

RELATÓRIO DE ENSAIO

INTERESSADO: AECOM

Praia de Botafogo, 440 - 24º Andar CEP: 22.250-040 - Rio de Janeiro/RJ

LABORATÓRIO CONTRATADO: Analytical Technology Serviços

Analíticos e Ambientais Ltda.

PROJETO: ÁGUA PRODUZIDA POLVO 2ª AMOSTRAGEM 2013

IDENTIFICAÇÃO AT: LOG nº 15474/2013_REV.01

Dados referentes ao Projeto

1. Identificação da amostra

ID AT	IDENTIFICAÇÃO DO PROJETO			
	AMOSTRA: FPSO POLVO_2ª_AMOSTRA_2013 / DATA: 22/10/2013			
98892/2013-1.0	/HORA:09:00 / MATRIZ: ÁGUA DE PRODUÇÃO / PROJETO: ÁGUA			
	PRODUZIDA POLVO 2ª AMOSTRAGEM 2013			

2. Custódia das amostra

Data de recebimento de amostra: 22/10/2013

Data de emissão do relatório eletrônico: 11/11/2013

Período de retenção das amostras: até 20 dias após a emissão do relatório (até essa data as

amostras estarão disponíveis para devolução e/ou checagem)

Analytical Rua Bittencourt Sampaio, 105 V. Mariana 04126-060 São Paulo SP Tel. 11 5904 8800 Fax. 11 5904 8801 Technology.

3. Resultados de análises

	,				
PRO IFTO: A	ACHA PRO	עחובו וטנ ${\tt A}$	$P \cap V \cap$	2a VIVIO	STRAGEM 2013

ENSAIO: FÍSICO-QUÍMICO			
LOGIN: 98892/2013-1.0	PONTO: FPSO POLVO_2ª_AMOSTRA_2013		
MATRIZ: ÁGUA DE PRODUÇÃO	DATA: 22/10/2013 HORA: 09:00		

Parâmetro	Diluição	Unidade	Resultados	L.Q	VMP	Ref.
Sulfeto	1	mg/L	< 0,015	0,015	-	93
Óleos e Graxas	-	mg/L	< 10,0	10,0	Virtualmente ausentes	187
Fenóis Totais	10	μg/L	820,0	90,0	60	129
Carbono Orgânico Dissolvido	1	mg/L	26,0	1,00	-	265
Fluoreto Total	20	mg/L	< 0,600	0,600	1,4	10
Cianeto	1	mg/L	< 0,006	0,006	-	17
Nitrogênio Amoniacal	100	mg/L	44,1	6,00	-	405
Sólidos Totais	-	mg/L	84757,3	5,00	-	13
Salinidade	100	‰	73,670	-	-	338
Densidade a 25°C	-	g/cm³	1,0495	-	-	99
Carbono Orgânico Total	1	mg/L	26,5	1,00	3	265

Observações:

L.Q: Limite de Quantificação

VMP - Valores máximos permitidos segundo Artigo 18 do CONAMA Resolução N° 357, de 17 de Março de 2005, que estabelece limites para as águas salinas de classe 1

Ref.	Referência Externa	Referência Interna	Data do Preparo	Data da Análise	QA/QC
10	USEPA 9056A	POPLIN023	23/10/2013	23/10/2013	16405/2013
13	SM - 21st - 2540B	POPLIN012	28/10/2013	28/10/2013	16996/2013
17	SM - 21st - 4500.CN- E	POPLIN024	01/11/2013	01/11/2013	17010/2013
93	SM - 21st - 4500.S2-D	POPLIN039	28/10/2013	28/10/2013	17013/2013
99	NBR 14065	POPBIO001	30/10/2013	30/10/2013	0/0
129	SM - 21st - 5530C	POPLIN027	26/10/2013	26/10/2013	16745/2013
187	SM - 21st - 5520D	POPLOR046	30/10/2013	30/10/2013	0/0
265	USEPA 415.3		01/11/2013	01/11/2013	16663/2013
265	USEPA 415.3		01/11/2013	01/11/2013	16850/2013
338	SM - 21st - 2520B	POPLIN050	30/10/2013	30/10/2013	0/0
405	SM - 21st - 4500.NH3-F	POPLIN040	26/10/2013	26/10/2013	16861/2013

Analytical Rus Bittencourt Sampaio, 105 V. Mariana 04126-060 São Paulo SP Tel. 11 5904 8800 Fax. 11 5904 8801 Technology.® www.analyticaltechnology.com.br

PROJETO: ÁGUA PRODUZIDA POLVO 2ª AMOSTRAGEM 2013

ENSAIO: METAIS			
LOGIN: 98892/2013-1.0 PONTO: FPSO POLVO_2 ^a _AMOSTRA_2013			
MATRIZ: ÁGUA DE PRODUÇÃO	DATA : 22/10/2013	HORA: 09:00	

Parâmetro	Diluição	Unidade	Resultados	L.Q	VMP	Ref.
Arsênio Total	1	mg/L	< 0,010	0,010	0,01	24
Bário Total	1	mg/L	0,226	0,010	1,0	24
Boro Total	1	mg/L	0,035	0,015	5,0	24
Cádmio Total	1	mg/L	< 0,004	0,004	0,005	24
Chumbo Total	1	mg/L	< 0,009	0,009	0,01	24
Cobre Total	1	mg/L	< 0,009	0,009	=	24
Cromo Total	1	mg/L	< 0,010	0,010	0,05	24
Ferro Total	1	mg/L	0,647	0,030	-	24
Manganês Total	1	mg/L	0,065	0,010	0,1	24
Mercúrio Total	1	mg/L	< 0,0002	0,0002	0,0002	406
Níquel Total	1	mg/L	< 0,005	0,005	0,025	24
Prata Total	1	mg/L	< 0,005	0,005	0,005	24
Selênio Total	1	mg/L	< 0,009	0,009	0,01	24
Estanho Total	1	mg/L	< 0,010	0,010	=	24
Vanádio Total	1	mg/L	< 0,015	0,015	-	24
Zinco Total	1	mg/L	< 0,070	0,070	0,09	24

Observações:

VMP - Valores máximos permitidos segundo Artigo 18 do CONAMA Resolução N° 357, de 17 de Março de 2005, que estabelece limites para as águas salinas de classe 1

Ref.	Referência Externa	Referência Interna	Data do Preparo	Data da Análise	QA/QC
24	USEPA 6010C	POPLIN002	25/10/2013	25/10/2013	16286/2013
406	USEPA-1631F	POPLIN003	06/11/2013	06/11/2013	16970/2013

L.Q: Limite de Quantificação

Analytica|Rua Bittencourt Sampaio, 105 V. Mariana 04126-060 São Paulo SP Tel. 11 5904 8800 Fax. 11 5904 8801 Technology® www.analytica|lachnology.ees. by

PROJETO: ÁGUA PRODUZIDA POLVO 2ª AMOSTRAGEM 2013

ENSAIO: METAIS DISSOLVIDOS				
LOGIN: 98892/2013-1.0	PONTO: FPSO POLVO_2ª_AMOSTRA_2013			
MATRIZ: ÁGUA DE PRODUÇÃO	DATA : 22/10/2013 HORA : 09:00			

Parâmetro	Diluição	Unidade	Resultados	L.Q	VMP	Ref.
Manganês Dissolvido	1	mg/L	0,050	0,010	-	24
Ferro Dissolvido	1	mg/L	0,042	0,030	0,3	24
Cobre Dissolvido	1	mg/L	< 0,003*J	0,009	0,005	24

Observações:

L.Q: Limite de Quantificação

Ref.	Referência Externa	Referência Interna	Data do Preparo	Data da Análise	QA/QC
24	USEPA 6010C	POPLIN002	25/10/2013	25/10/2013	16218/2013

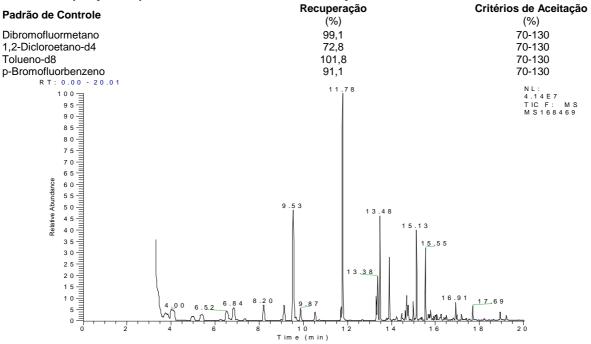
VMP - Valores máximos permitidos segundo Artigo 18 do CONAMA Resolução Nº 357, de 17 de Março de 2005, que estabelece limites para as águas salinas de classe 1
*J - valor reportado é estimado porque sua concentração é menor que o limite de quantificação do método (LQM)

Analytical Rua Bittencourt Sampaio, 105 V. Mariana 04126-060 São Paulo SP Tel. 11 5904 8800 Fax. 11 5904 8801 Technology.® www.analyticaltechnology.com.br

PROJETO: ÁGUA PRODUZIDA POLVO 2ª AMOSTRAGEM 2013

ENSAIO: VOC			
LOGIN: 98892/2013-1.0	PONTO: FPSO POLVO_2ª_AMOSTRA_2013		
MATRIZ: ÁGUA DE PRODUÇÃO	DATA : 22/10/2013 HORA : 09:00		

