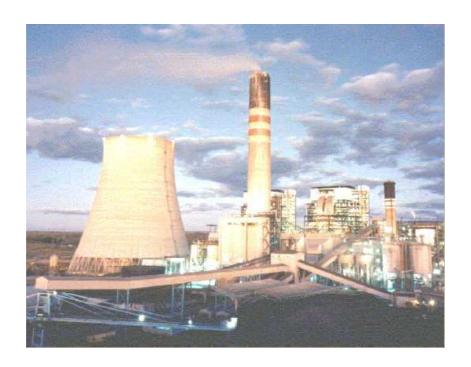
RELATÓRIO DE ENSAIO 226.057 / 2011

AMOSTRAGEM DE CHAMINÉS

ISATEC


EMPRESA: CIA. GERAÇÃO TÉRMICA DE ENERGIA ELÉTRICA – CGTEE

Candiota – RS

PROCESSO: Caldeira I – Chaminé.

DATA: 24 de Agosto de 2011.

AMOSTRAGEM E DETERMINAÇÃO DE MATERIAL PARTICULADO, NO $_{\rm X}$, SO $_{\rm 2}^-$, NÉVOAS DE SO $_{\rm 3}^-$ E H $_{\rm 2}$ SO $_{\rm 4}$

EMPRESA: CGTEE – COMPANHIA DE GERAÇÃO TÉRMICA DE ENERGIA ELÉTRICA

Usina Presidente Medici Candiota – RS

LOCAL: Caldeira I – Chaminé.

DATA: 24 de Agosto de 2011.

1. OBJETIVO

Realizar Amostragens no efluente gasoso proveniente da queima de carvão da Caldeira I na Chaminé para determinar a Concentração e Taxa de Emissão de Material Particulado, NO_X, SO₂, névoas de SO₃ e H₂SO₄.

2. METODOLOGIA DE COLETA E ANÁLISE

As coletas de amostras e determinações foram executadas conforme normas da EPA (Environmental Protection Agency - USA), da CETESB (Companhia de Tecnologia e Saneamento Ambiental de São Paulo) e da ABNT (Associação Brasileira de Normas Técnicas).

Os métodos observados foram os seguintes:

- Determinação de pontos de Amostragem em DCFE (Duto ou Chaminé de Fonte Estacionária) CETESB L9.221 Jul/90 # EPA Method 1 Fev/2000 # NBR 10701 Jul/89
- Determinação da velocidade e da vazão dos gases em DCFE CETESB – L9.222 – Mai/92 # EPA – Method 2 – Fev/2000 # NBR 11966 – Jul/89
- Determinação da massa molecular seca do fluxo de gases em DCFE CETESB – L9.223 – Jun/92 # EPA – Method 3 – Ago/03# NBR 10702 – Jul/89
- Determinação da umidade dos efluentes em DCFE CETESB – L9.224 – Ago/30 # EPA – Method 4 – Fev/2000 # NBR 11967 – Jul/89
- Determinação de material particulado em DCFE CETESB – L9.217 – Nov/89 # EPA – Method 17 – Fev/2000 # NBR 12827 – Set/93
- Determinação de SO₂ e névoas de SO₃ e H₂SO₄ em DCFE
 CETESB L9.228 Jun / 92 # EPA Method 8– Fev/2000 # NBR 12021 Dez / 90
- Determinação de NO_x em DCFE CETESB – L9.229 – Out/92 # EPA – Method 7– Fev/2000

3. EQUIPAMENTOS DE AMOSTRAGEM:

- Coletor isocinético de Poluentes Atmosféricos CIPA Energética
- Analisador de Combustão e Monitor Ambiental de Emissões Tempest 50

4. DADOS DA CHAMINÉ/DUTO:

Formato da chaminé/duto: Circular

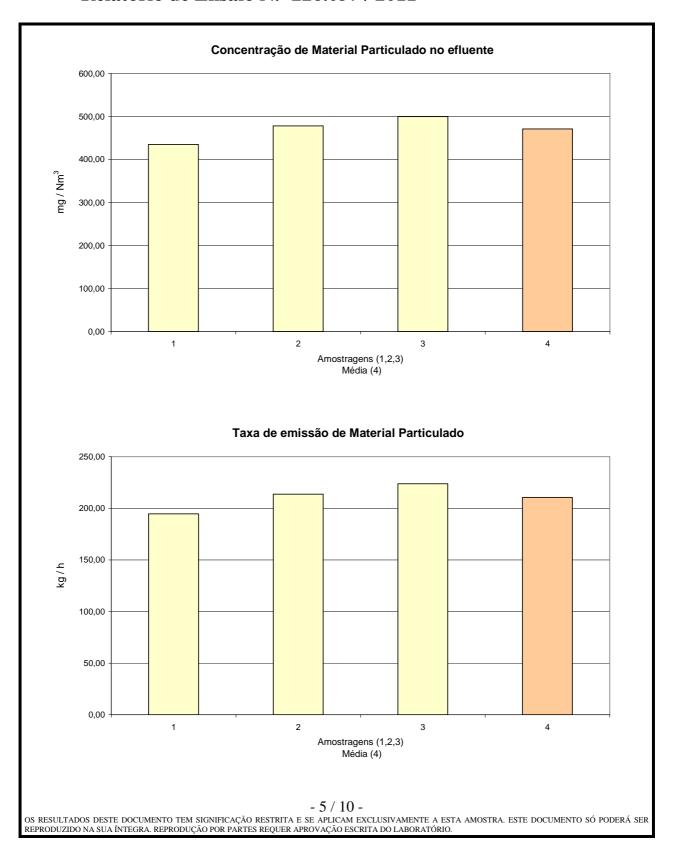
➤ Diâmetro da Chaminé: 4,77 m

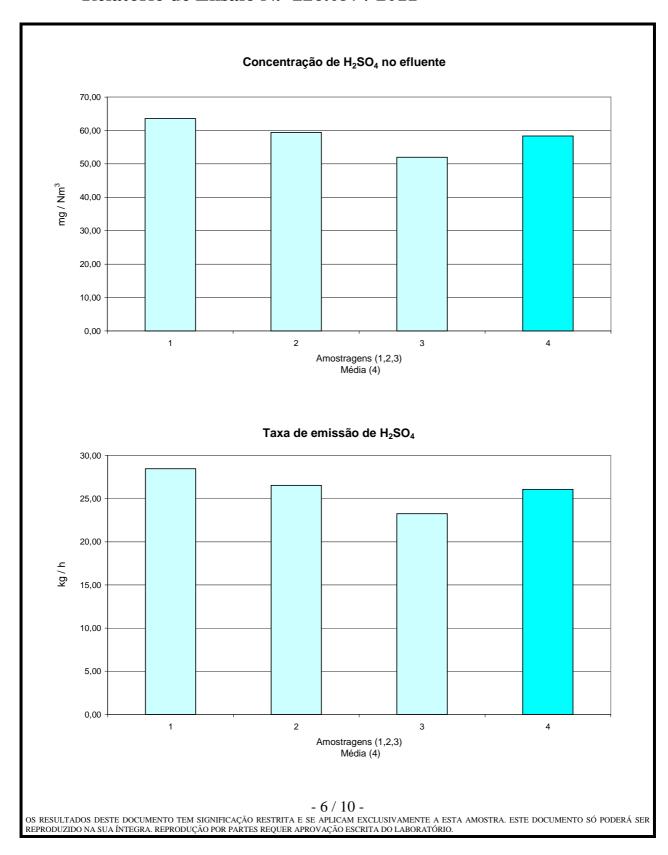
Distância após o ponto de amostragem até o acidente mais próximo > 2 Diâmetros

