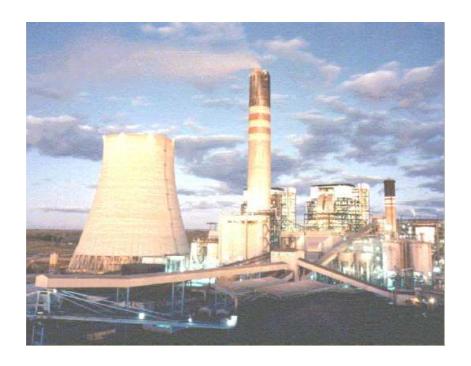
RELATÓRIO DE ENSAIO 230.729 / 2012

AMOSTRAGEM DE CHAMINÉS

ISATEC


EMPRESA: CIA. GERAÇÃO TÉRMICA DE ENERGIA ELÉTRICA – CGTEE

Candiota - RS

PROCESSO: Caldeira IV.

DATA: 11 de janeiro de 2012.

AMOSTRAGEM E DETERMINAÇÃO DE MATERIAL PARTICULADO, NO $_{\rm X}$, SO $_{\rm 2}^-$, NÉVOAS DE SO $_{\rm 3}^-$ E H $_{\rm 2}$ SO $_{\rm 4}$

EMPRESA: CGTEE – COMPANHIA DE GERAÇÃO TÉRMICA DE ENERGIA ELÉTRICA

Usina Presidente Medici Candiota – RS

LOCAL: Caldeira IV.

DATA: 11 de janeiro de 2012.

1. OBJETIVO

Realizar Amostragens no efluente gasoso proveniente da queima de carvão da Caldeira IV para determinar a Concentração e Taxa de Emissão de Material Particulado, NO_X, SO₂, névoas de SO₃ e H₂SO₄.

2. METODOLOGIA DE COLETA E ANÁLISE

As coletas de amostras e determinações foram executadas conforme normas da EPA (Environmental Protection Agency - USA), da CETESB (Companhia de Tecnologia e Saneamento Ambiental de São Paulo) e da ABNT (Associação Brasileira de Normas Técnicas).

Os métodos observados foram os seguintes:

- Determinação de pontos de Amostragem em DCFE (Duto ou Chaminé de Fonte Estacionária) CETESB L9.221 Jul/90 # EPA Method 1 Fev/2000 # NBR 10701 Jul/89
- Determinação da velocidade e da vazão dos gases em DCFE CETESB – L9.222 – Mai/92 # EPA – Method 2 – Fev/2000 # NBR 11966 – Jul/89
- Determinação da massa molecular seca do fluxo de gases em DCFE CETESB L9.223 Jun/92 # EPA Method 3 Ago/03# NBR 10702 Jul/89
- Determinação da umidade dos efluentes em DCFE CETESB – L9.224 – Ago/30 # EPA – Method 4 – Fev/2000 # NBR 11967 – Jul/89
- ➤ Determinação de material particulado em DCFE CETESB – L9.217 – Nov/89 # EPA – Method 17 – Fev/2000 # NBR 12827 – Set/93
- ➤ Determinação de SO₂ e névoas de SO₃ e H₂SO₄ em DCFE CETESB - L9.228 - Jun / 92 # EPA - Method 8- Fev/2000 # NBR 12021 - Dez / 90
- Determinação de NO_x em DCFE

 CETESB L9.229 Out/92 # EPA Method 7– Fev/2000

3. EQUIPAMENTOS DE AMOSTRAGEM:

- Coletor isocinético de Poluentes Atmosféricos CIPA Energética
- Analisador de Combustão e Monitor Ambiental de Emissões Tempest 50

4. DADOS DA CHAMINÉ/DUTO:

Formato da chaminé/duto: Circular

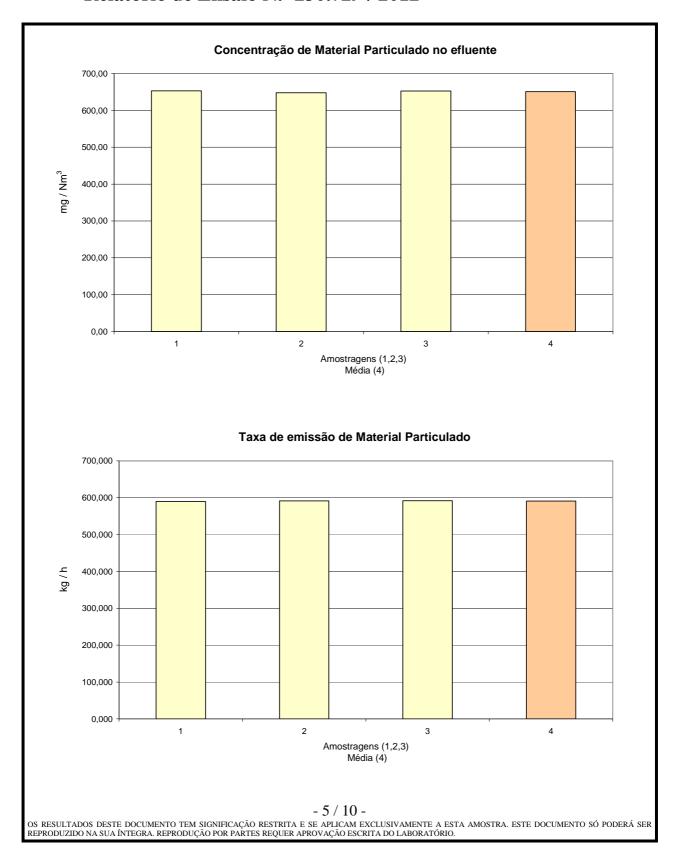
Diâmetro da Chaminé: 4,77 m

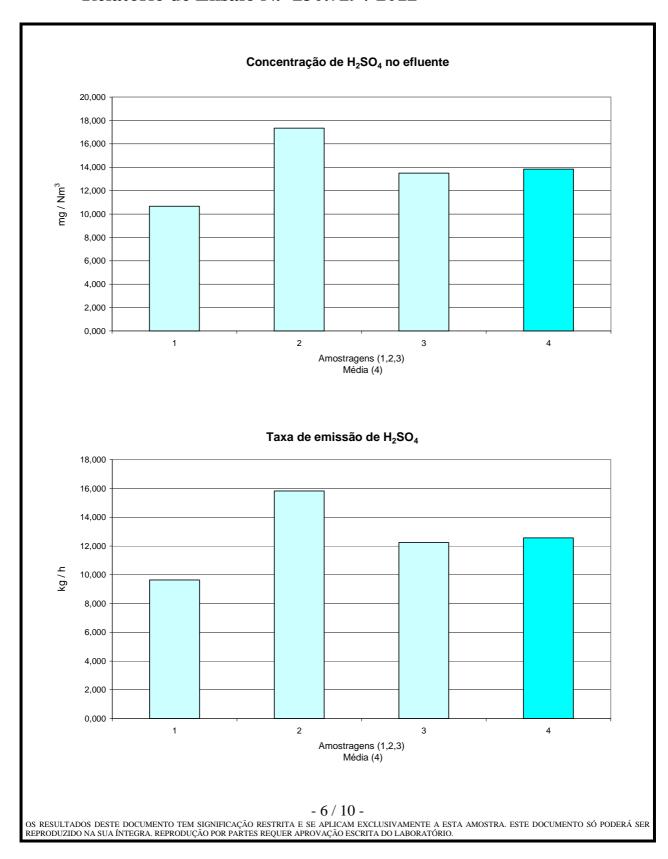
➤ Distância após o ponto de amostragem até o acidente mais próximo > 2 Diâmetros

