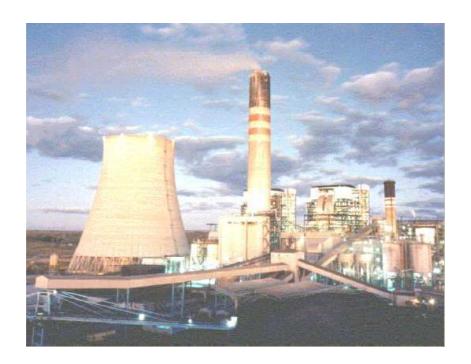
RELATÓRIO DE ENSAIO 232.648 / 2012

AMOSTRAGEM DE CHAMINÉS

ISATEC

EMPRESA: CIA. GERAÇÃO TÉRMICA DE ENERGIA ELÉTRICA – CGTEE


Candiota - RS

PROCESSO: Caldeira IV.

DATA: 29 de março de 2012.

AMOSTRAGEM E DETERMINAÇÃO DE MATERIAL PARTICULADO, NO $_{\rm X}$, SO $_{\rm 2}^-$, NÉVOAS DE SO $_{\rm 3}^-$ E H $_{\rm 2}$ SO $_{\rm 4}$

EMPRESA: CGTEE – COMPANHIA DE GERAÇÃO TÉRMICA DE ENERGIA ELÉTRICA

Usina Presidente Medici Candiota – RS

LOCAL: Caldeira IV.

DATA: 29 de março de 2012.

- 1/10 -

OS RESULTADOS DESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A ESTA AMOSTRA. ESTE DOCUMENTO SÓ PODERÁ SER REPRODUZIDO NA SUA ÍNTEGRA. REPRODUÇÃO POR PARTES REQUER APROVAÇÃO ESCRITA DO LABORATÓRIO.

1. OBJETIVO

Realizar Amostragens no efluente gasoso proveniente da queima de carvão da Caldeira IV para determinar a Concentração e Taxa de Emissão de Material Particulado, NO_X, SO₂, névoas de SO₃ e H₂SO₄.

2. METODOLOGIA DE COLETA E ANÁLISE

As coletas de amostras e determinações foram executadas conforme normas da EPA (Environmental Protection Agency - USA), da CETESB (Companhia de Tecnologia e Saneamento Ambiental de São Paulo) e da ABNT (Associação Brasileira de Normas Técnicas).

Os métodos observados foram os seguintes:

- Determinação de pontos de Amostragem em DCFE (Duto ou Chaminé de Fonte Estacionária) CETESB L9.221 Jul/90 # EPA Method 1 Fev/2000 # NBR 10701 Jul/89
- Determinação da velocidade e da vazão dos gases em DCFE CETESB – L9.222 – Mai/92 # EPA – Method 2 – Fev/2000 # NBR 11966 – Jul/89
- Determinação da massa molecular seca do fluxo de gases em DCFE
 CETESB L9.223 Jun/92 # EPA Method 3 Ago/03# NBR 10702 Jul/89
- Determinação da umidade dos efluentes em DCFE CETESB – L9.224 – Ago/30 # EPA – Method 4 – Fev/2000 # NBR 11967 – Jul/89
- Determinação de material particulado em DCFE CETESB – L9.217 – Nov/89 # EPA – Method 17 – Fev/2000 # NBR 12827 – Set/93
- ▶ Determinação de SO₂ e névoas de SO₃ e H₂SO₄ em DCFE CETESB – L9.228 – Jun / 92 # EPA – Method 8– Fev/2000 # NBR 12021 – Dez / 90
- Determinação de NO_x em DCFE CETESB – L9.229 – Out/92 # EPA – Method 7– Fev/2000

3. EQUIPAMENTOS DE AMOSTRAGEM:

- Coletor isocinético de Poluentes Atmosféricos CIPA Energética
- Analisador de Combustão e Monitor Ambiental de Emissões Tempest 50

- 2 / 10 -

OS RESULTADOS DESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A ESTA AMOSTRA. ESTE DOCUMENTO SÓ PODERÁ SER REPRODUZIDO NA SUA ÍNTEGRA. REPRODUÇÃO POR PARTES REQUER APROVAÇÃO ESCRITA DO LABORATÓRIO.

4. DADOS DA CHAMINÉ/DUTO:

Formato da chaminé/duto: Circular

Diâmetro da Chaminé: 4,77 m

➤ Distância após o ponto de amostragem até o acidente mais próximo > 2 Diâmetros

Distância antes do ponto de amostragem até o acidente mais próximo > 8 Diâmetros

Número de pontos da seção transversal:
06 pontos

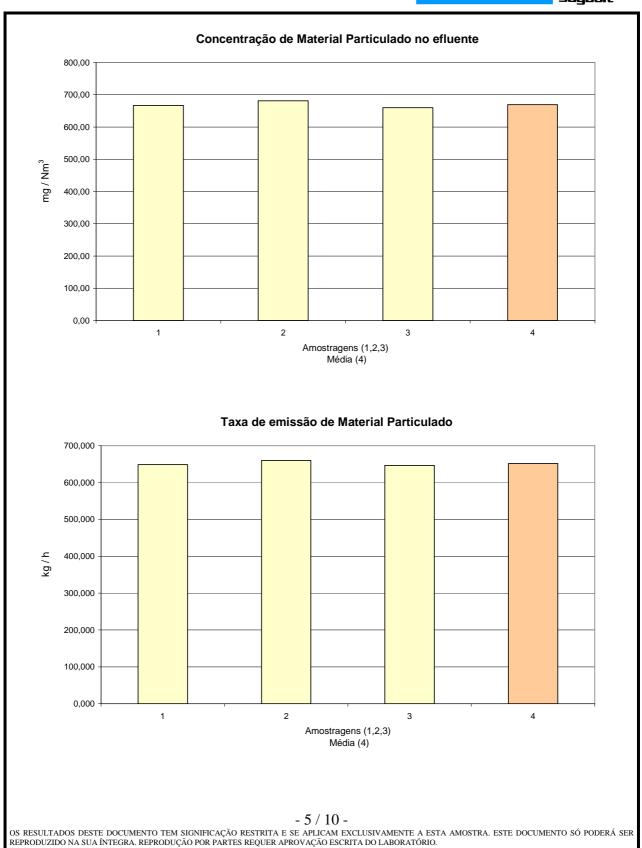
5. CONDIÇÕES OPERACIONAIS E DE COLETA

- Durante o período das medições, a Unidade funcionou, segundo informações da Empresa, nas condições usuais de trabalho.
- As coletas e medições foram realizadas utilizando-se um equipamento completo para amostragens de gases e particulados.
- As análises químicas foram realizadas nos laboratórios da ISATEC Rio Grande/RS.
- Os trabalhos de coleta e medição foram realizados pelos técnicos da ISATEC na presença de representantes da CGTEE.
- A preparação dos filtros e frascos lavadores, bem como a recuperação das amostras foram realizados nas dependências da CGTEE.
- Os resultados desta amostragem são válidos para o dia e condições operacionais praticados nesta ocasião.