Parâmetro	Diluição	Unidade	Resultados	L.Q	VMP	Ref.
Diclorodifluormetano	1	μg/L	< 3,00	3,00	-	1
Clorometano	1	μg/L	< 3,00	3,00	=	1
Cloreto de Vinila	1	μg/L	< 1,50	1,50	-	1
Bromometano	1	μg/L	< 3,00	3,00	-	1
Cloroetano	1	μg/L	< 3,00	3,00	-	1
Triclorofluormetano	1	μg/L	< 3,00	3,00	-	1
Acetona	1	μg/L	< 9,00	9,00	-	1
1,1-Dicloroeteno	1	μg/L	< 3,00	3,00	3	1
Iodometano	1	μg/L	< 9,00	9,00	-	1
Dissulfeto de Carbono	1	μg/L	< 9,00	9,00	-	1
Cloreto de Metileno	1	μg/L	< 15,0	15,0	-	1
Metil-t-butil-eter	1	μg/L	< 3,00	3,00	-	1
Trans-1,2-Dicloroeteno	1	μg/L	< 3,00	3,00	-	1
Acetato de Vinila	1	μg/L	< 9,00	9,00	-	1
1,1-Dicloroetano	1	μg/L	< 3,00	3,00	-	1
2-Butanona	1	μg/L	< 9,00	9,00	-	1
Cis-1,2-Dicloroeteno	1	μg/L	< 3,00	3,00	-	1
2,2-Dicloropropano	1	μg/L	< 3,00	3,00	-	1
Bromoclorometano	1	μg/L	< 3,00	3,00	-	1
Clorofórmio	1	μg/L	< 3,00	3,00	-	1
1,1,1-Tricloroetano	1	μg/L	< 3,00	3,00	-	1
1,1-Dicloropropeno	1	μg/L	< 3,00	3,00	-	1
Tetracloreto de Carbono	1	μg/L	< 1,50	1,50	-	1
1,2-Dicloroetano	1	μg/L	< 3,00	3,00	37	1
Tricloroeteno	1	μg/L	< 3,00	3,00	30,0	1
1,2-Dicloropropano	1	μg/L	< 3,00	3,00	-	1
Dibromometano	1	μg/L	< 3,00	3,00	-	1
Bromodiclorometano	1	μg/L	< 3,00	3,00	-	1
2-Cloroetilvinil eter	1	μg/L	< 9,00	9,00	-	1
Trans-1,3-Dicloropropeno	1	μg/L	< 3,00	3,00	-	1
4-Metil-2-Pentanona	1	μg/L	< 9,00	9,00	-	1
Cis-1,3-Dicloropropeno	1	μg/L	< 3,00	3,00	-	1
1,1,2-Tricloroetano	1	μg/L	< 3,00	3,00	-	1
2-Hexanona	1	μg/L	< 9,00	9,00	-	1
1,3-Dicloropropano	1	μg/L	< 3,00	3,00	-	1
Tetracloroeteno	1	μg/L	< 3,00	3,00	3,3	1
Dibromoclorometano	1	μg/L	< 3,00	3,00	-	1
1,2-Dibromoetano	1	μg/L	< 3,00	3,00	-	1
Clorobenzeno	1	μg/L	< 3,00	3,00	-	1
Etilbenzeno	1	μg/L	114,6	3,00	25,0	1
1,1,1,2-Tetracloroetano	1	μg/L	< 3,00	3,00	-	1
m,p-Xilenos	1	μg/L	241,8	3,00	-	1
o-Xileno	1	μg/L	213,5	3,00	-	1
Estireno	1	μg/L	< 3,00	3,00	-	1
Bromoformio	1	μg/L	< 3,00	3,00	-	1
Isopropilbenzeno	1	μg/L	< 3,00	3,00	-	1
1,1,2,2-Tetracloroetano	1	μg/L	< 3,00	3,00	-	1



Analytica|Rua Bittencourt Sampaio, 105 V. Mariana 04126-060 São Paulo SP Tel. 11 5904 8800 Fax. 11 5904 8801
Technology® www.analyticaltechnology.com.br

1,2,3-Tricloropropano	1	μg/L	< 3,00	3,00	-	1
Bromobenzeno	1	μg/L	< 3,00	3,00	-	1
n-Propilbenzeno	1	μg/L	< 3,00	3,00	-	1
1,3,5-Trimetilbenzeno	1	μg/L	102,9	3,00	-	1
2-Clorotolueno	1	μg/L	< 3,00	3,00	-	1
4-Clorotolueno	1	μg/L	< 3,00	3,00	-	1
terc-Butilbenzeno	1	μg/L	< 3,00	3,00	-	1
1,2,4-Trimetilbenzeno	1	μg/L	203,0	3,00	-	1
sec-Butilbenzeno	1	μg/L	< 3,00	3,00	-	1
p-Isopropiltolueno	1	μg/L	< 3,00	3,00	-	1
n-Butilbenzeno	1	μg/L	< 3,00	3,00	-	1
1,2-Dibromo-3-Cloropropano	1	μg/L	< 3,00	3,00	-	1
1,2,3-Triclorobenzeno	1	μg/L	< 3,00	3,00	-	1
1,3,5-Triclorobenzeno	1	μg/L	< 3,00	3,00	-	1

QA/QC - Recuperação dos padrões de controle e critérios de aceitação

Observações:

L.Q: Limite de Quantificação

VMP - Valores máximos [°] permitidos segundo Artigo 18 do CONAMA Resolução N° 357, de 17 de Março de 2005, que estabelece limites para as águas salinas de classe 1

Ref.	Referência Externa	Referência Interna	Data do Preparo	Data da Análise	QA/QC
1	USEPA 8260B	POPLOR013	04/11/2013	04/11/2013	16847/2013

Analytica|Rua Bittencourt Sampaio, 105 V. Mariana 04126-060 São Paulo SP Tel. 11 5904 8800 Fax. 11 5904 8801 Technology® www.analyticaltechnology.com.br

PROJETO: ÁGUA PRODUZIDA POLVO 2ª AMOSTRAGEM 2013

ENSAIO: VOC.				
LOGIN: 98892/2013-1.0	PONTO: FPSO POLVO_2ª_AMOSTRA_2013			
MATRIZ: ÁGUA DE PRODUÇÃO	DATA : 22/10/2013	HORA: 09:00		

Parâmetro	Diluição	Unidade	Resultados	L.Q	VMP	Ref.
Benzeno	10	μg/L	939,7	30,0	700,0	1
Tolueno	10	μg/L	702,2	30,0	215	1

QA/QC - Recuperação dos padrões de controle e critérios de aceitação

ando neouperação dos par	noco de controle e cinterios de doctação	
Padrão de Controle	Recuperação (%)	Critérios de Aceitação (%)
1,2-Dicloroetano-d4 Tolueno-d8	111,2 110,9	70-130 70-130
p-Bromofluorbenzeno	81,1	70-130
Relative Abundance Relative Abundance 2 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.73 4.03 4.28 6.49 8.98 10 12 14 16.9	N L: 5.60 E 6 TIC F: M S M S 1685 40

Observações:

L.Q: Limite de Quantificação

VMP - Valores máximos permitidos segundo Artigo 18 do CONAMA Resolução N° 357, de 17 de Março de 2005, que estabelece limites para as águas salinas de classe 1

Ref.	Referência Externa	Referência Interna	Data do Preparo	Data da Análise	QA/QC
1	USEPA 8260B	POPLOR013	04/11/2013	04/11/2013	16895/2013

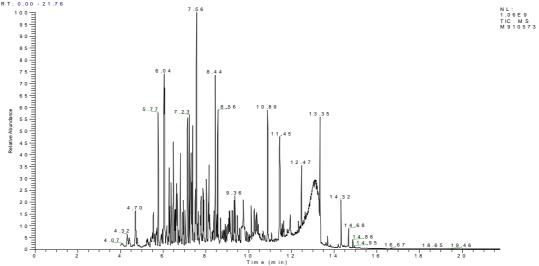
Analytical Rua Bittencourt Sampaio, 105 V. Mariana 04126-060 São Paulo SP Tel. 11 5904 8800 Fax. 11 5904 8801 Technology.

PROJETO: ÁGUA PRODUZIDA POLVO 2ª AMOSTRAGEM 2013

ENSAIO: SVOC				
LOGIN: 98892/2013-1.0	PONTO: FPSO POLVO_2ª_AMOSTRA_2013			
MATRIZ: ÁGUA DE PRODUÇÃO	DATA : 22/10/2013	HORA: 09:00		

Parâmetro	Diluição	Unidade	Resultados	L.Q	VMP	Ref.
Metil metanosulfonato	1	μg/L	< 0,0375	0,0375	-	4
Etil metanosulfonato	1	μg/L	< 0,0375	0,0375	-	4
Fenol	1	μg/L	1,90	0,0375	-	4
Anilina	1	μg/L	< 0,0375	0,0375	-	4
Bis(2-Cloroetil)eter	1	μg/L	< 0,0375	0,0375	-	4
2-Clorofenol	1	μg/L	< 0,0375	0,0375	150	4
1,3-Diclorobenzeno	1	μg/L	< 0,0375	0,0375	-	4
1,4-Diclorobenzeno	1	μg/L	< 0,0375	0,0375	-	4
Álcool Benzílico	1	μg/L	< 0,0375	0,0375	-	4
1,2-Diclorobenzeno	1	μg/L	< 0,0375	0,0375	-	4
Bis(2-Cloroisopropil)eter	1	μg/L	< 0,0375	0,0375	-	4
N-Nitrosodi-n-propilamina	1	μg/L	< 0,0375	0,0375	-	4
Hexacloroetano	1	μg/L	< 0,0375	0,0375	-	4
Nitrobenzeno	1	μg/L	< 0,0375	0,0375	-	4
Isoforona	1	μg/L	< 0,0375	0,0375	-	4
2-Nitrofenol	1	μg/L	< 0,0375	0,0375	-	4
2,4-Dimetilfenol	1	μg/L	4,30	0,0375	-	4
Bis(2-Cloroetoxi)metano	1	μg/L	< 0,0375	0,0375	-	4
2,4-Diclorofenol	1	μg/L	< 0,0375	0,0375	290	4
1,2,4-Triclorobenzeno	1	μg/L	< 0,0375	0,0375	-	4
Naftaleno	1	μg/L	6,15	0,0375	_	4
4-Cloroanilina	1	μg/L	< 0,0375	0,0375	-	4
Hexaclorobutadieno	1	μg/L	< 0,0375	0,0375	-	4
4-Cloro-3-Metilfenol	1	μg/L	< 0,0375	0,0375	-	4
2-Metilnaftaleno	1	μg/L	3,61	0,0375	-	4
Hexaclorociclopentadieno	1	μg/L	< 0,0375	0,0375	_	4
2-Metil-4,6-dinitrofenol	1	μg/L	< 0,0375	0,0375	-	4
2,4,5-Triclorofenol	1	μg/L	< 0,0375	0,0375	-	4
2,4,6-Triclorofenol	1	μg/L	< 0,0375	0,0375	2,4	4
2-Cloronaftaleno	1	μg/L	< 0,0375	0,0375	- -	4
2-Nitroanilina	1	μg/L	< 0,0375	0,0375	-	4
Dimetilftalato	1	μg/L	< 0,0375	0,0375	-	4
Acenaftileno	1	μg/L	< 0,0375	0,0375	-	4
3-Nitroanilina	1	μg/L	< 0,0375	0,0375	-	4
Acenafteno	1	μg/L	0,0768	0,0375	-	4
Dibenzofurano	1	μg/L	< 0,0375	0,0375	-	4
2,6-Dinitrotolueno	1	μg/L	< 0,0375	0,0375	_	4
Dietilftalato	1	μg/L	< 0,0375	0,0375	-	4
Fluoreno	1	μg/L	< 0,0375	0,0375	_	4
4-Clorofenil Fenil Éter	1	μg/L	< 0,0375	0,0375	-	4
4-Nitroanilina	1	μg/L	< 0,0375	0,0375	-	4
N-Nitrosodifenilamina	1	μg/L	< 0,0375	0,0375	_	4
4-Bromofenil Fenil Éter	1	μg/L	< 0,0375	0,0375	-	4
Hexaclorobenzeno	1	μg/L	< 0,0125*J	0,0375	0,00029	4
Pentaclorofenol	1	μg/L	< 0,0375	0,0375	7,9	4
Fenantreno	1	μg/L	< 0,0375	0,0375	- -	4
Antraceno	1	μg/L	< 0,0375	0,0375	-	4

