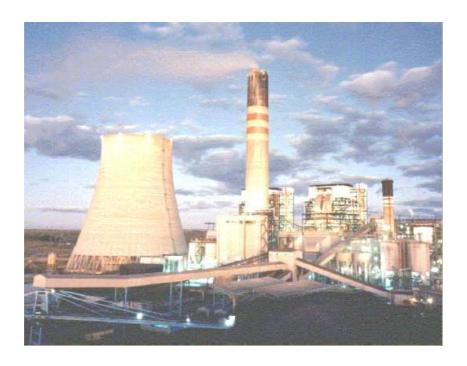
RELATÓRIO DE ENSAIO 226.526 / 2011

AMOSTRAGEM DE CHAMINÉS

ISATEC


EMPRESA: CIA. GERAÇÃO TÉRMICA DE ENERGIA ELÉTRICA – CGTEE

Candiota - RS

PROCESSO: Caldeira I com Turbogerador II.

DATA: 06 de Setembro de 2011.

AMOSTRAGEM E DETERMINAÇÃO DE MATERIAL PARTICULADO, NO $_{\rm X}$, SO $_{\rm 2}^{-}$, NÉVOAS DE SO $_{\rm 3}^{-}$ E H $_{\rm 2}$ SO $_{\rm 4}$

EMPRESA: CGTEE – COMPANHIA DE GERAÇÃO TÉRMICA DE ENERGIA ELÉTRICA

Usina Presidente Medici Candiota – RS

LOCAL: Caldeira I com Turbogerador II.

DATA: 06 de Setembro de 2011.

1. OBJETIVO

Realizar Amostragens no efluente gasoso proveniente da queima de carvão da Caldeira I para determinar a Concentração e Taxa de Emissão de Material Particulado, NO_X, SO₂, névoas de SO₃ e H₂SO₄.

2. METODOLOGIA DE COLETA E ANÁLISE

As coletas de amostras e determinações foram executadas conforme normas da EPA (Environmental Protection Agency - USA), da CETESB (Companhia de Tecnologia e Saneamento Ambiental de São Paulo) e da ABNT (Associação Brasileira de Normas Técnicas).

Os métodos observados foram os seguintes:

- Determinação de pontos de Amostragem em DCFE (Duto ou Chaminé de Fonte Estacionária) CETESB L9.221 Jul/90 # EPA Method 1 Fev/2000 # NBR 10701 Jul/89
- Determinação da velocidade e da vazão dos gases em DCFE CETESB – L9.222 – Mai/92 # EPA – Method 2 – Fev/2000 # NBR 11966 – Jul/89
- Determinação da massa molecular seca do fluxo de gases em DCFE CETESB – L9.223 – Jun/92 # EPA – Method 3 – Ago/03# NBR 10702 – Jul/89
- Determinação da umidade dos efluentes em DCFE

 CETESB L9.224 Ago/30 # EPA Method 4 Fev/2000 # NBR 11967 Jul/89
- Determinação de material particulado em DCFE CETESB – L9.217 – Nov/89 # EPA – Method 17 – Fev/2000 # NBR 12827 – Set/93
- Determinação de SO₂ e névoas de SO₃ e H₂SO₄ em DCFE
 CETESB L9.228 Jun / 92 # EPA Method 8– Fev/2000 # NBR 12021 Dez / 90
- Determinação de NO_x em DCFE CETESB – L9.229 – Out/92 # EPA – Method 7– Fev/2000

3. EQUIPAMENTOS DE AMOSTRAGEM:

- Coletor isocinético de Poluentes Atmosféricos CIPA Energética
- Analisador de Combustão e Monitor Ambiental de Emissões Tempest 50

4. DADOS DA CHAMINÉ/DUTO:

Formato da chaminé/duto: Circular

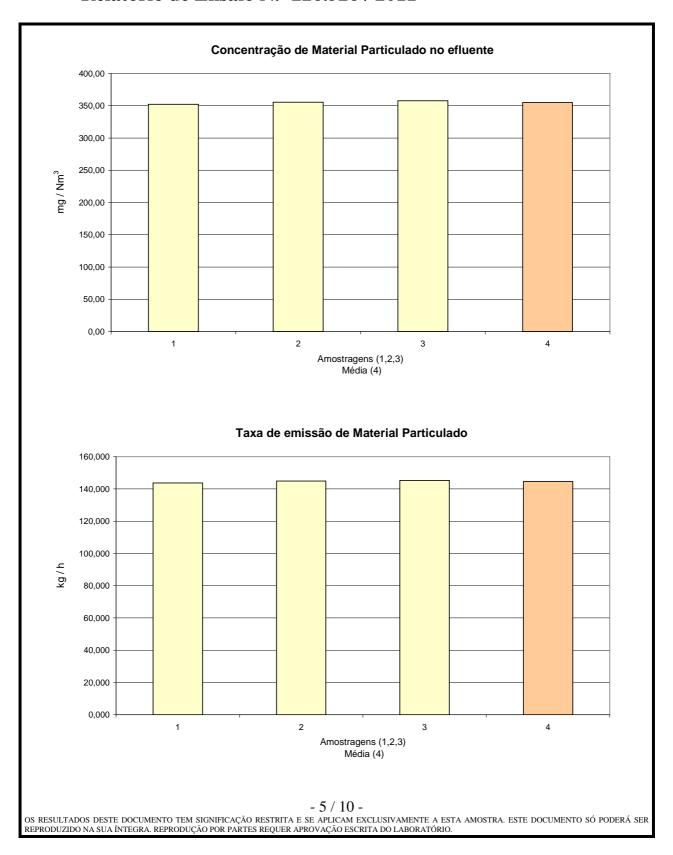
Diâmetro da Chaminé: 4,77 m

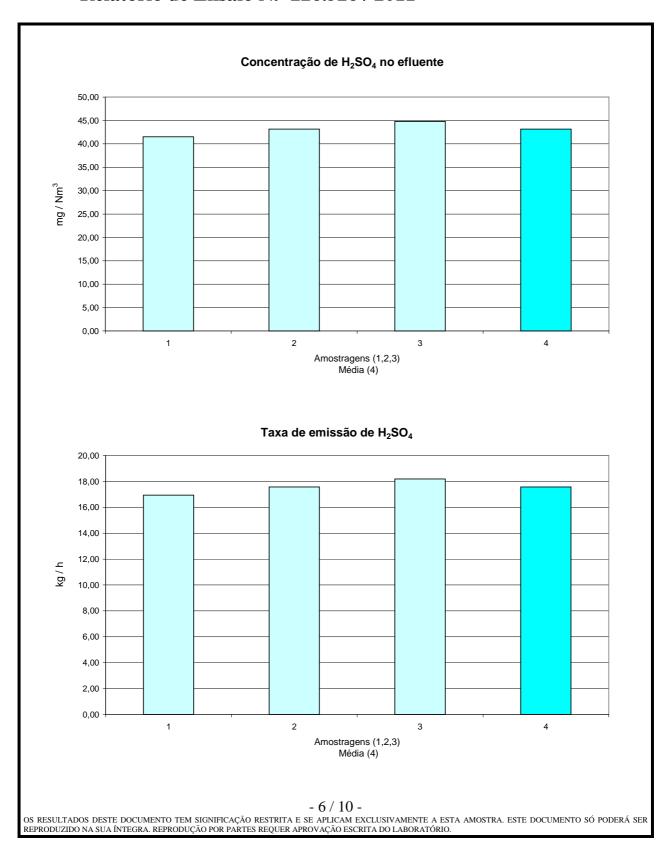
➤ Distância após o ponto de amostragem até o acidente mais próximo > 2 Diâmetros

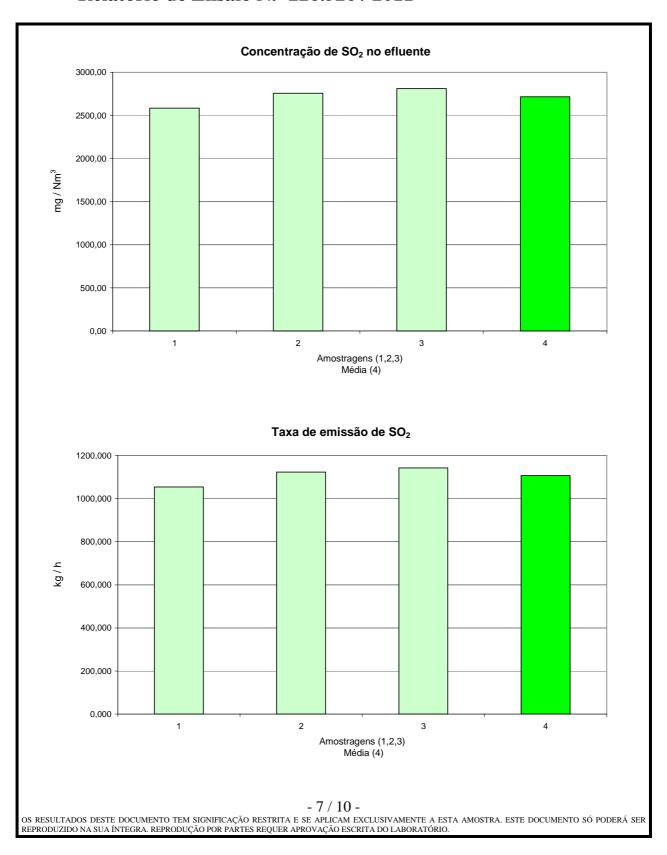
Distância antes do ponto de amostragem até o acidente mais próximo > 8 Diâmetros