- 3 / 10 -

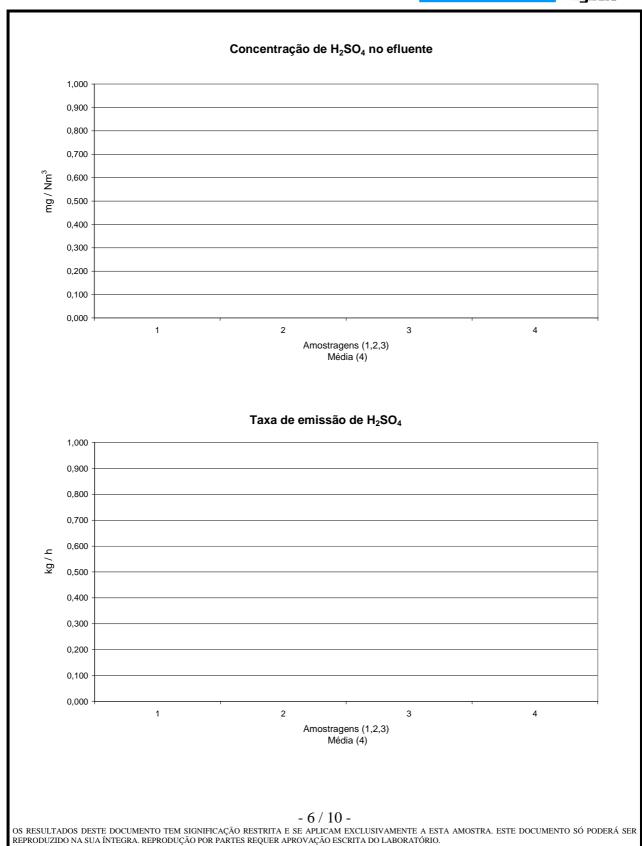
OS RESULTADOS DESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A ESTA AMOSTRA. ESTE DOCUMENTO SÓ PODERÁ SER REPRODUZIDO NA SUA ÍNTEGRA. REPRODUÇÃO POR PARTES REQUER APROVAÇÃO ESCRITA DO LABORATÓRIO..

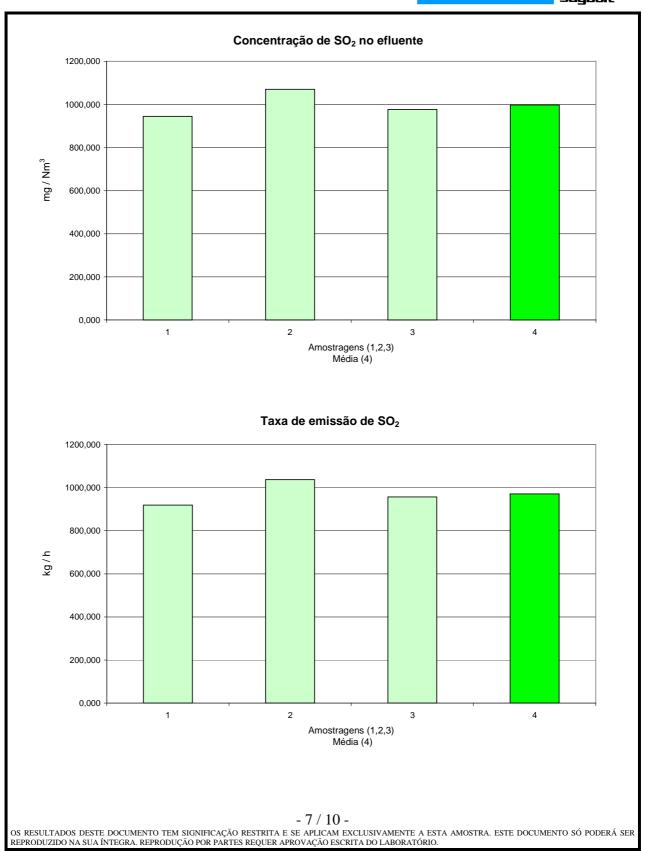
6. RESULTADOS


6.1. RESULTADOS DE MATERIAL PARTICULADO E SOX

			AMOSTRAS		
		1	2	3	Média
Dia da Amostragem	d:m:a	29/03/12	29/03/12	29/03/12	-
Hora início da amostragem	h:min	10:00	13;00	14:55	-
Hora de término da amostragem	h:min	11:08	14;06	16:00	-
Tempo de amostragem	min	60	60	60	
Temperatura da chaminé	°C	165,4	165,7	164,4	165,2
Pressão na chaminé	"Hg	28,98	28,97	28,98	28,97
Pressão no medidor de gas	"Hg	29,21	29,21	29,22	29,21
Volume agua nas condições de chaminé	ft ³	4,56	4,55	4,49	4,53
Volume gases medido nas condições chaminé	ft ³	62,25	62,08	62,50	62,28
Proporção vol. vapor agua nos gases chaminé		0,068	0,068	0,067	0,068
Peso molecular base úmida		29,132	29,121	29,136	29,130
Velocidade na chaminé	ft / min	5297,85	5277,82	5314,67	5296,78
Velocidade na chaminé	m/s	26,91	26,81	27,00	26,91
Área da Boquilha	ft ²	0,00021	0,00021	0,00021	0,00021
Isocinetismo	%	99,46	99,56	99,40	99,47
Área da Chaminé	m ²	17,8701	17,8701	17,8701	17,8701
Vazão do efluente nas condições da chaminé	m ³ /h	1731382,91	1724837,40	1736882,71	1731034,34
Vazão do efluente nas condições normais, base seca	Nm ³ /h	972999,71	968722,88	979645,94	973789,51
Volume amostrado nas condições normais, base seca	Nm³	1,0635	1,0599	1,0701	1,0645
Concentração de Material Particulado no efluente	mg / Nm ³	666,46	681,09	660,01	669,19
Taxa de emissão de Material Particulado	kg / h	648,462	659,792	646,578	651,611
Concentração de H₂SO₄ no efluente	mg / Nm ³	0,00	0,00	0,00	0,000
Taxa de emissão de H ₂ SO ₄	kg / h	0,000	0,000	0,000	0,000
Concentração de SO ₂ no efluente	mg / Nm ³	944,83	1070,25	976,93	997,34
Taxa de emissão de SO ₂	kg / h	919,324	1036,771	957,046	971,047

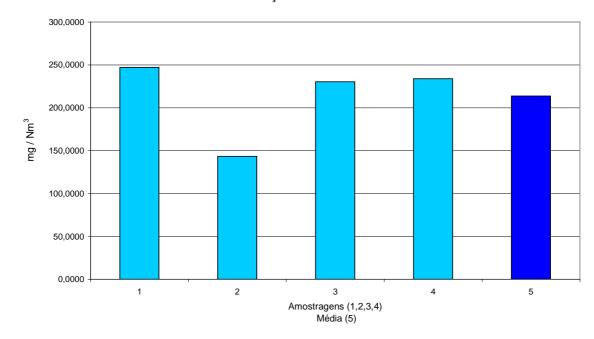
- 4 / 10 -


OS RESULTADOS DESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A ESTA AMOSTRA. ESTE DOCUMENTO SÓ PODERÁ SER REPRODUZIDO NA SUA ÍNTEGRA. REPRODUÇÃO POR PARTES REQUER APROVAÇÃO ESCRITA DO LABORATÓRIO.