Analytical Rua Bittencourt Sampaio, 105 V. Mariana 04126-060 São Paulo SP Tel. 11 5904 8800 Fax. 11 5904 8801 Technology.


Di-N-Butilftalato	1	μg/L	< 0,0375	0,0375	-	4
Fluoranteno	1	μg/L	< 0,0375	0,0375	-	4
Pireno	1	μg/L	< 0,0375	0,0375	-	4
Butil Benzilftalato	1	μg/L	< 0,0375	0,0375	-	4
Benzo(a)antraceno	1	μg/L	< 0,0125*J	0,0375	0,018	4
Criseno	1	μg/L	< 0,0125*J	0,0375	0,018	4
Bis[2-Etilexil]ftalato	1	μg/L	< 0,0375	0,0375	-	4
Di-n-Octilftalato	1	μg/L	< 0,0375	0,0375	=	4
Benzo(b)fluoranteno	1	μg/L	< 0,0125*J	0,0375	0,018	4
Benzo(k)fluoranteno	1	μg/L	< 0,0125*J	0,0375	0,018	4
Benzo(a)pireno	1	μg/L	< 0,0125*J	0,0375	0,018	4
Indeno(1,2,3-cd)pireno	1	μg/L	< 0,0062*J	0,0188	0,018	4
Dibenzo(a,h)antraceno	1	μg/L	< 0,0062*J	0,0188	0,018	4
Benzo(g,h,i)perileno	1	μg/L	< 0,0375	0,0375	-	4
o-Cresol	1	μg/L	1,86	0,0375	-	4
m,p-Cresol	1	μg/L	1,81	0,0375	-	4
2,4-Dinitrotolueno	1	μg/L	< 0,0375	0,0375	-	4
Azobenzeno	1	μg/L	< 0,0375	0,0375	-	4
Carbazol	1	μg/L	< 0,0375	0,0375	-	4
2,3,4,6-Tetraclorofenol	1	μg/L	< 0,0375	0,0375	-	4
4-Clorofenol	1	μg/L	< 0,0375	0,0375	-	4
2,6-Diclorofenol	1	μg/L	< 0,0375	0,0375	-	4
1,2,3,4-Tetraclorobenzeno	1	μg/L	< 0,0375	0,0375	-	4
1,2,3,5-Tetraclorobenzeno	1	μg/L	< 0,0375	0,0375	-	4
1,2,4,5-Tetraclorobenzeno	1	μg/L	< 0,0375	0,0375	-	4
3,4-Diclorofenol	1	μg/L	< 0,0375	0,0375	-	4
Pentaclorobenzeno	1	μg/L	< 0,0375	0,0375	-	4
2,3,4,5-Tetraclorofenol	1	μg/L	< 0,0375	0,0375	-	4
4-Nitrofenol	1	μg/L	< 0,0375	0,0375	-	4
2,4-Dinitrofenol	1	μg/L	< 0,7500	0,7500	-	4
Somatória de HAPs	1	μg/L	9,83	0,0375	-	4

QA/QC - Recuperação dos padrões de controle e critérios de aceitação

Padrão de Controle	Recuperação	Critérios de Aceitaçã	
Padrao de Controle	(%)	(%)	
2-Fluorfenol	58,7	25-125	
Fenol-d6	44,2	25-125	
2-Fluorbifenil	58,0	25-125	
Nitrobenzeno-d5	68,1	25-125	
Terfenil-d14	96,2	25-125	
2.4.6-Tribromofenol	93.0	25-125	

Analytical Rua Bittencourt Sampaio, 105 V. Mariana 04126-060 São Paulo SP Tel. 11 5904 8800 Fax. 11 5904 8801 Technology® www.analyticaltechnology®

Observações:

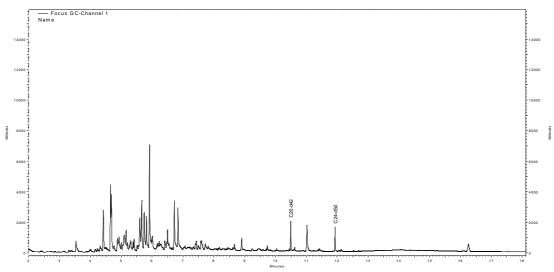
L.Q: Limite de Quantificação
VMP - Valores máximos permitidos segundo Artigo 18 do CONAMA Resolução N° 357, de 17 de Março de 2005, que estabelece limites para as águas salinas de classe 1 *J - valor reportado é estimado porque sua concentração é menor que o limite de quantificação do método (LQM)

Ref.	Referência Externa	Referência Interna	Data do Preparo	Data da Análise	QA/QC
4	USEPA 8270D	POPLOR015	25/10/2013	25/10/2013	16250/2013

Analytical Rua Bittencourt Sampaio, 105 V. Mariana 04126-060 São Paulo SP Tel. 11 5904 8800 Fax. 11 5904 8801 Technology® www.analyticaltechnology®

PROJETO: ÁGUA PRODUZIDA POLVO 2ª AMOSTRAGEM 2013

ENSAIO: TPH-FP				
LOGIN: 98892/2013-1.0	PONTO: FPSO POLVO_2ª_AMOSTRA_2013			
MATRIZ: ÁGUA DE PRODUÇÃO	DATA : 22/10/2013	HORA: 09:00		


Parâmetro	Diluição	Unidade	Resultados	L.Q	VMP	Ref.
C10	1	μg/L	< 15,0	15,0	-	11
C11	1	μg/L	< 15,0	15,0	-	11
C12	1	μg/L	< 15,0	15,0	-	11
C13	1	μg/L	< 15,0	15,0	-	11
C14	1	μg/L	< 15,0	15,0	-	11
C15	1	μg/L	< 15,0	15,0	-	11
C16	1	μg/L	< 15,0	15,0	-	11
C17	1	μg/L	< 15,0	15,0	-	11
Pristano	1	μg/L	< 15,0	15,0	-	11
C18	1	μg/L	< 15,0	15,0	-	11
Fitano	1	μg/L	< 15,0	15,0	-	11
C19	1	μg/L	< 15,0	15,0	-	11
C20	1	μg/L	< 15,0	15,0	-	11
C21	1	μg/L	< 15,0	15,0	-	11
C22	1	μg/L	< 15,0	15,0	-	11
C23	1	μg/L	< 15,0	15,0	-	11
C24	1	μg/L	< 15,0	15,0	-	11
C25	1	μg/L	< 15,0	15,0	-	11
C26	1	μg/L	< 15,0	15,0	-	11
C27	1	μg/L	< 15,0	15,0	-	11
C28	1	μg/L	< 15,0	15,0	-	11
C29	1	μg/L	< 15,0	15,0	-	11
C30	1	μg/L	< 15,0	15,0	-	11
C31	1	μg/L	< 15,0	15,0	-	11
C32	1	μg/L	< 15,0	15,0	-	11
C33	1	μg/L	< 15,0	15,0	-	11
C34	1	μg/L	< 15,0	15,0	-	11
C35	1	μg/L	< 15,0	15,0	-	11
C36	1	μg/L	< 15,0	15,0	-	11
n-Alcanos	1	μg/L	< 15,0	15,0	-	11
HRP	1	μg/L	784,2	15,0	=	11
MCNR	1	μg/L	980,8	15,0	-	11
TPH Total	1	μg/L	1765,0	435,0	-	11

QA/QC - Recuperação dos padrões de controle e critérios de aceitação Recuperação

Padrão de Controle	Recuperação (%)	Critérios de Aceitação (%)
C20-d42	60,6	40-135
C24-d50	52,7	40-135

Analytica Rua Bittencourt Sampaio, 105 V. Mariana 04126-060 São Paulo SP Tel. 11 5904 8800 Fax. 11 5904 8801 Technology® www.analytica.ltachnology.com.lts

Perfil Cromatográfico:

O perfil cromatográfico da amostra indica a presença compostos orgânicos derivados de petróleo, eluindo na faixa do

Observações: L.Q: Limite de Quantificação

VMP - Valores máximos permitidos segundo Artigo 18 do CONAMA Resolução N° 357, de 17 de Março de 2005, que estabelece limites para as águas salinas de classe 1

MCNR: Mistura complexa não resolvida. HRP: Hidrocarbonetos Resolvidos de Petróleo.

