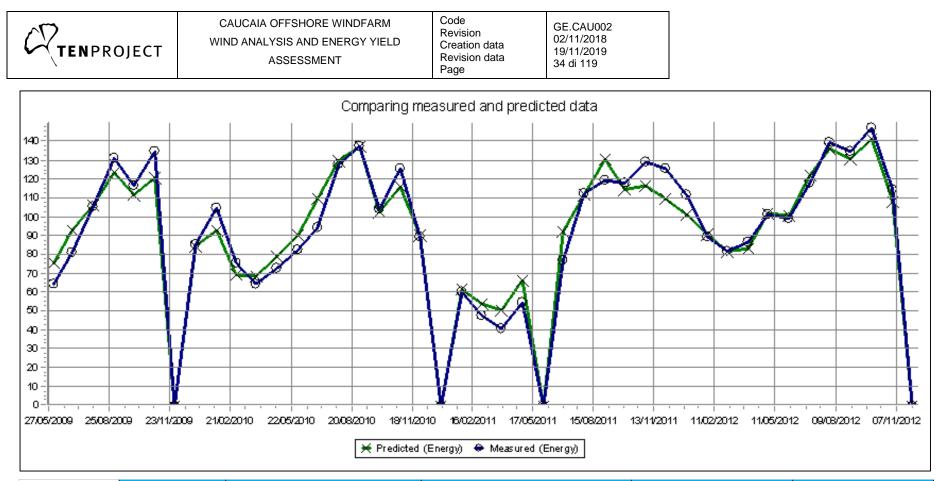
MCP - Main report Regression MCP

1: Local measurements (site data)	TP_2839_Iparana
Height	90,00 m
Period	03/06/2009 to 17/12/2012 3,5 years
Mean wind speed	8,18 m/s
Filters used	(Averaging)
2: Long-term reference	ERA5_S03.512879_W038.53125
Height	100,00 m
Period	01/01/2000 to 31/12/2018 19,0 years
Mean wind speed	8,43 m/s
Filters used	Not Filtered

Calculation setup

Method	Find transfer function for each sector
Number of sectors	12
Skip angle differences larger than	360,00
Skip wind speeds less than	2,00
Regression model (wind speed)	Linear (1st order polynomial)
Regression model (wind direction)	Constant (0th order polynomial)
Wind speed model - use residual resampling	Advanced Gaussian: Mean and std.dev. conditioned on wind speed modelled as polynominals (Of order: 1)
Wind direction model - use residual resampling	No model


Code


Results

Measure height a.g.l.	90,0 m
Mean wind in measure height	7,86 m/s
Key height a.g.l.	90,0 m
Mean wind in key height	7,93 m/s
Wind energy	59,8
WTG energy	92,2
r - wind speed	0,4278
s - wind speed	2,0095 m/s
r - wind index	0,9625
s - wind index	6,5525 %
Time of calculation	24/06/2019 11:40

Expected long-term WTG energy direction distribution AT SITE

Hub height 90,0

	Signal	Weibull mean measured period [m/s]	Weibull mean long term MCP ERA5 [m/s]	Ks historical correction factor	Overprediction measured period
90,0m	Mean wind speed	8,18	8,03	0,9817	1,87%

CAUCAIA OFFSHORE WINDFARM WIND ANALYSIS AND ENERGY YIELD ASSESSMENT	Code Revision Creation data Revision data Page	GE.CAU002 02/11/2018 19/11/2019 35 di 119	
---	--	--	--

	Signal	Unit	Count	Of period	Mean	Std dev	Min	Max	Weibull mean	Weibull A par	Weibull k par
90,00m - LT ERA5	Mean wind speed, all	m/s	312564	31,3%	7,99		0	23,4	8,03	8,88	3,8279
90,00m - LT ERA5	Wind direction, all	Degrees	312564	31,3%	121,4		0	356			
90,00m - LT ERA5	Turbulence intensity, enabled		162472	16,3%	0,0741	0,062	0	0,6763			

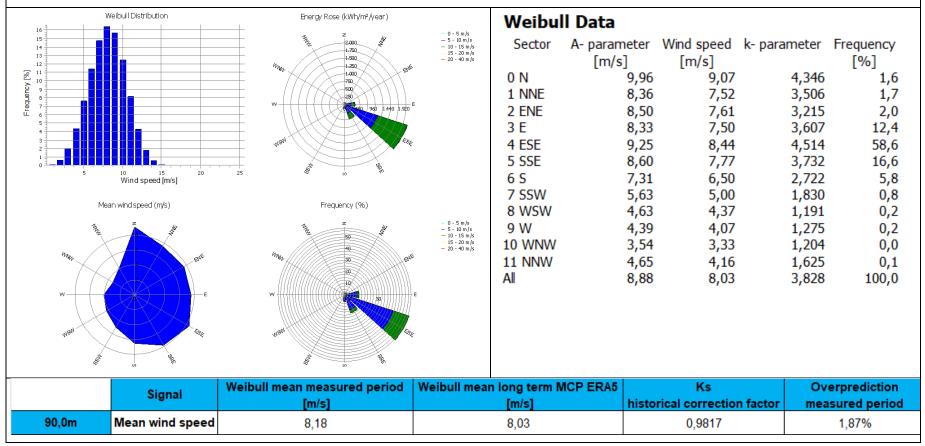
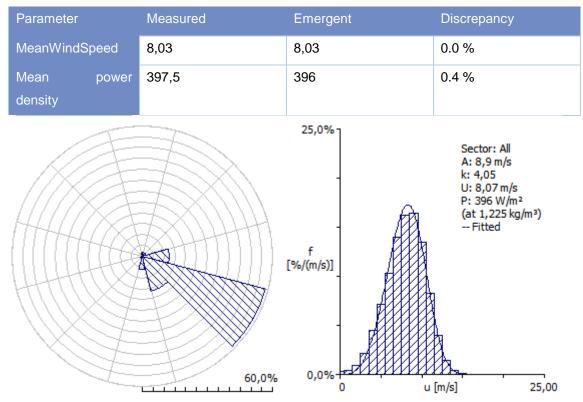


Figure 15: TP_2839 –long term average wind speed, directional graph reports for 90 m height : frequency distribution, average wind speed and energy rose. Sector wise weibull distributions

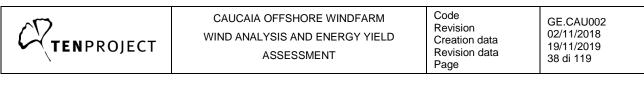

4.7 Wind statistic input for simulation

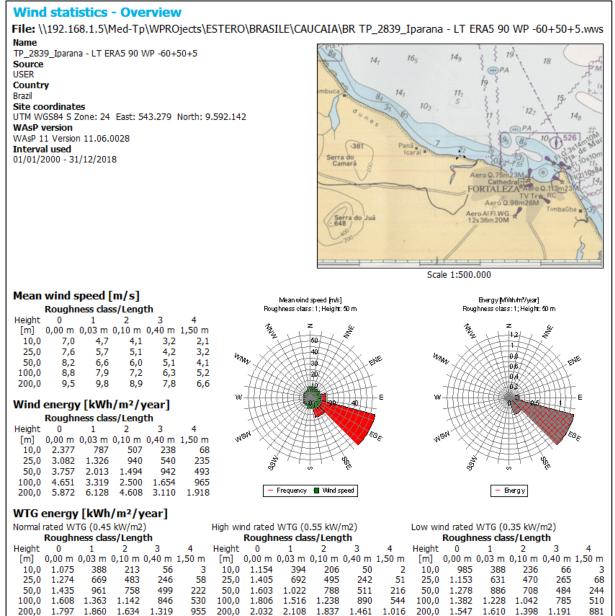
Based on the whole procedure described, the following is the detail of the statistic of long-term representative wind (19 years) used for the simulations, obtained using the measurements of the TP_2839 station in the period of 3.5 years from June 2009 to December 2012 correlated with the ERA5 mesoscale data set (19 years from January 2000 to December 2018).

The correlation methodology showed that the 3.5-year measurement period is slightly above the historical long-term average, in detail the long-term correction consists of a 1.87% reduction in the average speed with a correction factor ks equal to 0.9817.

4.7.1.1 TP_2839_LT_ERA5 90m' Input simulation - Summary

The anemometer is located at co-ordinates -3,69°N -38,61°E Height 90 m


4.7.1.2 Wind


-	0°	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°
A [m/s]	10,0	8,4	8,5	8,3	9,2	8,6	7,3	5,6	4,6	4,4	3,5	4,6
k	4,36	3,49	3,21	3,62	4,51	3,72	2,72	1,83	1,19	1,28	1,20	1,62
U [m/s]	9,08	7,52	7,61	7,51	8,44	7,76	6,50	5,00	4,37	4,07	3,33	4,16
P [W/m²]	549	339	365	332	437	363	250	161	206	147	90	107
f [%]	1,6	1,7	2,0	12,4	58,6	16,6	5,8	0,8	0,2	0,2	0,0	0,1

WIND ANALYSIS AND ENERGY YIELD Revision data 02/11/2018 ASSESSMENT Creation data 19/11/2019 37 di 119

4.7.1.3 Histogram bins

U [m/s]	0°	30°	60°	90°	120°	150°	180°	210°	240°	270°	300°	330°	All
0,5	1	7	5	2	1	1	3	9	17	100	79	49	2
1,5	3	12	11	6	2	3	7	25	59	117	145	76	4
2,5	7	23	24	13	5	10	20	70	129	140	204	136	9
3,5	7	46	49	28	12	24	57	136	164	161	204	179	22
4,5	13	86	86	55	26	56	121	192	232	140	105	185	45
5,5	32	99	93	92	51	89	156	207	131	107	99	125	71
6,5	54	94	98	137	89	119	151	130	67	69	72	60	103
7,5	115	120	121	163	137	149	140	73	23	40	13	49	140
8,5	165	146	121	156	172	165	119	41	18	27	13	49	162
9,5	158	150	121	141	185	151	95	31	15	8	26	65	164
10,5	155	106	112	109	156	113	63	37	18	23	7	11	134
11,5	128	61	86	62	97	69	38	20	25	21	13	5	83
12,5	109	31	47	27	46	32	19	15	44	11	13	5	40
13,5	43	14	21	7	16	13	7	8	52	15	0	5	14
14,5	10	2	3	1	4	4	2	5	4	19	0	0	4
15,5	1	2	0	0	1	1	1	1	1	2	0	0	1
16,5	0	0	0	0	0	0	0	0	0	0	7	0	0
17,5	0	0	0	0	0	0	0	0	0	0	0	0	0

4.8 Turbulence

The expression "Wind Turbulence" denotes the stochastic variations in the velocity from 10 min average. The wind turbulence depends on the surrounding topography, the surface roughness, the stability of the different atmospheric layers and the general weather conditions. Turbulence is generated mainly from two causes:

- friction with the earth's surface where flow disturbances are caused by topographical features as hills, obstacles and mountains.
- thermal effects which can cause vertically motion of air masses due to variations of temperature, and hence of the density of the air.

	CAUCAIA OFFSHORE WINDFARM WIND ANALYSIS AND ENERGY YIELD ASSESSMENT	Code Revision Creation data Revision data Page	GE.CAU002 02/11/2018 19/11/2019 39 di 119
--	---	--	--

Often these two effects are interconnected as when an air mass flows over a mountain range and is forced up into cooler regions where it is no longer in thermal equilibrium with its surroundings. Turbulence is clearly a complex process and cannot be represented simply in terms of deterministic equations. The standard deviation of wind speed fluctuations is a known key parameter for both extreme and fatigue loading and their action must be taken into account to ensure sufficient structural sustainability of the wind turbines exposed to "wind farm flow".

4.8.1 Ambient turbulence intensity

The ambient Turbulence (I) is determined as a ratio of wind speed standard deviation (σ) to the mean wind speed evaluated in the same 10 min interval.

$$I = \frac{\sigma}{V_{mean}}$$

The following two table show the turbulence intensity and the standard deviation for all wind direction sector and all wind speed bin at 61m a.g.l. The last row ("Sector mean") gives the mean values per wind direction sector for all wind speed bin. The red value in the lower right corner is total mean value. The turbulence values and the standard deviation are calculated for all measured data without filters.

According to the WTGS classification referring to the standard IEC 61400-1, edition 3, a wind turbine has to be designed to withstand the turbulence intensity (Iref) of 16 % (class A), 14 % (class B) or 12 % (class C). The turbulence intensity Iref according is defined as the expected value of hub height turbulence intensity at a ten-minute average wind speed of 15 m/s.

The following figure shows the bin-wise turbulence intensity measured at mast (61 m height) in comparison to the turbulence classes of IEC61400-1, edition 3. [14]

A detailed measured turbulence analysis for each wind speed bin and for each sector is described in the mast report.

CAUCAIA OFFSHORE WINDFARM WIND ANALYSIS AND ENERGY YIELD ASSESSMENT Creation dat Page	19/11/2019
---	------------

Bin	Mean	N	NNE	ENE	E	ESE	SSE	S	SSW	WSW	W	WNW	NNW
Mean	0,08	0,11	0,12	0,1	0,09	0,06	0,1	0,09	0,06	0,07	0,08	0,08	0,08
0	0,21					0,21							
1	0,11							0,11					
2	0,12					0,09		0,15					
3	0,09				0,07	0,11	0,1	0,13	0,08	0,05			
4	0,09	0,14	0,11	0,1	0,1	0,11	0,1	0,06	0,05	0,09	0,13	0,07	0,12
5	0,1	0,15	0,13	0,1	0,1	0,1	0,11	0,07	0,04	0,04	0,08	0,1	0,1
6	0,09	0,15	0,14	0,1	0,09	0,08	0,11	0,09	0,05	0,06	0,18	0,1	0,11
7	0,09	0,14	0,13	0,09	0,09	0,07	0,1	0,1	0,07	0,11			0,07
8	0,08	0,12	0,12	0,09	0,09	0,06	0,11	0,11	0,09	0,1			0,07
9	0,07	0,1	0,12	0,09	0,09	0,05	0,11	0,11	0,11	0,1	0,08	0,05	0,05
10	0,07	0,09	0,11	0,1	0,09	0,05	0,1	0,12	0,1	0,06	0,06		0,06
11	0,07	0,07	0,09	0,1	0,09	0,05	0,1	0,12	0,08	0,06	0,06	0,13	0,11
12	0,07	0,06	0,08	0,11	0,09	0,06	0,1	0,13	0,08	0,06	0,05		0,08
13	0,08	0,06	0,09	0,14	0,09	0,06	0,11	0,12	0,14	0,07			
14	0,07	0,06	0,06	0,06	0,06	0,06	0,11	0,07	0,09	0,05			
15	0,08	0,04			0,13	0,06	0,09	0,06				0,04	
16	0,13		0,04	0,22	0,1	0,19	0,16						
17	0					0							
18													
19	0					0							
20													

Figure 16: Graphic representation of bin-wise turbulence intensity measured at mast (60 m height) in comparison to the turbulence classes of IEC61400-1 ed. 3

5 SITE ASSESSMENT

5.1 Wasp modelling

Using all described input data of orography, roughness and wind data a WPRO/Wasp model was set out. The default vertical wind profile in the applied calculation model WAsP is optimized for the usage in the middle or northern Europe. The heat flux parameter at the regarded site differs from northern Europe conditions. The two parameters available for changing the stability treatment in WAsP are identified as RMS heat flux and offset heat flux [8]; [30]. According to recommended literature values the followings parameters were set initially:

"Offset heat flux over land" = 60 W/m² (Default -40 W/m²)

"RMS heat flux over land" = 50 W/m² (Default 100 W/m²)

"RMS heat flux over water" = 5 W/m² (Default 30 W/m²)

Using these recommended parameters resulted in a poor adaptation of the measured shear and a strong overestimation of the resource in the offshore area verified by cross-comparison with the ERA5 data at 100 m

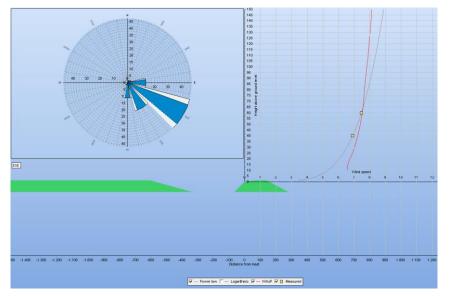


Figure 17: Adaption of wasp shear profile using rcomended heat flux parameters Table 10: Cross prediction values with heat flux recomended settings

Cros	Predicted values by predictor							
Predicte d at	Mast Description	Height ID	Heigh t [m]	Measure d wind speed [m/s]	A [m/s]	B [m/s]	A [%]	B [%]
А	ERA5_S03.512879_ W038.53125	100,00m -	100	8,43	8,43	8,79	-0,1	4,3
В	TP_2839_lparana	90,00m - LT ERA5	90	7,88	7,80	7,94	-0,9	0,8

Although not always recommendable, due to caution in the estimate it was preferred to adapt the profile

	CAUCAIA OFFSHORE WINDFARM WIND ANALYSIS AND ENERGY YIELD ASSESSMENT	Code Revision Creation data Revision data	GE.CAU002 02/11/2018 19/11/2019 42 di 119
N	A COLOOMENT	Page	42 01 119

of the wasp modeling to the one measured, a good result was obtained leaving the recommended parameters and changing only the offset value of the heat flux in detail

"Offset heat flux over land" = -60 W/m² (Default -40 W/m²)

"RMS heat flux over land" = 50 W/m² (Default 100 W/m²)

"RMS heat flux over water" = 5 W/m² (Default 30 W/m²)

Using the parameters described, a good adaptation of the profile and good values of self and cross prediction were obtained

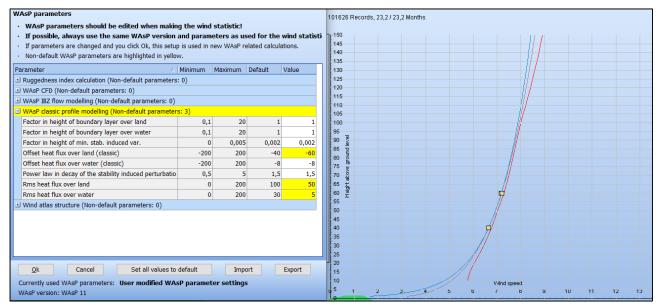


Figure 18: Adaption of wasp shear profile using modified heat flux parameters

Cr	Predicted values by predictor							
Predicte d at	Mast Description	Height ID	Heigh t [m]	Measure d wind speed [m/s]	A [m/s]	B [m/s]	A [%]	B [%]
A	ERA5_S03.512879_W038.53 125	100,00 m -	100	8,43	8,43	8,46	-0,1	0,4
В	TP_2839_Iparana	90,00m - LT ERA5	90	7,88	7,90	7,87	0,3	-0,1

Table 11: Cross prediction values with heat flux modified settings

A good self-prediction values were obtained for the site mast with a maximum overprediction of 0,4 %

5.2 Technical data of wind turbine

To date most of the offshore plants are located in areas characterized by a high wind speed (for example the northern seas, the Baltic Sea) with high gust values and wind distributions requiring robust structural characteristics and power curves eligible for such schemes.

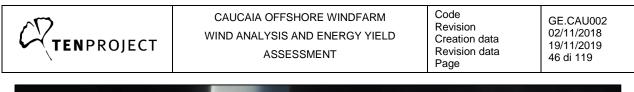
The anemological regime of the Brazilian area of Caucaia has very peculiar features, as it is characterized by a high average speed (8.5 m / s at 100 m) but by a statistical distribution corresponding to a Weibull with super form factor at 3.5, practically a Gaussian. The expected extreme values are very low (<25 m / s), the flow is very regular characterized by low turbulence.

The power curves suitable for exploiting this wind speed are those with a large rotor size and a generator set to work on the Gaussian centered regimes. The wind turbines designed for low wind speeds can be installed and they ca guarantee a capacity factor of over 50%.

For the Caucaia project it has been imagined to install rotor machines up to 250 m and power up to 12 MW to take account of the rapid development of technology.

No one of the most recent offshore wind turbine power curves have been made available by suppliers. MHI -Vestas supplied the power curves but with the condition of not divulging the technical details, for this reason in the case of the Vestas only the results of the final productions are shown

In all others offshore cases, unofficial theoretical power curves were used, extrapolated using WindPro software based on pitch technology standards for an assigned rotor and power. The method is very cautious and is based on "simplified HP – curves" which assume that all WTGs performs quite similar. Only specific power loading (kW/M^2) and single/dual speed or stall/pitch decides the calculated values. It has been decided to perform some estimates with power curves of onshore wind turbine models that have the appropriate characteristics to highlight the productive capacity of the Brazilian offshore resource with wind turbines with the right technical characteristics .


In the tables below are synthesized the main characteristic of chosen wind turbine for the windfarm.

	CAUCAIA OFFSHORE WINDFARM WIND ANALYSIS AND ENERGY YIELD ASSESSMENT	Code Revision Creation data Revision data Page	GE.CAU002 02/11/2018 19/11/2019 44 di 119
--	---	--	--

Turbine Type	N° WTG	Туре	Total Power [MW]	Hub Height a.g.l. [m]
48*Siemens SG 6.0-170 + 11*Siemens SWT-2.3-101	59	Onshore	313,300	[110-80]
48*VESTAS V162-5.6 + 11*VESTAS V110-2.0	59	Onshore	290,800	[110-95]
48*Siemens SG 8.0-154 + 11*Siemens SWT-2.3-101	59	Offshore	409,300	[110-80]
48*VESTAS V164-10.0 + 11*VESTAS V110-2.0	59	Offshore	502,000	[110-95]
48*VESTAS V174-9.5 + 11*VESTAS V110-2.0	59	Offshore	478,000	[110-95]
48*GE WIND 220 12 MW + 11*GE 116-2.0	59	Offshore	598,000	[150-90]

One turbine can power 9,000 UK homes

24 Overview

⊅⊄ Features

The V164-10.0 MW™ incorporates a stronger gearbox, some minor mechanical upgrades, and a small design change to enhance air flow and increase cooling in the converter. The upgrades ensure that this gentle giant can run at full power, at a site with wind speeds of 10 metres per second, for 25 years.

- Flanged connected drive train with easy-access key-components
- Main bearings, coupling, gearbox and generator is possible to lift out separately for service .
- · Permanent magnet generator
- Full scale converter 50/60 Hz at 66 kV nominal voltage .
- . Nacelle dimensions: 9.3 m x 20.7 m x 8.8 m (H x L x W)
- . Rotor diameter: 164 m
- Swept area: 21,124 mz
 Helihoist platform available

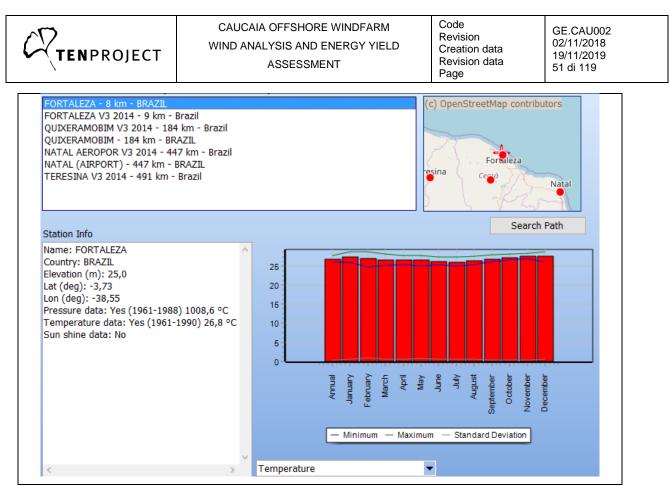
V164-10.0 MW™

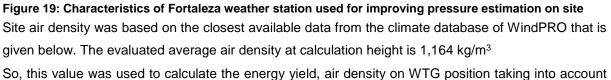
The world's first commercial double digit offshore wind turbine

- Built on the proven and trusted 9 MW Platform
- Ready for installation from 2021

ASSESSMENT Page 47. Page 47. Page 47. Image: Second State S		CAUCAIA OFFSH	-	Code Revision Creation data	GE.CAU002 02/11/2018		
SG 6.0-170 Section Control Section Diameter 170 m Swept area 22,698 m² Power regulation with variable speed Rotor till Type Set 4.5 m Activation Blade Type Set 7.0 Supporting Blade spropristary airfoils Material GREC (Glassifiber Reinforced Legoxy) - CRP (Carton Reinforced Plastic) Surface color Siemens Gamesa proprietary airfoils Surface color Siemens proprietary airfoils Activation Active friction brake proprietary airfoils Surface color Controller Type Siemens Integrated Con System (SICS) Surface color Sight grey, RAL 7035 or White, RAL 8018 Activation Activation Activation Proged steel Naoelle bed frame Nodular cast iron White, RAL 8018 Nub Type Tubular steel / Hybrid Hub Modular cast iron White, RAL 8018 Corrosion protection	TENPROJECT	ASSESS	SMENT		19/11/2019 47 di 119		
Rotor Type 3-bladed, horizontal axis Position Upwind Diameter 170 m Swept area 22,088 m² Power regulation Pitch & torque regulation with variable speed Grid Terminals (LV) Power regulation With variable speed Rotor tilt 6 degrees Blade Yaw System Type Self-supporting Blade length 83 m Yaw baring Externally geared Max chord 4.5 m Aerodynamic profile Siemens Gamesa proprietary airfoils Yaw brake Material GRE (Classfiber Reinforeed Material GRE (Classfiber Reinforeed Surface gloss Semi-gloss, < 30 / ISO2813	SG 6.0-170						
Position Upwind Type Asynchronous, DFIG Diameter 170 m Grid Terminals (LV) Power regulation Pitch & torque regulation Grid Terminals (LV) Power regulation With variable speed Grid Terminals (LV) Rotor tilt 6 degrees Frequency 50 Hz or 60 Hz Blade Yaw System Type 600 V Type Self-supporting Type Active Blade length 83 m Yaw System Externally geared Max chord 4.5 m Yaw brake Active friction brake proprietary airfoits GRE (Glassfiber Reinforced Type Siemens Integrated Con Material GRE (Glassfiber Reinforced Type Siemes Integrated Con Surface gloss Semi-gloss, < 30 / ISO2813	Rotor						
Diameter							
Swept area 22,698 m² Grid Terminals (LV) Power regulation Pitch & torque regulation Baseline nominal power . 6.0 MW Notor tilt 6 degrees 690 V Rotor tilt 6 degrees 690 V Blade 7ype 50 Hz or 60 Hz Type Self-supporting Type Blade length 83 m Yaw System Max chord 4.5 m Yaw bearing Aerodynamic profile Siemens Gamesa Yaw brake proprietary airfoils GRE (Glassfiber Reinforced Controller Bude gloss Semi-gloss, < 30 / ISO2813			i ype	Asynchronous, DF	16		
Power regulation with variable speed Baseline nominal power. 6.0 MW Voltage 600 V Rotor tilt 6 degrees 600 V Blade Frequency 50 Hz or 60 Hz Type Self-supporting Type Blade length 83 m Yaw System Max chord 4.5 m Yaw bearing Aerodynamic profile Siemens Gamesa Yaw brake proprietary airfoils GRE (Glassfiber Reinforced Epoxy) - CRP (Carbon Reinforced Plastic) Controller Surface gloss Semi-gloss, < 30 / ISO2813			Grid Terminale (1)	n			
with variable speed Voltage 690 V Rotor tilt 6 degrees Frequency 50 Hz or 60 Hz Blade Yaw System Type Active Type Self-supporting Type Active Blade length 83 m Yaw System Type Max chord 4.5 m Yaw drive Electric gear motors Aerodynamic profile Siemens Gamesa proprietary airfoils Yaw brake Active friction brake Material GRE (Glassfiber Reinforced Controller Type Siemens Integrated Con System (SICS) Surface gloss Semi-gloss, < 30 / ISO2813	Power regulation	Pitch & torque regulation					
Rotor tilt 6 degrees Frequency 50 Hz or 60 Hz Blade Type Self-supporting Type Active Type Self-supporting Type Active Externally geared Max chord 4.5 m Yaw bearing Externally geared Max chord 4.5 m Yaw drive Electric gear motors Aerodynamic profile Siemens Gamesa Yaw brake Active friction brake proprietary airfoils GRE (Glassfiber Reinforced Type Siemens Integrated Con Reinforced Plastic) System (SICS) System (SICS) System (SICS) Surface gloss Semi-gloss, <30 / ISO2813							
Blade Yaw System Type Self-supporting Blade length 83 m Max chord 4.5 m Aerodynamic profile Siemens Gamesa proprietary airfoils Yaw bearing Material GRE (Glassfiber Reinforced Epoxy) – CRP (Carbon Type Reinforced Plastic) System (SICS) Surface gloss Semi-gloss, < 30 / ISO2813			-				
Blade length 83 m Yaw bearing. Externally geared Max chord 4.5 m Yaw drive Electric gear motors Aerodynamic profile Siemens Gamesa proprietary airfoils Yaw brake Active friction brake Material GRE (Glassfiber Reinforced Controller Epoxy) - CRP (Carbon Reinforced Plastic) Type Siemens Integrated Con System (SICS) Surface gloss Semi-gloss, < 30 / ISO2813	Blade	-	Yaw System				
Max chord 4.5 m Yaw drive Electric gear motors Aerodynamic profile Siemens Gamesa Yaw brake Active friction brake proprietary airfoils GRE (Glassfiber Reinforced Controller Beoxy) - CRP (Carbon Type Siemens Integrated Con Reinforced Plastic) System (SICS) Surface gloss Semi-gloss, < 30 / ISO2813	Type	.Self-supporting	Type	Active			
Aerodynamic profile Siemens Gamesa proprietary airfoils Yaw brake Active friction brake Material GRE (Glassfiber Reinforced Epoxy) – CRP (Carbon Reinforced Plastic) Controller Surface gloss Semi-gloss, < 30 / ISO2813					rs		
proprietary airfoils Controller Material GRE (Glassfiber Reinforced Epoxy) – CRP (Carbon Reinforced Plastic) Type Siemens Integrated Con System (SICS) Surface gloss Semi-gloss, < 30 / ISO2813							
Epoxy) - CRP (Carbon Reinforced Plastic)TypeSiemens Integrated Con System (SICS)Surface glossSemi-gloss, < 30 / ISO2813		proprietary airfoils			-		
Surface gloss Semi-gloss, < 30 / ISO2813		Epoxy) - CRP (Carbon	Туре	System (SICS)			
White, RÅL 9018 Tower Aerodynamic Brake Type Tubular steel / Hybrid Type Full span pitching Hub height 100m to 165 m, site-spe Activation Active, hydraulic Corrosion protection Painted Load-Supporting Parts Surface gloss Semi-gloss, <30 / ISO-2!		Semi-gloss, < 30 / ISO2813	SCADA system		stem		
Aerodynamic Brake Type Full span pitching Activation Active, hydraulic Load-Supporting Parts Hub height 100m to 165 m, site-spe Hub Nodular cast iron Surface gloss Semi-gloss, <30 / ISO-2i							
Type Full span pitching Activation Active, hydraulic Load-Supporting Parts Corrosion protection Hub Nodular cast iron Main shaft Forged steel Nacelle bed frame Nodular cast iron Mechanical Brake Type Type Hydraulic disc brake Position Gearbox rear end Operational Data 0.0 m/s (steady wind without turbulence, as defined by IEC61400-1) Cut-out wind speed 25 m/s			Туре	Tubular steel / Hyt	brid		
ActivationActive, hydraulic Load-Supporting Parts HubNodular cast iron Main shaftForged steel Nacelle bed frameNodular cast iron Mechanical Brake TypeHydraulic disc brake PositionGearbox rear end Mechanical State PositionGearbox rear end Mechanical State PositionGearbox rear end Mechanical State PositionGearbox rear end Active, hydraulic Corrosion protectionPainted Surface glossPainted Surface glossPainted Surfa	-						
Load-Supporting Parts Surface gloss Semi-gloss, <30 / ISO-2i					te-specific		
HubNodular cast iron Color Light grey, RAL 7035 or Main shaftForged steel White, RAL 9018 Nacelle bed frameNodular cast iron Operational Data Mechanical Brake Cut-in wind speed 3 m/s TypeGearbox rear end Rated wind speed 10.0 m/s (steady wind without turbulence, as defined by IEC61400-1) Cut-out wind speed 25 m/s	oad-Supporting Parts				ISO-2813		
Main shaft		Nodular cast iron					
Nacelle bed frame Nodular cast iron Mechanical Brake Type	Main shaft	Forged steel					
Mechanical Brake Cut-in wind speed 3 m/s Type Hydraulic disc brake Rated wind speed 10.0 m/s (steady wind without turbulence, as defined by IEC61400-1) Cut-out wind speed 25 m/s			Operational Data				
TypeHydraulic disc brake PositionGearbox rear end Gearbox rear end Cut-out wind speed	Mechanical Brake						
PositionGearbox rear end without turbulence, as defined by IEC61400-1) Cut-out wind speed 25 m/s	peHydraulic disc brake				vind		
Cut-out wind speed 25 m/s	Position	Gearbox rear end		without turbulence	, as		
				25 m/s	-		
Nacelle Cover Restart wind speed 22 m/s			Restart wind speed	22 m/s			
Type Totally enclosed							
Surface gloss				All mediates and the			
ColorLight Grey, RAL 7035 or Modular approach All modules weight lower White, RAL 9018 than 80 t for transport	- CHICKE		Modular approach				

