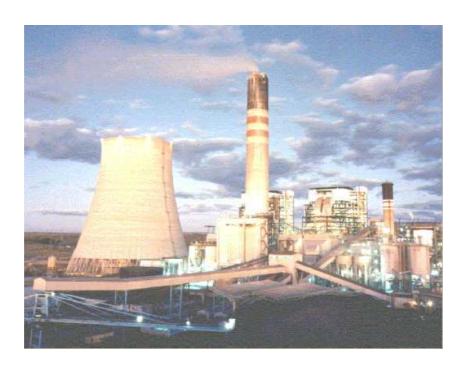
RELATÓRIO DE ENSAIO 236.577 / 2012

AMOSTRAGEM DE CHAMINÉS

ISATEC

EMPRESA: CIA. GERAÇÃO TÉRMICA DE ENERGIA ELÉTRICA - CGTEE


Candiota – RS

PROCESSO: Caldeira IV.

DATA: 29 de agosto de 2012.

AMOSTRAGEM E DETERMINAÇÃO DE MATERIAL PARTICULADO, NO $_{\rm X}$, SO $_{\rm 2}^-$, NÉVOAS DE SO $_{\rm 3}^-$ E H $_{\rm 2}$ SO $_{\rm 4}$

EMPRESA: CGTEE – COMPANHIA DE GERAÇÃO TÉRMICA DE ENERGIA ELÉTRICA

Usina Presidente Medici Candiota – RS

LOCAL: Caldeira IV.

DATA: 29 de agosto de 2012.

- 1/ 10 -

OS RESULTADOS DESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A ESTA AMOSTRA. ESTE DOCUMENTO SÓ PODERÁ SER REPRODUZIDO NA SUA ÍNTEGRA. REPRODUÇÃO POR PARTES REQUER APROVAÇÃO ESCRITA DO LABORATÓRIO.

ISATEC

Relatório de Ensaio N.º 236.577 / 2012

1. OBJETIVO

Realizar Amostragens no efluente gasoso proveniente da queima de carvão da Caldeira IV para determinar a Concentração e Taxa de Emissão de Material Particulado, NO_X, SO₂, névoas de SO₃ e H₂SO₄.

2. METODOLOGIA DE COLETA E ANÁLISE

As coletas de amostras e determinações foram executadas conforme normas da EPA (Environmental Protection Agency - USA), da CETESB (Companhia de Tecnologia e Saneamento Ambiental de São Paulo) e da ABNT (Associação Brasileira de Normas Técnicas).

Os métodos observados foram os seguintes:

- Determinação de pontos de Amostragem em DCFE (Duto ou Chaminé de Fonte Estacionária) CETESB L9.221 Jul/90 # EPA Method 1 Fev/2000 # NBR 10701 Jul/89
- Determinação da velocidade e da vazão dos gases em DCFE CETESB – L9.222 – Mai/92 # EPA – Method 2 – Fev/2000 # NBR 11966 – Jul/89
- Determinação da massa molecular seca do fluxo de gases em DCFE CETESB – L9.223 – Jun/92 # EPA – Method 3 – Ago/03# NBR 10702 – Jul/89
- Determinação da umidade dos efluentes em DCFE CETESB – L9.224 – Ago/30 # EPA – Method 4 – Fev/2000 # NBR 11967 – Jul/89
- Determinação de material particulado em DCFE
 CETESB L9.217 Nov/89 # EPA Method 17 Fev/2000 # NBR 12827 Set/93
- ▶ Determinação de SO₂ e névoas de SO₃ e H₂SO₄ em DCFE CETESB – L9.228 – Jun / 92 # EPA – Method 8– Fev/2000 # NBR 12021 – Dez / 90
- Determinação de NO_x em DCFE CETESB – L9.229 – Out/92 # EPA – Method 7– Fev/2000

3. EQUIPAMENTOS DE AMOSTRAGEM:

- Coletor isocinético de Poluentes Atmosféricos CIPA Energética
- Analisador de Combustão e Monitor Ambiental de Emissões Tempest 50

- 2 / 10 -

OS RESULTADOS DESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A ESTA AMOSTRA. ESTE DOCUMENTO SÓ PODERÁ SER REPRODUZIDO NA SUA ÍNTEGRA. REPRODUÇÃO POR PARTES REQUER APROVAÇÃO ESCRITA DO LABORATÓRIO.

4. DADOS DA CHAMINÉ/DUTO:

Formato da chaminé/duto: Circular

Diâmetro da Chaminé: 4,77 m

➤ Distância após o ponto de amostragem até o acidente mais próximo > 2 Diâmetros

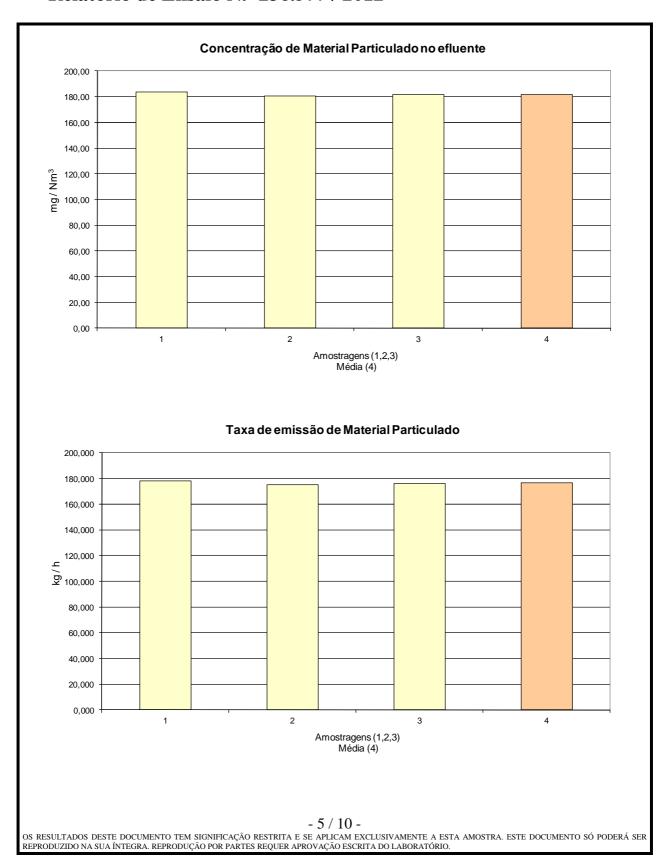
Distância antes do ponto de amostragem até o acidente mais próximo > 8 Diâmetros