Ref.	Referência Externa	Referência Interna	Data do Preparo	Data da Análise	QA/QC
11	USEPA 8015C	POPLOR005	25/10/2013	25/10/2013	16241/2013

QA/QC - 16405/2013 - Branco de Análise - Ânions

PROJETO: ÁGUA PRODUZIDA POLVO 2ª AMOSTRAGEM 2013

 Parâmetro
 Unidade
 Resultados
 L.Q
 Ref.

 Fluoreto Total
 mg/L
 < 0,030</td>
 0,030
 10

Observações:

L.Q: Limite de Quantificação

 Ref.
 Referência Externa
 Referência Interna
 Data do Preparo
 Data da Análise
 QA/QC

 10
 USEPA 9056A
 POPLIN023
 23/10/2013
 23/10/2013
 16405/2013

QA/QC - 16405/2013 - Spike - Ânions

PROJETO: ÁGUA PRODUZIDA POLVO 2ª AMOSTRAGEM 2013

Resultados Critério Aceitação Resultados Recuperação Parâmetro Unidade Ref. **Obtidos Teóricos** (%) (%) 75-125 Fluoreto Total mg/L 1,02 1,00 102,5 10

Observações:

L.Q: Limite de Quantificação

 Ref.
 Referência Externa
 Referência Interna
 Data do Preparo
 Data da Análise
 QA/QC

 10
 USEPA 9056A
 POPLIN023
 23/10/2013
 23/10/2013
 16405/2013

QA/QC - 17010/2013 - Branco de Análise - Cianeto

PROJETO: ÁGUA PRODUZIDA POLVO 2ª AMOSTRAGEM 2013

 Parâmetro
 Unidade
 Resultados
 L.Q
 Ref.

 Cianeto
 mg/L
 < 0,006</td>
 0,006
 17

Observações:

L.Q: Limite de Quantificação

 Ref.
 Referência Externa
 Referência Interna
 Data do Preparo
 Data da Análise
 QA/QC

 17
 SM - 21st - 4500.CN- E
 POPLIN024
 01/11/2013
 01/11/2013
 17010/2013

QA/QC - 17010/2013 - Spike - Cianeto

PROJETO: ÁGUA PRODUZIDA POLVO 2ª AMOSTRAGEM 2013

Critério Resultados Resultados Recuperação Parâmetro Unidade Aceitação Ref. **Obtidos Teóricos** (%) (%) Cianeto mg/L 0,098 0,100 98,0 75-125 17

Observações:

L.Q: Limite de Quantificação

 Ref.
 Referência Externa
 Referência Interna
 Data do Preparo
 Data da Análise
 QA/QC

 17
 SM - 21st - 4500.CN- E
 POPLIN024
 01/11/2013
 01/11/2013
 17010/2013

QA/QC - 16745/2013 - Branco de Análise - Fenóis Totais

DDO IETO ÁOLIA		DOL 1/0 03	ANACOTOACENACOAC
PROJETO: AGUA	PRODUZIDA	POLVO 2ª	AMOSTRAGEM 2013

 Parâmetro
 Unidade
 Resultados
 L.Q
 Ref.

 Fenóis Totais
 mg/L
 < 0,009</td>
 0,009
 129

Observações:

L.Q: Limite de Quantificação

 Ref.
 Referência Externa
 Referência Interna
 Data do Preparo
 Data da Análise
 QA/QC

 129
 SM - 21st - 5530C
 POPLIN027
 26/10/2013
 26/10/2013
 16745/2013

QA/QC - 16745/2013 - Spike - Fenóis Totais

PROJETO: ÁGUA PRODUZIDA POLVO 2ª AMOSTRAGEM 2013

Critério Resultados Resultados Recuperação Parâmetro Unidade Aceitação Ref. **Obtidos** Teóricos (%) (%)^{*} 75-125 Fenóis Totais 0.191 0.200 95,5 129 mg/L

Observações:

L.Q: Limite de Quantificação

 Ref.
 Referência Externa
 Referência Interna
 Data do Preparo
 Data da Análise
 QA/QC

 129
 SM - 21st - 5530C
 POPLIN027
 26/10/2013
 26/10/2013
 16745/2013

QA/QC - 16861/2013 - Branco de Análise - Nitrogênio Amoniacal

PROJETO: ÁGUA PRODUZIDA POLVO 2ª AMOSTRAGEM 2013

ParâmetroUnidadeResultadosL.QRef.Nitrogênio Amoniacalmg/L< 0,060</td>0,060405

Observações:

L.Q: Limite de Quantificação

 Ref.
 Referência Externa
 Referência Interna
 Data do Preparo
 Data da Análise
 QA/QC

 405
 SM - 21st - 4500.NH3-F
 POPLIN040
 26/10/2013
 26/10/2013
 16861/2013

QA/QC - 16861/2013 - Spike - Nitrogênio Amoniacal

PROJETO: ÁGUA PRODUZIDA POLVO 2ª AMOSTRAGEM 2013

Critério Resultados Resultados Recuperação Parâmetro Unidade Aceitação Ref. **Obtidos Teóricos** (%) (%) 100,4 405 Nitrogênio Amoniacal mg/L 0,502 0,500 75-125

Observações:

L.Q: Limite de Quantificação

 Ref.
 Referência Externa
 Referência Interna
 Data do Preparo
 Data da Análise
 QA/QC

 405
 SM - 21st - 4500.NH3-F
 POPLIN040
 26/10/2013
 26/10/2013
 16861/2013

QA/QC - 16663/2013 - Branco de Análise Carbono Orgânico Total

DDO IETO ÁOLIA		DOL 1/0 03	ANACOTOACENACOAC
PROJETO: AGUA	PRODUZIDA	POLVO 2ª	AMOSTRAGEM 2013

ParâmetroUnidadeResultadosL.QRef.Carbono Orgânico Totalmg/L< 1,00</td>1,00265

Observações:

L.Q: Limite de Quantificação

 Ref.
 Referência Externa
 Referência Interna
 Data do Preparo
 Data da Análise
 QA/QC

 265
 USEPA 415.3
 -- 01/11/2013
 01/11/2013
 16663/2013

QA/QC - 16663/2013 - Spike - Carbono Orgânico Total

PROJETO: ÁGUA PRODUZIDA POLVO 2ª AMOSTRAGEM 2013

Parâmetro	Unidade	Resultados Obtidos	Resultados Teóricos	Recuperação (%)	Critério Aceitação (%)	Ref.	
Carbono Orgânico Total	mg/L	43,3	50,0	86,5	75-125	265	
Observações:							

L.Q: Limite de Quantificação

 Ref.
 Referência Externa
 Referência Interna
 Data do Preparo
 Data da Análise
 QA/QC

 265
 USEPA 415.3
 -- 01/11/2013
 01/11/2013
 16663/2013

QA/QC - 16850/2013 - Branco de Análise - Carbono Orgânico Dissolvido

PROJETO: ÁGUA PRODUZIDA POLVO 2ª AMOSTRAGEM 2013

ParâmetroUnidadeResultadosL.QRef.Carbono Orgânico Dissolvidomg/L< 1,00</td>1,00265

Observações:

L.Q: Limite de Quantificação

 Ref.
 Referência Externa
 Referência Interna
 Data do Preparo
 Data da Análise
 QA/QC

 265
 USEPA 415.3
 -- 01/11/2013
 01/11/2013
 16850/2013

QA/QC - 16850/2013 - Spike - Carbono Orgânico Dissolvido

PROJETO: ÁGUA PRODUZIDA POLVO 2ª AMOSTRAGEM 2013

Parâmetro	Unidade	Resultados Obtidos	Resultados Teóricos	Recuperação (%)	Critério Aceitação (%)	Ref.
Carbono Orgânico Dissolvido	mg/L	42,8	50,0	85,6	37,5-52,5	265

Observações:

L.Q: Limite de Quantificação

 Ref.
 Referência Externa
 Referência Interna
 Data do Preparo
 Data da Análise
 QA/QC

 265
 USEPA 415.3
 -- 01/11/2013
 01/11/2013
 16850/2013

QA/QC - 16286/2013 - Branco de Análise - Metais Totais

UA PRODUZIDA POLVO 2ª AMOSTRAGEM 2013

Parâmetro	Unidade	Resultados	L.Q	Ref.
Arsênio Total	mg/L	< 0,010	0,010	24
Bário Total	mg/L	< 0,010	0,010	24
Boro Total	mg/L	< 0,015	0,015	24
Cádmio Total	mg/L	< 0,004	0,004	24
Chumbo Total	mg/L	< 0,009	0,009	24
Cobre Total	mg/L	< 0,009	0,009	24
Cromo Total	mg/L	< 0,010	0,010	24
Estanho Total	mg/L	< 0,010	0,010	24
Ferro Total	mg/L	< 0,030	0,030	24
Manganês Total	mg/L	< 0,010	0,010	24
Níquel Total	mg/L	< 0,005	0,005	24
Prata Total	mg/L	< 0,005	0,005	24
Selênio Total	mg/L	< 0,009	0,009	24
Vanádio Total	mg/L	< 0,015	0,015	24
Zinco Total	mg/L	< 0,070	0,070	24

Observações:

L.Q: Limite de Quantificação

 Ref.
 Referência Externa
 Referência Interna
 Data do Preparo
 Data da Análise
 QA/QC