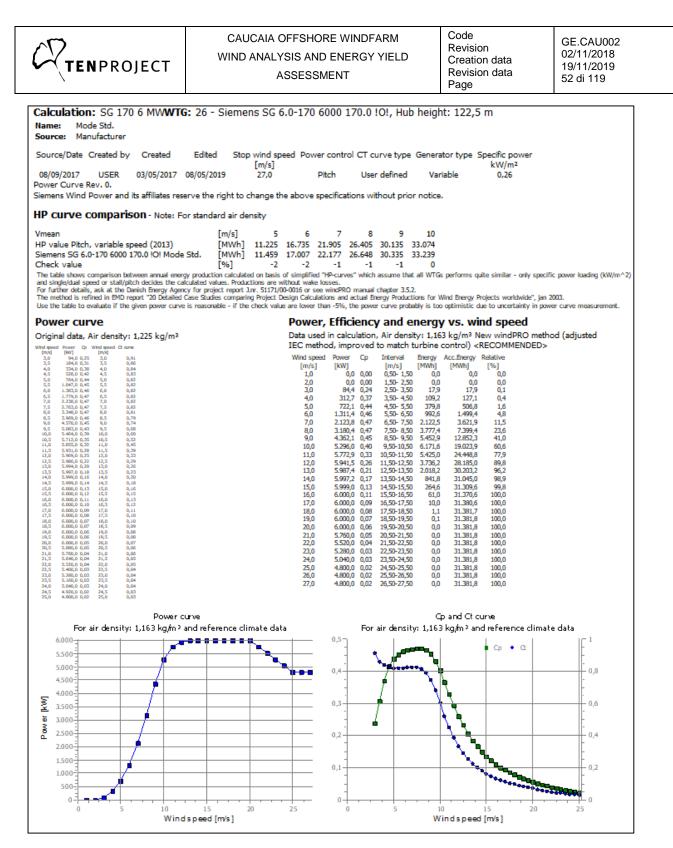
CAUCAIA OFFSHORE WINDFARM WIND ANALYSIS AND ENERGY YIELD ASSESSMENT	Code Revision Creation data Revision data Page	GE.CAU002 02/11/2018 19/11/2019 48 di 119
Conorator		

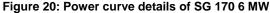

V/162 5	.6 MW 50/60 Hz	Generator				
v 102-5	.0 WW 30/00 FIZ	Туре		Permanent Magnet Sy	nchronous generator	
		Rated	Power [P _N]	Up to 5850 kW (depen	ding on turbine variant)	
		Freque	ency range [f _N]	0-138 Hz		
1		Voltage	e, Stator [U _{N8}]	3 x 800 V (at rated spe	ed)	
THE		Numbe	er of Poles	36		
Vestas.		Windin	ig Type	Form with Vacuum Pre	ssurized Impregnation	
Vesias		Windin	g Connection	Star		
		Operat	ional speed range	0-460 rpm		
		Oversp	peed Limit (2 minutes) TBD		
		Tempe	rature Sensors, State	or PT100 sensors placed	in the stator hot spots.	
		Insulat	ion Class	н		
		Enclos	ure	IP54		
	Patas		1450	144.00	1	
	Rotor		V150	V162		
	Diameter		150 m	162 m		
	Swept Area		17671 m ²	20611 m ²		
	Speed, Dynamic Operation	Range	4.9 - 12.6 rpm	4.3 -12.1 rpm		
	Rotational Direction	Clockwise (front view		iew)		
	Orientation	Upwind				
	Tilt	6°				
	Hub Coning		6°			
	No. of Blades		3			
	Aerodynamic Brakes		Full feathering			
	Blades	V150		/162		
	Blade Length	73.65 n		'9.35 m		
	Maximum Chord	4.2 m		l.3 m		
	Chord at 90% blade radius	1.4 m		.57 mj		
	Type Description	Structural airfoil shell				
	Material	Fibreglass reinforced epoxy, carbon fibres and Solid Metal Tip (SMT)				
		Steel roots inserted				
	Blade Connection		oots inserted			


	CAUCAIA OFFSHORE WINDF/ WIND ANALYSIS AND ENERGY ASSESSMENT	Revision	10/11/2010
12 MW capacity 220-meter rotor 107-meter long blades 260 meters high 67 GWh gross AEP 63% capacity factor 38,000 m² swept area Wind Class IEC: IB Generates double the energy as previous GE Haliade model Generates almost 45% more energy than most powerful wind turbine available on the market today Will generate enough clean power for up to 16,000 European households per turbine, and up to 1 million European households in a 750 MW configuration windfarm		GE Re 12 MI world, blade digita custor	1046 ft 319 m
		Haliade-X Specificat	ions
		Rated Power	12 MW
		Rotor Diameter	220m
*		Blade Length	107m
	7.11	Rotor Swept Area	38,000m²
RIA		Total Height	260m

5.3 Power curve analysis

The power curve describes the electric power output from a specific WTG versus the wind speed at hub height. The power curve is typically provided from the WTG supplier. The official power curve supplied is typically measured by a certificated society by installing wind monitoring equipment close to a WTG, and measuring the coincident values in detailed standard condition for the normalized air density of 1,225. kg/m³. The power curve was adapted to the air density condition of site location at hub height. The calculation of air density at the sites was based on the long term temperature measurements of Fortaleza climate database taking into account the altitude of the site.


۲) Temperature data from climate station database Climate database FORTALEZA
C) Manual input of temperature data
	Elevation 25,0 m a.s.l. Annual mean temperature 26,8 °C
Pressu	re base values
•	Pressure calculated from elevation
C) Manual input of pressure data (Must be used with care)
	Elevation 0,0 m a.s.l. Pressure 1.013 hPa Compare to standard values (0 m and 1013 hPa) 100 %
Other setting	S
Relative hum	nidity 0,0 %
Example	
Terrain eleva	ation 10,0 m a.s.l. + Hub height 105,0 m a.g.l. = 115,0 m a.s.l.
Temperature	e 26,2 °C Pressure 1.000 hPa Air density 1,164 kg/m ³ 95,0 % of STANDARD



the altitude and hub height, calculated by standard air density, using the following equation:

$$\rho_1 V_1^3 = \rho_2 V_2^3$$
; $V_2 = \left(\frac{\rho_1}{\rho_2}\right)^{1/3} V_1$

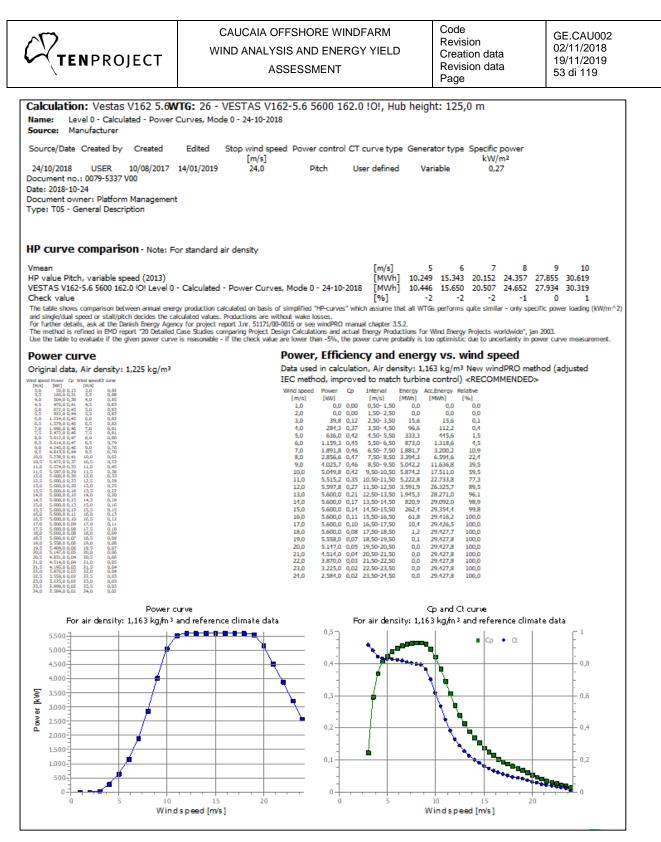
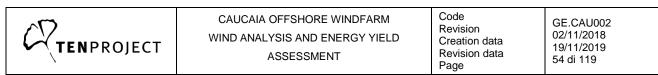



Figure 21: Power curve details of Vestas V162 5.6 MW

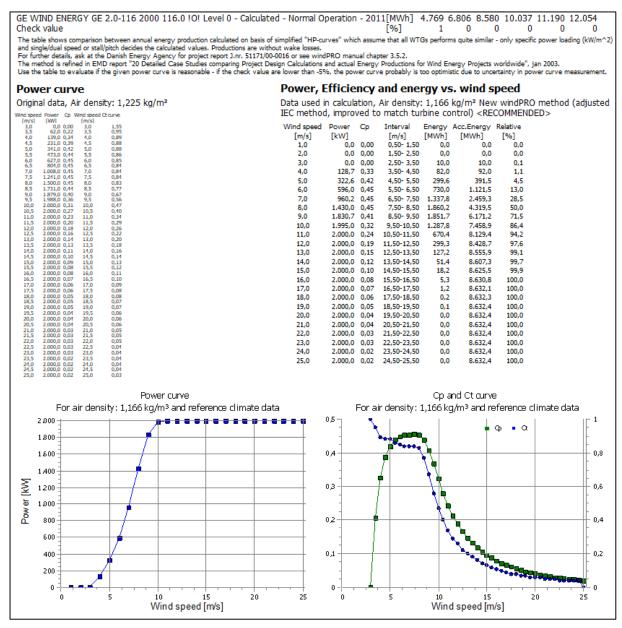


Figure 22: Power curve details of GE 116 2 MW

5.4 Windfarm layout and location

The planned windfarm are well positioned with respect to the prevailing directions, and it is confirmed by low value of calculated wake loss; the layer was optimized to reduce the wake losses and the wake decay, so the distance between the rows orthogonal to wind is increasing with the number of rows and start with a minimum value of about 3,2 km , until about 5,5 km for the last rows. In the table below are reported WGS 84 coordinates of WT positions, while in the table below are represented the horizontal distances among wind turbines.

Label	WGS 84 Zone 24 East [m]	WGS 84 Zone 24 North [m]	Z [m]	Nearest WTG [m]	Horizontal distance [m]
C01	543747	9597143	0	C02	880
C02	544323	9597808	0	C01	880
C03	544900	9598473	0	C02	880
C04	545476	9599139	0	C05	878
C05	546052	9599801	0	C04	878
C06	546628	9600469	0	C07	878
C07	547203	9601133	0	C06	878
C08	547780	9601799	0	C07	881
C09	541778	9598534	0	C10	880
C10	542354	9599199	0	C09	880
C11	542930	9599865	0	C12	880
C12	543506	9600530	0	C13	878
C13	544083	9601192	0	C12	878
C14	544659	9601860	0	C15	881
C15	545234	9602528	0	C14	881
C16	545810	9603196	0	C15	882
C17	546385	9603865	0	C18	882
C18	546961	9604533	0	C19	872
C19	547534	9605190	0	C18	872
C20	538910	9600380	0	C21	880
C21	539487	9601045	0	C22	879
C22	540062	9601710	0	C21	879
C23	540639	9602376	0	C24	880
C24	541215	9603041	0	C25	880
C25	541791	9603706	0	C26	880
C26	542367	9604371	0	C27	880
C27	542943	9605036	0	C28	876
C28	543512	9605702	0	C27	876
C29	544096	9606367	0	C30	880
C30	544672	9607032	0	C31	880

Table 13: Distance matrix of wind turbine

		CAUCAIA OFFSHORE WINDFARM WIND ANALYSIS AND ENERGY YIELD ASSESSMENT			ta 02	E.CAU002 2/11/2018 9/11/2019 3 di 119
Label	WGS 84 Zone 24 East [m]	WGS 84 Zone 24 North [m]	Z [m]	Nearest WTG [m]	Horizonta distance [m]	
C31	545248	9607697	0	C30	880	
C32	545851	9608394	0	C31	922	
C33	535331	9602939	0	C34	881	
C34	535907	9603605	0	C35	880	
C35	536484	9604270	0	C36	880	
C36	537060	9604935	0	C37	880	
C37	537636	9605600	0	C38	880	
C38	538212	9606265	0	C37	880	
C39	538788	9606931	0	C40	880	
C40	539364	9607596	0	C41	879	
C41	539940	9608260	0	C40	879	
C42	540516	9608925	0	C41	880	
C43	541092	9609591	0	C44	880	
C44	541668	9610256	0	C45	880	
C45	542244	9610921	0	C44	880	
C46	542821	9611586	0	C47	879	
C47	543396	9612251	0	C46	879	
C48	543972	9612916	0	C47	880	
C49	539387	9592831	0	C50	627	
C50	538799	9593049	0	C49	627	
C51	538116	9593470	0	C52	667	
C52	537557	9593834	0	C53	616	
C53	537075	9594218	0	C52	616	
C54	536508	9594629	0	C55	623	
C55	536054	9595055	0	C56	593	
C56	535631	9595470	0	C55	593	
C57	535082	9596128	0	C58	665	
C58	534574	9596557	0	C57	665	
C59	534169	9597104	0	C58	681	

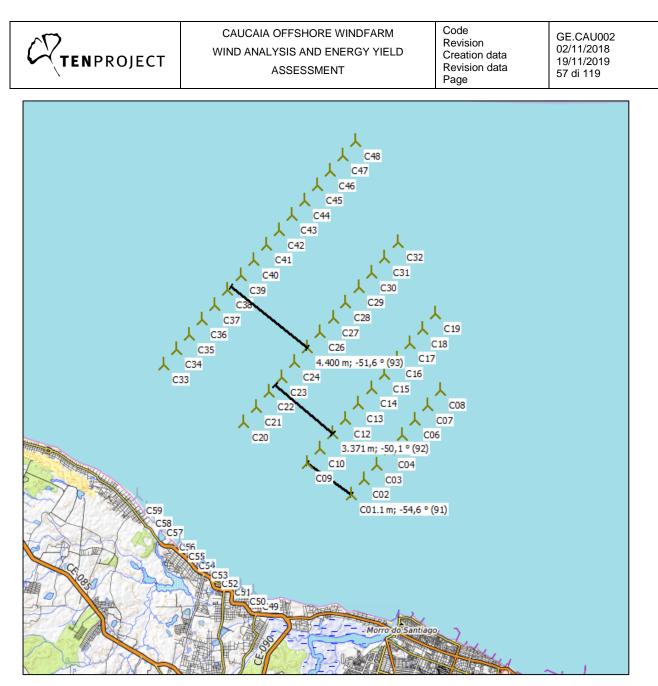


Figure 23: Graphical evidence of layout design and distances. For each WT is drown with a green line an ellipse with a major axis set to 7 D oriented in wind prevailing direction. The minor axis is equal to 3D

6 ENERGY YIELD ESTIMATION

6.1 Results

Waiting for official power curves of most recent WEC developed for offshore purpose the following wtg model were teste for the windfarm layout:

48 * Siemens SG 6.0-170 +11 * SWT-2.3-101-2.300

48 * Vestas V162-5.6 + 11 * VESTAS V110-2.0

48 * Siemens SG 8.0-154 + 11 * SWT-2.3-101-2.300

48 * Vestas V164-10.0 + 11 * VESTAS V110-2.0

48 * Vestas V174-9.5 + 11 * VESTAS V110-2.0

48 * GE Wind GE 220 12 MW + 11 * GE Wind 116 -2.0 MW

The following model parameters were applies

• WAKE MODEL : N.O. Jensen (RISO/EMD Park 2018)

• WAKE DECAY COSTANT : DTU default offshore WDC = 0.06

The predicted average wind speed at hub height for Caucaia windfarm is calculated in about 8,5 m/s for at 120 m a.g.l. with a wind statistic distributions which assure a reliable and good energy production even taking into account about 8.5 % of technical losses.

On the basis of specified power curve and described methodology, the energy output was calculated and the results are reported below.

Table14: Main projects parameters

WINDFARM	Caucaia
N° WTG	48 WT OFFSHORE + 11 WT ONSHORE (COASTAL)

CAUCAIA OFFSHORE WINDFARM WIND ANALYSIS AND ENERGY YIELD ASSESSMENT	Code Revision Creation data Revision data Page	GE.CAU002 02/11/2018 19/11/2019 59 di 119
---	--	--

Table 15: Synthesis of all AEP estimated values

Turbine Type	N° WTG	Туре	Total Power [MW]	Hub Height a.g.l. [m]	Total gross AEP [GWh]	Total AEP net of wake loss [GWh]	Total AEP net of all technical losses [GWh]	Mean wake loss [%]	FLEOH MWh/MW	Capacity Factor [%]
48*Siemens SG 6.0-170 + 11*Siemens SWT-2.3-101	59	Onshore	313,300	[110-80]	1712,984	1644,071	1504,325	4,89	4802	54,8%
48*VESTAS V162-5.6 + 11*VESTAS V110-2.0	59	Onshore	290,800	[110-95]	1609,384	1547,341	1415,817	4,50	4869	55,5%
48*Siemens SG 8.0-154 + 11*Siemens SWT-2.3-101	59	Offshore	409,300	[110-80]	1361,148	1285,242	1175,996	6,15	2873	32,8%
48*VESTAS V164-10.0 + 11*VESTAS V110-2.0	59	Offshore	502,000	[110-95]	1977,866	1863,093	1704,730	6,25	3396	38,7%
48*VESTAS V174-9.5 + 11*VESTAS V110-2.0	59	Offshore	478,000	[110-95]	2144,708	2029,655	1857,134	5,89	3885	44,3%
48*GE WIND 220 12 MW + 11*GE 116-2.0	59	Offshore	598,000	[150-90]	3201,767	3022,584	2765,664	6,27	4625	52,8%

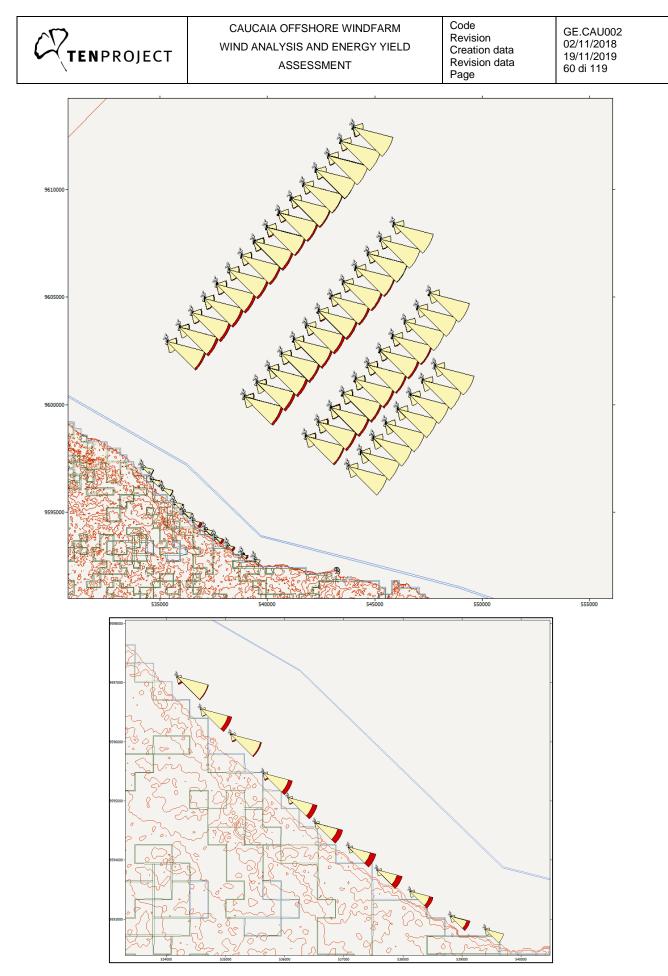


Figure 24: Graphical evidence of layout wake loss (Wasp 12)

6.2 Estimated losses

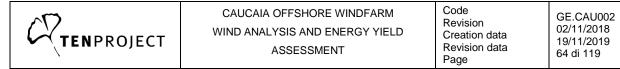
The calculated energy yields are based on the power curves, the wake shading effects and the calculated wind conditions and do not take into account reductions due to the limited availability of wind turbines, electrical losses etc. The determined discount values for these effects were estimated by project specific calculations or assumed according to experience.

The following effects can be regarded as relevant reduction of the energy output:

- Electrical losses of wiring and the interconnecting station depend on the project specific design of the grid connection and the involved components. For this study the presented values are based on estimation, but they could be calculated by receiving detailed input
- The availability is an estimated average availability during normal operation, and it assumed to be lightly higher of standard agreed contractual conditions for a wind farm because of particular innovative technology ipothized for the site. It should be considered that the losses depend strongly on the strategy of the control system of the wind turbine and the availability is often lower for the first months of operation.
- Planned maintenance is usually not included in the non-availability level. Details to the maintenance should be determined in the contracts. The influence is estimated to be quite limited (80 hours with mean wind speed), under the assumption that a good maintenance concept is existing.
- The grid availability at the site is considered to be high (grid downtime of 50 hours with mean wind speed). This is a general assumption without consideration of site specific properties.
- If wind turbines have to be temporarily taken from the grid or if turbines are running in a power limited operation mode due to administrative orders, this has to be considered separately. Discounts for such effects have not been taken into account.
- Over the lifetime of the wind turbines it can be expected that the rotor blades do not keep their ideal aerodynamic profile. This is due to dirt, insects, salt, sand, and aging of the rotor blade material, a small loss for rotor blade degradation is assumed.

Potential source of energy losses has been assessed and deducted from the gross AEP they are estimated on empirical known values and are reported below.

Table 16: Detail of estimated technical losses


Technical Losses								
Specificy	Input	Loss value [%]						
Availability		0						
Turbine availability	Warrenty	3						
Balance of plant (BOP)	Assumption	0,8						
Grid Availability	Assumption	0,5						
Other availability	Assumption	0,1						
Performance Losses		0						
High wind hysteresis	Assumption	0,1						
Windy flow variability	Assumption	0						
Performance Losses/Other (Icing/blade degradation)	Assumption	0						
Electric losses		•						
Electric leakage losses		3,5						
Facility consumption		0,1						
Enviromental Losses		•						
Performance degradation not due to icing	Assumption	0						
Shutdown due to icing, lightning, hail, etc.	Assumption	0,1						
High and low temperature	Assumption	0,1						
Site access and other force majeure events	Assumption	0,1						
Tree growth or felling	Assumption	0						
Curtailment								
Wind sector management	Assunzione	0						
Grid curtailment and ramp-rate	Assunzione	0						
Power purchase agreement curtailment	Assunzione	0						
Noise	Calcolato	0						
Flickering	Calcolato	0						
Birds/Bats	Assunzione	0						
Other loss	Assunzione	0,1						
Totale perdite tecniche	Calcolato	8,5						

6.3 Detailed results, net AEP

In the following table are presented definitive assessed results discounted of all technical losses, based on analysed data.