SAYBOLT / ISATEC

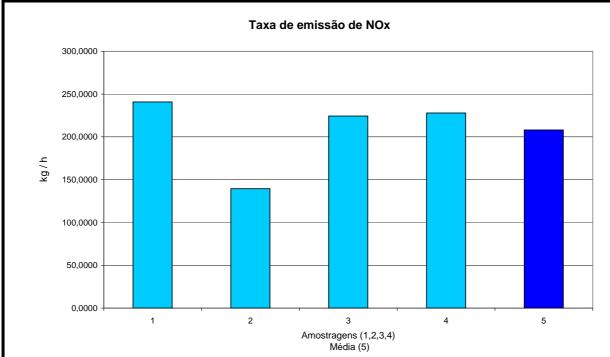
SAYBOLT / ISATEC

SAYBOLT / ISATEC


Av. Francisco Martins Bastos, 202 CEP 96202-710 – Rio Grande – RS Tel: (53) 3035-9900 e-mail: sayboltrg.adm@concremat.com.br

6.2. RESULTADOS DE NOX

	1			Amostras					
		1	2	3	4	Média			
Vazão média do efluente	Nm3 / h			973789,5					
Concentração de NOX no efluente	mg / Nm3	247,2929	143,3667	230,4204	234,0071	213,7718			
Taxa de emissão de NOX	kg / h	240,8113	139,6090	224,3810	227,8737	208,1687			


Concentração de NOx no efluente

-8/10-

OS RESULTADOS DESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A ESTA AMOSTRA. ESTE DOCUMENTO SÓ PODERÁ SER REPRODUZIDO NA SUA ÍNTEGRA. REPRODUÇÃO POR PARTES REQUER APROVAÇÃO ESCRITA DO LABORATÓRIO.

ANEXOS

Em anexo se encontram as seguintes folhas:

- Planilhas de Preparação e Retomada do Material de Coleta
- Folhas de Amostragem de Campo
- Planilhas de Cálculo das amostragens de chaminé

-9/10-

OS RESULTADOS DESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A ESTA AMOSTRA. ESTE DOCUMENTO SÓ PODERÁ SER REPRODUZIDO NA SUA ÍNTEGRA. REPRODUÇÃO POR PARTES REQUER APROVAÇÃO ESCRITA DO LABORATÓRIO.

Rio Grande, 09 de abril de 2012.

FILIPE B. TEIXEIRA Eng. Químico CRQ: 05303202

FABRÍCIO L. LOPES Eng. Químico CRQ: 05302015

PAULO EDUARDO CORREA

Eng. Químico CRQ: 04354688 Coordenador Saybolt/Isatec Rio Grande

-10 / 10 - os resultados deste documento tem significação restrita e se aplicam exclusivamente a esta amostra. Este documento só poderá ser reproduzido na sua íntegra. Reprodução por partes requer aprovação escrita do laboratório

ANEXOS	

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIAS PLANILHA 1 - PLANILHA DE AMOSTRAGEM DE CAMBO AMOSTRAGEM DE CAMBO AMOSTRAGEM

	EM	PRESA			LOCAL		II	ATA	NUMERO
	C	GTEE			Caldeira IV			/03/12	1
	Amo	stragem de		Duto		Pressão Baron	nétrica	Duração da am	ostragem
MP	SOx			4,77	m	29,09	pol Hg	60	minutos
A	Amostrador	•	K	Boquilha		FCM	Cp	Início	10:00
I	Luiz Zolair		1,1	5	mm	1	0,862	Fim	11:08
DONTO	Tempo	Distância	ΔΡ	Pressão	ΔΗ	_	ura Medidor	Temperatura	Medidor
PONTO	-	do ponto	1120	Estática	1120	Entrada °C	Saida °C	Chaminé °C	Gases
	min	cm	mm H2O	mm H2O	mm H2O	+	+		litros
1	5	21,0	36,00	-	39,60	17	16	165	174312,600
2	5	69,6	40,00	-40,00	44,00	18	17	165	-
3	5	141,2	40,00	-	44,00	19	18	165	-
4	5	335,8	40,00	-40,00	44,00	20	19	165	-
5	5	407,4	40,00	-	44,00	21	20	165	-
6	5	456,0	36,00	-40,00	39,60	22	20	165	174894,800
7	-	-	-	-	-	-	-	-	-
8	-	-	-	-	-	-	-	-	-
9	-	-	-	-	-	-	-	-	-
10	-	-	-	-	-	-	-	-	-
11	-	-	-	-	-	-	-	-	-
12	-	-	-	-	-	-	-	-	-
1	5	21,0	38,00	-	41,80	21	20	165	174894,800
2	5	69,6	40,00	-38,00	44,00	22	21	166	-
3	5	141,2	40,00	_	44,00	23	21	166	-
4	5	335,8	40,00	-40,00	44,00	24	22	166	-
5	5	407,4	40,00	_	44,00	24	23	166	-
6	5	456,0	38,00	-40,00	41,80	25	23	166	175484,200
7	_	-	_	_	-	_	_	_	_
8	_	_	_	_	_	_	_	_	_
9	_	_	_	_	_	_	_	_	_
10	_	-	_	_	_	_	_	_	_
11	_	_	_	_	_	_	_	_	_
12	_	_		_	_	_	<u> </u>	 	_
14				_	-			_	175484,200
MÉDIA	60	_	39,000	-39,667	42,900	21,3	20,0	165,4	1171,600
Monitorament		<u> </u>	57,000	-32,007	72,700	21,3		ficação dos equip	
Temperatura d		7)		_	_		Barômetro	icação dos equip	EA 065
Temperatura S	,	/	-	_	_	_	Cronômetro		EA 145
Temperatura b			9	10	11	12	Sonda Rígida		EA 143 EA 026
remperatura b	orbuillauor	Co(C)	J .	10	11	12			EA 026 EA 075
							Coluna U	*/	
Tooto de Ve	monte J.	tuom					Termopar Ch	amme	EA 069
Teste de Vaza			D:	OV	7		Aparelho		EA 071
Iníci	0	OK	Fim	OK			Pitot		P 09
m , , , , , ,		D*4 4					Boquilha		5
Teste de Vaza			D'	CTT	-				
Iníci	0	OK	Fim	OK					
Verificação da	a temperat	ura antes da a	mostragem *						
Tempe	ratura Aml	biente	18	°C	Temperatura n	o Gasometro en	trada	16	°C
								16	°C
* Diforman on					Temperatura no Gasometro saída 16 °C				

^{*} Diferença entre a temperatura ambiente e temperatura no gasômetro seco entrada: Máximo 6°C

OS RESULTADOS CONTIDOS NESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A AMOSTRA