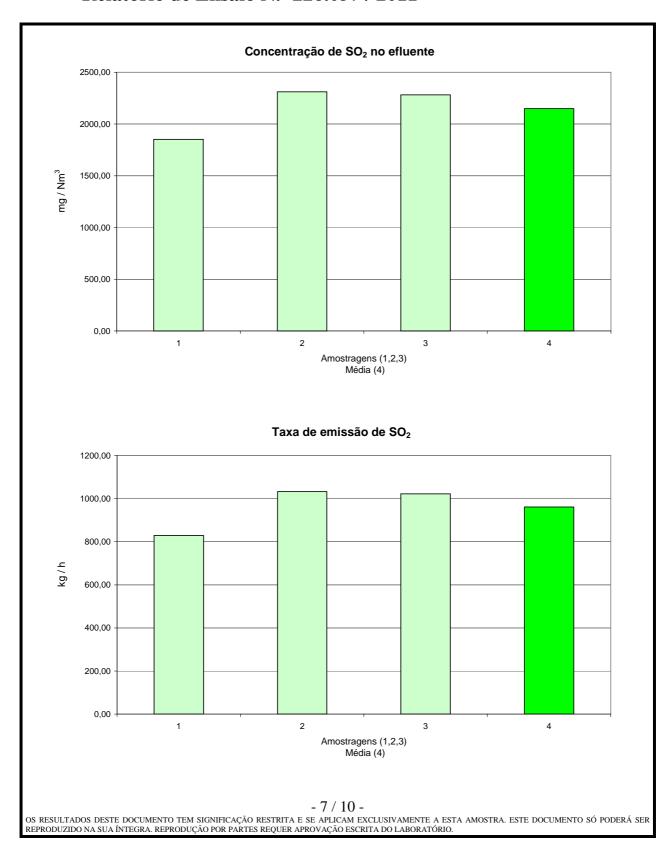
Distância antes do ponto de amostragem até o acidente mais próximo > 8 Diâmetros

Número de pontos da seção transversal:
06 pontos

5. CONDIÇÕES OPERACIONAIS E DE COLETA

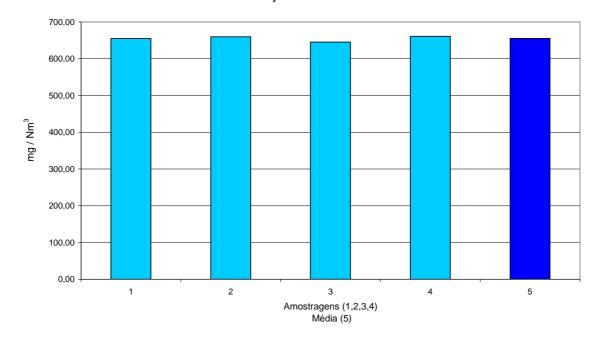

- Durante o período das medições, a Unidade funcionou, segundo informações da Empresa, nas condições usuais de trabalho.
- As coletas e medições foram realizadas utilizando-se um equipamento completo para amostragens de gases e particulados.
- As análises químicas foram realizadas nos laboratórios da ISATEC Rio Grande/RS.
- Os trabalhos de coleta e medição foram realizados pelos técnicos da ISATEC na presença de representantes da CGTEE.
- A preparação dos filtros e frascos lavadores, bem como a recuperação das amostras foram realizados nas dependências da CGTEE.
- Os resultados desta amostragem são válidos para o dia e condições operacionais praticados nesta ocasião.


6. RESULTADOS

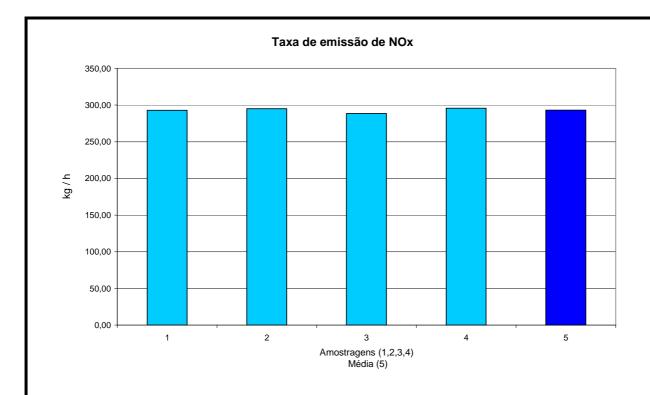

6.1. RESULTADOS DE MATERIAL PARTICULADO E SOX

			AMOS	STRAS			
		1	2	3	Média		
Dia da Amostragem	d:m:a	24/08/11	24/08/11	24/08/11	-		
Hora início da amostragem	h:min	13:30	15:40	17:40	-		
Hora de término da amostragem	h:min	14:35	16:45	18:45	-		
Tempo de amostragem	min	60	60	60	-		
Temperatura da chaminé	°C	109,0	108,5	107,8	108,4		
Pressão na chaminé	"Hg	29,47	29,47	29,47	29,47		
Pressão no medidor de gas	"Hg	29,69	29,69	29,69	29,69		
Volume agua nas condições de chaminé	ft ³	3,14	3,17	3,15	3,15		
Volume gases medido nas condições chaminé	ft ³	55,26	54,98	54,91	55,05		
Proporção vol. vapor d'agua nos gases chaminé		0,054	0,054	0,054	0,054		
Peso molecular base úmida		29,271	29,271	29,284	29,275		
Velocidade na chaminé	ft / min	2055,58	2050,33	2051,25	2052,39		
Velocidade na chaminé	m/s	10,44	10,42	10,42	10,43		
Área da Boquilha	ft ²	0,00048	0,00048	0,00048	0,00048		
Isocinetismo	%	99,58	99,41	99,21	99,40		
Área da Chaminé	m ²	17,8701	17,8701	17,8701	17,8701		
Vazão do efluente nas condições da chaminé	m ³ / h	671782,86	670066,74	670368,16	670739,25		
Vazão do efluente nas condições normais, base seca	Nm ³ / h	447417,62	446551,75	447735,35	447234,91		
Volume amostrado nas condições normais, base seca	Nm ³	1,1017	1,0976	1,0983	1,0992		
Concentração de Material Particulado no efluente	mg / Nm ³	434,88	478,30	499,75	470,98		
Taxa de emissão de Material Particulado	kg / h	194,573	213,584	223,757	210,638		
Concentração de H ₂ SO ₄ no efluente	mg / Nm ³	63,61	59,43	51,96	58,335		
Taxa de emissão de H ₂ SO ₄	kg / h	28,459	26,539	23,266	26,088		
Concentração de SO ₂ no efluente	mg / Nm³	1852,60	2311,44	2282,68	2148,91		
Taxa de emissão de SO ₂	kg / h	828,885	1032,180	1022,035	961,033		
		•	•	· · · · · · · · · · · · · · · · · · ·			

-4/10 - os resultados deste documento tem significação restrita e se aplicam exclusivamente a esta amostra. Este documento só poderá ser reproduzido na sua íntegra. Reprodução por partes requer aprovação escrita do laboratório.