				MED Misure Elaborazio	SIEMENS GAMESA SG 170 6 MW E SG 113 2,3 M						viv	
	ID WTG	UTM WGS84 Long. Est [m]	UTM WGS 84 Lat. Nord [m]	WEC Model	Power [KW]	Hub Height a.g.l. [m]	Gross AEP [GWh]	AEP net of wake loss[GWh]	Wake Loss [%]	Net AEP [GWh]	Vm [m/s]	Fleoh [MWh/M W]
	C01	543747	9597143	Siemens SG 6.0-170-6.000	6000	110	33,466	33,232	0,70	30,407	8,84	5068
	C02	544323	9597808	Siemens SG 6.0-170-6.000	6000	110	33,496	33,243	0,76	30,417	8,85	5070
	C03	544900	9598473	Siemens SG 6.0-170-6.000	6000	110	33,532	33,279	0,75	30,451	8,85	5075
	C04	545476	9599139	Siemens SG 6.0-170-6.000	6000	110 110	33,536	33,287	0,74	30,458	8,86	5076
	C05 C06	546052 546628	9599801 9600469	Siemens SG 6.0-170-6.000 Siemens SG 6.0-170-6.000	6000 6000	110	33,523 33,522	33,288 33,305	0,70 0,65	30,459 30,474	8,86 8,86	5076 5079
	C07	547203	9601133	Siemens SG 6.0-170-6.000	6000	110	33,519	33,341	0,53	30,507	8,86	5085
	C08	547780	9601799	Siemens SG 6.0-170-6.000	6000	110	33,524	33,468	0,17	30,623	8,86	5104
	C09	541778	9598534	Siemens SG 6.0-170-6.000	6000	110	33,455	31,973	4,43	29,255	8,84	4876
	C10 C11	542354 542930	9599199 9599865	Siemens SG 6.0-170-6.000 Siemens SG 6.0-170-6.000	6000 6000	110 110	33,489 33,514	31,821 31,748	4,98 5,27	29,116 29,049	8,85 8,85	4853 4842
	C12	543506	9600530	Siemens SG 6.0-170-6.000	6000	110	33,523	31,732	5,34	29,035	8,86	4839
	C13	544083	9601192	Siemens SG 6.0-170-6.000	6000	110	33,533	31,766	5,27	29,065	8,86	4844
	C14	544659	9601860	Siemens SG 6.0-170-6.000	6000	110	33,505	31,841	4,97	29,134	8,85	4856
	C15 C16	545234 545810	9602528 9603196	Siemens SG 6.0-170-6.000 Siemens SG 6.0-170-6.000	6000 6000	110 110	33,522 33,531	32,024 32,423	4,47 3,31	29,302 29,667	8,86 8,86	4884 4944
	C17	546385	9603865	Siemens SG 6.0-170-6.000	6000	110	33,524	32,997	1,57	30,192	8,86	5032
	C18	546961	9604533	Siemens SG 6.0-170-6.000	6000	110	33,518	33,183	1,00	30,363	8,86	5060
	C19	547534	9605190	Siemens SG 6.0-170-6.000	6000	110	33,513	33,393	0,36	30,554	8,86	5092
Ш	C20 C21	538910 539487	9600380 9601045	Siemens SG 6.0-170-6.000 Siemens SG 6.0-170-6.000	6000 6000	110 110	33,422 33,479	31,805 31,616	4,84 5,56	29,102 28,929	8,84 8,85	4850 4821
L L L	C22	540062	9601710	Siemens SG 6.0-170-6.000	6000	110	33,492	31,535	5,84	28,854	8,85	4809
O	C23	540639	9602376	Siemens SG 6.0-170-6.000	6000	110	33,502	31,491	6,00	28,814	8,85	4802
Ť	C24	541215	9603041	Siemens SG 6.0-170-6.000	6000	110	33,505	31,487	6,02	28,810	8,85	4802
SH	C25 C26	541791 542367	9603706 9604371	Siemens SG 6.0-170-6.000 Siemens SG 6.0-170-6.000	6000 6000	110 110	33,514 33,498	31,515 31,617	5,96 5,61	28,836 28,930	8,86 8,85	4806 4822
Ш	C20	542943	9605036	Siemens SG 6.0-170-6.000	6000	110	33,501	31,795	5,09	29,093	8,85	4849
L.	C28	543512	9605702	Siemens SG 6.0-170-6.000	6000	110	33,509	32,013	4,47	29,291	8,86	4882
ō	C29	544096	9606367	Siemens SG 6.0-170-6.000	6000	110	33,512	32,228	3,83	29,489	8,86	4915
	C30 C31	544672 545248	9607032 9607697	Siemens SG 6.0-170-6.000 Siemens SG 6.0-170-6.000	6000 6000	110 110	33,503 33,507	32,534 32,929	2,89 1,73	29,769 30,130	8,85 8,86	4961 5022
	C32	545851	9608394	Siemens SG 6.0-170-6.000	6000	110	33,504	33,211	0,87	30,388	8,86	5065
	C33	535331	9602939	Siemens SG 6.0-170-6.000	6000	110	33,398	31,804	4,77	29,101	8,83	4850
	C34	535907	9603605	Siemens SG 6.0-170-6.000	6000	110	33,433	31,634	5,38	28,945	8,84	4824
	C35 C36	536484 537060	9604270 9604935	Siemens SG 6.0-170-6.000 Siemens SG 6.0-170-6.000	6000 6000	110 110	33,451 33,479	31,562 31,544	5,65 5,78	28,879 28,863	8,84 8,85	4813 4810
	C37	537636	9605600	Siemens SG 6.0-170-6.000	6000	110	33,481	31,544	5,79	28,862	8,85	4810
	C38	538212	9606265	Siemens SG 6.0-170-6.000	6000	110	33,485	31,573	5,71	28,890	8,85	4815
	C39	538788	9606931	Siemens SG 6.0-170-6.000	6000	110	33,495	31,633	5,56	28,944	8,85	4824
	C40 C41	539364 539940	9607596 9608260	Siemens SG 6.0-170-6.000 Siemens SG 6.0-170-6.000	6000 6000	110 110	33,491 33,491	31,704 31,829	5,34 4,96	29,009 29,124	8,85 8,85	4835 4854
	C42	540516	9608925	Siemens SG 6.0-170-6.000	6000	110	33,491	31,985	4,50	29,267	8,85	4878
	C43	541092	9609591	Siemens SG 6.0-170-6.000	6000	110	33,491	32,148	4,01	29,415	8,85	4903
	C44	541668	9610256	Siemens SG 6.0-170-6.000	6000	110	33,493	32,347	3,42	29,597	8,85	4933
	C45 C46	542244 542821	9610921 9611586	Siemens SG 6.0-170-6.000 Siemens SG 6.0-170-6.000	6000 6000	110 110	33,488 33,489	32,620 32,870	2,59 1,85	29,847 30,076	8,85 8,85	4975 5013
	C40	543396	9612251	Siemens SG 6.0-170-6.000	6000	110	33,487	33,034	1,35	30,226	8,85	5038
	C48	543972	9612916	Siemens SG 6.0-170-6.000	6000	107	33,486	33,228	0,77	30,404	8,85	5067
		VALUES			000.000		4007.004	4550 470	3,586	29,550		4925
	TOTAL C49	539387	9592831	Siemens SWT-2.3-101-2.300	288.000 2300	80	1607,821 7,790	1550,179 7,766	0,31	1418,413 7,105	6,96	3089
	C50	538799	9593049	Siemens SWT-2.3-101-2.300	2300	80	8,083	7,700	10,31	6,629	7,06	2882
ш	C51	538116	9593470	Siemens SWT-2.3-101-2.300	2300	80	8,639	7,661	11,32	7,010	7,25	3048
R	C52	537557	9593834	Siemens SWT-2.3-101-2.300	2300	80	9,207	7,918	14,00	7,245	7,46	3150
0	C53 C54	537075 536508	9594218 9594629	Siemens SWT-2.3-101-2.300 Siemens SWT-2.3-101-2.300	2300 2300	80 80	9,584 9,752	8,131 8,379	15,16 14,08	7,440 7,666	7,60	3235 3333
NSHOR	C54	536054	9595055	Siemens SWT-2.3-101-2.300	2300	80	10,032	8,691	13,36	7,952	7,00	3458
S	C56	535631	9595470	Siemens SWT-2.3-101-2.300	2300	80	10,169	8,878	12,69	8,123	7,82	3532
Ż	C57	535082	9596128	Siemens SWT-2.3-101-2.300	2300	80	10,539	9,840	6,63	9,004	7,97	3915
5	C58 C59	534574 534169	9596557 9597104	Siemens SWT-2.3-101-2.300 Siemens SWT-2.3-101-2.300	2300 2300	80 80	10,583 10,785	9,351 10,033	11,64 6,98	8,557 9,180	7,98 8,07	3720 3991
		VALUES	3337104	010110113 0101-2.300	2300	00	10,705	10,000	10,596	7,810	0,07	3396
	TOTAL				25.300		105,163	93,892		85,911		
A												
		VALUES			212 200		1 712 004	1 644 074	4,893	1 504 225		4802
WT	T TOTAL 313.300 1.712,984 1.644,07									1.504,325		

Table 17: Assessed definitive results for Siemens SG 6.0 170 / 2.3 101

Table 18: Assessed definitive results for Vestas V162 5.6 /V110 2.0

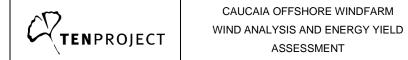
				MED Misure Elaborazio	ne Dati		VESTA	S V162 5,6 N	/W H 10	5 E V110 2,0	MW	
	ID WTG	UTM WGS84 Long. Est [m]	UTM WGS 84 Lat. Nord [m]	WEC Model	Power [KW]	Hub Height a.g.l. [m]	Gross AEP [GWh]	AEP net of wake loss[GWh]	Wake Loss [%]	Net AEP [GWh]	Vm [m/s]	Fleoh [MWh/M W]
	C01	543747	9597143	VESTAS V162-5.6-5.600	5600	105	31,065	30,858	0,67	28,235	8,82	5042
	C02	544323	9597808	VESTAS V162-5.6-5.600	5600	105	31,101	30,877	0,72	28,252	8,82	5045
	C03	544900	9598473	VESTAS V162-5.6-5.600	5600	105	31,136	30,912	0,72	28,284	8,83	5051
	C04	545476	9599139	VESTAS V162-5.6-5.600	5600	105	31,145	30,925	0,71	28,296	8,83	5053
	C05	546052	9599801	VESTAS V162-5.6-5.600	5600	105	31,134	30,926	0,67	28,298	8,83	5053
	C06 C07	546628 547203	9600469 9601133	VESTAS V162-5.6-5.600 VESTAS V162-5.6-5.600	5600 5600	105 105	31,133 31,132	30,941 30,974	0,62 0,51	28,311 28,341	8,83 8,83	5056 5061
	C07	547203	9601133	VESTAS V162-5.6-5.600	5600	105	31,132	31,089	0,51	28,446	8,84	5080
	C09	541778	9598534	VESTAS V162-5.6-5.600	5600	105	31,062	29,732	4,28	27,205	8,82	4858
	C10	542354	9599199	VESTAS V162-5.6-5.600	5600	105	31,094	29,598	4,81	27,082	8,82	4836
	C11	542930	9599865	VESTAS V162-5.6-5.600	5600	105	31,124	29,540	5,09	27,029	8,83	4827
	C12	543506	9600530	VESTAS V162-5.6-5.600	5600	105	31,135	29,529	5,16	27,019	8,83	4825
	C13 C14	544083 544659	9601192 9601860	VESTAS V162-5.6-5.600 VESTAS V162-5.6-5.600	5600 5600	105 105	31,144 31,120	29,560 29,628	5,08 4,80	27,048 27,110	8,84 8,83	4830 4841
	C14	545234	9602528	VESTAS V162-5.6-5.600	5600	105	31,120	29,028	4,80	27,261	8,83	4868
	C16	545810	9603196	VESTAS V162-5.6-5.600	5600	105	31,147	30,154	3,19	27,591	8,84	4927
	C17	546385	9603865	VESTAS V162-5.6-5.600	5600	105	31,141	30,673	1,50	28,066	8,84	5012
	C18	546961	9604533	VESTAS V162-5.6-5.600	5600	105	31,136	30,839	0,95	28,218	8,84	5039
	C19	547534	9605190	VESTAS V162-5.6-5.600	5600	105	31,132	31,027	0,34	28,389	8,84	5070
ш	C20	538910	9600380	VESTAS V162-5.6-5.600 VESTAS V162-5.6-5.600	5600	105 105	31,031	29,586	4,66	27,071	8,81	4834
R	C21 C22	539487 540062	9601045 9601710	VESTAS V162-5.6-5.600 VESTAS V162-5.6-5.600	5600 5600	105	31,088 31,106	29,424 29,358	5,35 5,62	26,923 26,862	8,82 8,83	4808 4797
ō	C22	540639	9602376	VESTAS V162-5.6-5.600	5600	105	31,100	29,320	5,77	26,828	8,83	4791
\mathbf{Y}	C24	541215	9603041	VESTAS V162-5.6-5.600	5600	105	31,118	29,317	5,79	26,825	8,83	4790
Ĩ	C25	541791	9603706	VESTAS V162-5.6-5.600	5600	105	31,128	29,344	5,73	26,850	8,83	4795
S	C26	542367	9604371	VESTAS V162-5.6-5.600	5600	105	31,114	29,436	5,39	26,934	8,83	4810
ĻL	C27	542943	9605036	VESTAS V162-5.6-5.600	5600	105	31,118	29,597	4,89	27,081	8,83	4836
ш	C28 C29	543512 544096	9605702 9606367	VESTAS V162-5.6-5.600 VESTAS V162-5.6-5.600	5600 5600	105 105	31,127 31,130	29,793 29,986	4,29 3,67	27,261 27,437	8,83 8,84	4868 4900
Ο	C29	544090	9607032	VESTAS V162-5.6-5.600	5600	105	31,130	30,262	2,77	27,689	8,83	4900
-	C31	545248	9607697	VESTAS V162-5.6-5.600	5600	105	31,127	30,615	1,64	28,013	8,83	5002
	C32	545851	9608394	VESTAS V162-5.6-5.600	5600	105	31,124	30,866	0,83	28,242	8,83	5043
	C33	535331	9602939	VESTAS V162-5.6-5.600	5600	105	31,014	29,595	4,58	27,079	8,81	4836
	C34	535907	9603605	VESTAS V162-5.6-5.600	5600	105	31,049	29,448	5,16	26,945	8,82	4812
	C35 C36	536484 537060	9604270 9604935	VESTAS V162-5.6-5.600 VESTAS V162-5.6-5.600	5600 5600	105 105	31,069 31,094	29,387 29,373	5,41 5,53	26,889 26,876	8,82 8,83	4802 4799
	C36	537636	9605600	VESTAS V162-5.6-5.600	5600	105	31,094	29,373	5,53	26,878	8,83	4799
	C38	538212	9606265	VESTAS V162-5.6-5.600	5600	105	31,103	29,403	5,47	26,904	8,83	4804
	C39	538788	9606931	VESTAS V162-5.6-5.600	5600	105	31,114	29,458	5,32	26,954	8,83	4813
	C40	539364	9607596	VESTAS V162-5.6-5.600	5600	105	31,110	29,522	5,11	27,013	8,83	4824
	C41	539940	9608260	VESTAS V162-5.6-5.600	5600	105	31,111	29,634	4,75	27,115	8,83	4842
	C42 C43	540516 541092	9608925 9609591	VESTAS V162-5.6-5.600 VESTAS V162-5.6-5.600	5600 5600	105 105	<u>31,111</u> 31,112	29,773 29,918	4,30 3,84	27,243 27,375	8,83 8,83	4865 4888
	C43 C44	541092 541668	9609591	VESTAS V162-5.6-5.600 VESTAS V162-5.6-5.600	5600	105	31,112	29,918 30,095	3,84	27,375 27,537	8,83	4888
	C44	542244	9610230	VESTAS V162-5.6-5.600	5600	105	31,114	30,341	2,47	27,762	8,83	4917
	C46	542821	9611586	VESTAS V162-5.6-5.600	5600	105	31,111	30,564	1,76	27,966	8,83	4994
	C47	543396	9612251	VESTAS V162-5.6-5.600	5600	105	31,110	30,710	1,29	28,100	8,83	5018
	C48	543972	9612916	VESTAS V162-5.6-5.600	5600	105	31,110	30,883	0,73	28,258	8,83	5046
		VALUES			268.800		1493,348	1441 057	3,442	27,487		4908
	TOTAL C49	539387	9592831	VESTAS V110-2.0-2.000	268.800	95	9,140	1441,957 9,120	0,22	1319,391 8,344	7,21	4172
	C50	538799	9592631	VESTAS V110-2.0-2.000	2000	95 95	9,140	8,565	8,97	7,837	7,32	3918
ш	C51	538116	9593470	VESTAS V110-2.0-2.000	2000	95	9,830	8,885	9,62	8,130	7,49	4065
2	C52	537557	9593834	VESTAS V110-2.0-2.000	2000	95	10,313	9,086	11,89	8,314	7,69	4157
	C53	537075	9594218	VESTAS V110-2.0-2.000	2000	95	10,591	9,248	12,68	8,462	7,82	4231
¥	C54	536508	9594629	VESTAS V110-2.0-2.000	2000	95	10,724	9,429	12,07	8,628	7,88	4314
는	C55 C56	536054 535631	9595055 9595470	VESTAS V110-2.0-2.000 VESTAS V110-2.0-2.000	2000 2000	95 95	10,912 11,025	9,656 9,790	11,51 11,20	8,835 8,958	7,98 8,03	4418 4479
0)	C50	535082	9596128	VESTAS V110-2.0-2.000	2000	95 95	11,300	10,623	5,99	9,720	8,03	4479
OHSNO	C58	534574	9596557	VESTAS V110-2.0-2.000	2000	95	11,319	10,240	9,54	9,369	8,18	4685
O	C59	534169	9597104	VESTAS V110-2.0-2.000	2000	95	11,473	10,743	6,36	9,830	8,27	4915
		VALUES							9,097	8,766		4383
	TOTAL				22.000		116,036	105,384		96,427		
ALL	MEAN								4 400			4860
	TOTAL	VALUES			290.800		1.609,384	1.547,341	4,496	1.415,817		4869
VV I	TOTAL				230.000		1.009,364	1.347,341		1.413,017		

CAUCAIA OFFSHORE WINDFARM WIND ANALYSIS AND ENERGY YIELD ASSESSMENT

Code Revision Creation data Revision data Page

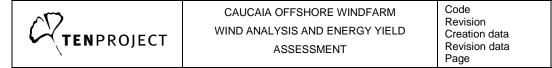
GE.CAU002 02/11/2018 19/11/2019 65 di 119

Table 19: Assessed definitive results for Siemens SG 8.0 154 / 2.3 101


		MED Misure Elaborazione Dati			SIEMENS GAMESA SG 154 8 MW E SG 113 2,3 MW							
	ID WTG	UTM WGS84 Long. Est [m]	UTM WGS 84 Lat. Nord [m]	WEC Model	Power [KW]	Hub Height a.g.l. [m]	Gross AEP [GWh]	AEP net of wake loss[GWh]	Wake Loss [%]	Net AEP [GWh]	Vm [m/s]	Fleoh [MWh/M W]
	C01	543747	9597143	Siemens Gamesa 8.0-154	8000	110	26,061	25,865	0,75	23,666	8,84	2958
	C02	544323	9597808	Siemens Gamesa 8.0-154	8000	110	26,110	25,899	0,81	23,697	8,85	2962
	C03	544900	9598473	Siemens Gamesa 8.0-154	8000	110	26,174	25,964	0,80	23,757	8,85	2970
	C04	545476	9599139	Siemens Gamesa 8.0-154	8000	110	26,190	25,983	0,79	23,774	8,86	2972
	C05 C06	546052 546628	9599801 9600469	Siemens Gamesa 8.0-154 Siemens Gamesa 8.0-154	8000 8000	110 110	26,176 26,183	25,978 25,998	0,75 0,71	23,770 23,788	8,86 8,86	2971 2974
	C07	547203	9601133	Siemens Gamesa 8.0-154	8000	110	26,189	26,033	0,60	23,820	8,86	2978
	C08	547780	9601799	Siemens Gamesa 8.0-154	8000	110	26,200	26,151	0,19	23,928	8,86	2991
	C09	541778	9598534	Siemens Gamesa 8.0-154	8000	110	26,085	24,366	6,59	22,295	8,84	2787
	C10 C11	542354 542930	9599199 9599865	Siemens Gamesa 8.0-154 Siemens Gamesa 8.0-154	8000 8000	110 110	26,126 26,171	24,214 24,153	7,32 7,71	22,155 22,100	8,85 8,85	2769 2763
	C12	543506	9600530	Siemens Gamesa 8.0-154	8000	110	26,184	24,133	7,79	22,092	8,86	2762
	C13	544083	9601192	Siemens Gamesa 8.0-154	8000	110	26,201	24,189	7,68	22,133	8,86	2767
	C14	544659	9601860	Siemens Gamesa 8.0-154	8000	110	26,160	24,268	7,23	22,205	8,85	2776
	C15	545234 545810	9602528 9603196	Siemens Gamesa 8.0-154 Siemens Gamesa 8.0-154	8000 8000	110 110	26,195	24,487	6,52	22,405	8,86	2801 2857
	C16 C17	546385	9603196	Siemens Gamesa 8.0-154	8000	110	26,214 26,207	24,980 25,700	4,71 1,93	22,856 23,516	8,86 8,86	2857
	C18	546961	9604533	Siemens Gamesa 8.0-154	8000	110	26,204	25,896	1,18	23,695	8,86	2962
	C19	547534	9605190	Siemens Gamesa 8.0-154	8000	110	26,199	26,098	0,39	23,879	8,86	2985
ш	C20	538910	9600380	Siemens Gamesa 8.0-154	8000	110	26,057	24,203	7,12	22,146	8,84	2768
	C21 C22	539487 540062	9601045 9601710	Siemens Gamesa 8.0-154 Siemens Gamesa 8.0-154	8000 8000	110 110	26,135 26,163	23,986 23,911	8,22 8,61	21,947 21,878	8,85 8,85	2743 2735
OR	C22	540639	9602376	Siemens Gamesa 8.0-154	8000	110	26,176	23,865	8,83	21,836	8,85	2733
¥	C24	541215	9603041	Siemens Gamesa 8.0-154	8000	110	26,176	23,861	8,84	21,833	8,85	2729
Ĭ	C25	541791	9603706	Siemens Gamesa 8.0-154	8000	110	26,194	23,902	8,75	21,871	8,86	2734
	C26 C27	542367 542943	9604371 9605036	Siemens Gamesa 8.0-154 Siemens Gamesa 8.0-154	8000 8000	110 110	26,173 26,180	24,020 24,239	8,23 7,41	21,978 22,179	8,85 8,85	2747 2772
	C27	542943	9605036	Siemens Gamesa 8.0-154	8000	110	26,180	24,239	6,51	22,407	8,86	2801
_	C29	544096	9606367	Siemens Gamesa 8.0-154	8000	110	26,200	24,742	5,56	22,639	8,86	2830
0	C30	544672	9607032	Siemens Gamesa 8.0-154	8000	110	26,190	25,126	4,06	22,990	8,85	2874
	C31	545248	9607697	Siemens Gamesa 8.0-154	8000	110	26,198	25,611	2,24	23,434	8,86	2929
	C32 C33	545851 535331	9608394 9602939	Siemens Gamesa 8.0-154 Siemens Gamesa 8.0-154	8000 8000	110 110	26,194 26,043	25,908 24,217	1,09 7,01	23,706 22,158	8,86 8,83	2963 2770
	C34	535907	9603605	Siemens Gamesa 8.0-154	8000	110	26,092	24,020	7,94	21,978	8,84	2747
	C35	536484	9604270	Siemens Gamesa 8.0-154	8000	110	26,116	23,943	8,32	21,908	8,84	2738
	C36	537060	9604935	Siemens Gamesa 8.0-154	8000	110	26,153	23,929	8,51	21,895	8,85	2737
	C37 C38	537636 538212	9605600 9606265	Siemens Gamesa 8.0-154 Siemens Gamesa 8.0-154	8000 8000	110 110	26,158 26,164	23,935 23,974	8,50 8,37	21,901 21,936	8,85 8,85	2738 2742
	C39	538788	9606931	Siemens Gamesa 8.0-154	8000	110	26,185	23,974	8,14	22,008	8,85	2742
	C40	539364	9607596	Siemens Gamesa 8.0-154	8000	110	26,177	24,135	7,80	22,084	8,85	2760
	C41	539940	9608260	Siemens Gamesa 8.0-154	8000	110	26,177	24,282	7,24	22,218	8,85	2777
	C42	540516	9608925	Siemens Gamesa 8.0-154	8000	110	26,179	24,474	6,51	22,393	8,85	2799
	C43 C44	541092 541668	9609591 9610256	Siemens Gamesa 8.0-154 Siemens Gamesa 8.0-154	8000 8000	110 110	26,179 26,183	24,668 24,909	5,77 4,87	22,572 22,792	8,85 8,85	2821 2849
	C45	542244	9610921	Siemens Gamesa 8.0-154	8000	110	26,179	25,257	3,52	23,110	8,85	2889
	C46	542821	9611586	Siemens Gamesa 8.0-154	8000	110	26,181	25,566	2,35	23,393	8,85	2924
	C47	543396	9612251	Siemens Gamesa 8.0-154	8000	110	26,178	25,744	1,66	23,556	8,85	2944
	C48	543972 VALUES	9612916	Siemens Gamesa 8.0-154	8000	110	26,180	25,933	0,94 5,154	23,729 22,708	8,85	2966 2839
	TOTAL				384.000		1255,986	1191,265	0,104	1090,008		2000
	C49	539387	9592831	Siemens SWT-2.3-101	2300	80	7,790	7,770	0,26	7,110	6,96	3091
ш	C50	538799	9593049	Siemens SWT-2.3-101	2300	80	8,083	7,249	10,32	6,633	7,06	2884
	C51 C52	538116 537557	9593470 9593834	Siemens SWT-2.3-101 Siemens SWT-2.3-101	2300 2300	80 80	8,639 9,207	7,666 7,923	11,26 13,94	7,014 7,250	7,25 7,46	3050 3152
H L	C52	537075	9593634	Siemens SWT-2.3-101	2300	80	9,207	8,137	15,94	7,445	7,60	3132
\Box	C54	536508	9594629	Siemens SWT-2.3-101	2300	80	9,752	8,385	14,02	7,672	7,66	3336
Ţ	C55	536054	9595055	Siemens SWT-2.3-101	2300	80	10,032	8,698	13,29	7,959	7,77	3460
S	C56	535631 535082	9595470 9596128	Siemens SWT-2.3-101 Siemens SWT-2.3-101	2300	80 80	10,169	8,886	12,61	8,131	7,82	3535
ONSHOR	C57 C58	535082	9596128	Siemens SWT-2.3-101 Siemens SWT-2.3-101	2300 2300	80	10,539 10,583	9,850 9,364	6,53 11,52	9,013 8,568	7,97 7,98	3919 3725
0	C59	534169	9597104	Siemens SWT-2.3-101	2300	80	10,785	10,048	6,83	9,194	8,07	3997
	MEAN	VALUES							10,518	7,817		3399
	TOTAL				25.300		105,163	93,976		85,988		
	MEAN	VALUES							6 154			2972
	TOTAL	ALUES			409.300		1.361,148	1.285,242	6,154	1.175,996		2873

Code Revision Creation data Revision data Page GE.CAU002 02/11/2018 19/11/2019 66 di 119