ISTÆNAM -E-0004 Rev 02-Plan01

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIA I SA TEC PLANILHA 2 - PLANILHA DE PREPARAÇÃO E RETOMADA DE AMOSTRAS COMPOSIÇÃO DE GASES E RESULTADOS DE LABORATÓRIO -AMOSTRAGEM 1 **EMPRESA** NÚMERO LOCAL **DATA CGTEE** Caldeira IV 29/03/12 Verificação da Balança Responsável enan Moraes Identificação da Balança Peso Padrão 500 g EA 016 Valor indicado na Identificação do Peso Padrão 499,9g < 499,97 <500,1 g EA 067 balança **Borbulhadores** Responsável Renan Moraes Número dos Volume(mL) Solução Absorvente Tara (g) Final (g) Diferença (g) Borbulhadores 718,23 Álcool Isopropílico 80% 726,32 8,09 691,42 725,61 H2O2 5% 34,19 710,26 717,85 H2O2 5% 7,59 200 727,38 Sílica 740,12 12,74 5 6 8 2847,29 2909,90 62,61 **TOTAL** Composição do Gases Responsável enan Moraes EA 018 Identificação do analisador de gases PM X % AMOSTRAS Peso Componentes 2° MÉDIA Molecular O_2 10,3 10,2 10,4 10,3 32 3,3 0,0 0,0 0,0 CO 0,0 28 0,0 CO_2 9,6 9,7 9,5 9,6 44 4,2 N_2 80,1 80,1 28 80,1 22,4 29,95 PESO MOLECULAR SECO = Pms = LABAN Resultados dos Ensaios de Laboratório Responsável de MP Certificado nº 232.648 / 232.657 g 232.651 / 232.658 0,00 H2SO4 Certificado nº mg 1004,87 SO₂ 232.654 / 232.659 Certificado nº Luiz Zolair Responsável Resultados das Pesagens de Material Particulado Elemento Filtrante Final (g) Diferença (g) Tara (g) 29 43,4782 44,1035 0,6253 Capsula Filtro

Ciclone

Total 0,6

OS RESULTADOS CONTIDOS NESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A AMOSTRA

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIAS PLANILHA 3 - PLANILHA DE CÁLCULO DE AMOSTRAGEM - AMOSTRAGEM I

EMPRESA CGTEE			LOCAL Caldeira IV			DATA 29/03/12		NÚMERO 1		
		<u> </u>			Cuidella I v		2210	3/12		
(g) $MH_2O =$	62,610 (I	R) Tc =	789,75	("Hg)Patm=	29,090	("H20)Pest=	-1,562	$(mm) \Theta b =$	5,00	
(R) Tm =	529,20 ("	$^{"}H_{2}0)\Delta H=$	1,689	$(ft^3) Vm =$	41,374	Cp =	0,862	(m) ΘC =	4,77	
FCM =	1,00 P	rms =	29,948	$("H_20)\Delta P^{1/2}=$	1,239	(min) @ =	60			
(mg)MP =	708,800 (r	mg)H2SO4 =	0,000	(mg)SO2 =	1004,865					

Pc =	Pressão na chaminé	28,975	"Hg	Pc = Patm + Pest / 13,6
Pm =	Pressão no medidor de gas	29,214		$Pm = Patm + \Delta H / 13,6$
Vacc =	Volume agua nas condições de chaminé	4,563	ft ³	$Vacc = (MH_20 * Tc) / (374 * Pc)$
Vmcc =	Volume gases medido nas condições chaminé	62,254	ft ³	Vmcc = (Vm * Tc * Pm * FCM) / (Tm * Pc)
Pvva =	Proporção vol. vapor agua nos gases chaminé	0,068		Pvva = Vacc / (Vacc + Vmcc)
Pmu =	Peso molecular base úmida	29,132		Pmu = Pms * (1 - Pvva) + (18 * Pvva)
Vc =	Velocidade na chaminé	5297,845	ft / min	$Vc = 5128,8*Cp*[(Tc)/(Pc*Pmu)]^{1/2}*\Delta P^{1/2}$
Vc 1 =	Velocidade na chaminé	26,913	m/s	$Vc_1 = Vc * 0.00508$
Ab =	Área da Boquilha	0,000211	ft^2	$Ab = (\Theta b / 25,4)^2 / 183,35$
I =	Isocinetismo 90 < I < 110	99,46	%	I = [(Vmcc + Vacc) / (@ * Ab * Vc)] * 100
Ac =	Área da Chaminé	17,8701	m^2	$Ac = \Theta c^2 * 0.7854$
Vaecc =	Vazão do efluente nas condições da chaminé	##########	m^3/h	Vaecc = Ac * Vc * 18,288
Vaecnbs =	Vazão do efluente nas condições normais, base seca	972999,705	Nm^3/h	Vaecnbs = [Vaecc * Pc * (1-Pvva)*16,44]/Tc
Vmcnbs =	Volume amostrado nas condições normais, base seca	1,064	Nm^3	Vmcnbs = (Vm * Pm * FCM) / (Tm * 2,1476)
C MP=	Concentração de Material Particulado no efluente	666,46	mg / Nm ³	C MP= MP / Vmcnbs
Te MP=	Taxa de Emissão de Material Particulado	648,462		Te MP=(C MP * Vaecnbs) / 1000000
C H2SO4=	Concentração de H2SO4 no efluente	0,00	mg / Nm^3	C H2SO4= H2SO4 / Vmcnbs
Te H2SO4=	Taxa de Emissão de H2SO4	0,000	kg/h	Te H2SO4=(C H2SO4 * Vaecnbs) / 1000000
C SO2=	Concentração de SO2 no efluente	944,83	mg / Nm ³	C SO2= SO2 / Vmcnbs
Te SO2=	Taxa de Emissão de SO2	919,324	kg/h	Te SO2=(C SO2 * Vaecnbs) / 1000000

OBSERVAÇÕES:

OS RESULTADOS CONTIDOS NESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A AMOSTRA

IST/ENAM -E-0004 Rev 02-Plan03

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIAS PLANILHA 4 - PLANILHA DE AMOSTRAGEM DE CAMPO LA CEMPO LA C

		PRESA			LOCAL		ll .	ATA /03/12	NUMER
		GTEE		D. (Caldeira IV	D ~ D			
MD		stragem de		Duto		Pressão Baror 29,09		Duração da am	
MP	SOx Amostrador		K	4,77	m		pol Hg	Início	minutos
				Boquilha 5		FCM 1	Cp		13;00 14;06
	Luiz Zolair		1,1		mm	1	0,862	Fim	
	Tempo	Distância	ΔP	Pressão	ΔΗ	•	ura Medidor	Temperatura	Medidor
PONTO		do ponto		Estática		Entrada	Saida	Chaminé	Gases
	min	cm	mm H2O	mm H2O	mm H2O	°C	°C	°C	litros
1	5	21,0	38,00	-	41,80	20	19	166	175497,20
2	5	69,6	38,00	-38,00	41,80	21	20	166	-
3	5	141,2	40,00	-	44,00	22	21	166	-
4	5	335,8	40,00	-42,00	44,00	23	22	166	-
5	5	407,4	38,00	-	41,80	24	23	166	-
6	5	456,0	38,00	-40,00	41,80	25	23	166	172495,80
7	-	-	-	-	-	-	-	-	-
8	-	-	-	-	-	_	_	-	-
9	-	-	-	-	-	-	-	-	-
10	-	-	-	-	-	-	-	-	-
11	-	-	-	-	-	_	-	-	_
12	-	-	-	-	-	-	-	-	-
1	5	21,0	36,00	-	39,60	24	23	166	172495,80
2	5	69,6	40,00	-40,00	44,00	25	24	166	_
3	5	141,2	40,00	_	44,00	26	24	165	_
4	5	335,8	40,00	-40,00	44,00	27	25	165	_
5	5	407,4	40,00	_	44,00	27	25	165	_
6	5	456,0	36,00	-40,00	39,60	28	26	165	176676,60
7	_	-	-	-	-	_	_	_	_
8	_	-	_	_	_	_	_	_	_
9	_	-	_	_	_	_	_	_	_
10	_	-	_	_	_	_	_	_	_
11	_	_	_	_	_	_	_	_	_
12	_	_	_	_	_	_	_	_	_
									176676,60
ÉDIA	60	-	38,667	-40,000	42,533	24,3	22,9	165,7	1179,400
onitorament	tos			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	7	,-		ficação dos equip	
mperatura d		7)	_	_	_	_	Barômetro	1	EA 065
mperatura S		,	_	_	_	_	Cronômetro		EA 145
mperatura b			10	10	11	11	Sonda Rígida	ı	EA 026
T		(/					Coluna U		EA 075
							Termopar Ch	naminé	EA 069
este de Vaza	mento do i	trem					Aparelho	iaiiiiic	EA 071
Início		OK	Fim	OK	7		Pitot		P 09
mici		OIL	1 1111	OIL			Boquilha		5
este de Vaza	mento do l	Pitot					Doquiiia		
		OK	Fim	OK	П				
Inície				UK					
		ura antes da a	mostragem *		1				
Tempe	ratura Aml	oiente	-	°C	Temperatura no Gasometro entrada - °C				
					Temperatura no Gasometro saída - °C				