6.2. RESULTADOS DE NOX


				Amostras		
		1	2	3	4	Média
Vazão média do efluente	Nm³/h			447234,9		
Concentração de NO _x no efluente	mg / Nm ³	655,0271	659,8166	645,1496	661,2968	655,32
Taxa de emissão de NO _X	kg / h	292,9510	295,0930	288,5334	295,7550	293,083

Concentração de NOx no efluente

-8/10-

OS RESULTADOS DESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A ESTA AMOSTRA. ESTE DOCUMENTO SÓ PODERÁ SER REPRODUZIDO NA SUA ÍNTEGRA. REPRODUÇÃO POR PARTES REQUER APROVAÇÃO ESCRITA DO LABORATÓRIO.

ANEXOS

Em anexo se encontram as seguintes folhas:

- Planilhas de Preparação e Retomada do Material de Coleta
- Folhas de Amostragem de Campo
- Planilhas de Cálculo das amostragens de chaminé
- ➤ AFT –Anotação de função técnica do responsável.

- 9 / 10 -

OS RESULTADOS DESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A ESTA AMOSTRA. ESTE DOCUMENTO SÓ PODERÁ SER REPRODUZIDO NA SUA ÍNTEGRA. REPRODUÇÃO POR PARTES REQUER APROVAÇÃO ESCRITA DO LABORATÓRIO.

Rio Grande, 08 de Setembro de 2011.
RODRIGO R. DAVESAC D.Sc
CRQ n° 05301819 Gerente
- 10 / 10 - os resultados deste documento tem significação restrita e se aplicam exclusivamente a esta amostra. Este documento só poderá ser reproduzido na sua íntegra. reprodução por partes requer aprovação escrita do laboratório.

ANEXOS	

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ISATEC ISA **ESTACIONÁRIAS**

PLANILHA 1 - PLANILHA DE AMOSTRAGEM DE CAMPO - AMOSTRAGEM 1

EMPRESA					LOCAL		DATA		NUMERO	
		GTEE			Caldeira I			08/11	1	
		stragem de		Duto		Pressão Barom		Duração da an	ostragem	
MP	SOx	Ü		4,77	m	29,54	pol Hg		minutos	
Α	Amostradoi	•	K	Boquilha		FCM	Ср	Início	13:30	
I	Luiz Zolair		7,2	7,5	mm	1,001	0,852	Fim	14:35	
	Tempo	Distância	A.D.	Pressão	ATT	Temperatu	ra Medidor	Temperatura	Medidor	
PONTO	тепіро	do ponto	ΔΡ	Estática	ΔΗ	Entrada	Saida	Chaminé	Gases	
	min	cm	pol H2O	pol H2O	pol H2O	℃	°C	°C	ft3	
1	5	21,0	0,26	_	1,87	13	10	109	246,080	
2	5	69,6	0,28	-0,98	2,02	15	11	109	-	
3	5	141,2	0,29	-	2,09	17	12	109	-	
4	5	335,8	0,29	-1,00	2,09	18	13	109	-	
5	5	407,4	0,28	-	2,02	19	14	109	-	
6	5	456,0	0,26	-0,98	1,87	20	15	109	266,730	
7	-	-	-	-	-	-	-	-	-	
8	-	-	-	_	-	_	-	_	-	
9	-	-	-	-	-	-	-	-	-	
10	-	-	-	-	-	-	-	-	-	
11	-	-	-	-	-	-	-	-	-	
12	-	-	-	-	-	-	-	-	-	
1	5	21,0	0,26	-	1,87	19	15	109	266,730	
2	5	69,6	0,28	-1,00	2,02	21	16	109	-	
3	5	141,2	0,29	-	2,09	23	17	109	_	
4	5	335,8	0,30	-1,10	2,16	24	18	109	-	
5	5	407,4	0,28	_	2,02	25	19	109	-	
6	5	456,0	0,26	-1,00	1,87	26	20	109	287,760	
7	-	-	-	-	-	-	-	-	-	
8	-	-	-	-	-	-	-	-	-	
9	-	-	-	-	-	-	-	-	-	
10	-	-	-	-	-	-	-	-	-	
11	-	-	-	-	-	-	-	-	-	
12	-	-	-	-	-	-	-	-	-	
									287,760	
IÉDIA	60	-	0,278	-1,010	1,998	20,0	15,0	109,0	41,680	
Ionitoramer	ntos						Identif	icação dos equi _l	pamentos	
emperatura d	lo Forno (º	(C)	-	-	-	_	Barômetro		EA 074	
emperatura S	Sonda Rígi	da (°C)	-	_	-	_	Cronômetro		EA 135	
emperatura b	orbulhado	res(°C)	10	10	11	13	Sonda Rígida		EA 026	
							Coluna U		EA 010	
							Termopar Ch	naminé	EA 069	
este de Vaza	amento do	trem			=		Aparelho		EA 001	
Início	0	OK	Fim	OK			Pitot		P 11	
							Boquilha		7,5	
este de Vaza	amento do	Pitot			=1					
Início	0	OK	Fim	OK						
erificação d	a temner	atura antes d	a amostragem	*						
	ratura Am		13	°C	Temperatura r	no Gasometro en	trada	10	°C	
Tempe						no Gasometro sai		10	°C	
					- omportuna i			10		

^{*} Diferença entre a temperatura ambiente e temperatura no gasômetro seco entrada: Máximo 6°C OS RESULTADOS CONTIDOS NESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A AMOSTRA IST/ENAM -E-0004 Rev 02-Plan01