Número de pontos da seção transversal:
06 pontos

5. CONDIÇÕES OPERACIONAIS E DE COLETA

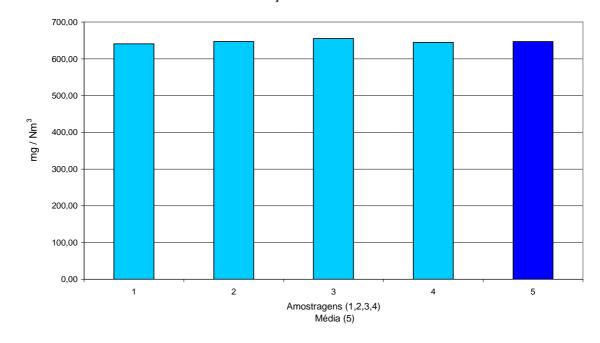

- Durante o período das medições, a Unidade funcionou, segundo informações da Empresa, nas condições usuais de trabalho.
- As coletas e medições foram realizadas utilizando-se um equipamento completo para amostragens de gases e particulados.
- As análises químicas foram realizadas nos laboratórios da ISATEC Rio Grande/RS.
- Os trabalhos de coleta e medição foram realizados pelos técnicos da ISATEC na presença de representantes da CGTEE.
- A preparação dos filtros e frascos lavadores, bem como a recuperação das amostras foram realizados nas dependências da CGTEE.
- Os resultados desta amostragem são válidos para o dia e condições operacionais praticados nesta ocasião.

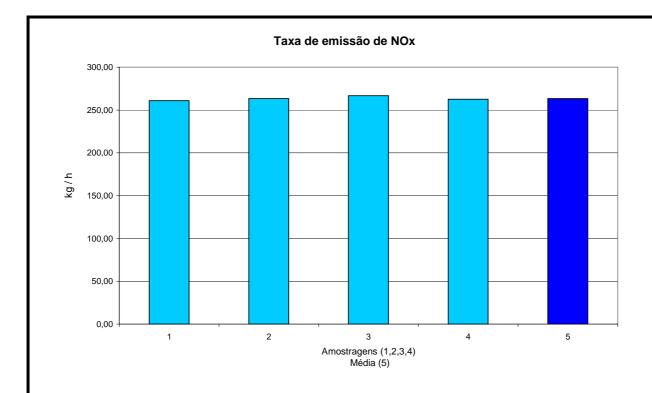

6. RESULTADOS


6.1. RESULTADOS DE MATERIAL PARTICULADO E SOX

			AMOS	STRAS	
		1	2	3	Média
Dia da Amostragem	d:m:a	06/09/11	06/09/11	06/09/11	-
Hora início da amostragem	h:min	14:15	16:25	18:20	-
Hora de término da amostragem	h:min	15:20	17:30	19:25	
Tempo de amostragem	min	60	60	60	-
Temperatura da chaminé	°C	106,2	106,5	105,8	106,1
Pressão na chaminé	"Hg	29,50	29,50	29,43	29,47
Pressão no medidor de gas	"Hg	29,69	29,69	29,62	29,67
Volume agua nas condições de chaminé	ft ³	3,35	3,30	3,34	3,33
Volume gases medido nas condições chaminé	ft ³	50,50	50,41	50,28	50,39
Proporção vol. vapor d'agua nos gases chaminé		0,062	0,061	0,062	0,062
Peso molecular base úmida		29,214	29,228	29,215	29,219
Velocidade na chaminé	ft / min	1875,35	1872,48	1869,56	1872,46
Velocidade na chaminé	m/s	9,53	9,51	9,50	9,51
Área da Boquilha	ft ²	0,00048	0,00048	0,00048	0,00048
Isocinetismo	%	100,64	100,53	100,52	100,57
Área da Chaminé	m ²	17,8701	17,8701	17,8701	17,8701
Vazão do efluente nas condições da chaminé	m ³ /h	612880,10	611942,45	610988,33	611936,96
Vazão do efluente nas condições normais, base seca	Nm ³ / h	407997,80	407372,70	406189,46	407186,65
Volume amostrado nas condições normais, base seca	Nm ³	1,0154	1,0127	1,0096	1,0126
Concentração de Material Particulado no efluente	mg / Nm ³	352,19	355,48	357,57	355,08
Taxa de emissão de Material Particulado	kg / h	143,693	144,815	145,240	144,582
Concentração de H₂SO₄ no efluente	mg / Nm ³	41,52	43,14	44,79	43,149
Taxa de emissão de H ₂ SO ₄	kg / h	16,940	17,574	18,192	17,569
Concentração de SO ₂ no efluente	mg / Nm ³	2583,73	2757,69	2812,19	2717,87
Taxa de emissão de SO ₂	kg / h	1054,158	1123,409	1142,283	1106,617

-4/10- os resultados deste documento tem significação restrita e se aplicam exclusivamente a esta amostra. Este documento só poderá ser reproduzido na sua íntegra. Reprodução por partes requer aprovação escrita do laboratório.




6.2. RESULTADOS DE NOX

				Amostras		
		1	2	3	4	Média
Vazão média do efluente	Nm ³ /h			407186,7		
Concentração de NO _X no efluente	mg / Nm ³	640,7140	646,8750	655,0890	644,8210	646,87
Taxa de emissão de NO _X	kg/h	260,8902	263,3989	266,7435	262,5625	263,399

Concentração de NOx no efluente

-8/10 - os resultados deste documento tem significação restrita e se aplicam exclusivamente a esta amostra. Este documento só poderá ser reproduzido na sua íntegra. Reprodução por partes requer aprovação escrita do laboratório.

ANEXOS

Em anexo se encontram as seguintes folhas:

- Planilhas de Preparação e Retomada do Material de Coleta
- Folhas de Amostragem de Campo
- Planilhas de Cálculo das amostragens de chaminé
- > AFT Anotação de função técnica do responsável.

- 9 / 10 -

OS RESULTADOS DESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A ESTA AMOSTRA. ESTE DOCUMENTO SÓ PODERÁ SER REPRODUZIDO NA SUA ÍNTEGRA. REPRODUÇÃO POR PARTES REQUER APROVAÇÃO ESCRITA DO LABORATÓRIO.

Di- Cdo Ac Ac A
Rio Grande, 06 de Outubro de 2011.
RODRIGO R. DAVESAC D.Sc
CRQ n° 05301819
Gerente
- 10 / 10 -
OS RESULTADOS DESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A ESTA AMOSTRA. ESTE DOCUMENTO SÓ PODERÁ SER REPRODUZIDO NA SUA ÍNTEGRA. REPRODUÇÃO POR PARTES REQUER APROVAÇÃO ESCRITA DO LABORATÓRIO.