^{*} Diferença entre a temperatura ambiente e temperatura no gasômetro seco entrada: Máximo 6°C os resultados contidos neste documento tem significação restrita e se aplicam exclusivamente a amostra Ist/ENAM -E-0004 Rev 02-Plan04

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIA

	EMPRESA CGTEE		LOC Calde			ATA 03/12	NÚMEI 2
verificação da Ba	lança					Responsável	Renan Morae
Identificação	da Balança	EA 016	Peso Padrão	500 g			_
Identificação do	Peso Padrão	-	Valor indicado na balança	499,9g <	-	<500,1 g	
orbulhadores						Responsável	Renan Morae
Número dos Borbulhadores	Volume(mL)	Solução	Absorvente	Tara (g)	Final (g)	Diferença (g)	
1	200	Álcool Iso	propílico 80%	679,21	686,90	7,69	
2	200		O2 5%	714,78	749,91	35,13	_
3	200	H2	O2 5%	700,89	707,95	7,06	_
4	-	S	Sílica	718,36	730,89	12,53	4
5	-		-	-	-	-	
6	-		-	-	-	-	4
7	-		-	-	-	-	4
8	TOTAL		-	2813,24	2875,65	62,41	4
composição do G	ases					Responsável	Renan Morae
			EA 018]		Responsável	Renan Morae
Composição do an		AMOSTRA]	Peso	Responsável PM X %	Renan Morae
		AMOSTRA 2°		MÉDIA	Peso Molecular		Renan Morae
dentificação do an	alisador de gases	AMOSTRA	AS	MÉDIA 10,4	1		Renan Morae
Componentes O ₂ CO	1° 10,4 0,0	AMOSTRA 2° 10,5 0,0	AS 3° 10,3 0,0	10,4 0,0	Molecular 32 28	PM X % 3,3 0,0	Renan Morae
Componentes O ₂ CO CO ₂	1° 10,4 0,0 9,5	AMOSTRA 2° 10,5 0,0 9,4	3° 10,3 0,0 9,6	10,4 0,0 9,5	Molecular 32 28 44	PM X % 3,3 0,0 4,2	Renan Morae
Componentes O ₂ CO	1° 10,4 0,0	AMOSTRA 2° 10,5 0,0 9,4 80,1	3° 10,3 0,0 9,6 80,1	10,4 0,0 9,5 80,1	Molecular 32 28	PM X % 3,3 0,0 4,2 22,4	Renan Morae
Componentes O ₂ CO CO ₂	1° 10,4 0,0 9,5	AMOSTRA 2° 10,5 0,0 9,4 80,1	3° 10,3 0,0 9,6	10,4 0,0 9,5 80,1	Molecular 32 28 44	PM X % 3,3 0,0 4,2	Renan Morae
Componentes O ₂ CO CO ₂ N ₂	1° 10,4 0,0 9,5 80,1	AMOSTRA 2° 10,5 0,0 9,4 80,1 PESO MOLE	3° 10,3 0,0 9,6 80,1	10,4 0,0 9,5 80,1	Molecular 32 28 44	PM X % 3,3 0,0 4,2 22,4	Renan Morae
Componentes O ₂ CO CO ₂ N ₂	1° 10,4 0,0 9,5 80,1	AMOSTRA 2° 10,5 0,0 9,4 80,1 PESO MOLE	3° 10,3 0,0 9,6 80,1	10,4 0,0 9,5 80,1	Molecular 32 28 44 28	PM X % 3,3 0,0 4,2 22,4 29,94	
Componentes	1° 10,4 0,0 9,5 80,1	AMOSTRA 2° 10,5 0,0 9,4 80,1 PESO MOLE atório de de	3° 10,3 0,0 9,6 80,1 CULAR SECO =	10,4 0,0 9,5 80,1 Pms =	Molecular 32 28 44 28 232.649 232.652	PM X % 3,3 0,0 4,2 22,4 29,94 Responsável / 232.657 / 232.658	
Componentes O ₂ CO CO ₂ N ₂ Acesultados dos Err 0,0881	1° 10,4 0,0 9,5 80,1	AMOSTRA 2° 10,5 0,0 9,4 80,1 PESO MOLE	3° 10,3 0,0 9,6 80,1 CULAR SECO =	10,4 0,0 9,5 80,1 Pms =	Molecular 32 28 44 28 232.649 232.652	PM X % 3,3 0,0 4,2 22,4 29,94 Responsável / 232.657	
Componentes	1° 10,4 0,0 9,5 80,1 saios de Labora g mg mg	AMOSTRA 2° 10,5 0,0 9,4 80,1 PESO MOLE atório de de de de	3° 10,3 0,0 9,6 80,1 CULAR SECO =	10,4 0,0 9,5 80,1 Pms =	Molecular 32 28 44 28 232.649 232.652	PM X % 3,3 0,0 4,2 22,4 29,94 Responsável / 232.657 / 232.658	
Componentes	1° 10,4 0,0 9,5 80,1 asaios de Labora g mg mg sagens de Mate	AMOSTRA 2° 10,5 0,0 9,4 80,1 PESO MOLE atório de de de de	3° 10,3 0,0 9,6 80,1 CULAR SECO =	10,4 0,0 9,5 80,1 Pms =	Molecular 32 28 44 28 232.649 232.652	PM X % 3,3 0,0 4,2 22,4 29,94 Responsável / 232.657 / 232.658 / 232.659	LABAN
Componentes	alisador de gases 1° 10,4 0,0 9,5 80,1 asaios de Labora g mg mg sagens de Mater	AMOSTRA 2° 10,5 0,0 9,4 80,1 PESO MOLE atório de de de de	MS 3° 10,3 0,0 9,6 80,1 CULAR SECO = 1 MP H2SO4 SO2	10,4 0,0 9,5 80,1 Pms = Certificado nº Certificado nº Certificado nº	Molecular 32 28 44 28 232.649 232.652 232.655	PM X % 3,3 0,0 4,2 22,4 29,94 Responsável / 232.657 / 232.658 / 232.659	LABAN
Componentes	alisador de gases 1° 10,4 0,0 9,5 80,1 saios de Labora g mg mg sagens de Mater	AMOSTRA 2° 10,5 0,0 9,4 80,1 PESO MOLE atório de de de de rial Particulado	MS 3° 10,3 0,0 9,6 80,1 CULAR SECO = 1 MP H2SO4 SO2	10,4 0,0 9,5 80,1 Pms = Certificado n° Certificado n° Certificado n°	Molecular 32 28 44 28 232.649 232.655 Diferença (g)	PM X % 3,3 0,0 4,2 22,4 29,94 Responsável / 232.657 / 232.658 / 232.659	LABAN
Componentes	alisador de gases 1° 10,4 0,0 9,5 80,1 asaios de Labora g mg mg sagens de Mater Filtrante ula	AMOSTRA 2° 10,5 0,0 9,4 80,1 PESO MOLE atório de de de de rial Particulado N° 33	MS 3° 10,3 0,0 9,6 80,1 CULAR SECO = 1 MP H2SO4 SO2 Tara (g) 64,2634	10,4 0,0 9,5 80,1 Pms = Certificado n° Certificado n° Certificado n° Final (g) 64,8972	Molecular 32 28 44 28 232.649 232.655 Diferença (g) 0,6338	PM X % 3,3 0,0 4,2 22,4 29,94 Responsável / 232.657 / 232.658 / 232.659	LABAN