Número de pontos da seção transversal:
06 pontos

5. CONDIÇÕES OPERACIONAIS E DE COLETA

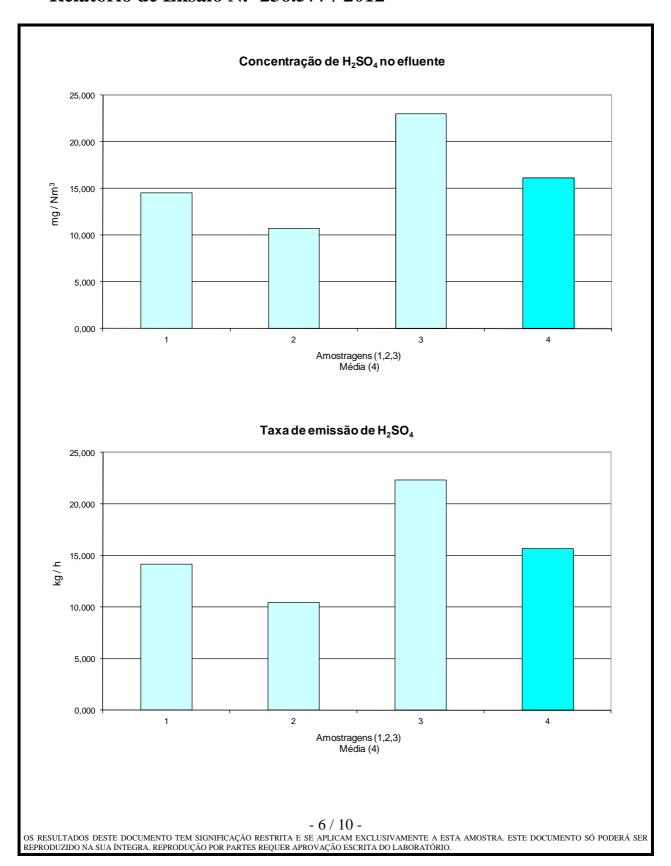
- Durante o período das medições, a Unidade funcionou, segundo informações da Empresa, nas condições usuais de trabalho.
- As coletas e medições foram realizadas utilizando-se um equipamento completo para amostragens de gases e particulados.
- As análises químicas foram realizadas nos laboratórios da ISATEC Rio Grande/RS.
- Os trabalhos de coleta e medição foram realizados pelos técnicos da ISATEC na presença de representantes da CGTEE.
- A preparação dos filtros e frascos lavadores, bem como a recuperação das amostras foram realizados nas dependências da CGTEE.
- Os resultados desta amostragem são válidos para o dia e condições operacionais praticados nesta ocasião.

6. RESULTADOS

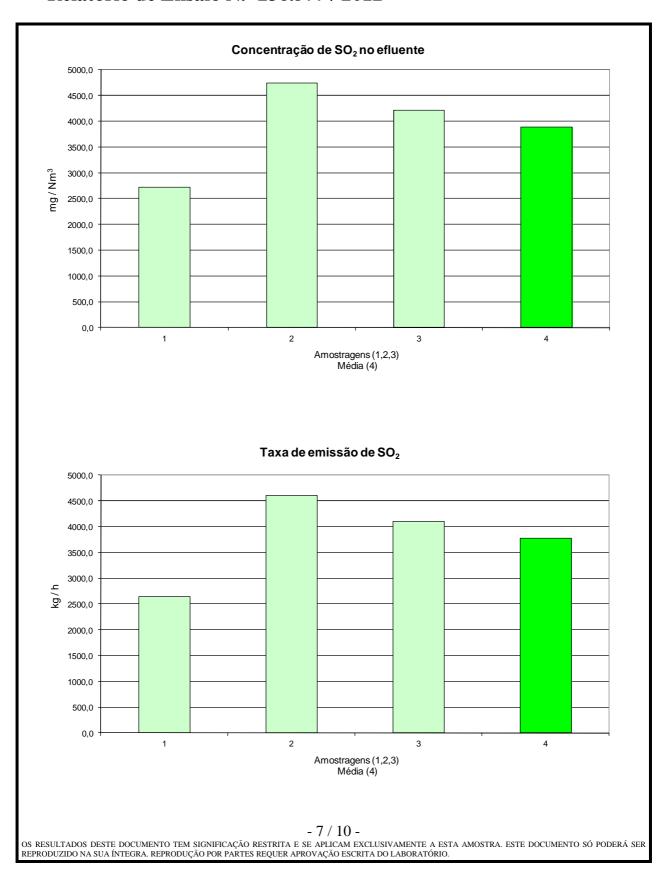

6.1. RESULTADOS DE MATERIAL PARTICULADO E SOX

			AMOSTRAS		
		1	2	3	Média
Dia da Amostragem	d:m:a	29/08/12	29/08/12	29/08/12	-
Hora início da amostragem	h:min	10:10	11:45	13:20	-
Hora de término da amostragem	h:min	11:15	12:55	14:25	-
Tempo de amostragem	min	60	60	60	-
Temperatura da chaminé	°C	159,8	159,0	160,4	159,8
Pressão na chaminé	"Hg	29,77	29,76	29,76	29,76
Pressão no medidor de gas	"Hg	30,00	30,00	30,00	30,00
Volume agua nas condições de chaminé	ft ³	4,89	4,75	4,54	4,73
Volume gases medido nas condições chaminé	ft ³	62,84	62,69	62,62	62,72
Proporção vol. vapor agua nos gases chaminé		0,072	0,070	0,068	0,070
Peso molecular base úmida		29,029	29,054	29,092	29,058
Velocidade na chaminé	ft / min	5101,24	5083,77	5088,51	5091,17
Velocidade na chaminé	m/s	25,91	25,83	25,85	25,86
Área da Boquilha	ft ²	0,00021	0,00021	0,00021	0,00021
Isocinetismo	%	104,71	104,62	104,08	104,47
Área da Chaminé	m ²	17,8701	17,8701	17,8701	17,8701
Vazão do efluente nas condições da chaminé	m³/h	1667131,69	1661420,83	1662970,26	1663840,93
Vazão do efluente nas condições normais, base seca	Nm³/h	970774,97	970951,02	971787,24	971171,08
Volume amostrado nas condições normais, base sec	Nm ³	1,1171	1,1164	1,1116	1,1150
Concentração de Material Particulado no efluente	mg/Nm³	183,60	180,49	181,37	181,82
Taxa de emissão de Material Particulado	kg / h	178,238	175,250	176,250	176,579
Concentração de H ₂ SO ₄ no efluente	mg/Nm³	14,58	10,76	23,00	8,447
Taxa de emissão de H₂SO₄	kg / h	14,157	10,445	22,355	8,201
Concentração de SO ₂ no efluente	mg / Nm³	2721,48	4741,39	4215,70	3892,86
Taxa de emissão de SO ₂	kg / h	2641,949	4603,662	4096,764	3780,792

- 4 / 10 -


OS RESULTADOS DESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A ESTA AMOSTRA. ESTE DOCUMENTO SÓ PODERÁ SER REPRODUZIDO NA SUA ÍNTEGRA. REPRODUÇÃO POR PARTES REQUER APROVAÇÃO ESCRITA DO LABORATÓRIO.