ANEXOS	

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACION PLANILHA 1 - PLANILHA DE AMOSTRAGEM DE CAMPO - AMOSTRAGEM 1

		PRESA			LOCAL			ATA	NUMER	
		GTEE			Caldeira 1	In n		09/11		
		stragem de		Duto		Pressão Baron		Duração da am		
MP	SOx			4,77	m	29,57	pol Hg) minutos	
	Amostrador		K	Boquilha		FCM	Ср	Início	14:15	
I	Luiz Zolair		7,25	7,5	mm	1,01	0,852	Fim	15:20	
DOI TO	Tempo	Distância	ΔΡ	Pressão	ΔΗ	•	ura Medidor	Temperatura	Medidor	
PONTO		do ponto		Estática		Entrada	Saida	Chaminé	Gases	
	min	cm	pol H2O	pol H2O	pol H2O	°C	°C	°C	ft3	
1	5	21,0	0,22	-	1,60	16	14	106	4,220	
2	5	69,6	0,23	-0,95	1,67	19	15	106	-	
3	5	141,2	0,25	-	1,81	21	16	106	-	
4	5	335,8	0,25	-1,00	1,81	23	17	106	-	
5	5	407,4	0,23	-	1,67	25	18	106	-	
6	5	456,0	0,22	-0,95	1,60	27	19	106	23,370	
7	-	-	-	-	-	-	-	-	-	
8	-	-	-	-	-	-	-	-	-	
9	-	-	-	_	-	-	_	-	-	
10	-	-	-	-	-	-	-	-	-	
11	-	-		-	-	-	-	-	-	
12	_	-	=	_	-	-	-	-	_	
1	5	21,0	0,22	-	1,60	26	19	106	23,370	
2	5	69,6	0,23	-0,97	1,67	28	20	106		
3	5	141,2	0,25	_	1,81	29	21	106		
4	5	335,8	0,24	-1,00	1,74	30	22	106		
5	5	407,4	0,23	_	1,67	31	23	107		
6	5	456,0	0,22	-0,97	1,60	32	24	107	42,910	
7	_	-	_	_	_	_	_	_	_	
8	_	-	_	_	_	_	_	_	_	
9	_	-	_	_	_	_	_	_	_	
10	_	-	_	_	_	_	_	_	_	
11	_	-	-	_	-	_	-	-	-	
12	_	_	_	_	_	_	_	_	_	
									42,910	
ÉDIA	60	-	0,233	-0,973	1,686	25,6	19,0	106,2	38,690	
onitorament	tos						Identi	ficação dos equip	amentos	
mperatura d	o Forno (°C	C)	-	-	_	-	Barômetro		EA 074	
emperatura S		,	_	_	_	_	Cronômetro		EA 135	
mperatura b			13	15	16	17	Sonda Rígida	<u> </u>	EA 026	
			-	•			Coluna U		EA 010	
							Termopar Cl	naminé	EA 069	
este de Vaza	mento do	trem					Aparelho	<u> </u>	EA 001	
Iníci		OK	Fim	OK	7		Pitot		P 11	
mich	-				41		Boquilha		7,5	
este de Vaza	mento do l	Pitot					1		1 . ,-	
Início		OK	Fim	OK	7					
				JII.	1					
		ura antes da a		To as	II-				la	
Tempe	ratura Aml	piente	17	°C	Temperatura no Gasometro entrada 14 °C					
					I emperatura r	no Gasometro sa	ida	14	°C	

^{*} Diferença entre a temperatura ambiente e temperatura no gasômetro seco entrada: Máximo 6°C os resultados contidos neste documento tem significação restrita e se aplicam exclusivamente a amostra IST/ENAM -E-0004 Rev 02-Plan01

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁF / S A T E C

Identificação da Balança	EMPRESA CGTEE			LOC Calde			ATA /09/11	NÚMERO 1
Componentes	rificação da Bala	ança					Responsável	Luiz Zolair
Número dos Borbulhadores Volume(mL) Solução Absorvente Tara (g) Final (g) Diferença (g)	Identificação d	la Balança	EA 015	Peso Padrão	500 g			
Número dos Borbulhadores Volume(mL) Solução Absorvente Tara (g) Final (g) Diferença (g) 1 200 Alccol isopropilico 80% 600.97 604.71 3.74 2 200 H202 5% 750.28 788.84 38.56 3 200 H202 5% 745.81 747.73 1.92 4 - Silica Gel 710.65 720.61 9.96 5 - - - - - 6 - - - - - 7 - - - - - 8 - - - - - 8 - - - - - 8 - - - - - - Composição do Gases Responsável Entitude Mentificação do analisador de gases EA 018 Peso PM X % Componentes 1° 2° 3° MÉDIA Molecular	Identificação do Peso Padrão EA 073				499,9g <	500,02	<500,1 g	
Solução Absorvente	rbulhadores						Responsável	Luiz Zolair
2 200 H2O2 5% 750,28 788,84 38,56 3 200 H2O2 5% 745,81 747,73 1,92 4 - Silica Gel 710,65 720,61 9,96 5 - - - - - 6 - - - - - 7 - - - - - 8 - - - - - TOTAL 2807,71 2861,89 54,18 Composição do Gases Responsável Componentes Peso MOECular Peso MECular 02 9,8 9,7 9,8 9,8 32 3,1 CO 0,0 0,0 0,0 0,0 28 0,0 CO2 9,8 9,8 9,8 9,8 44 4,3 N2 80,4 80,5 80,4 80,4 80,4 28 22		Volume(mL)	Soluçã	o Absorvente	Tara (g)	Final (g)	Diferença (g)	
2 200 H2O2 5% 750,28 788,84 38,56 3 200 H2O2 5% 745,81 747,73 1,92 4 - Silica Gel 710,65 720,61 9,96 5 - - - - - 6 - - - - - 7 - - - - - 8 - - - - - TOTAL 2807,71 2861,89 54,18 Composição do Gases Responsável Lini Componentes 1° 2° 3° MÉDIA Molecular 02 9,8 9,7 9,8 9,8 32 3,1 CO 0,0 0,0 0,0 0,0 28 0,0 CO2 9,8 9,8 9,8 9,8 44 4,3 N2 80,4 80,5 <t< td=""><td>1</td><td>200</td><td>Alccol is</td><td>opropilico 80%</td><td>600,97</td><td>604,71</td><td>3,74</td><td>1</td></t<>	1	200	Alccol is	opropilico 80%	600,97	604,71	3,74	1
A	2	200						
S	3	200			745,81	747,73	1,92	
6 -	4	-	Si	ilica Gel	710,65	720,61	9,96	
7 -	5	-		-	-	-	-	1
TOTAL 2807,71 2861,89 54,18	*	-		-	-	-	-	
Composição do Gases EA 018 EA 018		-		-	-		-	
Composição do Gases EA 018 Componentes To 2º 3º MÉDIA Molecular O2 9,8 9,7 9,8 9,8 32 3,1 O2 9,8 9,8 9,8 9,8 32 3,1 O3 O4 O5 O5 O5 O5 O5 O5 O5	8	-		-				4
Componentes		TOTAL			2807,71	2861,89	54,18	
Componentes 1° 2° 3° MÉDIA Molecular O2 9,8 9,7 9,8 9,8 32 3,1 CO 0,0 0,0 0,0 28 0,0 CO2 9,8 9,8 9,8 44 4,3 N2 80,4 80,5 80,4 80,4 28 22,5 PESO MOLECULAR SECO = Pms = 29,96 Resultados dos Ensaios de Laboratório Responsável 0,0167 g de MP Certificado nº 226.526 42,16 mg de H2SO4 Certificado nº 226.529; 226.575 2623,43 mg de SO2 Certificado nº 226.532; 226.576				EA 018]		Responsável	Luiz Zolair
O2 9,8 9,7 9,8 9,8 32 3,1			AMOSTR	AS		Peso	PM X %	1
CO 0,0 0,0 0,0 0,0 28 0,0 CO2 9,8 9,8 9,8 9,8 44 4,3 N2 80,4 80,5 80,4 80,4 28 22,5 PESO MOLECULAR SECO = Pms = 29,96 Resultados dos Ensaios de Laboratório Responsável LAI 0,0167 g de MP Certificado nº 226.526 42,16 mg de H2SO4 Certificado nº 226.529; 226.575 2623,43 mg de SO2 Certificado nº 226.532; 226.576	Componentes	1°			MÉDIA	Molecular		
CO2 9,8 9,8 9,8 9,8 44 4,3 N2 80,4 80,5 80,4 80,4 28 22,5 PESO MOLECULAR SECO = Pms = 29,96 Resultados dos Ensaios de Laboratório Responsável LAI 0,0167 g de MP Certificado nº 226.526 42,16 mg de H2SO4 Certificado nº 226.529; 226.575 2623,43 mg de SO2 Certificado nº 226.532; 226.576	O_2	9,8	9,7	9,8	9,8	32	3,1	1
N2 80,4 80,5 80,4 80,4 28 22,5 PESO MOLECULAR SECO = Pms = Resultados dos Ensaios de Laboratório Responsável 0,0167 g de MP Certificado nº 226.526 42,16 mg de H2SO4 Certificado nº 226.529; 226.575 2623,43 mg de SO2 Certificado nº 226.532; 226.576	CO	0,0	0,0	0,0	0,0	28	0,0	1
PESO MOLECULAR SECO = Pms = 29,96 Resultados dos Ensaios de Laboratório Responsável LAI 0,0167 g de MP Certificado nº 226.526 42,16 mg de H2SO4 Certificado nº 226.529; 226.575 2623,43 mg de SO2 Certificado nº 226.532; 226.576	CO ₂	9,8			9,8	44	4,3	
Resultados dos Ensaios de Laboratório Responsável LAI 0,0167 g de MP Certificado nº 226.526 42,16 mg de H2SO4 Certificado nº 226.529; 226.575 2623,43 mg de SO2 Certificado nº 226.532; 226.576	N_2	80,4	80,5	80,4	80,4	28	22,5	
0,0167 g de MP Certificado nº 226.526 42,16 mg de H2SO4 Certificado nº 226.529; 226.575 2623,43 mg de SO2 Certificado nº 226.532; 226.576			PESO MOL	ECULAR SECO = 1	Pms =		29,96	
42,16 mg de H2SO4 Certificado nº 226.529; 226.575 2623,43 mg de SO2 Certificado nº 226.532; 226.576	sultados dos Ens	saios de Labora	atório				Responsável	LABAN
42,16 mg de H2SO4 Certificado n° 226.529; 226.575 2623,43 mg de SO2 Certificado n° 226.532; 226.576	0.0167	n	de	MP	Certificado nº	22	6.526	7
2623,43 mg de SO2 Certificado nº 226.532; 226.576								1
								1
Resultados das Pesagens de Material Particulado Responsável Luiz			rial Particulad	0			Responsável	Luiz Zolair
Elemento Filtrante N° Tara (g) Final (g) Diferença (g)	Elemento F	iltrante	N°	Tara (g)	Final (g)	Diferenca (g)	7	
						·	1	
Ciclone	Capsu			_	_		⊣ I	
Total 0,3409	Capsu Filtro		_	_	_	_		

