

Programa de Monitoramento de Qualidade de Água e Limnologia do Projeto de Integração do Rio São Francisco com Bacias Hidrográficas do Nordeste Setentrional, item 22 do PBA do PISF

Relatório XIII

Recife, outubro de 2013

Apresentação

Este relatório apresenta os resultados dos parâmetros físico-químicos e biológicos da do Programa de Monitoramento de Qualidade de Água e Limnologia do Projeto de Integração do Rio São Francisco com as Bacias Hidrográficas do Nordeste Setentrional prevista no Plano Básico Ambiental (PBA-22), como condicionante da Licença de Instalação do IBAMA para o referido projeto. Os dados apresentados correspondem ao período da 13ª e 14ª campanhas de 2012/2013. Este documento final está sendo submetido à Coordenação do Ministério de Integração, em nome da Sra. Elianeiva Odísio, para avaliação e complementações que se façam necessárias.

Equipe

COORDENAÇÃO

Profa. Dra. Maria do Carmo Martins Sobral (UFPE)

PESQUISADORES

Prof. Dr. Alfredo Moura (UFPE)

Profa. Dra. Maristela Cunha (UNEB)

Profa. Dra. Tâmara Silva (UNEB)

Prof. Dr. José Carlos Barros (UFRPE)

Prof. Dr. Renato Molica (UFRPE)

Profa Dra. Renata Carvalho (IFPE)

Dr. Gustavo Melo (UFPE)

BOLSISTAS

Phillipe Tenório Barbosa

André Ferreira

Maria Cecílcia Lima

Rafael Snatana

Cesar Santana

Denise Lopes

Gelsomina Marcarenhas

Daniela Leitão

Sumário

- 1. Introdução, **5**
- 2. Metodologia, 6
 - 2.1 Procedimentos para coleta de amostras, 6
 - 2.2 Procedimentos para análise, 8
- 3. Resultados, 21
 - 3.1 Fitoplâncton, 21
 - 3.2 Zooplâncton, 41
 - 3.3 Sedimentos e Zoobentos, 63
 - **3.4** Macrófitas, **112**
 - 3.5 Parâmetros físico-químicos, 128
 - 3.6 Análise da coleta nictimeral, 146
 - 3.7 Cálculo do Índice de Estado Trófico (IET) e o Índice de Qualidade da Água (IQA), 150
 - 3.8 Seleção do modelo proposto para avaliação da qualidade da água gerenciamento da qualidade de água dos reservatórios e seu entorno, 153
 - 3.9 Análise do perfil da coluna d'água, 154
 - 3.10 Análise estatística múltiparâmetros, 159
- 4. Considerações finais, 163
- 5. Referâncias bibliográficas, 164

Anexo, **168**

1. Introdução

O Programa de Monitoramento de Qualidade da Água do Projeto de Integração do São Francisco com as Bacias do Nordeste Setentrional, parte integrante do Projeto Básico Ambiental – 22, foi elaborado de modo a atender às condicionantes apresentadas na Licença Prévia (LP) Nº 200/2005 e na Licença de Instalação (LI) Nº 438/2007, emitida pelo IBAMA.

A área de atuação do Programa abrange o estirão do rio São Francisco onde estarão localizadas as estruturas de captação, assim como o conjunto das bacias hidrográficas receptoras de águas aduzidas pelo Projeto de Integração do Rio São Francisco com Bacias Hidrográficas do Nordeste Setentrional. Nas bacias receptoras, além dos reservatórios projetados, alguns rios e açudes existentes deverão sofrer alterações em sua qualidade de água, devido à implantação do Sistema de Integração, muito possivelmente de forma benéfica. O monitoramento proposto no Projeto abrange 44 reservatórios do Projeto, sendo 17 açudes existentes de maior porte, e 27 reservatórios projetados de menores dimensões.

A legislação a ser utilizada como referência para comparação com os resultados obtidos do monitoramento da qualidade da água é a Resolução CONAMA nº 357 de 17 de março de 2005, que dispõe sobre a classificação dos corpos de água e as diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. As águas dos rios e reservatório estudados estão enquadrados como águas doces de Classe 2, com exceção do rio Moxotó, que desdea a sua anscente até sal foz está enquadrado na Classe 1.

2. Metodologia

Com base nas metodologias descritas no PBA-22 e após discussão com os consultores responsáveis pelas análises, foram definidas as metodologias de coleta e de laboratório utilizadas durante a Campanha. Algumas metodologias foram modificadas em relação às descritas no PBA-22 para adequá-las em relação às metodologias mais comumente utilizadas, de acordo com os especialistas em cada análise.

2.1 Procedimentos para coleta de amostras

Nos reservatórios foram feitas coletas na superfície e no fundo, nos outros pontos somente na superfície. Todos os pontos foram georreferenciados no momento da coleta.

Para as coletas de superfície a água foi coletada em profundidades de aproximadamente 30 cm, utilizando-se frascos plásticos ou de vidro. Os frascos foram previamente lavados com água do local e mergulhados, até 30 cm abaixo da lâmina d'água. Para as coletas de fundo, foi utilizada a garrafa de coleta tipo *Van Dorn*.

O Fitoplâncton foi coletado em frascos de polipropileno de 1000 ml, a 30 cm da superfície, e fixado com solução de lugol.

As amostras de Zooplâncton foram coletadas através de arrasto superficial de 5 (cinco) minutos, com rede de plâncton de 64µm de abertura de malha e imediatamente preservadas em formol 4%.

A coleta de amostras para a análise de Coliformes Termotolerantes e Totais foi feita através de recipientes próprios, previamente esterilizados, mantidos sob refrigeração, enviados para o laboratório e analisados em até 24 horas.

Em cada ponto de coleta foram obtidas amostras sedimentológicas da margem e em profundidade para retirada de organismos bentonicos. Nos pontos da margem (0-1,5m) de profundidade de lâmina d'água) a coleta foi manual, sendo utilizado um quadrado com 50 cm de lado, o qual foi lançado de forma aleatória até 2 cm de profundidade. O sedimento contido no interior do quadrado foi recolhido, obtendo-se assim um volume em torno de 1,5

litros. Este sedimento foi acondicionado em sacos plásticos, etiquetados e fixados com formalina a 4%.

As amostras de sedimento de zona profunda (5 metros), com volume em torno de 2 litros, foram obtidas manualmente em ambientes de margem, e, com auxílio de draga tipo Petersen com área definida (345cm²), em substratos profundos. Todas as amostras foram fixadas em formol 4% e etiquetadas, tanto externa como internamente, para separação destas das amostras.

Os invertebrados associados à macrófitas foram coletados em locais que apresentaram vegetação aquática, nos quais foram escolhidas duas espécies das mais abundantes, uma flutuante e uma fixa ao sedimento e submersa, para determinar a fauna de macroinvertebrados associados a estas três unidades amostrais, sendo envolvidas em sacos plásticos e coletadas, incluindo o rizoma. Todo o material foi fixado em formol à 4% e então etiquetado.

Para a realização do levantamento florístico das macrófitas foram coletados nos pontos pré-determinados, indivíduos inteiros ou amostras de ramos floridos e/ ou frutificados. Nestes pontos, 3 quadrados de 50 x 50 cm foram lançados aleatoriamente sendo todo material biológico retirado manualmente incluindo a parte exposta das macrófitas (parte visível) e seu sistema radicular para posterior cálculo da biomassa. O material coletado foi ensacado, etiquetado e refrigerado ainda em campo para transporte ao laboratório de Fitobentos da UFPE.

Em relação às coletas para análise das cianotoxinas, as amostras são coletadas em reservatórios onde é identificada a presença de florações no dia da coleta. São coletados 5 litros de amostras e passados na rede de fitoplâncton para que as células fiquem concentradas, gerando com isso um menor volume de amostra para ser transportada. As amostras são colocadas em frascos de plástico e congeladas.

2.2 Procedimentos para análise

2.2.1 Fitoplâncton

Para o exame da composição do fitoplâncton, as amostras foram coletadas com garrafas de polipropileno com capacidade de 1L e preservadas com lugol acético ou formalina 4%. Na eventualidade de serem realizadas amostras em profundidade, estas foram coletadas com garrafa de Van Dorn, de 3 litros de capacidade, em profundidades prédeterminadas.

A identificação dos organismos foi feita utilizando-se um microscópio binocular (Figura 2.1), com até 1000 vezes de aumento, equipado com aparelho fotográfico. A posição sistemática dos grupos de algas tem apresentado mudanças contínuas. Desta forma, com relação à situação sistemática dos táxons a serem identificados, foram utilizados diferentes sistemas de classificação, de acordo com o grupo de algas considerado.

Figura 2.1 – Microscópio binocular

A análise quantitativa do fitoplâncton foi realizada utilizando-se um microscópio invertido (Figura 2.2) através do método de sedimentação de Utermöhl (1958), como descrita em Hino (1979).

Figura 2.2 – Microscópio invertido

As câmaras de sedimentação foram preparadas de acordo com a densidade dos organismos. A determinação dos procedimentos de contagem deverá atender os princípios da suficiência amostral, avaliados através de métodos de computação intensiva ("bootstrap"), considerando-se pelo menos a premissa preconizada por Wetzel et al. (1979), que estabelece para uma margem de erro de 20%, a contagem de 100 organismos da espécie mais freqüente. O tempo de sedimentação em horas será de três vezes a altura da cubeta.

2.2.2 Cianotoxinas

As amostras foram mantidas congelas até o momento de serem liofilizadas (Terroni – LD 1500). A biomassa seca obtida foi armazenada em -18°C e à uma massa conhecida das amostras, adicionou-se 5 mL de ácido acético (0,05N). Em seguida, as amostras ficaram 1 hora em placa agitadora e foram centrifugadas por 10 minutos a 23.000 g (Hettich zentrifugen - MIKRO 200R) em tubos de 2 mL. Ao final do processo de centrifugação o sobrenadante foi armazenado a -18°C até o momento da análise por cromatografia líquida de alta eficiência.

A metodologia descrita por Oshima (1995) foi utilizada para análise cromatográfica de saxitoxinas. A metodologia consiste em um sistema *on line* de derivatização pós-coluna e monitoramento em detector de fluorescência (330 nm emissão; 390 nm excitação). O equipamento de cromatografia líquida de alta eficiência é composto por bomba de alta pressão (Shimadzu – LC 20AT), duas bombas (Shimadzu LC-20 AD) para derivatização pós-coluna, forno (Shimadzu CTO-20A), detector de fluorescência (Shimadzu – RF-10AXL),

amostrador automático (Shimadzu SIL-20 AHT), sistema controlador (Shimadzu CBM-20A) para conexão dos módulos com computador e software LC-solution para a aquisição e processamento dos dados.

Para cada um dos dois grupos de análogos de saxitoxinas (GTXs, neosaxitoxina/saxitoxina/dc-saxitoxina) analisados, utilizou-se uma fase móvel específica - 2 mM de hepatanosulfonato em 30 mM de tampão fosfato de amônio pH 7,1 para neosaxitoxina/saxitoxina/dc-saxitoxina e 2 mM de hepatanosulfonato em 10 mM de tampão fosfato de amônio pH 7,1 para GTXs. Para a oxidação on line, utilizou-se uma solução de ácido periódico 7,0 mM em 10 mM de tampão fosfato de potássio pH 9,0 e para interromper a reação de oxidação uma solução de ácido acético 0,5M. O fluxo da fase móvel foi de 0,8 mL.min⁻¹ e 0,4 ml.min⁻¹ para as soluções oxidante e acidificante. O forno, onde ocorria reação de oxidação em tubo de teflon de 0,5mm de diâmetro e 10 m de comprimento, foi ajustado a 70° C e utilizou-se uma coluna C8 Shimadzu 250 x 4mm. A identificação dos análogos de saxitoxinas nas amostras foram feitas pela comparação com os tempos de retenção. Como mais uma medida para confirmar os análogos de saxitoxinas, as amostras e padrões foram também analisadas nas condições descritas acima, porém as soluções oxidante e acidificante foram substituídas por água ultra-pura. Os padrões de saxitoxinas (neosaxitoxina, dc-saxitoxina, saxitoxina, GTX1/4, GTX 2/3 e dc-GTX 2/3) foram adquiridos do National Research Council Canadá – Certified Reference Materials Program.

2.2.3 Zooplâncton

Para a análise da densidade e identificação dos taxa, cada amostra foi colocada em um béquer e diluída para um volume de água conhecido, homogeneizada e retirada uma sub-amostra de 1mL auxiliadas por uma concha de sub-amostragem. Cada sub-amostra foi colocada em placa de contagem do tipo Sedgwick- Rafter, sendo totalmente analisada sob microscópio. Os grupos taxonômicos do zooplâncton foram identificados até a menor unidade taxonômica possível, geralmente nível específico. A densidade por ponto foi calculada pela média de três sub-amostras analisadas.