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIAS

ISATEC

DIANIIHA 2 DI	ANII HA DE DDE	DADAÇÃO E DE	ESTACIONÁRIAS TOMADA DE AMOSTR	AS COMPOSIÇÃO	DE CASES E DI		POPATÓDIO
I LANILHA 2 - PL	ANILHA DE PRE	A ARAÇAU E KE	AMOSTRAGE		DE CASES E KI	ESULTADOS DE LA	DOKATOKI(
	EMPRESA		LOCA			ATA	NÚMEI
	CGTEE		Caldeir	a I	24/	/08/11	1
erificação da Ba	alança					Responsável	Everson Mor
Identificação	da Balança	EA 015	Peso Padrão	500 g			
Identificação do	Peso Padrão	EA 073	Valor indicado na balança	499,9g <	499,96		
Borbulhadores						Responsável	Everson Mor
Número dos Borbulhadores	Volume(mL)	Solução	o Absorvente	Tara (g)	Final (g)	Diferença (g)	
1	200	Alcool Is	opropilico 80%	604,98	608,85	3,87]
2	200	H	2O2 5%	748,75	782,04	33,29	
3	200	H	2O2 5%	750,29	753,67	3,38	
4	-	Si	lica Gel	705,21	714,99	9,78	
5	-		-	-	-	-	
6	-		-	-	-	-	
7	-		-	-	-	-	
8	-		-	-	-	-	<u> </u>
	TOTAL	L		2809,23	2859,55	50,32	<u> </u>
Composição do G	Fases					Responsável	Everson Mor
dentificação do ar	nalisador de gase	es	EA 143				
C		AMOSTR	AS		Peso	PM X %	1
Componentes	1°	2°	3°	MÉDIA	Molecular		
O_2	9,8	9,8	9,8	9,8	32	3,1	
CO	0,0	0,0	0,0	0,0	28	0,0]
CO ₂	9,5	9,5	9,5	9,5	44	4,2]
N_2	80,7	80,7	80,7	80,7	28	22,6]
		PESO MOLI	ECULAR SECO = Pi	ms =		29,91	
Resultados dos E	nsaios de Labo	ratório				Responsável	LABAN
0.1020		,	100	7 4:0 1 0	226.05	7. 226.002	1

0,1838	g	de	MP	Certificado nº	226.057; 226.093
70,08	mg	de	H2SO4	Certificado nº	226.060; 226.094
2040,98	mg	de	SO2	Certificado nº	226.063; 226.095

Resultados das Pesagens de Material Particulado

Responsável

Luiz Zolair

Elemento Filtrante	N°	Tara (g)	Final (g)	Diferença (g)				
Capsula	60	67,3295	67,6248	0,2953				
Filtro	-	-	-	-				
Ciclone	-	-	-	-				
	Total							

OS RESULTADOS CONTIDOS NESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A AMOSTRA IST/ENAM -E-0004 Rev 02-Plan02

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIAS PLANILHA 3 - PLANILHA DE CÁLCULO DE AMOSTRAGEM - AMOSTRAGEM I

EMPRESA					LOCAL		DAT	ГΑ	NÚMERO	
CGTEE				Caldeira I 24/08/11					1	
(g) $MH_2O =$	50,320	(R) Tc =	,	("Hg)Patm=	29,540	("H20)Pest=	-1,010	$(mm) \Theta b =$	7,50	
(R) Tm =	523,50	$("H20)\Delta H=$	1,998	$(ft^3) Vm =$	41,680	Cp =	0,852	(m) ΘC =	4,77	
FCM =	1,00	Pms =	29,912	$("H_20)\Delta P^{1/2}=$	0,527	(min) @ =	60			
(mg)MP =	479,100	(mg)H2SO4 =	70,075	(mg)SO2 =	2040,975					

Pc =	Pressão na chaminé	29,466	"Hg	Pc = Patm + Pest / 13,6
Pm =	Pressão no medidor de gas	29,687	"Hg	$Pm = Patm + \Delta H / 13,6$
Vacc =	Volume agua nas condições de chaminé	3,142	ft ³	$Vacc = (MH_20 * Tc) / (374 * Pc)$
Vmcc =	Volume gases medido nas condições chaminé	55,260	ft ³	Vmcc = (Vm * Tc * Pm * FCM) / (Tm * Pc)
Pvva =	Proporção vol. vapor'agua nos gases chaminé	0,054		Pvva = Vacc / (Vacc + Vmcc)
Pmu =	Peso molecular base úmida	29,271		Pmu = Pms * (1 - Pvva) + (18 * Pvva)
Vc =	Velocidade na chaminé	2055,583	ft / min	$Vc = 5128,8*Cp*[(Tc)/(Pc*Pmu)]^{1/2}*\Delta P^{1/2}$
Vc 1 =	Velocidade na chaminé	10,442	m/s	$Vc_1 = Vc * 0,00508$
Ab =	Área da Boquilha	0,000476	ft^2	$Ab = (\Theta b / 25,4)^2 / 183,35$
I =	Isocinetismo 90 < I < 110	99,58	%	I = [(Vmcc + Vacc) / (@ * Ab * Vc)] * 100
Ac =	Área da Chaminé	17,8701	m^2	$Ac = \Theta c^2 * 0.7854$
Vaecc =	Vazão do efluente nas condições da chaminé	671782,855	m^3/h	Vaecc = Ac * Vc * 18,288
Vaecnbs =	Vazão do efluente nas condições normais, base seca	447417,619	Nm^3/h	Vaecnbs = [Vaecc * Pc * (1-Pvva)*16,44]/Tc
Vmcnbs =	Volume amostrado nas condições normais, base seca	1,102	Nm^3	Vmcnbs = (Vm * Pm * FCM) / (Tm * 2,1476)
C MP=	Concentração de Material Particulado no efluente	434,88	mg / Nm ³	C MP= MP / Vmcnbs
Te MP=	Taxa de Emissão de Material Particulado	194,573	Kg/h	Te MP=(C MP * Vaecnbs) / 1000000
C H2SO4=	Concentração de H2SO4 no efluente	63,61	mg / Nm ³	C H2SO4= H2SO4 / Vmcnbs
Te H2SO4=	Taxa de Emissão de H2SO4	28,459	kg/h	Te H2SO4=(C H2SO4 * Vaecnbs) / 1000000
C SO2=	Concentração de SO2 no efluente	1852,60	mg / Nm ³	C SO2= SO2 / Vmcnbs
Te SO2=	Taxa de Emissão de SO2	828,885	kg/h	Te SO2=(C SO2 * Vaecnbs) / 1000000

OBSERVAÇÕES:

OS RESULTADOS CONTIDOS NESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A AMOSTRA