 24
 USEPA 6010C
 POPLIN002
 25/10/2013
 25/10/2013
 16286/2013

QA/QC - 16286/2013 - Spike - Metais Totais

PROJETO: ÁGUA PRODUZIDA POLVO 2ª AMOSTRAGEM 2013

Parâmetro	Unidade	Resultados Obtidos	Resultados Teóricos	Recuperação (%)	Critério Aceitação (%)	Ref.
Arsênio Total	mg/L	0,101	0,100	101,1	75-125	24
Bário Total	mg/L	1,07	1,00	107,3	75-125	24
Boro Total	mg/L	1,05	1,00	105,0	75-125	24
Cádmio Total	mg/L	1,11	1,00	111,2	75-125	24
Chumbo Total	mg/L	1,07	1,00	107,4	75-125	24
Cobre Total	mg/L	1,03	1,00	102,5	75-125	24
Cromo Total	mg/L	1,07	1,00	107,5	75-125	24
Estanho Total	mg/L	1,11	1,00	111,1	75-125	24
Ferro Total	mg/L	1,06	1,00	106,0	75-125	24
Manganês Total	mg/L	1,06	1,00	106,1	75-125	24
Níquel Total	mg/L	1,08	1,00	107,8	75-125	24
Prata Total	mg/L	0,508	0,500	101,6	75-125	24
Selênio Total	mg/L	0,085	0,100	85,2	75-125	24
Vanádio Total	mg/L	1,02	1,00	102,3	75-125	24
Zinco Total	mg/L	1,11	1,00	111,0	75-125	24

Observações:

L.Q: Limite de Quantificação

 Ref.
 Referência Externa
 Referência Interna
 Data do Preparo
 Data da Análise
 QA/QC

 24
 USEPA 6010C
 POPLIN002
 25/10/2013
 25/10/2013
 16286/2013

QA/QC - 16970/2013 - Branco de Análise - Mercúrio

DDO IETO ÁOLIA		DOL 1/0 03	ANACOTOACENACOAC
PROJETO: AGUA	PRODUZIDA	POLVO 2ª	AMOSTRAGEM 2013

Parâmetro Unidade Resultados L.Q Ref. Mercúrio Total mg/L < 0,0002 0,0002 406

Observações:

L.Q: Limite de Quantificação

Ref. Referência Externa Referência Interna Data do Preparo QA/QC Data da Análise 406 USEPA-1631E POPLIN003 06/11/2013 06/11/2013 16970/2013

QA/QC - 16970/2013 - Spike - Mercúrio

PROJETO: ÁGUA PRODUZIDA POLVO 2ª AMOSTRAGEM 2013

Parâmetro		Unidade	Resultados Obtidos	Resultados Teóricos	s Recuperação (%)	o Critério Aceitação (%)	Ref.	
Mercúrio To	tal	mg/L	0,0021	0,002	104,0	75-125	406	
Observaçõ L.Q: Limite de	es: e Quantificação							
Ref.	Referência Externa		Referência l	nterna Da	ata do Preparo	Data da Análise	QA/QC	

POPLIN003

Data do Preparo Data da Análise

06/11/2013

16970/2013

06/11/2013

QA/QC - 16218/2013 - Branco de Análise - Metais Dissolvidos

PROJETO: ÁGUA PRODUZIDA POLVO 2ª AMOSTRAGEM 2013

Parâmetro	Unidade	Resultados	L.Q	Ref.
Cobre Dissolvido	mg/L	< 0,003*J	0,009	24
Ferro Dissolvido	mg/L	< 0,030	0,030	24
Manganês Dissolvido	mg/L	< 0,010	0,010	24

Observações:

406

L.Q: Limite de Quantificação

USEPA-1631E

^{*}J - valor reportado é estímado porque sua concentração é menor que o limite de quantificação do método (LQM)

Ref.	Referência Externa	Referência Interna	Data do Preparo	Data da Análise	QA/QC
24	USEPA 6010C	POPLIN002	25/10/2013	25/10/2013	16218/2013

QA/QC - 16218/2013 - Spike - Metais Dissolvidos

PROJETO: ÁGUA PRODUZIDA POLVO 2ª AMOSTRAGEM 2013

Parâmetro	Unidade	Resultados Obtidos	Resultados Teóricos	Recuperação (%)	Critério Aceitação (%)	Ref.
Cobre Dissolvido	mg/L	1,08	1,00	107,8	75-125	24
Ferro Dissolvido	mg/L	1,06	1,00	105,5	75-125	24
Manganês Dissolvido	mg/L	1,10	1,00	109,7	75-125	24
Observações:						

L.Q: Limite de Quantificação

Ref. Data do Preparo QA/QC Referência Externa Referência Interna Data da Análise 24 USEPA 6010C POPLIN002 25/10/2013 25/10/2013 16218/2013

QA/QC - 16996/2013 - Branco de Análise - Sólidos Totais

PROJETO: ÁGUA PRODUZIDA POLVO 2ª AMOSTRAGEM 2013

 Parâmetro
 Unidade
 Resultados
 L.Q
 Ref.

 Sólidos Totais
 mg/L
 < 5,00</td>
 5,00
 13

Observações:

L.Q: Limite de Quantificação

 Ref.
 Referência Externa
 Referência Interna
 Data do Preparo
 Data da Análise
 QA/QC

 13
 SM - 21st - 2540B
 POPLIN012
 28/10/2013
 28/10/2013
 16996/2013

QA/QC - 17013/2013 - Branco de Análise - Sulfeto

PROJETO: ÁGUA PRODUZIDA POLVO 2ª AMOSTRAGEM 2013

Observações:

L.Q: Limite de Quantificação

 Ref.
 Referência Externa
 Referência Interna
 Data do Preparo
 Data da Análise
 QA/QC

 93
 SM - 21st - 4500.S2-D
 POPLIN039
 28/10/2013
 28/10/2013
 17013/2013

QA/QC - 17013/2013 - Spike - Sulfeto

PROJETO: ÁGUA PRODUZIDA POLVO 2ª AMOSTRAGEM 2013

Parâmetro	Unidade	Resultados Obtidos	Resultados Teóricos	Recuperação (%)	Critério Aceitação (%)	Ref.
Sulfeto	mg/L	0,198	0,200	99,0	75-125	93

Observações:

L.Q: Limite de Quantificação

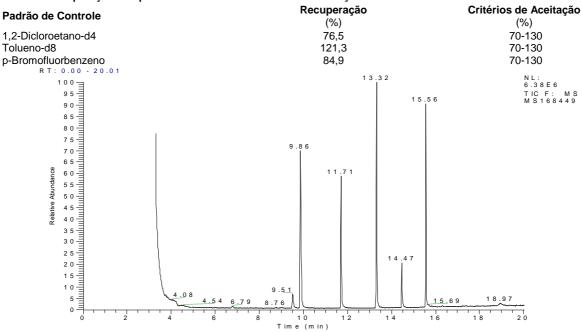
 Ref.
 Referência Externa
 Referência Interna
 Data do Preparo
 Data da Análise
 QA/QC

 93
 SM - 21st - 4500.S2-D
 POPLIN039
 28/10/2013
 28/10/2013
 17013/2013

QA/QC - 16847/2013 - Branco de Análise - VOC

PROJETO: ÁGUA PRODUZIDA POLVO 2ª AMOSTRAGEM 2013

Parâmetro	Unidade	Resultados	L.Q	Ref.
Diclorodifluormetano	μg/L	< 3,00	3,00	1
Clorometano	μg/L	< 3,00	3,00	1
Cloreto de Vinila	μg/L	< 1,50	1,50	1
Bromometano	μg/L	< 3,00	3,00	1
Cloroetano	μg/L	< 3,00	3,00	1
Triclorofluormetano	μg/L	< 3,00	3,00	1
Acetona	μg/L	< 9,00	9,00	1
1,1-Dicloroeteno	μg/L	< 3,00	3,00	1
Iodometano	μg/L	< 9,00	9,00	1
Dissulfeto de Carbono	μg/L	< 9,00	9,00	1
Cloreto de Metileno	μg/L	< 15,0	15,0	1
Metil-t-butil-eter	μg/L	< 3,00	3,00	1
Trans-1,2-Dicloroeteno	μg/L	< 3,00	3,00	1
Acetato de Vinila	μg/L	< 9,00	9,00	1
1,1-Dicloroetano	μg/L	< 3,00	3,00	1
2-Butanona	μg/L	< 9,00	9,00	1
Cis-1,2-Dicloroeteno	μg/L	< 3,00	3,00	1
2,2-Dicloropropano	μg/L	< 3,00	3,00	1
Bromoclorometano	μg/L	< 3,00	3,00	1
Clorofórmio	μg/L	< 3,00	3,00	i
1,1,1-Tricloroetano	μg/L	< 3,00	3,00	1
1,1-Dicloropropeno	μg/L	< 3,00	3,00	1
Tetracloreto de Carbono		< 1,50	1,50	1
	μg/L //			
1,2-Dicloroetano	μg/L	< 3,00	3,00	1
Benzeno	μg/L	< 3,00	3,00	1
Tricloroeteno	μg/L	< 3,00	3,00	1
1,2-Dicloropropano	μg/L	< 3,00	3,00	1
Dibromometano	μg/L	< 3,00	3,00	1
Bromodiclorometano	μg/L	< 3,00	3,00	1
2-Cloroetilvinil eter	μg/L	< 9,00	9,00	1
Trans-1,3-Dicloropropeno	μg/L	< 3,00	3,00	1
4-Metil-2-Pentanona	μg/L	< 9,00	9,00	1
Tolueno	μg/L	< 3,00	3,00	1
Cis-1,3-Dicloropropeno	μg/L	< 3,00	3,00	1
1,1,2-Tricloroetano	μg/L	< 3,00	3,00	1
2-Hexanona	μg/L	< 9,00	9,00	1
1,3-Dicloropropano	μg/L	< 3,00	3,00	1
Tetracloroeteno	μg/L	< 3,00	3,00	1
Dibromoclorometano	μg/L	< 3,00	3,00	1
1,2-Dibromoetano	μg/L	< 3,00	3,00	1
Clorobenzeno	μg/L	< 3,00	3,00	1
Etilbenzeno	μg/L	< 3,00	3,00	1
1,1,1,2-Tetracloroetano	μg/L	< 3,00	3,00	1
m,p-Xilenos	μg/L	< 3,00	3,00	1
o-Xileno	μg/L	< 3,00	3,00	1
Estireno	μg/L	< 3,00	3,00	1
Bromoformio	μg/L	< 3,00	3,00	1
Isopropilbenzeno		< 3,00	3,00	1
	μg/L			
1,1,2,2-Tetracloroetano	μg/L	< 3,00	3,00	1
1,2,3-Tricloropropano	μg/L	< 3,00	3,00	1
Bromobenzeno	μg/L	< 3,00	3,00	1
n-Propilbenzeno	μg/L	< 3,00	3,00	1
1,3,5-Trimetilbenzeno	μg/L	< 3,00	3,00	1
2-Clorotolueno	μg/L	< 3,00	3,00	1
4-Clorotolueno	μg/L	< 3,00	3,00	1
terc-Butilbenzeno	μg/L	< 3,00	3,00	1
1,2,4-Trimetilbenzeno	μg/L	< 3,00	3,00	1
sec-Butilbenzeno	μg/L	< 3,00	3,00	1
p-Isopropiltolueno	μg/L	< 3,00	3,00	1
1,3-Diclorobenzeno	μg/L	< 3,00	3,00	1
n-Butilbenzeno	μg/L	< 3,00	3,00	1
1,2-Diclorobenzeno	μg/L	< 3,00	3,00	1
1,2-Dibromo-3-Cloropropano	μg/L	< 3,00	3,00	1
· -r -r	1. 3.	-,	,	