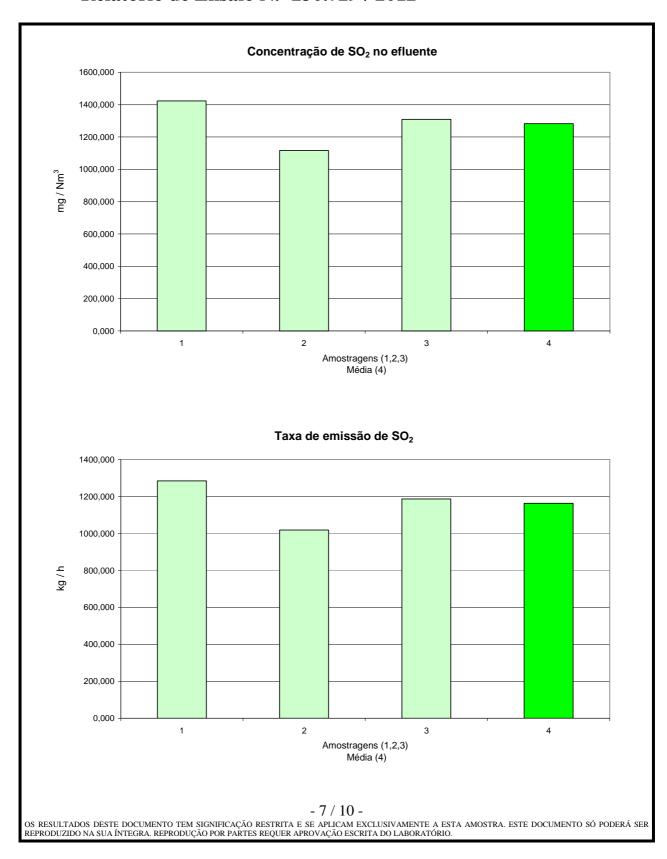
Distância antes do ponto de amostragem até o acidente mais próximo > 8 Diâmetros

Número de pontos da seção transversal:
06 pontos

5. CONDIÇÕES OPERACIONAIS E DE COLETA

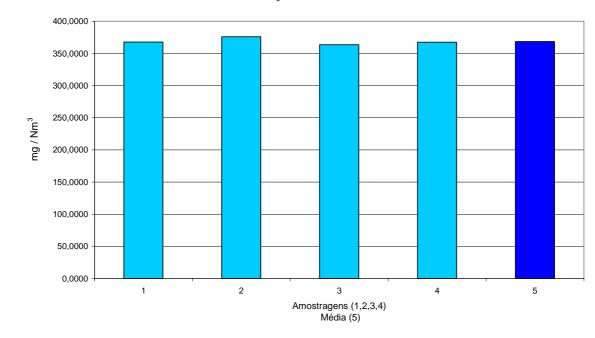

- Durante o período das medições, a Unidade funcionou, segundo informações da Empresa, nas condições usuais de trabalho.
- As coletas e medições foram realizadas utilizando-se um equipamento completo para amostragens de gases e particulados.
- As análises químicas foram realizadas nos laboratórios da ISATEC Rio Grande/RS.
- Os trabalhos de coleta e medição foram realizados pelos técnicos da ISATEC na presença de representantes da CGTEE.
- A preparação dos filtros e frascos lavadores, bem como a recuperação das amostras foram realizados nas dependências da CGTEE.
- Os resultados desta amostragem são válidos para o dia e condições operacionais praticados nesta ocasião.

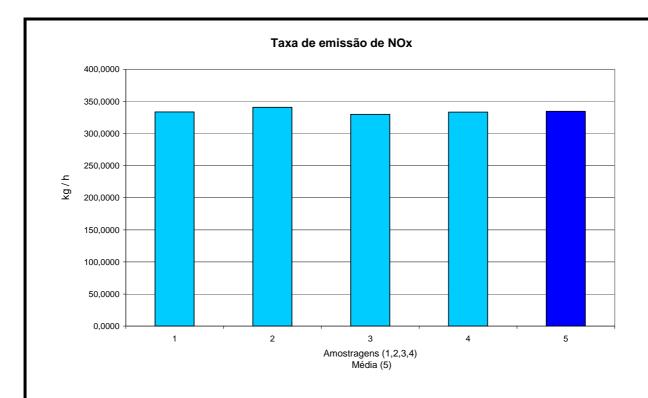

6. RESULTADOS


6.1. RESULTADOS DE MATERIAL PARTICULADO E SOX

			AMOSTRAS		
		1	2	3	Média
Dia da Amostragem	d:m:a	11/01/12	11/01/12	11/01/12	-
Hora início da amostragem	h:min	16:30	18:40	20:50	-
Hora de término da amostragem	h:min	17:35	19:45	21:55	-
Tempo de amostragem	min	60	60	60	-
Temperatura da chaminé	°C	175,3	175,6	175,6	175,5
Pressão na chaminé	"Hg	29,09	29,09	29,10	29,09
Pressão no medidor de gas	"Hg	29,34	29,34	29,34	29,34
Volume agua nas condições de chaminé	ft ³	4,25	4,33	4,21	4,26
Volume gases medido nas condições chaminé	ft ³	58,86	59,30	59,39	59,18
Proporção vol. vapor agua nos gases chaminé		0,067	0,068	0,066	0,067
Peso molecular base úmida		29,077	29,080	29,079	29,078
Velocidade na chaminé	ft / min	5001,45	5061,84	5020,12	5027,80
Velocidade na chaminé	m/s	25,41	25,71	25,50	25,54
Área da Boquilha	ft ²	0,00021	0,00021	0,00021	0,00021
Isocinetismo	%	99,51	99,13	99,90	99,51
Área da Chaminé	m^2	17,8701	17,8701	17,8701	17,8701
Vazão do efluente nas condições da chaminé	m³/h	1634516,86	1654255,09	1640618,94	1643130,30
Vazão do efluente nas condições normais, base seca	Nm³/h	902912,77	912595,15	906884,29	907464,07
Volume amostrado nas condições normais, base seca	Nm³	0,9874	0,9942	0,9957	0,9924
Concentração de Material Particulado no efluente	mg / Nm ³	652,81	647,96	652,41	651,06
Taxa de emissão de Material Particulado	kg / h	589,428	591,329	591,658	590,805
Concentração de H₂SO₄ no efluente	mg / Nm ³	10,67	17,35	13,49	13,836
Taxa de emissão de H ₂ SO ₄	kg / h	9,633	15,830	12,237	12,567
Concentração de SO ₂ no efluente	mg / Nm ³	1423,15	1116,51	1309,30	1282,98
Taxa de emissão de SO ₂	kg / h	1284,983	1018,917	1187,379	1163,760

-4/10- os resultados deste documento tem significação restrita e se aplicam exclusivamente a esta amostra. Este documento só poderá ser reproduzido na sua íntegra. Reprodução por partes requer aprovação escrita do laboratório.