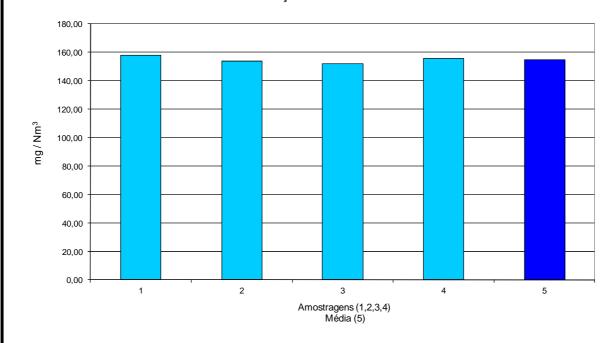
ISATEC



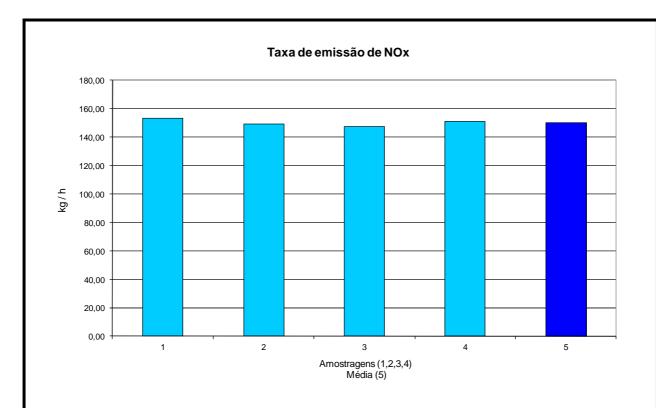
ISATEC

Av. Francisco Martins Bastos, 202 CEP 96202-710 – Rio Grande – RS Tel: (53) 3035-9900 – Fax: (53) 3035-9901 e-mail: sayboltrg.adm@concremat.com.br

ISATEC


Av. Francisco Martins Bastos, 202 CEP 96202-710 – Rio Grande – RS Tel: (53) 3035-9900 – Fax: (53) 3035-9901 e-mail: sayboltrg.adm@concremat.com.br

6.2. RESULTADOS DE NOX


				Amostras		
		1	2	3	4	Média
Vazão média do efluente	Nm3/h			971171,1		
Concentração de NOX no efluente	mg/Nm3	157,6717	153,6171	151,9823	155,6020	154,7183
Taxa de emissão de NOX	kg / h	153,1262	149,1885	147,6009	151,1161	150,2579

Concentração de NOx no efluente

-8/10 - os resultados deste documento tem significação restrita e se aplicam exclusivamente a esta amostra. Este documento só poderá ser reproduzido na sua íntegra. Reprodução por partes requer aprovação escrita do laboratório.

ANEXOS

Em anexo se encontram as seguintes folhas:

- Planilhas de Preparação e Retomada do Material de Coleta
- Folhas de Amostragem de Campo
- Planilhas de Cálculo das amostragens de chaminé

9/10

OS RESULTADOS DESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A ESTA AMOSTRA. ESTE DOCUMENTO SÓ PODERÁ SER REPRODUZIDO NA SUA ÍNTEGRA. REPRODUÇÃO POR PARTES REQUER APROVAÇÃO ESCRITA DO LABORATÓRIO.

Rio Grande, 14 de setembro de 2012.	
FILIPE B. TEIXEIRA Eng. Químico	ROBERTA S. SILVEIRA Eng. Química
CRQ: 05303202	CRQ: 05303093
- 10 / 10 - os resultados deste documento tem significação restrita e se aplicam exclusi reproduzido na sua íntegra. reprodução por partes requer aprovação escrita	VAMENTE A ESTA AMOSTRA. ESTE DOCUMENTO SÓ PODERÁ SER DO LABORATÓRIO

ANEXOS

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ISATEC ISA **ESTACIONÁRIAS**

PLANILHA 1 - PLANILHA DE AMOSTRAGEM DE CAMPO - AMOSTRAGEM 1

		IPRESA CGTEE			LOCAL Caldeira VI			ATA 0/08/12	NUMER 1
MD	Amo	ostragem de		Duto 4,77		Pressão Baron 29,89	métrica	Duração da am	nostragem) minutos
MP	SOx Amostrador		K		m		pol Hg	Início	
	Amostrador enan Morai		K 0,98	Boquilha 5	mm	FCM 1	Cp 0,847	Fim	10:10 11:15
PONTO	Tempo	Distância do ponto	ΔΡ	Pressão Estática	ΔН	Temperati Entrada	tura Medidor Saida	Temperatura Chaminé	Medidor Gases
	min	cm	mm H2O	mm H2O	mm H2O	°C	°C	°C	litros
1	5	21,0	36,00	-	35,28	18	17	160	207934,200
2	5	69,6	38,00	-44,00	37,24	20	18	160	-
3	5	141,2	40,00	-	39,20	21	18	160	-
4	5	335,8	40,00	-44,00	39,20	22	19	160	-
5	5	407,4	40,00	-	39,20	23	19	160	-
6	5	456,0	36,00	-42,00	35,28	23	20	159	208549,40
7		-		'				_	-
8	-	-	=	-	-	-	-	-	-
9	-	-	-	-	-	-	-	-	-
10	-	-	-		-	1	-	-	-
11		-	=	-	-	-	-	-	-
12	'	-	-		-	_	-	_	-
1	5	21,0	38,00	-	37,24	24	20	159	208549,40
2	5	69,6	40,00	-40,00	39,20	24	21	159	-
3	5	141,2	40,00		39,20	25	21	160	-
4	5	335,8	40,00	-44,00	39,20	25	21	160	-
5	5	407,4	40,00	-	39,20	25	22	160	
6	5	456,0	38,00	-40,00	37,24	26	22	161	209135,60
7	-	-	=	-	-	-	-	-	-
8	-	-	-	-	-	_	_	-	-
9	'	-	-	_	-	_	_	_	-
10	'	-	-	-	-	-	-	-	-
11	-	-	-	-	-	-	-	-	-
12	-	-	=	=	-	-	-	-	-
									209135,60
IÉDIA	60	-	38,833	-42,333	38,057	23,0	19,8	159,8	1201,400
lonitoramen								ficação dos equip	pamentos
emperatura d	`		-	-	-	-	Barômetro		EA 065
emperatura S			-	-	-	-	Cronômetro		EA 145
emperatura b	orbulhado	res(°C)	10	10	11	11	Sonda Rígida	<u>.</u>	EA 026
							Coluna U		EA 140
	_						Termopar Ch	naminé	EA 069
este de Vaza		1			11		Aparelho		EA 139
Início	<u>)</u>	OK	Fim	OK	1		Pitot		P 03
. 1 17		Di.					Boquilha		5
este de Vaza Início		OK OK	Fim	OK]				
			a amostragem						_
Tempe	eratura Amb	biente	19	°C	Temperatura no Gasometro entrada 18 °C				
				,	Temperatura no Gasometro saída 17 °C				

^{*} Diferença entre a temperatura ambiente e temperatura no gasômetro seco entrada: Máximo 6°C OS RESULTADOS CONTIDOS NESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A AMOSTRA IST/ENAM -E-0004 Rev 02-Plan01