Table 20: Assessed definitive results for Vestas V164 10.0 MW / V110 2.0 MW


				MED Misure Elaborazion	ne Dati		48*VE	STAS V164	10 MW	e 11*V110 2	w	
	ID WTG	UTM WGS84 Long. Est [m]	UTM WGS 84 Lat. Nord [m]	WEC Model	Power [KW]	Hub Height a.g.l. [m]	Gross AEP [GWh]	AEP net of wake loss[GWh]	Wake Loss [%]	Net AEP [GWh]	Vm [m/s]	Fleoh [MWh/M W]
	C01	543747	9597143	VESTAS V164-10.0	10000	110	38,669	38,343	0,84	35,083	8,84	3508
	C02	544323	9597808	VESTAS V164-10.0	10000	110	38,730	38,378	0,91	35,116	8,85	3512
	C03	544900	9598473	VESTAS V164-10.0	10000	110	38,808	38,457	0,90	35,189	8,85	3519
	C04 C05	545476 546052	9599139 9599801	VESTAS V164-10.0 VESTAS V164-10.0	10000	110 110	38,826 38,806	38,480 38,477	0,89 0,85	35,209 35,206	8,86 8,86	3521 3521
	C05	546052	9599801	VESTAS V164-10.0	10000	110	38,800	38,505	0,80	35,200	8,86	3523
	C07	547203	9601133	VESTAS V164-10.0	10000	110	38,819	38,558	0,67	35,280	8,86	3528
	C08	547780	9601799	VESTAS V164-10.0	10000	110	38,832	38,750	0,21	35,457	8,86	3546
	C09	541778	9598534 9599199	VESTAS V164-10.0	10000	110	38,691	35,942	7,11	32,887	8,84	3289
	C10 C11	542354 542930	9599199 9599865	VESTAS V164-10.0 VESTAS V164-10.0	10000 10000	110 110	38,744 38,799	35,680 35,566	7,91 8,33	32,647 32,543	8,85 8,85	3265 3254
	C12	543506	9600530	VESTAS V164-10.0	10000	110	38,815	35,545	8,42	32,524	8,86	3252
	C13	544083	9601192	VESTAS V164-10.0	10000	110	38,836	35,611	8,31	32,584	8,86	3258
	C14	544659	9601860	VESTAS V164-10.0	10000	110	38,784	35,750	7,82	32,711	8,85	3271
	C15 C16	545234 545810	9602528 9603196	VESTAS V164-10.0 VESTAS V164-10.0	10000 10000	110 110	38,826 38,849	36,086 36,863	7,05 5,11	33,019 33,730	8,86 8,86	3302 3373
	C10	546385	9603865	VESTAS V164-10.0	10000	110	38,840	38,009	2,14	34,778	8,86	3478
	C18	546961	9604533	VESTAS V164-10.0	10000	110	38,834	38,324	1,31	35,067	8,86	3507
	C19	547534	9605190	VESTAS V164-10.0	10000	110	38,828	38,658	0,44	35,372	8,86	3537
ш	C20 C21	538910 539487	9600380 9601045	VESTAS V164-10.0	10000 10000	110 110	38,651	35,686	7,67	32,652	8,84	3265 3231
R	C21 C22	539487	9601045	VESTAS V164-10.0 VESTAS V164-10.0	10000	110	38,750 38,783	35,310 35,175	8,88 9,30	32,308 32,185	8,85 8,85	3231 3219
ō	C23	540639	9602376	VESTAS V164-10.0	10000	110	38,801	35,096	9,55	32,103	8,85	3213
Ĭ	C24	541215	9603041	VESTAS V164-10.0	10000	110	38,801	35,088	9,57	32,106	8,85	3211
Ч С	C25	541791	9603706	VESTAS V164-10.0	10000	110	38,823	35,147	9,47	32,160	8,86	3216
Ш	C26 C27	542367 542943	9604371 9605036	VESTAS V164-10.0 VESTAS V164-10.0	10000 10000	110 110	38,796 38,803	35,340 35,687	8,91 8,03	32,336 32,654	8,85 8,85	3234 3265
Ë	C28	543512	9605030	VESTAS V164-10.0	10000	110	38,821	36.084	7,05	33,017	8,86	3302
	C29	544096	9606367	VESTAS V164-10.0	10000	110	38,828	36,489	6,03	33,387	8,86	3339
Ο	C30	544672	9607032	VESTAS V164-10.0	10000	110	38,815	37,098	4,42	33,945	8,85	3394
	C31 C32	545248 545851	9607697 9608394	VESTAS V164-10.0	10000 10000	110 110	38,824 38,819	37,865	2,47	34,646 35,091	8,86	3465 3509
	C32	535331	9602939	VESTAS V164-10.0 VESTAS V164-10.0	10000	110	38,628	38,351 35,710	1,20 7,56	32,674	8,86 8,83	3267
	C34	535907	9603605	VESTAS V164-10.0	10000	110	38,690	35,371	8,58	32,365	8,84	3236
	C35	536484	9604270	VESTAS V164-10.0	10000	110	38,722	35,235	9,00	32,240	8,84	3224
	C36 C37	537060 537636	9604935 9605600	VESTAS V164-10.0 VESTAS V164-10.0	10000 10000	110 110	38,769 38,775	35,198 35,203	9,21	32,206 32,210	8,85 8,85	3221 3221
	C38	538212	9606265	VESTAS V164-10.0	10000	110	38,782	35,203	9,21 9,08	32,210	8,85	3221
	C39	538788	9606931	VESTAS V164-10.0	10000	110	38,808	35,379	8,83	32,372	8,85	3237
	C40	539364	9607596	VESTAS V164-10.0	10000	110	38,798	35,515	8,46	32,496	8,85	3250
	C41	539940	9608260	VESTAS V164-10.0	10000	110	38,797	35,749	7,85	32,711	8,85	3271
	C42 C43	540516 541092	9608925 9609591	VESTAS V164-10.0 VESTAS V164-10.0	10000 10000	110 110	38,799 38,799	36,054 36,367	7,08	32,989 33,276	8,85 8,85	3299 3328
	C44	541668	9610256	VESTAS V164-10.0	10000	110	38,804	36,751	5,29	33,627	8,85	3363
	C45	542244	9610921	VESTAS V164-10.0	10000	110	38,798	37,305	3,85	34,134	8,85	3413
	C46	542821	9611586	VESTAS V164-10.0	10000	110	38,801	37,793	2,60	34,581	8,85	3458
	C47 C48	543396 543972	9612251 9612916	VESTAS V164-10.0 VESTAS V164-10.0	10000 10000	110 110	38,797 38,799	38,082 38,392	1,85 1,05	34,845 35,129	8,85 8,85	3484 3513
		VALUES	3012310	VEOTAO V104-10.0	10000	110	50,755	30,332	5,591	33,507	0,00	3351
	TOTAL				480.000		1861,830	1757,762		1608,352		
	C49	539387	9592831	VESTAS V110-2.0	2000	95	9,140	9,117	0,25	8,342	7,21	4171
ш	C50 C51	538799 538116	9593049 9593470	VESTAS V110-2.0 VESTAS V110-2.0	2000 2000	95 95	<u>9,409</u> 9,830	8,562 8,882	9,00 9,65	7,834 8,127	7,32 7,49	3917 4063
R	C52	537557	9593834	VESTAS V110-2.0	2000	95 95	10,313	9,083	9,05	8,311	7,49	4065
<u></u>	C53	537075	9594218	VESTAS V110-2.0	2000	95	10,591	9,244	12,71	8,459	7,82	4229
¥	C54	536508	9594629	VESTAS V110-2.0	2000	95	10,724	9,425	12,11	8,624	7,88	4312
T	C55	536054 535631	9595055	VESTAS V110-2.0 VESTAS V110-2.0	2000 2000	95 95	10,912 11,025	9,651	11,55 11,25	8,831 8,953	7,98 8,03	4416 4477
HSNC	C56 C57	535631 535082	9595470 9596128	VESTAS V110-2.0	2000	95 95	11,025	9,785 10,617	6,05	<u>8,953</u> 9,715	8,03 8,17	4477 4857
	C58	534574	9596557	VESTAS V110-2.0	2000	95	11,319	10,232	9,61	9,362	8,18	4681
0	C59	534169	9597104	VESTAS V110-2.0	2000	95	11,473	10,732	6,46	9,820	8,27	4910
	MEAN	VALUES			22.000		116.026	105 222	9,141	8,762		4381
	TOTAL				22.000		116,036	105,332		96,378		
		VALUES				· · · · · · · · · · · · · · · · · · ·			6,253			3396
	TOTAL				502.000		1.977,866	1.863,093		1.704,730		

GE.CAU002 02/11/2018 19/11/2019 67 di 119

Table 21: Assessed definitive results for Vestas V174 9.5 MW / V110 2.0 MW

				MED Misure Elaborazion	ne Dati		48*VE	STAS V174	9,5 MW e 11*V110 2MW			
	ID WTG	[m]	UTM WGS 84 Lat. Nord [m]	WEC Model	Power [KW]	Hub Height a.g.l. [m]	Gross AEP [GWh]	AEP net of wake loss[GWh]	Wake Loss [%]	Net AEP [GWh]	Vm [m/s]	Fleoh [MWh/M W]
	C01	543747	9597143	VESTAS V174-9.5	9500	110	42,166	41,814	0,83	38,260	8,84	4027
	C02	544323	9597808	VESTAS V174-9.5	9500	110	42,223	41,845	0,90	38,288	8,85	4030
	C03	544900	9598473	VESTAS V174-9.5	9500	110	42,296	41,920	0,89	38,356	8,85	4038
	C04 C05	545476 546052	9599139 9599801	VESTAS V174-9.5 VESTAS V174-9.5	9500 9500	110 110	42,310 42,289	41,939 41,937	0,88	38,374 38,372	8,86 8,86	4039 4039
	C05	546628	9600469	VESTAS V174-9.5	9500	110	42,209	41,966	0,83	38,398	8,86	4039
	C07	547203	9601133	VESTAS V174-9.5	9500	110	42,296	42,023	0,65	38,451	8,86	4047
	C08	547780	9601799	VESTAS V174-9.5	9500	110	42,307	42,223	0,20	38,634	8,86	4067
	C09	541778	9598534	VESTAS V174-9.5 VESTAS V174-9.5	9500	110	42,177	39,452 39,187	6,46	36,099	8,84	3800
	C10 C11	542354 542930	9599199 9599865	VESTAS V174-9.5	9500 9500	110 110	42,230 42,281	39,187	7,21 7,60	35,856 35,747	8,85 8,85	3774 3763
	C12	543506	9600530	VESTAS V174-9.5	9500	110	42,296	39,046	7,68	35,727	8,86	3761
	C13	544083	9601192	VESTAS V174-9.5	9500	110	42,316	39,110	7,58	35,786	8,86	3767
	C14	544659	9601860	VESTAS V174-9.5	9500	110	42,264	39,249	7,13	35,913	8,85	3780
	C15 C16	545234 545810	9602528 9603196	VESTAS V174-9.5 VESTAS V174-9.5	9500 9500	110 110	42,302 42,323	39,584 40,343	6,43 4,68	36,219 36,914	8,86 8,86	3813 3886
	C10	546385	9603865	VESTAS V174-9.5	9500	110	42,323	40,343	2,02	37,934	8,86	3993
	C18	546961	9604533	VESTAS V174-9.5	9500	110	42,307	41,779	1,25	38,227	8,86	4024
	C19	547534	9605190	VESTAS V174-9.5	9500	110	42,300	42,120	0,42	38,540	8,86	4057
ш	C20	538910	9600380	VESTAS V174-9.5	9500	110	42,132	39,164	7,04	35,835	8,84	3772
R	C21 C22	539487 540062	9601045 9601710	VESTAS V174-9.5 VESTAS V174-9.5	9500 9500	110 110	42,230 42,260	38,795 38,656	8,14 8,53	35,497 35,370	8,85 8,85	3737 3723
ō	C23	540639	9602376	VESTAS V174-9.5	9500	110	42,276	38,577	8,75	35,298	8,85	3716
	C24	541215	9603041	VESTAS V174-9.5	9500	110	42,278	38,570	8,77	35,291	8,85	3715
ST	C25	541791	9603706	VESTAS V174-9.5	9500	110	42,297	38,627	8,68	35,344	8,86	3720
	C26 C27	542367 542943	9604371 9605036	VESTAS V174-9.5 VESTAS V174-9.5	9500 9500	110 110	42,270 42.277	38,821 39,162	8,16 7,37	35,522 35,834	8,85 8,85	3739 3772
	C27	542943	9605038	VESTAS V174-9.5	9500	110	42,277	39,162	6,45	36,200	8,86	3811
	C29	544096	9606367	VESTAS V174-9.5	9500	110	42,300	39,964	5,52	36,567	8,86	3849
0	C30	544672	9607032	VESTAS V174-9.5	9500	110	42,286	40,560	4,08	37,113	8,85	3907
	C31	545248	9607697	VESTAS V174-9.5	9500	110	42,294	41,315	2,32	37,803	8,86	3979
	C32 C33	545851 535331	9608394 9602939	VESTAS V174-9.5 VESTAS V174-9.5	9500 9500	110 110	42,289 42,104	41,807 39,168	1,14 6,97	38,253 35,839	8,86 8,83	4027 3773
	C34	535907	9603605	VESTAS V174-9.5	9500	110	42,164	38,834	7,90	35,533	8,84	3740
	C35	536484	9604270	VESTAS V174-9.5	9500	110	42,195	38,696	8,29	35,407	8,84	3727
	C36	537060	9604935	VESTAS V174-9.5	9500	110	42,243	38,660	8,48	35,374	8,85	3724
	C37 C38	537636 538212	9605600 9606265	VESTAS V174-9.5 VESTAS V174-9.5	9500 9500	110 110	42,247 42,254	38,664 38,724	8,48 8,36	35,378 35,432	8,85 8,85	3724 3730
	C39	538788	9606931	VESTAS V174-9.5	9500	110	42,277	38,839	8,13	35,538	8,85	3741
	C40	539364	9607596	VESTAS V174-9.5	9500	110	42,268	38,975	7,79	35,662	8,85	3754
	C41	539940	9608260	VESTAS V174-9.5	9500	110	42,267	39,215	7,22	35,881	8,85	3777
	C42	540516	9608925	VESTAS V174-9.5	9500	110	42,269	39,519	6,51	36,160	8,85	3806
	C43 C44	541092 541668	9609591 9610256	VESTAS V174-9.5 VESTAS V174-9.5	9500 9500	110 110	42,269 42,274	39,831 40,214	5,77 4,87	36,446 36,796	8,85 8,85	3836 3873
	C45	542244	9610921	VESTAS V174-9.5	9500	110	42,267	40,752	3,58	37,288	8,85	3925
	C46	542821	9611586	VESTAS V174-9.5	9500	110	42,269	41,234	2,45	37,729	8,85	3971
	C47	543396	9612251	VESTAS V174-9.5	9500	110	42,266	41,525	1,75	37,996	8,85	4000
	C48	543972 VALUES	9612916	VESTAS V174-9.5	9500	110	42,267	41,845	1,00 5,144	38,288 36,683	8,85	4030 3861
	TOTAL	ALULU			456.000		2028,672	1924,340	0,144	1760,771		0001
	C49	539387	9592831	VESTAS V110-2.0	2000	95	9,140	9,116	0,26	8,341	7,21	4171
111	C50	538799	9593049	VESTAS V110-2.0	2000	95	9,409	8,561	9,01	7,833	7,32	3917
Ш	C51 C52	538116 537557	9593470 9593834	VESTAS V110-2.0 VESTAS V110-2.0	2000 2000	95	9,830 10,313	8,881	9,66 11,93	8,126 8,310	7,49	4063 4155
ЦЦ	C52	537557	9593834	VESTAS V110-2.0 VESTAS V110-2.0	2000	95 95	10,313	9,082 9,243	11,93	8,310	7,69 7,82	4155
NSHOR	C54	536508	9594629	VESTAS V110-2.0	2000	95	10,724	9,424	12,12	8,623	7,88	4312
I	C55	536054	9595055	VESTAS V110-2.0	2000	95	10,912	9,650	11,57	8,830	7,98	4415
S	C56	535631	9595470	VESTAS V110-2.0	2000	95	11,025	9,783	11,26	8,952	8,03	4476
Ζ	C57 C58	535082 534574	9596128 9596557	VESTAS V110-2.0 VESTAS V110-2.0	2000 2000	95 95	11,300 11,319	10,615 10,230	6,07 9,63	9,713 9,360	8,17 8,18	4856 4680
$\overline{\mathbf{O}}$	C58	534574	9596557	VESTAS V110-2.0	2000	95 95	11,473	10,230	9,03 6,48	9,300	8,27	4000
		VALUES							9,155	8,760		4380
	TOTAL				22.000		116,036	105,315		96,363		
		VALUES							E 000			2005
	TOTAL				478.000		2.144,708	2.029,655	5,892	1.857,134		3885
VV I	TOTAL				470.000		2.144,700	2.029,033		1.037,134		

GE.CAU002 02/11/2018 19/11/2019 68 di 119

				MED Misure Elaborazio	48*GE 220 - 12 MW + 11* GE 116 -2.0							
	ID WTG	UTM WGS84 Long. Est [m]	UTM WGS 84 Lat. Nord [m]	WEC Model	Power [KW]	Hub Height a.g.l. [m]	Gross AEP [GWh]	AEP net of wake loss[GWh]	Wake Loss [%]	Net AEP [GWh]	Vm [m/s]	Fleoh [MWh/I W]
	C01	543747	9597143	GE WIND HALIADE X 12-220	12000	150	64,634	64,012	0,96	58,571	9,15	4881
	C02	544323	9597808	GE WIND HALIADE X 12-220	12000	150	64,566	63,899	1,03	58,468	9,15	4872
	C03	544900	9598473	GE WIND HALIADE X 12-220	12000	150	64,548	63,884	1,03	58,454	9,15	487
	C04	545476	9599139	GE WIND HALIADE X 12-220	12000	150	64,474	63,823	1,01	58,398	9,14	486
	C05	546052	9599801	GE WIND HALIADE X 12-220	12000	150	64,395	63,780	0,96	58,358	9,13	486
	C06 C07	546628 547203	9600469 9601133	GE WIND HALIADE X 12-220 GE WIND HALIADE X 12-220	12000 12000	150 150	64,331 64,278	63,765 63,819	0,88	58,345 58,395	9,13 9,13	486
	C07	547203	9601733	GE WIND HALIADE X 12-220	12000	150	64,278	64,107	0,71	58,658	9,13	488
	C09	541778	9598534	GE WIND HALIADE X 12-220	12000	150	64,493	60,270	6,55	55,147	9,12	459
	C10	542354	9599199	GE WIND HALIADE X 12-220	12000	150	64,476	59,747	7,33	54,669	9,14	455
	C11	542930	9599865	GE WIND HALIADE X 12-220	12000	150	64,462	59,461	7,76	54,407	9,14	4534
	C12	543506	9600530	GE WIND HALIADE X 12-220	12000	150	64,411	59,340	7,87	54,296	9,14	452
	C13	544083	9601192	GE WIND HALIADE X 12-220	12000	150	64,374	59,369	7,77	54,323	9,13	452
	C14 C15	544659 545234	9601860 9602528	GE WIND HALIADE X 12-220 GE WIND HALIADE X 12-220	12000 12000	150 150	64,273 64,262	59,574 60,037	7,31 6,57	54,510 54,934	9,12 9,12	4543 4578
	C16	545810	9603196	GE WIND HALIADE X 12-220	12000	150	64,248	61,138	4,84	55,941	9,12	4662
	C17	546385	9603865	GE WIND HALIADE X 12-220	12000	150	64,211	62,784	2,22	57,448	9,12	478
	C18	546961	9604533	GE WIND HALIADE X 12-220	12000	150	64,175	63,282	1,39	57,903	9,12	482
	C19	547534	9605190	GE WIND HALIADE X 12-220	12000	150	64,146	63,825	0,50	58,400	9,12	486
Ц	C20	538910 539487	9600380 0601045	GE WIND HALIADE X 12-220 GE WIND HALIADE X 12-220	12000	150	64,326	59,598	7,35	54,532	9,13	454
צ	C21 C22	539487	9601045 9601710	GE WIND HALIADE X 12-220 GE WIND HALIADE X 12-220	12000 12000	150 150	64,381 64,355	58,918 58,619	8,49 8,91	53,910 53,637	9,13 9,13	4492
5	C23	540639	9602376	GE WIND HALIADE X 12-220	12000	150	64,325	58,431	9,16	53,464	9,13	445
	C24	541215	9603041	GE WIND HALIADE X 12-220	12000	150	64,278	58,363	9,20	53,402	9,13	445
Ē	C25	541791	9603706	GE WIND HALIADE X 12-220	12000	150	64,263	58,413	9,10	53,448	9,12	445
0	C26	542367	9604371	GE WIND HALIADE X 12-220	12000	150	64,191	58,693	8,57	53,704	9,12	447
니	C27	542943	9605036	GE WIND HALIADE X 12-220	12000	150	64,171	59,203	7,74	54,171	9,12	4514
L	C28 C29	543512 544096	9605702 9606367	GE WIND HALIADE X 12-220 GE WIND HALIADE X 12-220	12000 12000	150 150	64,160 64,149	59,816 60,437	6,77 5,79	54,732 55,300	9,12 9,12	456
DI	C29	544096	9607032	GE WIND HALIADE X 12-220	12000	150	64,149	61.327	4,35	56,114	9,12	4600
	C31	545248	9607697	GE WIND HALIADE X 12-220	12000	150	64,108	62,471	2,55	57,161	9,11	4763
	C32	545851	9608394	GE WIND HALIADE X 12-220	12000	150	64,088	63,264	1,29	57,886	9,11	4824
	C33	535331	9602939	GE WIND HALIADE X 12-220	12000	150	64,180	59,436	7,39	54,384	9,12	453
	C34	535907	9603605	GE WIND HALIADE X 12-220	12000	150	64,200	58,825	8,37	53,825	9,12	448
	C35 C36	536484 537060	9604270 9604935	GE WIND HALIADE X 12-220 GE WIND HALIADE X 12-220	12000 12000	150 150	64,196 64,213	58,540 58,425	8,81 9,01	53,564 53,459	9,12 9,12	4464
	C30	537636	9605600	GE WIND HALIADE X 12-220	12000	150	64,184	58,390	9,01	53,439	9,12	4452
	C38	538212	9606265	GE WIND HALIADE X 12-220	12000	150	64,159	58,445	8,91	53,477	9,12	4456
	C39	538788	9606931	GE WIND HALIADE X 12-220	12000	150	64,155	58,590	8,67	53,610	9,12	446
	C40	539364	9607596	GE WIND HALIADE X 12-220	12000	150	64,124	58,796	8,31	53,798	9,11	4483
	C41	539940	9608260	GE WIND HALIADE X 12-220	12000	150	64,102	59,163	7,70	54,134	9,11	451
	C42 C43	540516 541092	9608925 9609591	GE WIND HALIADE X 12-220	12000 12000	150 150	64,086 64,073	59,645	6,93	54,575	9,11 9,11	454
	C43 C44	541092 541668	9609591 9610256	GE WIND HALIADE X 12-220 GE WIND HALIADE X 12-220	12000	150	64,073	60,141 60,724	6,14 5,21	55,029 55,563	9,11	4586
	C45	542244	9610921	GE WIND HALIADE X 12-220	12000	150	64,040	61,537	3,91	56,306	9,11	469
	C46	542821	9611586	GE WIND HALIADE X 12-220	12000	150	64,033	62,278	2,74	56,984	9,11	4749
	C47	543396	9612251	GE WIND HALIADE X 12-220	12000	150	64,020	62,750	1,98	57,416	9,10	4785
	C48	543972	9612916	GE WIND HALIADE X 12-220	12000	150	64,009	63,272	1,15	57,894	9,10	4824
	TOTAL	VALUES			576.000		3083,754	2916,427	5,427	55,594 2668,531		463
	C49	539387	9592831	GE WIND ENERGY 2.0-116	2000	90	9,297	9,265	0,34	8,478	7,13	423
	C50	538799	9593049	GE WIND ENERGY 2.0-116	2000	90	9,568	8,634	9,77	7,900	7,24	3950
Ц	C51	538116	9593470	GE WIND ENERGY 2.0-116	2000	90	10,000	8,945	10,54	8,185	7,41	409
2	C52	537557	9593834	GE WIND ENERGY 2.0-116	2000	90	10,491	9,133	12,95	8,356	7,62	417
	C53	537075	9594218	GE WIND ENERGY 2.0-116	2000	90	10,773	9,297	13,70	8,506	7,75	425
	C54 C55	536508 536054	9594629 9595055	GE WIND ENERGY 2.0-116 GE WIND ENERGY 2.0-116	2000 2000	90 90	<u>10,903</u> 11,104	9,481 9,713	13,05 12,52	8,675 8,888	7,81 7,91	433
	C55 C56	536054	9595055	GE WIND ENERGY 2.0-116 GE WIND ENERGY 2.0-116	2000	90	11,104	9,713	12,52	9,011	7,91	444 450
2	C57	535082	9596128	GE WIND ENERGY 2.0-116	2000	90	11,491	10,721	6,70	9,810	8,10	490
\leq	C58	534574	9596557	GE WIND ENERGY 2.0-116	2000	90	11,509	10,300	10,50	9,425	8,12	471
)	C59	534169	9597104	GE WIND ENERGY 2.0-116	2000	90	11,661	10,819	7,22	9,899	8,20	495
		VALUES			00.000		440.040	400.457	9,953	8,830		441
	TOTAL				22.000		118,013	106,157		97,133		
_	MEAN	VALUES							6,271			462

6.4 Analysis of uncertainties

Essential part of the assessment of wind resource and energy output of a wind farm is a detailed uncertainty analysis. Within such an analysis the uncertainty of different steps of the assessment are determined and combined taking into account their dependencies. in order to derive the overall uncertainty on the long-term annual energy output [25]. This uncertainty on the energy output is given as standard uncertainty. The uncertainties associated with the meteorological wind data have been assessed and are following presented. The uncertainty of the projected wind conditions derives from different sources: The uncertainty of the measurement is due to the quality of the measurement set-up and the measurement data. Uncertainty of the wind speed measurement is a combination of several uncertainty components. Usually the most important ones are the mounting effects on the anemometers and the uncertainty of the anemometer calibration [12]. Uncertainty analyses for the wind resource measurement at the site TP_2839 is done according IEC 61400-12-1 [12] according to the following equation:

$$\mathbf{u}_{\mathbf{V},\mathbf{i}} = \sqrt{\left(u_{V1,i}^2 + u_{V2,i}^2 + u_{V3,i}^2 + u_{dV,i}^2\right)}$$

where:

- U_{V1,i} = uncertainty of the anemometer calibration in,.wind speed bin i;
- U_{V2,i} = uncertainty due to operational characteristics of the anemometer in wind speed bin i;
 U_{V3,i} = uncertainty of flow distortion due to mounting effects in wind speed bin i;
- U_{dV,i} = uncertainty in the data acquisition system for the wind speed bin i.

Used anemometers are only partially calibrated by an independent institute. The calibration has not been carried according to MEASNET standard [12]. General uncertainty of anemometer calibration according to MEASNET standard is estimated to be 0.1 m/s [12], 0.2 m/s are applied here. According to IEC 61400-12-1 the uncertainty due to operational characteristic of anemometers is estimated to be 0.5 % of the wind speed [12]. For the used anemometer at the measurement mast TP_2839, which are not first class anemometer. the uncertainty due to operational characteristics is estimated to be 1.0% of the wind speed.

The complete measurement system including mast; dimensions and directions of the booms and mounting of sensors is not designed following the requirements of IEC 61400-12-1 [12]. Uncertainty due to mounting of the anemometer is estimated to be 1.5% of the wind speed for all boom mounted anemometers and 0.5 for top mounted anemometers. Uncertainty of the data acquisition system is indicated as 0.1 % of the wind speed according to the manufacturer.

The uncertainty of the long-term scaling comprises the uncertainty of the calculated wind conditions for long term period, and it is calculated by software basing on the Klintø method. [33] (Klintø, April 2015). This method considers four main parameters as uncertainty contributors to the overall estimate. These parameters are weighted based on their contribution to the long-term correction. The contributors

TENPROJECT

are: The wind index in concurrent period; the correlation factor between short and long-term dataset; The inter-annual variability of the long-term dataset and the number of concurrent years between measurements and long-term series.

The calculated uncertainty in vertical extrapolation from the measurement height to the hub height as well as uncertainty of the horizontal extrapolation of the wind conditions between measurement mast and the wind turbines are associated with the used orographic correction model and the roughness model. This uncertainty is relatively high due to the position of met mast

The 1 and 10 years uncertainties shows how much the wind resource varies from year to year in the specific region. Basing on long term series chosen ERA5, the calculated value is **5.9%** on wind speed. The variability entered is used for the 1-year calculated uncertainty, the 10y variability uncertainty is the σ_{1y} /sqrt(10)on wind speed. It is important to be aware of that the variability tells about the fluctuations within few years, not the very long term variations.

With energy uncertainties, which are assumed to be stochastical and independent, an overall wind speed uncertainty is calculated for each wind turbine site. The wind speed uncertainty is converted into wind energy uncertainty by a calculated sensitivity of the energy yield in regards to the wind speed. The value of that sensitivity is stronlgy depending from WT power curve [4], [11],and it is 1.6 for GE WIND solution and 2.0 for Vestas V174+Vestas V110. That means e.g. that a variation of 10 % in wind speed leads to a variation of 20 % in energy yield. It is different for other configurations or wind turbine types.

The technical characteristics of the chosen wind energy converters at the site (e.g. the power curve) are regarded to be a subject of the contract with the manufacturer. However, a standard uncertainty associated with the WT-data is assumed set to 5% basing on a standard guarantee of supplier, in this specific case a 8% value is assumed due to the fact that official power curves are not available. [author assumption]

The uncertainty evaluation was made only for the two solution of GE WIND and Vestas V174 + V110 because considered the most suitable for site anemology

TENPROJECT

GE.CAU002 02/11/2018 19/11/2019 71 di 119

Table 23: Detail of uncertainty evaluation for Vestas V174 9.5 MW + V110 2 MW

Uncertainty evaluation									
(Stvty : [%AEP] / %[m/s])		2,0							
Parameter	Unc.Wind Speed [%]	Unc.Energy [%]							
Wind measurement/Wind data	2,5	5							
Long term correction	2,98	5,96							
Year-to-year variability	5,9	11,8							
10 Year variability	1,87	3,73							
Future climate	1	2							
Other wind related	1	2							
Wind model	0	0							
Vertical extrapolation	2,5	5,0							
Horizontal extrapolation	2,5	5							
Other wind model related	1,8	3,6							
Power conversion	0	0							
Power curve uncertainty	4,0	8,0							
Metering uncertainty	2,5	5							
Other AEP related uncertainties	1	2							
Total uncertainty 1 year	9,54	19,1							
Total uncertainty 10 year	7,72	15,4							

TENPROJECT

Table 24: Detail of uncertainty evaluation for GE WIND 220 12 MW e GE 116 2 MW

Uncertainty evaluation for GE WIND 220 12 MW e GE 116 2 MW									
(Stvty : [%AEP] / %[m/s])		1,6							
Parameter	Unc.Wind Speed [%]	Unc.Energy [%]							
Wind measurement/Wind data	2,5	4							
Long term correction	2,98	4,77							
Year-to-year variability	5,8	9,3							
10 Year variability	1,83	2,93							
Future climate	1	1,6							
Other wind related	1	1,6							
Wind model	0	0							
Vertical extrapolation	2,5	4,0							
Horizontal extrapolation	2,5	4							
Other wind model related	1,8	2,88							
Power conversion	0	0							
Power curve uncertainty	5,0	8,0							
Metering uncertainty	2,5	4							
Other AEP related uncertainties	1	1,6							
Total uncertainty 1 year	9,94	15,9							
Total uncertainty 10 year	8,28	13,2							

The next tables presents the levels of energy yield that are exceeded with a given probability basing on a Gaussian process. Values from this table may be the basis for an economic assessment of the project, and in this sense, systematic losses have to be taken into account by subtracting them from the calculated energy yield.

	CAUCAIA OFFSHORE WINDFARM WIND ANALYSIS AND ENERGY YIELD ASSESSMENT	Code Revision Creation data Revision data Page	GE.CAU002 02/11/2018 19/11/2019 73 di 119
--	---	--	--

Table 25:Exceedance levels of net energy yield based on a 1 year and 10 years of future wind conditions for Vestas V174 9.5 MW scenario

Exceedance probability		P50	P75	P90
1 Year	[MWh]	1.857.134	1.619.783	1.406.160
Trear	FLEOH [MWh/MW]	3885	3389	2942
10 Vooro	[MWh]	1.857.134	1.663.915	1.490.012
10 Years	FLEOH [MWh/MW]	3885	3481	3117

Table 26:Exceedance levels of net energy yield based on a 1 year and 10 years of future wind conditions for GE 220 12 MW e GE 116 2.0 MW scenario

Exceedance probability		P50	P75	P90
1 Year	[MWh]	2.765.664	2.469.054	2.202.095
Trear	FLEOH [MWh/MW]	4625	4129	3682
10 Veere	[MWh]	2.765.664	2.518.668	2.296.363
10 Years	FLEOH [MWh/MW]	4625	4212	3840

7 SITE IEC CLASSIFICATION

The International Electrotechnical Commission (IEC) standards establishes the design requirements. IEC 61400-1 [13], [14], [15] specifies design classes with associated extreme wind speeds and turbulence intensities. Turbulence models and other environmental conditions such as topographical complexity are also specified. Next figure presents the basic parameters for wind turbine classification.