ISATEC

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIAS PLANILHA 6 - PLANILHA DE CÁLCULO DE AMOSTRAGEM - AMOSTRAGEM 2

EMPRESA		LOCAL	DATA	NÚMERO	
CGTEE		Caldeira IV	29/03/12	2	
(g) $MH_2O = 62,410$ (R) $Tc =$	790,20 ("Hg)Patm=	29,090 ("H ₂ 0)Pest=	-1,575 (mm) Θb =	5,00	

(g) $MH_2O =$	62,410	(R) Tc =	790,20	("Hg)Patm=	29,090	("H20)Pest=	-1,575	(mm) Θb =	5,00
(R) Tm =	534,53 ($("H20)\Delta H=$	1,675	$(ft^3) Vm =$	41,650	Cp =	0,862	(m) ΘC =	4,77
FCM =	1,00	Pms =	29,936	$("H_20)\Delta P^{1/2} =$	1,234	(min) @ =	60		
(mg)MP =	721,900	(mg)H2SO4 =	0,000	(mg)SO2 =	1134,365				

Pc =	Pressão na chaminé	28,974	"Hg	Pc = Patm + Pest / 13,6
				,
Pm =	Pressão no medidor de gas	29,213	"Hg ft ³	$Pm = Patm + \Delta H / 13,6$
Vacc =	Volume agua nas condições de chaminé	4,551	π	$Vacc = (MH_20 * Tc) / (374 * Pc)$
Vmcc =	Volume gases medido nas condições chaminé	62,080	ft ³	Vmcc = (Vm * Tc * Pm * FCM) / (Tm * Pc)
Pvva =	Proporção vol. vapor'agua nos gases chaminé	0,068		Pvva = Vacc / (Vacc + Vmcc)
Pmu =	Peso molecular base úmida	29,121		Pmu = Pms * (1 - Pvva) + (18 * Pvva)
Vc =	Velocidade na chaminé	5277,817	ft / min	$Vc = 5128.8*Cp*[(Tc)/(Pc*Pmu)]^{1/2}*\Delta P^{1/2}$
Vc 1 =	Velocidade na chaminé	26,811	m/s	$Vc_1 = Vc * 0.00508$
Ab =	Área da Boquilha	0,000211	ft^2	$Ab = (\Theta b / 25,4)^2 / 183,35$
I =	Isocinetismo 90 < I < 110	99,56	%	I = [(Vmcc + Vacc) / (@ * Ab * Vc)] * 100
Ac =	Área da Chaminé	17,8701	m^2	$Ac = \Theta c^2 * 0.7854$
Vaecc =	Vazão do efluente nas condições da chaminé	##########	m^3/h	Vaecc = Ac * Vc * 18,288
Vaecnbs =	Vazão do efluente nas condições normais, base seca	968722,884	Nm^3/h	Vaecnbs = [Vaecc * Pc * (1-Pvva)*16,44]/Tc
Vmcnbs =	Volume amostrado nas condições normais, base seca	1,060	Nm^3	Vmcnbs = (Vm * Pm * FCM) / (Tm * 2,1476)
C MP=	Concentração de Material Particulado no efluente	681,09	mg / Nm ³	C MP= MP / Vmcnbs
Te MP=	Taxa de Emissão de Material Particulado	659,792	Kg/h	Te MP=(C MP * Vaecnbs) / 1000000
C H2SO4=	Concentração de H2SO4 no efluente	0,00	mg / Nm ³	C H2SO4= H2SO4 / Vmcnbs
Te H2SO4=	Taxa de Emissão de H2SO4	0,000	kg/h	Te H2SO4=(C H2SO4 * Vaecnbs) / 1000000
C SO2=	Concentração de SO2 no efluente	1070,25	mg / Nm ³	C SO2= SO2 / Vmcnbs
Te SO2=	Taxa de Emissão de SO2	1036,771	kg/h	Te SO2=(C SO2 * Vaecnbs) / 1000000

OBSERVAÇÕES:

OS RESULTADOS CONTIDOS NESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A AMOSTRA

IST/ENAM -E-0004 Rev 02-Plan06

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIAS PLANILHA 7 - PLANILHA DE AMOSTRAGEM DE CAMPO AMOSTRAGEM DE

		PRESA			LOCAL			ATA	NUMER
		GTEE			Caldeira IV			/03/12	3
		stragem de		Duto		Pressão Baron		Duração da am	-
MP	SOx			4,77	m	29,09	pol Hg	+	minutos
A	Amostrador		K	Boquilha		FCM	Ср	Início	14:55
I	Luiz Zolair		1,1	5	mm	1	0,862	Fim	16:00
	Т.	Distância	4.5	Pressão		Temperat	ura Medidor	Temperatura	Medidor
PONTO	Tempo	do ponto	ΔP	Estática	ΔΗ	Entrada	Saida	Chaminé	Gases
	min	cm	mm H2O	mm H2O	mm H2O	°C	°C	°C	litros
1	5	21,0	38,00	_	41,80	21	20	165	176687,40
2	5	69,6	40,00	-40,00	44,00	22	21	165	-
3	5	141,2	40,00	-	44,00	23	22	165	_
4	5	335,8	40,00	-40,00	44,00	24	23	165	_
5	5	407,4	40,00	-	44,00	25	24	165	_
6	5	456,0	38,00	-40,00	41,80	26	25	165	177282,00
7	-	-	-	-40,00	-	-	-	-	-
8		_		_	_	_	_	_	
9	_	-		-	-	_	_		_
10	+	-	<u> </u>	-	-	 	-		-
	-			-	-	 	-	-	-
11	-	-		-		-	-	-	_
	-	-			-	-			
1	5	21,0	38,00	-	41,80	26	25	165	177282,00
2	5	69,6	40,00	-38,00	44,00	27	26	164	-
3	5	141,2	40,00	_	44,00	28	26	164	-
4	5	335,8	40,00	-40,00	44,00	28	26	164	-
5	5	407,4	40,00	-	44,00	29	27	163	-
6	5	456,0	38,00	-40,00	41,80	29	27	163	177883,60
7	-	-	-	-	-	-	-	-	-
8	-	-	-	-	-	-	-	-	-
9	-	-	-	-	-	-	-	-	-
10	-	-	-	-	-	-	_	-	-
11	_	-	-	_	-	_	-	-	-
12	-	-	-	-	-	-	-	-	-
									177883,60
ÉDIA	60	-	39,333	-39,667	43,267	25,7	24,3	164,4	1196,200
onitorament	tos						Identif	ficação dos equip	amentos
mperatura d	o Forno (°C	C)		-	-	-	Barômetro		EA 065
mperatura S	onda Rígic	la (°C)	_	-	-	-	Cronômetro		EA 145
mperatura b	orbulhador	es(°C)	9	10	11	13	Sonda Rígida		EA 026
		•					Coluna U		EA 075
							Termopar Ch	aminé	EA 069
este de Vaza	mento do	trem					Aparelho		EA 071
Início		OK	Fim	OK	7		Pitot		P 09
	-	1			ᆁ		Boquilha		5
este de Vaza	mento do	Pitot							-
Início		OK	Fim	OK	1				
				JK.	4				
		ura antes da a	mostragem *	°C	Temperature n	o Gasometro en	itrada	1	°C
rempe	ratura Aml	neme			II cimperatura II	o oasonicho en	uuuu	I -	