No estudo taxonômico e ecológico do zooplâncton foram consultadas, dentre outras, as seguintes obras especializadas: Biraben (1939), Koste (1972 e 1978), Ruttner-Kolisco (1974), Reid e Turner (1988), Seger (1995), Elmoor-Loureiro (1997), entre outras.

• Freqüência de ocorrência

Calculada pela fórmula:

Fo =
$$Ta \times 100 / TA$$

Onde, Fo = Freqüência de ocorrência (%);

Ta = Número de amostras contendo a espécie;

TA = Número total de amostras.

Os resultados foram dados em percentagem e foi utilizado o seguinte critério:

> 50% → Muito freqüente

50% a 30% \rightarrow Freqüente

30% a 10% → Pouco freqüente

< 10% → Esporádico

Densidade

O cálculo do número total de organismos (N) de cada táxon na amostra foi feito utilizando-se a seguinte fórmula:

$$N = Vt.x/Vc$$

Onde, N = Densidade (org.m-3);

Vt = volume total da amostra;

Vc = volume da sub-amostra;

x = número de organismos de cada táxon;

O número total de organismos por unidade de volume (Nº.org.m-3) foi obtido segunda a fórmula:

$$N^{\circ} = N / Vf$$

Abundância Relativa

Calculada pela fórmula:

$$Ar = N . 100 / Na$$

Onde, Ar = abundância relativa (%);

N = número total de organismos de cada táxon na amostra;

Na = número de organismos na amostra;

Os resultados foram dados em percentagem, tendo sido utilizado os seguintes critérios:

 \geq 50% \rightarrow dominante 50% - 30% \rightarrow abundante 30% - 10% \rightarrow pouco abundante < 10% \rightarrow raro

A seguir é apresentado um esquema com fotografias indicando a metodologia de contagem e identificação do zooplâncton (Figura 2.3).

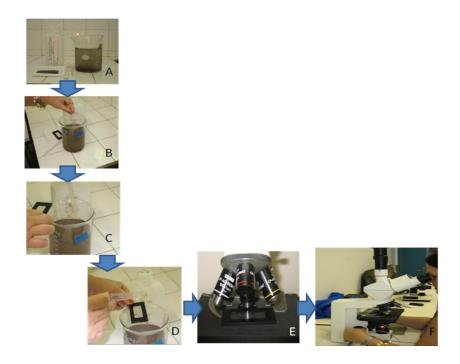


Figura 2.3 – Metodologia de contagem e identificação do zooplâncton

2.2.4 Zoobentos

As amostras (Figura 2.4) foram lavadas e triadas no laboratório, utilizando-se um jogo de peneiras com malhas de 2,0 mm, 1,68 mm e 0,297 mm. (Figura 2.5). Todos os organismos retidos foram triados, identificados e contados. Estes dados servirão para o inventário taxonômico e para as análises dos padrões de distribuição espaço-temporal e de estrutura da comunidade.

Figura 2.4 – Amostras geológicas e de zoobentos depositadas no laboratório de Malacologia do Departamento de Engenharia de Pesca da Universidade Federal Rural de Pernambuco.

Figura 2.5 – Peneiras granulométricas utilizadas na lavagem dos sedimentos.

Os sedimentos e as macrófitas foram peneirados através de lavagens sucessivas, passando gradativamente pelos seguintes procedimentos para a retirada e limpeza do zoobentos associados: 1. Lavagem sob água corrente, processando-se seu peneiramento sobre malhas granulométricas de 0.297, 1,68 e 2.0 mm; 2. Triagem via úmida do material obtido, após a lavagem, sob estereomicroscópio, com capacidade máxima de cinqüenta vezes de aumento, onde porções do sedimento serão depositadas em placas de petri para a retirada dos exemplares com auxílio de pinça (Figura 2.6).

Figura 2.6 – Triagem do material contido no laboratório.

Após a triagem o material foi acondicionado em potes plásticos de boca larga e refixados em álcool (Figura 2.7).

Figura 2.7 – Potes plásticos para acondicionamento do material anteriormente triado

Para o estudo taxonômico das espécies foram considerados, principalmente, os caracteres anatômicos e conquiliológicos (Mollusca); os exemplares foram manuseados com auxílio de pinça e pincel fino e observados sob estereomicroscópio.

A identificação foi procedida, inicialmente em nível de Filo e posteriormente sendo incluído no menor táxon possível, baseada em descrições e comparações da morfologia com as descrições e chaves encontradas na literatura usual: Burch (1962), Domaneschi *et al*.

(1992), Macan (1949), Mansur (1969), Mansur *et al.* (1987), Pitoni *et al.* (1976), Thorp & Covich (1991) e Simone (2006). Para a ilustração dos organismos, será necessária a confecção de imagens sob estereomicroscópio e em MEV (microscopia eletrônica de varredura). As imagens obtidas a partir da microscopia eletrônica servirão para a separação dos táxons, sobretudo das formas microscópicas. Após a identificação, o material será catalogado e tombado, ficando em depósito no museu do Departamento de Oceanografia da UFPE e no laboratório de Malacologia da UFRPE (Figura 2.8).

Figura 2.8 – Identificação do Zoobentos sob estereomicroscópio

2.2.5 Sedimento e teor de matéria orgânica

A análise granulométrica foi efetuada nas amostras de sedimento previamente secas em estufa com temperatura de 75ºC por 48 horas; 100 g do sedimento coletado foi peneirado (Peneira de malha 2 mm) para a retirada da parte grosseira (detritos raízes, pedregulhos, etc.). O método da "pipeta" (descrito em KENITIRO, 1973) será usado para a determinação do percentual de silte (fração 0,05 - 0,005 mm) e de argila (fração < 0,005 mm) em subamostra (10 g), previamente seca em estufa a 105 ºC por 12 horas. As diferentes frações de areia serão determinadas através de peneiramento diferencial utilizando-se o Rotape (Figura 2.9). A matéria orgânica do sedimento será determinada através da perda por ignição a seco (metodologia modificada e descrita em CÓ, 1979). Cinco gramas da amostra, anteriormente seca em estufa a 105ºC, durante 12 horas, serão queimadas em mufla, a 600 ºC, durante duas horas. O teor de matéria orgânica será obtido a partir da

diferença entre o peso anterior e posterior à queima, sendo convertida no final em percentuais.

Figura 2.9 – Secagem do sedimento em estufa e separação das frações granulométricas no Rotape.

2.2.6 Invertebrados associados à macrófitas

Os organismos foram triados com auxílio de lupa manual. Os sedimentos e as macrófitas foram peneirados através de lavagens sucessivas, passando gradativamente pelos seguintes procedimentos para a retirada e limpeza do zoobentos que se encontraram neles associados: 1. lavagem sob água corrente, processando-se seu peneiramento sobre malhas granulométricas de 0.297, 1,68 e 2.0 mm; 2., triagem via úmida do material obtido após a lavagem sob estereomicroscópio, com capacidade máxima de cinqüenta vezes de aumento, onde porções do sedimento foram depositados em placas de petri para a retirada dos exemplares com pinça; 3., secagem do material em temperatura ambiente. Após a triagem, o material foi acondicionado em potes plásticos de boca larga e refixados em álcool glicerinado (9 partes de álcool a 70% e 1 parte de glicerina).

Para o estudo taxonômico das espécies levou-se em consideração, principalmente, os caracteres anatômicos e conquiliológicos (Mollusca); os exemplares foram manuseados com auxílio de pinça e pincel fino e observados sob microscópio estereoscópico.

A identificação foi procedida, inicialmente em nível de Filo e posteriormente sendo incluído no menor táxon possível, baseada em descrições e comparações da morfologia com as descrições e chaves encontradas na literatura usual: Burch (1962), Domaneschi *et al.* (1992), Macan (1949), Mansur (1969), Mansur *et al.* (1987), Pitoni *et al.* (1976), Thorp &

Covich (1991) e Simone (2006). Após a identificação, o material foi catalogado e tombado, ficando em depósito na coleção do Laboratório de Malacologia da Universidade Federal Rural de Pernambuco.

A classificação dos moluscos nos taxa de níveis supra-específicos foi baseada em Zela (1959-1960), Haas (1969) e Keen & Casey (1969).

2.2.7 Macrófitas

2.2.7.1 Identificação, herborização e descrição das espécimes

Na 12 campanha foram realizadas amostragens em 57 pontos. Entretanto, somente em 27 pontos ocorreram registros de macrófitas: Q1, Q2, Q3, Q23, Q25, Q26, Q32, Q33, Q35, Q36, Q37, Q38, Q39, Q42, Q43, Q44, Q45, Q50 no Eixo Norte, e os pontos Q70, Q73, Q74, Q75, Q78, Q79, Q83, Q85, Q86, no Eixo Leste. Por situações adversas não houve a coleta em alguns pontos: em oito pontos (Q47, Q48, Q49, Q54, Q76, Q81, Q82 e Q84) não tiveram registros devido à ausência de banco de macrófitas; sete pontos (Q6, Q7, Q13, Q14, Q46, Q77 e Q80) apresentaram corpo hídrico seco e em 15 pontos não houve justificativa quanto à ocorrência ou não de macrófitas.

Em laboratório as amostras foram separadas por espécie e levadas à secagem em estufa a uma temperatura constante de 60°C (Figura 2.10) e pesadas (Figura 2.11) após atingir peso constante. Os dados serão apresentados em g/m² (gramas por metro quadrado) após cálculo de média, desvios-padrões e erro.

Figura 2.10 – Secagem das macrófitas em ambiente aberto (A) e em estufa (B) Identificação das macrófitas em lupa (C) coletadas no Rio São Francisco com Bacias Hidrográficas do Nordeste Setentrional.

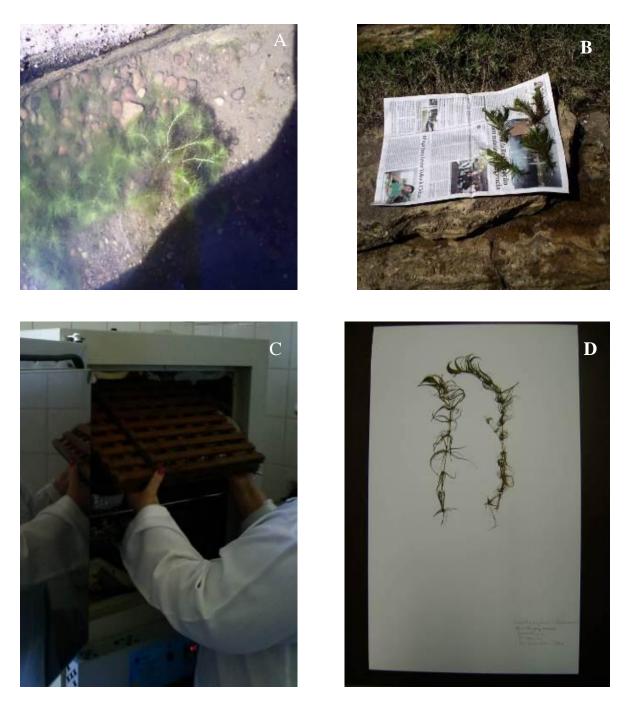


Figura 2.11 – Etapas do processo de elaboração das exsicatas com as macrófitas coletadas no Rio São Francisco com Bacias Hidrográficas do nordeste Setentrional: Visualização da macrofita no ambiente (A); Disposição da macrofita em jornal para posterior prensagem (B); secagem das plantas em estufa (C); exsicata pronta (D).

3. Resultados

Os resultados dos parâmetros biológicos apresentados a seguir se referem a 14ª Campanha e dados complementares da 13ª.

3.1 Fitoplâncton

Os dados apresentados a seguir é uma avaliação de dados da 13 e 14ª Campanhas nas bacias hidrográficas do Nordeste Setentrional.

EIXO NORTE

Rio Terra Nova

Na bacia do rio Terra Nova, que compreende um ponto no eixo do reservatório Terra Nova (Q6) e outro no rio Terra Nova à jusante do reservatório (Q7), não foram registradas células fitoplanctônicas na 13ª e 14ª campanhas.