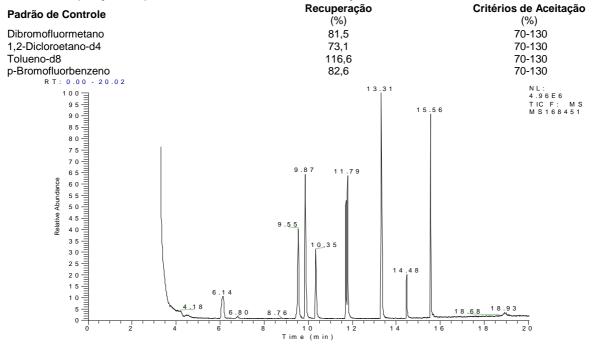
Analytical Rua Bittencourt Sampaio, 105 V. Mariana 04126-060 São Paulo SP Tel. 11 5904 8800 Fax. 11 5904 8801 Technology® www.analyticaltechnology

1,2,4-Triclorobenzeno	μg/L	< 3,00	3,00	1
Hexaclorobutadieno	μg/L	< 3,00	3,00	1
Naftaleno	μg/L	< 3,00	3,00	1
1,2,3-Triclorobenzeno	μg/L	< 3,00	3,00	1
1,3,5-Triclorobenzeno	μg/L	< 3,00	3,00	1

QA/QC - Recuperação dos padrões de controle e critérios de aceitação

Observações: L.Q: Limite de Quantificação

Ref.	Referência Externa	Referência Interna	Data do Preparo	Data da Análise	QA/QC
1	USEPA 8260B	POPLOR013	04/11/2013	04/11/2013	16847/2013



QA/QC - 16847/2013 - Controle Spike - VOC

PROJETO: ÁGUA PRODUZIDA POLVO 2ª AMOSTRAGEM 2013

Parâmetro	Unidade	Resultados Obtidos	Resultados Teóricos	Recuperação (%)	Critério Aceitação (%)	Ref.
1,1-Dicloroeteno	μg/L	50,7	50,0	101,4	70-130	1
Benzeno	μg/L	63,2	50,0	126,4	70-130	1
Clorobenzeno	μg/L	40,7	50,0	81,4	70-130	1
Tolueno	μg/L	58,4	50,0	116,7	70-130	1
Tricloroeteno	ug/L	39.1	50.0	78.3	70-130	1

QA/QC - Recuperação dos padrões de controle e critérios de aceitação

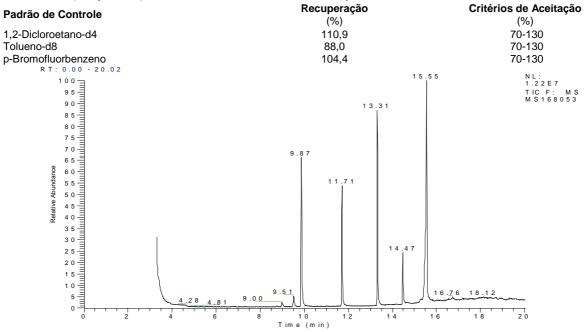
Observações:

L.Q: Limite de Quantificação

Ref.	Referência Externa	Referência Interna	Data do Preparo	Data da Análise	QA/QC
1	USEPA 8260B	POPLOR013	04/11/2013	04/11/2013	16847/2013

QA/QC - 16895/2013 - Branco de Análise - VOC

PROJETO: ÁGUA PRODUZIDA POLVO 2ª AMOSTRAGEM 2013


Parâmetro	Unidade	Resultados	L.Q	Ref.
Diclorodifluormetano	μg/L	< 3,00	3,00	1
Clorometano	μg/L	< 3,00	3,00	1
Cloreto de Vinila	μg/L	< 1,50	1,50	1
Bromometano	μg/L	< 3,00	3,00	1
Cloroetano	μg/L	< 3,00	3,00	1
Triclorofluormetano	μg/L	< 3,00	3,00	1
Acetona	μg/L	< 9,00	9,00	1
1,1-Dicloroeteno	μg/L	< 3,00	3,00	1
Iodometano	μg/L	< 9,00	9,00	1
Dissulfeto de Carbono	μg/L	< 9,00	9,00	1
Cloreto de Metileno	μg/L	< 15,0	15,0	1
Metil-t-butil-eter	μg/L	< 3,00	3,00	1
Trans-1,2-Dicloroeteno	μg/L	< 3,00	3,00	1
Acetato de Vinila	μg/L	< 9,00	9,00	1
1,1-Dicloroetano	μg/L	< 3,00	3,00	1
2-Butanona	μg/L	< 9,00	9,00	1
Cis-1,2-Dicloroeteno	μg/L	< 3,00	3,00	1
2,2-Dicloropropano	μg/L	< 3,00	3,00	1
Bromoclorometano	μg/L	< 3,00	3,00	1
Clorofórmio	μg/L	< 3,00	3,00	1
1,1,1-Tricloroetano	μg/L	< 3,00	3,00	1
1,1-Dicloropropeno	μg/L	< 3,00	3,00	1
Tetracloreto de Carbono	μg/L	< 1,50	1,50	1
1.2-Dicloroetano	μg/L	< 3,00	3,00	1
Benzeno	μg/L	< 3,00	3,00	1
Tricloroeteno	μg/L	< 3,00	3,00	1
1,2-Dicloropropano	μg/L	< 3,00	3,00	i
Dibromometano	μg/L	< 3,00	3,00	1
Bromodiclorometano	μg/L	< 3,00	3,00	i
2-Cloroetilvinil eter	μg/L	< 9,00	9,00	1
Trans-1,3-Dicloropropeno	μg/L	< 3,00	3,00	1
4-Metil-2-Pentanona	μg/L	< 9,00	9,00	1
Tolueno	μg/L	< 3,00	3,00	1
Cis-1,3-Dicloropropeno	μg/L	< 3,00	3,00	1
1,1,2-Tricloroetano	μg/L	< 3,00	3,00	1
2-Hexanona	μg/L	< 9,00	9,00	i
1,3-Dicloropropano	μg/L	< 3,00	3,00	1
Tetracloroeteno	μg/L	< 3,00	3,00	i
Dibromoclorometano	μg/L	< 3,00	3,00	1
1,2-Dibromoetano	μg/L	< 3,00	3,00	i
Clorobenzeno	μg/L	< 3,00	3,00	1
Etilbenzeno	μg/L	< 3,00	3,00	1
1,1,1,2-Tetracloroetano	μg/L	< 3,00	3,00	1
m,p-Xilenos	μg/L	< 3,00	3,00	1
o-Xileno	μg/L	< 3,00	3,00	i
Estireno	μg/L	< 3,00	3,00	1
Bromoformio	μg/L	< 3,00	3,00	1
Isopropilbenzeno	μg/L	< 3,00	3,00	1
1,1,2,2-Tetracloroetano	μg/L	< 3,00	3,00	1
1,2,3-Tricloropropano	μg/L	< 3,00	3,00	1
Bromobenzeno	μg/L	< 3,00	3,00	1
n-Propilbenzeno	μg/L	< 3,00	3,00	1
1,3,5-Trimetilbenzeno	μg/L	< 3,00	3,00	1
2-Clorotolueno	μg/L	< 3,00	3,00	1
4-Clorotolueno	μg/L	< 3,00	3,00	1
terc-Butilbenzeno	μg/L	< 3,00	3,00	1
1,2,4-Trimetilbenzeno	μg/L	< 3,00	3,00	1
sec-Butilbenzeno	μg/L	< 3,00	3,00	1
p-Isopropiltolueno	μg/L	< 3,00	3,00	1
1,3-Diclorobenzeno	μg/L	< 3,00	3,00	i
n-Butilbenzeno	μg/L	< 3,00	3,00	1
1,2-Diclorobenzeno	μg/L μg/L	< 3,00	3,00	1
1,2-Dibromo-3-Cloropropano	μg/L μg/L	< 3,00	3,00	1
1,2,4-Triclorobenzeno	μg/L μg/L	< 3,00	3,00	1
Hexaclorobutadieno	μg/L	< 3,00	3,00	1
	⊬9, <u>⊢</u>	- 0,00	5,00	- '

Analytical Rua Bittencourt Sampaio, 105 V. Mariana 04126-060 São Paulo SP Tel. 11 5904 8800 Fax. 11 5904 8801 Technology.