ISATEC

EMPRESA CGTEE			LOC Caldei			ATA /08/12	NÚMERO 1
Verificação da Ba	alança					Responsável	Alan Telles
Identificação	da Balança	EA 016	Peso Padrão	500 g			
Identificação do	Peso Padrão	EA 067	Valor indicado na balança	499,9g <	500,01	<500,1 g	
Borbulhadores						Responsável	Alan Telles
Número dos Borbulhadores	Volume(mL)	Solução	o Absorvente	Tara (g)	Final (g)	Diferença (g)	
1	200	Álcool Is	opropílico 80%	697,34	707,38	10,04	1
2	200		2O2 5%	675,24	710,67	35,43	1
3	200		2O2 5%	704,00	719,05	15,05	
4	-		Sílica	725,55	734,90	9,35	
5	-		_	-	_	-	
6	-		-	-	-	-	
7	-		-	-	-	-	1
8	-		-	-	-	-	_
	TOTAI	<u> </u>		2802,13	2872,00	69,87	
Composição do G			<u> </u>	1		Responsável	Alan Telles
dentificação do ar	nalisador de gase	es	EA 018]			
Componentes		AMOSTR	AS		Peso	PM X %	1
	1°	2°	3°	MÉDIA	Molecular		
O_2	12,0	12,0	12,0	12,0	32	3,8	_
CO	0,0	0,0	0,0	0,0	28	0,0	_
CO ₂	8,8	8,8	8,8	8,8	44	3,9	4
N ₂	79,2	79,2	79,2	79,2	28	22,2	4
		PESO MOL	ECULAR SECO = 1	Pms =		29,89	_
Resultados dos E	nsaios de Labo	ratório				Responsável	LABAN
0,0353	g	de	MP	Certificado nº	236.57	7 / 236.588	1
		H2SO4	Certificado nº) / 236.586		
3040,11	mg	de	SO2	Certificado nº		3 / 236.587	
Resultados das Po	esagens de Mat	terial Particula	ndo			Responsável	Renan Morais
Elemento l	Filtrante	N°	Tara (g)	Final (g)	Diferença (g)		
Caps		14	39,2904	39,4602	0,1698		
Filtro		_	-	-	-		
	Ciclone						

OS RESULTADOS CONTIDOS NESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A AMOSTRA IST/ENAM -E-0004 Rev 02-Plan02

Total

ISATEC

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIAS PLANILHA 3 - PLANILHA DE CÁLCULO DE AMOSTRAGEM - AMOSTRAGEM 1

EMPRESALOCAL
Caldeira VIDATA
29/08/12NÚMERO
1

(g) MH ₂ O =	69,870	(R) Tc =	779,70	("Hg)Patm=	29,890	("H ₂ 0)Pest=	-1,667	(mm) Θb =	5,00
(R) Tm =	530,55	$("H20)\Delta H=$	1,498	$(ft^3) Vm =$	42,427	Cp =	0,847	(m) ΘC =	4,77
FCM =	1,00	Pms =	29,888	$("H_20)\Delta P^{1/2}=$	1,236	(min) @ =	60		
(mg)MP =	205,100	(mg)H2SO4 =	16,290	(mg)SO2 =	3040,110				

Pc =	Pressão na chaminé	29,767	"Hg	Pc = Patm + Pest / 13,6
Pm =	Pressão no medidor de gas	30,000		$Pm = Patm + \Delta H / 13,6$
Vacc =	Volume agua nas condições de chaminé	4,893	ft ³	$Vacc = (MH_20 * Tc) / (374 * Pc)$
Vmcc =	Volume gases medido nas condições chaminé	62,838	ft ³	Vmcc = (Vm * Tc * Pm * FCM) / (Tm * Pc)
Pvva =	Proporção vol. vapor'agua nos gases chaminé	0,072		Pvva = Vacc / (Vacc + Vmcc)
Pmu =	Peso molecular base úmida	29,029		Pmu = Pms * (1 - Pvva) + (18 * Pvva)
Vc =	Velocidade na chaminé	5101,243	ft / min	$Vc = 5128.8*Cp*[(Tc)/(Pc*Pmu)]^{1/2}*\Delta P^{1/2}$
Vc 1 =	Velocidade na chaminé	25,914	m/s	$Vc_1 = Vc * 0,00508$
Ab =	Área da Boquilha	0,000211	ft^2	$Ab = (\Theta b / 25,4)^2 / 183,35$
I =	Isocinetismo 90 < I < 110	104,71	%	I = [(Vmcc + Vacc) / (@ * Ab * Vc)] * 100
Ac =	Área da Chaminé	17,8701	m^2	$Ac = \Theta c^2 * 0.7854$
Vaecc =	Vazão do efluente nas condições da chaminé	1667131,689	m^3/h	Vaecc = Ac * Vc * 18,288
Vaecnbs =	Vazão do efluente nas condições normais, base seca	970774,974	Nm^3/h	Vaecnbs = [Vaecc * Pc * (1-Pvva)*16,44]/Tc
Vmcnbs =	Volume amostrado nas condições normais, base seca	1,117	Nm^3	Vmcnbs = (Vm * Pm * FCM) / (Tm * 2,1476)
C MP=	Concentração de Material Particulado no efluente	183,60	mg / Nm^3	C MP= MP / Vmcnbs
Te MP=	Taxa de Emissão de Material Particulado	178,238	Kg/h	Te MP=(C MP * Vaecnbs) / 1000000
C H2SO4=	Concentração de H2SO4 no efluente	14,58	mg / Nm^3	C H2SO4= H2SO4 / Vmcnbs
Te H2SO4=	Taxa de Emissão de H2SO4	14,157	kg/h	Te H2SO4=(C H2SO4 * Vaecnbs) / 1000000
C SO2=	Concentração de SO2 no efluente	2721,48	mg / Nm ³	C SO2= SO2 / Vmcnbs
Te SO2=	Taxa de Emissão de SO2	2641,949	kg/h	Te SO2=(C SO2 * Vaecnbs) / 1000000

OBSERVAÇÕES:

OS RESULTADOS CONTIDOS NESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A AMOSTRA