Rio Jaquaribe

No remanso do reservatório Atalho (Q13) não foi registrado fitoplâncton durante a 13ª campanha. Já durante a 14ª as cianobactérias e diatomáceas ocorreram apenas nas amostras de profundidade (Figura 3.1). A flora foi dominada pelas cianobactérias: *Cylindrospermopsis raciborskii, Dolichospermum planctonica, Microcystis* sp., *Oscillatoria* sp. e *Pseudanabaena* sp., totalizando 5.953 céls.mL⁻¹. A única espécie de diatomácea (Bacillariophyta) registrada foi *Aulacoseira granulata*, com 231 céls.mL⁻¹.

Para o ponto localizado no eixo do reservatório Atalho (Q14), apesar da permanência da dominância das cianobactérias, observou-se uma tendência a diminuição da densidade total do fitoplâncton em relação a 13ª para 14ª campanhas, com 260.571 céls.mL⁻¹ e

175.577 céls.mL⁻¹, respectivamente (Figura 3.1). Assim como na 12ª campanha, *C. raciborskii* e *Oscillatoria* sp. formaram florações codominantes. Foram registradas 258.414 céls.mL⁻¹ e 170.009 céls.mL⁻¹ de *C. raciborskii*, na 13ª e 14ª campanhas, respectivamente. Enquanto *Oscillatoria* sp. foi menos expressiva, com 963 céls.mL⁻¹ e 828 céls.mL⁻¹ na 13ª e 14ª campanhas, respectivamente. Durante a 14ª campanha, ocorreram, ainda, 4.238 céls.mL⁻¹ de *Pseudanabaena* sp.

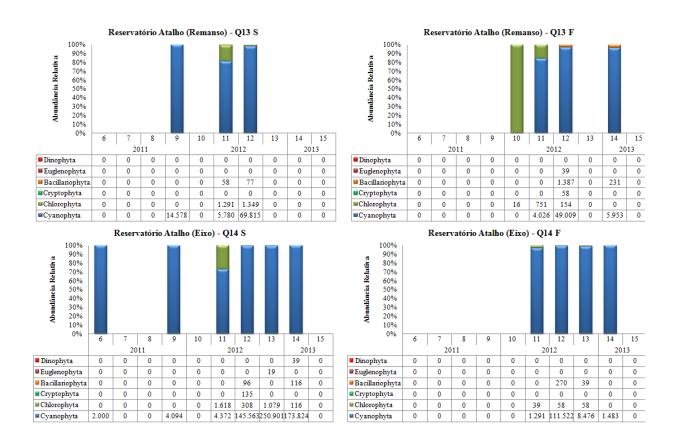


Figura 3.1: Abundância relativa do fitoplâncton no reservatório Atalho. Q13 – remanso e Q14 – eixo. Bacia do rio Jaguaribe, em 2011, 2012 e 2013.

No rio Salgado (Q23), a densidade total do fitoplâncton sofreu queda superior a 50% entre a 12ª e 13ª campanhas, tonando a duplicar de valor na 14ª (Figura 3.2). Apesar da flutuação observada as cianobactérias continuaram dominantes.

Durante a 13ª campanha, aproximadamente 40% das 559 céls.mL⁻¹ da população fitoplanctônica, foi composta pelas euglenofíceas (Euglenophyta) *Euglena proxima* e *Trachelomonas* sp. As cianobactérias registradas nessa coleta foram *Oscillatoria* sp. e *Pseudanabaena* sp., com 193 céls.mL⁻¹ e 154 céls.mL⁻¹, respectivamente.

Na 14ª campanha, das 770 céls.mL⁻¹ contabilizadas, 674 céls.mL⁻¹ foram de *C. raciborskii*, reafirmando a dominância dessa cianobactéria na região.

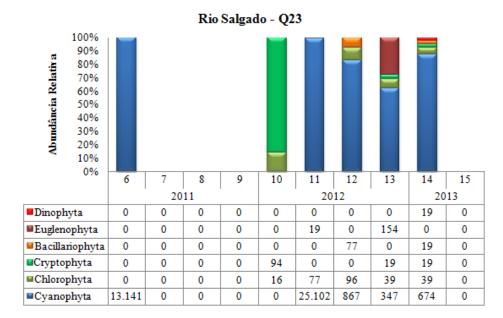


Figura 3.2: Abundância relativa do fitoplâncton no ponto Q23 — rio Salgado, bacia do rio Jaguaribe, em 2011, 2012 e 2013.

No reservatório Orós (Eixo) – Q24, assim como no reservatório Atalho (Q13 e Q14), as cianobactérias permaneceram dominantes durante as campanhas 13 e 14 (Figura 3.3). Outra característica em comum com o reservatório Atalho, foi a diminuição da densidade total entre as campanhas 12 e 13, e a elevação na 14ª campanha.

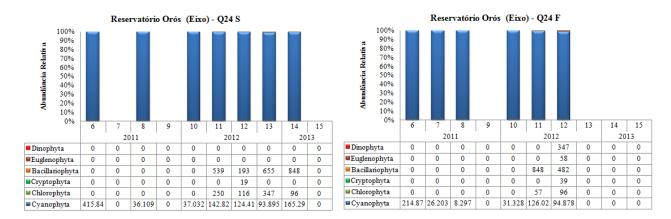


Figura 3.3: Abundância relativa do fitoplâncton no ponto Q24 – reservatório Orós (Eixo), bacia do rio Jaguaribe, em 2011, 2012 e 2013.

Nas campanhas 13ª e 14ª, objeto do presente relatório, não foram contabilizadas células fitoplanctônicas nas amostras de profundidade do reservatório Atalho. Contudo, nas amostras superficiais, *C. raciborskii, Oscillatoria* sp., *D. planctonica*, e *Pseudanabaena* sp. continuaram a apresentar codominância, totalizando 93.895 céls.mL⁻¹ e 165.290 céls.mL⁻¹ na 13ª e 14ª campanhas.

No ponto Q25, localizado no rio Jaguaribe, não foi registrada presença de fitoplâncton durante a 13ª campanha, assim como na campanha 12. Na 14ª campanha a codominância de *C. raciborskii* (28.608 céls.mL⁻¹), *D. planctônica* (482 céls.mL⁻¹), *Oscillatoria* sp. (17.203 céls.mL⁻¹) e *Pseudanabaena* sp. (2.350 céls.mL⁻¹), foi responsável por mais de 90% da densidade total do fitoplâncton na amostra, que chegou a 48.952 céls.mL⁻¹.

Para o reservatório Castanhão – Q26 e Q27, comparando as campanhas realizadas em 2012 (10ª, 11ª, 12ª e 13ª) e 2013 (14ª), foi observada uma tendência de diminuição da densidade total do fitoplâncton (Figura 3.4). Outro ponto importante foi a variação da dominância entre cianobactérias e diatomáceas, perceptível principalmente, nas amostras de profundidade.

Tanto a 13ª quanto a 14ª campanhas foram marcadas pela presença de cianobactérias codominantes na bacia (*C. raciborskii*, *D. planctonica*, *Oscillatoria* sp. e *Pseudanabaena* sp.) com a presença da diatomácea *Aulacoseira granulata*. No ponto localizado no centro do reservatório (Q26) as cianobactérias variaram de 3.872 a 3.044 céls.mL⁻¹, da 13ª para 14ª campanha. Já no ponto de eixo (Q27), as densidades de cianobactérias mais que dobraram de valor, com 8.168 céls.mL⁻¹ na 13ª campanha, e 12.560 céls.mL⁻¹ na 14ª.

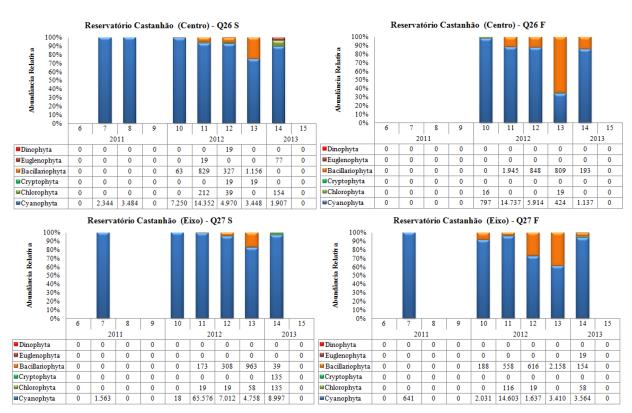


Figura 3.4: Abundância relativa do fitoplâncton no reservatório Atalho. Q13 – remanso e Q14 – eixo. Bacia do rio Jaguaribe, em 2011, 2012 e 2013.

Rio Apodi

No ponto Q28, localizado no rio Apodi a montante do remanso do reservatório Angicos Na 14º campanha, cianobactérias (Cyanophyta), clorofíceas (Chlorophyta) e euglenofíceas (Euglenophyta) ocorreram (Figura 3.5). Um total de 12.233 céls.mL⁻¹ foram registradas, sendo os táxons mais expressivos em termos de densidade: a cianobactéria *C. raciborskii* (3.891 céls.mL⁻¹), a euglenofícea *Trachelomonas* sp. (2.524 céls.mL⁻¹), e as clorofíceas *Scenedesmus* sp. (1.618 céls.mL⁻¹), *Crucigenia* sp. (1.349 céls.mL⁻¹) e *Closterium* sp. (1.098 céls.mL⁻¹).

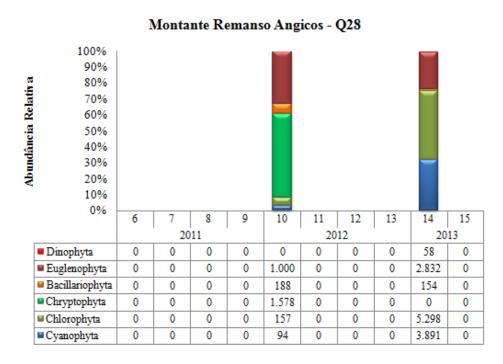


Figura 3.5: Abundância relativa do fitoplâncton a montante do remanso do reservatório Angicos (Q28). Bacia do rio Apodi, em 2011, 2012 e 2013.

No reservatório Angicos (Q29) durante a 13ª campanha, das 70.277 céls.mL⁻¹, 16.163 céls.mL⁻¹ foram de *C. raciborskii* e 51.764 céls.mL⁻¹ de *D. planctonica*, correspondendo a mais de 90% da comunidade fitoplanctônica. Durante a 14ª campanha, a densidade total do fitoplâncton foi de 1.021 céls.mL⁻¹, sendo 713 céls.mL⁻¹ de cianobactérias (*D. planctonica*, *Oscillatoria* sp. e *Pseudanabaena* sp.) (Figura 3.6).

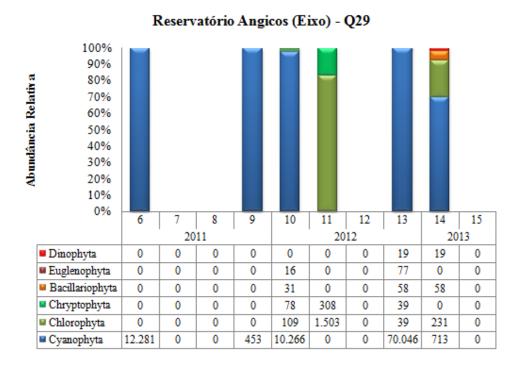


Figura 3.6: Abundância relativa do fitoplâncton no reservatório Angicos (Q29). Bacia do rio Apodi, em 2011, 2012 e 2013.

Para o ponto Q30, a montante do remando do reservatório Pau dos Ferros, assim como em outros pontos, as cianobactérias foram dominantes. Pode-se observar que, a 13ª e 14ª campanhas apresentaram diminuição da densidade total do fitoplâncton em relação a 12ª campanha (Figura 3.7).

Durante a 13ª campanha 469.322 céls.mL⁻¹ foram computadas, destas 362.423 céls.mL⁻¹ foram de *C. raciborskii* e 104.510 céls.mL⁻¹ de *Pseudanabaena* sp. Na 14ª campanha, observou-se a predominância das cianobactérias, tendência observada durante os últimos anos para o local (Figura 3.6). Das 125.894 céls.mL⁻¹ contabilizadas na amostra, mais de 90% foram de cianobactérias, sendo 103.489 céls.mL⁻¹ de *C. raciborskii*, 19.265 céls.mL⁻¹ de *Pseudanabaena* sp., 1.657 céls.mL⁻¹ de *Oscillatoria* sp. e 77 céls.mL⁻¹ de *Merismopedia punctata*.