W	ind turbine class	1	Ш	III	S	The parameter values apply at hub height and
Vave	(m/s)	10	8,5	7,5		\mathcal{V}_{ave} is the annual average wind speed;
	(m/s)	50	42,5	37,5		$V_{\rm ref}$ is the reference wind speed average over 10 min;
Vref	Tropical (m/s) V _{ref,T}	57	57	57	Values	V _{ref,T} is the reference wind speed average over 10 min applicable for areas subject to tropical cyclones;
A+	I _{ref} (-)		0,18		specified by	A+ designates the category for very high turbulence characteristics;
A	I _{ref} (-)		0,16		the designer	A designates the category for higher turbulence characteristics;
в	I _{ref} (-)		0,14			B designates the category for medium turbulence characteristics; C designates the category for lower turbulence characteristics; and
C	$I_{ref}(-)$		0,12			$I_{\rm ref}$ is a reference value of the turbulence intensity (see 6.3.2.3).

From [24] IEC 61400-1 ed. 4 (2019): "Table 1 – Basic parameters for wind turbine classes".

Figure 25: basic parameters for WTG classes

Where: **Vref** is the reference wind speed with a recurrence period of 50 years; it is the basic extreme parameter used for defining wind turbine classes (a turbine designed for a WTGS class with a reference wind speed V_{ref} , is designed to withstand climates for which the extreme 10 min average wind speed with a recurrence period of 50 years is lower than or equal to V_{ref})

A designates the category for higher turbulence characteristics;

B designates the category for medium turbulence characteristics;

C designates the category for lower turbulence characteristics;

Iref is the characteristic value of the turbulence intensity at 15 m/s; Iref is here defined as the mean value.

The assessments of structural integrity by reference to wind data are described in the IEC 61400-1 section 11.9. Referring to the last version of IEC 61400_1 third edition amendment 1, the following variables must be checked:

Wind shear : It must be positive and less than 0.2.

Wind inflow angle : Flow inclination must be less than 8° (in absolute value).

Extreme wind speed: The site estimate of extreme 10 minute average wind speed at hub height with a recurrence period of 50 years shall be less than V_{ref} , value defined in the IEC standards.

Criterion for the probability density: The site value of the probability density function of wind speed at the hub height V_{hub} shall be less than the design probability density function at all values of V_{hub} between the wind speeds 0.2 V_{ref} and 0.4 V_{ref} .

Criterion for sigma1: The ambient turbulence standard deviation σ and the standard deviation σ_{σ} must be estimated at V_{hub} between V_{in} and V_{out}.

 V_{in} is the cut-in wind speed and V_{out} is the cut-out wind speed.

In case the wake effect the test is true if

The IEC ed. 4 wind climate checks are split into a list of checks for fatigue loads and a list for ultimate loads. The below list of five checks, a) to e), represent fatigue loads or "normal climate", were also in

	CAUCAIA OFFSHORE WINDFARM WIND ANALYSIS AND ENERGY YIELD ASSESSMENT	Code Revision Creation data Revision data	GE.CAU002 02/11/2018 19/11/2019 75 di 119
\ \	ASSESSMENT	Page	75 di 119

IEC ed. 3. a) Wind Distribution b) Effective turbulence c) Flow Inclination d) Wind Shear e) Air Density

$$\sigma_1 \ge I_{eff} V_{hub} + 1.28 \,\widehat{\sigma_{\sigma}}$$

Where according to the IEC standard (Edition 3), for the normal turbulence model, we have:

$$\sigma_1 = I_{ref} (0.75 V_{hub} + 5.6)$$

Criterion for the turbulence : The effective turbulence intensity must be lower than

$$I_{eff} < \frac{I_{ref} \left(5.6 + 0.75 V_{hub}\right)}{V_{hub}}$$

All these tests were performed with a single detailed form for each wind turbine generator.

In the image below are synthetized the results of a preliminary IEC compliance calculation based on site measured values.

		Check Design Lo	ad Cas	se:							
Main IEC checks											
Terrain complexity	OK										
Fatique/Normal conditions											
Effective turbulence	OK										
Wind distribution	Critic	al DLC1.2* (+DLC3	3.1.DLC	(4.1.DLC6.4)							
Flow inclination	OK			, , , ,							
Wind shear	Cautio	n									
Air density	ОК										
Ultimate/Extreme conditions											
Extreme wind	OK										
Ambient 90% turbulence [NTM]	OK										
Ambient extreme turbulence [ETM]	OK										
Max centre-wake 90% turbulence [ETM]											
Other IEC checks & analysis	OR										
Seismic hazard	ОК										
Lightning rate	OK										
DLC1.2 is implemented in LOAD RESPONSE, DLCs 3.1,4.											
			class	Method	Quality	WTG Mean	Max WTG	Min WTG	OK	WTGs Caution	
Main TEC chocks											
Main IEC checks	ic	r-1		Active DEM		0.00	0.00	0.00	50		-
Terrain complexity	ic	[-]		Active DEM		0,00	0,00	0,00	59	0	-
Terrain complexity Fatigue/Normal conditions			ШΔ		۵+-	0,00	0,00	0,00		0	
Terrain complexity Fatigue/Normal conditions Effective turbulence	σeff(u)*	[-]		Mast	A+- B	0,00 - -	0,00 - -	0,00	59 59 0	0 0	
Terrain complexity Fatigue/Normal conditions	σeff(u)* pdf(u)*	[-] [-]			В	-	-	-	59 0	0 0 0	
Terrain complexity Fatigue/Normal conditions Effective turbulence Wind distribution	σeff(u)*	[-] [-] [º]		Mast Mast Weibull shear		- - 0,2	- - 2,2	0,0	59	0 0	
Terrain complexity Fatigue/Normal conditions Effective turbulence Wind distribution Flow inclination Wind shear	σeff(u)* pdf(u)* φmax a	[-] [-] [º] [-]		Mast Mast Weibull shear Terrain fit	B C	- - 0,2 0,20	- 2,2 0,20	0,0 0,20	59 0 59	0 0 0 0	
Terrain complexity Fatigue/Normal conditions Effective turbulence Wind distribution Flow inclination	σeff(u)* pdf(u)* φmax	[-] [-] [º]		Mast Mast Weibull shear Terrain fit Mast	B C C	- - 0,2 0,20	- - 2,2	0,0 0,20	59 0 59 0	0 0 0 59	
Terrain complexity Fatigue/Normal conditions Effective turbulence Wind distribution Flow inclination Wind shear Air density	σeff(u)* pdf(u)* φmax a	[-] [-] [º] [-]		Mast Mast Weibull shear Terrain fit Mast	B C C	- - 0,2 0,20	2,2 0,20 1,165	0,0 0,20	59 0 59 0	0 0 0 59	
Terrain complexity Fatigue/Normal conditions Effective turbulence Wind distribution Flow inclination Wind shear Air density Ultimate/Extreme conditions	σeff(u)* pdf(u)* φmax α ρ	[-] [-] [-] [kg/m³]	IIIA	Mast Mast Weibull shear Terrain fit Mast GHCN	B C C C	0,2 0,20 1,162	2,2 0,20 1,165	0,0 0,20 1,161	59 0 59 0 59	0 0 0 59 0	
Terrain complexity Fatigue/Normal conditions Effective turbulence Wind distribution Flow inclination Wind shear Air density Ultimate/Extreme conditions Extreme wind	σeff(u)* pdf(u)* φmax α ρ	[-] [-] [-] [kg/m³] [m/s]	ША	Mast Mast Weibull shear Terrain fit Mast GHCN AM	B C C C A+C	0,2 0,20 1,162	2,2 0,20 1,165	0,0 0,20 1,161	59 0 59 0 59 59	0 0 0 59 0 0	
Terrain complexity Fatigue/Normal conditions Effective turbulence Wind distribution Flow inclination Wind shear Air density Ultimate/Extreme conditions Extreme wind Ambient 90% turbulence [NTM]	σeff(u)* pdf(u)* φmax a ρ u50y	[-] [-] [-] [kg/m³] [m/s] [-]		Mast Mast Weibull shear Terrain fit Mast GHCN AM Mast	B C C C A+C A+-	0,2 0,20 1,162	2,2 0,20 1,165	0,0 0,20 1,161	59 0 59 0 59 59 59	0 0 0 59 0 0 0	
Terrain complexity Fatigue/Normal conditions Effective turbulence Wind distribution Flow inclination Wind shear Air density Ultimate/Extreme conditions Extreme wind Ambient 90% turbulence [NTM] Ambient extreme turbulence [ETM]	σeff(u)* pdf(u)* φmax a ρ u50y	[-] [-] [kg/m³] [m/s] [-] [-]		Mast Mast Weibull shear Terrain fit Mast GHCN AM Mast Mast	B C C C A+C A+- A+-	0,2 0,20 1,162	2,2 0,20 1,165	0,0 0,20 1,161	59 0 59 0 59 59 0 0	0 0 0 59 0 0 0 0 0	
Terrain complexity Fatigue/Normal conditions Effective turbulence Wind distribution Flow inclination Wind shear Air density Ultimate/Extreme conditions Extreme wind Ambient 90% turbulence [NTM] Ambient extreme turbulence [ETM] Max centre-wake 90% turbulence [ETM]	σeff(u)* pdf(u)* φmax a ρ u50y	[-] [-] [kg/m³] [m/s] [-] [-] [-] [m/s²]		Mast Mast Weibull shear Terrain fit Mast GHCN AM Mast Mast	B C C C A+C A+- A+-	- 0,2 0,20 1,162 19,4 - - - - 0,5	2,2 0,20 1,165	0,0 0,20 1,161	59 0 59 0 59 59 0 0	0 0 0 59 0 0 0 0 0	
Terrain complexity Fatigue/Normal conditions Effective turbulence Wind distribution Flow inclination Wind shear Air density Ultimate/Extreme conditions Extreme wind Ambient 90% turbulence [NTM] Ambient extreme turbulence [ETM] Max centre-wake 90% turbulence [ETM] Other IEC checks & analysis	σeff(u)* pdf(u)* φmax α P u50y PGA	[-] [-] [kg/m ³] [m/s] [-] [-] [-] [flashes/year/km ²]	АША ША ША ША ША	Mast Mast Weibull shear Terrain fit Mast GHCN AM Mast Mast Mast GSHAP map NASA GHCC	B C C C A+C A+- A+-	0,2 0,20 1,162 19,4 - -	2,2 0,20 1,165	0,0 0,20 1,161	59 0 59 0 59 59 0 0	0 0 0 59 0 0 0 0 0	

Figure 26: Main results of IEC assessment

7.1 Site turbulence

In order to determine the turbulence intensity at hub height on WTG site, Wind Pro site compliance module wasused with the employ of wasp engineering algorithm .

The corrected directional turbulence at the result point lcorp(dir) is computed according to:

DELTA_I(dir)	= Imes(dir) – Icalcm(dir)
lcorp(dir)	= Icalcp(dir) + DELTA_I(dir) * Cm(dir) / Cp(dir)

The corrected directional turbulence at the result point lcorp(dir) is computed according to:

- Imes(dir) is the measured directional turbulent intensity on the reference point.
- Icalcm(dir) is the computed directional turbulent intensity on the reference point.
- lcalcp(dir) is the computed directional turbulent intensity on the result point.
- Cm(dir) is the computed directional speed-up factor on the reference point.

- Cp(dir) is the computed directional speed-up factor on the result point.

All turbulence analysis are based on IEC 61400-1 Ed 3 Amendment 1, in the following table only summary results of sigma parameters recommended in the IEC 61400 ed.3 Am. 1 are reported for the worst wt:

All turbulence analysis are based on IEC 61400-1 Ed 3 Amendment 1, <u>A detailed turbulence analysis</u> <u>is reported in appendix I for each wtg</u>, in the following table only summary results of following parameters recommended in the IEC 61400 ed.3 Am. 1 are reported:

Mean effective turbulence intensity : It gives the mean effective turbulence intensity for allwind speeds and is calculated among all the directions. All turbulence intensity values available were computed by taking into account values associated with a wind speed over 4 m/s.

Mean representative turbulence intensity for strong winds: it gives the mean representative turbulence intensity for strong wind speeds (greater than 10 m/s) and is calculated among all the directions.

As effective turbulence is intended ambient turbulence which shall include adequate representation of the effect on loading of ambient turbulence and turbulent wake effects [10]. For the estimation of effective turbulence Frandsen [3] model is used.

Mean effective turbulence intensity for strong winds: It gives the mean effective turbulence intensity for strong wind speeds (greater than 10 m/s) and is calculated among all the directions.

Mean effective turbulence intensity: It gives the mean effective turbulence intensity for all wind speeds and is calculated among all the directions.

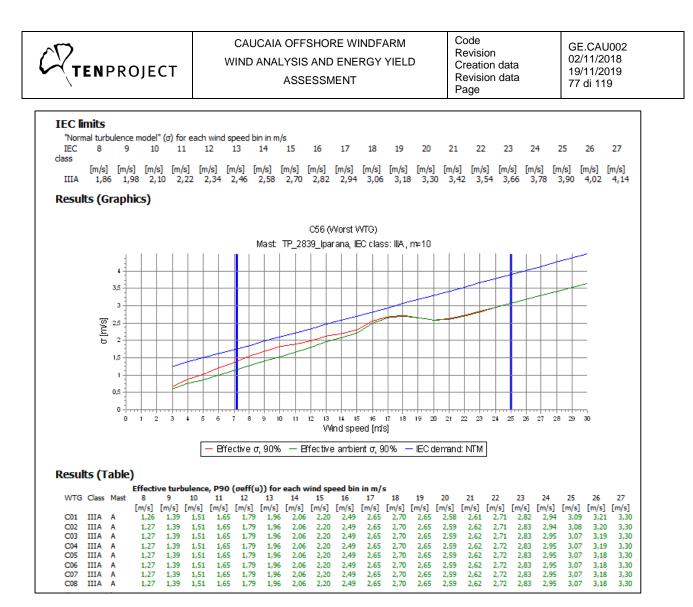


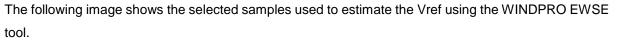
Figure 27: Summary results about turbulence sigma parameter for worst wtg

Eliminated subtitle

7.2 Vref

The reference wind speed V_{ref} , or the extreme wind speed with a return period of 50 years, is an important parameter in the site class analysis and often is the discriminant to select the suitable turbine model, because directly associated to the nominal design loads of wind turbine. A good investigation of this parameter needs of an extreme analysis based on a GEV/Gumbel distribution [22]. Since this approach takes into account only one max speed value per epoch (1 year), the data set from which the epochal extremes are drawn must be long: Cook (1985) suggests at least 20 years of data for reliable results (20 extremes), and states that the method should not be employed with fewer than 10 years. For the wind energy applications this long data set is often not available and the application of Gumbel method can result in an unreliable V_{ref} estimation. Since the storms tend to occur in families or clusters and the second strongest extreme value in one year may be considerably larger than the strongest in another year, the epochal extreme analysis ignores important information.

An alternative approach for extreme analysis is the "Peak Over Threshold method" (P.O.T) that leads


TENPROJECT

to an appropriate ensemble obtained as independent storms above a minimum threshold value. The P.O.T method takes into account all independent and identically distributed extreme speeds exceeding a specific threshold value. The extreme samples can be analyzed with Gumbel or other types of extreme distributions (i.e. modified Gumbel) [21].

This approach is implemented as a tool of WINDPRO computer program and requires a suitable combination of both threshold and minimum separation time between events to select only the independent samples. This two parameter can have a very large impact on the V_{ref} estimation and they are selected from an iterative process. The extreme data set can be selected from both real wind speed and squared wind speed.

According to Cook (1985), a better estimate of the extreme wind probability is obtained by fitting a Gumbel distribution to extreme values of squared wind speed, just because the cumulative probability distribution function of squared wind speed is closer to exponential than the distribution of real wind speed, and it converges much more rapidly to the Gumbel distribution. Therefore, using this method to predict extreme values of squared wind speeds, more reliable estimates can be obtained from a given number of observations. Here are presented the result of Vref calculation according to:

WINDPRO – Gumbel distribution: a V_{ref} values has been calculated fitting the Gumbel distribution on two extreme ensemble selected applying the Peak over threshold method (P.O.T) and independent storm method (I.S) to the measured wind speed. This is carried out with Extreme Wind Speed Estimator tool of WINDPRO software at 61-m measuring height on mast position and extrapolated to hub height of planned turbine. The following table shows the Vref Value on TP_2839 Mast position at 60 m a.g.l. calculated using WINDPRO EWSE tool (Extreme Wind Speed Estimator).

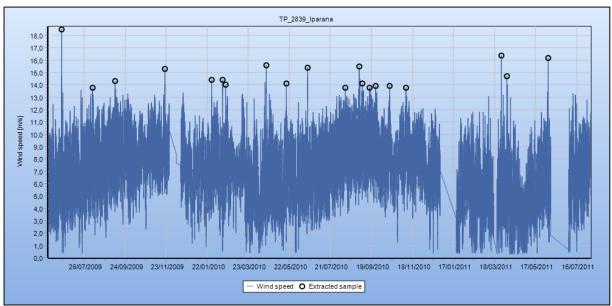


Figure 28: Selected samples to estimate the Vref with WINDPRO EWSE tool

The following picture shows the Vref results on TP_2839 at 60 m a.g.l. using WINDPRO EWSE tool on

CAUCAIA OFFSHORE WINDFARM WIND ANALYSIS AND ENERGY YIELD ASSESSMENT	Code Revision Creation data Revision data	GE.CAU002 02/11/2018 19/11/2019 79 di 119
ASSESSMENT	Page	79 di 119

quadratic wind speed.

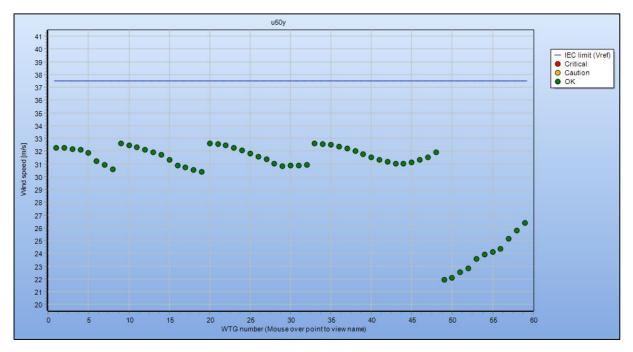


Figure 29: Vref estimation with WINDPRO EWSE tool using the quadratic wind speed on TP_2839 at 60 m a.g.l.

For a given stability condition (here neutral), the impact of the topography is independent from the wind speed level. As a result, the topographical effects on mean wind speed and direction can be evaluated by comparing the computed wind to a reference wind, defined as the wind speed we would have in reference conditions. The reference conditions are defined as: 10 m height, flat terrain, homogeneous roughness length of 5 cm (open rural terrain). Then, at any location, is defined a directional speed-up factor as the ratio of the computed wind speed *V* and the reference wind speed Vref. If C_i is the speed up factor at one location, for a reference wind direction sector i. In addition, is defined the 3-sec gust coefficient **G** in any given point of the site as the average value of the ratio of the maximum instantaneous wind speed during a period of 10 min, divided by the 10-min mean wind speed. It can be computed as a function of turbulence intensity I with:

$$G = 1 + 2.84 * I$$

Where *I* is the turbulent intensity computed for each direction.

Since the position and height of measuring mast do not coincide with position and hub height of WT an extrapolation process of the V_{ref} value was needed.

The calculated 50-yr value of the 10-min mean wind speed at the measurement point is used to calculate at any result point the 50-yr 10-min mean wind speed and 3-sec gust speed by:

 $V_{50mean} = (C/C_0)_{max}V_{50mean\,mes}$

 $V_{50,gust} = (GC/C_0)_{max}V_{50mean\,mes}$

Where we call C_0 and G_0 the directional speed-up factor and gust coefficient at the measurement point. In the extreme wind analysis, the direction of the extreme wind speed is not known. Therefore, it would be safer to consider that the extreme wind speed can occur from any directions. However, for some directions, C_0 can be very low. As a consequence, the calculated extreme wind speed can be overestimated because the direction for which C/C_0 is maximal may be a direction where strong winds are rare. This is why can be ignored the directions which have a low speed-up coefficient.

For the extreme definitive results sectors 30, 60, 90, 120, 180 were ignored basing on tabled measured extreme values.

7.3 Shear IEC compliance

The **wind shear** has been determined over the rotor plane, the shear exponent α has been calculated from WIND PRO software with IEC compliance module according to IEC 61400-1 third edition amendment 1 2010. The wind shear exponent for each wind turbine position is presented in the following table.

According to the IEC 61400-1, the maximum allowable wind shear is 0.20 (α . exponent.) All WT position are within the prescribed limits

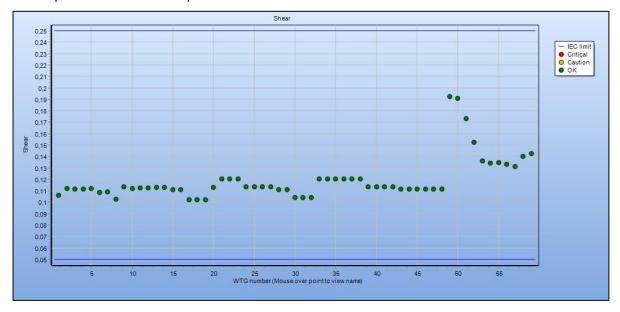


Figure 30: Calculated shear parameters

7.4 Wind distribution compliance

According to the last recommendation of IEC [24] the wind distribution check evaluates the frequency

of occurrence at different wind speeds for each WTG by comparing them to the frequency of occurrence assumed in the IEC design limit. The IEC design limit for the Wind distribution check is a Weibull distribution with a shape factor of k=2. The mean wind speed is defined as 20% of the basic design parameter V_{ref} which is 10m/s, 8.5m/s and 7.5m/s for the wind speed classes I, II and III, respectively. A range of wind speeds ranging from 20% to 40% of V_{ref} must be checked, i.e. from the mean wind speed to twice the mean wind speed of each WTG class.

In the IEC standard, it is required that the wind distribution estimated for each WTG is long-term representative. Hence, an evaluation of the long-term level and possibly a long-term correction is required.

This parameter seems to be the only one that may require further investigation as regards the conditions of machine installability. The effect of this requirement is on fatigue loads and the conditions expressed are still to be considered overcome by using engineering devices suggested by the supplier.

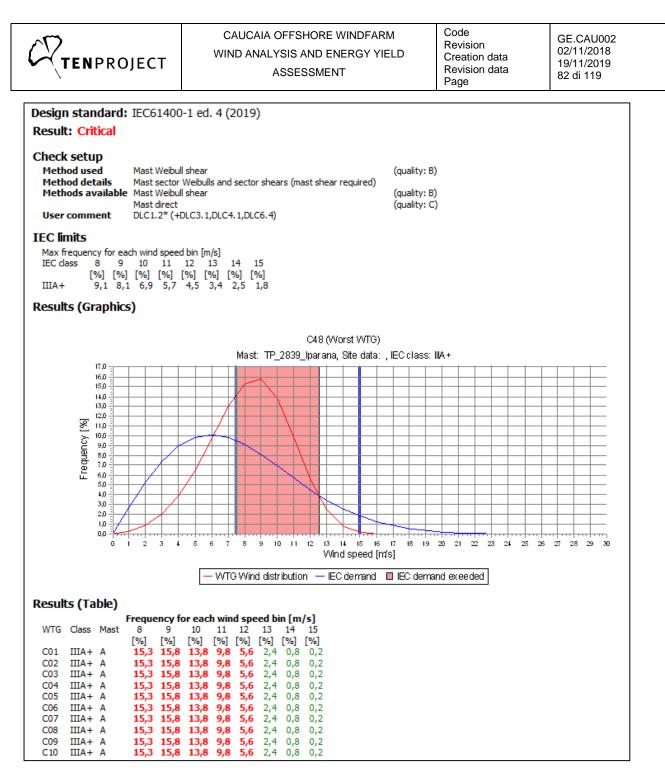


Figure 31: Wind distribution verification range according to IEC 61400

8 Conclusions and recommendations

The predicted average wind speed at hub height is about **8,8 m/s at about 120 m** a.s.l.with a wind statistic distributions which assure a reliable and good energy production with all wind turbine models tested, even taking into account about 8.5 % of technical losses.

Regarding IEC compliance, a warning should be considered with reference wind distribution which can lead to fatigue loads.

Basing on these considerations following the recommendations below might lower the uncertainties of the energy yield calculation and possible further evaluations:

- It should be considered to install additional measurement systems at the site with larger height in order to decrease the uncertainty.
- a lidar campaign is recommended to clarify all vertical extrapolation uncertainties.

9 References

[1] I. Troen, E.L. Petersen: European Wind Atlas. Risø National Laboratory, Roskilde, Denmark, 1990.

[2] G. Mortensen, L. Landberg, I. Troen, E.L. Petersen: Wind Atlas Analysis and Application Program (WASP), Risø National Laboratory, Roskilde, Denmark, 1993 and updates.

[3] I.Katic, J.Højstrup; N.O.Jensen: A Simple Model for Cluster Efficiency, European Wind Energy Association Conference and Exhibition, 7-9 October 1986, Rome, Italy.

[4] MEASNET: Power Performance Measurement Procedure, 3rd Ed., November 2000.

[5] IEA: IEA Recommendation 11: Wind Speed Measurement and Use of Cup Anemometry, 1st Ed., 1999.

[6] V. Riedel, M. Strack, H.P. Waldl: Robust Approximation of functional Relationships between Meteorological Data: Alternative Measure-Correlate-Predict Algorithms. Proceedings EWEC 2001, Copenhagen.

[7] International Organization for Standardization: Guide to the Expression of Uncertainty in Measurement. First edition, 1993, corrected and reprinted, Geneva, Switzerland, 1995.

[8] GregorGiebel Sven-Erik Gryning, Risø National Laboratory Shear and stability in high met masts, and how WAsP treats it

[9] Risø National Laboratory; European Wind Atlas; Denmark 1989

[10] Frandsen, S., Thøgersen, M. Integrated fatigue loading for wind turbines in wind farm by combining ambient turbulence and wakes. Wind engineering, volume. 23 NO. 6, 1999.

[11] [Recommended Practices for Wind Turbine Testing and Evaluation, 11. Wind speed measurement and use of cup anemometry, IEA, Edition 1, 1999.

[12] CEI-IEC 61400-12-1 2005: Power performance measurements of electricity producing Wind turbine

[13] CEI-IEC 61400-1, 2005 3hd Edition Wind turbine generator systems – Part 1: Design Requirements.

[14] CEI-IEC 61400-1, 2010 3hd Edition Am.1 Wind turbine generator systems – Part 1: Design Requirements.

[15] IEC 61400-1, 2019 Edition 4 Wind turbine generator systems – Part 1: Design Requirements.

[16] Ayotte, K.W., Hughes, D.E. Observations of boundary-layer wind-tunnel flow over isolated ridges of varying steepness and roughness., B. L. Meteorology, 112, 525-556, 2004.

[17] Mortensen, N. G., and Petersen, E. L., Influence Of Topographical Input Data On The Accuracy Of Wind Flow Modeling In Complex Terrain, EWEC 1997, Dublin.

[18] .J G Warren et al. "Performance of wind farms in complex terrain", Proc. Of the 17th BWEA Wind Energy Conference, 1995.

[19] Nielsen, P.: WindPRO-2 Manual, Energi- ogMiljødata (EMD), Aalborg, Denmark, 2001 NCEP/NCAR: Reanalysis Project. http://www.cdc.noaa.gov/cdc/reanalysis/reanalysis.shtml

[20] EMD: WindPRO/MCP, Energi- ogMiljødata International A/S (EMD), Aalborg, Denmark, 2005 European wind turbine standards II: EWTS II, Part 1, Sub C, p. 7 – 11

[21] Emil J.Gumbel: Statistical Theory of Extreme Values and some Practical Applications, U.S.

Department of Commerce, National Bureau of Standards, Washinghton D.C., February 1954

[22] Hans Bergström: Distribution of Extreme Wind Speed. Wind Energy Report WE 92:2, Department of Meteorology, Uppsala University, 1992.

[23] WindPRO Software (<u>www.emd.dk</u>) manual

[24] WAsP Software (www.wasp.dk) manual

[25] P Raftery, A J Tindal and A D Garrad, "Understanding the risks of financing windfarms", Proc. EWEA Wind Energy Conference, Dublin, 1997

[26] Gerdes, G. & M.Strack: Long-term Correlation of Wind Measurement Data, DEWI Magazin Nr. 15, August, 1999.