6.2. RESULTADOS DE NOX

		Amostras						
		1	2	3	4	Média		
Vazão média do efluente	Nm3 / h			907464,1				
Concentração de NOX no efluente	mg / Nm3	367,5890	375,8040	363,4820	367,4820	368,5893		
Taxa de emissão de NOX	kg / h	333,5738	341,0286	329,8469	333,4767	334,4815		

Concentração de NOx no efluente

-8/10 - os resultados deste documento tem significação restrita e se aplicam exclusivamente a esta amostra. Este documento só poderá ser reproduzido na sua íntegra. Reprodução por partes requer aprovação escrita do laboratório.

ANEXOS

Em anexo se encontram as seguintes folhas:

- Planilhas de Preparação e Retomada do Material de Coleta
- Folhas de Amostragem de Campo
- Planilhas de Cálculo das amostragens de chaminé
- AFT Anotação de função técnica do responsável.

-9/10 – os resultados deste documento tem significação restrita e se aplicam exclusivamente a esta amostra. Este documento só poderá ser reproduzido na sua íntegra. Reprodução por partes requer aprovação escrita do laboratório.

Rio Grande, 19 de janeiro de 2011.

FILIPE B. TEIXEIRA Eng. Químico CRQ: LP7746 FABRÍCIO L. LOPES Eng. Químico CRQ: 05302015

PAULO EDUARDO CORREA Coordenador Saybolt/Isatec

Coordenador Saybolt/Isated Rio Grande

- 10 / 10 -

OS RESULTADOS DESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A ESTA AMOSTRA. ESTE DOCUMENTO SÓ PODERÁ SER REPRODUZIDO NA SUA ÍNTEGRA. REPRODUÇÃO POR PARTES REQUER APROVAÇÃO ESCRITA DO LABORATÓRIO

ANEXOS

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIAS PLANILHA 1 - PLANILHA DE AMOSTRAGEM DE CAMBO. AMOSTRAGEM DE CAMBO.

		PRESA		Ca	LOCAL ldeira 4 - Char	miné		ATA /01/12	NUMERO 1	
M.P		stragem de		Duto 4,77		Pressão Baron 29,22	nétrica	Duração da am	ostragem minutos	
	mostrador		K	Boquilha	m	FCM	pol Hg	Início	16:30	
			1,2	5		1	Cp 0,852	Fim	17:35	
	uiz Zolair		1,2		mm					
PONTO	Tempo	Distância do ponto	ΔP	Pressão Estática	ΔН	Temperate Entrada	ura Medidor Saida	Temperatura Chaminé	Medidor Gases	
	min	cm	pol H2O	pol H2O	pol H2O	°C	°C	°C	ft3	
1	5	21,0	1,20	-	1,44	32	30	175	866,250	
2	5	69,6	1,30	-1,70	1,56	35	31	175	-	
3	5	141,2	1,50	-	1,80	37	32	175	-	
4	5	335,8	1,50	-1,80	1,80	39	33	175	-	
5	5	407,4	1,30	_	1,56	41	34	175	_	
6	5	456,0	1,20	-1,70	1,44	43	35	175	886,390	
7	-	-	-	-	-	-	-	-	-	
8	_	-	-	-	-	-	-	-	-	
9	_	-	_	-	-	-	-	-	-	
10	_	-	_	-	-	_	-	-	_	
11	-	-	-	-	-	-	-	-	-	
12	_	-	_	-	-	_	-	-	_	
1	5	21,0	1,30	_	1,56	42	35	175	886,390	
2	5	69,6	1,40	-1,70	1,68	44	36	175	_	
3	5	141,2	1,50	-	1,80	45	37	176	_	
4	5	335,8	1,60	-1,70	1,92	46	38	176	_	
5	5	407,4	1,40		1,68	47	39	176	_	
6	5	456,0	1,30	-1,70	1,56	48	40	176	906,790	
7	_	-	-	_	-	_	_	_	_	
8	_	-		_	-	_	_	_	_	
9	_	-		_	-	_	_	_	_	
10	_	-	_	_	-	_	_	-	_	
11	_	-	_	_	-	_	_	_	_	
12	_	-	_	-	-	_	_	_	_	
									906,790	
MÉDIA	60	-	1,375	-1,717	1,650	41,6	35,0	175,3	40,540	
Monitorament	os		<u> </u>	* * *				ficação dos equip		
Temperatura de		C)	_	-	_	_	Barômetro	, <u></u>	EA 074	
Temperatura S	`	/	_	_	_	_	Cronômetro		EA 135	
Temperatura be			11	12	12	13	Sonda Rígida		EA 026	
		\ -/		1		<u>. </u>	Coluna U		EA 010	
							Termopar Ch	aminé	EA 069	
Teste de Vaza	mento do 1	trem					Aparelho		EA 001	
Início		OK	Fim	OK	1		Pitot		P 11	
		<u> </u>		-	4		Boquilha		5	
Teste de Vaza	mento do l				71					
Início		OK	Fim	OK]					
Verificação da				1	1			1	,	
Tempe	ratura Aml	piente	28	°C	Temperatura n	o Gasometro en	metro entrada 23 °C			

^{*} Diferença entre a temperatura ambiente e temperatura no gasômetro seco entrada: Máximo 6°C

OS RESULTADOS CONTIDOS NESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A AMOSTRA