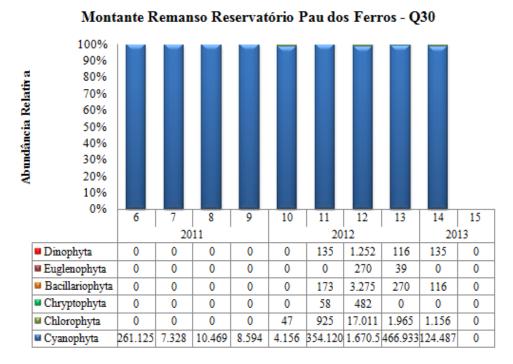


Figura 3.7: Abundância relativa do fitoplâncton a montante do remanso do reservatório Pau dos Ferros (Q30). Bacia do rio Apodi, em 2011, 2012 e 2013.

O fitoplâncton do reservatório Pau dos Ferros (Q31) apresentou comportamento semelhante a seu ponto a montante, Q30, com elevadas concentrações de células e dominância de cianobactérias (Figura 3.8).

Do total de 580.613 céls.mL⁻¹ registradas na 13ª campanha, houve prevalência de *C. raciborskii* (457.166 céls.mL⁻¹) e *Pseudanabaena* sp. (114.624 céls.mL⁻¹). Na 14ª campanha, apesar da diminuição na densidade, *C. raciborskii* e *Pseudanabaena* sp. permaneceram dominantes, com 373.250 céls.mL⁻¹ e 187.540 céls.mL⁻¹, respectivamente.

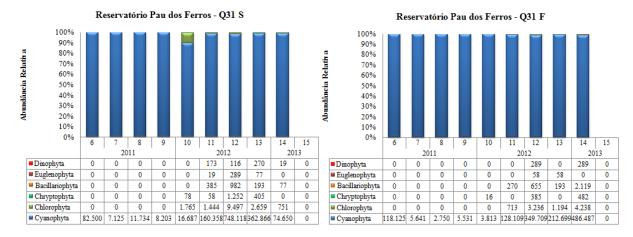


Figura 3.7: Abundância relativa do fitoplâncton no remanso do reservatório Pau dos Ferros (Q31). Bacia do rio Apodi, em 2011, 2012 e 2013.

No ponto Q32 (Rio Apodi) a densidade fitoplanctônica apresentou um aumento considerável entre as campanhas 12, 13 e 14 (Figura 3.8). Na 13ª e 14ª campanhas ocorreu dominância de cianobactérias, contudo com densidades diferentes. Na 13ª campanha *C. raciborskii* foi responsável pelos valores de densidade mais elevados, com 5.606 céls.mL⁻¹. Enquanto que na 14ª campanha, *C. raciborskii* foi substituída por *Oscillatoria* sp., com 76.114 céls.mL⁻¹.

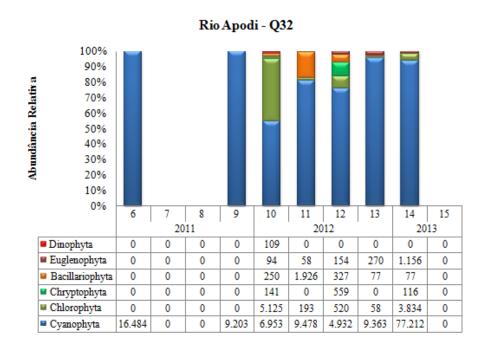


Figura 3.8: Abundância relativa do fitoplâncton no rio Apodi (Q32). Bacia do rio Apodi, em 2011, 2012 e 2013.

O reservatório Santa Cruz (Q33 e Q34) ocorreu dominância de cianobactérias nas coletas de superfície, tanto na 13ª como na 14ª campanhas (Figura 3.9). *Oscillatoria* sp. foi táxon que apresentou densidade na superfície dos pontos Q33 (remanso) e Q34, com 3.468 céls.mL⁻¹ e 8.033 céls.mL⁻¹, respectivamente. Na 14ª campanha esse táxon foi o mais representativo apenas no ponto Q34, com 4.219 céls.mL⁻¹. Pois na 13ª campanha *Microcystis* sp. (5.201 céls.mL⁻¹) foi o táxon com densidade mais elevada.

No ponto Q35 (Pedra de Abelhas) foi registrada na campanha 13ª, uma densidade de 98.172 apenas no ponto Q34, com 4.219 céls.mL⁻¹ . Já na 14ª campanha não foram comtabilizadas células fitoplanctônicas.

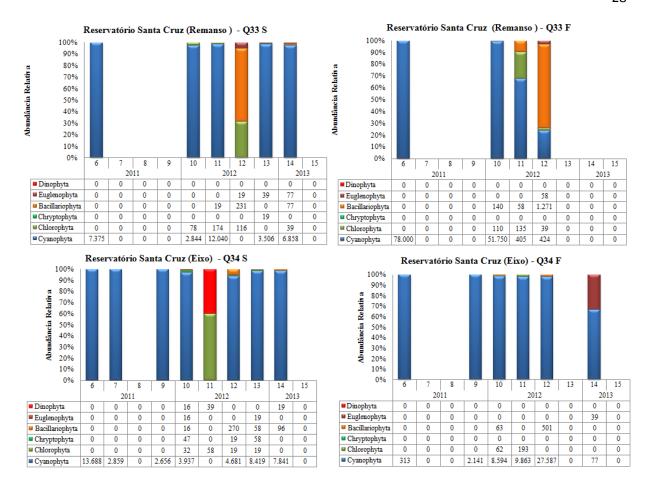


Figura 3.9: Abundância relativa do fitoplâncton no reservatório Santa Cruz (Q33 e Q34). Bacia do rio Apodi, em 2011, 2012 e 2013.

Rio Piranhas

O primeiro ponto de monitoramento na bacia do rio Piranhas, a montante do reservatório Engenheiro Ávidos (Q36), não foi registrado fitoplâncton na 13ª campanha. Durante a 14ª campanha, das 4.855 cels.mL⁻¹ registradas, houve dominância de clorofíceas (Chlorophyta), com 3.795 cels.mL⁻¹.

No reservatório Engenheiro Ávido (Q37) não apresentou fitoplâncton nas amostras da 13ª campanha (Figura 3.10). Na 14ª campanha a densidade total foi de 93.799 cels.mL⁻¹, com 45.946 cels.mL⁻¹ de *C. raciborskii* e 45.040 cels.mL⁻¹ de *Oscillatoria* sp. A jusante do reservatório, no ponto Q38, a dominância de cianobactérias permaneceu durante a 14ª campanha, com 38.471 cels.mL⁻¹ de *C. raciborskii* e 24.793 cels.mL⁻¹ de *Pseudanabaena* sp.

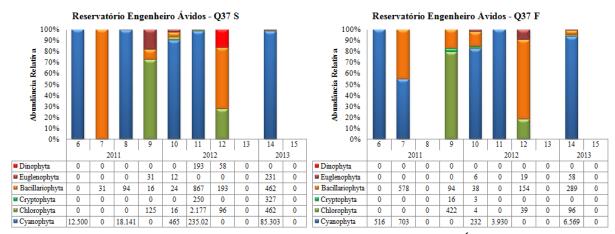


Figura 3.10: Densidade do fitoplâncton no reservatório Engenheiro Ávidos (Q37). Bacia do rio Piranhas, em 2011, 2012 e 2013.

A montante do reservatório São Gonçalo (Q39) não foram contabilizadas células fitoplanctônicas. No ponto dentro do reservatório (Q40) a densidade do fitoplâncton foi de 27.606 cels.mL⁻¹ na 13ª campanha e de 7.051 cels.mL⁻¹ na 14ª campanha, sendo as cianobactérias dominantes *Microcystis* sp. e *Oscillatoria* sp. (Figura 3.11).

Em São Domingos do Pombal (Q41) 963 cels.mL⁻¹ de *Oscillatoria* sp. dominaram a flora fitoplanctônica durante a 13ª campanha. Na 14ª campanha não foram ocorreu fitoplâncton.

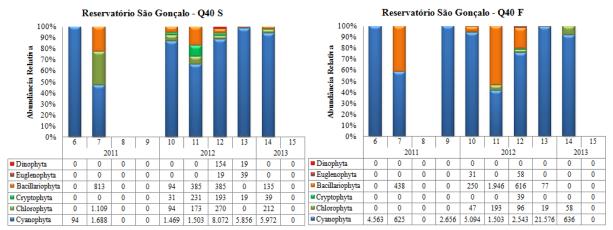


Figura 3.11: Densidade do fitoplâncton no reservatório São Gonçalo (Q40). Bacia do rio Piranhas, em 2011, 2012 e 2013.

Para o reservatório Coremas (Q42) a dominância de cianobactérias permaneceu, apesar da diminuição da densidade total do fitoplâncton (Figura 3.12). Não foram contabilizadas células nas amostras da 14ª campanha. Na 13ª campanha as 127.319 cels.mL⁻¹ distribuídas em *C. raciborskii* (66.867 cels.mL⁻¹), *Pseudanabaena* sp. (52.111 cels.mL⁻¹) e *Oscillatoria* sp. (8.322 cels.mL⁻¹).

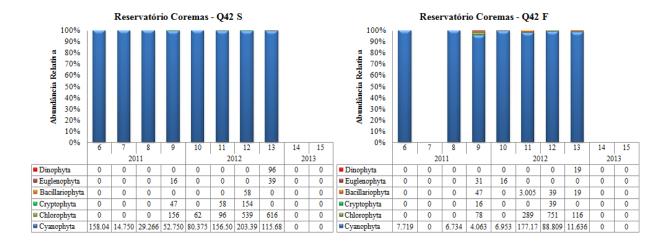


Figura 3.12: Densidade do fitoplâncton no reservatório São Coremas (Q42). Bacia do rio Piranhas, em 2011, 2012 e 2013.

No rio Piancó (Q43) e no rio Piranhas em Oiticica II (Q45) não foram registradas células fitoplanctônicas nas coletas 13 e 14 (Figura 3.13).

No ponto do rio Piranhas, divisa entre os estados da Paraíba e Rio Grande do Norte (Q44) a densidade total do fitoplâncton foi inferior a 5.000 cels.mL⁻¹, sendo dominada em na duas coletas pelas cianobactérias *Pseudanabaena* sp. (3.294 cels.mL⁻¹) na 13ª campanha e *D. planctonica* (4.007 cels.mL⁻¹) na 14ª campanha.

No reservatório Açu (Q46) 3.236 cels.mL⁻¹ de cianobactérias dominaram a flora na 13ª campanha, sendo 2.793 cels.mL⁻¹ de *Oscillatoria* sp. e 443 cels.mL⁻¹ de *D. planctonica* (Figura 3.13).

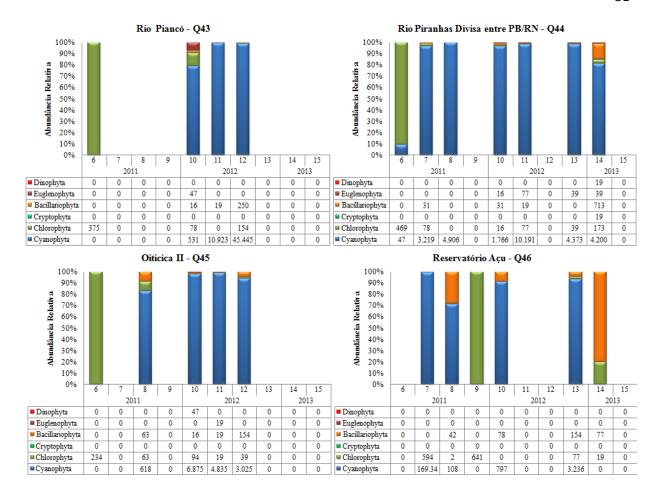


Figura 3.13: Densidade do fitoplâncton em ambientes lóticos (Q43, Q44 e Q45) e no reservatório Açu (Q46). Bacia do rio Piranhas, em 2011, 2012 e 2013.

No reservatório Armando Ribeiro Gonçalves, tanto no centro (Q47), como próximo ao eixo do barramento (Q48) a dominância das cianobactérias sobre os demais grupos fitoplanctônicos permaneceu conforme as amostragens anteriores (Figura 3.14).

No centro do reservatório (Q47) a densidade total do fitoplâncton sofreu uma diminuição de 663.354 cels.mL⁻¹ para 155.561 cels.mL⁻¹, da 13ª para a 14ª campanha, que ocorreu sobretudo pelo decréscimo de células de *C. raciborskii* e *Oscillatoria* sp. Fenômeno contrário ocorreu no ponto Q48 (eixo), onde a concentração de células passou de 542.431 cels.mL⁻¹na 13ª campanha para 2.225.205 cels.mL⁻¹ na 14ª. Neste caso *Oscillatoria* sp. contribuiu com 1.940.264 cels.mL⁻¹ na superfície do ponto e 87.345 cels.mL⁻¹ na amostra de profundidade. *C. raciborskii* também apresentou elevação de densidade, porém menos significativa, passando de 116.531 cels.mL⁻¹na 13ª campanha para 187.135 cels.mL⁻¹ na 14ª.