[27] Derrick, A.: Investigations into the Measure-Correlate-Predict Strategy for Site Wind Assessment, ETSU W/11/00236/REP.

[28] Wind pro papers -Windpro / mcp mcp - measure-correlate-predict "An introduction to the mcp facilities in windpro" author Morten Lybech Thøgersen, M.Sc.Co-authors: Per Nielsen, M.Sc. Thomas Sørensen, M.Sc.Lasse Ulrik Svenningsen, Ph.d. Mads v. Sørensen, M.Sc.

[29] "Extrapolation of wind speed data for wind energy applications" Jennifer F. Newman1_ and PetraM. Klein1 1School of Meteorology, University of Oklahoma, Norman, OK

[30] "Changing WAsP Parameters In WindPRO" Lasse Svenningsen, PhD

[31] Farr, T. G., et al. (2007), , The Shuttle Radar Topography Mission, Rev. Geophys., 45, RG2004, doi:10.1029/2005RG000183.

[32] Defourny P., L. Schouten, S. Bartalev, S. Bontemps, P. Caccetta, A. de Witt, C. di Bella, B. Gerard,
C. Giri, V. Gond, G. Hazeu, A. Heinimann, M. Herold, G. Jaffrain, R. Latifovic, H. Ling, P. Mayaux, S.
Muncher, A. Nonguierma, H.-J. Stibig, E. Van Bogaert, C. Vancutsem, P. Bicheron, M. Leroy and O.
Arino. 'Accuracy Assessment of a 300-m Global Land Cover Map: the GlobCover Experience'

[33] Klintø, F. (April 2015). *Long-Term Correction - Uncertainty Model using different Long-Term data.* London: Wind Power Conference 2015 - Wind Resource Assessment.

APPENDIX 1 : TP_2839_Site mast report

The measurement station identified with ID TP_2839 is a lattice measurement station installed on 03/06/2009 in the municipality of Caucaia in the Iparana locality.

The station was installed near the coast at the following geographical coordinates

Table 27: Coordinates of met mast station

Geografic coordinates							
Latitude	3º 41' 23,4"S - 9592142 S	Fuse	24				
Longitude	38º 36' 36,8"W - 543279 E	Altitude: m a.s.l.	8 m				

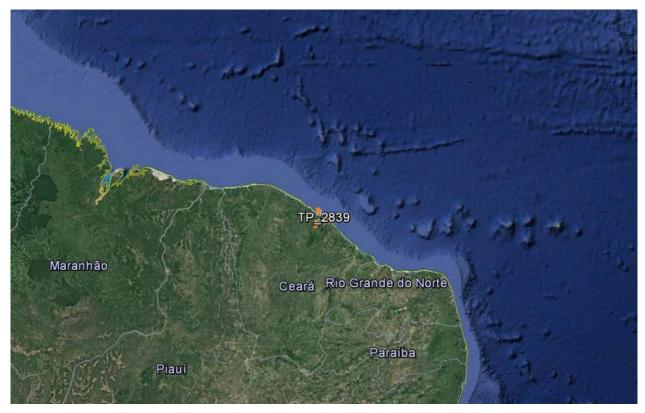


Figure 32: Met mast position on ortophoto

	CAUCAIA OFFSHORE WINDFARM WIND ANALYSIS AND ENERGY YIELD ASSESSMENT	Code Revision Creation data Revision data Page	GE.CAU002 02/11/2018 19/11/2019 87 di 119
ANNE SEE			

Figure 33:	Met	mast	position	on	ortophoto
			peenen	••••	011001010

GIEF	RET S.R.L. via	Alcide de Gasperi SCHEDA SIT		iorgio del Sannio ((BN)	
Num	ero di sito 2	839	O EOLICO	PIN:		
Nome del sito	IPAR		Nome del progetto:			
Ubicazione sito		ICALA -	Brasile		*	
Incarico di instal		Data di ins	stallazione	03/06/2	P 00	
	Т	ipo NRG sympho	nie n° 30901283			
C. S.	anemometro 1	anemometro 2	ASIC	banderuola 1	banderuola 2	
Altezza di monitoraggio	60m	40 m	1	60m	40 m	
Principale o ridondante	Principale	Ridondante		Principale	Ridondante	
Orientamento di installazione (Gradi - Magnetico)	180° da nord	180° da nord		0° nord	0° nord	
Lunghezza supporto	1,5 mt	1,5 mt		1,5 mt	1,5 mt	
Orientamento supporto	180° da nord	180° da nord	5	0° nord	0° nord	
Certificato di calibrazione- numero	62864	127		139	142	
Offset	0,37	0,35	A CALLER A	0	0	
Unità di misura	m/s	m/s		deg	deg	
Fattore di scala	0,761	0,765		0,351	0,351	
N. canale del data logger	1	2		7	8	
LUNGHEZ	ZA CAVI	100m	3*0,50	100m	3*0,50	
CAVO GI	ALLO-VERDE	PER MESSA A	TERRA	10	0m	

Figure 34: Met mast installation report

	CAUCAIA OFFSHOI WIND ANALYSIS AND ASSESSI	ENERGY YIELD	Code Revision Creation dat Revision dat Page	10/11/2010			
	SCHEDA SITO -	Mast n° 2	2839				
Numero di sito							
Data Istallazione	03/06/2009						
Aggiornato al							
Coordinate Geogr	afiche		·				
Lat	3º 41' 23,4"S - 9592142 S	Fuso	24				
Long	38º 36' 36,8"W - 543279 E	Altitudine m s	s. <i>l.m.</i> 8 m				
Luogo Installazion)e						
Regione	Ceará - Brasil						
Comune	Caucaia						
Provincia							
Località	Iparana						
Dati Catastali Proprietario: Arnald	lo Amadori	Foglio		Particella			
Tel.							
Descrizione Sito							
	a-mar de Iparana, com boa	as rajadas de vel	nt, pois não	há construções			
Тіро	Reticular	Altezza		60 m			
Materiale	Ferro - Galvanizado	Produttore		J. Antenas			
Configurazione to							
Altezza di misura	Orientamento Booms in grad rispetto al Nord	di Lunghezza Bo	ome	a configurazione I Number sensori			
60 m Anemometro	180º SUL	1,5 m		62864			
60 m Anemometro	0º NORTE	1,5 m		20177			
40 m Anemometro	180º SUL	1,5 m		127			
60 m Banderuola	0º NORTE	1,5 m		139			
40 m Banderuola	0º NORTE	1,5 m		142			

S.*N*.

309012833

Figure 35: TP_2839 mast maintenance sheet1

NRG Symphony

Data Logger

Тіро

GE.CAU002 02/11/2018 19/11/2019 89 di 119

	SCHEDA SITO - Mast TP_2839- Iparana								
Sensori di misura									
Altezza	Serial Numb.	Тіро	Cal	librazione	Slope [m/s]	Offset [m/s]	Periodo di misura		
60	62864	NRG #40C Anemom.	☑	Otech	0,761	0,37			
60	20177	NRG #40C Anemom.	☑	Svend	0,772	0,24			
40	127	NRG #40C Anemom.	☑		0,765	0,35			
60	139	NRG 200P Wind Vane	☑		0,351	0			
40	142	NRG 200P Wind Vane	☑		0,351	0			
	Storico Data Logger								
Тіро	Tipo Serial Numb. Periodo di misura								
NRG S	ymphony	309012839					3-6-09 a 7-09-12		
NRG S	ymphony	408005364					7-9-12 a 17-12-12		

Figure 36: TP_2839 mast maintenance sheet2

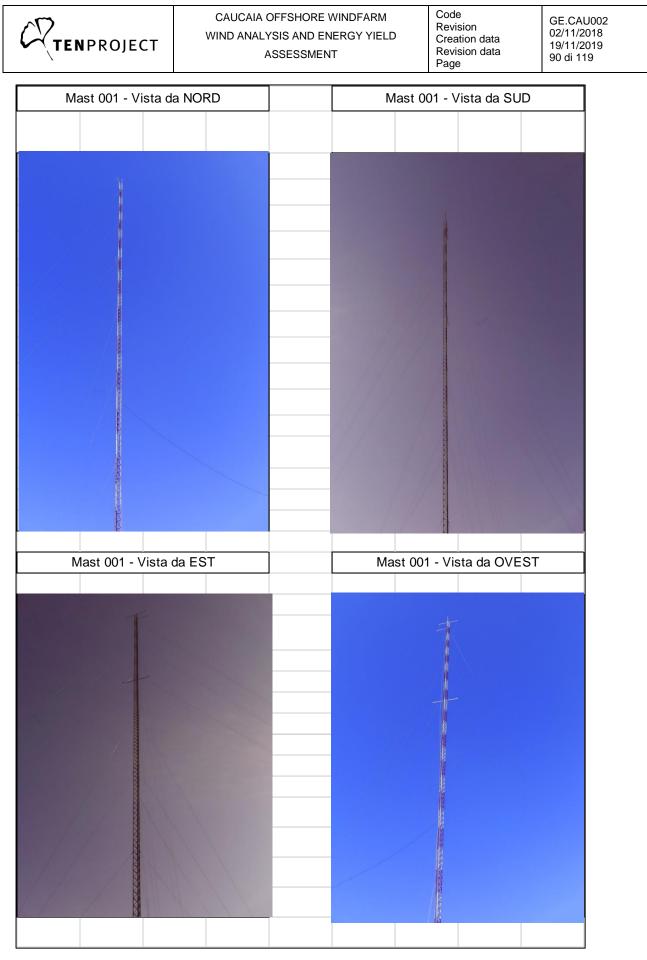


Figure 37: TP_2839 pictures

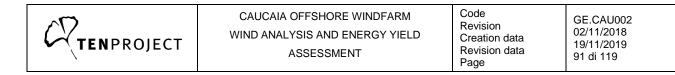


Figure 38

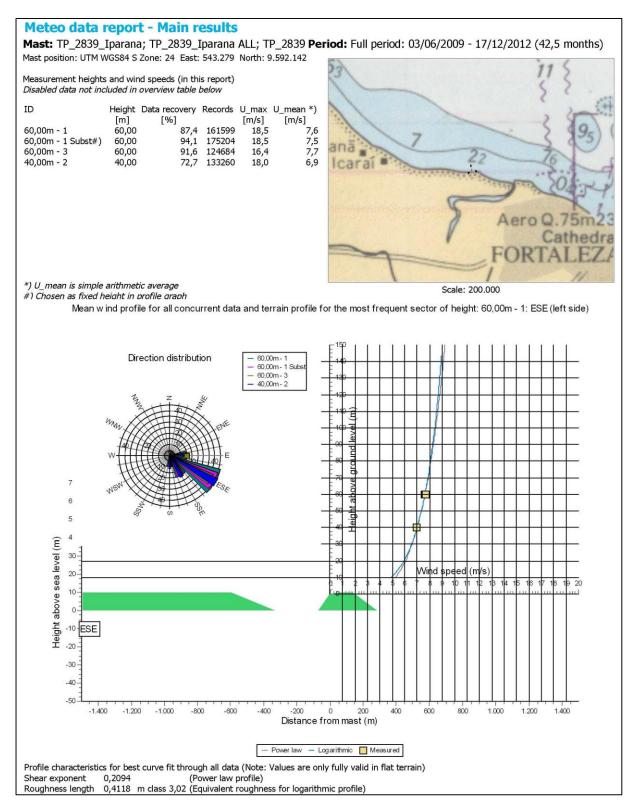
	CAUCAIA OFFSHORE WINDFARM WIND ANALYSIS AND ENERGY YIELD ASSESSMENT	Code Revision Creation data Revision data Page	GE.CAU002 02/11/2018 19/11/2019 92 di 119
--	---	--	--

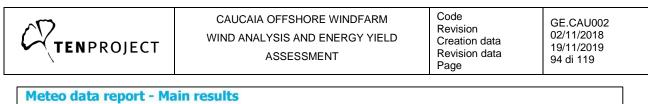
A general review and assessment of the available meteorological data material has been performed. The data have been assessed regarding their quality and usability for the intended purposes. The used data have been checked for detectable measuring, recording or conversion errors and inconsistencies. The following table shows the ricalibration parameters used.

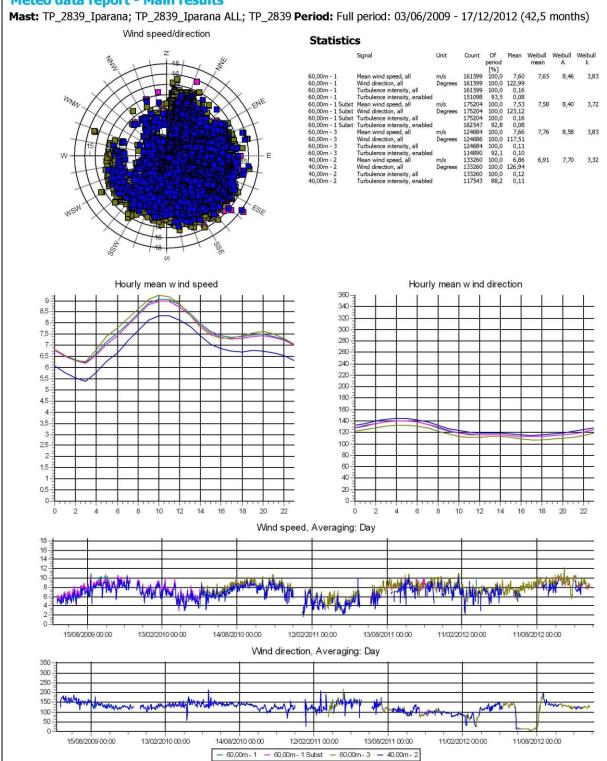
Table 28: Channel configuration of logger and recalibration parameters

Channel	Height (m)	Instrument	Model	SN	Orient.	Start date	End date	Slope in Logger	Offset in Logger	Slope Desired	Offset Desired	Slope correction	Offset correction
-	4	Logger	NRG Symphony	3090128 39	-	03/06/2009	07/09/2012	-	-	-	-	-	-
-	4	Logger	NRG Symphony	4080053 64	-	07/09/2012	17/12/2012	-	-	-	-	-	-
C1	100	Anemometer	NRG #40C Anemom.	62864	270°	03/06/2009	07/09/2012	0,761	0,37	0,761	0,37	1,000	0,000
C2	100	Anemometer	NRG #40C Anemom.		90°	03/06/2009	17/12/2012	0,765	0,35	0,765	0,35	1,000	0,000
C3	80	Anemometer	NRG #40C Anemom.	20177	270°	03/06/2009	07/09/2012	0,772	0,24	0,772	0,24	1,000	0,000
C1	100	Anemometer	NRG #40C Anemom.	62864	270°	07/09/2012	17/12/2012	0,765	0,35	0,761	0,37	0,9948	0,0218
C3	80	Anemometer	NRG #40C Anemom.	20177	270°	07/09/2012	17/12/2012	0,765	0,35	0,772	0,24	1,0092	-0,1132
A1	98	Wind Vane	NRG 200P	-	270°	11/06/2018	today	0,351	0	0,351	0	1,0000	0,0000
A2	58	Wind Vane	NRG 200P	-	270°	11/06/2018	today	0,351	0	0,351	0	1,0000	0,0000
A3	10	Temp Sensor	NRG 110S	-	-	30/12/2013	today	0,351	0	0,351	0	1,0000	0,0000

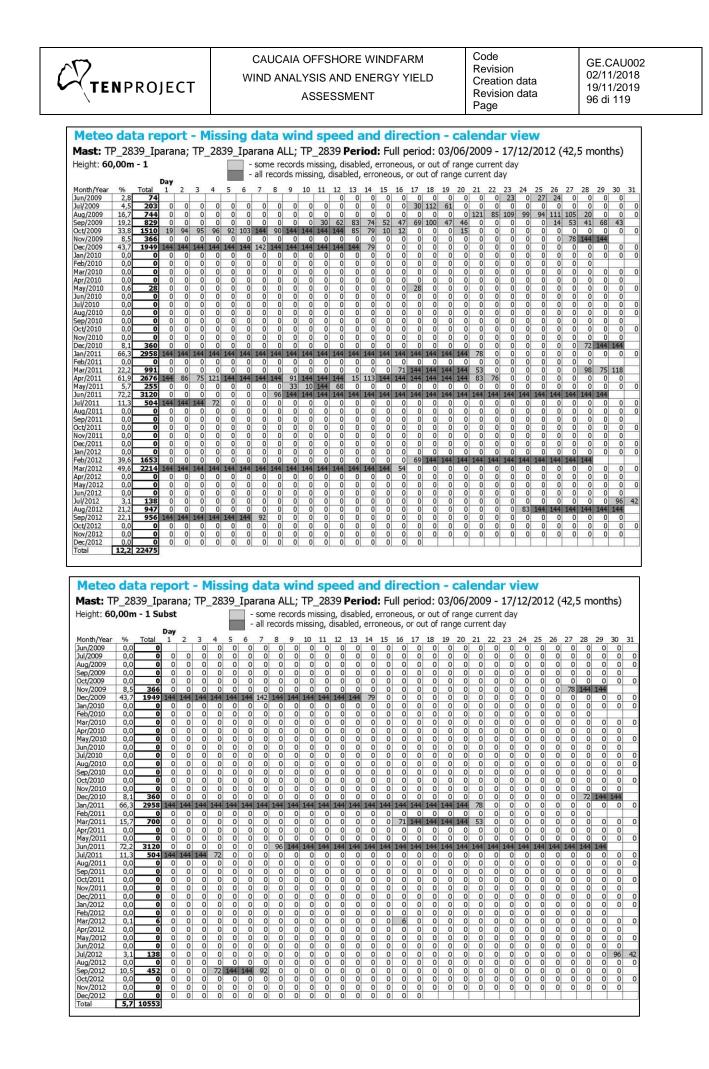
The completeness of the data has been checked and some data gaps has been filled by following steps:

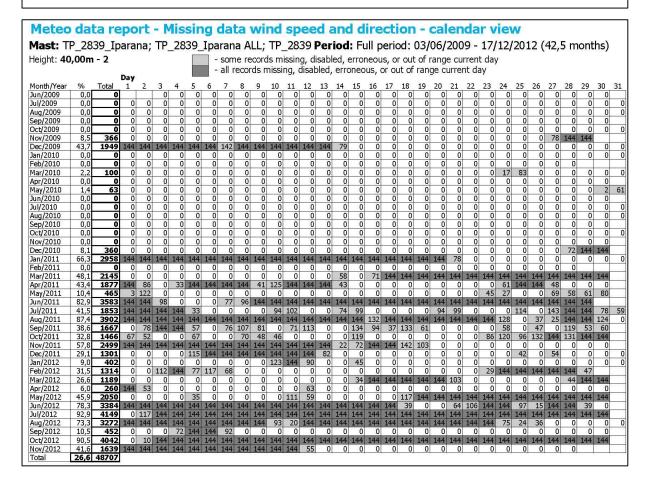

1. substitution from CH3 to CH1 of missing and invalid wind data pair (wind speed and direction)


2. synthesizing of wind data series from 40 to 60 m using power law apllied to a detailed shear table for 12 sectors and seasonal periods


3. step substitution from synthesized channel to CH1 of missing and invalid wind data pair (wind speed and direction)

CAUCAIA OFFSHORE WINDFARM WIND ANALYSIS AND ENERGY YIELD ASSESSMENT	Code Revision Creation data Revision data Page	GE.CAU002 02/11/2018 19/11/2019 93 di 119
---	--	--


Meteo data report TP_2839



	TENP	ROJECT	. ,	WIND ANAL	YSIS	HORE WINDFA AND ENERGY Y SSMENT		Code Revision Creation data Revision data Page		GE.CAU002 02/11/2018 19/11/2019 95 di 119
Mete	o data	a report -	Import	filters, fil	es a	nd heights				
							period.	03/06/2009 - 17/12/	12012 (4	2.5 months)
Import Files/Fold \\192.16	filter: I1 ders 8.1.5\Mea	I-Tp\ARCHIVIO	ANEMOMETR	I TEN PROJEC	T\ESTEF			NA\Iparana Old Logger (;	-	
First line	ield separ with data d separato	ator: "Tab" :: 142 pr: "Tab"								
Column	Channel	Type	Sub type	Unit	Heiah	t Name				
1		Time stamp	Date&Time	d/m/y h:m:s						
2	1	Wind speed	Mean	m/s		m CH1Avg				
3 4	1 1	Wind speed Wind speed	StdDev Max	m/s m/s		m CH1SD m CH1Max				
5	1	Wind speed	Min	m/s		m CH1Min				
6	2	Wind speed	Mean	m/s	40,00	m CH2Avg				
7	2	Wind speed	StdDev	m/s		m CH2SD				
8 9	2 2 2	Wind speed Wind speed	Max Min	m/s m/s		m CH2Max m CH2Min				
10	3	Wind speed	Mean	m/s		m CH3Avg				
11	3 3 3	Wind speed	StdDev	m/s		m CH3SD				
12 13	3	Wind speed Wind speed	Max Min	m/s m/s		m CH3Max m CH3Min				
26	3 7 7	Wind direction		Degrees		m CH7Avg				
27	7	Wind direction		Degrees	60,00	m CH7SD				
28 29	7 7	Wind direction		Degrees		m CH7Max				
30	8	Wind direction Wind direction		Degrees Degrees		m CH7Min m CH8Avg				
31	8	Wind direction		Degrees	40,00	m CH8SD				
32 33	8 8	Wind direction		Degrees		m CH8Max				
33	0	Wind direction	1*1111	Degrees	40,00	m CH8Min				
Files/Fold	8.1.5\Med	I-Tp\ARCHIVIO				RO\BRASILE\CAUCA C-03:00) Brasilia	A_IPARA	NA\Iparana New Logger	(5364).cs [,]	V
Line with Header f First line	n header: ield separ with data	171 ator: "; (Semico	lon)"	noject properti						
Column	Channel	Туре	Sub type	Unit		Height Name	Scale	Offset		
1		Time stamp	Date&Time	dd/mm/yyyy ł	nh:mm	(0.00 ··· (111.1		0,0000		
2 3	1 1	Wind speed Wind speed	Mean StdDev	m/s m/s		60,00 m CH1Avg 60,00 m CH1SD	0,9948 1,0000	0,0218 0,0000		
4	1	Wind speed	Max	m/s		60,00 m CH1Max	0,9948	0,0218		
5	1	Wind speed	Min	m/s		60,00 m CH1Min	0,9948	0,0218		
6 7	2 2	Wind speed Wind speed	Mean StdDev	m/s m/s		40,00 m CH2Avg 40,00 m CH2SD	1,0000	0,0000 0,0000		
8	2	Wind speed	Max	m/s		40,00 m CH2Max				
9		Wind speed	Min	m/s		40,00 m CH2Min	1,0000	0,0000		
10 11	2 3 3	Wind speed Wind speed	Mean StdDev	m/s m/s		60,00 m CH3Avg 60,00 m CH3SD	1,0091	-0,1132 0,0000		
12	3	Wind speed	Max	m/s		60,00 m CH3SD				
13	3	Wind speed	Min	m/s		60,00 m CH3Min	1,0091	-0,1132		
26 27	3 7 7	Wind direction		Degrees		60,00 m CH7Avg	1,0000			
27 28	7	Wind direction Wind direction		Degrees Degrees		60,00 m CH7SD 60,00 m CH7Max	1,0000	0,0000 0,0000		
29	7	Wind direction	Min	Degrees		60,00 m CH7Min	1,0000	0,0000		
30	8	Wind direction		Degrees		40,00 m CH8Avg	1,0000	0,0000		
31 32	8 8	Wind direction Wind direction		Degrees Degrees		40,00 m CH8SD 40,00 m CH8Max	1,0000	0,0000 0.0000		
	8	Wind direction		Degrees		40,00 m CH8Min	1,0000			
33										
33										

	CAUCAIA OFFSHORE WINDFARM WIND ANALYSIS AND ENERGY YIELD ASSESSMENT	Code Revision Creation data Revision data Page	GE.CAU002 02/11/2018 19/11/2019 97 di 119
--	---	--	--

Meteo	da	ta re	epo	ort	- M	lis	sir	ng (dat	ta	wi	nd	sp	ee	d a	inc	l d	ire	cti	on	- (cal	en	da	r v	iev	N						
Mast: T	Mast: TP_2839_Iparana; TP_2839_Iparana ALL; TP_2839 Period: Full period: 03/06/2009 - 17/12/2012 (42,5 months)																																
Height: 60	,00m	- 3					1	- 1	som	e re	cord	ls m	issin	a, di	sable	ed, e	error	neou	S, 0I	r out	of r	ang	e cur	ren	t day	1							
2									all r	ecor	ds r	nissi	na. (disat	oled.	erro	neo	US. (or ou	ut of	ranc	ie c	urren	it da	av Í								
			Day				4								,,			,				,											
Month/Year	%	Total	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
May/2010	0,0	0																	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Jun/2010	0,0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Jul/2010	0,0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Aug/2010	0,0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sep/2010	0,0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Oct/2010	0,0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Nov/2010	0,0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Dec/2010	8,1	360	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	72 :	144	144	
Jan/2011	66,3	2958	144	144	144	144	144	144	144	144	144	144	144	144	144	144	144	144	144	144	144	144	78	0	0	0	0	0	0	0	0	0	0
Feb/2011	0,0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
Mar/2011	15,7	702	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	71	144	144	144	144	55	0	0	0	0	0	0	0	0	0	0
Apr/2011	0,0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
May/2011	0,0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Jun/2011	72,2	3120	0	0	0	0	0	0	0	96	144	144	144	144	144	144	144	144	144	144	144	144	144	144	144	144	144	144	144	144 :	144		
Jul/2011	31,7	1414	144	144	144	144	34	0	0	0	0	0	0	0	0	74	113	144	144	144	144	41	0	0	0	0	0	0	0	0	0	0	0
Aug/2011	0,0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sep/2011	3,6	156	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	16	0	0	0	100	22	18	0	0	0	0	0	0	0	
Oct/2011	18,1	808	0	0	43	88	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	120	96	132	144	131	54	0	0
Nov/2011	19,8	855	0	0	0	0	0	31	0	82	144	144	144	144	144	22	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Dec/2011	2,8	125	0	0	0	0	0	0	0	0	0	44	15	54	12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Jan/2012	0,0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Feb/2012	0,0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
Mar/2012	0,1	6	0		0	0	0	0		0	0	0	0	0	0	0	0	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Apr/2012	0,0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
May/2012	0,0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Jun/2012	0,0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Jul/2012	3,1	138	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	96	42
Aug/2012	0,7	30	0	0	0	0	0	0	0	0	0	30	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Sep/2012	10,5	452	0	0	0	72	144	144	92	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Oct/2012	0,0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Nov/2012	0,0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Dec/2012	0,0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0														
Total	8,2	11124																															_
1. Contract (1. Co																																	

	CAUCAIA OFFSHORE WINDFARM WIND ANALYSIS AND ENERGY YIELD ASSESSMENT	Code Revision Creation data Revision data	GE.CAU002 02/11/2018 19/11/2019
\ \	ASSESSMENT	Page	98 di 119