IST/ENAM -E-0004 Rev 02-Plan03

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIAS

ISATEC

PLANILHA 4 - PLANILHA DE AMOSTRAGEM DE CAMPO AMOSTRAGEM 2

	EMPRESA				LOCAL		DATA		NÚMERO	
	C	CGTEE			Caldeira I		24	/08/11	2	
	Amo	stragem de		Duto		Pressão Barom	nétrica	Duração da am	nostragem	
MP	SOx				m	29,54	pol Hg	_) minutos	
A	Amostrador	: 1	K	Boquilha		FCM	Cp	Início	15:40	
I	Luiz Zolair		7,2	7,5	mm	1,001	0,852	Fim	16:45	
	T	Distância	1 A.D.	Pressão	ATT	Temperati	ura Medidor	Temperatura	Medidor	
PONTO	Tempo	do ponto	ΔΡ	Estática	ΔΗ	Entrada	Saida	Chaminé	Gases	
	min	cm	pol H2O	pol H2O	pol H2O	°C	°C	°C	ft3	
1	5	21,0	0,25	-	1,80	15	13	109	288,320	
2	5	69,6	0,28	-1,00	2,02	17	14	109		
3	5	141,2	0,30	T	2,16	19	15	109		
4	5	335,8	0,30	-1,00	2,16	21	16	109		
5	5	407,4	0,28	-	2,02	23	17	109		
6	5	456,0	0,25	-1,00	1,80	24	18	109	309,100	
7	-	-	-	-	-	-	-	-	-	
8	'	-	-	-	-	-	-	-	-	
9	-	-	-	-	-	-	-	-	-	
10	-	-	-	-	-	-	-	-	-	
11	-	-	-	-	-	-	-	-	-	
12	'	-	-	-	-	-	-	-	-	
1	5	21,0	0,25	-	1,80	23	18	109	309,100	
2	5	69,6	0,28	-1,00	2,02	25	19	109		
3	5	141,2	0,30	-	2,16	27	20	108		
4	5	335,8	0,30	-1,00	2,16	28	21	108		
5	5	407,4	0,28	-	2,02	29	22	107		
6	5	456,0	0,25	-1,00	1,80	30	22	107	330,300	
7	-	-	-	-	-	-	-	-	-	
8	-	-	-	-	-	-	-	-	-	
9	-	-	-	-	-	-	-	-	-	
10	-	-	-	-	-	-	-	-	-	
11	_	-	-	-	-	-	-	-	-	
12	-	-	-	-	-	-	-	-	-	
									330,300	
MÉDIA	60	-	0,277	-1,000	1,992	23,4	17,9	108,5	41,980	
Aonitoramen								ficação dos equip	_	
'emperatura d	1		-		-		Barômetro		EA 074	
emperatura S		` ′	-	-	-	-	Cronômetro		EA 135	
emperatura b	orbulhador	res(°C)	11	11	11	14	Sonda Rígida	<u>.</u>	EA 026	
							Coluna U		EA 010	
• • •							Termopar Ch	naminé	EA 069	
Teste de Vaza			T2:		1		Aparelho		EA 001	
Início)	OK	Fim	OK]		Pitot		P 11	
	4. 3.	Dia a					Boquilha		7,5	
Teste de Vaza		1		- OW	П					
Início)	OK	Fim	OK	1					
erificação d	a tempera	atura antes d	la amostragem							
Tempe	eratura Amb	oiente	<u> </u>	°C		no Gasometro ent		-	°C	
					-	no Gasometro saí			°C	

^{*} Diferença entre a temperatura ambiente e temperatura no gasômetro seco entrada: Máximo 6°C os resultados contidos neste documento tem significação restrita e se aplicam exclusivamente a amostra IST/ENAM -E-0004 Rev 02-Plan04

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIAS

ISATEC

	EMPRESA CGTEE		LOC Calde			ATA 08/11	NÚMERO 2
erificação da Ba	alança					Responsável	Everson Morei
Identificação	da Balança	EA 015	Peso Padrão	500 g			
Identificação do	Identificação do Peso Padrão -			499,9g <	-	<500,1 g	
Sorbulhadores						Responsável	Everson More
Borbulhadores			Absorvente	Tara (g)	Final (g)	Diferença (g)	
1	200	Alcool Iso	propilico 80%	582,73	586,68	3,95	1
2	200		2O2 5%	722,68	756,93	34,25	
3	200	H2	2O2 5%	730,86	733,85	2,99	
4	-	Sil	ica Gel	721,81	731,42	9,61	
5	-		-	-	1	-	
6	-		-	-	-	-	
7	-		-	_	-	-	
8	8 -		-	_	_	-	
	TOTAL			2758,08	2808,88	50,80	<u>_</u>
Composição do G	ases			_		Responsável	Everson More
dentificação do ar	nalisador de gas	es	EA 143				_
Componentes		AMOSTRA	AS		Peso	PM X %	
	1°	2°	3°	MÉDIA	Molecular		
O_2	10,0	10,0	10,0	10,0	32	3,2	
CO	0,0	0,0	0,0	0,0	28	0,0	
CO ₂	9,5	9,5	9,5	9,5	44	4,2	
N ₂	80,5	80,5	80,5	80,5	28	22,5	4
		PESO MOLE	ECULAR SECO = 1	Pms =		29,92	
Resultados dos E	nsaios de Labo	ratório				Responsável	LABAN
0,2083 g de		MP	Certificado nº	226.05	3; 226.093		
65,24 mg de		H2SO4	Certificado nº	226.06	1; 226.094		
2537,15	mg	de	SO2	Certificado nº	226.06	4; 226.095	<u> </u>
Resultados das Po	esagens de Mat	erial Particula	do			Responsável	Luiz Zolair
Elemento l	Filtrante	N°	Tara (g)	Final (g)	Diferença (g)	7	
Elemento Filtrante Capsula							
	ula	61	65,7447	66,0614	0,3167		

Elemento Filtrante	N°	Tara (g)	Final (g)	Diferença (g)
Capsula	61	65,7447	66,0614	0,3167
Filtro	-	-	-	-
Ciclone	-	-	_	-
	0,3167			

OS RESULTADOS CONTIDOS NESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A AMOSTRA IST/ENAM -E-0004 Rev 02-Plan05

ISATEC

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIAS PLANILHA 6 - PLANILHA DE CÁLCULO DE AMOSTRAGEM - AMOSTRAGEM 2

EMPRESA CGTEE			LOCAL Caldeira I			DA 7	ΓΑ 08/11	NÚ	MERO 2
(g) MH ₂ O =	50,800 (R) Tc =	687,30	("Hg)Patm=	29,540	("H ₂ 0)Pest=	-1,000	(mm) \Ob =	7,50	
(R) Tm =	529,20 ("H ₂ 0)ΔH=	1,992	$(ft^3) Vm =$	41,980	Cp =	0,852	(m) ΘC =	4,77	
FCM =	1,00 Pms =	29,920	$("H_20)\Delta P^{1/2}=$	0,526	(min) @ =	60			
(mg)MP =	525,000 (mg)H2SO4 =	65,235	(mg)SO2 =	2537,145					
								_	
Pc =	Pressão na chaminé			29,466	"Hg	Pc = Patm -	+ Pest / 13,6		