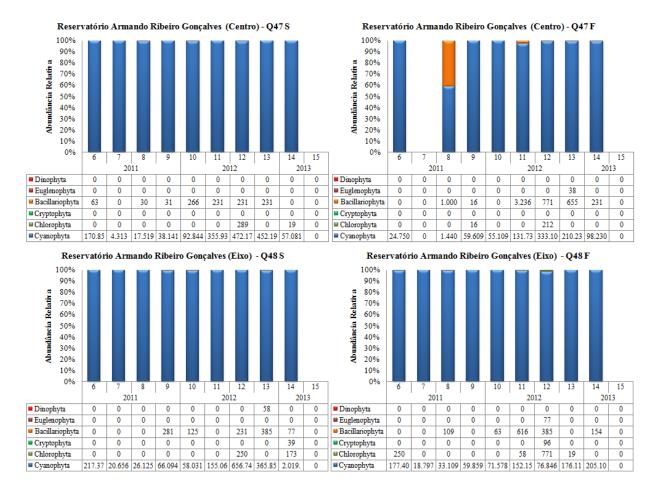


Figura 3.14: Densidade do fitoplâncton no reservatório Armando Ribeiro Gonçalves (Q47 e Q48). Bacia do rio Piranhas, em 2011, 2012 e 2013.

Rio Brígida

Na bacia do rio Brígida, representada pelos reservatórios Chapéu (Q49) e Entremontes (Q50), a flora fitoplanctônica, durante as campanhas 13ª e 14ª, foi dominada pelas cianobactérias (Figura 3.15).

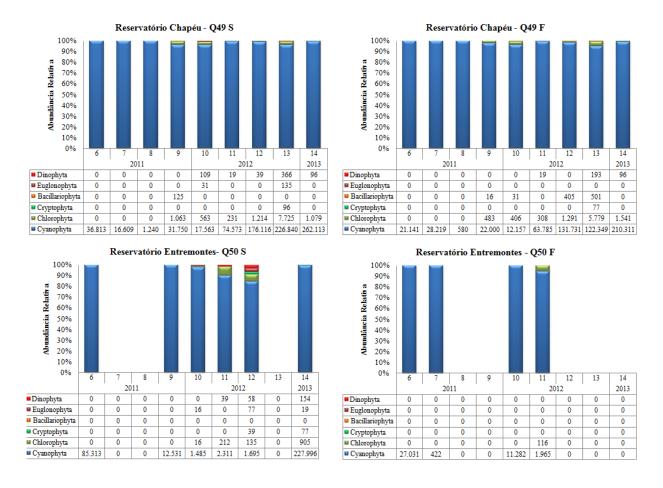


Figura 3.15: Abundância Relativa e Densidade do fitoplâncton nos reservatório Chapéu (Q49) e Entremontes (Q50). Bacia do rio Brígida em 2011, 2012 e 2013.

No reservatório Chapéu (Q49) ocorreu elevação da densidade do fitoplâncton total, passando de 364.061 cels.mL⁻¹ na 13ª campanha (outubro e novembro de 2012), para 475.236 cels.mL⁻¹, na 14ª campanha (janeiro a março de 2013). Desse total, 342.234 cels.mL⁻¹ na 13ª campanha e 463.755 cels.mL⁻¹, na 14ª campanha (janeiro a março de 2013) foram de *C. raciborskii*.

Observando o Quadro 3.1, a seguir, percebe-se a elevação histórica na densidade de *C. raciborskii* e a diminuição de densidade de *Oscillatoria* sp., que ocorria em codominância.

Quadro 3.1: Densidade do fitoplâncton (cels.mL⁻¹) no reservatório Chapéu (Q49), bacia do rio Brígida em 2011, 2012 e 2013.

Bacia do Brígida	Reservatório Chapéu																			
	Q49 - S									Q49 - F										
	2011				2012				2013		2011				2012				2013	
	6	7	8	9	10	11	12	13	14	15	6	7	8	9	10	11	12	13	14	15
Chroococcus sp.									116											
Cylindrospermopsis raciborskii	28.000	5.141	400	13.688	4.156	72.897	175.538	223.141	257.759		19.875	5.984	139	13.391	3.078	59.990	123.563	119.093	205.995	
Dolichospermum planctonica			175	5.375	2.906		193					1.516	44	1.203	297					
Geitlerinema sp.					438															
Merismopedia punctata		766		16		578						719		63	750	424			1.657	
Merismopedia tenuissima	1.500										328							1.580		
Oscillatoria sp.	5.750	10.703	665	11.172	8.313	636	385		1.368		938	20.000	398	7.344	7.969	3.371	7.918			
Pseudanabaena sp.	1.000			1.500	1.750	462		3.699	2.870						63		250	1.676	2.659	
Raphidiopsis mediterranea	563																			
SUBTOTAL	36.813	16.609	1.240	31.750	17.563	74.573	176.116	226.840	262.113	0	21.141	28.219	580	22.000	12.157	63.785	131.731	122.349	210.311	0

O fitoplâncton no reservatório Entremontes (Q50) apresentou características diferentes do reservatório Chapéu (Q49). Conforme mostrado na Figura X, na 13ª campanha (outubro e novembro de 2012) não foi observada presença de organismos fitoplanctônicos. A explicação para tal fato pode ser devida às condições do meio no momento da coleta. Condições de vento e correntes, bem como, horário de realização da amostragem, ou outros eventos desconhecidos, podem ter influenciado na migração vertical e/ou horizontal do fitoplâncton no único ponto de amostragem no reservatório. Durante a 14ª campanha (janeiro a março de 2013), houve registro de fitoplâncton apenas para amostra de superfície, com uma floração de 227.996 cels.mL⁻¹ de *C. raciborskii*.

EIXO LESTE

Rio São Francisco

Na bacia do rio São Francisco os pontos de amostrados localizaram-se nos reservatórios Sobradinho (Q01) e Itaparica (Q54), na foz rio Brígida (Q02), e no rio São Francisco, Captações do Eixo Norte (Q3), Orocó (Q85) e Ibó (Q86).

No reservatório Sobradinho (Q01) ocorreu dominância de cianobactérias (Figura 3.16). Na 13ª campanha foram contabilizadas 7.186 cels.mL⁻¹ de *Microcystis* sp. na amostra em profundidade. Já na 14ª campanha, a densidade mais elevada foi de *C. raciborskii*, com 4.970 cels.mL⁻¹. Na foz do rio Brígida (Q02) não foram registrada células fitoplanctônicas.

Na captação do eixo norte (Q03) houve elevação de densidade entre a 13ª e 14ª campanhas, chegando ao máximo de 48.258 cels.mL⁻¹ de *Oscillatoria* sp. na 14ª campanha.

Na captação do eixo leste (Q54) não foram registradas células de fitoplâncton na 13ª campanha. Durante a 14ª campanha 4.026 cels.mL⁻¹ de *Oscillatoria* sp. foram registradas. Para o ponto em Orocó (Q85) também não houve fitoplâncton na 13ª campanha, mas na 14ª campanha ocorreram 867 cels.mL⁻¹ de *Aphanocapsa* sp. Em Ibó (Q86) 6.897 cels.mL⁻¹ de cianobactérias foram contadas, sendo 4.084 cels.mL⁻¹ de *C. raciborskii* e 2.813 cels.mL⁻¹ de *Raphidiopsis mediterrânea* (Figura 3.17).

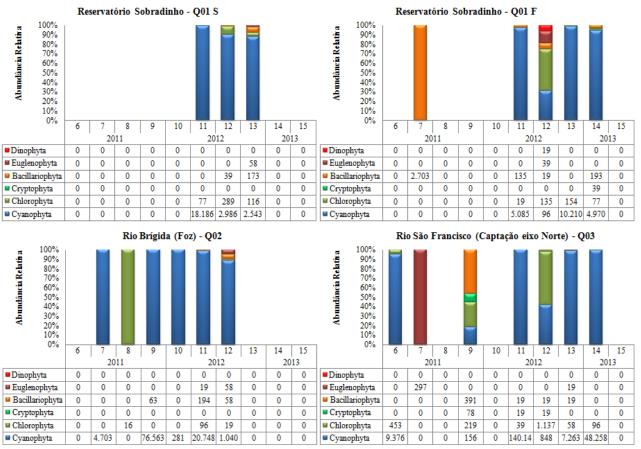


Figura 3.16: Densidade do fitoplâncton no reservatório Sobradinho (Q01), rio Brígida (Q02) e rio São Francisco na captação do eixo norte (Q03). Bacia do rio São Francisco, em 2011, 2012 e 2013.

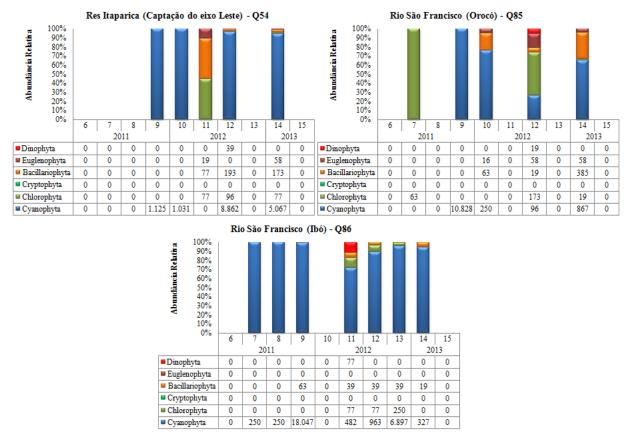


Figura 3.17: Densidade do fitoplâncton no reservatório Itaparica, captação do eixo leste (Q54) e no

rio São Francisco, em Orocó (Q85) e Ibó (Q86). Bacia do rio São Francisco, em 2011, 2012 e 2013. *Rio Paraíba*

As amostras coletas na bacia do rio Paraíba, Q68, Q69, Q70, Q71 Q72 e Q75 não apresentaram células fitoplanctônicas.

No reservatório Epitácio Pessoa (Q73) não foram registradas células na 13ª campanha. Para a 14ª campanha apenas 19 cels.mL⁻¹ de *Trachalomonas* sp. foram computadas na superfície. Na amostra de profundidade 867 cels.mL⁻¹ de *C. raciborskii* foram quantificadas (Figura 3.18).

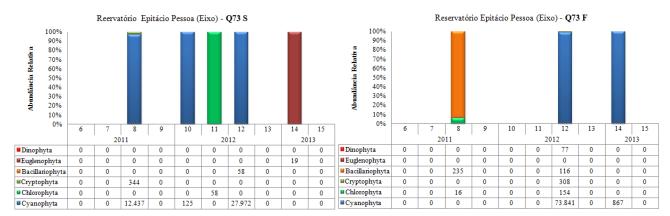


Figura 3.18: Densidade do fitoplâncton no reservatório Epitácio Pessoa (Q73). Bacia do rio Paraíba, em 2011, 2012 e 2013.

Nos pontos do rio Paraíba (Q74 e Q76) foram contabilizadas células apenas na 14ª campanha. Em Q74, das 30.920 cels.mL⁻¹ computadas, clorofíceas foram dominantes, ocorrendo com 18.128 cels.mL⁻¹ (Figura 3.19). Já no ponto Q76, apesar da menor densidade em relação ao Q74, as cianobactérias forma dominantes, com 6.261 cels.mL⁻¹.

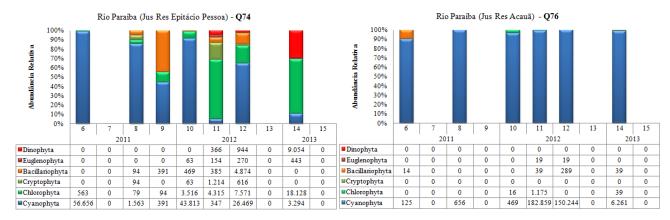


Figura 3.19: Densidade do fitoplâncton no rio Paraíba (Q74 e Q76). Bacia do rio Paraíba, em 2011, 2012 e 2013.

Rio Pajeú

Os pontos monitorados na bacia do rio Pajeú Q78 e Q79, não apresentaram células fitoplanctônicas na 13º campanha (Figura 3.20). Na 14º campanha a densidade máxima atingida pela comunidade fitoplanctônica foi de 1.560 cels.mL⁻¹ na superfície do reservatório Barra do Juá (Q78). *Dolichospermum planctonica*, *Oscillatoria* sp. e *Pseudanabaena limnetica*, foram os táxons dominantes, com um total de 1.503 cels.mL⁻¹.