IST/ENAM -E-0004 Rev 02-Plan03

ISATEC

PLANILHA 4 - PLANILHA DE AMOSTRAGEM DE CAMPO AMOSTRAGEM 2

		PRESA GTEE			LOCAL Caldeira VI			DATA 29/08/12		
	Amo	stragem de		Duto		Pressão Baror	nétrica	Duração da an	ostragem	
MP	SOx			4,77	m	29,89	pol Hg	60	minutos	
A	mostrador	•	K	Boquilha		FCM	Ср	Início	11:45	
Re	nan Mora	is	0,98	5	mm	1	0,847	Fim	12:55	
PONTO	Tempo	Distância do ponto	ΔΡ	Pressão Estática	ΔΗ	Temperat Entrada	ura Medidor Saida	Temperatura Chaminé	Medidor Gases	
101110	min	do ponto cm	mm H2O	mm H2O	mm H2O	°C	°C	°C	litros	
1	5	21,0	36,00	-	35,28	20	19	158	209137,40	
2	5	69,6	38,00	-44,00	37,24	21	20	158	209137,40	
3	5	141,2	40,00	-44,00	39,20	22	20	158	_	
4	5	335,8	40,00	-46,00	39,20	23	21	158		
5	5			-40,00	39,20	23	21	159	-	
		407,4	40,00	46.00	· ·				200745 40	
6	5	456,0	36,00	-46,00	35,28	24	21	159	209745,40	
7	-	-	-	-	-	-	-	-	-	
8	-	-	-	-	-	-	-	-	-	
9	-	-	-	-	-	-	-	-	-	
10	-	-	-	-	-	-	-	-	-	
11	-	-	-	-	-	-	-	-	-	
12		-	-	-	-	-	-	-	-	
1	5	21,0	38,00	-	37,24	24	22	159	209745,40	
2	5	69,6	38,00	-44,00	37,24	25	22	159	-	
3	5	141,2	40,00	-	39,20	25	22	160	-	
4	5	335,8	40,00	-44,00	39,20	26	23	160	-	
5	5	407,4	40,00	-	39,20	26	23	160	-	
6	5	456,0	38,00	-42,00	37,24	27	23	160	210343,00	
7	-	-	-	-	-	-	-	-	-	
8	-	-	-	-	-	-	-	-	-	
9	-	-	-	-	-	-	-	-	-	
10	-	-	-	-	-	-	-	-	-	
11	-	-	-	-	-	-	-	-	-	
12	-	-	-	-	-	-	-	-	-	
									210343,00	
ÉDIA	60	-	38,667	-44,333	37,893	23,8	21,4	159,0	1205,600	
onitoramen	itos						Identif	icação dos equi _l	pamentos	
emperatura d	o Forno (º	C)	-	-	-	-	Barômetro		EA 065	
emperatura S	onda Rígi	da (°C)	-	-	-	-	Cronômetro		EA 145	
emperatura b	orbulhado	res(°C)	10	11	11	11	Sonda Rígida	ı	EA 026	
							Coluna U		EA 140	
							Termopar Cl	naminé	EA 069	
este de Vaza	mento do	trem			=		Aparelho		EA 139	
Início)	OK	Fim	OK	_		Pitot		P 03	
							Boquilha		5	
este de Vaza	mento do	Pitot			=					
Início		OK	Fim	OK	_					
		. 4	amostrogom	*						
erificação da	a tempera ratura Aml		a amosti agem	°C	Temperatura r	no Gasometro ei	ntrada	_	°C	

^{*} Diferença entre a temperatura ambiente e temperatura no gasômetro seco entrada: Máximo 6°C os resultados contidos neste documento tem significação restrita e se aplicam exclusivamente a amostra IST/ENAM -E-0004 Rev 02-Plan04

	EMPRES!		T 0.0	7 4 T	T .	TD A	INITIE CENT
-	EMPRESA		LOC			TA	NÚMER
	CGTEE		Caldei	ra VI	29/0	08/12	2
erificação da Ba	alança				_	Responsável	Alan Telles
Identificação	da Balança	EA 016	Peso Padrão	500 g			_
Identificação do	Peso Padrão	-	Valor indicado na balança	499,9g <	-	<500,1 g	
orbulhadores						Responsável	Alan Telles
Número dos Borbulhadores	Volume(mL)	Solução	Absorvente	Tara (g)	Final (g)	Diferença (g)	
1	200	Álcool Iso	propílico 80%	711,43	722,00	10,57	
2	200		2O2 5%	694,36	724,61	30,25	
3	200	H2	2O2 5%	699,01	717,63	18,62	
4	-		Sílica	734,64	743,21	8,57	
5	-		-	-	-	-	
6	-		-	-	-	-	
7	-		-		-	-	
8	-		-	-	-	-	_
omposição do G	TOTAL	-		2839,44	2907,45	68,01 Responsável	Alan Telles
lentificação do ar		es	EA 018]		•	
		AMOSTR.	AS		Peso	PM X %	1
Componentes	1°	2°	3°	MÉDIA	Molecular	11111170	
O_2	11,9	11,8	11,8	11,8	32	3,8	
CO	0,0	0,0	0,0	0,0	28	0,0	
CO ₂	8,8	8,9	8,9	8,9	44	3,9	1
N_2	79,3	79,3	79,3	79,3	28	22,2	
	•	PESO MOLI	ECULAR SECO =	Pms =		29,89	
esultados dos E	nsaios de Labo	ratório				Responsável	LABAN
0,0312	g	de	MP	Certificado nº	236.578	/ 236.588	1
12,01	mg	de	H2SO4	Certificado nº		/ 236.586	
5293,24	mg	de	SO2	Certificado nº		/ 236.587	
esultados das Po	esagens de Mat	erial Particula	do			Responsável	Renan Morais
Elemento l	Filtrante	N°	Tara (g)	Final (g)	Diferença (g)	1	
Capsi		77	60,7846	60,9549	0,1703	1	
Filtr		-	-	_	-]	
Ciclo		-	_	-	-		
Cicione							

OS RESULTADOS CONTIDOS NESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A AMOSTRA IST/ENAM -E-0004 Rev 02-Plan05

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIAS PLANILHA 6 - PLANILHA DE CÁLCULO DE AMOSTRAGEM - AMOSTRAGEM 2

EMPRESA					LOCAL		DAT	$\Gamma \mathbf{A}$	NÚ	MERO
	CG	ΓEE		Caldeira VI			29/08/12			2
(g) $MH_2O =$	68,010	(R) Tc =	778,20	("Hg)Patm=	29,890	("H20)Pest=	-1,745	$(mm) \Theta b =$	5,00	
(R) Tm =	532,73	$("H20)\Delta H=$	1,492	$(ft^3) Vm =$	42,575	Cp =	0,847	(m) ΘC =	4,77	
FCM =	1,00	Pms =	29,892	$("H_20)\Delta P^{1/2}=$	1,234	(min) @ =	60			
(mg)MP =	201,500	(mg)H2SO4 =	12,010	(mg)SO2 =	5293,240					