ISTÆNAM -E-0004 Rev 02-Plan01

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIA ISA TEC

	EMPRESA CGTEE		LOC Caldeira 4			ATA /01/12	NÚMERO 1
erificação da Ba	lança					Responsável	Renato Soares
Identificação	da Balança	EA 015	Peso Padrão	500 g			
Identificação do	Peso Padrão	EA 073	Valor indicado na balança	499,9g <	499,94	<500,1 g	
orbulhadores						Responsável	Renato Soares
Número dos Borbulhadores	Volume(mL)	Solução	Absorvente	Tara (g)	Final (g)	Diferença (g)	
1	200	Alccol iso	propilico 80%	601,17	606,66	5,49	1
2	200		O2 5%	747,20	778,19	30,99	
3	200	H2	O2 5%	741,38	750,80	9,42	
4	-	Sil	ica Gel	717,93	729,24	11,31	_
5	-		-	-	-	-	_
6	-		-	-	-	-	4
7	-		-	-	-	-	
8	TOTAI		-	2807,68	2864,89	57,21	<u> </u>
	TOTAL		-			57,21	<u> </u>
8 Composição do G	TOTAL		-				Renato Soares
	TOTAL		EA 018			57,21	Renato Soares
Composição do G	TOTAL		•			57,21	Renato Soares
Composição do G	TOTAL		•		2864,89	57,21 Responsável	Renato Soares
Composição do G	TOTAI ases alisador de gases	AMOSTRA	AS	2807,68	2864,89 Peso	57,21 Responsável	Renato Soares
Composição do G dentificação do an Componentes O ₂ CO	1° 10,5 0,0	AMOSTRA 2° 10,4 0,0	AS 3° 10,6 0,0	2807,68 MÉDIA 10,5 0,0	Peso Molecular 32 28	57,21 Responsável PM X % 3,4 0,0	Renato Soares
Composição do Guentificação do an Componentes O ₂ CO CO ₂	1° 10,5 0,0 9,1	AMOSTRA 2° 10,4 0,0 9,2	AS 3° 10,6 0,0 9,0	MÉDIA 10,5 0,0 9,1	Peso Molecular 32 28 44	57,21 Responsável PM X % 3,4 0,0 4,0	Renato Soares
Composição do G dentificação do an Componentes O ₂ CO	1° 10,5 0,0	AMOSTRA 2° 10,4 0,0 9,2 80,4	AS 3° 10,6 0,0 9,0 80,4	MÉDIA 10,5 0,0 9,1 80,4	Peso Molecular 32 28	57,21 Responsável PM X % 3,4 0,0 4,0 22,5	Renato Soares
Composição do Guentificação do an Componentes O ₂ CO CO ₂	1° 10,5 0,0 9,1	AMOSTRA 2° 10,4 0,0 9,2 80,4	AS 3° 10,6 0,0 9,0	MÉDIA 10,5 0,0 9,1 80,4	Peso Molecular 32 28 44	57,21 Responsável PM X % 3,4 0,0 4,0	Renato Soares
Composição do Guentificação do an Componentes O ₂ CO CO ₂	1° 10,5 0,0 9,1 80,4	AMOSTRA 2° 10,4 0,0 9,2 80,4 PESO MOLE	AS 3° 10,6 0,0 9,0 80,4	MÉDIA 10,5 0,0 9,1 80,4	Peso Molecular 32 28 44	57,21 Responsável PM X % 3,4 0,0 4,0 22,5	Renato Soares
Composição do Guentificação do an Componentes O ₂ CO CO ₂ N ₂	1° 10,5 0,0 9,1 80,4	AMOSTRA 2° 10,4 0,0 9,2 80,4 PESO MOLE	AS 3° 10,6 0,0 9,0 80,4	MÉDIA 10,5 0,0 9,1 80,4	Peso Molecular 32 28 44 28	PM X % 3,4 0,0 4,0 22,5 29,88	
Composição do an Componentes O2 CO CO2 N2 Assultados dos En	1° 10,5 0,0 9,1 80,4	AMOSTRA 2° 10,4 0,0 9,2 80,4 PESO MOLE	3° 10,6 0,0 9,0 80,4 CCULAR SECO = 1	MÉDIA 10,5 0,0 9,1 80,4 Pms =	Peso Molecular 32 28 44 28	PM X % 3,4 0,0 4,0 22,5 29,88 Responsável	
Composição do an Componentes O ₂ CO CO ₂ N ₂ Resultados dos En 0,0192	1° 10,5 0,0 9,1 80,4	AMOSTRA 2° 10,4 0,0 9,2 80,4 PESO MOLE	3° 10,6 0,0 9,0 80,4 CCULAR SECO = 1	MÉDIA 10,5 0,0 9,1 80,4 Pms =	Peso Molecular 32 28 44 28 230.729 230.732	57,21 Responsável PM X % 3,4 0,0 4,0 22,5 29,88 Responsável	
Composição do an Componentes O ₂ CO CO ₂ N ₂ Resultados dos En 0,0192 10,54	1° 10,5 0,0 9,1 80,4 saios de Labora g mg mg	AMOSTRA 2° 10,4 0,0 9,2 80,4 PESO MOLE atório de de de de	AS 3° 10,6 0,0 9,0 80,4 CCULAR SECO = 1 M.P. H2SO4 SO2	MÉDIA 10,5 0,0 9,1 80,4 Pms = Certificado nº Certificado nº	Peso Molecular 32 28 44 28 230.729 230.732	PM X % 3,4 0,0 4,0 22,5 29,88 Responsável 0/230.764	
Composição do Gentificação do an Componentes O2 CO CO2 N2 Resultados dos E1 0,0192 10,54 1405,26 Resultados das Peresultados das Pere	ases alisador de gases 1° 10,5 0,0 9,1 80,4 asaios de Labora g mg mg esagens de Mate	AMOSTRA 2° 10,4 0,0 9,2 80,4 PESO MOLE atório de de de de	AS 3° 10,6 0,0 9,0 80,4 CCULAR SECO = 1 M.P. H2SO4 SO2	MÉDIA 10,5 0,0 9,1 80,4 Pms = Certificado nº Certificado nº Certificado nº	Peso Molecular 32 28 44 28 230.729 230.732 230.735	PM X % 3,4 0,0 4,0 22,5 29,88 Responsável 0 / 230.764 2 / 230.765 5 / 230.766	LABAN
Composição do Gentificação do an Componentes O2 CO CO2 N2 Resultados dos En 0,0192 10,54 1405,26 Resultados das Per Elemento	ases alisador de gases 1° 10,5 0,0 9,1 80,4 asaios de Labora g mg mg mg esagens de Mate	AMOSTRA 2° 10,4 0,0 9,2 80,4 PESO MOLE atório de de de de rial Particulado	AS 3° 10,6 0,0 9,0 80,4 CCULAR SECO = 1 M.P. H2SO4 SO2	MÉDIA 10,5 0,0 9,1 80,4 Pms = Certificado nº Certificado nº Certificado nº	Peso Molecular 32 28 44 28 230.725 230.735 Diferença (g)	PM X % 3,4 0,0 4,0 22,5 29,88 Responsável 0 / 230.764 2 / 230.765 5 / 230.766	LABAN
Composição do Gentificação do an Componentes O2 CO CO2 N2 Resultados dos En 0,0192 10,54 1405,26 Resultados das Per Elemento Caps	ases alisador de gases 1° 10,5 0,0 9,1 80,4 asaios de Labora g mg mg mg esagens de Mate	AMOSTRA 2° 10,4 0,0 9,2 80,4 PESO MOLE atório de de de de rial Particulado N° 7	M.P. H2SO4 SO2 Tara (g) 79,2696	MÉDIA 10,5 0,0 9,1 80,4 Pms = Certificado nº Certificado nº Certificado nº Tertificado nº Certificado nº	Peso Molecular 32 28 44 28 230.729 230.735 Diferença (g) 0,6254	PM X % 3,4 0,0 4,0 22,5 29,88 Responsável 0 / 230.764 2 / 230.765 5 / 230.766	LABAN
Composição do Gentificação do an Componentes O2 CO CO2 N2 Resultados dos En 0,0192 10,54 1405,26 Resultados das Per Elemento	TOTAI ases alisador de gases 1° 10,5 0,0 9,1 80,4 asaios de Labora g mg mg mg esagens de Mate	AMOSTRA 2° 10,4 0,0 9,2 80,4 PESO MOLE atório de de de de rial Particulado	AS 3° 10,6 0,0 9,0 80,4 CCULAR SECO = 1 M.P. H2SO4 SO2	MÉDIA 10,5 0,0 9,1 80,4 Pms = Certificado nº Certificado nº Certificado nº	Peso Molecular 32 28 44 28 230.725 230.735 Diferença (g)	PM X % 3,4 0,0 4,0 22,5 29,88 Responsável 0 / 230.764 2 / 230.765 5 / 230.766	LABAN