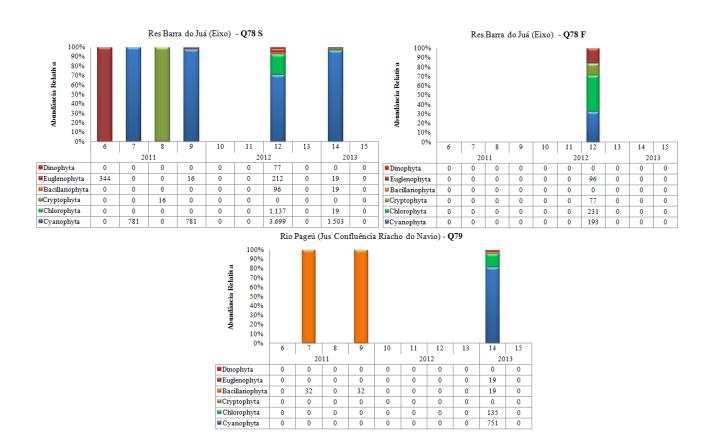


Figura 3.20: Densidade do fitoplâncton no rio Paraíba (Q74 e Q76). Bacia do rio Pajeú, em 2011, 2012 e 2013.

Rio Moxotó

Os reservatórios Poço da Cruz (Eixo) (Q81) e Itaparica (Orla Nova Petrolândia) (Q84), e o rio Moxotó, a jusante do reservatório Poço da Cruz (Q82 e Q83) foram o pontos monitorados para a bacia desse rio.

Assim como em outros pontos, não foram registradas organismos nas amostras do reservatório Poço da Cruz (Q81) coletadas durante a 13º campanha. Para as amostras da 14º

campanha um total de 953.940 cels.mL⁻¹ foram contabilizadas (Figura 3.21). Destas, C. raciborskii contribuiu com 584.505 cels.mL⁻¹ na amostra de superfície e 181.318 cels.mL⁻¹ na amostra de profundidade. *Pseudanabaena* sp. foi o táxon que contribuiu com a segunda densidade mais elevada para o ponto Q81, com 137.703 cels.mL⁻¹ na amostra de superfície e 42.093 cels.mL⁻¹ na amostra de profundidade.

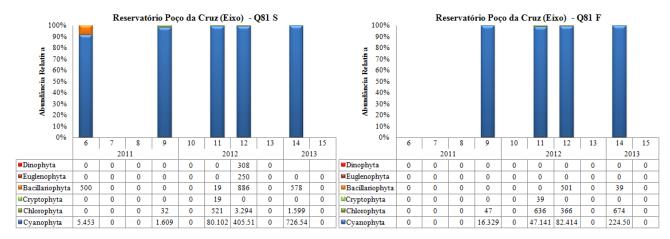


Figura 3.21: Densidade do fitoplâncton no reservatório Poço da Cruz (Q81). Bacia do rio Moxotó, em 2011, 2012 e 2013.

No reservatório Itaparica (Q84) durante a 14ª campanha, um total de 109.596 cels.mL⁻¹ foram computadas, das quais 109.153 cels.mL⁻¹ foram de cianobactérias, explicando a dominância das mesmas nas amostras (Figura 3.22). *C. raciborskii* apresentaram 93.915 cels.mL⁻¹, sendo a espécie mais representativa.

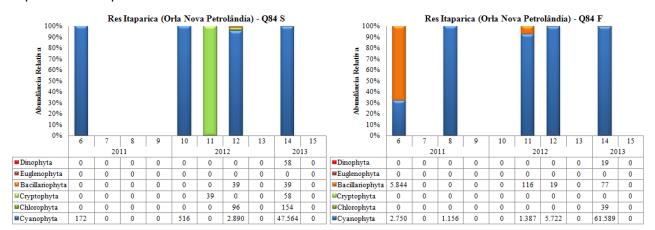


Figura 3.22: Densidade do fitoplâncton no reservatório Itaparica (Q841). Bacia do rio Moxotó, em 2011, 2012 e 2013.

3.2 Zooplâncton

Este item apresenta os resultados da comunidade zooplanctônica da 14ª. Campanha referente ao período de janeiro a março de 2013, que objetiva realizar o monitoramento da qualidade da água e limnologia referente às bacias hidrográficas dos rios São Francisco, Paraíba, Pajeú, Moxotó, Santa Brígida, Piranhas, Jaguaribe e Ápodi.

Composição Específica e Frequência De Ocorrência

A comunidade na área estudada esteve representados por 44 táxons, distribuídos entre os grupos Protoctista, Rotifera, Crustacea (Copepoda, Ostracoda e Cladocera), Mollusca, Nematoda, Insecta e Telostomii. Destacaram-se, entre esses, os Rotifera, que apresentaram um total de 21 espécies (Tabela 3.1).

O zooplâncton de ambientes límnicos é constituído por um grande conjunto de organismos do microzooplâncton (protozoários e rotíferos), do mesozooplâncton (copépodes ciclopóides e calanóides e cladóceros) e do macrozooplâncton (larvas de insetos e de misidáceos), embora este último grupo seja comum em ambientes lênticos, ou seja, lagos, lagoas, represas ou tanques (TUNDISI e MTSUMURA, 2008). Especificamente para reservatórios, esta comunidade é basicamente composta pelos Rotifera e Crustacea (Cladocera, Ostracoda e Copepoda). Os copepodas são representados pelas ordens Calanoida, Cyclopoida e Harpacticoida, além de fauna acompanhante, tais como: Protoctista, Turbellaria, Nematoda, Mollusca, Ostracoda e Insecta (larvas de *Chaoborus*), Aracnida e Acari (ALMEIDA *et al.*, 2010).

Tabela 3.1: Inventário da comunidade zooplanctônica das bacias hidrográficas dos rios Brigida (BG), Moxotó (MX), Piranhas (PI), Jaguaribe (JG), São Francisco (SF) e Ápodi (AP) na 14ª. Campanha (janeiro a março de 2013).

	jan/13				fev	/13		ma	r/13		Fo(%)
Táxon	BR	МХ	PI	JÁ	РВ	PI	AP	PI	JÁ	РВ	
Protoctista											9
Arcella vulgaris						x		Х			18
Centropyxis aculeata							Х				18
Diflugia sp.											18
Brachionus calyciphorus	Х	Х		Х			Х	Х			45
Brachionus dolabratus	Х										9
Brachionus falcatus						х	Х		Х		27
Brachionus havanaensis					Х		Х	Х	Х	Х	55
Brachionus quadridentatus											9
Brachionus patulus						Х	Х	Х			36
Brachionus plicatilis	Х				Х	Х	Х			Х	45
Brachionus rubens											9
Brachionus sp.							Х				9
Brachionus urceolaris											9
Epiphanes sp.											9
Filinia longiseta			Х	х			Х		x		45
Hexarctra sp.					x	x	Х	Х		Х	45
Keratella cochearis											9
Keratella tropica	х						х		Х		36
Keratella havanaensis	Х					Х		х			27
Lecane bulla											9
Lecane luna						х	х	х			27
Platyais quadricornis							х				18
Rotaria sp.			X			х	х	Х	x		45
Vorticela rotatoria											9
Nematoda											9
Gastropoda (Juvenil)							х				9
Bivalvia (juvenil)											9
Bosminopsis deitersi						х		х			18
Bosmina tubicen											9
Diaphanosoma spinulosum				x							9
Ilyocryptus spinifer											9
Moina rostrata				Х							9
Crustacea (Náuplios)	х	х	х	Х	Х	Х	х	Х	х	х	91
Caridea (larva)											9
Cladocera	x			х	Х	Х	x	х		х	64
Notodiaptomus cearensis		х	x	Х			x		х		45
Notodiaptomus sp.										х	18
Termocyclops sp.					Х	Х	x	х	х		45
Ostracoda (<i>Cypris</i> sp.)				х	Х	X	x	X	х	х	64

Insecta (larvas)			x			x	х	x			36
Chaoborus sp.											9
Odonatha sp.											9
Teleostomii (larva)			Х	Х							18
	7	3	6	9	7	14	20	14	9	7	

Comparando os resultados da presente pesquisa da comunidade zooplanctônica com outros ecossistemas límnicos do Brasil (SERAFIM JÚNIOR *et al.*, 2003, PINTO-COELHO *et al.*, 2005, ALMEIDA, 2005, entre outros), observa-se uma baixa diversidade especifica (Tabela 2). No entanto, estudos realizados por Rocha (2003), considerando outros ecossistemas continentais no Brasil, apontam a existência de 467 espécies de Rotifera, 273 de Copepoda e 112 de Cladocera.

Os Rotifera foram os organismos que mais contribuíram para a riqueza do zooplâncton nos reservatórios durante a 14ª. Campanha (Tabela 3.1). Esse fato também ocorreu em todas as outras campanhas, ou seja, os Rotífera que mais se destacaram em espécies. O maior número de espécies de rotíferos (21 espécies), em relação aos demais grupos registrados, está de acordo com os resultados observados para outros reservatórios brasileiros (TUNDISI et al., 1991; ARCIFA et al,. 1992; LOPES et al., 1997. LANSAC-TÔHA et al, 1999, NOGUEIRA, 2001, VELHO et al., 2005, entre outros) e especialmente como na maioria dos reservatórios nordestinos como vistos na Tabela 3.2. O estudo do grupo de Rotifera em ecossistemas continentais é de relevância, pois não só desempenham papel importante na teia alimentar, constituindo apreciável parcela do item nutricional de outros organismos, como também são indicadores de regime trófico, acidez ou alcalinidade e saprossidade (POURRIOT, 1976; KOSTE, 1978). Além disso, o grupo de Rotifera foi utilizado na classificação de lagos na Estonia (MÄEMETS, 1983) e na Inglaterra (PONTIN e LANGLEY, 1993). O uso de Rotifera como indicador da qualidade de água foi sugerido por Gannon e Stemberg (1978) e no monitoramento ambiental por Pejler (1981), uma vez que muitas espécies são sensíveis às variações ambientais apresentando respostas imediatas às alterações na qualidade de água, configurando assim, uma ferramenta útil na avaliação de áreas aquícola, por correlacionar-se diretamente ao estado trófico. Como também em águas usadas para outros fins, como por exemplo, humano.

Neumann - Leitão *et al.* (2003) consideraram alguns organismos zooplanctônicos como bioindicadores de situações severas nos reservatórios do Ceará; como é o caso dos Rotifera *Keratella tropica* e *Brachionus calyciflorus*, os quais se apresentaram tolerantes às características adversas da água durante as secas sazonais.

Assim, diversos grupos de organismos têm sido usados como bioindicadores, dentre eles, o zooplâncton, que constitui um elo importante na teia alimentar, transferindo a energia na forma do fitoplâncton – bacterioplâncton ou detrito orgânico particulado, para os demais níveis tróficos. Apresentam espécies com exigências ecológicas particulares e fornecem subsídios sobre a compreensão dos processos interagentes, uma vez que suas populações são influenciadas pelas condições abióticas e bióticas do ambiente (ESPINO *et al.*, 2000).

Em São Paulo devido à necessidade do biomonitoramento em reservatórios, já que, em sua maioria, esses corpos d'água enquadram-se na classe 1 do Decreto Estadual n. 10.755, equivalente à classe Especial da Resolução CONAMA 357/05, a qual prevê a preservação da vida aquática foi proposto pela CETESB (2006), o uso de um índice biológico baseado nas relações dos principais grupos zooplanctônicos, tais como Rotifera, Copepoda e Cladocera, aplicado à avaliação da qualidade de água em reservatórios.

Tabela 3.2. Comparação da riqueza do zooplâncton em alguns reservatórios do Nordeste do Brasil (segundo ALMEIDA *et al,* 2010) com relação a 14ª. Campanha.