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIAS PLANILHA 3 - PLANILHA DE CÁLCULO DE AMOSTRAGEM - AMOSTRAGEM I

EMPRESA					LOCAL		DAT		NÚ	MERO
CGTEE			Caldeira 1			06/09/11		1		
(g) MH ₂ O =	54,180	(R) Tc =	683,10	("Hg)Patm=	29,570	("H ₂ 0)Pest=	-0,973	(mm) Θb =	7,50	
(R) Tm =	532,13	$("H20)\Delta H=$	1,686	$(ft^3) Vm =$	38,690	Cp =	0,852	(m) ΘC =	4,77	
FCM =	1,01	Pms =	29,959	$("H_20)\Delta P^{1/2}=$	0,482	(min) @ =	60			
(mg)MP =	357,600	(mg)H2SO4 =	42,158	(mg)SO2 =	2623,425		·			

Pc =	Pressão na chaminé	29,498	"Hg	Pc = Patm + Pest / 13,6
Pm =	Pressão no medidor de gas	29,694	"Hg	$Pm = Patm + \Delta H / 13,6$
Vacc =	Volume agua nas condições de chaminé	3,355	ft ³	$Vacc = (MH_20 * Tc) / (374 * Pc)$
Vmcc =	Volume gases medido nas condições chaminé	50,496	ft ³	Vmcc = (Vm * Tc * Pm * FCM) / (Tm * Pc)
Pvva =	Proporção vol. vapor'agua nos gases chaminé	0,062		Pvva = Vacc / (Vacc + Vmcc)
Pmu =	Peso molecular base úmida	29,214		Pmu = Pms * (1 - Pvva) + (18 * Pvva)
Vc =	Velocidade na chaminé	1875,347	ft / min	$Vc = 5128,8*Cp*[(Tc)/(Pc*Pmu)]^{1/2}*\Delta P^{1/2}$
Vc 1 =	Velocidade na chaminé	9,527	m/s	$Vc_1 = Vc * 0,00508$
Ab =	Área da Boquilha	0,000476	ft^2	$Ab = (\Theta b / 25,4)^2 / 183,35$
I =	Isocinetismo 90 < I < 110	100,64	%	I = [(Vmcc + Vacc) / (@ * Ab * Vc)] * 100
Ac =	Área da Chaminé	17,8701	m^2	$Ac = \Theta c^2 * 0.7854$
Vaecc =	Vazão do efluente nas condições da chaminé	612880,105	m^3/h	Vaecc = Ac * Vc * 18,288
Vaecnbs =	Vazão do efluente nas condições normais, base seca	407997,802	Nm^3/h	Vaecnbs = [Vaecc * Pc * (1-Pvva)*16,44]/Tc
Vmcnbs =	Volume amostrado nas condições normais, base seca	1,015	Nm^3	Vmcnbs = (Vm * Pm * FCM) / (Tm * 2,1476)
C MP=	Concentração de Material Particulado no efluente	352,19	mg / Nm ³	C MP= MP / Vmcnbs
Te MP=	Taxa de Emissão de Material Particulado	143,693	Kg/h	Te MP=(C MP * Vaecnbs) / 1000000
C H2SO4=	Concentração de H2SO4 no efluente	41,52	mg / Nm ³	C H2SO4= H2SO4 / Vmcnbs
Te H2SO4=	Taxa de Emissão de H2SO4	16,940	kg/h	Te H2SO4=(C H2SO4 * Vaecnbs) / 1000000
C SO2=	Concentração de SO2 no efluente	2583,73	mg / Nm ³	C SO2= SO2 / Vmcnbs
Te SO2=	Taxa de Emissão de SO2	1054,158	kg/h	Te SO2=(C SO2 * Vaecnbs) / 1000000

OBSERVAÇÕES:

OS RESULTADOS CONTIDOS NESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A AMOSTRA

IST/ENAM -E-0004 Rev 02-Plan03

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁ PLANILHA 4 - PLANILHA DE AMOSTRAGEM DE CAMPO AMOSTRAGEM 2

		PRESA CGTEE			LOCAL Caldeira 1			ATA 5/09/11	NUMERO 2
	Amo	stragem de		Duto		Pressão Baror	nétrica	Duração da am	ostragem
MP	SOx			4,77	m	29,57	pol Hg	60	minutos
A	Amostrador		K	Boquilha		FCM	Ср	Início	16:25
I	Luiz Zolair		7,25	7,5	mm	1,01	0,852	Fim	17:30
PONTO	Tempo Distância do ponto		ΔΡ	Pressão Estática	ΔН	Temperat Entrada	ura Medidor Saida	Temperatura Chaminé	Medidor Gases
	min	cm	pol H2O	pol H2O	pol H2O	°C	°C	°C	ft3
1	5	21,0	0,22	_	1,60	19	16	107	43,490
2	5	69,6	0,23	-0,97	1,67	22	17	107	-
3	5	141,2	0,25	-	1,81	25	18	106	_
4	5	335,8	0,24	-1,00	1,74	27	19	106	_
5	5	407,4	0,23	-	1,67	29	20	106	_
6	5	456,0	0,22	-0,97	1,60	31	21	106	62,780
7	-	-	-	-0,57	-	-	-	-	-
8	<u> </u>	_		_	_	_	_	_	_
9		_	<u>-</u>	_		_			_
10		-	<u>-</u> -	_	-	_	_	-	<u> </u>
11		-	<u>-</u>	_	-	-	-	-	-
12	 	_	-		-	-			_
									62.790
1	5	21,0	0,22	-	1,60	30	21	106	62,780
2	5	69,6	0,23	-0,99	1,67	32	22	106	
3	5	141,2	0,25	-	1,81	33	23	107	
4	5	335,8	0,24	-1,00	1,74	34	24	107	
5	5	407,4	0,23	-	1,67	35	25	107	
6	5	456,0	0,22	-0,99	1,60	36	26	107	82,460
7	-	-	-	-	-	-	-	-	-
8	-	-	-	-	-	-	-	-	-
9	-	-	-	-	-	-	-	-	-
10	-	-	-	-	-	-	-	-	-
11	-	-	-	-	-	-	-	-	-
12	-	-	-	-	-	-	-	-	-
/									82,460
IÉDIA	60	-	0,232	-0,987	1,680	29,4	21,0	106,5	38,970
<u>lonitorament</u>				1	T		7	ficação dos equip	
emperatura d			-	-	-	-	Barômetro		EA 074
emperatura S			-	-	-	-	Cronômetro		EA 135
emperatura b	orbulhador	es(°C)	12	13	15	17	Sonda Rígida	l	EA 026
							Coluna U		EA 010
							Termopar Ch	naminé	EA 069
este de Vaza					-		Aparelho		EA 001
Iníci	0	OK	Fim	OK			Pitot		P 11
							Boquilha		7,5
este de Vaza	mento do l	Pitot							
Início		OK	Fim	OK					
		ura antes da a	mostragem *	°C	Temperature n	o Gasometro er	ntrada		°C
Tempe	eratura Aml	nente	-	10		io Gasometro sa		-	°C
Diforance on					remperatura n		ıud		C

^{*} Diferença entre a temperatura ambiente e temperatura no gasômetro seco entrada: Máximo 6°C os resultados contidos neste documento tem significação restrita e se aplicam exclusivamente a amostra IST/ENAM -E-0004 Rev 02-Plan04