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIAS PLANILHA 3 - PLANILHA DE CÁLCULO DE AMOSTRAGEM - AMOSTRAGEM I

EMPRESA					LOCAL		DAT	ГА	NÚMERO	
CGTEE				Caldeira 4 - Chaminé			11/01/12		1	
(g) $MH_2O =$	57,210	(R) Tc =	807,60	("Hg)Patm=	29,220	("H20)Pest=	-1,717	$(mm) \Theta b =$	5,00	
(R) Tm =	560,93	$("H20)\Delta H=$	1,650	$(ft^3) Vm =$	40,540	Cp =	0,852	(m) ΘC =	4,77	
FCM =	1,00	Pms =	29,876	$("H_20)\Delta P^{1/2}=$	1,171	(min) @ =	60			
(mg)M.P. =	644,600	(mg)H2SO4 =	10,535	(mg)SO2 =	1405,260					

Pc =	Pressão na chaminé	29,094	"Hg	Pc = Patm + Pest / 13,6
Pm =	Pressão no medidor de gas	29,341	"Hg	$Pm = Patm + \Delta H / 13,6$
Vacc =	Volume agua nas condições de chaminé	4,246	ft ³	$Vacc = (MH_20 * Tc) / (374 * Pc)$
Vmcc =	Volume gases medido nas condições chaminé	58,865	ft ³	Vmcc = (Vm * Tc * Pm * FCM) / (Tm * Pc)
Pvva =	Proporção vol. vapor'agua nos gases chaminé	0,067		Pvva = Vacc / (Vacc + Vmcc)
Pmu =	Peso molecular base úmida	29,077		Pmu = Pms * (1 - Pvva) + (18 * Pvva)
Vc =	Velocidade na chaminé	5001,445	ft / min	$Vc = 5128,8*Cp*[(Tc)/(Pc*Pmu)]^{1/2}*\Delta P^{1/2}$
Vc 1 =	Velocidade na chaminé	25,407	m/s	$Vc_1 = Vc * 0,00508$
Ab =	Área da Boquilha	0,000211	ft^2	$Ab = (\Theta b / 25,4)^2 / 183,35$
I =	Isocinetismo 90 < I < 110	99,51	%	I = [(Vmcc + Vacc) / (@ * Ab * Vc)] * 100
Ac =	Área da Chaminé	17,8701	m^2	$Ac = \Theta c^2 * 0.7854$
Vaecc =	Vazão do efluente nas condições da chaminé	##########	m^3/h	Vaecc = Ac * Vc * 18,288
Vaecnbs =	Vazão do efluente nas condições normais, base seca	902912,767	Nm^3/h	Vaecnbs = [Vaecc * Pc * (1-Pvva)*16,44]/Tc
Vmcnbs =	Volume amostrado nas condições normais, base seca	0,987	Nm^3	Vmcnbs = (Vm * Pm * FCM) / (Tm * 2,1476)
C M.P.=	Concentração de M.P. no efluente	652,81	mg / Nm^3	C M.P.= M.P. / Vmcnbs
Te M.P.=	Taxa de Emissão de M.P.	589,428	Kg/h	Te M.P.=(C M.P. * Vaecnbs) / 1000000
C H2SO4=	Concentração de H2SO4 no efluente	10,67	mg / Nm^3	C H2SO4= H2SO4 / Vmcnbs
Te H2SO4=	Taxa de Emissão de H2SO4	9,633	kg/h	Te H2SO4=(C H2SO4 * Vaecnbs) / 1000000
C SO2=	Concentração de SO2 no efluente	1423,15	mg / Nm ³	C SO2= SO2 / Vmcnbs
Te SO2=	Taxa de Emissão de SO2	1284,983	kg/h	Te SO2=(C SO2 * Vaecnbs) / 1000000

OBSERVAÇÕES:

OS RESULTADOS CONTIDOS NESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A AMOSTRA

IST/ENAM -E-0004 Rev 02-Plan03

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIAS PLANILHA 4 - PLANILHA 4 - PLANILHA DE AMOSTRAGEM DE CAMPO LA CEMPO L

		PRESA GTEE		C	LOCAL	min.ć	DATA 11/01/12		NUMERO 2
					aldeira 4 - Char		_		
MD		stragem de		Duto		Pressão Baron		Duração da am	-
M.P	SOx	I	17	4,77	m	29,22 ECM	pol Hg	+	minutos
	mostrador		K	Boquilha		FCM	Ср	Início	18:40
<u>I</u>	uiz Zolair		1,2	5	mm	1	0,852	Fim	19:45
	Tempo	Distância	ΔP	Pressão	ΔΗ	Temperat	ura Medidor	Temperatura	Medidor
PONTO	Tempo	do ponto	ΔΓ	Estática	ΔΠ	Entrada	Saida	Chaminé	Gases
	min	cm	pol H2O	pol H2O	pol H2O	°C	°C	°C	ft3
1	5	21,0	1,20	-	1,44	33	31	175	907,620
2	5	69,6	1,40	-1,70	1,68	36	32	175	-
3	5	141,2	1,60	-	1,92	38	33	175	-
4	5	335,8	1,60	-1,80	1,92	40	34	175	_
5	5	407,4	1,40	_	1,68	42	35	175	_
6	5	456,0	1,20	-1,70	1.44	43	36	176	927,760
7	-	-	-	-	-	-	-	-	-
8	_	-	_	_	_	_	_	_	_
9	_	-	_	_	_	_	_	_	_
10	_	_	_	_	_	_	_	_	_
11	_	_		_	_	_	_	_	_
12	_	_	<u> </u>	_	_	_	_	_	_
1	5	21,0	1,30	_	1,56	42	36	176	927,760
2	5	69,6	1,40	-1,70	1,68	44	37	176	727,700
3	5	141,2	1,50	-1,70	1,80	45	38	176	_
4	5	335,8	1,60	-1,70	1,92	46	39	176	_
5	5	407,4	1,40	-1,/0	1,68	46	40	176	_
			· ·				40		
6 7	5	456,0	1,30	-1,70	1,56	47	40	176	948,510
	1					+			-
8	-	-	-	-		-	-	-	-
9	-	-	-	-	-	-	-	-	-
10	-	-	-	-	-	-	-	-	-
11	-	-	-	-	-	-	-	-	-
12	-	-	-	-	-	-	-	-	-
énri					4	41.0	2.5	45	948,510
ÉDIA	60	-	1,408	-1,717	1,690	41,8	35,9	175,6	40,890
onitorament		1				1	1	icação dos equip	
mperatura d			-	-	-	-	Barômetro		EA 074
mperatura S				-	-	-	Cronômetro		EA 135
emperatura be	orbulhador	es(°C)	10	10	11	11	Sonda Rígida		EA 026
							Coluna U		EA 010
							Termopar Ch	aminé	EA 069
este de Vaza					-		Aparelho		EA 001
Início)	OK	Fim	OK			Pitot		P 11
							Boquilha		5
este de Vaza	mento do l	Pitot			_				
Início)	OK	Fim	OK					
rificação de	temperet	ura antes da a	mostragem *		_				
rmcação da	ratura Amb		mostragem	°C	Temperature n	o Gasometro on	ntrada		°C
TD					Temperatura no Gasometro entrada -				

^{*} Diferença entre a temperatura ambiente e temperatura no gasômetro seco entrada: Máximo 6°C os resultados contidos neste documento tem significação restrita e se aplicam exclusivamente a amostra IST/ENAM -E-0004 Rev 02-Plan04