Meteo data report - Table of	missing data
	arana ALL; TP_2839 Period: Full period: 03/06/2009 - 17/12/2012 (42,5 months)
Height: 60,00m - 1	
23/06/2009 16:00:00 - 23/06/2009 20:00:00 25/06/2009 05:40:00 - 25/06/2009 10:20:00	
26/06/2009 03:30:00 - 26/06/2009 07:40:00	
17/07/2009 18:50:00 - 18/07/2009 03:30:00	
18/07/2009 08:40:00 - 19/07/2009 10:10:00	No data
21/08/2009 03:40:00 - 22/08/2009 14:10:00	
23/08/2009 04:30:00 - 23/08/2009 22:50:00	
24/08/2009 05:20:00 - 24/08/2009 22:00:00 25/08/2009 01:50:00 - 25/08/2009 14:20:00	
25/08/2009 20:30:00 - 26/08/2009 03:00:00	
26/08/2009 08:20:00 - 27/08/2009 17:30:00	
28/08/2009 05:20:00 - 28/08/2009 08:50:00	No data
11/09/2009 04:10:00 - 11/09/2009 07:20:00	
11/09/2009 20:30:00 - 11/09/2009 22:40:00	
12/09/2009 00:30:00 - 12/09/2009 08:00:00 12/09/2009 20:50:00 - 13/09/2009 07:10:00	
13/09/2009 17:10:00 - 14/09/2009 10:30:00	
14/09/2009 15:50:00 - 14/09/2009 17:50:00	
15/09/2009 00:50:00 - 15/09/2009 09:40:00	No data
16/09/2009 16:00:00 - 17/09/2009 07:40:00	
$17/09/2009\ 20:00:00 - 18/09/2009\ 08:30:00$ $18/09/2009\ 15:40:00 - 19/09/2009\ 07:10:00$	
18/09/2009 15:40:00 - 19/09/2009 07:10:00 19/09/2009 23:10:00 - 20/09/2009 07:40:00	
26/09/2009 21:30:00 - 27/09/2009 08:50:00	
28/09/2009 03:50:00 - 28/09/2009 07:20:00	
28/09/2009 20:20:00 - 29/09/2009 08:30:00	
29/09/2009 21:00:00 - 30/09/2009 07:10:00 01/10/2009 20:40:00 - 02/10/2009 08:00:00	
02/10/2009 16:10:00 - 03/10/2009 07:40:00	
03/10/2009 15:40:00 - 04/10/2009 07:20:00	
04/10/2009 15:10:00 - 05/10/2009 06:50:00	
05/10/2009 15:20:00 - 06/10/2009 08:40:00	
06/10/2009 15:20:00 - 08/10/2009 07:00:00	
08/10/2009 15:50:00 - 13/10/2009 06:40:00 13/10/2009 16:20:00 - 14/10/2009 06:00:00	
14/10/2009 16:40:00 - 15/10/2009 01:10:00	
15/10/2009 23:20:00 - 16/10/2009 02:00:00	
20/10/2009 13:50:00 - 20/10/2009 16:30:00	
27/11/2009 10:50:00 - 07/12/2009 17:40:00	
07/12/2009 17:50:00 - 14/12/2009 13:10:00 17/05/2010 07:40:00 - 17/05/2010 12:30:00	No data
28/12/2010 11:50:00 - 21/01/2011 13:00:00	
16/03/2011 12:00:00 - 21/03/2011 08:50:00	
28/03/2011 07:30:00 - 29/03/2011 12:30:00	No data
30/03/2011 04:10:00 - 02/04/2011 10:30:00	
02/04/2011 15:40:00 = 02/04/2011 19:40:00 03/04/2011 11:20:00 = 04/04/2011 14:40:00	
03/04/2011 11:20:00 - 04/04/2011 14:40:00 04/04/2011 18:20:00 - 09/04/2011 06:50:00	
09/04/2011 15:30:00 - 13/04/2011 02:30:00	
14/04/2011 05:00:00 - 21/04/2011 13:50:00	No data
22/04/2011 02:00:00 - 22/04/2011 14:50:00	
09/05/2011 08:20:00 - 09/05/2011 14:00:00	
10/05/2011 22:10:00 - 12/05/2011 11:20:00 08/06/2011 07:50:00 - 04/07/2011 12:00:00	
17/02/2012 12:20:00 - 16/03/2012 09:00:00	
30/07/2012 07:50:00 - 31/07/2012 07:00:00	
24/08/2012 10:00:00 - 07/09/2012 15:20:00	No data
Heights 60.00m 1 Column	
Height: 60,00m - 1 Subst 27/11/2009 10:50:00 - 07/12/2009 17:40:00	No data
07/12/2009 17:50:00 - 14/12/2009 13:10:00	
28/12/2010 11:50:00 - 21/01/2011 13:00:00	No data
16/03/2011 12:00:00 - 21/03/2011 08:50:00	
08/06/2011 07:50:00 - 04/07/2011 12:00:00	
16/03/2012 07:50:00 - 16/03/2012 09:00:00 30/07/2012 07:50:00 - 31/07/2012 07:00:00	
04/09/2012 11:50:00 - 07/09/2012 15:20:00	

	CAUCAIA OFFSHORE WINDFARM WIND ANALYSIS AND ENERGY YIELD ASSESSMENT	Code Revision Creation data Revision data	GE.CAU002 02/11/2018 19/11/2019 99 di 119
Ň		Page	99 UI 119

Meteo data report - Table of	missing data
	arana ALL; TP_2839 Period: Full period: 03/06/2009 - 17/12/2012 (42,5 months)
Height: 60,00m - 3	arana ALL, 1P_2039 Period: Pull period: 03/00/2009 - 17/12/2012 (42,5 monuns)
28/12/2010 11:50:00 - 21/01/2011 13:00:00	
16/03/2011 12:00:00 - 21/03/2011 08:50:00 08/06/2011 07:50:00 - 05/07/2011 05:40:00	
14/07/2011 11:30:00 - 15/07/2011 16:30:00	
15/07/2011 21:30:00 - 20/07/2011 06:50:00	
17/09/2011 16:30:00 - 17/09/2011 19:20:00	
21/09/2011 07:10:00 - 22/09/2011 03:40:00 23/09/2011 06:20:00 - 23/09/2011 09:30:00	
03/10/2011 16:40:00 - 04/10/2011 14:40:00	
24/10/2011 03:50:00 - 25/10/2011 16:00:00	
26/10/2011 01:50:00 - 28/10/2011 17:20:00	
28/10/2011 19:20:00 - 29/10/2011 09:00:00	
06/11/2011 14:50:00 - 06/11/2011 20:10:00 08/11/2011 10:10:00 - 14/11/2011 03:40:00	
10/12/2011 16:30:00 - 11/12/2011 02:30:00	
12/12/2011 05:10:00 - 12/12/2011 11:20:00	
12/12/2011 15:10:00 - $12/12/2011$ 16:50:00	
12/12/2011 22:20:00 - 13/12/2011 01:00:00 13/12/2011 07:30:00 - 13/12/2011 08:40:00	
16/03/2012 07:50:00 - 16/03/2012 09:00:00	No data
30/07/2012 07:50:00 - 31/07/2012 07:00:00	No data
10/08/2012 04:50:00 - 10/08/2012 06:00:00 10/08/2012 06:00:00 - 10/08/2012 10:10:00	
04/09/2012 11:50:00 - $07/09/2012$ 15:20:00	
21/03/2011 08:50:00 - 21/03/2011 09:00:00	
	5 ,
Height: 40,00m - 2 27/11/2009 10:50:00 - 07/12/2009 17:40:00	No data
07/12/2009 17:50:00 - 14/12/2009 13:10:00	
24/03/2010 21:00:00 - 25/03/2010 13:50:00	
30/05/2010 23:30:00 - 31/05/2010 10:10:00	
28/12/2010 11:50:00 - 21/01/2011 13:00:00	
14/03/2011 10:00:00 - 14/03/2011 19:50:00 16/03/2011 12:00:00 - 02/04/2011 10:30:00	
02/04/2011 15:40:00 - 02/04/2011 19:40:00	
04/04/2011 18:20:00 - 09/04/2011 06:50:00	
$10/04/2011 \ 03:00:00 - 14/04/2011 \ 07:10:00$	
24/04/2011 13:40:00 - 27/04/2011 08:00:00 01/05/2011 23:20:00 - 02/05/2011 20:20:00	
23/05/2011 10:30:00 - 23/05/2011 18:10:00	
24/05/2011 11:50:00 - 24/05/2011 16:30:00	
27/05/2011 08:00:00 - 27/05/2011 19:40:00	
28/05/2011 09:20:00 - 28/05/2011 19:10:00 29/05/2011 07:20:00 - 29/05/2011 17:40:00	
30/05/2011 09:20:00 - 30/05/2011 17:10:00	
30/05/2011 18:10:00 - 03/06/2011 16:20:00	No data
07/06/2011 02:50:00 - 07/06/2011 15:50:00 08/06/2011 07:50:00 - 05/07/2011 05:30:00	
08/06/2011 07:50:00 - 05/07/2011 05:30:00 10/07/2011 08:10:00 - 11/07/2011 17:00:00	
14/07/2011 11:30:00 - 15/07/2011 16:30:00	
20/07/2011 08:10:00 - 21/07/2011 16:30:00	
25/07/2011 02:50:00 - 25/07/2011 22:00:00	
27/07/2011 00:00:00 - 30/07/2011 13:00:00 31/07/2011 14:00:00 - 16/08/2011 05:30:00	
16/08/2011 07:20:00 - 24/08/2011 21:20:00	
26/08/2011 04:40:00 - 26/08/2011 11:00:00	No data
27/08/2011 19:40:00 - 30/08/2011 20:40:00	
02/09/2011 03:50:00 - 02/09/2011 16:30:00 02/09/2011 23:20:00 - 05/09/2011 09:30:00	
07/09/2011 01:40:00 - 07/09/2011 14:30:00	
08/09/2011 06:00:00 - 09/09/2011 13:30:00	No data
11/09/2011 12:00:00 - 12/09/2011 18:50:00	
15/09/2011 01:30:00 - 16/09/2011 15:40:00 17/09/2011 02:40:00 - 17/09/2011 09:00:00	
1//09/2011 02:40:00 - 17/09/2011 09:00:00	
24/09/2011 04:50:00 - 24/09/2011 14:40:00	No data
26/09/2011 02:00:00 - 26/09/2011 10:00:00	No data
28/09/2011 04:00:00 - 29/09/2011 08:50:00	No data
To be continued on next page	

	CAUCAIA OFFSHORE WINDFARM WIND ANALYSIS AND ENERGY YIELD ASSESSMENT	Code Revision Creation data Revision data Page	GE.CAU002 02/11/2018 19/11/2019 100 di 119
--	---	--	---

Meteo data report - Table o	f missing data
Mast: TP_2839_Iparana; TP_2839_Ip	arana ALL; TP_2839 Period: Full period: 03/06/2009 - 17/12/2012 (42,5 months)
continued from previous page	
30/09/2011 01:50:00 - 30/09/2011 12:00:00	
01/10/2011 02:30:00 - 01/10/2011 13:50:00	
02/10/2011 03:20:00 - 02/10/2011 12:10:00	
05/10/2011 02:00:00 - 05/10/2011 13:20:00	
08/10/2011 01:20:00 - 08/10/2011 13:10:00	
09/10/2011 02:30:00 - 09/10/2011 10:40:00 10/10/2011 03:30:00 - 10/10/2011 11:20:00	
15/10/2011 01:20:00 - 15/10/2011 21:20:00	
23/10/2011 04:20:00 - 23/10/2011 21:20:00	
24/10/2011 03:50:00 - 25/10/2011 16:00:00	
26/10/2011 01:50:00 - 28/10/2011 17:20:00	
28/10/2011 19:20:00 - 14/11/2011 03:40:00	
15/11/2011 11:50:00 - 18/11/2011 01:20:00	
18/11/2011 01:30:00 - 19/11/2011 17:10:00	
05/12/2011 04:40:00 - 13/12/2011 13:40:00	
25/12/2011 07:00:00 - 25/12/2011 14:10:00	No data
27/12/2011 04:50:00 - 27/12/2011 14:00:00	No data
10/01/2012 03:20:00 - 12/01/2012 15:00:00	No data
15/01/2012 05:50:00 - 15/01/2012 13:30:00	No data
03/02/2012 05:10:00 - 05/02/2012 12:50:00	
06/02/2012 04:20:00 - 07/02/2012 11:20:00	No data
23/02/2012 19:00:00 - 29/02/2012 07:50:00	
15/03/2012 18:10:00 - 21/03/2012 17:10:00	
28/03/2012 16:30:00 - 02/04/2012 08:50:00	
12/04/2012 07:50:00 - 12/04/2012 18:30:00	
05/05/2012 03:50:00 - 05/05/2012 09:50:00	
11/05/2012 05:20:00 - 12/05/2012 09:50:00	
18/05/2012 04:20:00 - 18/06/2012 06:30:00	
21/06/2012 04:50:00 - 21/06/2012 15:40:00	
22/06/2012 06:10:00 - 25/06/2012 16:10:00	
26/06/2012 21:20:00 - 29/06/2012 06:30:00	
02/07/2012 04:20:00 - 10/08/2012 15:30:00	
11/08/2012 20:30:00 - 24/08/2012 12:30:00	
25/08/2012 19:50:00 - 26/08/2012 06:00:00	
04/09/2012 11:50:00 - 07/09/2012 15:20:00 02/10/2012 22:10:00 - 12/11/2012 09:10:00	
02/10/2012 22.10.00 - 12/11/2012 09.10.00	ino uala

	CAUCAIA OFFSHORE WINDFARM WIND ANALYSIS AND ENERGY YIELD ASSESSMENT	Code Revision Creation data Revision data	GE.CAU002 02/11/2018 19/11/2019 101 di 119
``	AGGEGGMENT	Page	101 di 119

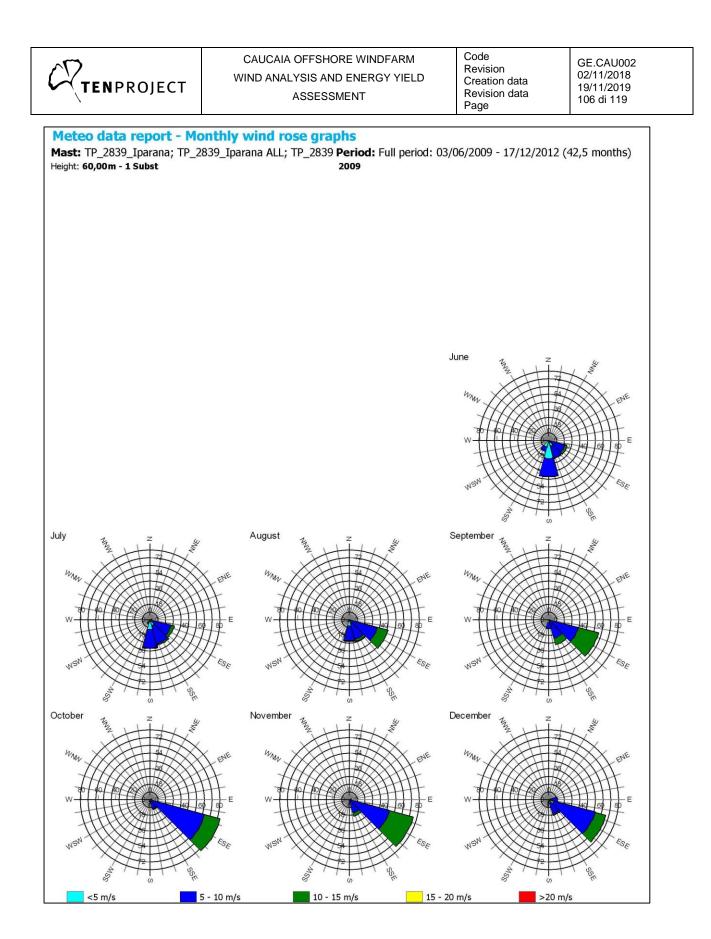
Meteo data	report - Monthly wind speeds
	Iparana; TP_2839_Iparana ALL; TP_2839 Period: Full period: 03/06/2009 - 17/12/2012 (42,5 months)
Monthly wind	speeds
January February March April May June 5 July 6 August 7 September 8 October 8 November 9 December 7 mean, all data 7	009 2010 2011 2012 Mean of month 7,20 4,35 8,27 7,25 6,61 7,91 5,73 7,97 7,08 7,20 6,52 5,07 6,95 6,14 6,18 5,91 3,55 7,13 6,04 5,53 6,72 6,17 7,34 6,73 6,55 5,98 6,72 6,17 7,34 6,73 6,55 5,98 6,72 6,18 5,91 3,88 7,19 7,17 7,57 8,69 8,15 8,92 8,37 8,38 8,98 9,12 8,53 8,86 8,87 8,87 7,57 8,69 9,12 8,53 8,66 9,66 9,11 8,79 8,51 9,46 8,65 8,66 9,11 8,79 8,54 8,50 7,99 7,99 7,99 7,86 7,47 7,03 8,14 7,45 7,36
Monthly wind	speeds
January February March April May June 5 July 6 August 7 September 8 October 8 November 9 December 7 mean, all data 7	009 2010 2011 2012 Mean Mean of month 7,20 4,35 8,27 7,25 6,61 7,91 5,73 7,00 6,88 6,88 6,52 5,12 6,85 6,22 6,16 5,91 4,49 7,13 5,84 5,84 6,29 5,29 7,65 6,41 6,41 5,88 6,72 6,17 7,34 6,63 6,53 6,67 7,35 6,53 8,08 7,17 7,16 7,73 8,69 8,15 8,97 8,38 8,38 8,89 9,12 8,53 8,96 8,87 8,88 8,49 7,95 8,51 9,46 8,60 8,60 9,11 8,79 8,65 8,36 8,71 8,73 7,66 7,27 8,54 8,50 7,99 7,99 7,78 7,47 6,89 8,03 7,41 7,35
Monthly wind	speeds
January February March April May 6 June 6 June 6 July 7 August 8 September 9 October 8 November 8 December 7 mean, all data 8	11 2011 2012 Mean Mean of month 4,22 8,38 7,33 6,30 5,65 7,06 6,37 6,36 5,01 6,86 6,01 5,93 4,43 7,14 5,79 5,79 6,93 5,21 7,68 6,54 6,61 5,65 7,06 6,74 6,74 7,40 6,73 8,16 7,50 7,43 8,82 8,30 9,06 8,73 8,73 9,24 8,70 9,11 9,01 9,02 8,89 8,73 8,72 8,73 8,89 8,73 8,24 8,29 8,00 6,86 8,12 7,49 7,40 8,74 8,73 8,24 8,89 8,73 8,72 8,73 8,80 6,87 8,53 8,72 8,00 6,86 8,12 7,49 7,90 8,15 7,39

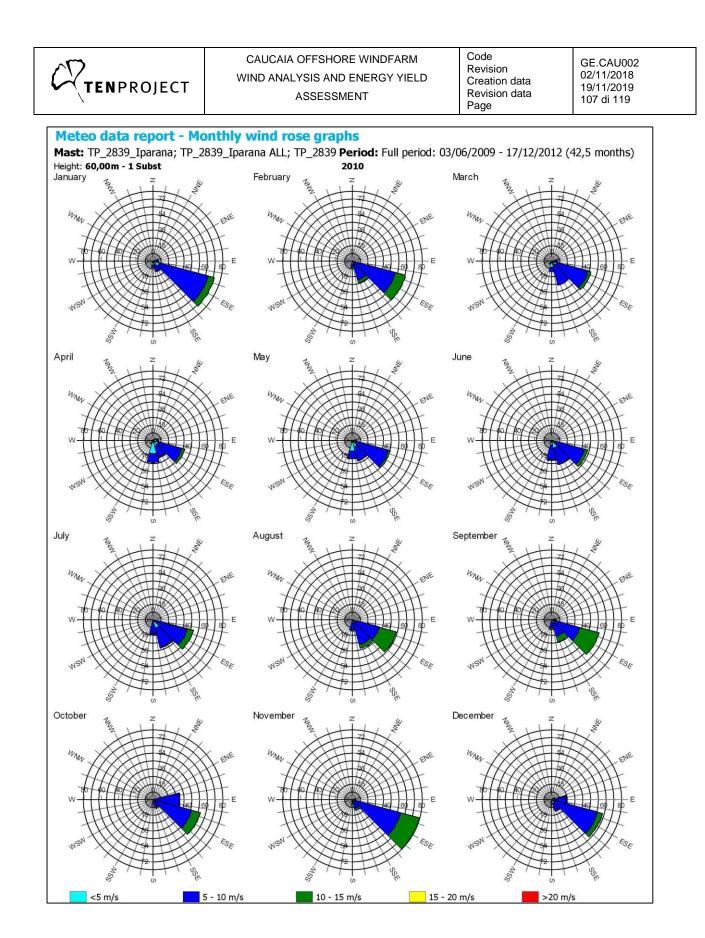
Meteo data report - Monthly wind speeds

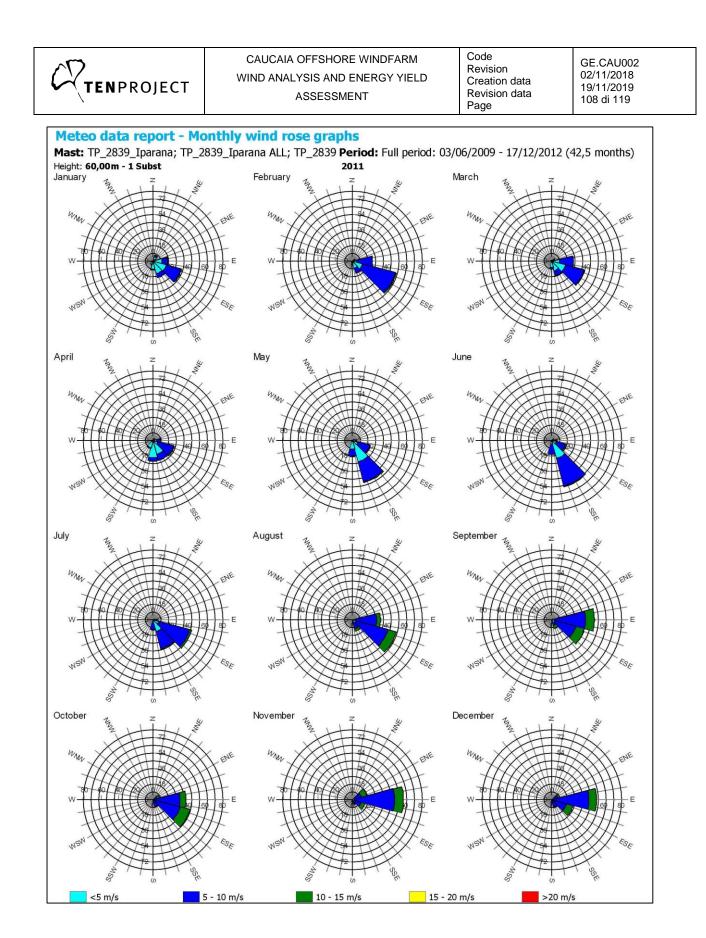
Mast: TP_2839_Iparana; TP_2839_Iparana ALL; TP_2839 Period: Full period: 03/06/2009 - 17/12/2012 (42,5 months) Monthly wind speeds

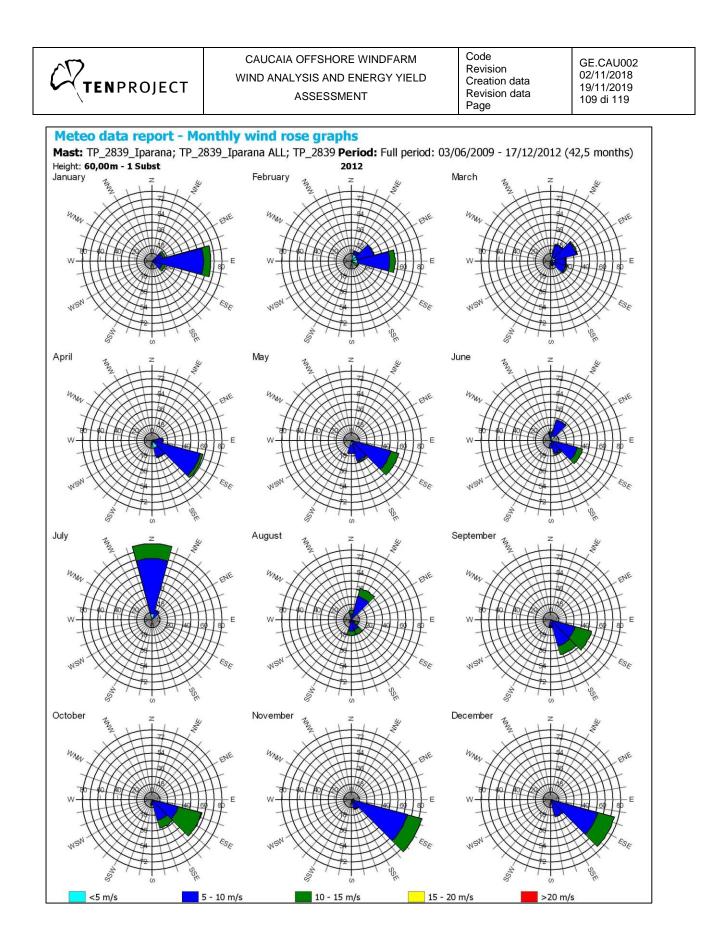
		120					
	40,00m - 2						
	Month	2009	2010	2011	2012	Mean	Mean of month
	January		6,83	4,08	7,61	6,73	6,17
	February		7,41	5,33	6,56	6,42	6,43
	March		6,17	4,53	6,26	5,83	5,65
	April		5,45	3,89	6,70	5,57	5,35
	May		5,79	4,58	7,16	5,64	5,84
	June	5,32	6,15	5,13	6,39	5,78	5,75
	July	6,04	6,71	5,52	6,54	6,19	6,20
	August	7,22	8,04	6,71	8,26	7,65	7,56
	September	8,45	8,49	7,70	8,03	8,22	8,17
	October	8,02	7,55	7,85	9,24	7,83	8,17
	November	8,73	8,30	7,96	7,63	8,26	8,16
	December	7,33	6,86	7,73		7,27	7,31
	mean, all data	7,30	6,98	5,93	7,20	6,78	
	mean of months	7,30	6,98	5,92	7,31		6,73
_			~				~

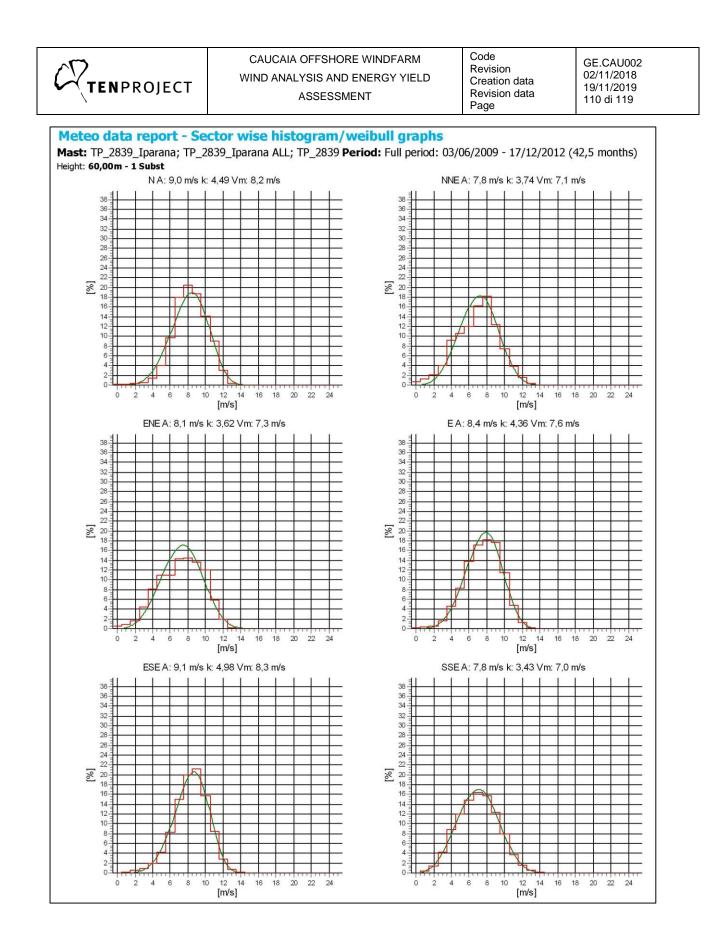
					-		AIA OF NALYS AS		D EN	Code Revision Creation data Revision data Page			GE.CAU002 02/11/2018 19/11/2019 103 di 119	2				
Mete	eo da	ata r	epor	t - F	requ	iency	dis	tribu	tion	(TA	B file	data)					
														06/2009	- 17/12/2	2012 (4	l2,5 months)	
					AB fil								-					
60,00m							10											
	Start	End	Sum	0-N	1-NNE	2-ENE	3-E	4-ESE	5-SSE	6-S	7-SSW	8-WSW	9-W	10-WNW	11-NNW			
Mean			7,53	8,20	6,85	7,18	7,54	8,29	6,95	5,89	4,79	5,45	4,70	3,10	4,62			
0		0,49	245	5	38	27	29	32	22	37	19	13	15	6	2			
1	0,50	1,49	710	8	63	53	78	125	143	106	57	31	26	11	9			
2	1,50	2,49	1906	21	110	91	142	359	493	417	174	53	19	13	14			
3	2,50	3,49	5112	26	202	256	395	733	1499	1526	372	59	18	16	10			
4	3,50	4,49	10439	67	459	467	1102	1561	3091	2965	637	54 31	9	9	18			
5	4,50	5,49			527		2021	3327	4224		520	31	4	5	7			
6	5,50	6,49			601		3350		5261		222	13	3	2	3			
7	6,50	7,49			814		4155		5779	2397	143	10	0	0	6			
8	7,50	8,49	30549	988	907		4403	15807	5551		105	7	0	0	8			
9	8,50	9,49			620		4283	16732	4381	1208	83	15	5	3	9			
10	9,50	10,49	20493		372		2783	12431	2779	664	47		14	0	2			
		11,49			194		1172	6658	1295	305	36	32	19	1	1			
12	11,50	12,49	3593	142	79	114	301	2257	543	85		40	4	0	1			