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁ / S A T E C

	EMPRESA CGTEE		LOC Calde			ATA /09/11	NÚMERO 2
[/] erificação da Ba	lança					Responsável	Luiz Zolair
Identificação	da Balança	EA 015	Peso Padrão	500 g			_
Identificação do Peso Padrão		Valor indicado na balança		499,9g <	-	<500,1 g	
Borbulhadores						Responsável	Luiz Zolair
Número dos Borbulhadores	Volume(mL)	Solução	Absorvente	Tara (g)	Final (g)	Diferença (g)	
1	200	Alccol ison	propilico 80%	581,26	584,83	3,57	
2	200	H2O2 5%		721,86	760,13	38,27	
3	200	H2O2 5%		733,29	735,36	2,07	
4	-	Sili	ca Gel	721,47	730,81	9,34	
5	-		-	-	-	-	4
6	-		-	-	-	-	
7	-	-		_	_	_	
-	1					1	-
8 Composição do G	TOTAI		-	2757,88	2811,13	53,25 Responsável	Luiz Zolair
	TOTAL		EA 018		2811,13	53,25 Responsável	Luiz Zolair
Composição do G	TOTAI ases alisador de gases	AMOSTRA	EA 018	2757,88	2811,13 Peso	53,25	Luiz Zolair
Composição do G dentificação do an Componentes	TOTAL	AMOSTRA 2°	EA 018		2811,13	53,25 Responsável	Luiz Zolair
Composição do G	TOTAI ases alisador de gases	AMOSTRA	EA 018 .S .3°	2757,88 MÉDIA	Peso Molecular	53,25 Responsável PM X %	Luiz Zolair
Composição do G dentificação do an Componentes O ₂	ases alisador de gases 1° 9,7	AMOSTRA 2° 9,7	EA 018 .S .9,8	2757,88 MÉDIA 9,7	Peso Molecular 32	- 53,25 Responsável PM X %	Luiz Zolair
Composição do G dentificação do an Componentes O ₂ CO	ases alisador de gases 1° 9,7 0,0	AMOSTRA 2° 9,7 0,0	EA 018 S 3° 9,8 0,0	2757,88 MÉDIA 9,7 0,0	Peso Molecular 32 28	- 53,25 Responsável PM X % 3,1 0,0	Luiz Zolair
Composição do Gentificação do an Componentes O ₂ CO CO ₂	1° 9,7 0,0 9,9	AMOSTRA 2° 9,7 0,0 9,8 80,5	EA 018 S 3° 9,8 0,0 9,8	MÉDIA 9,7 0,0 9,8 80,4	Peso Molecular 32 28 44	- 53,25 Responsável PM X % 3,1 0,0 4,3	Luiz Zolair
Composição do Gentificação do an Componentes O ₂ CO CO ₂	1° 9,7 0,0 9,9 80,4	AMOSTRA 2° 9,7 0,0 9,8 80,5 PESO MOLEO	EA 018 S 9,8 0,0 9,8 80,4	MÉDIA 9,7 0,0 9,8 80,4	Peso Molecular 32 28 44	- 53,25 Responsável PM X % 3,1 0,0 4,3 22,5	Luiz Zolair
Composição do Gentificação do an Componentes O ₂ CO CO ₂ N ₂	1° 9,7 0,0 9,9 80,4	AMOSTRA 2° 9,7 0,0 9,8 80,5 PESO MOLEO	EA 018 S 9,8 0,0 9,8 80,4	MÉDIA 9,7 0,0 9,8 80,4	Peso Molecular 32 28 44 28	PM X % 3,1 0,0 4,3 22,5 29,96	
Composição do an Componentes O ₂ CO CO ₂ N ₂ Resultados dos En	1° 9,7 0,0 9,9 80,4	AMOSTRA 2° 9,7 0,0 9,8 80,5 PESO MOLEO	EA 018 S 9,8 0,0 9,8 80,4 CULAR SECO =	MÉDIA 9,7 0,0 9,8 80,4 Pms =	Peso Molecular 32 28 44 28	- 53,25 Responsável PM X % 3,1 0,0 4,3 22,5 29,96 Responsável	
Composição do an Componentes O ₂ CO CO ₂ N ₂ Acesultados dos En	1° 9,7 0,0 9,9 80,4	AMOSTRA 2° 9,7 0,0 9,8 80,5 PESO MOLEO atório de	EA 018 S 9,8 0,0 9,8 80,4 CULAR SECO =	MÉDIA 9,7 0,0 9,8 80,4 Pms =	Peso Molecular 32 28 44 28	- 53,25 Responsável PM X % 3,1 0,0 4,3 22,5 29,96 Responsável 6.527	
Composição do an Componentes O2 CO CO2 N2 Resultados dos En 0,0148 43,69	ases alisador de gases 1° 9,7 0,0 9,9 80,4 asaios de Labora g mg mg	AMOSTRA 2° 9,7 0,0 9,8 80,5 PESO MOLEO atório de de de de	EA 018 S 3° 9,8 0,0 9,8 80,4 CULAR SECO =	MÉDIA 9,7 0,0 9,8 80,4 Pms =	Peso Molecular 32 28 44 28	- 53,25 Responsável PM X % 3,1 0,0 4,3 22,5 29,96 Responsável 6.527 0; 226.575	
Composição do an Componentes O2 CO CO2 N2 Resultados dos E1 0,0148 43,69 2792,73	ases alisador de gases 1° 9,7 0,0 9,9 80,4 asaios de Labora g mg mg mg esagens de Mate	AMOSTRA 2° 9,7 0,0 9,8 80,5 PESO MOLEO atório de de de de	EA 018 S 3° 9,8 0,0 9,8 80,4 CULAR SECO =	MÉDIA 9,7 0,0 9,8 80,4 Pms =	Peso Molecular 32 28 44 28	- 53,25 Responsável PM X % 3,1 0,0 4,3 22,5 29,96 Responsável 6.527 0; 226.575 3; 226.576	LABAN
Composição do an Componentes O2 CO CO2 N2 Resultados dos En 0,0148 43,69 2792,73 Resultados das Persultados das Persul	ases alisador de gases 1° 9,7 0,0 9,9 80,4 asaios de Labora g mg mg mg esagens de Mate	AMOSTRA 2° 9,7 0,0 9,8 80,5 PESO MOLE atório de de de de de	EA 018 S 9,8 0,0 9,8 80,4 CULAR SECO = MP H2SO4 SO2	MÉDIA 9,7 0,0 9,8 80,4 Pms = Certificado nº Certificado nº Certificado nº	Peso Molecular 32 28 44 28 22 226.53	- 53,25 Responsável PM X % 3,1 0,0 4,3 22,5 29,96 Responsável 6.527 0; 226.575 3; 226.576	LABAN
Composição do an Componentes O2 CO CO2 N2 Resultados dos En 0,0148 43,69 2792,73 Resultados das Per Elemento	ases alisador de gases 1° 9,7 0,0 9,9 80,4 asaios de Labora g mg mg mg esagens de Mate	AMOSTRA 2° 9,7 0,0 9,8 80,5 PESO MOLE atório de de de de rial Particulado	EA 018 S 9,8 0,0 9,8 80,4 CULAR SECO = MP H2SO4 SO2	MÉDIA 9,7 0,0 9,8 80,4 Pms = Certificado n° Certificado n° Certificado n°	Peso Molecular 32 28 44 28 22 226.53 226.53	- 53,25 Responsável PM X % 3,1 0,0 4,3 22,5 29,96 Responsável 6.527 0; 226.575 3; 226.576	LABAN
Composição do Gentificação do an Componentes O2 CO CO2 N2 Resultados dos En 0,0148 43,69 2792,73 Resultados das Per Elemento Caps	TOTAI ases alisador de gases 1° 9,7 0,0 9,9 80,4 asaios de Labora g mg mg esagens de Mate	AMOSTRA 2° 9,7 0,0 9,8 80,5 PESO MOLE atório de de de de rial Particulado N° 2	EA 018 S 9,8 0,0 9,8 80,4 CULAR SECO = MP H2SO4 SO2 Tara (g) 63,5867	MÉDIA 9,7 0,0 9,8 80,4 Pms =	Peso Molecular 32 28 44 28 22 226.530 226.530 Diferença (g) 0,3452	- 53,25 Responsável PM X % 3,1 0,0 4,3 22,5 29,96 Responsável 6.527 0; 226.575 3; 226.576	LABAN

ISATEC

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIAS **PLANILHA 6 -** PLANILHA DE CÁLCULO DE AMOSTRAGEM - AMOSTRAGEM 2