Reservatório-Estado	Rotifera	Cladocera	Copepoda	Total	Referência
Apipucus - PE	20	3	2	25	Neumann-Leitão <i>et al</i> (1989)
Xique-Xique - BA	11	3	2	15	Neumann-Leitão e Nougueira Paranhos (1987/1989)
São José dos Cordeiros - PB	27	6	14	47	Crispim <i>et al</i> (2000)
São Rafael -RN	16	3	2	21	Crispim e Watanabe (2000)
Pau Ferro - RN	8	4	3	14	Crispim e Watanabe (2000)
Sobradinho - BA	11	1	1	13	Crispim e Watanabe (2000)
Xingó - AL - SE - PE	27	15	6	48	Lira et al (2002)
Carpina -PE	7	3	2	12	Almeida (2002)
Botafogo-PE	7	5	2	14	Moura (2004)
Taperoá II - PB	28	5		33	Ribeiro et al (2004)
Soledade - PB	20	3	2	25	Moreira et al (2004)
Panati-PB	40	10		50	Crispim e Freitas (2005)
Tapacurá -PE	28	5	2	35	Almeida (2005)
Serrote - PB	33	5		38	Crispim et al (2006)
Barra - PB	27	7		34	Crispim et al (2006)
Santa Clara - PB	22	6		28	Crispim et al (2006)
Pacajus - RN	19	3	5	27	Leitão et al (2006)
Gavião - RN	14	6	6	26	Leitão et al (2006)
Jucazinho - PE	8	3	2	13	Melo Júnior <i>et al</i> (2007)
Epitácio Pessoa - PB	7		4	11	Crispim e Watanabe (2000)
Coremas - PB	4	3	3	10	Crispim e Watanabe (2000)

Itaparica - PE - BA	31	11	4	46	Crispim e Watanabe (2000)
Santa Cruz - PE	3	1	5	9	Crispim e Watanabe (2000)
Açu-RN	2	3	3	8	Crispim e Watanabe (2000)
Orós – CE	1		2	3	Crispim e Watanabe (2000)
Reservatórios	31	11	4	66	13a. Campanha
Reservatórios	21	5	3	29	14a. Campanha

A riqueza taxonômica foi maior nas bacias hidrográficas dos rios São Francisco (23) e Apódi (20) e menor em Moxotó (3) (Tabela 3.1). Analisando-se separadamente a composição e a riqueza do zooplâncton de ecossistemas nordestinos (Tabela 3.1), nota-se claramente a predominância de Rotifera (21) em relação aos microcrustáceos. Mesmo assim, os Cladocera apresentaram um maior número de espécies (5) do que os Copepoda (3), padrão típico dos reservatórios estudados (Tabela 3.2).

Grande parte dos táxons foi considerada pouco frequente (68%), enquanto os demais foram considerados frequentes (23%) e apenas 9%, muito frequentes, indicando que parte dos organismos constitui-se de táxons comuns a todos ou à maioria das bacias hidrográficas estudadas, enquanto outra parte é constituída de organismos restritos a uma ou poucas bacias (espécies pouco frequentes e muito frequentes) (Tabela 3.1 e Figura 3.23).

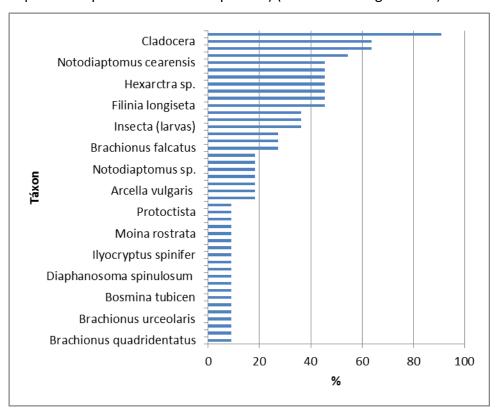
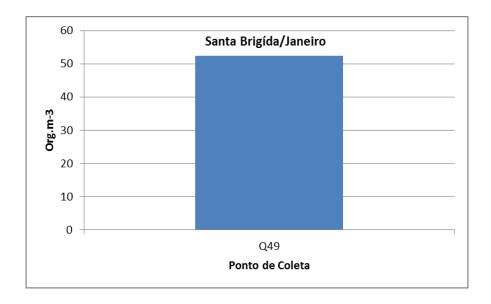


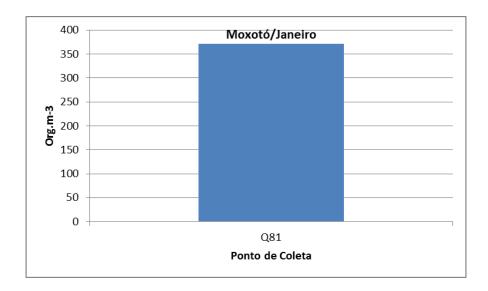
Figura 3.23. Frequência de ocorrência (%) dos organismos zooplanctônicos da 14ª. Campanha (janeiro a março de 2013).

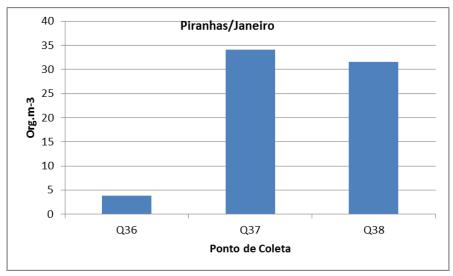
Entre as espécies pouco frequentes podem-se citar os rotíferos de diversos gêneros tais como: *Brachionus, Keratella, Lecane, Platyais, Epiphanes,* e *Vorticela,* além de outros taxa, tais como Protoctista, Nematoda, Mollusca (Gastropoda e Bivalvia), Crustacea e Teleostomii (Figura 3.23).

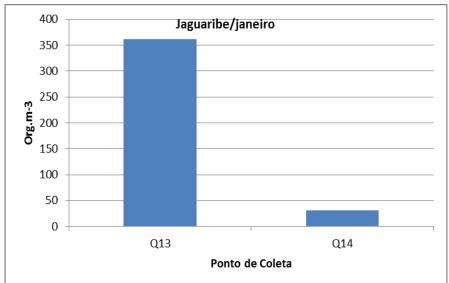
Em contrapartida, dentre os taxa considerados muito frequentes destacaram-se: *Brachionus havanaensis* (55%), Cladocera (64%), Ostracoda (64%) e os náuplios de Crustacea com 91% (Figura 1).

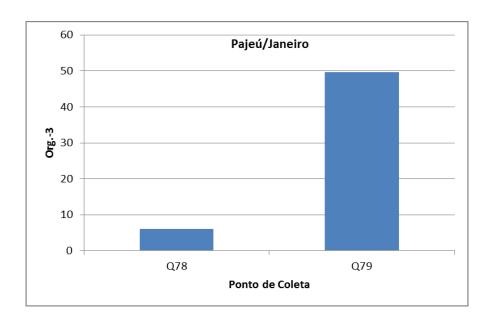
Em determinadas períodos do ano, os taxa do filo Crustacea (Cladocera, Ostracoda, os náuplios possivelmente de Copepoda dos gêneros, *Notodiaptomus* e *Termocyclops*) podem ser particularmente os organismos mais frequentes da comunidade zooplanctônica, podendo isso está correlacionada a época de reprodução desses nesses ecossitemas. Esses organismos juntamente com os Rotifera (*Brachionus havanaensis*) representam um alimento vivo ideal para os primeiros dias de cultivo das larvas da maior parte das espécies de peixes e camarões.

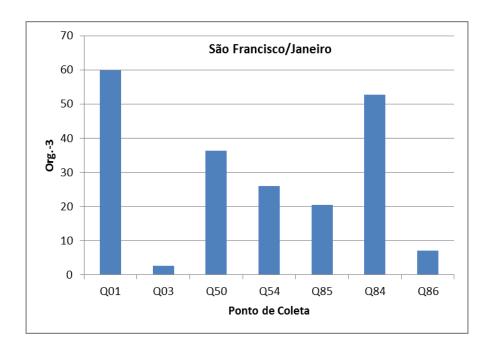

Densidade de Organismos e Abundância Relativa

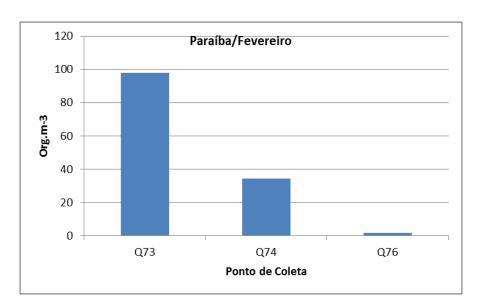

Quanto à densidade de organismos, os valores máximo e minimo foram registrados no mês de marçode 2013, na bacia hidrográfica dos rios Moxotó (Q68 - Açude Poço da Cruz) e Apódi (Q29 - Pau dos Ferros), com 726 org.m⁻³ e 0,5 org.m⁻³ (Figura 3.24), respectivamente. Esse alto valor numérico deve-se a densidade do Copepoda ainda no estágio juvenil, *Termocyclops* sp., que apresentou 214 org.m⁻³.

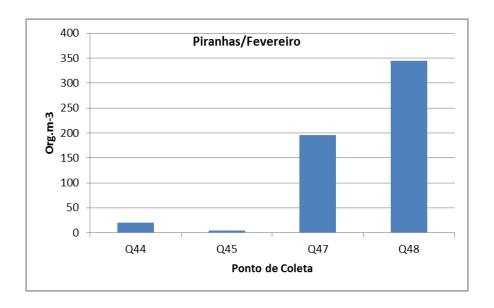

Desta forma, na bacia do rio Paraíba, a grande densidade populacional, aliada a uma menor riqueza (7) de organismos zooplanctônicos, sugere uma menor equitatividade e, consequentemente, predominância de espécies oportunistas neste ambiente, cujas populações devem estar sendo favorecidas por condições peculiares do ambiente. Exemplos de espécies oportunistas que ocorrem nesta bacia hidrográfica está o rotífero *Brachionus havanensis*, as quais desenvolveram elevadas densidades de espécies que podem ocorrer em ambientes poluídos e não poluídos, porém, possuem crescimento favorecido em corpos d'água com grande quantidade de matéria orgânica e baixos teores de oxigênio dissolvido, por serem resistentes a esses fatores.

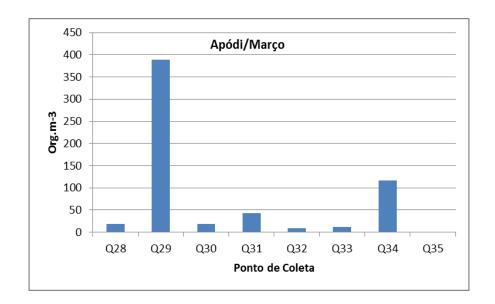

Observou-se que apesar de diferentes organismos dominaram quantitativamente quanto à abundância relativa (Figura 3.25), em cada bacia hidrográfica, ao mesmo tempo, os náuplios de

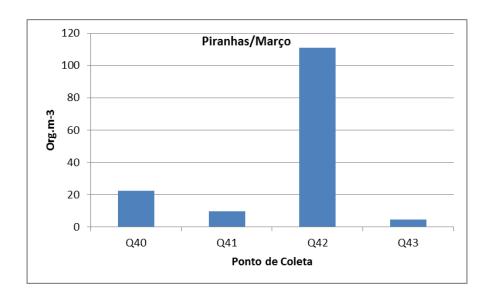

Crustacea foram os mais abundantes ocorrendo em praticamente todas os locais, indicando a importância dessas bacias na produção/estoque de organismos para manutenção das populações de larvas de peixes e crustáceos.