Pc =	Pressão na chaminé	29,466	"Hg	Pc = Patm + Pest / 13,6
Pm =	Pressão no medidor de gas	29,686	"Hg	$Pm = Patm + \Delta H / 13,6$
Vacc =	Volume agua nas condições de chaminé	3,168	ft ³	$Vacc = (MH_20 * Tc) / (374 * Pc)$
Vmcc =	Volume gases medido nas condições chaminé	54,984	ft ³	Vmcc = (Vm * Tc * Pm * FCM) / (Tm * Pc)
Pvva =	Proporção vol. vapor'agua nos gases chaminé	0,054		Pvva = Vacc / (Vacc + Vmcc)
Pmu =	Peso molecular base úmida	29,271		Pmu = Pms * (1 - Pvva) + (18 * Pvva)
Vc =	Velocidade na chaminé	2050,332	ft / min	$Vc = 5128,8*Cp*[(Tc)/(Pc*Pmu)]^{1/2}*\Delta P^{1/2}$
Vc 1 =	Velocidade na chaminé	10,416	m / s	$Vc_1 = Vc * 0,00508$
Ab =	Área da Boquilha	0,000476	ft^2	$Ab = (\Theta b / 25,4)^2 / 183,35$
I =	Isocinetismo 90 < I < 110	99,41	%	I = [(Vmcc + Vacc) / (@ * Ab * Vc)] * 100
Ac =	Área da Chaminé	17,8701	m^2	$Ac = \Theta c^2 * 0.7854$
Vaecc =	Vazão do efluente nas condições da chaminé	670066,739	m^3/h	Vaecc = Ac * Vc * 18,288
Vaecnbs =	Vazão do efluente nas condições normais, base seca	446551,753	Nm^3/h	Vaecnbs = [Vaecc * Pc * (1-Pvva)*16,44]/Tc
Vmcnbs =	Volume amostrado nas condições normais, base seca	1,098	Nm^3	Vmcnbs = (Vm * Pm * FCM) / (Tm * 2,1476)
C MP=	Concentração de Material Particulado no efluente	478,30	mg / Nm ³	C MP= MP / Vmcnbs
Te MP=	Taxa de Emissão de Material Particulado	213,584	Kg/h	Te MP=(C MP * Vaecnbs) / 1000000
C H2SO4=	Concentração de H2SO4 no efluente	59,43	mg / Nm ³	C H2SO4= H2SO4 / Vmcnbs
Te H2SO4=	Taxa de Emissão de H2SO4	26,539	kg/h	Te H2SO4=(C H2SO4 * Vaecnbs) / 1000000
C SO2=	Concentração de SO2 no efluente	2311,44	mg / Nm ³	C SO2= SO2 / Vmcnbs
Te SO2=	Taxa de Emissão de SO2	1032,180	kg/h	Te SO2=(C SO2 * Vaecnbs) / 1000000

OBSERVAÇÕES:

OS RESULTADOS CONTIDOS NESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A AMOSTRA

IST/ENAM -E-0004 Rev 02-Plan06

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIAS

ISATEC

PLANILHA 7 - PLANILHA DE AMOSTRAGEM DE CAMPO AMOSTRAGEM 3

EMPRESA				LOCAL		11	DATA		
	C	GTEE			Caldeira I	1		/08/11	3
		stragem de		Duto		Pressão Baron		Duração da an	-
MP	SOx			4,77	m	29,54	pol Hg	_	minutos
	mostrador		K	Boquilha		FCM	Ср	Início	17:40
I	uiz Zolair		7,2	7,5	mm	1,001	0,852	Fim	18:45
	Tempo	Distância	ΔΡ	Pressão	ΔΗ	Temperatu	ıra Medidor	Temperatura	Medidor
PONTO	Tempo	do ponto		Estática		Entrada	Saida	Chaminé	Gases
	min	cm	pol H2O	pol H2O	pol H2O	°C	°C	°C	ft3
1	5	21,0	0,25	-	1,80	19	16	107	330,890
2	5	69,6	0,28	-0,98	2,02	21	17	107	
3	5	141,2	0,29	-	2,09	23	18	107	
4	5	335,8	0,30	-1,00	2,16	25	19	107	
5	5	407,4	0,28	-	2,02	27	20	107	
6	5	456,0	0,25	-0,98	1,80	28	21	108	224,000
7	-	-	-	-	-	-	-	-	-
8	-	-	-	-	-	-	-	-	-
9	-	-	-	-	-	-	-	-	-
10	-	-	-	-	-	-	-	-	-
11	-	-	-	-	-	-	-	-	-
12	-	-	-	-	-	-	-	-	-
1	5	21,0	0,26	-	1,87	27	21	108	224,000
2	5	69,6	0,28	-0,99	2,02	29	22	108	
3	5	141,2	0,30	-	2,16	31	23	109	
4	5	335,8	0,30	-1,00	2,16	33	24	109	
5	5	407,4	0,28	-	2,02	34	25	108	
6	5	456,0	0,26	-0,99	1,87	35	26	108	373,420
7	-	-	-	-	-	-	-	-	-
8	-	-	-	-	-	-	-	-	-
9	-	-	-	-	-	-	-	-	-
10	-	-	-	-	-	-	-	-	-
11	-	-	-	-	-	-	-	-	-
12	-	-	-	-	-	-	-	-	-
									373,420
MÉDIA	60	-	0,278	-0,990	1,998	27,7	21,0	107,8	42,530
Monitoramer	itos							icação dos equij	pamentos
Гетрегаtura d	o Forno (º	C)	-	-	-	-	Barômetro		EA 074
Γemperatura S		` /	-	-	-	-	Cronômetro		EA 135
Гетрегаtura b	orbulhado	res(°C)	10	10	9	9	Sonda Rígida	l	EA 026
							Coluna U		EA 010
							Termopar Cl	naminé	EA 069
Teste de Vaza	mento do	trem			a		Aparelho		EA 001
Início)	OK	Fim	OK	_		Pitot		P 11
							Boquilha		7,5
Teste de Vaza	mento do	Pitot			-				
Inície	0	OK	Fim	OK					
	a tempers	atura antes d	a amostragem	*					
v erincacao a									,
	ratura Am	biente	_	°C	Temperatura r	no Gasometro en	trada	_	°C

^{*} Diferença entre a temperatura ambiente e temperatura no gasômetro seco entrada: Máximo 6°C os resultados contidos neste documento tem significação restrita e se aplicam exclusivamente a amostra IST/ENAM -E-0004 Rev 02-Plan07

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIAS

ISATEC

PLANILHA 8 - PLANILHA DE PREPARAÇÃO E RETOMADA DE AMOSTRAS COMPOSIÇÃO DE GASES E RESULTADOS DE LABORATÓRIO - AMOSTRAGEM 3

		,	AMOSTRAC	EM 3			
	EMPRESA		LOC	AL	DATA		NÚMERO
	CGTEE		Caldeira I 24/08/11			3	
Verificação da Ba	alança					Responsável	Everson Moreira
Identificação	da Balança	EA 015	Peso Padrão	500 g			_
Identificação do	Peso Padrão	-	Valor indicado na balança	499,9g <	-	<500,1 g	
Borbulhadores						Responsável	Everson Moreira
Número dos Borbulhadores	Volume(mL)	Solução	Absorvente	Tara (g)	Final (g)	Diferença (g)	
1	200	Alanal Tana	:1: 000/	COE 94	600.01	4.07	1

Número dos Borbulhadores	Volume(mL)	Solução Absorvente	Tara (g)	Final (g)	Diferença (g)
1	200	Alcool Isopropilico 80%	605,84	609,91	4,07
2	200	H2O2 5%	743,29	777,34	34,05
3	200	H2O2 5%	748,75	752,08	3,33
4	-	Silica Gel	725,42	734,61	9,19
5	-	-	-	-	-
6	-	-	-	_	-
7	-	-	-	_	-
8	_	<u>-</u>	_	_	_
	TOTAL	ı	2823,30	2873,94	50,64