Pc =	Pressão na chaminé	29,762	"Hg	Pc = Patm + Pest / 13,6
Pm =	Pressão no medidor de gas	30,000	"Hg	$Pm = Patm + \Delta H / 13,6$
Vacc =	Volume agua nas condições de chaminé	4,755	ft ³	$Vacc = (MH_20 * Tc) / (374 * Pc)$
Vmcc =	Volume gases medido nas condições chaminé	62,691	ft ³	Vmcc = (Vm * Tc * Pm * FCM) / (Tm * Pc)
Pvva =	Proporção vol. vapor agua nos gases chaminé	0,070		Pvva = Vacc / (Vacc + Vmcc)
Pmu =	Peso molecular base úmida	29,054		Pmu = Pms * (1 - Pvva) + (18 * Pvva)
Vc =	Velocidade na chaminé	5083,769	ft / min	$Vc = 5128,8*Cp*[(Tc)/(Pc*Pmu)]^{1/2}*\Delta P^{1/2}$
Vc 1 =	Velocidade na chaminé	25,826	m/s	$Vc_1 = Vc * 0,00508$
Ab =	Área da Boquilha	0,000211	ft^2	$Ab = (\Theta b / 25,4)^2 / 183,35$
I =	Isocinetismo 90 < I < 110	104,62	%	I = [(Vmcc + Vacc) / (@ * Ab * Vc)] * 100
Ac =	Área da Chaminé	17,8701	m^2	$Ac = \Theta c^2 * 0.7854$
Vaecc =	Vazão do efluente nas condições da chaminé	1661420,828	m^3/h	Vaecc = Ac * Vc * 18,288
Vaecnbs =	Vazão do efluente nas condições normais, base seca	970951,020	Nm^3/h	Vaecnbs = [Vaecc * Pc * (1-Pvva)*16,44]/Tc
Vmcnbs =	Volume amostrado nas condições normais, base seca	1,116	Nm^3	Vmcnbs = (Vm * Pm * FCM) / (Tm * 2,1476)
C MP=	Concentração de Material Particulado no efluente	180,49	mg / Nm ³	C MP= MP / Vmcnbs
Te MP=	Taxa de Emissão de Material Particulado	175,250	Kg/h	Te MP=(C MP * Vaecnbs) / 1000000
C H2SO4=	Concentração de H2SO4 no efluente	10,76	mg / Nm ³	C H2SO4= H2SO4 / Vmcnbs
Te H2SO4=	Taxa de Emissão de H2SO4	10,445	kg/h	Te H2SO4=(C H2SO4 * Vaecnbs) / 1000000
C SO2=	Concentração de SO2 no efluente	4741,39	mg / Nm ³	C SO2= SO2 / Vmcnbs
Te SO2=	Taxa de Emissão de SO2	4603,662	kg/h	Te SO2=(C SO2 * Vaecnbs) / 1000000

OBSERVAÇÕES:

OS RESULTADOS CONTIDOS NESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A AMOSTRA

IST/ENAM -E-0004 Rev 02-Plan06

ISATEC

PLANILHA 7 - PLANILHA DE AMOSTRAGEM DE CAMPO AMOSTRAGEM 3

EMPRESA CGTEE					LOCAL Caldeira VI			ATA /08/12	NUMERO 3	
	Amo	stragem de		Duto		Pressão Baron	nétrica	Duração da am	ostragem	
MP	SOx			4,77	77 m 2		pol Hg	60 minutos		
A	mostrador		K	Boquilha		FCM	Ср	Início	13:20 14:25	
Re	nan Mora	is	0,98	5	mm	1	0,847	Fim		
DONTO	Tempo	Distância	ΔΡ	Pressão	ΔΗ	-	ura Medidor	Temperatura	Medidor	
PONTO		do ponto	TIO	Estática	Hao	Entrada	Saida	Chaminé	Gases	
	min	cm	mm H2O	mm H2O	mm H2O	℃	°C	℃	litros	
1	5	21,0	36,00	-	35,28	23	20	160	210345,600	
2	5	69,6	38,00	-42,00	37,24	24	21	160	-	
3	5	141,2	40,00	-	39,20	25	22	160	-	
4	5	335,8	40,00	-44,00	39,20	26	22	160	-	
5	5	407,4	40,00	-	39,20	27	23	160	-	
6	5	456,0	38,00	-44,00	37,24	27	23	161	210953,20	
7	-	-	-	-	-	-	-	-	-	
8	-	-	-	-	-	-	-	-	-	
9	-	-	-	-	-	-	_	-	-	
10	-	-	-	-	-	-	-	-	-	
11	-	-	-	-	-	-	-	-	-	
12	-	-	-	-	-	_	-	-	-	
1	5	21,0	38,00	-	37,24	28	24	161	210953,20	
2	5	69,6	38,00	-44,00	37,24	28	24	161	-	
3	5	141,2	40,00	_	39,20	29	25	161	_	
4	5	335,8	40,00	-44,00	39,20	29	25	161	_	
5	5	407,4	40,00	-	39,20	30	26	161	_	
6	5	456,0	36,00	-42,00	35,28	30	26	159	211556,80	
7	_	-	-	_	-	_		_	_	
8	_	_	_	_	-	_	_	_	_	
9	_	_	_	_	_	_	_	_	_	
10	_	_	_	_	_	_	_	_	_	
11	_	_			_	<u> </u>	_		_	
12	_	_			_	<u> </u>	_	_	_	
12	_	-		-	-	-	_	-	211556,80	
IÉDIA	60	-	38,667	-43,333	37,893	27,2	23,4	160,4	1211,200	
Ionitoramer		<u> </u>	30,007	-43,333	31,023	21,2		icação dos equi		
emperatura d		<u>(,)</u>		_	_	_	Barômetro	reação dos equi-	EA 065	
emperatura S			_	_	_	_	Cronômetro		EA 145	
emperatura b			11	11	11	12	Sonda Rígida		EA 026	
omporatura 0	or ouring0	-55(5)		11	11	12	Coluna U	•	EA 140	
							Termopar Cl	naminá	EA 140 EA 069	
este de Vaza	mento do	trem					Aparelho	шинс	EA 139	
Início		OK	Fim	OK	٦		Pitot		P 03	
mici	,	ΟK	1 1111	OK			Boquilha		5	
osto de Vers	monto do	Ditat					Doquilla		J	
este de Vaza			Eim	OV	7					
Início		OK	Fim	OK *						
	a tembera	nura antes da	amostragem	•						
	ratura Am	biente	-	°C	Temperatura r	no Gasometro ei	ntrada	_	°C	

^{*} Diferença entre a temperatura ambiente e temperatura no gasômetro seco entrada: Máximo 6°C os resultados contidos neste documento tem significação restrita e se aplicam exclusivamente a amostra IST/ENAM -E-0004 Rev 02-Plan07