	I LANLIIA 0 - FLANILIIA DE CALCO	20 22 111100 1101	OEM THIOSTI				
EMPRESA		LOCAL		DATA	NÚMERO		
	CGTEE	Caldeira 1		06/09/11	2		
	1			L			
(g) MH2O =	53,250 (R) Tc = 683,70 ("Hg)Patm=		("H20)Pest=	-0,987 (mm) Θb =	7,50		
(R) Tm =	537,38 (" H_2 0) ΔH = 1,680 (ft^3) Vm =	38,970	_	0,852 (m) ΘC =	4,77		
FCM =	1,01 Pms = $29,963$ ("H ₂ 0) $\Delta P^{1/2}$ =	0,481 ((min) @ =	60			
(mg)MP =	360,000 (mg) H2SO4 = 43,688 (mg) SO2 =	2792,725					
(F		1		ı			
Pc =	Pressão na chaminé	29,497	"Hg	Pc = Patm + Pest / 13,6			
Pm =	Pressão no medidor de gas	29,693	"Hg	$Pm = Patm + \Delta H / 13,6$			
Vacc =	Volume agua nas condições de chaminé	3,300	ft ³	$Vacc = (MH_20 * Tc) / (374 * Pc)$			
Vmcc =	Volume gases medido nas condições chaminé	50,410	ft ³	Vmcc = (Vm * Tc * Pm	* FCM) / (Tm * Pc)		
Pvva =	Proporção vol. vapor'agua nos gases chaminé	0,061		Pvva = Vacc / (Vacc + Vmcc)			
Pmu =	Peso molecular base úmida	29,228		Pmu = Pms * (1 - Pvva) + (18 * Pvva)			
Vc =	Velocidade na chaminé	1872,478	ft / min	$Vc = 5128,8*Cp*[(Tc)/(Pc*Pmu)]^{1/2}*\Delta P^{1/2}$			
Vc 1 =	Velocidade na chaminé	9,512	m/s	$Vc_1 = Vc * 0,00508$			
Ab =	Área da Boquilha	0,000476	ft^2	$Ab = (\Theta b / 25,4)^2 / 183,$	35		
I =	Isocinetismo 90 < I < 110	100,53	%	I = [(Vmcc + Vacc) / (@	* Ab * Vc)] * 100		
Ac =	Área da Chaminé	17,8701	m^2	$Ac = \Theta c^2 * 0,7854$			
Vaecc =	Vazão do efluente nas condições da chaminé	611942,446	m^3/h	Vaecc = Ac * Vc * 18,2	88		
Vaecnbs =	Vazão do efluente nas condições normais, base seca	407372,697	Nm^3/h	Vaecnbs = [Vaecc * Pc	* (1-Pvva)*16,44]/Tc		
Vmcnbs =	Volume amostrado nas condições normais, base seca	1,013	Nm^3	Vmcnbs = (Vm * Pm * I	FCM) / (Tm * 2,1476)		

mg / Nm³

Kg/h

 mg / Nm^3

kg/h

mg / Nm³

kg/h

C MP= MP / Vmcnbs

C SO2= SO2 / Vmcnbs

C H2SO4= H2SO4 / Vmcnbs

Te MP=(C MP * Vaecnbs) / 1000000

Te SO2=(C SO2 * Vaecnbs) / 1000000

Te H2SO4=(C H2SO4 * Vaecnbs) / 1000000

355,48

144,815

43,14

17,574

2757,69

1123,409

OBSERVAÇÕES:

C MP=

Te MP= C H2SO4=

C SO2=

Te SO2=

Te H2SO4=

OS RESULTADOS CONTIDOS NESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A AMOSTRA

Concentração de Material Particulado no efluente

Taxa de Emissão de Material Particulado

Concentração de H2SO4 no efluente

Concentração de SO2 no efluente

Taxa de Emissão de H2SO4

Taxa de Emissão de SO2

IST/ENAM -E-0004 Rev 02-Plan06

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁI ISA TEC PLANILHA 7 - PLANILHA DE AMOSTRAGEM DE CAMPO AMOSTRAGEM 3

		PRESA CGTEE			LOCAL Caldeira 1			ATA 5/09/11	NUMER 3
	Amo	stragem de		Duto		Pressão Baron	nétrica	Duração da am	ostragem
MP	SOx			4,77	m	29,50	pol Hg	60	minutos
A	Amostrador		K	Boquilha		FCM	Ср	Início	18:20
I	Luiz Zolair		7,25	7,5	mm	1,01	0,852	Fim	19:25
PONTO	Tempo	Distância do ponto	ΔΡ	Pressão Estática	ΔН	Temperat Entrada	ura Medidor Saida	Temperatura Chaminé	Medidor Gases
	min	cm	pol H2O	pol H2O	pol H2O	°C	°C	°C	ft3
1	5	21,0	0,22	_	1,60	22	19	106	82,950
2	5	69,6	0,23	-0,99	1,67	25	20	106	_
3	5	141,2	0,25	-	1,81	27	21	106	_
4	5	335,8	0,24	-1,00	1,74	29	22	106	_
5	5	407,4	0,23	-	1,67	31	23	106	_
6	5	456,0	0,22	-0,99	1,60	33	24	106	102,430
7	-	-	-	-0,55	-	-	-	-	-
8	<u> </u>	_		_	_	_	1 _	_	_
9	_	_		_		_	_		_
10	_	_		_	_	_	_	_	_
11	-	_	<u>-</u>	_	-	_	-	_	-
12	_	_	-		-				
1	5		0,21		1,52	32	24	106	
2		21,0		- 0.00	1				102,430
	5	69,6	0,23	-0,98	1,67	34	25	106	
3	5	141,2	0,25	- 1.00	1,81	35	26	106	
4	5	335,8	0,25	-1,00	1,81	36	27	105	
5	5	407,4	0,23		1,67	37	28	105	122 220
<u>6</u> 7	5	456,0	0,21	-0,98	1,52	38	29	105	122,230
	-	-	-	-	-	-	-	-	-
8	-	-	-	-	-	-	-	-	-
9	-	-	-	-	-	-	-	-	-
10	-	-	-	-	-	-	-	-	-
11	-	-	-	-	-	-	-	-	-
12	-	-	-	-	-	-	-	-	-
ÉDIA			0.221	0.000	1.674	21.6	24.0	105.0	122,230
ÉDIA onitorament	60	-	0,231	-0,990	1,674	31,6	24,0	105,8	39,280
		7)		ı .	<u> </u>	1	-1	ficação dos equip	
emperatura d	1	,	-	-	-	-	Barômetro		EA 074
emperatura S			- 12	- 15	- 1.0	- 10	Cronômetro		EA 135
emperatura b	orbulhador	es(°C)	13	15	16	18	Sonda Rígida	1	EA 026
							Coluna U	. ,	EA 010
							Termopar Cl	naminé	EA 069
este de Vaza					7		Aparelho		EA 001
Iníci	0	OK	Fim	OK			Pitot		P 11
4. 3. 37		D'4 - 4					Boquilha		7,5
este de Vaza		Pitot OK	Fim	OK	7				
Iníci				UK					
	_	ura antes da a	mostragem *	°C	Temperature :	no Gasometro er	itrada		°C
Tempe	ratura Aml	piente	-	Į C		io Gasometro en no Gasometro sa		-	°C
					r emperatura n		ıud	-	<u></u>

^{*} Diferença entre a temperatura ambiente e temperatura no gasômetro seco entrada: Máximo 6°C os resultados contidos neste documento tem significação restrita e se aplicam exclusivamente a amostra IST/ENAM -E-0004 Rev 02-Plan07