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIA ISATEC PLANILHA 5 - PLANILHA DE PREPARAÇÃO E RETOMADA DE AMOSTRAS COMPOSIÇÃO DE GASES E RESULTADOS DE LABORATÓRIO -AMOSTRAGEM 2 **EMPRESA** NÚMERO LOCAL **DATA CGTEE** Caldeira 4 - Chaminé 11/01/12 2 Verificação da Balança Responsável enato Soares Identificação da Balança Peso Padrão 500 g EA 015 Valor indicado na Identificação do Peso Padrão 499,9g < <500,1 g balança **Borbulhadores** Responsável Renato Soares Número dos Volume(mL) Solução Absorvente Tara (g) Final (g) Diferença (g) Borbulhadores 582,85 588,56 Alccol isopropilico 80% 5,71 721,49 752,62 H2O2 5% 31,13 740,12 H2O2 5% 730,88 200 9,24 718,25 730,44 Silica Gel 12,19 5 6 8 2753,47 2811,74 58,27 **TOTAL** enato Soares Composição do Gases Responsável EA 018 Identificação do analisador de gases PM X % **AMOSTRAS** Peso Componentes 2° MÉDIA Molecular O_2 10,4 10,3 10,5 10,4 32 3,3 0,0 0,0 0,0 CO 0,0 28 0,0 CO_2 9,2 9,3 9,1 9,2 44 4,0 N_2 80,4 80,4 28 22,5 80,4 PESO MOLECULAR SECO = Pms = 29,89 Resultados dos Ensaios de Laboratório LABAN Responsável 0,0206 de M.P. Certificado nº 230.730 / 230.764 g 230.733 / 230.765 17,25 H2SO4 Certificado nº mg 1110,02 SO₂ 230.736 / 230.766 Certificado nº Luiz Zolair Responsável Resultados das Pesagens de Material Particulado Elemento Filtrante Final (g) Diferença (g) Tara (g) 80,9084 81,532 0,6236 Capsula 8 Filtro

Ciclone

Total 0,6

OS RESULTADOS CONTIDOS NESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A AMOSTRA

ISATEC

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIAS PLANILHA 6 - PLANILHA DE CÁLCULO DE AMOSTRAGEM - AMOSTRAGEM 2

EMPRESA	CGTEE	LOCAL Caldeira 4 - Chaminé			DA 7	Γ A 01/12	NÚMERO 2		
(g) MH ₂ O =	58,270 (R) Tc =	808,05	("Hg)Patm=	29,220	("H ₂ 0)Pest=	-1,717	(mm) Θb =	5,00	
(R) Tm =	561,98 ("H ₂ 0)ΔH=	1,690	(ft ³) Vm =	40,890	Cp =	0,852	(m) ΘC =	4,77	
FCM =	1,00 Pms =	29,888	$("H_20)\Delta P^{1/2}=$	1,185	(min) @ =	60			
(mg)M.P. =	644,200 (mg)H2SO4 =	17,245	(mg)SO2 =	1110,020					

Pc =	Pressão na chaminé	29,094	"Hg	Pc = Patm + Pest / 13,6
Pm =	Pressão no medidor de gas	29,344	"Hg	$Pm = Patm + \Delta H / 13,6$
Vacc =	Volume agua nas condições de chaminé	4,327	ft ³	$Vacc = (MH_20 * Tc) / (374 * Pc)$
Vmcc =	Volume gases medido nas condições chaminé	59,301	ft ³	Vmcc = (Vm * Tc * Pm * FCM) / (Tm * Pc)
Pvva =	Proporção vol. vapor'agua nos gases chaminé	0,068		Pvva = Vacc / (Vacc + Vmcc)
Pmu =	Peso molecular base úmida	29,080		Pmu = Pms * (1 - Pvva) + (18 * Pvva)
Vc =	Velocidade na chaminé	5061,842	ft / min	$Vc = 5128.8*Cp*[(Tc)/(Pc*Pmu)]^{1/2}*\Delta P^{1/2}$
Vc 1 =	Velocidade na chaminé	25,714	m/s	$Vc_1 = Vc * 0,00508$
Ab =	Área da Boquilha	0,000211	ft^2	$Ab = (\Theta b / 25,4)^2 / 183,35$
I =	Isocinetismo 90 < I < 110	99,13	%	I = [(Vmcc + Vacc) / (@ * Ab * Vc)] * 100
Ac =	Área da Chaminé	17,8701	m^2	$Ac = \Theta c^2 * 0.7854$
Vaecc =	Vazão do efluente nas condições da chaminé	#########	m^3/h	Vaecc = Ac * Vc * 18,288
Vaecnbs =	Vazão do efluente nas condições normais, base seca	912595,154	Nm^3/h	Vaecnbs = [Vaecc * Pc * (1-Pvva)*16,44]/Tc
Vmcnbs =	Volume amostrado nas condições normais, base seca	0,994	Nm^3	Vmcnbs = (Vm * Pm * FCM) / (Tm * 2,1476)
C M.P.=	Concentração de M.P. no efluente	647,96	mg / Nm^3	C M.P.= M.P. / Vmcnbs
Te M.P.=	Taxa de Emissão de M.P.	591,329	Kg/h	Te M.P.=(C M.P. * Vaecnbs) / 1000000
C H2SO4=	Concentração de H2SO4 no efluente	17,35	mg / Nm ³	C H2SO4= H2SO4 / Vmcnbs
Te H2SO4=	Taxa de Emissão de H2SO4	15,830	kg/h	Te H2SO4=(C H2SO4 * Vaecnbs) / 1000000
C SO2=	Concentração de SO2 no efluente	1116,51	mg / Nm ³	C SO2= SO2 / Vmcnbs
Te SO2=	Taxa de Emissão de SO2	1018,917	kg/h	Te SO2=(C SO2 * Vaecnbs) / 1000000

OBSERVAÇÕES:

OS RESULTADOS CONTIDOS NESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A AMOSTRA