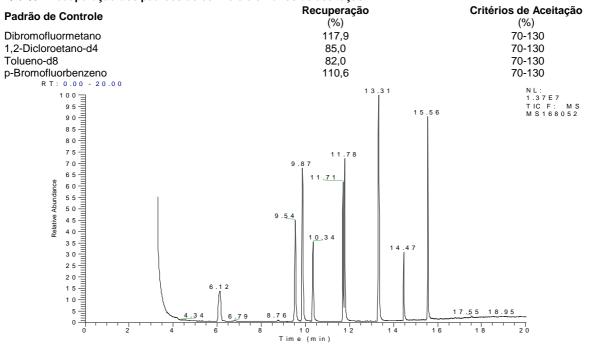
Naftaleno	μg/L	< 3,00	3,00	1
1,2,3-Triclorobenzeno	μg/L	< 3,00	3,00	1
1,3,5-Triclorobenzeno	μg/L	< 3,00	3,00	1

QA/QC - Recuperação dos padrões de controle e critérios de aceitação

Observações:

L.Q: Limite de Quantificação

Ret.	Referencia Externa	Referencia Interna	Data do Preparo	Data da Analise	QA/QC
1	USEPA 8260B	POPLOR013	04/11/2013	04/11/2013	16895/2013



QA/QC - 16895/2013 - Controle Spike - VOC

PROJETO: ÁGUA PRODUZIDA POLVO 2ª AMOSTRAGEM 2013

Parâmetro	Unidade	Resultados Obtidos	Resultados Teóricos	Recuperação (%)	Critério Aceitação (%)	Ref.
1,1-Dicloroeteno	μg/L	57,5	50,0	115,0	70-130	1
Benzeno	μg/L	57,6	50,0	115,3	70-130	1
Clorobenzeno	μg/L	51,6	50,0	103,2	70-130	1
Tolueno	μg/L	63,3	50,0	126,6	70-130	1
Tricloroeteno	ug/L	41.0	50.0	82.0	70-130	1

QA/QC - Recuperação dos padrões de controle e critérios de aceitação

Observações:

L.Q: Limite de Quantificação

Ref.	Referência Externa	Referência Interna	Data do Preparo	Data da Análise	QA/QC
1	USEPA 8260B	POPLOR013	04/11/2013	04/11/2013	16895/2013

Aprovado por:

QA/QC - 16250/2013 - Branco de Análise - SVOC

PROJETO: ÁGUA PRODUZIDA POLVO 2ª AMOSTRAGEM 2013

Danis manatan	Hadda da	D It		D-f
Parâmetro Matil material de la constante	Unidade	Resultados	L.Q	Ref.
Metil metanosulfonato	μg/L	< 0,300	0,300	4
Etil metanosulfonato	μg/L	< 0,300	0,300	4
Fenol	μg/L	< 0,300	0,300	4
Anilina	μg/L	< 0,300	0,300	4
Bis(2-Cloroetil)eter	μg/L	< 0,300	0,300	4
2-Clorofenol	μg/L	< 0,300	0,300	4
1,3-Diclorobenzeno	μg/L	< 0,300	0,300	4
Alcool Benzílico	μg/L	< 0,300	0,300	4
1,2-Diclorobenzeno	μg/L	< 0,300	0,300	4
Bis(2-Cloroisopropil)eter	μg/L	< 0,300	0,300	4
N-Nitrosodi-n-propilamina	μg/L	< 0,300	0,300	4
Hexacloroetano	μg/L	< 0,300	0,300	4
Nitrobenzeno	μg/L	< 0,300	0,300	4
Isoforona	μg/L	< 0,300	0,300	4
2-Nitrofenol	μg/L	< 0,300	0,300	4
2,4-Dimetilfenol	μg/L	< 0,300	0,300	4
Bis(2-Cloroetoxi)metano	μg/L	< 0,300	0,300	4
2,4-Diclorofenol	μg/L	< 0,300	0,300	4
1,2,4-Triclorobenzeno	μg/L	< 0,300	0,300	4
Naftaleno	μg/L	< 0,300	0,300	4
4-Cloroanilina	μg/L	< 0,300	0,300	4
Hexaclorobutadieno	μg/L	< 0,300	0,300	4
4-Cloro-3-Metilfenol	μg/L	< 0,300	0,300	4
2-Metilnaftaleno	μg/L	< 0,300	0,300	4
Hexaclorociclopentadieno	μg/L	< 0,300	0,300	4
2-Metil-4,6-dinitrofenol	μg/L	< 0,300	0,300	4
2,4,5-Triclorofenol	μg/L	< 0,300	0,300	4
2.4.6-Triclorofenol		< 0,300	0,300	4
, ,	μg/L			4
2-Cloronaftaleno	μg/L	< 0,300	0,300	
2-Nitroanilina	μg/L	< 0,300	0,300	4
Dimetilftalato	μg/L	< 0,300	0,300	4
Acenaftileno	μg/L	< 0,300	0,300	4
3-Nitroanilina	μg/L	< 0,300	0,300	4
Acenafteno	μg/L	< 0,300	0,300	4
Dibenzofurano	μg/L	< 0,300	0,300	4
2,6-Dinitrotolueno	μg/L	< 0,300	0,300	4
Dietilftalato	μg/L	< 0,300	0,300	4
Fluoreno	μg/L	< 0,300	0,300	4
4-Clorofenil Fenil Éter	μg/L	< 0,300	0,300	4
4-Nitroanilina	μg/L	< 0,300	0,300	4
N-Nitrosodifenilamina	μg/L	< 0,300	0,300	4
4-Bromofenil Fenil Éter	μg/L	< 0,300	0,300	4
Hexaclorobenzeno	μg/L	< 0,100*J	0,300	4
Pentaclorofenol	μg/L	< 0,300	0,300	4
Fenantreno	μg/L	< 0,300	0,300	4
Antraceno	μg/L	< 0,300	0,300	4
Di-N-Butilftalato	μg/L	< 0,300	0,300	4
Fluoranteno	μg/L	< 0,300	0,300	4
Pireno	μg/L	< 0,300	0,300	4
Butil Benzilftalato	μg/L	< 0,300	0,300	4
Criseno	μg/L	< 0,100*J	0,300	4
Bis[2-Etilexil]ftalato	μg/L	< 0,300	0,300	4
Di-n-Octilftalato	μg/L	< 0,300	0,300	4
Benzo(b)fluoranteno	μg/L	< 0,100*J	0,300	4
Benzo(k)fluoranteno	μg/L	< 0,100 J	0,300	4
Benzo(a)pireno	μg/L	< 0,100 J	0,300	4
Indeno(1,2,3-cd)pireno	μg/L	< 0,050*J	0,150	4
Dibenzo(a,h)antraceno		< 0,050*J	0,150	4
Benzo(g,h,i)perileno	μg/L	< 0,300	0,300	4
o-Cresol	μg/L			
	μg/L	< 0,300	0,300	4
m,p-Cresol	μg/L	< 0,300	0,300	4
2,4-Dinitrotolueno	μg/L	< 0,300	0,300	4
Azobenzeno	μg/L	< 0,300	0,300	4
Carbazol	μg/L	< 0,300	0,300	4
2,3,4,6-Tetraclorofenol	μg/L	< 0,300	0,300	4
				A provede n

LOG nº 15474/2013_REV.01

Analytica Rua Bittencourt Sampaio, 105 V. Mariana 04126-060 São Paulo SP Tel. 11 5904 8800 Fax. 11 5904 8801 Technology® www.analytica.ltachnology.com.lts

4-Clorofenol	μg/L	< 0,300	0,300	4	
2,6-Diclorofenol	μg/L	< 0,300	0,300	4	
1,2,3,4-Tetraclorobenzeno	μg/L	< 0,300	0,300	4	
1,2,3,5-Tetraclorobenzeno	μg/L	< 0,300	0,300	4	
1,2,4,5-Tetraclorobenzeno	μg/L	< 0,300	0,300	4	
3,4-Diclorofenol	μg/L	< 0,300	0,300	4	
Pentaclorobenzeno	μg/L	< 0,300	0,300	4	
2,3,4,5-Tetraclorofenol	μg/L	< 0,300	0,300	4	

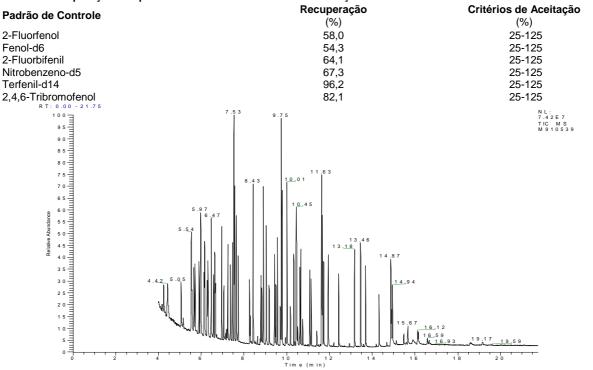
QA/QC - Recuperação dos padrões de controle e critérios de aceitação

Padrão de Controle		Recuperação	Critérios de Aceitação
Paurao de Controle		(%)	(%)
2-Fluorfenol		50,4	25-125
Fenol-d6		42,8	25-125
2-Fluorbifenil		58,0	25-125
Nitrobenzeno-d5		62,8	25-125
Terfenil-d14		97,3	25-125
2,4,6-Tribromofenol		86,5	25-125
R T: 0.00 - 21.77	9	.7 5	N L :
100	7 .5 3		8.11E7 TIC M S
9 5 9 0 			M 9 1 0 5 3 8
8 5			
80=		1 1 .6 4	
7 5	8 .9 1		
70			
6 5 🗐			
60 =			
Relative Abundance	5.97		
we Ab			
Relation 4 5 THILITIES 4 THILI	6.64		
3 5	5.5.3	10.51	
30 =			
2 5	4.44		
20		14.88	
1 5 🗐		1 2 2 1	
1 0 🗐	***************************************	15.1	
5 🗏	" when he had been a few of the had been been been been been been been bee		16.67 17.70 19.57
0 = 1 1 1 1	4 6 8	10 12 14	16 18 20
		Tim e (m in)	

Observações:

L.Q: Limite de Quantificação
*J - valor reportado é estimado porque sua concentração é menor que o limite de quantificação do método (LQM)