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁ / S A T E C

	EMPRESA CGTEE		LOC Calde			ATA 709/11	NÚMERO 3
verificação da Ba	lança					Responsável	Luiz Zolair
Identificação	da Balança	EA 015	Peso Padrão	500 g			
Identificação do	Peso Padrão	-	Valor indicado na balança	499,9g <	-	<500,1 g	
Borbulhadores						Responsável	Luiz Zolair
Número dos Borbulhadores	Volume(mL)	Solução	Absorvente	Tara (g)	Final (g)	Diferença (g)	
1	200	Alccol iso	propilico 80%	602,31	605,76	3,45	1
2	200		O2 5%	750,29	788,94	38,65	
3	200	H20	O2 5%	745,93	747,59	1,66	1
4	-	Sili	ca Gel	711,63	721,77	10,14	4
5	-		-	-	-	-	4
<u>6</u> 7	-		-	-	-	-	4
8	-		-	-	-	-	1
0				-	-		
Composição do G	ases			2810,16	2864,06	53,90 Responsável	Luiz Zolair
Composição do G	ases		EA 018	2810,16		Responsável	Luiz Zolair
	ases alisador de gases	AMOSTR <i>A</i>	S]	Peso	-11	Luiz Zolair
dentificação do an	alisador de gases	AMOSTRA 2°	aS 3°	MÉDIA	Peso Molecular	Responsável PM X %	Luiz Zolair
Componentes O ₂	alisador de gases 1° 9,8	AMOSTRA 2° 9,8	3° 9,8	MÉDIA 9,8	Peso Molecular 32	Responsável PM X % 3,1	Luiz Zolair
dentificação do an Componentes O ₂ CO	alisador de gases 1° 9,8 0,0	AMOSTRA 2° 9,8 0,0	3° 9,8 0,0	MÉDIA 9,8 0,0	Peso Molecular 32 28	PM X % 3,1 0,0	Luiz Zolair
Componentes O ₂	alisador de gases 1° 9,8	AMOSTRA 2° 9,8	3° 9,8	MÉDIA 9,8	Peso Molecular 32	Responsável PM X % 3,1	Luiz Zolair
Componentes O ₂ CO CO ₂	1° 9,8 0,0 9,8	AMOSTRA 2° 9,8 0,0 9,8 80,4	9,8 0,0 9,8	MÉDIA 9,8 0,0 9,8 80,4	Peso Molecular 32 28 44	PM X % 3,1 0,0 4,3	Luiz Zolair
Componentes O ₂ CO CO ₂	1° 9,8 0,0 9,8 80,4	AMOSTRA 2° 9,8 0,0 9,8 80,4 PESO MOLE	3° 9,8 0,0 9,8 80,4	MÉDIA 9,8 0,0 9,8 80,4	Peso Molecular 32 28 44	PM X % 3,1 0,0 4,3 22,5	Luiz Zolair Laban
Componentes O ₂ CO CO ₂ N ₂	1° 9,8 0,0 9,8 80,4	AMOSTRA 2° 9,8 0,0 9,8 80,4 PESO MOLE	3° 9,8 0,0 9,8 80,4	MÉDIA 9,8 0,0 9,8 80,4	Peso Molecular 32 28 44 28	PM X % 3,1 0,0 4,3 22,5 29,96	
Componentes O ₂ CO CO ₂ N ₂ Acesultados dos En	1° 9,8 0,0 9,8 80,4	AMOSTRA 2° 9,8 0,0 9,8 80,4 PESO MOLE	3° 9,8 0,0 9,8 80,4 CULAR SECO = 1	MÉDIA 9,8 0,0 9,8 80,4 Pms = Certificado nº Certificado nº	Peso Molecular 32 28 44 28	Responsável PM X % 3,1 0,0 4,3 22,5 29,96 Responsável	
Componentes O ₂ CO CO ₂ N ₂ Resultados dos En	1° 9,8 0,0 9,8 80,4 saios de Labora	AMOSTRA 2° 9,8 0,0 9,8 80,4 PESO MOLE atório de	3° 9,8 0,0 9,8 80,4 CULAR SECO = 1	MÉDIA 9,8 0,0 9,8 80,4 Pms =	Peso Molecular 32 28 44 28	Responsável PM X % 3,1 0,0 4,3 22,5 29,96 Responsável 6.528	
Componentes O ₂ CO CO ₂ N ₂ Resultados dos Er 0,0220 45,22	ases alisador de gases 1° 9,8 0,0 9,8 80,4 asaios de Labora g mg mg	AMOSTRA 2° 9,8 0,0 9,8 80,4 PESO MOLE atório de de de de	3° 9,8 0,0 9,8 80,4 CULAR SECO = 1	MÉDIA 9,8 0,0 9,8 80,4 Pms = Certificado nº Certificado nº	Peso Molecular 32 28 44 28	Responsável PM X % 3,1 0,0 4,3 22,5 29,96 Responsável 6.528 1; 226.575	
Componentes O ₂ CO CO ₂ N ₂ Resultados dos En 0,0220 45,22 2839,20	ases alisador de gases 1° 9,8 0,0 9,8 80,4 asaios de Labora g mg mg esagens de Mate	AMOSTRA 2° 9,8 0,0 9,8 80,4 PESO MOLE atório de de de de	3° 9,8 0,0 9,8 80,4 CULAR SECO = 1	MÉDIA 9,8 0,0 9,8 80,4 Pms = Certificado nº Certificado nº	Peso Molecular 32 28 44 28	Responsável PM X % 3,1 0,0 4,3 22,5 29,96 Responsável 6.528 1; 226.575 4; 226.576	LABAN
Componentes	ases alisador de gases 1° 9,8 0,0 9,8 80,4 asaios de Labora g mg mg esagens de Mate	AMOSTRA 2° 9,8 0,0 9,8 80,4 PESO MOLE atório de de de de de	3° 9,8 0,0 9,8 80,4 CULAR SECO = 1 MP H2SO4 SO2	MÉDIA 9,8 0,0 9,8 80,4 Pms = Certificado nº Certificado nº Certificado nº	Peso Molecular 32 28 44 28 226.531	Responsável PM X % 3,1 0,0 4,3 22,5 29,96 Responsável 6.528 1; 226.575 4; 226.576	LABAN
Componentes O ₂ CO CO ₂ N ₂ Resultados dos En 0,0220 45,22 2839,20 Resultados das Pe Elemento Caps Filti	ases alisador de gases 1º 9,8 0,0 9,8 80,4 asaios de Labora g mg mg esagens de Mate	AMOSTRA 2° 9,8 0,0 9,8 80,4 PESO MOLE atório de de de de rial Particulado	3° 9,8 0,0 9,8 80,4 CULAR SECO = 1 MP H2SO4 SO2	MÉDIA 9,8 0,0 9,8 80,4 Pms = Certificado nº Certificado nº Certificado nº	Peso Molecular 32 28 44 28 226.53 226.53 Diferença (g)	Responsável PM X % 3,1 0,0 4,3 22,5 29,96 Responsável 6.528 1; 226.575 4; 226.576	LABAN
Componentes O ₂ CO CO ₂ N ₂ Resultados dos En 0,0220 45,22 2839,20 Resultados das Pe Elemento Caps	ases alisador de gases 1º 9,8 0,0 9,8 80,4 asaios de Labora g mg mg esagens de Mate	AMOSTRA 2° 9,8 0,0 9,8 80,4 PESO MOLE atório de de de de rial Particulado N° 3	3° 9,8 0,0 9,8 80,4 CULAR SECO = 1 MP H2SO4 SO2 Tara (g) 59,5595	MÉDIA 9,8 0,0 9,8 80,4 Pms = Certificado nº Certificado nº Certificado nº Final (g) 59,8985	Peso Molecular 32 28 44 28 226.531 226.534 Differença (g) 0,3390	Responsável PM X % 3,1 0,0 4,3 22,5 29,96 Responsável 6.528 1; 226.575 4; 226.576	LABAN

ISATEC

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIAS PLANILHA 9 - PLANILHA DE CÁLCULO DE AMOSTRAGEM - AMOSTRAGEM 3

EMPRESA	LOCAL	DATA	NÚMERO		
CGTEE	Caldeira 1	06/09/11	3		

$(g) MH_2O =$	53,900	(R) Tc =	682,35	("Hg)Patm=	29,500	("H ₂ 0)Pest=	-0,990	(mm) Θb =	7,50
(R) Tm =	542,03	$("H20)\Delta H=$	1,674	$(ft^3) Vm =$	39,280	Cp =	0,852	(m) ΘC =	4,77
FCM =	1,01	Pms =	29,960	$("H_20)\Delta P^{1/2}=$	0,480	(min) @ =	60		
(mg)MP =	361,000	(mg)H2SO4 =	45,218	(mg)SO2 =	2839,195				

Pc =	Pressão na chaminé	29,427	"Hg	Pc = Patm + Pest / 13,6
Pm =	Pressão no medidor de gas	29,623		$Pm = Patm + \Delta H / 13.6$
Vacc =	Volume agua nas condições de chaminé	3,342	ft ³	$Vacc = (MH_20 * Tc) / (374 * Pc)$
Vmcc =	Volume gases medido nas condições chaminé	50,276	ft ³	Vmcc = (Vm * Tc * Pm * FCM) / (Tm * Pc)
Pvva =	Proporção vol. vapor'agua nos gases chaminé	0,062		Pvva = Vacc / (Vacc + Vmcc)
Pmu =	Peso molecular base úmida	29,215		Pmu = Pms * (1 - Pvva) + (18 * Pvva)
Vc =	Velocidade na chaminé	1869,558	ft / min	$Vc = 5128,8*Cp*[(Tc)/(Pc*Pmu)]^{1/2}*\Delta P^{1/2}$
Vc 1 =	Velocidade na chaminé	9,497	m/s	$Vc_1 = Vc * 0.00508$
Ab =	Área da Boquilha	0,000476	ft^2	$Ab = (\Theta b / 25,4)^2 / 183,35$
I =	Isocinetismo 90 < I < 110	100,52	%	I = [(Vmcc + Vacc) / (@ * Ab * Vc)] * 100
Ac =	Área da Chaminé	17,8701	m^2	$Ac = \Theta c^2 * 0.7854$
Vaecc =	Vazão do efluente nas condições da chaminé	610988,326	m^3/h	Vaecc = Ac * Vc * 18,288
Vaecnbs =	Vazão do efluente nas condições normais, base seca	406189,465	Nm^3/h	Vaecnbs = [Vaecc * Pc * (1-Pvva)*16,44]/Tc
Vmcnbs =	Volume amostrado nas condições normais, base seca	1,010	Nm^3	Vmcnbs = (Vm * Pm * FCM) / (Tm * 2,1476)
C MP=	Concentração de Material Particulado no efluente	357,57	mg / Nm ³	C MP= MP / Vmcnbs
Te MP=	Taxa de Emissão de Material Particulado	145,240	Kg/h	Te MP=(C MP * Vaecnbs) / 1000000
C H2SO4=	Concentração de H2SO4 no efluente	44,79	mg / Nm ³	C H2SO4= H2SO4 / Vmcnbs
Te H2SO4=	Taxa de Emissão de H2SO4	18,192	kg/h	Te H2SO4=(C H2SO4 * Vaecnbs) / 1000000
C SO2=	Concentração de SO2 no efluente	2812,19	mg / Nm ³	C SO2= SO2 / Vmcnbs
Te SO2=	Taxa de Emissão de SO2	1142,283	kg/h	Te SO2=(C SO2 * Vaecnbs) / 1000000