IST/ENAM -E-0004 Rev 02-Plan06

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIAS PLANILHA 7 - PLANILHA DE AMOSTRAGEM DE CAMPO D

	EM	PRESA			LOCAL		D	NUMERO	
	C	CGTEE		Ca	ıldeira 4 - Chai	miné	11/	/01/12	3
	Amo	stragem de		Duto		Pressão Barom	étrica	Duração da am	ostragem
M.P	SOx			4,77	m	29,22	pol Hg	60	minutos
A	Amostrador		K	Boquilha		FCM	Cp	Início	20:50
I	Luiz Zolair		1,2	5	mm	1	0,852	Fim	21:55
		Distância		Pressão		Temperatu	ra Medidor	Temperatura	Medidor
PONTO	Tempo	do ponto	ΔP	Estática	ΔΗ	Entrada	Saida	Chaminé	Gases
	min	cm	pol H2O	pol H2O	pol H2O	°C	°C	°C	ft3
1	5	21,0	1,30	-	1,56	35	33	175	949,170
2	5	69,6	1,30	-1,70	1,56	37	34	175	-
3	5	141,2	1,50	-	1,80	39	35	175	-
4	5	335,8	1,50	-1,70	1,80	41	36	175	-
5	5	407,4	1,30	-	1,56	43	37	175	-
6	5	456,0	1,30	-1,70	1,56	45	38	176	969,640
7	-	-	-	-	-	_	-	-	-
8	-	-	-	-	-	-	-	-	-
9	-	-	-	-	-	-	-	-	-
10	-	-	-	-	-	-	-	-	-
11	_	-	_	_	-	-	_	_	_
12	-	-	_	-	-	-	-	-	-
1	5	21,0	1,30	_	1,56	44	38	176	969,640
2	5	69,6	1,40	-1,70	1,68	46	39	176	_
3	5	141,2	1,50	_	1,80	47	40	176	_
4	5	335,8	1,50	-1,70	1,80	48	40	176	_
5	5	407,4	1,40	-	1,68	49	41	176	_
6	5	456,0	1,30	-1,70	1,56	50	41	176	990,360
7	_	-	-	-	-	-	_	-	_
8	_	-	_	_	-	_	_	-	_
9	_	_	_	_	_	_	_	_	_
10	_	-	-	_	-	-	-	-	_
11	_	-	-	_	-	-	-	-	-
12	_	-	_	_	-	_	_	-	_
									990,360
ИÉDIA	60	-	1,383	-1,700	1,660	43,7	37,7	175,6	41,190
Aonitoramen	tos				•	•	Identif	icação dos equip	pamentos
Temperatura d	lo Forno (°C	C)	-	-	-	-	Barômetro		EA 074
Temperatura S	onda Rígio	la (°C)	=	-	_	-	Cronômetro		EA 135
Temperatura b			11	13	13	15	Sonda Rígida		EA 026
<u> </u>		*		-	•	•	Coluna U		EA 010
							Termopar Ch	aminé	EA 069
Teste de Vaza	mento do	trem					Aparelho		EA 001
Iníci		OK	Fim	OK	7		Pitot		P 11
				•	=		Boquilha		5
Гeste de Vaza	mento do l	Pitot					<u> </u>		<u> </u>
Iníci		OK	Fim	OK	7				
				•	=				
			mostragem *	°C	Temperature	o Gasomotro ent	rada	T	°C
Tempe	eratura Aml	piente	-	10		o Gasometro ent		-	
					i emperatura n	o Gasometro sate	Gasometro saída - °C		

^{*} Diferença entre a temperatura ambiente e temperatura no gasômetro seco entrada: Máximo 6°C os resultados contidos neste documento tem significação restrita e se aplicam exclusivamente a amostra IST/ENAM -E-0004 Rev 02-Plan07

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁRI<mark>IS A TEC</mark> PLANILHA 8 - PLANILHA DE PREPARAÇÃO E RETOMADA DE AMOSTRAS COMPOSIÇÃO DE GASES E RESULTADOS DE LABORATÓRIO -AMOSTRAGEM 3 **EMPRESA** NÚMERO LOCAL **DATA CGTEE** Caldeira 4 - Chaminé 11/01/12 3 Verificação da Balança Responsável enato Soares Identificação da Balança Peso Padrão 500 g EA 015 Valor indicado na Identificação do Peso Padrão 499,9g < <500,1 g balança **Borbulhadores** Responsável Renato Soares Número dos Volume(mL) Solução Absorvente Tara (g) Final (g) Diferença (g) Borbulhadores 605,96 Alccol isopropilico 80% 600,86 5,10 748,99 780,91 H2O2 5% 31,92 755,14 H2O2 5% 746,85 200 8,29 710,48 721,85 Silica Gel 11,37 2807,18 2863,86 56,68 **TOTAL** enato Soares Composição do Gases Responsável EA 018 Identificação do analisador de gases PM X % **AMOSTRAS** Peso Componentes 2° MÉDIA Molecular O_2 10,6 10,7 10,5 10,6 32 3,4 0,0 0,0 0,0 CO 0,0 28 0,0 CO_2 9,0 8,9 9,1 9,0 44 4,0 N_2 80,4 80,4 28 22,5 80,4 PESO MOLECULAR SECO = Pms = 29,86 LABAN Resultados dos Ensaios de Laboratório Responsável 0,0281 de M.P. Certificado nº 230.731 / 230.764 g 230.734 / 230.765 13,44 H2SO4 Certificado nº mg SO₂ 230.737 / 230.766 1303,66 Certificado nº Luiz Zolair Responsável Resultados das Pesagens de Material Particulado Elemento Filtrante Final (g) Diferença (g) Tara (g) 9 79,5107 80,1322 0,6215 Capsula Filtro

0,6215

Ciclone

Total 0,6

OS RESULTADOS CONTIDOS NESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A AMOSTRA

ISATEC

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIAS PLANILHA 9 - PLANILHA DE CÁLCULO DE AMOSTRAGEM - AMOSTRAGEM 3

LOCAL	DATA	NÚMERO
Caldeira 4 - Chaminé	11/01/12	3

$(g) MH_2O =$	56,680 (R) Tc =	808,05 ("Hg)Patm=	29,220 ("H ₂ 0)Pest=	-1,700 (mm) Θb =	5,00
(R) Tm =	565,20 (" H_2 0) ΔH =	$1,660 (ft^3) Vm =$	41,190 Cp =	0.852 (m) Θ C =	4,77
FCM =	1,00 Pms =	$29,864 ("H20)\Delta P^{1/2} =$	1,176 (min) @ =	60	
(mg)M.P. =	649,600 (mg)H2SO4 =	13,435 (mg)SO2 =	1303,660		

Pc =	Pressão na chaminé	29,095	"Hg	Pc = Patm + Pest / 13,6
Pm =	Pressão no medidor de gas	29,342	"Hg	$Pm = Patm + \Delta H / 13,6$
Vacc =	Volume agua nas condições de chaminé	4,209	ft ³	$Vacc = (MH_20 * Tc) / (374 * Pc)$
Vmcc =	Volume gases medido nas condições chaminé	59,388	ft ³	Vmcc = (Vm * Tc * Pm * FCM) / (Tm * Pc)
Pvva =	Proporção vol. vapor'agua nos gases chaminé	0,066		Pvva = Vacc / (Vacc + Vmcc)
Pmu =	Peso molecular base úmida	29,079		Pmu = Pms * (1 - Pvva) + (18 * Pvva)
Vc =	Velocidade na chaminé	5020,117	ft / min	$Vc = 5128,8*Cp*[(Tc)/(Pc*Pmu)]^{1/2}*\Delta P^{1/2}$
Vc 1 =	Velocidade na chaminé	25,502	m/s	$Vc_1 = Vc * 0,00508$
Ab =	Área da Boquilha	0,000211	ft^2	$Ab = (\Theta b / 25,4)^2 / 183,35$
I =	Isocinetismo 90 < I < 110	99,90	%	I = [(Vmcc + Vacc) / (@ * Ab * Vc)] * 100
Ac =	Área da Chaminé	17,8701	m^2	$Ac = \Theta c^2 * 0.7854$
Vaecc =	Vazão do efluente nas condições da chaminé	##########	m^3/h	Vaecc = Ac * Vc * 18,288
Vaecnbs =	Vazão do efluente nas condições normais, base seca	906884,285	Nm^3/h	Vaecnbs = [Vaecc * Pc * (1-Pvva)*16,44]/Tc
Vmcnbs =	Volume amostrado nas condições normais, base seca	0,996	Nm^3	Vmcnbs = (Vm * Pm * FCM) / (Tm * 2,1476)
C M.P.=	Concentração de M.P. no efluente	652,41	mg / Nm^3	C M.P.= M.P. / Vmcnbs
Te M.P.=	Taxa de Emissão de M.P.	591,658	Kg/h	Te M.P.=(C M.P. * Vaecnbs) / 1000000
C H2SO4=	Concentração de H2SO4 no efluente	13,49	mg / Nm ³	C H2SO4= H2SO4 / Vmcnbs
Te H2SO4=	Taxa de Emissão de H2SO4	12,237	kg/h	Te H2SO4=(C H2SO4 * Vaecnbs) / 1000000
C SO2=	Concentração de SO2 no efluente	1309,30	mg / Nm ³	C SO2= SO2 / Vmcnbs
Te SO2=	Taxa de Emissão de SO2	1187,379	kg/h	Te SO2=(C SO2 * Vaecnbs) / 1000000