Ref.	Referência Externa	Referência Interna	Data do Preparo	Data da Análise	QA/QC
4	USEPA 8270D	POPLOR015	25/10/2013	25/10/2013	16250/2013



QA/QC - 16250/2013 - Spike - SVOC

PROJETO: ÁGUA PRODUZIDA POLVO 2ª AMOSTRAGEM 2013

Parâmetro	Unidade	Resultados Obtidos	Resultados Teóricos	Recuperação (%)	Critério Aceitação (%)	Ref.
Fenol	μg/L	2,63	5,00	52,7	25-125	4
2-Clorofenol	μg/L	2,41	5,00	48,3	25-125	4
1,4-Diclorobenzeno.	μg/L	2,99	5,00	59,8	25-125	4
N-Nitrosodi-n-propilamina	μg/L	3,04	5,00	60,9	25-125	4
1,2,4-Triclorobenzeno	μg/L	4,21	5,00	84,2	25-125	4
4-Cloro-3-Metilfenol	μg/L	4,02	5,00	80,4	25-125	4
Acenafteno	μg/L	3,27	5,00	65,3	25-125	4
Pentaclorofenol	μg/L	2,89	5,00	57,8	25-125	4
Pireno	μg/L	3,97	5,00	79,3	25-125	4
2,4-Dinitrotolueno	μg/L	4,88	5,00	97,6	25-125	4

QA/QC - Recuperação dos padrões de controle e critérios de aceitação

Observações:

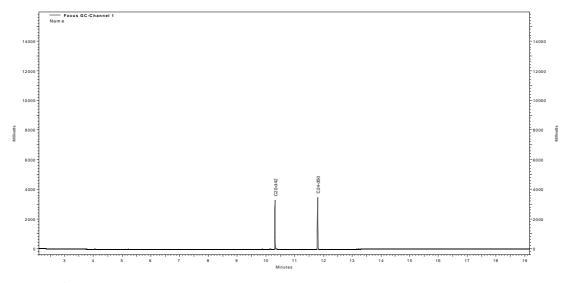
L.Q: Limite de Quantificação

 Ref.
 Referência Externa
 Referência Interna
 Data do Preparo
 Data da Análise
 QA/QC

 4
 USEPA 8270D
 POPLOR015
 25/10/2013
 25/10/2013
 16250/2013

QA/QC - 16241/2013 - Branco de Análise - TPH-FP

PROJETO: ÁGUA PRODUZIDA POLVO 2ª AMOSTRAGEM 2013


Parâmetro	Unidade	Resultados	L.Q	Ref.
C10	μg/L	< 15,0	15,0	11
C11	μg/L	< 15,0	15,0	11
C12	μg/L	< 15,0	15,0	11
C13	μg/L	< 15,0	15,0	11
C14	μg/L	< 15,0	15,0	11
C15	μg/L	< 15,0	15,0	11
C16	μg/L	< 15,0	15,0	11
C17	μg/L	< 15,0	15,0	11
Pristano	μg/L	< 15,0	15,0	11
C18	μg/L	< 15,0	15,0	11
Fitano	μg/L	< 15,0	15,0	11
C19	μg/L	< 15,0	15,0	11
C20	μg/L	< 15,0	15,0	11
C21	μg/L	< 15,0	15,0	11
C22	μg/L	< 15,0	15,0	11
C23	μg/L	< 15,0	15,0	11
C24	μg/L	< 15,0	15,0	11
C25	μg/L	< 15,0	15,0	11
C26	μg/L	< 15,0	15,0	11
C27	μg/L	< 15,0	15,0	11
C28	μg/L	< 15,0	15,0	11
C29	μg/L	< 15,0	15,0	11
C30	μg/L	< 15,0	15,0	11
C31	μg/L	< 15,0	15,0	11
C32	μg/L	< 15,0	15,0	11
C33	μg/L	< 15,0	15,0	11
C34	μg/L	< 15,0	15,0	11
C35	μg/L	< 15,0	15,0	11
C36	μg/L	< 15,0	15,0	11
n-Alcanos	μg/L	< 15,0	15,0	11
MCNR	μg/L	< 15,0	15,0	11
HRP	μg/L	< 15,0	15,0	11
TPH Total	μg/L	< 435,0	435,0	11

QA/QC - Recuperação dos padrões de controle e critérios de aceitação

Padrão de Controle	Recuperação (%)	Critérios de Aceitação (%)
C20-d42	64,6	40-135
C24-d50	68,7	40-135

Analytical Rua Bittencourt Sampaio, 105 V. Mariana 04126-060 São Paulo SP Tel. 11 5904 8800 Fax. 11 5904 8801 Technology® www.analyticaltechnology

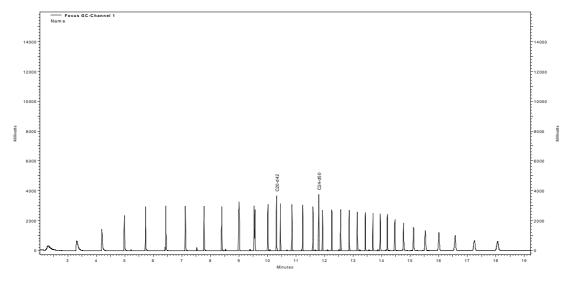
Perfil Cromatográfico:

Não Aplicável

Observações: L.Q: Limite de Quantificação

Ref.	Referência Externa	Referência Interna	Data do Preparo	Data da Análise	QA/QC
11	USEPA 8015C	POPLOR005	25/10/2013	25/10/2013	16241/2013

QA/QC - 16241/2013 - Spike - TPH-FP


PROJETO: ÁGUA PRODUZIDA POLVO 2ª AMOSTRAGEM 2013

Parâmetro	Unidade	Resultados Obtidos	Resultados Teóricos	Recuperação (%)	Critério Aceitação (%)	Ref.
C10	μg/L	15,2	20,0	75,8	40-135	11
C11	μg/L	13,2	20,0	65,8	40-135	11
C12	μg/L	14,2	20,0	70,8	40-135	11
C13	μg/L	15,1	20,0	75,7	40-135	11
C14	μg/L	16,1	20,0	80,7	40-135	11
C15	μg/L	17,1	20,0	85,7	40-135	11
C16	μg/L	13,2	20,0	65,8	40-135	11
C17	μg/L	14,1	20,0	70,7	40-135	11
Pristano	μg/L	16,1	20,0	80,7	40-135	11
C18	μg/L	15,1	20,0	75,7	40-135	11
Fitano	μg/L	17,1	20,0	85,7	40-135	11
C19	μg/L	16,1	20,0	80,7	40-135	11
C20	μg/L	15,1	20,0	75,7	40-135	11
C21	μg/L	13,1	20,0	65,7	40-135	11
C22	μg/L	14,1	20,0	70,7	40-135	11
C23	μg/L	16,1	20,0	80,7	40-135	11
C24	μg/L	14,2	20,0	70,8	40-135	11
C25	μg/L	15,1	20,0	75,7	40-135	11
C26	μg/L	13,1	20,0	65,7	40-135	11
C27	μg/L	17,1	20,0	85,7	40-135	11
C28	μg/L	18,1	20,0	90,7	40-135	11
C29	μg/L	16,1	20,0	80,7	40-135	11
C30	μg/L	13,1	20,0	65,7	40-135	11
C31	μg/L	17,1	20,0	85,7	40-135	11
C32	μg/L	15,1	20,0	75,7	40-135	11
C33	μg/L	16,1	20,0	80,7	40-135	11
C34	μg/L	13,1	20,0	65,7	40-135	11
C35	μg/L	17,1	20,0	85,7	40-135	11
C36	μg/L	16,1	20,0	80,7	40-135	11

QA/QC - Recuperação dos padroes de controle e critérios de aceitação					
Padrão de Controle	Recuperação	Critérios de Aceitação			
	(%)	(%)			
C20-d42	68,5	40-135			
C24-d50	72,6	40-135			

Analytical Rua Bittencourt Sampaio, 105 V. Mariana 04126-060 São Paulo SP Tel. 11 5904 8800 Fax. 11 5904 8801 Technology® www.analyticaltechnology

Perfil Cromatográfico:

Não Aplicável

Observações: L.Q: Limite de Quantificação

Ref.	Referência Externa	Referência Interna	Data do Preparo	Data da Análise	QA/QC
11	USEPA 8015C	POPLOR005	25/10/2013	25/10/2013	16241/2013

4. Responsabilidade técnica

Ana Paula Ahualli	CRQ 4 ^ª Região nº 04121814
-------------------	---------------------------------------

5. Informações Adicionais

- Procedimento e plano de amostragem foram definidos pelo cliente de acordo com o Projeto: ÁGUA PRODUZIDA POLVO 2ª AMOSTRAGEM 2013
- Os resultados aqui apresentados referem-se exclusivamente às amostras enviadas pelo interessado.
- O relatório de ensaio só deve ser reproduzido por completo. A reprodução parcial requer aprovação por escrita deste laboratório.
- Este relatório atende aos requisitos de acreditação da Cgcre/Inmetro que avaliou a competência do laboratório.
- As referências internas foram baseadas e validadas a partir das referências externas.
- Este relatório cancela e substitui o relatório emitido em: 08/11/2013.

6. Anexos

✓ Cadeia de Custódia e Check List.

7. Aprovação do relatório

Relatório aprovado segundo especificações comerciais e com base nos documentos do Sistema da Qualidade Analytical Technology.

A validade jurídica dessa assinatura está embasada na medida provisória 2.200-2, de 24 de Agosto de 2001, a qual estabelece a autenticidade e a integridade do documento eletrônico com o uso do Certificado Digital.

Para verificar autenticidade deste documento acesse <u>www.anatech.com.br</u>; Código de autenticidade: **f6e6fb7785fb52**

Ângela Cristina Camillo CRQ 4ª Região nº 04162552 Analista Químico(a) Responsável pela análise crítica e emissão

do relatório.