^{*} Diferença entre a temperatura ambiente e temperatura no gasômetro seco entrada: Máximo 6°C os resultados contidos neste documento tem significação restrita e se aplicam exclusivamente a amostra IST/ENAM -E-0004 Rev 02-Plan07

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIA / S A T E C PLANILHA 8 - PLANILHA DE PREPARAÇÃO E RETOMADA DE AMOSTRAS COMPOSIÇÃO DE GASES E RESULTADOS DE LABORATÓRIO -

PLANILHA 8 - PLANILHA DE PREPARAÇÃO E RETOMADA DE AMOSTRAS COMPOSIÇÃO DE GASES E RESULTADOS DE LABORATORIO -
AMOSTRAGEM 3

EMPRESA	LOCAL	DATA	NÚMERO
CGTEE	Caldeira IV	29/03/12	3

Verificação da Balança Responsável Renan Moraes

Identificação da Balança	EA 016	Peso Padrão	500 g		
Identificação do Peso Padrão	-	Valor indicado na balança	499,9g <	-	<500,1 g

Borbulhadores Responsável Renan Moraes

Número dos Borbulhadores	Volume(mL)	Solução Absorvente	Tara (g)	Final (g)	Diferença (g)
1	200	Álcool Isopropílico 80%	717,98	725,69	7,71
2	200	H2O2 5%	692,71	726,99	34,28
3	200	H2O2 5%	708,22	715,55	7,33
4	-	Sílica	726,89	739,32	12,43
5	_	ı	-	-	-
6	-	ı	-	-	-
7	-	1	-	-	-
8	-	-	-	-	-
	TOTAL		2845,80	2907,55	61,75

Composição do Gases Responsável Renan Moraes

LABAN

Luiz Zolair

Responsável

Responsável

Identificação do analisador de gases EA	A 018
---	-------

Commonantos		AMOSTRA	Peso	PM X %				
Componentes	1°	2°	3°	MÉDIA	Molecular			
O_2	10,4	-	-	10,4	32	3,3		
CO	0,0	-	-	0,0	28	0,0		
CO_2	9,5	-	-	9,5	44	4,2		
N_2	80,1	-	-	80,1	28	22,4		
PESO MOLECULAR SECO = Pms =								

Resultados dos Ensaios de Laboratório

0,0881	g	de	MP	Certificado nº	232.650 / 232.657
0,00	mg	de	H2SO4	Certificado nº	232.653 / 232.658
1045.45	ma	de	SO2	Certificado nº	222 656 / 222 650

Resultados das Pesagens de Material Particulado

Elemento Filtrante	N°	Tara (g)	Final (g)	Diferença (g)
Capsula	34	64,5329	65,1511	0,6182
Filtro	-	-	_	-
Ciclone	-	-	-	-
	0,6182			

OS RESULTADOS CONTIDOS NESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A AMOSTRA IST/FN AM JE 00004 Rev 02 Plan08

ISATEC

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIAS PLANILHA 9 - PLANILHA DE CÁLCULO DE AMOSTRAGEM - AMOSTRAGEM 3

EMPRESA					DA'	га І	NÚMERO			
ENII KESA	• CGT	ГЕЕ		1	LOCAL Caldeira IV			3/12	NC	3
							•			
(g) $MH_2O =$	61,750	(R) Tc =		("Hg)Patm=	29,090	("H20)Pest=		(mm) Θb =	5,00	
(R) Tm =	537,00	$("H_20)\Delta H =$	1,703	$(ft^3) Vm =$	42,243	Cp =	0,862	(m) ΘC =	4,77	
FCM =	1,00	Pms =	29,936	$("H_20)\Delta P^{1/2} =$	1,244	(min) @ =	60			
(mg)MP =	706,300	(mg)H2SO4 =	0,000	(mg)SO2 =	1045,445		<u>.</u>			
Pc =	Pressão na cl	haminé			28,975	"Hg	Pc = Patm -	+ Pest / 13,6		
Pm =	Pressão no n	nedidor de gas			29,215	"Hg	Pm = Patm	+ ΔH /13,6		
Vacc =	Volume agua	a nas condições o	de chaminé		4,490	ft ³	Vacc = (MI	$H_20 * Tc) / (3$	74 * Pc)	
Vmcc =	Volume gase	es medido nas co	ndições cha	ıminé	62,498	ft ³	Vmcc = (Vi	m * Tc * Pm	* FCM) /	(Tm * Pc)
Pvva =	Proporção vo	ol. vapor'agua no	s gases char	miné	0,067		Pvva = Vac	c / (Vacc + V	mcc)	
Pmu =	Peso molecu	ılar base úmida			29,136		Pmu = Pms	* (1 - Pvva) -	+ (18 * P	vva)
Vc =	Velocidade i	na chaminé			5314,674	ft / min	Vc = 5128,	8*Cp*[(Tc)/(l	Pc*Pmu)]	$^{1/2}*\Delta P^{1/2}$
Vc 1 =	Velocidade i	na chaminé			26,999	m/s	$Vc_1 = Vc *$	0,00508		
Ab =	Área da Boq				0,000211	ft ²	$Ab = (\Theta b /$	25,4) ² / 183,3	35	
I =	Isocinetismo	, ,	90 < I < 110)	99,40	%	I = [(Vmcc	+ Vacc) / (@	* Ab * V	c)] * 100
Ac =	Área da Cha	ıminé			17,8701	m ²	$Ac = \Theta c^2 *$	0.7854		

##########

979645,943

1,070

660,01

646,578

0,00

0,000

976,93

957,046

 m^3/h

 $\text{Nm}^3/\,\text{h}$

 Nm^3

mg / Nm³

Kg/h

mg / Nm³

kg/h

mg / Nm³

kg/h

Vaecc = Ac * Vc * 18,288

C H2SO4= H2SO4 / Vmcnbs

C MP= MP / Vmcnbs

C SO2= SO2 / Vmcnbs

Vaecnbs = [Vaecc * Pc * (1-Pvva)*16,44]/Tc

Vmcnbs = (Vm * Pm * FCM) / (Tm * 2,1476)