Composição do Gases

Responsável

Everson Moreira

Identificação do analisador de gases	EA 143
--------------------------------------	--------

Componentes		Peso	PM X %			
Componentes	1°	2°	3°	MÉDIA	Molecular	
O_2	9,9	9,9	9,9	9,9	32	3,2
CO	0,0	0,0	0,0	0,0	28	0,0
CO_2	9,6	9,6	9,6	9,6	44	4,2
N ₂	80,5	28	22,5			
		PESO MOLEO	CULAR SECO =	Pms =		29,93

Resultados dos Ensaios de Laboratório

Responsável

LABAN

0,2468	g	de	MP	Certificado nº	226.059; 226.093
57,08	mg	de	H2SO4	Certificado nº	226.062; 226.094
2507,17	mg	de	SO2	Certificado nº	226.065; 226.095

Resultados das Pesagens de Material Particulado

Responsável

Luiz Zolair

Elemento Filtrante	N°	Tara (g)	Final (g)	Diferença (g)			
Capsula	62	64,692	64,9941	0,3021			
Filtro	-	-	-	-			
Ciclone	-	-	_	-			
	Total						

OS RESULTADOS CONTIDOS NESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A AMOSTRA IST/ENAM -E-0004 Rev 02-Plan08

ISATEC

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIAS PLANILHA 9 - PLANILHA DE CÁLCULO DE AMOSTRAGEM - AMOSTRAGEM 3

EMPRESA	LOCAL	DATA	NÚMERO
CGTEE	Caldeira I	24/08/11	3

(g) MH ₂ O =	50,640	(R) Tc =	685,95	("Hg)Patm=	29,540	("H ₂ 0)Pest=	-0,990	(mm) Θb =	7,50
(R) Tm =	535,80	$("H_20)\Delta H =$	1,998	$(ft^3) Vm =$	42,530	Cp =	0,852	(m) ΘC =	4,77
FCM =	1,00	Pms =	29,932	$("H_20)\Delta P^{1/2} =$	0,527	(min) @ =	60		
(mg)MP =	548,900	(mg)H2SO4 =	57,075	(mg)SO2 =	2507,165				

Pc =	Pressão na chaminé	29,467	"Hg	Pc = Patm + Pest / 13,6
Pm =	Pressão no medidor de gas	29,687		$Pm = Patm + \Delta H / 13.6$
Vacc =	Volume agua nas condições de chaminé	3,152	ft ³	$Vacc = (MH_20 * Tc) / (374 * Pc)$
Vmcc =	Volume gases medido nas condições chaminé	54,909	ft ³	Vmcc = (Vm * Tc * Pm * FCM) / (Tm * Pc)
Pvva =	Proporção vol. vapor'agua nos gases chaminé	0,054		Pvva = Vacc / (Vacc + Vmcc)
Pmu =	Peso molecular base úmida	29,284		Pmu = Pms * (1 - Pvva) + (18 * Pvva)
Vc =	Velocidade na chaminé	2051,254	ft / min	$Vc = 5128,8*Cp*[(Tc)/(Pc*Pmu)]^{1/2}*\Delta P^{1/2}$
Vc 1 =	Velocidade na chaminé	10,420	m/s	$Vc_1 = Vc * 0.00508$
Ab =	Área da Boquilha	0,000476	ft^2	$Ab = (\Theta b / 25,4)^2 / 183,35$
I =	Isocinetismo 90 < I < 110	99,21	%	I = [(Vmcc + Vacc) / (@ * Ab * Vc)] * 100
Ac =	Área da Chaminé	17,8701	m^2	$Ac = \Theta c^2 * 0.7854$
Vaecc =	Vazão do efluente nas condições da chaminé	670368,162	m^3/h	Vaecc = Ac * Vc * 18,288
Vaecnbs =	Vazão do efluente nas condições normais, base seca	447735,349	Nm^3/h	Vaecnbs = [Vaecc * Pc * (1-Pvva)*16,44]/Tc
Vmcnbs =	Volume amostrado nas condições normais, base seca	1,098	Nm^3	Vmcnbs = (Vm * Pm * FCM) / (Tm * 2,1476)
C MP=	Concentração de Material Particulado no efluente	499,75	mg / Nm ³	C MP= MP / Vmcnbs
Te MP=	Taxa de Emissão de Material Particulado	223,757	Kg/h	Te MP=(C MP * Vaecnbs) / 1000000
C H2SO4=	Concentração de H2SO4 no efluente	51,96	mg / Nm ³	C H2SO4= H2SO4 / Vmcnbs
Te H2SO4=	Taxa de Emissão de H2SO4	23,266	kg/h	Te H2SO4=(C H2SO4 * Vaecnbs) / 1000000
C SO2=	Concentração de SO2 no efluente	2282,68	mg / Nm ³	C SO2= SO2 / Vmcnbs
Te SO2=	Taxa de Emissão de SO2	1022,035	kg/h	Te SO2=(C SO2 * Vaecnbs) / 1000000

OBSERVAÇÕES:

OS RESULTADOS CONTIDOS NESTE DOCUMENTO TEM SIGNIFICAÇÃO RESTRITA E SE APLICAM EXCLUSIVAMENTE A AMOSTRA

IST/ENAM -E-0004 Rev 02-Plan09

CÁLCULO DE AMOSTRAGENS DE EFLUENTES GASOSOS DE DUTOS E CHAMINÉS DE FONTES ESTACIONÁRIAS PLANILHA 10 - PLANILHA DE CÁLCULO DE CONCENTRAÇÃO E TAXA DE EMISSÃO DE NOX