ISATEC

	EMPRESA CGTEE		LOC Caldeir			ATA /08/12	NÚMERO 3
Verificação da B	alança					Responsável	Alan Telles
Identificação	da Balança	EA 016	Peso Padrão	500 g			
Identificação do	o Peso Padrão	-	Valor indicado na balança	499,9g <	-	<500,1 g	
Borbulhadores						Responsável	Alan Telles
Número dos Borbulhadores	Volume(mL)	Soluçã	o Absorvente	Tara (g)	Final (g)	Diferença (g)	
1	200	Álcool Is	opropílico 80%	712,54	723,11	10,57	1
2	200		202 5%	702,65	734,65	32,00	
3	200	Н	2O2 5%	679,22	693,20	13,98	
4	-		Sílica	745,91	754,10	8,19	
5	-		-	-	-	-	
6	-		-	-	-	-	
7	-		-	-	-	-	
8	-		-	-	-	-	
Composição do C	TOTAI Gases			2840,32	2905,06	64,74 Responsável	Alan Telles
dentificação do a	nalisador de gase	es	EA 018]			
		AMOSTR	RAS		Peso	PM X %	1
Componentes	1°	2°	3°	MÉDIA	Molecular		
O_2	11,8	11,8	11,8	11,8	32	3,8	1
CO	0,0	0,0	0,0	0,0	28	0,0	
CO_2	8,9	8,9	8,9	8,9	44	3,9	
N_2	79,3	79,3	79,3	79,3	28	22,2	
		PESO MOL	ECULAR SECO = 1	Pms =		29,90	<u></u>
Resultados dos E	nsaios de Labo	ratório				Responsável	LABAN
		de	MP	Certificado nº	236.579	7 / 236.588]
0,0403	g						I
0,0403 25,57	g mg	de	H2SO4	Certificado nº	230.362	2 / 236.586	
	9		H2SO4 SO2	Certificado nº Certificado nº		5 / 236.587	
25,57 4686,00	mg mg	de de	SO2				Renan Morais
25,57 4686,00	mg mg esagens de Mat	de de	SO2	Certificado nº		5 / 236.587	Renan Morais
25,57 4686,00 Resultados das P	mg mg esagens de Mat	de de erial Particula	SO2		236.585	5 / 236.587	Renan Morais

Elemento Filtrante	Nº	Tara (g)	Final (g)	Diferença (g)
Capsula	12	79,0568	79,2181	0,1613
Filtro	-	-	-	-
Ciclone	-	-	-	-
	0,1613			

OS RESULTADOS CONTIDOS NESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A AMOSTRA IST/ENAM -E-0004 Rev 02-Plan08

ISATEC

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIAS PLANILHA 9 - PLANILHA DE CÁLCULO DE AMOSTRAGEM - AMOSTRAGEM 3

EMPRESALOCAL
Caldeira VIDATA
29/08/12NÚMERO
3

(g) MH ₂ O =	64,740	(R) Tc =	780,75	("Hg)Patm=	29,890	("H ₂ 0)Pest=	-1,706	(mm) Θb =	5,00
(R) Tm =	537,53	$("H_20)\Delta H =$	1,492	$(ft^3) Vm =$	42,773	Cp =	0,847	(m) ΘC =	4,77
FCM =	1,00	Pms =	29,896	$("H_20)\Delta P^{1/2}=$	1,234	(min) @ =	60		
(mg)MP =	201,600	(mg)H2SO4 =	25,570	(mg)SO2 =	4686,000				

Pc =	Pressão na chaminé	29,765	"Hg	Pc = Patm + Pest / 13,6
Pm =	Pressão no medidor de gas	30,000		$Pm = Patm + \Delta H / 13,6$
Vacc =	Volume agua nas condições de chaminé	4,541	ft ³	$Vacc = (MH_20 * Tc) / (374 * Pc)$
Vmcc =	Volume gases medido nas condições chaminé	62,618	ft ³	Vmcc = (Vm * Tc * Pm * FCM) / (Tm * Pc)
Pvva =	Proporção vol. vapor'agua nos gases chaminé	0,068		Pvva = Vacc / (Vacc + Vmcc)
Pmu =	Peso molecular base úmida	29,092		Pmu = Pms * (1 - Pvva) + (18 * Pvva)
Vc =	Velocidade na chaminé	5088,510	ft / min	$Vc = 5128.8*Cp*[(Tc)/(Pc*Pmu)]^{1/2}*\Delta P^{1/2}$
Vc 1 =	Velocidade na chaminé	25,850	m/s	$Vc_1 = Vc * 0,00508$
Ab =	Área da Boquilha	0,000211	ft^2	$Ab = (\Theta b / 25,4)^2 / 183,35$
I =	Isocinetismo 90 < I < 110	104,08	%	I = [(Vmcc + Vacc) / (@ * Ab * Vc)] * 100
Ac =	Área da Chaminé	17,8701	m^2	$Ac = \Theta c^2 * 0.7854$
Vaecc =	Vazão do efluente nas condições da chaminé	1662970,260	m^3/h	Vaecc = Ac * Vc * 18,288
Vaecnbs =	Vazão do efluente nas condições normais, base seca	971787,240	Nm^3/h	Vaecnbs = [Vaecc * Pc * (1-Pvva)*16,44]/Tc
Vmcnbs =	Volume amostrado nas condições normais, base seca	1,112	Nm^3	Vmcnbs = (Vm * Pm * FCM) / (Tm * 2,1476)
C MP=	Concentração de Material Particulado no efluente	181,37	mg / Nm ³	C MP= MP / Vmcnbs
Te MP=	Taxa de Emissão de Material Particulado	176,250	Kg/h	Te MP=(C MP * Vaecnbs) / 1000000
C H2SO4=	Concentração de H2SO4 no efluente	23,00	mg / Nm ³	C H2SO4= H2SO4 / Vmcnbs
Te H2SO4=	Taxa de Emissão de H2SO4	22,355	kg/h	Te H2SO4=(C H2SO4 * Vaecnbs) / 1000000
C SO2=	Concentração de SO2 no efluente	4215,70	mg / Nm ³	C SO2= SO2 / Vmcnbs
Te SO2=	Taxa de Emissão de SO2	4096,764	kg/h	Te SO2=(C SO2 * Vaecnbs) / 1000000

OBSERVAÇÕES:

OS RESULTADOS CONTIDOS NESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A AMOSTRA

IST/ENAM -E-0004 Rev 02-Plan09

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIAS PLANILHA 10 - PLANILHA DE CÁLCULO DE CONCENTRAÇÃO E TAXA DE EMISSÃO DE NOX