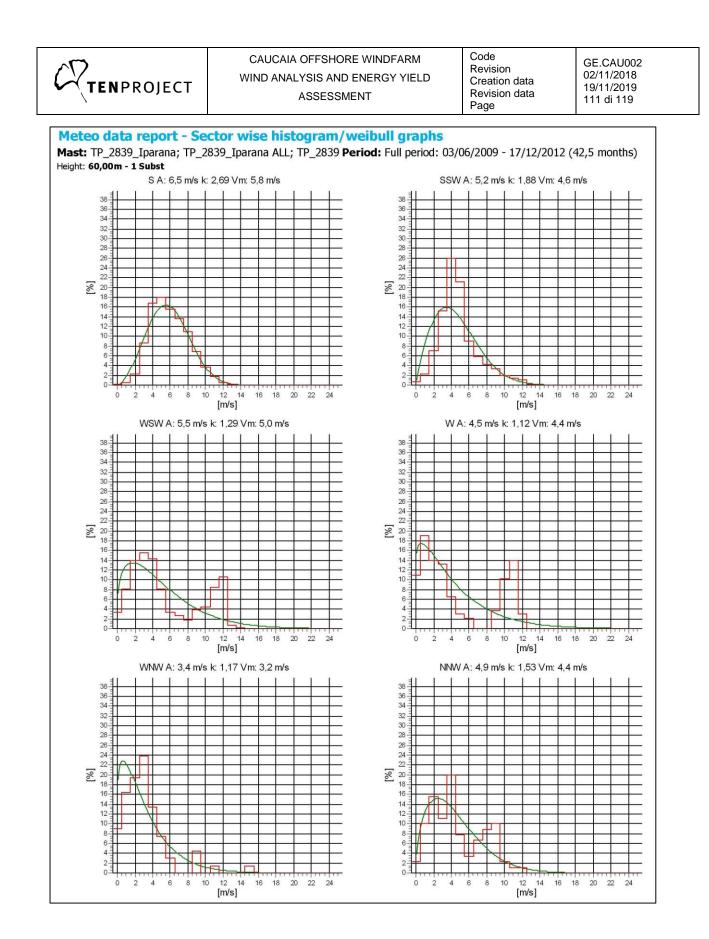

	11,50 12,49	3593	142	79	114	301	2257	543	85	27	40	4	0	1	
13	12,50 13,49	884	17	15	14	38	583	181	30	3	3	0	0	0	
	13,50 14,49	186	1	1 0	1	9	119	49	3	2	1	0	0	0	
15	14,50 15,49	23	1	0	0	4	12	4	1	0	0	0	1	0	
16	15,50 16,49	7	0	1	1	3	1	1	0	0	0	0	0	0	
17	16,50 17,49	1	0	0	0	0	1	0	0	0	0	0	0	0	
18	17,50 18,49	1 0	0	0	0	0	0	0	0	0	0	0	0	0	
19	18,50 19,49	1	0	0	0	0	1	0	0	0	0	0	0	0	
20	19,50 20,49	0	0	0	0	0	0	0	0	0	0	0	0	0	
21	20,50 21,49	0	0	0	0	0	0	0	0	0	0	0	0	0	
22	21,50 22,49	0	0	0	0	0	0	0	0	0	0	0	0	0	
23		0	0	0	0	0	0	0	0	0	0	0	0	0	
24		0	0	0	0	0	0	0	0	0	0	0	0	0	
25	24,50 25,49	0	0	0	0	0	0	0	0	0	0	0	0	0	
26		0	0	0	0	0	0	0	0	0	0	0	0	0	
27	26,50 27,49	0	0	0	0	0	0	0	0	0	0	0	0	0	
28		0 0	0	0	0	0	0	0	0	0	0	0	0	0	
29	28,50 29,49	0	0	0	0	0	0	0	0	0	0	0	0	0	
30	29,50 30,49	0	0	0	0	0	0	0	0	0	0	0	0	0	
31	30,50 31,49	0	0	0	0	0	0	0	0 0	0	0	0	0	0	
32	31,50 32,49	0	0	0	0	0	0	0	0	0	0	0	0	0	
33	32,50 33,49	0	0	0	0	0	0	0	0	0	0	0	0	0	
34	33,50 34,49	0	0	0	0	0	0	0	0	0	0	0	0	0	
35	34,50 35,49	0	0	0	0	0	0	0	0	0	0	0	0	0	
36	35,50 36,49	0	0	0	0	0	0	0	0	0	0	0	0	0	
37		0	0	0	0	0	0	0	0	0	0	0	0	0	
38	37,50 38,49	0	0	0	0	0	0	0	0	0	0	0	0	0	
39	38,50 39,49	0	0	0	0	0	0	0	0	0	0	0	0	0	
	39,50 40,49	0	0	0	0	0	0	0	0	0	0	0	0	0	
	40,50	0	0	0	0	0	0	0	0	0	0	0	0	0	
	1321														

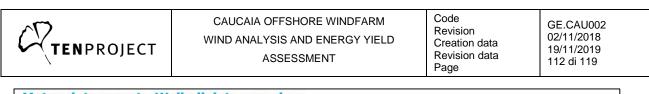

Mete	eo da	ata r	epoi	t-	Mear	n turk	bule	nce										
Mast:	TP_2	839_1	Iparan	a; Tl	2839	_Ipara	ana A	LL; TP	_2839	Per	riod: F	ull perio	d: 0	3/06/200	9 - 17/12	2/2012 (42,5 mc	onths)
Mean	turb	ulend	ce															
60,00m																		
	Start	End												10-WNW				
Mean 0		0,49	0,08	0,11	0,12	0,09	0,09	0,06	0,10	0,09	0,05	0,06	0,09	0,08	0,08			
1	0,50	1,49																
2	1,50	2,49																
3	2,50	3,49																
4	3,50	4,49					0,10			0,05		0,10		0,07	0,12			
5	4,50	5,49	0,09			0,08		0,10	0,10		0,04	0,04		0,10	0,10			
6	5,50 6,50	6,49 7,49	0,09 0,08		0,14 0,14	0,08 0,08		0,08 0,06	0,10 0,10		0,04 0,06	0,06 0,10	0,18	0,10	0,11 0,07			
8	7,50	8,49	0,08		0,13	0,09		0,06	0,10		0,09	0,06			0,07			
9	8,50	9,49	0,07			0,09		0,05	0,11		0,12	0,09		0,05	0,05			
10		10,49	0,07			0,10		0,05			0,12	0,07			0,06			
	10,50		0,07		0,09	0,10		0,05	0,10		0,09	0,05		0,13	0,11			
	11,50 12,50		0,07 0,08			0,11	0,09	0,06 0,06	0,10	0,14	0,07	0,05 0,07	0,05		0,08			
	13,50		0,08			0,06		0,06	0,11	0,12	0,06	0,07						
	14,50				0,00	0,00	0,14	0,06	0,09		0,00	0,00		0,04				
	15,50		0,15			0,22	0,08	0,19	0,16					-				
	16,50		0,00					0,00										
	17,50		0.00					0.00										
	18,50 19,50		0,00					0,00										
	20,50																	
	,00	/.5																

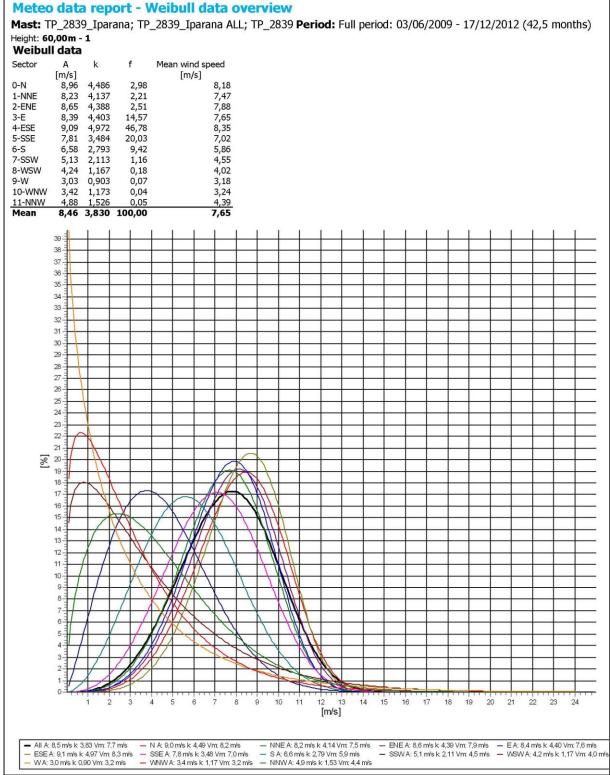

						CAUCAIA OFFSHORE WINDFARM WIND ANALYSIS AND ENERGY YIELD ASSESSMENT									e ision ation dat ision dat e		GE.CAU002 02/11/2018 19/11/2019 104 di 119	2
Mete	eo da	ata r	epo	rt - I	Mear	tur ł	bule	nce										
Mast:	TP_2	839_1	[parar	na; TF	2839	_Ipara	ana A	LL; TF	283	9 Pe i	riod: F	ull peri	od: 0.	3/06/200	9 - 17/3	12/2012	(42,5 months)	
Mean	ı turb	ulen	ce															
60,00m	n - 1 Su	bst																
	Start	End												10-WNW				
Mean				0,11	0,12	0,10	0,09		0,10	0,09	0,06	0,07	0,08	0,08	0,08			
0		0,49						0,21		0.11								
2	0,50 1,50	1,49 2,49						0,09		0,11 0,15								
3	2,50	3,49					0,07	0,11	0,10	0,13	0,08	0,05						
4	3,50			0,14	0,11	0,10	0,10	0,11		0,06	0,05		0,13	0,07	0,12			
5	4,50	5,49			0,13	0,10				0,07	0,04		0,08					
6	5,50	6,49		0,15	0,14	0,10		0,08		0,09	0,05		0,18	0,10				
8	6,50 7,50	7,49 8,49		0,14 0,12	0,13 0,12		0,09 0,09	0,07 0,06		0,10 0,11	0,07 0,09	0,11 0,10			0,07 0,07			
9	8,50	9,49		0,10	0,12		0,09	0,05		0,11	0,11		0,08	0,05				
10	9,50			0,09	0,11		0,09	0,05		0,12	0,10		0,06		0,06			
11		11,49		0,07	0,09		0,09	0,05		0,12	0,08		0,06		0,11			
		12,49			0,08		0,09			0,13	0,08		0,05		0,08			
		13,49 14,49			0,09 0,06		0,09 0,06			0,12 0,07	0,14 0,09	0,07 0,05						
		15,49			0,00	0,00	0,13	0,06		0,06	0,05	0,00		0,04				
16	15,50	16,49	0,13		0,04	0,22	0,10	0,19	0,16									
		17,49	0,00					0,00										
18	17,50	18,49	0.0-															

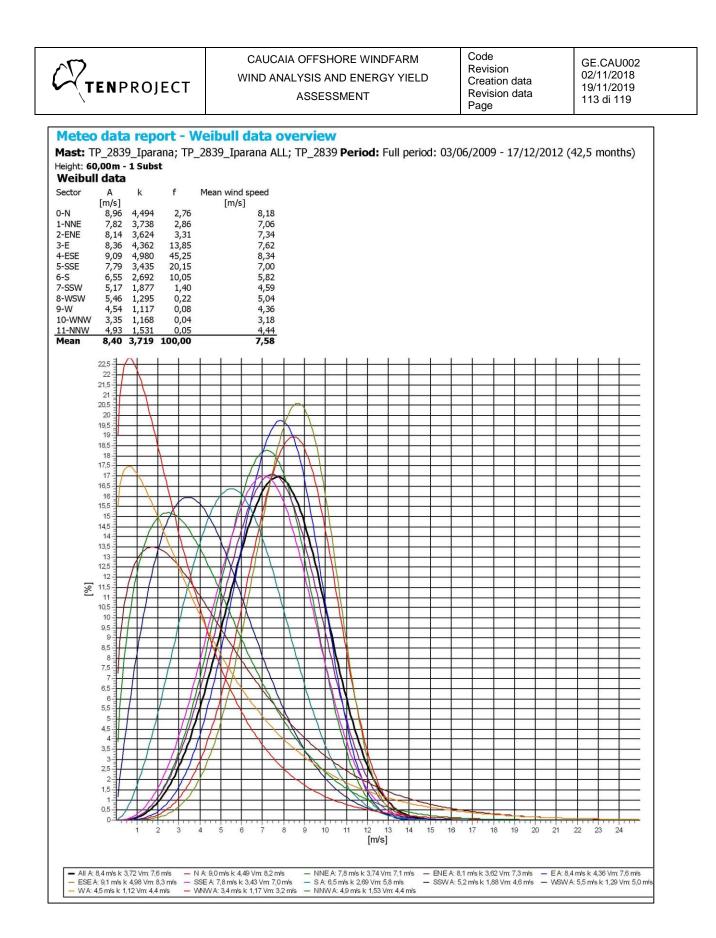

18 17,50 19 18,50 20 19,50 21 20,50	19,49 20,49	0,00					0,00										
eteo d									_						- (22.4.2.4		
			na; H	P_2839	_lpara	ana A	LL; II	_2839	Pe	riod: F	ull perio	od: 0	3/06/200	9 - 1//1	2/2012 (4	12,5 mor	iths)
 ean turl	oulen	ce															
00m - 2	E.J.	Maaa				2 5	4 505		6.6	ZCOW	O MICINI	0.14/	10-WNW				
n Start an	Ella		0,14				4-ESE 0,09	0,16				0,10		0,10			
0	0,49	0,11	0,11	0,10	0,12	0,10	0,05	0,10	0,10	0,10	0,00	0,10	0,05	0,10			
1 0,50	1,49																
2 1,50																	
3 2,50 4 3,50		0.14	0,25	0,19	0.16	0,13	0,15	0,15	0.12	0,11	0.09	0,10	0,09	0,13			
5 4,50			0,25			0,13	0,13	0,15				0,10		0,10			
6 5,50			0,17			0,11	0,11	0,17				0,23	0,14	0,13			
7 6,50			0,15			0,10	0,10	0,16			0,14			0,13			
8 7,50 9 8,50			0,12 0,13	0,11 0,10		0,10 0,09	0,09	0,16 0,15				0,09	0,05	0,07 0,09			
	10,49		0,10			0,09	0,08 0,08	0,15				0,07 0,07	0,05	0,09			
11 10,50			0,10			0,08	0,07	0,14				0,08		0,12			
12 11,50		0,08	0,05	0,06		0,08	0,07	0,14			0,08	0,08		20000200			
13 12,50		0,08		0,09	0,10	0,10	0,07	0,13									
14 13,50 15 14,50		0,09 0,13			0.20	0,07 0,15	0,09 0,07	0,11 0,16	0,07								
16 15,50		0,09			0,20	0,08	0,11	0,10									
17 16,50																	
18 17,50		0,08					0,08										
19 18,50 20 19,50																	
20 19,50																	


	CAUCAIA OFFSHORE WINDFARM WIND ANALYSIS AND ENERGY YIELD ASSESSMENT	Code Revision Creation data Revision data Page	GE.CAU002 02/11/2018 19/11/2019 105 di 119
	andard deviation on turbulence 1839_Iparana ALL; TP_2839 Period: Full period: 03/00 ulence	6/2009 - 17/12/2012 (4	12,5 months)
60,00m 1 Subst Bin Start End Mean 0-N Mean 0,0682 0,0539 0 0,0682 0,0539 0 0,49 1 0,50 1,49 1 2 1,50 2,49 0,0429 3 2,50 3,49 0,0477 0,0440 5 4,50 5,49 0,0741 0,0507 6 5,50 6,49 0,0731 0,0437 7 6,50 7,49 0,0657 0,0512 8 7,50 8,49 0,0657 0,0512 9 8,50 9,49 0,0625 0,0512 9 8,50 9,49 0,0625 0,0512 9 8,50 9,49 0,0625 0,0512 9 8,50 9,49 0,0623 0,0341 10 10,50 11,49 0,0623 0,0341 11 10,50 12,49 0,0664 0,0342	1-NNE 2-ENE 3-E 4-ESE 5-SSE 6-S 7-SSW 8-WSV 0,0547 0,0644 0,0638 0,0580 0,0776 0,0792 0,0692 0,0569 0,0547 0,0644 0,0638 0,0580 0,0776 0,0792 0,0692 0,056 0,0455 0,0645 0,0699 0,0807 0,0776 0,0642 0,0601 0,112 0,0566 0,0595 0,0634 0,0746 0,0754 0,0660 0,045 0,0508 0,0555 0,6610 0,0684 0,0733 0,0832 0,0810 0,042 0,0519 0,0543 0,0643 0,0610 0,0801 0,0832 0,0810 0,042 0,0553 0,0544 0,0759 0,0697 0,057 0,0770 0,0720 0,057 0,0553 0,0543 0,0643 0,0610 0,0801 0,0832 0,0677 0,0720 0,057 0,0557 0,0716 0,0757 0,0756 0,0657 0,023 0	1 0,0425 0,0338 0,03 99 0,0503 0,0371 0,03 82 0,0314 0,0196 0,03 81 0,0686 0,0236 0,02 27 0,03 0,0119 0,0062 0,00 23 0,0119 0,0062 0,00 33 0,0086 0,01 34 0,0136 37 0,0097 37 0,003 37 0,003	06 49 04 65 37 97









	CAUCAIA OFFSHORE WINDFARM WIND ANALYSIS AND ENERGY YIELD ASSESSMENT	Code Revision Creation data Revision data Page	GE.CAU002 02/11/2018 19/11/2019 114 di 119
--	---	--	---

APPENDIX 2 : Wind resource maps

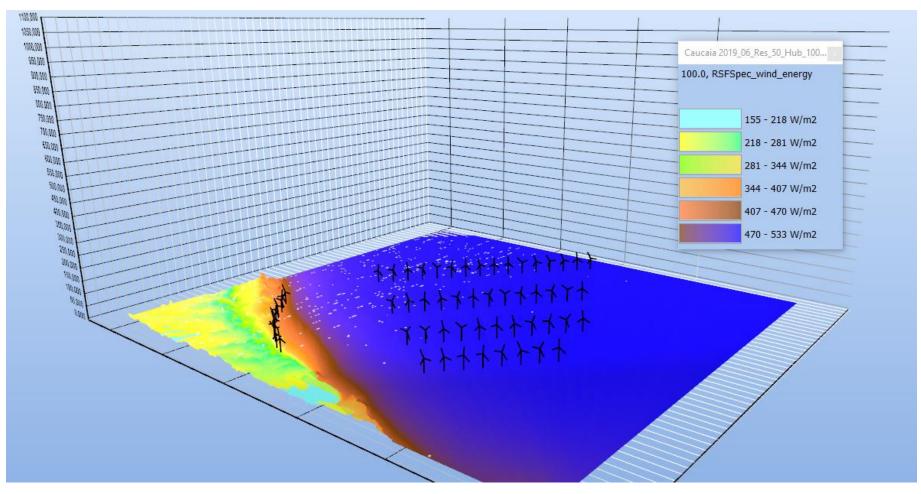
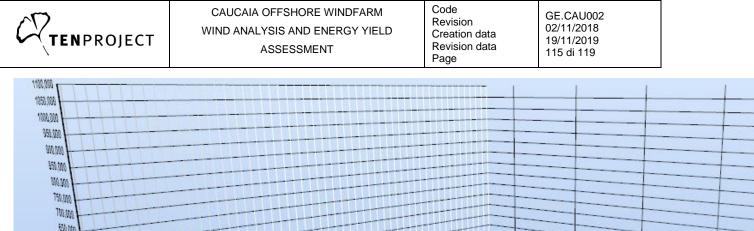
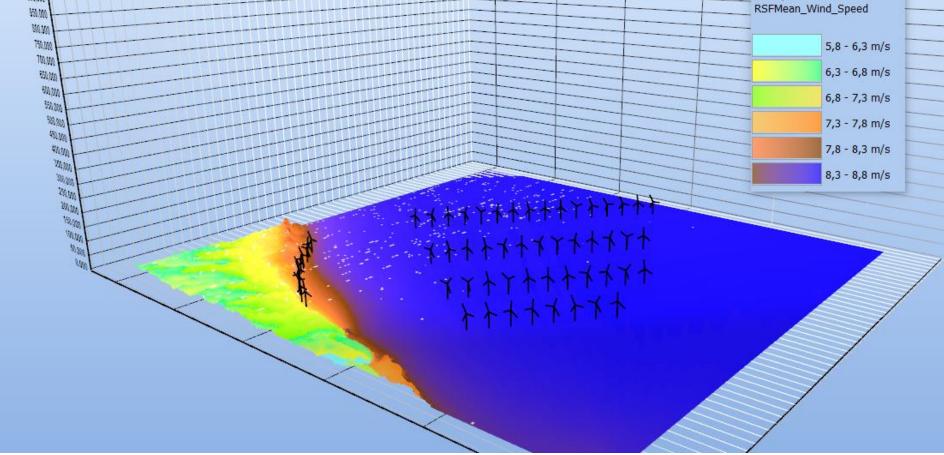




Figure 39: Wind resource map – specific wind energy W/m²

Caucaia 2019_06_Res_50_H...

100.0,

Figure 40: Wind resource map – wind speed [m/s] at 100 m a.s.l.

APPENDIX 3 : Glossary

Annual average

Mean value of a set of measured data of sufficient size and duration to serve as an estimate of the expected value of the quantity. The averaging time interval should be a whole number of years to average out non-stationary effects such as seasonality.

Annual average wind speed

 V_{ave} : Wind speed averaged according to the definition of annual average.

Annual energy production

AEP: Estimate of the total energy production of a wind turbine during a one-year period by applying the measured power curve to different reference wind speed frequency distributions at hub height, assuming 100 % availability.

Brake (wind turbines)

Device capable of reducing the rotor speed or stopping rotation.

Control system (wind turbines)

Subsystem that receives information about the condition of the wind turbine and/or its environment, and adjusts the wind turbine in order to maintain it within its operating limits.

Cut-in wind speed (Vin)

Lowest wind speed at hub height at which the wind turbine starts to produce useable power.

Cut-out wind speed (Vout)

Maximum wind speed at hub height at which the wind turbine is designed to produce useable power.

Data set

Collection of data that was sampled over a continuous period.

Design limits

Maximum or minimum values used in a design

Design situation

Possible mode of wind turbine operation (for example power production, parking etc.)

Distance constant

Indication of the response time of an anemometer, defined as the length of air that must pass the instrument for it to indicate 63 % of the final value for a step input in wind speed.

Downwind

In the direction of the main wind vector.

Electrical power network

Particular installations, substations, lines or cables for the transmission and distribution of electricity.

Emergency shutdown (wind turbines)

Rapid shutdown of the wind turbine triggered by a protection function or by manual intervention.

Environmental conditions

Characteristics of the environment (wind, altitude, temperature, humidity, etc.) which may affect the wind turbine behavior.

Extrapolated power curve

Extension of the measured power curve by estimating power output from the maximum measured wind speed to cut-out wind speed.

Extreme wind speed

Value of the highest wind speed, averaged over t s, with an annual probability of exceedance of 1/N ("recurrence period": N years)

External conditions (wind turbines)

Factors affecting the operation of wind turbine, including the wind regime, other climatic factors (snow,

ice, etc.).

Fall-safe

Design property of an item, which prevents its failures from resulting in critical faults.

Flow distortion

Change in air flow caused by obstacles, topographical variations, or other wind turbines that results in a deviation of the measured wind speed from the free stream wind speed and in a significant uncertainty. **Gust**

Temporary change in the wind speed, which may be characterized by its rise-time, its amplitude and its

duration.

Horizontal axis wind turbine (HAWT)

Wind turbine whose rotor axis is parallel to the wind flow.

Hub

Fixture for attaching the blades or blade assembly to the rotor shaft.

Hub height (wind turbines)

Height of the centre of the swept area of the wind turbine rotor above the ground at the tower. NOTE: For a vertical axis wind turbine the hub height is the height of the equator plane.

Idling (wind turbines)

Condition of a wind turbine generator that is rotating slowly and not producing power.

Limit state

State of a structure and the loads acting upon it beyond which the structure no longer satisfies the design requirements (see ISO 2394).

Mean wind speed

Statistical mean of the instantaneous value of the wind speed averaged over a given time period which can vary from a few seconds to many years.

Measurement period

Period during which a statistically significant database has been collected for the power performance test.

Measurement sector

A sector of wind directions from which data are selected for the measured power curve.

Method of bins

Data reduction procedure that groups test data for a certain parameter into wind speed intervals (bins) NOTE: For each bin, the number of data sets or samples and their sum are recorded, and the average parameter value within each bin is calculated.

Nacelle

Housing which contains the drive-train and other elements on top of a horizontal axis wind turbine tower. **Net active electric power**

Measure of the wind turbine electric power output that is delivered to the electrical power network. **Network connection point (wind turbines)**

Cable terminals of a single wind turbine or, for a wind power station, the connection point to the electrical bus of the site power collection system.

Network loss

Loss of network for period exceeding any ride through provision in the turbine control system.

Normal shutdown (wind turbines)

Shutdown in which all stages are under the control of the control system.

Obstacles

Things that blocks the wind and creates distortion of the flow, such as buildings and trees.

Pitch angle

Angle between the chord line at a defined blade radial location (usually 100 % of the blade Radius) and the rotor plane of rotation.

Power coefficient

Ratio of the net electric power output of a wind turbine to the power available in the free stream wind over the rotor swept area.

Power output

Power delivered by a device in a specific form and for a specific purpose. NOTE: (wind turbines) the electric power delivered by a wind turbine.

Power performance

Measure of the capability of a wind turbine to produce electric power and energy.

Protection functions (wind turbine)

Functions of the control and protection system, which ensure that a wind turbine remains within the design limits.

Uncertainty in measurement

Parameter, associated with the result of a measurement, which characterizes the dispersion of the values that could reasonably be attributed to the measurand.

Unscheduled maintenance

Maintenance carried out, not in accordance with an established time schedule, but after reception of an indication regarding the state of an item.

Upwind

In the direction opposite to the main wind vector.

Vertical axis wind turbine

Wind turbine whose rotor axis is vertical.

Weibull distribution

Probability distribution function.

Wind shear

Variation of wind speed across a plane perpendicular to the wind direction.

Wind shear exponent

Also commonly known as power law exponent.

Wind speed

At a specified point in space it is the speed of motion of a minute amount of air surrounding the specified point. NOTE: It is also the magnitude of the local wind velocity (vector)

Wind turbine electrical system

All electrical equipment internal to the wind turbine, up to and including the wind turbine terminals, including equipment for earthing, bonding and communications. Conductors local to the wind turbine, which are intended to provide an earth termination network specifically for the wind turbine, are included.

Wind turbine generator system (wind turbine)

System which converts kinetic energy in the wind into electrical energy.

Wind turbine site

The location of an individual wind turbine either alone or within a wind farm.

Wind turbine terminals

Point or points identified by the wind turbine supplier at which the wind turbine may be connected to the power collection system. This includes connection for the purposes of transferring energy and communications.

Wind turbine terminals

Point or points identified by the wind turbine supplier at which the wind turbine may be connected to the power collection system. This includes connection for the purposes of transferring energy and communications.

Wind velocity

Vector pointing in the direction of motion of a minute amount of air surrounding the point of consideration, the magnitude of the vector being equal to the speed of motion of this air "parcel" (i.e. the local wind speed)

Rated power

Quantity of power assigned, generally by a manufacturer, for a specified operating condition of a component, device or equipment. NOTE: Maximum continuous electrical power output which a wind turbine is designed to achieve under normal operating conditions.

Rated wind speed

Minimum wind speed at hub height at which a wind turbine's rated power is achieved in the case of steady wind without turbulence.

Reference wind speed V_{ref}

Basic parameter for wind speed used for defining wind turbine classes. Other design related climatic parameters are derived from the reference wind speed and other basic wind turbine class parameters.

NOTE: A turbine designed for a wind turbine class with a reference wind speed V_{ref} , is designed to withstand climates for which the extreme 10 min average wind speed with a recurrence period of 50 years at turbine hub height is lower than or equal to V_{ref} .

Rotationally sampled wind velocity

Wind velocity experienced at a fixed point of the rotating wind turbine rotor

NOTE: The turbulence spectrum of a rotationally sampled wind velocity is distinctly different from the normal turbulence spectrum. While rotating, the blade cuts through a wind flow that varies in space. Therefore, the resulting turbulence spectrum will contain sizeable amounts of variance at the frequency of rotation and harmonics of the same.

Rotor speed (wind turbines)

Rotational speed of a wind turbine rotor about its axis.

Roughness length

 z_0 : Extrapolated height at which the mean wind speed becomes zero if the vertical wind profile is assumed to have a logarithmic variation with height.

Scheduled maintenance

	CAUCAIA OFFSHORE WINDFARM WIND ANALYSIS AND ENERGY YIELD ASSESSMENT	Code Revision Creation data Revision data	GE.CAU002 02/11/2018 19/11/2019 119 di 119
``	ASSESSMENT	Page	119 di 119

Preventive maintenance carried out in accordance with an established time schedule.

Site data

Environmental, seismic, soil and electrical network data for the wind turbine site. Wind data shall be the statistics of 10 min samples unless otherwise stated.

Standard uncertainty

Uncertainty of the result of a measurement expressed as a standard deviation.

Standstill

Condition of a wind turbine that is stopped.

Support structure (wind turbines)

Part of a wind turbine comprising the tower and foundation.

Survival wind speed

Popular name for the maximum wind speed that a construction is designed to withstand. NOTE: In this standard, the expression is not used. Design conditions instead refer to extreme wind speed.

Swept area

Projected area perpendicular to the wind direction that a rotor will describe during one complete rotation. **Test site**

Location of the wind turbine under test and its surroundings.

Turbulence intensity

Ratio of the wind speed standard deviation to the mean wind speed, determined from the same set of measured data samples of wind speed, and taken over a specified period of time.

Turbulence scale parameter

Wavelength where the non-dimensional, longitudinal power spectral density is equal to 0,05 **Turbulence standard deviation**

Standard deviation of the longitudinal component of the turbulent wind velocity at hub height. Ultimate limit state

Limit states which generally correspond to maximum load carrying capacity.

Yawing

Rotation of the rotor axis about a vertical axis (for horizontal axis wind turbines only)