EMPRESA	LOCAL	DATA		
CGTEE	Caldeira I	24/08/11	Responsável	Luiz Zolair

Identificação dos Equipamentos											
Vacuômetro EA 138		Barômetro EA 074		Termômetro 81194/04			Pipeta M 007				
			•								
Amostra 01		Amostra 02		Amostra 03			Amostra 04 Identificação do Frasco M 011				
Identificação do Frasco M 008			Identificação do Frasco			Identificação do Frasco			Identificação do Frasco		
Volume do Frasco (Vf)		mL	Volume do Frasco (Vf)	2234,9 mL		Volume do Frasco (Vf)	2256,9 mL		Volume do Frasco (Vf)	2235,0 25	
		mL	Volume Absorvente (Va)	25 mL		Volume Absorvente (Va)					mL
Condições Iniciais 24/08/2011		Condições Iniciais Data 24/08/2011		Condições Iniciais Data 24/08/2011		Condições Iniciais					
Hora 10:50		Hora	10:55		Hora	11:00		Hora	11:05		
Pressão Atmosférica inicial	750.3	mmHg	Pressão Atmosférica inicial		mmHg	Pressão Atmosférica inicial			Pressão Atmosférica inicial		mmHg
Pressão inicial do Frasco	400	mmHg	Pressão inicial do Frasco			Pressão inicial do Frasco	400		Pressão inicial do Frasco	400	mmHg
Pressão absoluta inicial do			Pressão absoluta inicial do			Pressão absoluta inicial do		, i	Pressão absoluta inicial do		
Frasco (Pi)	350,3	mmHg	Frasco (Pi)	350,3	mmHg	Frasco (Pi)	350,3	mmHg	Frasco (Pi)	350,3	mmHg
Temperatura inicial do Frasco	15	°C	Temperatura inicial do Frasco	15	°C	Temperatura inicial do Frasco	15	°C	Temperatura inicial do Frasco	15	°C
Temperatura absoluta inicial do	288	K	Temperatura absoluta inicial do	288	K	Temperatura absoluta inicial do	288	K	Temperatura absoluta inicial do	288	K
Frasco (Ti)	288	K	Frasco (Ti)	288	K	Frasco (Ti)	288	K	Frasco (Ti)	288	K
Condições Finais			Condições Finais		Condições Fina			Condições Finais			
Data	25/08		Data	25/08		Data	25/08		Data	25/08	
Hora	09:	:00	Hora	09:05		Hora	09:10		Hora	09:15	
Pressão Atmosférica Final	750,3	mmHg	Pressão Atmosférica Final	750,3	0	Pressão Atmosférica Final	750,3	- 6	Pressão Atmosférica Final	750,3	mmHg
Pressão final do Frasco	5	mmHg	Pressão final do Frasco	10	mmHg	Pressão final do Frasco	5	mmHg	Pressão final do Frasco	5	mmHg
Pressão absoluta final do Frasco (Pf)	745,3	mmHg	Pressão absoluta final do Frasco (Pf)	740,3	mmHg	Pressão absoluta final do Frasco (Pf)	745,3	mmHg	Pressão absoluta final do Frasco (Pf)	745,3	mmHg
Temperatura final do Frasco	14	°C	Temperatura final do Frasco	14	°C	Temperatura final do Frasco	14	°C	Temperatura final do Frasco	14	°C
Temperatura absoluta final do	287	K	Temperatura absoluta final do	287	17	Temperatura absoluta final do	287	K	Temperatura absoluta final do	287	17
Frasco (Tf)	287	K	Frasco (Tf)	287	K	Frasco (Tf)	287	K	Frasco (Tf)	287	K
Resultados de Análise			Resultados de Análise			Resultados de Análise			Resultados de Análise		
Massa Total de NOx (m _{NOx})	720,12		Massa Total de NOx (m _{NOx})	713,97		Massa Total de NOx (m _{NOx})	714,06		Massa Total de NOx (m _{NOx})	724,75	
Cert Ensaio Nº	226.067;	226.100	Cert Ensaio Nº	226.068;	226.100	Cert Ensaio N°		; 226.100	Cert Ensaio N°	226.070;	226.100
Cálculo do Volume amostrado			Cálculo do Volume amostrado			Cálculo do Volume amostrado			Cálculo do Volume amostrado		
Volume da amostra nas			Volume da amostra nas			Volume da amostra nas			Volume da amostra nas		
condições normais, base seca	1099,37	mL	5	1082,07	mL	condições normais, base seca	1106,81	mL	condições normais, base seca	1095,95	mL
(Van)			(Van)			(Van)			(Van)		
Cálculo da Concentração de NOX			Cálculo da Concentração de NOX		Cálculo da Concentração de NOX		Cálculo da Concentração de NOX				
Concentração de NOx nas			Concentração de NOx nas			Concentração de NOx nas			Concentração de NOx nas		
condições normais, base seca	655,027	mg/Nm ³	condições normais, base seca	659,817	mg/Nm ³	condições normais, base seca	645,150	mg/Nm ³	condições normais, base seca	661,297	mg/Nm ³
(C_{NOx})			(C_{NOx})			(C_{NOx})			(C_{NOx})		
Cálculo da Taxa de Emissão de NOx		Cálculo da Taxa de Emissão de NOx		Cálculo da Taxa de Emissão de NOx			Cálculo da Taxa de Emissão de NOx				
Vazão (Vaecnbs)	447235	Nm ³ /h	Vazão (Vaecnbs)	447235	Nm ³ /h	Vazão (Vaecnbs)	447235	Nm ³ /h	Vazão (Vaecnbs)	447235	Nm ³ /h
Taxa de Emissão de NOx	202.051	V a/h	Taxa de Emissão de NOx	205.002	V ~/h	Taxa de Emissão de NOx			Taxa de Emissão de NOx	205.755	V a/la
(Te_{NOx})	292,951	rsg/n	(Te _{NOx})	295,093	⊼ g/n	(Te _{NOx})	288,533	⊼ g/n	(Te _{NOx})	295,755	⊼ g/П

Van = ((273*(Vf-Va))/760)*((Pf/Tf)-(Pi/Ti))

 $C_{NOx} = (m_{NOx}/Van)*1000$

Te_{NOx} = C_{NOx} * Vaecnbs * 10⁻⁶

SERVIÇO PÚBLICO FEDERAL

CONSELHO REGIONAL DE QUÍMICA - 5ª REGIÃO

RIO GRANDE DO SUL

Av. Itaqui, 45 - Fone/Fax:(51) 3330-5659
CEP 90.460-140 - Porto Alegre - Rio Grande do Sul
e-mail: crqv@crqv.org.br
www.crqv.org.br

CERTIFICADO DE ANOTAÇÃO DE FUNÇÃO TÉCNICA

- AFT -

N° 72994

Certifico, conforme despacho do Senhor Presidente do Conselho Regional de Química da 5ª Região, que foi procedida a Anotação de Função Técnica do profissional RODRIGO ROCHA DAVESAC, inscrito no C.P.F. sob o número 610.510.470-72, registrado como ENGENHEIRO QUÍMICO sob o número 05301819, neste Conselho, relativamente as análises químicas e físico-químicas realizadas no laboratório, pela assessoria técnica, emissão de laudos e pareceres, pesquisa e desenvolvimento de projetos e equipamentos, na empresa ISATEC - PESQUISA, DESENVOLVIMENTO E ANÁLISES QUÍMICAS LTDA., localizada à Avenida FRANCISCO MARTINS BASTOS, 202, RIO GRANDE/RS, em conformidade com o art. 1º da Lei nº 6.839, de 30 de outubro de 1980; arts. 334, alínea "b", 335, alínea "b", 337 e 341, do Decreto-Lei nº 5.452 (Consolidação das Leis do Trabalho - CLT), de 01 de maio de 1943; art. 27, da Lei nº 2.800, de 18 de junho de 1956; art. 1º, incisos II e IV e 2º, inciso IV, alínea "a", do Decreto nº 85.877, de 07 de abril de 1981 e Resoluções Normativas de nºs 51, de 12 de dezembro de 1980, 105, de 17 de setembro de 1987 e 122, de 09 de novembro de 1990, do Conselho Federal de Química

Certificado de Anotação de Função Técnica válido de 25/06/2011 até 23/06/2012. Taxa de AFT no valor de R\$ 144,67, recolhida conforme o recibo nº 201.697.

Porto Alegre, 14 de junho de 2011.

Visto: Duly Boldwell.

MARISTELA MENDES DALMÁS CHEFE DO DEPARTAMENTO