EMPRESA	LOCAL	DATA		
CGTEE	Caldeira VI	29/08/12	Responsável	Renan Morais

Identificação dos Equipamentos											
Vacuômetro	EA	133	Barômetro	EA	065	Termômetro	2046	20/03	Pipeta	M	006
Amostra 01 Identificação do Frasco M 008			Amostra 02			Amostra 03		0.1.0	Amostra 04		0.1.1
Identificação do Frasco					Identificação do Frasco M 010			Identificação do Frasco	M (
Volume do Frasco (Vf)	2241,9 25		Volume do Frasco (Vf)			Volume do Frasco (Vf)	2256,9 25	mL	Volume do Frasco (Vf)		mL mL
Volume Absorvente (Va) 25 mL Condições Iniciais		lmL				Volume Absorvente (Va) Condições Inicia	_	mL	Volume Absorvente (Va) Condições Inicia	25	mL
Data 29/8/2012		2012	Condições Iniciais Data 29/8/2012 D		Data		/2012	Data Condições micra		/2012	
Hora	13:		Hora			Hora		:40	Hora		:45
Pressão Atmosférica inicial	759,2	mmHg	Pressão Atmosférica inicial	759,2	mmHg	Pressão Atmosférica inicial	759,2	mmHg	Pressão Atmosférica inicial	759,2	mmHg
Pressão inicial do Frasco	400	mmHg	Pressão inicial do Frasco	400	mmHg	Pressão inicial do Frasco	400	mmHg	Pressão inicial do Frasco	400	mmHg
Pressão absoluta inicial do Frasco (Pi)	359,2	mmHg	Pressão absoluta inicial do Frasco (Pi)	359,2	mmHg	Pressão absoluta inicial do Frasco (Pi)	359,2	mmHg	Pressão absoluta inicial do Frasco (Pi)	359,2	mmHg
Temperatura inicial do Frasco	19	°C	Temperatura inicial do Frasco	19	°C	Temperatura inicial do Frasco	19	°C	Temperatura inicial do Frasco	19	°C
Temperatura absoluta inicial do Frasco (Ti)	292	K	Temperatura absoluta inicial do Frasco (Ti)	292	K	Temperatura absoluta inicial do Frasco (Ti)	292	K	Temperatura absoluta inicial do Frasco (Ti)	292	K
Condições Fina	is		Condições Finais		Condições Finais		Condições Finais				
Data	,		Data 30/8/2012		Data 30/8/2012		Data 30/8/2		/2012		
Hora 13:40			Hora 13:45		Hora 13:50		Hora 13:55		:55		
Pressão Atmosférica Final	760,4	mmHg	Pressão Atmosférica Final	760,4	mmHg	Pressão Atmosférica Final	760,4	mmHg	Pressão Atmosférica Final	760,4	mmHg
Pressão final do Frasco	10	mmHg	Pressão final do Frasco	10	mmHg	Pressão final do Frasco	15	mmHg	Pressão final do Frasco	15	mmHg
Pressão absoluta final do Frasco (Pf)	750,4	mmHg	Pressão absoluta final do Frasco (Pf)	750,4	mmHg	Pressão absoluta final do Frasco (Pf)	745,4	mmHg	Pressão absoluta final do Frasco (Pf)	745,4	mmHg
Temperatura final do Frasco	21	°C	Temperatura final do Frasco	21	°C	Temperatura final do Frasco	21	°C	Temperatura final do Frasco	21	°C
Temperatura absoluta final do Frasco (Tf)	294	K	Temperatura absoluta final do Frasco (Tf)	294	K	Temperatura absoluta final do Frasco (Tf)	294	K	Temperatura absoluta final do Frasco (Tf)	294	K
Resultados de Ana	álise		Resultados de Análise			Resultados de An	álise		Resultados de Análise		
Massa Total de NOx (m _{NOx})	166,02	μg	Massa Total de NOx (m _{NOx})	161,24	μg	Massa Total de NOx (m _{NOx})	159,04	μg	Massa Total de NOx (m _{NOx})	161,23	μg
Cert Ensaio Nº	236	.589	Cert Ensaio N° 236.590		Cert Ensaio N° 236.591		Cert Ensaio Nº	236	.592		
Cálculo do Volume an	nostrado		Cálculo do Volume amostrado			Cálculo do Volume amostrado			Cálculo do Volume amostrado		
Volume da amostra nas condições normais, base seca (Van)	1052,95	mL	Volume da amostra nas condições normais, base seca (Van)	1049,62	mL	Volume da amostra nas condições normais, base seca (Van)	1046,44	mL	Volume da amostra nas condições normais, base seca (Van)	1036,17	mL
Cálculo da Concentraçã	o de NOX		Cálculo da Concentraçã	o de NOX		(/	(' ' ' '		Cálculo da Concentração de NOX		
Concentração de NOx nas	o de IVOA	Ì	Concentração de NOx nas	o de IVOA		Cálculo da Concentração de NOX Concentração de NOx nas			Calculo da Concentração de NOX Concentração de NOx nas		
3	157,672	m = /NIm-3	condições normais, base seca	153,617	m ~ /NIm-3	condições normais, base seca	151,982	m ~/NIm-3	condições normais, base seca	155,602	3
(C_{NOx})	157,072	mg/Nm	(C_{NOx})	153,017	mg/Nm	(C_{NOx})	151,982	mg/Nm	(C_{NOx})	155,002	mg/Nm
Cálculo da Taxa de Emis	são de NO	ΟX	Cálculo da Taxa de Emis	são de NC	Σ	Cálculo da Taxa de Emis	são de NC)x	Cálculo da Taxa de Emis	são de NO	ΟX
Vazão (Vaecnbs)	971171	Nm ³ /h	Vazão (Vaecnbs)	971171	Nm ³ /h	Vazão (Vaecnbs)	971171	Nm ³ /h	Vazão (Vaecnbs)	971171	Nm ³ /h
Taxa de Emissão de NOx (Te _{NOx})	153,126		Taxa de Emissão de NOx (Te _{NOx})	149,188	Kg/h	Taxa de Emissão de NOx (Te _{NOx})	147,601	Kg/h	Taxa de Emissão de NOx (Te _{NOx})	151,116	Kg/h

Van = ((273*(Vf-Va))/760)*((Pf/Tf)-(Pi/Ti))

 $C_{NOx} = (m_{NOx}/Van)*1000$

Te_{NOx} = C_{NOx} * Vaecnbs * 10⁻⁶

CONSELHO REGIONAL DE QUÍMICA - 5ª REGIÃO RIO GRANDE DO SUL

Av. Itaqui, 45 Fone/Fax:(51) 3330-5659
CEP 90.460-140 - Porto Alegre - Rio Grande do Sul
e-mail: crqv@crqv.org.br
www.crqv.org.br

CERTIFICADO DE ANOTAÇÃO DE FUNÇÃO TÉCNICA - AFT -

N° 78399

O Conselho Regional de Química da 5ª Região registra a responsabilidade técnica abaixo descrita de acordo com a Lei Federal nº 2.800 de 18/06/1956 e as Resoluções Normativas nº 12 de 20/10/1959 e nº 133 de 26/06/1992 do Conselho Federal de Química.

Nome do Profissional:

FILIPE BRANCO TEIXEIRA

Formação Profissional:

ENGENHEIRO QUÍMICO

Nº de Registro CRQ:

05303202

Nº do CPF:

014.179.460-75

Pessoa Jurídica Contratante: ISATEC - PESQUISA, DESENVOLVIMENTO E ANÁLISES QUÍMICAS LTDA.

Nº de Registro CRQ:

2717

Endereço:

AVENIDA FRANCISCO MARTINS BASTOS, 202 RIO GRANDE - RS

Nº do CNPJ:

893.149.75/ 0001- 06

Pessoa Jurídica Contratada: xxxxxx

Nº de Registro CRQ:

XXXXXX

Endereço:

XXXXXX

Nº do CNPJ:

XXXXXX

Atividades Autorizadas:

Prestação de serviços de análises químicas e ambientais.

EM BRANCO

Taxa de AFT no valor de R\$ 152,1, recolhida conforme recibo nº 225297.

Validade: 13/02/2012 à 11/02/2013

Emissão: 14/02/2012

Visto: Lecaur

Maristela Mendes Dalmás

Chefe do Departamento de Registro