Te H2SO4=(C H2SO4 * Vaecnbs) / 1000000

Te MP=(C MP * Vaecnbs) / 1000000

Te SO2=(C SO2 * Vaecnbs) / 1000000

OBSERVAÇÕES:

Vaecc =

Vaecnbs =

Vmcnbs =

C MP=

Te MP=

C SO2=

Te SO2=

C <u>H2SO4</u>=

Te H2SO4=

OS RESULTADOS CONTIDOS NESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A AMOSTRA

Vazão do efluente nas condições da chaminé

Taxa de Emissão de Material Particulado

Concentração de H2SO4 no efluente

Concentração de SO2 no efluente

Taxa de Emissão de H2SO4

Taxa de Emissão de SO2

Vazão do efluente nas condições normais, base seca

Volume amostrado nas condições normais, base seca

Concentração de Material Particulado no efluente

IST/ENAM -E-0004 Rev 02-Plan09

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIAS PLANILHA 10 - PLANILHA DE CÁLCULO DE CONCENTRAÇÃO E TAXA DE EMISSÃO DE NOX

EMPRESA	LOCAL	DATA		
CGTEE	Caldeira IV	29/03/12	Responsável	Luiz Zolair

Identificação dos Equipamentos											
Vacuômetro	EA	133	Barômetro		065	Termômetro	2046	20/03	Pipeta	M	007
						•					
Amostra 01			Amostra 02			Amostra 03			Amostra 04		
Identificação do Frasco	EA		Identificação do Frasco			Identificação do Frasco		003	Identificação do Frasco	M	
Volume do Frasco (Vf)	2242,8		Volume do Frasco (Vf)	2213,9		Volume do Frasco (Vf)	- /	mL	Volume do Frasco (Vf)		mL
Volume Absorvente (Va)		mL	Volume Absorvente (Va)		mL	Volume Absorvente (Va)	. 25	mL	Volume Absorvente (Va)	. 25	mL
Condições Inicia Data	29/03	/2012	Condições Inicia Data		5/2012	Condições Inici-		3/2012	Condições Inicia Data		/2012
Hora	16:		Hora		:35	Hora		5:40	Hora		:45
Pressão Atmosférica inicial			Pressão Atmosférica inicial	738.9		Pressão Atmosférica inicial	738,9	mmHg	Pressão Atmosférica inicial	738,9	mmHg
Pressão inicial do Frasco			Pressão inicial do Frasco	400		Pressão inicial do Frasco	400	mmHg	Pressão inicial do Frasco	400	mmHg
Pressão absoluta inicial do Frasco (Pi)	338,9	mmHa	Pressão absoluta inicial do Frasco (Pi)		mmHg	Pressão absoluta inicial do Frasco (Pi)	338,9	mmHg	Pressão absoluta inicial do Frasco (Pi)	338,9	mmHg
Temperatura inicial do Frasco	18	°C	Temperatura inicial do Frasco	18	°C	Temperatura inicial do Frasco	18	°C	Temperatura inicial do Frasco	18	°C
Temperatura absoluta inicial do Frasco (Ti)	291	K	Temperatura absoluta inicial do Frasco (Ti)		K	Temperatura absoluta inicial do Frasco (Ti)	291	K	Temperatura absoluta inicial do Frasco (Ti)	291	K
Condições Fina:	is		Condições Fina	is		Condições Finais		Condições Fina	is		
Data	30/03	/2012	Data		/2012	Data		3/2012	Data		/2012
Hora	09:	:00	Hora	09:00		Hora	09:00		Hora		
Pressão Atmosférica Final	760	mmHg	Pressão Atmosférica Final	760	mmHg	Pressão Atmosférica Final	760	mmHg	Pressão Atmosférica Final	760	mmHg
Pressão final do Frasco	5	mmHg	Pressão final do Frasco	10	mmHg	Pressão final do Frasco	5	mmHg	Pressão final do Frasco	10	mmHg
Pressão absoluta final do Frasco (Pf)	755	mmHg	Pressão absoluta final do Frasco (Pf)	750	mmHg	Pressão absoluta final do Frasco (Pf)	755	mmHg	Pressão absoluta final do Frasco (Pf)	750	mmHg
Temperatura final do Frasco	22	°C	Temperatura final do Frasco	22	°C	Temperatura final do Frasco	22	°C	Temperatura final do Frasco	22	°C
Temperatura absoluta final do Frasco (Tf)	295	K	Temperatura absoluta final do Frasco (Tf)	295	K	Temperatura absoluta final do Frasco (Tf)	295	K	Temperatura absoluta final do Frasco (Tf)	295	K
Resultados de Aná	álise		Resultados de Análise		Resultados de Análise		Resultados de Análise				
Massa Total de NOx (m _{NOx})	274,77		Massa Total de NOx (m _{NOx})			Massa Total de NOx (m _{NOx})		μg	Massa Total de NOx (m _{NOx})	255,03	
	232.660	/ 232.664	Cert Ensaio Nº	232.661	/ 232.661		232.662	/ 232.664	Cert Ensaio N°	232.663	/ 232.664
Cálculo do Volume an	nostrado		Cálculo do Volume ar	nostrado		Cálculo do Volume amostrado		Cálculo do Volume amostrado			
Volume da amostra nas condições normais, base seca (Van)	1111,11	mL	Volume da amostra nas condições normais, base seca (Van)	1083,31	mL	Volume da amostra nas condições normais, base seca (Van)	1106,8	mL	Volume da amostra nas condições normais, base seca (Van)	1089,84	mL
Cálculo da Concentração	o de NOX		Cálculo da Concentraçã	o de NOX		Cálculo da Concentraçã	io de NOX	(Cálculo da Concentraçã	o de NOX	
Concentração de NOx nas			Concentração de NOx nas			Concentração de NOx nas			Concentração de NOx nas		
condições normais, base seca	247,293	mg/Nm ³	condições normais, base seca	143,367	mg/Nm ³	condições normais, base seca	230,420	mg/Nm ³	condições normais, base seca	234,007	mg/Nm ³
(C_{NOx})			(C _{NOx})		1	(C_{NOx})			(C_{NOx})		
Cálculo da Taxa de Emiss			Cálculo da Taxa de Emis			Cálculo da Taxa de Emis			Cálculo da Taxa de Emis		
Vazão (Vaecnbs)	973790	Nm ³ /h	Vazão (Vaecnbs)	973790	Nm ³ /h	Vazão (Vaecnbs)	973790	Nm ³ /h	Vazão (Vaecnbs)	973790	Nm ³ /h
Taxa de Emissão de NOx (Te _{NOx})	240,811	Kg/h	Taxa de Emissão de NOx (Te _{NOx})	139,609	Kg/h	Taxa de Emissão de NOx (Te _{NOx})	224,381	Kg/h	Taxa de Emissão de NOx (Te _{NOx})	227,874	Kg/h

Van = ((273*(Vf-Va))/760)*((Pf/Tf)-(Pi/Ti))

 $C_{NOx} = (m_{NOx}/Van)*1000$

Te_{NOx} = C_{NOx} * Vaecnbs * 10⁻⁶