OBSERVAÇÕES:

OS RESULTADOS CONTIDOS NESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A AMOSTRA

IST/ENAM -E-0004 Rev 02-Plan09

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIAS PLANILHA 10 - PLANILHA DE CÁLCULO DE CONCENTRAÇÃO E TAXA DE EMISSÃO DE NOX

EMPRESA	LOCAL	DATA		
CGTEE	Caldeira 1	06/09/11	Responsável	Luiz Zolair

Identificação dos Equipamentos											
Vacuômetro EA 138			Barômetro EA 074		Termômetro 81194/04		Pipeta M 007				
											-
Amostra 01		Amostra 02			Amostra 03			Amostra 04			
Identificação do Frasco	M (Identificação do Frasco			Identificação do Frasco	M 011		
Volume do Frasco (Vf)	2241,9				Volume do Frasco (Vf)	2256,9 mL		Volume do Frasco (Vf)	2235,0		
Volume Absorvente (Va) 25 mL		mL	Volume Absorvente (Va)		mL	Volume Absorvente (Va)					mL
Condições Iniciais Data 06/09/2011		Condições Iniciais		Condições Inicia		V2011	Condições Inicia		V2011		
Data			Data	06/09/2011 11:15		Data	06/09/2011 11:20		Data	06/09/2011 11:25	
Hora	11:		Hora			Hora			Hora		
Pressão Atmosférica inicial	751,1 400	mmHg	Pressão Atmosférica inicial	751,1		Pressão Atmosférica inicial	751,1	- 0	Pressão Atmosférica inicial	751,1 400	mmHg
Pressão inicial do Frasco	400	mmHg	Pressão inicial do Frasco	400	mmHg	Pressão inicial do Frasco	400	mmHg	Pressão inicial do Frasco	400	mmHg
Pressão absoluta inicial do Frasco (Pi)	351,1	mmHg	Pressão absoluta inicial do Frasco (Pi)	351,1	mmHg	Pressão absoluta inicial do Frasco (Pi)	351,1	mmHg	Pressão absoluta inicial do Frasco (Pi)	351,1	mmHg
Temperatura inicial do Frasco	17	°C	Temperatura inicial do Frasco	17	°C	Temperatura inicial do Frasco	17	°C	Temperatura inicial do Frasco	17	°C
Temperatura absoluta inicial do	200		Temperatura absoluta inicial do	200		Temperatura absoluta inicial do	200		Temperatura absoluta inicial do	200	
Frasco (Ti)	290	K	Frasco (Ti)	290	K	Frasco (Ti)	290	K	Frasco (Ti)	290	K
Condições Fina	is		Condições Fina	is			Condições Finais		Condições Fina	is	
Data	07/09/2011 Data		Data	07/09/2011		Data 07/09/2011		/2011	Data 07/09/2011		/2011
Hora	09:	:40	Hora	09:	:45	Hora	ora 09:50		Hora 09:55		
Pressão Atmosférica Final	751,8	mmHg	Pressão Atmosférica Final	751,8	mmHg	Pressão Atmosférica Final	751,8	mmHg	Pressão Atmosférica Final	761,2	mmHg
Pressão final do Frasco	5	mmHg	Pressão final do Frasco	5	mmHg	Pressão final do Frasco	5	mmHg	Pressão final do Frasco	5	mmHg
Pressão absoluta final do Frasco	746,8		Pressão absoluta final do Frasco	746,8		Pressão absoluta final do Frasco	746,8		Pressão absoluta final do Frasco	756,2	mmHg
(Pf)	, ,	mmHg	(Pf)		mmHg	(Pf)	,	mmHg	(Pf)	, i	Ü
Temperatura final do Frasco	17	$^{\circ}\!\mathbb{C}$	Temperatura final do Frasco	17	°C	Temperatura final do Frasco	17	℃	Temperatura final do Frasco	17	°C
Temperatura absoluta final do	290	K	Temperatura absoluta final do	290	K	Temperatura absoluta final do	290	K	Temperatura absoluta final do	290	K
Frasco (Tf)	(1)		Frasco (Tf)	/11		Frasco (Tf)	(1)		Frasco (Tf)	/11	
Resultados de Ana		ı	Resultados de Análise		Resultados de Análise		Resultados de Análise				
Massa Total de NOx (m _{NOx})	696,189						Massa Total de NOx (m_{NOx}) 715,064 µg				
Cert Ensaio Nº Cálculo do Volume ar		.535	Cert Ensaio Nº		.550	Cert Ensaio N° 226.537		Cert Ensaio N° 226.538		.558	
	nostrado		Cálculo do Volume amostrado		Cálculo do Volume amostrado Volume da amostra nas		Cálculo do Volume amostrado Volume da amostra nas				
Volume da amostra nas	1006 50		Volume da amostra nas	1002.15			1002.04	١.		1100.02	I , I
condições normais, base seca	1086,58	mL	3 3	1083,15	mL	condições normais, base seca	1093,94	mL	condições normais, base seca	1108,93	mL
(Van)	1 21027		(Van)	1 11017		(Van)	1 1101		(Van)	1 1101	
Cálculo da Concentração de NOX			Cálculo da Concentração de NOX		Cálculo da Concentração de NOX		Cálculo da Concentração de NOX				
Concentração de NOx nas		2	Concentração de NOx nas			Concentração de NOx nas		,	Concentração de NOx nas		2
condições normais, base seca	640,714	mg/Nm ³		646,875		condições normais, base seca	655,089	mg/Nm ³		644,821	mg/Nm ³
(C_{NOx})			(C_{NOx})			(C_{NOx})			(C_{NOx})		
Cálculo da Taxa de Emis			Cálculo da Taxa de Emis			Cálculo da Taxa de Emissão de NOx		Cálculo da Taxa de Emissão de NOx			
Vazão (Vaecnbs)	407187	Nm ³ /h	Vazão (Vaecnbs)	407187	Nm ³ /h	Vazão (Vaecnbs)	407187	Nm ³ /h	Vazão (Vaecnbs)	407187	Nm ³ /h
Taxa de Emissão de NOx	260,890	K a/h	Taxa de Emissão de NOx	263,399	Ka/h	Taxa de Emissão de NOx	266,743	Kg/h	Taxa de Emissão de NOx	262,563	Ka/h
(Te _{NOx})	200,090	118/11	(Te _{NOx})	203,399	138/11	(Te _{NOx})	200,743	IXg/II	(Te _{NOx})	202,303	IXg/II

Van = ((273*(Vf-Va))/760)*((Pf/Tf)-(Pi/Ti))

 $C_{NOx} = (m_{NOx}/Van)*1000$

Te_{NOx} = C_{NOx} * Vaecnbs * 10⁻⁶

SERVIÇO PÚBLICO FEDERAL

CONSELHO REGIONAL DE QUÍMICA - 5ª REGIÃO

RIO GRANDE DO SUL

Av. Itaqui, 45 - Fone/Fax:(51) 3330-5659
CEP 90.460-140 - Porto Alegre - Rio Grande do Sul
e-mail: crqv@crqv.org.br
www.crqv.org.br

CERTIFICADO DE ANOTAÇÃO DE FUNÇÃO TÉCNICA

- AFT -

N° 72994

Certifico, conforme despacho do Senhor Presidente do Conselho Regional de Química da 5ª Região, que foi procedida a Anotação de Função Técnica do profissional RODRIGO ROCHA DAVESAC, inscrito no C.P.F. sob o número 610.510.470-72, registrado como ENGENHEIRO QUÍMICO sob o número 05301819, neste Conselho, relativamente as análises químicas e físico-químicas realizadas no laboratório, pela assessoria técnica, emissão de laudos e pareceres, pesquisa e desenvolvimento de projetos e equipamentos, na empresa ISATEC - PESQUISA, DESENVOLVIMENTO E ANÁLISES QUÍMICAS LTDA., localizada à Avenida FRANCISCO MARTINS BASTOS, 202, RIO GRANDE/RS, em conformidade com o art. 1º da Lei nº 6.839, de 30 de outubro de 1980; arts. 334, alínea "b", 335, alínea "b", 337 e 341, do Decreto-Lei nº 5.452 (Consolidação das Leis do Trabalho - CLT), de 01 de maio de 1943; art. 27, da Lei nº 2.800, de 18 de junho de 1956; art. 1º, incisos II e IV e 2º, inciso IV, alínea "a", do Decreto nº 85.877, de 07 de abril de 1981 e Resoluções Normativas de nºs 51, de 12 de dezembro de 1980, 105, de 17 de setembro de 1987 e 122, de 09 de novembro de 1990, do Conselho Federal de Química

Certificado de Anotação de Função Técnica válido de 25/06/2011 até 23/06/2012. Taxa de AFT no valor de R\$ 144,67, recolhida conforme o recibo nº 201.697.

Porto Alegre, 14 de junho de 2011.

Visto: Duly Boldwell.

MARISTELA MENDES DALMÁS CHEFE DO DEPARTAMENTO