OBSERVAÇÕES:

OS RESULTADOS CONTIDOS NESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A AMOSTRA

IST/ENAM -E-0004 Rev 02-Plan09

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIAS PLANILHA 10 - PLANILHA DE CÁLCULO DE CONCENTRAÇÃO E TAXA DE EMISSÃO DE NOX

EMPRESA LOCAL DATA

CGTEE Caldeira 4 - Chaminé 11/01/12 Responsável Luiz Zolair

Identificação dos Equipamentos											
Vacuômetro	EA	138	Barômetro		074	Termômetro	226	5222	Pipeta	M	007
Amostra 01			Amostra 02		Amostra 03		Amostra 04				
Identificação do Frasco	M (Identificação do Frasco		009	Identificação do Frasco		010	Identificação do Frasco	M	
Volume do Frasco (Vf)	2241,9		Volume do Frasco (Vf)	2234,9		Volume do Frasco (Vf)	2235,0		Volume do Frasco (Vf)	2235,0	
Volume Absorvente (Va) 25 mL		Volume Absorvente (Va)	25 mL		Volume Absorvente (Va)	25 mL		Volume Absorvente (Va)	25 mL		
Condições Iniciais Data 11/01/2012		/2012	Condições Iniciais Data 11/01/2012		Condições Iniciais		Condições Iniciais 11/01/2012				
Hora	22:		Hora			Hora		:40	Hora		:45
Pressão Atmosférica inicial	742,2	mmHg	Pressão Atmosférica inicial	742.2		Pressão Atmosférica inicial	742,2		Pressão Atmosférica inicial	742,2	mmHg
Pressão inicial do Frasco	400	mmHg	Pressão inicial do Frasco	400	mmHg	Pressão inicial do Frasco	400		Pressão inicial do Frasco	400	mmHg
Pressão absoluta inicial do Frasco (Pi)	342,2	mmHa	Pressão absoluta inicial do Frasco (Pi)		mmHg	Pressão absoluta inicial do Frasco (Pi)	342,2	mmHg	Pressão absoluta inicial do Frasco (Pi)	342,2	mmHg
Temperatura inicial do Frasco	28	°C	Temperatura inicial do Frasco	28	°C	Temperatura inicial do Frasco	28	°C	Temperatura inicial do Frasco	28	°C
Temperatura absoluta inicial do Frasco (Ti)	301	K	Temperatura absoluta inicial do Frasco (Ti)		K	Temperatura absoluta inicial do Frasco (Ti)	301	K	Temperatura absoluta inicial do Frasco (Ti)	301	K
Condições Finais			Condições Finais		Condições Finais		Condições Finais				
Data	12/01	/2012	Data		/2012	Data		/2012	Data		/2012
Hora			Hora		:35	=		Hora	16:45		
Pressão Atmosférica Final	740,1	mmHg	Pressão Atmosférica Final	740,1	mmHg	Pressão Atmosférica Final	740,1		Pressão Atmosférica Final	740,1	mmHg
Pressão final do Frasco	10	mmHg	Pressão final do Frasco	10	U	Pressão final do Frasco	5		Pressão final do Frasco		mmHg
Pressão absoluta final do Frasco (Pf)	730,1	mmHg	Pressão absoluta final do Frasco (Pf)	730,1	mmHg	Pressão absoluta final do Frasco (Pf)	735,1	mmHg	Pressão absoluta final do Frasco (Pf)	735,1	mmHg
Temperatura final do Frasco	25	°C	Temperatura final do Frasco	25	°C	Temperatura final do Frasco	25	°C	Temperatura final do Frasco	25	°C
Temperatura absoluta final do Frasco (Tf)	298	K	Temperatura absoluta final do Frasco (Tf)	298	K	Temperatura absoluta final do Frasco (Tf)	298	K	Temperatura absoluta final do Frasco (Tf)	298	K
Resultados de Análise			Resultados de Ana	álise		Resultados de An	álise		Resultados de An	iálise	
Massa Total de NOx (m _{NOx}) 384,382 µg		μg	Massa Total de NOx (m _{NOx})	391,731	μg	Massa Total de NOx (m _{NOx})	383,746	μg	Massa Total de NOx (m _{NOx})	387,969	μg
Cert Ensaio Nº	230.738	/ 230.771	Cert Ensaio N°	230.739	/ 230.771	Cert Ensaio Nº	230.740	/ 230.771	Cert Ensaio Nº	230.741	/ 230.771
Cálculo do Volume amostrado			Cálculo do Volume amostrado		Cálculo do Volume amostrado		Cálculo do Volume amostrado				
Volume da amostra nas condições normais, base seca (Van)	1045,68	mL	Volume da amostra nas condições normais, base seca (Van)	1042,38	mL	Volume da amostra nas condições normais, base seca (Van)	1055,75	mL	Volume da amostra nas condições normais, base seca (Van)	1055,75	mL
Cálculo da Concentração de NOX			Cálculo da Concentração de NOX		Cálculo da Concentração de NOX		Cálculo da Concentração de NOX				
Concentração de NOx nas condições normais, base seca (C _{NOx})	367,589	mg/Nm ³	Concentração de NOx nas condições normais, base seca (C _{NOx})	375,804	mg/Nm ³	Concentração de NOx nas condições normais, base seca (C _{NOx})	363,482	mg/Nm ³	Concentração de NOx nas condições normais, base seca (C _{NOx})	367,482	mg/Nm ³
Cálculo da Taxa de Emissão de NOx		Cálculo da Taxa de Emis	são de NC	λ	Cálculo da Taxa de Emis	são de NC)x	Cálculo da Taxa de Emis			
Vazão (Vaecnbs)	907464	Nm ³ /h	Vazão (Vaecnbs)	907464	Nm ³ /h	Vazão (Vaecnbs)	907464	Nm ³ /h	Vazão (Vaecnbs)	907464	Nm ³ /h
Taxa de Emissão de NOx (Te _{NOx})	333,574	Kg/h	Taxa de Emissão de NOx (Te _{NOx})	341,029	Kg/h	Taxa de Emissão de NOx (Te _{NOx})	329,847	Kg/h	Taxa de Emissão de NOx (Te _{NOx})	333,477	Kg/h

Van = ((273*(Vf-Va))/760)*((Pf/Tf)-(Pi/Ti))

 $C_{NOx} = (m_{NOx}/Van)*1000$

Te_{NOx} = C_{NOx} * Vaecnbs * 10⁻⁶