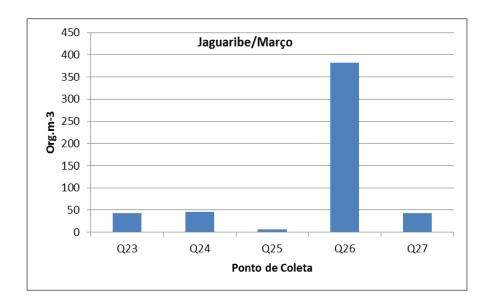


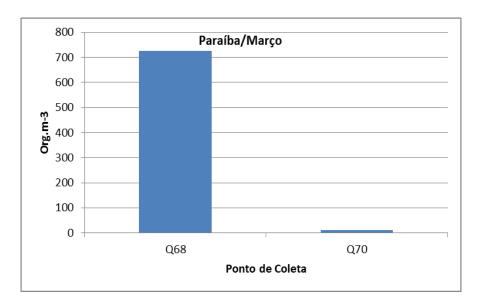
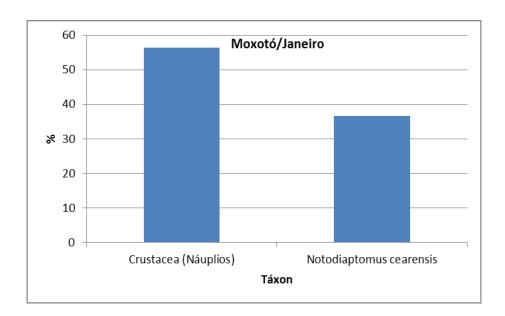
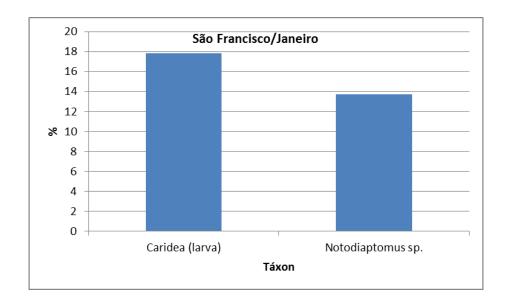
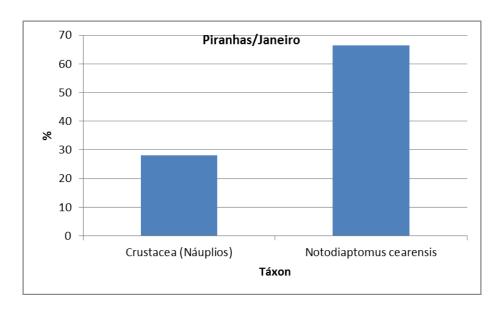
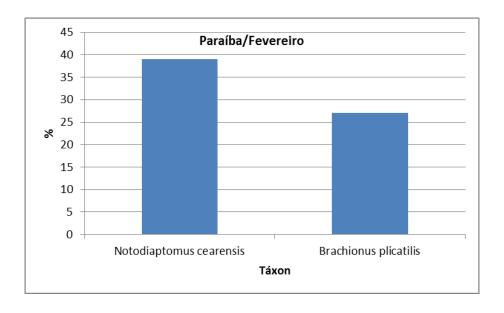


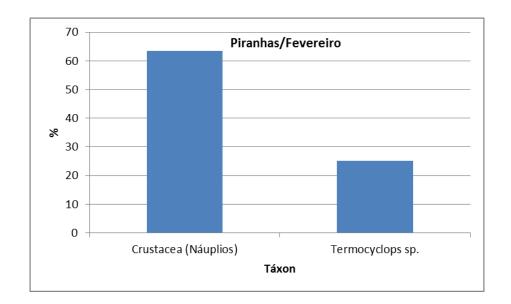


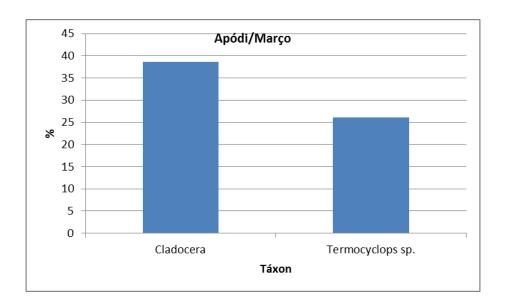


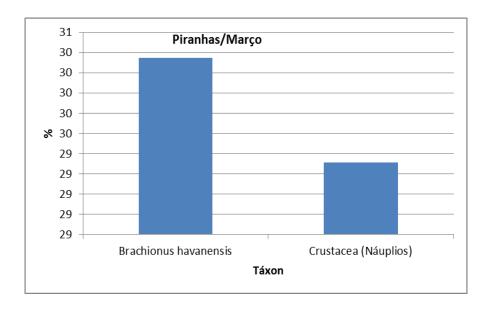


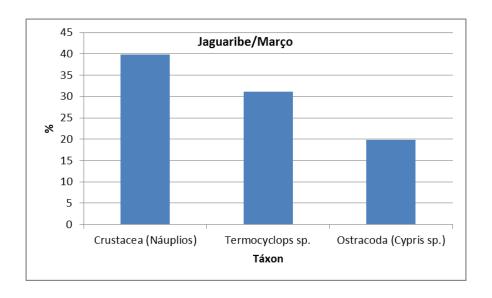



Figura 3.24: Densidade (org.m⁻³) dos organismos zooplanctônicos nas bacias hidrográficas doa 14ª. Campanha (janeiro a março de 2013) (vê escala).







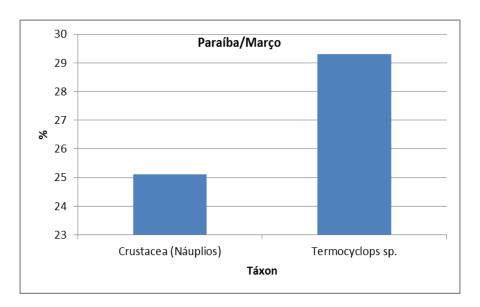


Figura 3.25 Abundância (%) dos organismos zooplanctônicos na 14ª. Campanha (janeiro a março de 2013) (ver escala).

MIGRAÇÃO DO ZOOPLÂNCTON – NAS BACIAS DOS RIOS MOXOTÓ, PIRANHAS E PARAÍBA (Coleta Nictimeral)

A migração vertical diária da comunidade zooplanctônica é, provavelmente, o mais conhecido movimento coordenado de animais envolvendo massas de organimsos de um grande número de populações, tanto nos oceanos como em águas continentais. Esse comportamento apesar de não ser uma caracterstica universal da vida aquática, é compartilhada por diferentes grupos taxonômicos, continuamente ou em determinados períodos, pressupondo-se assim importantes vantagens seletivas para os seus participantes (ENRIGHT, 1977).

Embora esse fenômeno tenha sido estudado por cerca de dois séculos (LAMPERT, 1989), o seu significado adaptativo não é totalmente compreendido (STICH e LAMPERT, 1981; LAMPERT, 1989).

Acredita-se, que as principais causas responsáveis seja o deslocamento vertical diário das populações zooplanctônicas. Ou seja, o comportamento migratório seria adotado por populações que estivessem sob intensa pressão de predação por parte do organimos que se orientam visualmente (ZARET e STUFFEN, 1976; WRIGTH *et al*, 1980; STICH e LAMPERT, 1981; DINI e CARPENTER, 1991). Desse modo, os organimos que migram par a superificie, afim de se alimentar, apenas no período noturno, poderiam minimizar este problema.

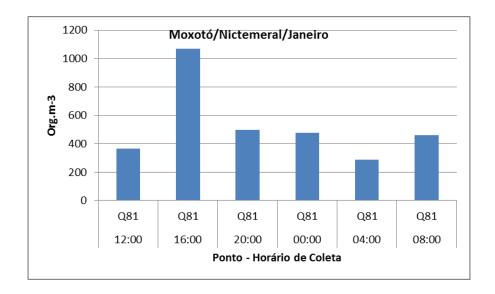
Deste modo, a migração vertical das populações é um fenômeno biológico complexo, logo aceita uma única hipotese para explicar todos os padrões de distribuição vertical já observados seria adotar uma visão simplificada do processo de seleção natural (ZARET e STUFFEN, 1976). O ritmo da migração vertical parece ser modificado por distintas pressões seletivas, ou combinações destas. E ainda, para uma mesma espécie, a extensão da migração vertical poderia variar com a idade, sexo e estado reprodutivo (ARCIFA-ZAGO, 1978)

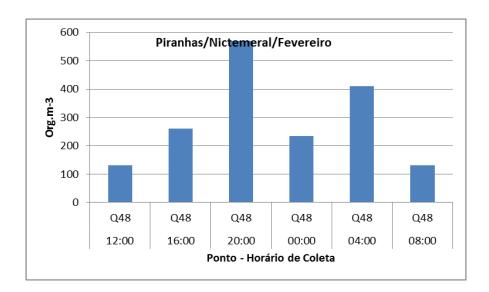
Estudos sobre migração são fundamentais não só para melhor compreensão da ecologia e compotamento de espécies zooplanctônicas, mas também para um complexo entendimento do funcionamento metabólico dos ecossistemas aquáticos como um todo. O transporte ativo de materiais entre o hipolímnio e o epilímio é um importante processo asociado aos deslocamentos do zooplanctôn na coluna d' água, uma vez que fluxos verticais ascententes de nutrientes e materia orgânica podem ser incrementados através da excreção de nitrogênio e fósforo pelas populações migrantes (FISCHER e t al., 1983; DAGG et al., 1989).

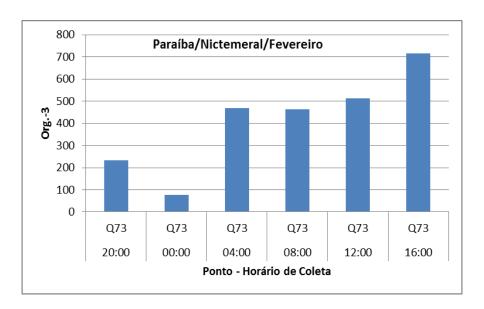
A composição e as frequências de ocorrencia do estudo da variação nictemeral encontra-se descrita na Tabela 3.3, apresentando um total de 18 taxa, representado pelos filos Rotifera, Mollusca (Gastropoda), Crustacea (Ostracoda, Cladocera e Copepoda) e Insecta.

Tabela 3.3: Inventário da comunidade zooplanctônica quanto a variação nictemeral nas bacias hidrográficas do rios Moxotó (MX), Jaguaribe (JÁ), Piranhas (PI) e Paraíba (PB) em 2013.

	JAN	í	EV	MAR	
Táxon	MX	PI	РВ	JA	F (%)
Brachionus calyciphorus	х	x	х	х	100
Brachionus havanensis		x			25
Filinia camasecla		x			25
Filinia longiseta		x			25
Hexarctra sp.		x	x	X	75
Keratella tropica		x			25
Lecane luna			x		25
Lecane sp.			x		25
Rotaria sp.			х		25
Gastropoda (Juvenil)		x	х		50
Cladocera	X	x		X	75
Moina rostrata				X	25
Ostracoda (<i>Cypris</i> sp.)	X	x	х	x	100
Crustacea (Náuplios)	X	x	х	x	100
Caridea (larva)				x	50
Notodiaptomus cearensis	X		Х	x	75
Termocyclops sp.	x	x	Х	x	100
Insecta (larvas)				x	25
·	6	11	10	10	


São reconhecidos diferentes tipos de migração vertical nictemeral. A classificação mais usual leva em conta o horário do dia em que há deslocamento dos indivíduos de uma profundidade para outra na coluna d'água: quando há o deslocamento para camadas mais superficiais e oxigenadas da água durante a noite, dá-se o nome de migração noturna, que por ser a mais frequente é também chamada de migração normal; quando este deslocamento ocorre durante o dia, dá-se o nome de migração reversa (Lampert e Sommer, 1997). Assim, de um modo geral, considerando-se a distribuição vertical do conjunto de organismos zooplanctônicos (Figura 3.26), não se observou um padrão para a migração vertical nos ecossistemas estudados, com exceção do rio Piranhas (Q48 – Açude Armando Ribeiro - Eixo), durante o mês de fevereiro/2013. Nesse ambiente houve uma provável migração de boa parte dos organismos para a superficie depois do pôr-do-sol (20h00) (Figura 3.26), com valores de densidades variando de 148 org.m⁻³ (8h00) a 621 org.m⁻³ (20h00). O organismo que mais contribui para esse alto valor foi o copepoda *Notodiaptomus cearensis* com 349 org.m⁻³. (Figura 7). *Notodiaptomus cearensis* é característica do Nordeste brasileiro, sendo comumente encontrada em lagos artificiais, açudes e viveiros de camarões (MATSUMURA-TUNDISI 1986, NEUMANNLEITÃO e NOGUEIRA-PARANHOS 1987-89,


LYRA *et al.* 2002). Essa espécie de Copepoda apresenta grande movimento vertical durante o dia nas camadas mais profundas com altas densidades de organismos.


Apesar de não terem sido realizadas coletas em diferentes profundidades, os dados sugerem que algumas espécies do zooplâncton no presente estudo realizam migrações verticais em resposta à variação das condições de luz, enquanto outras espécies não apresentaram mudanças nas densidades de uma forma clara. Migrações verticais em ambiente relativamente rasos têm sido observados em outros reservatórios (ARCIFA, 1999) e esse fato pode estar relacionado às relações de predadores, uma vez que, as pesquisas mostram que as relações tróficas do zooplâncton com seus predadores podem ser mais visíveis em determinadas regiões dos reservatórios, como por exemplo, a litorânea (MESSCHIATTI e ARCIFA, 2002). Apesar de diferente ação dos predadores, os quais selecionam espécies de zooplâncton, pode, ainda, explicar a distribuição heterogêna na composição e abundância de microcrustáceos (NOGUEIRA, 2001). E até mesmo de toda a comunidade zooplanctônica (ESPIDOLA et a., 2000). Considerando este aspecto, estudos mostram que peixes planctívoros podem causar fortes impactos nas populações de crustáceos planctônicos em ambientes oligotróficos (GONNZALEZ *et al*, 2002), tais como os ambientes estudados.

Com relação a abundância relativa, dentre os organimsos considerados dominates destacaram-se: os náuplios de Crustacea (Q48-12h00), o copepoda *Notodiptomus cearensis* (Q48-16h00) e Cladocera (Q73-20h00) no mês de fevereiro (Figura 3.27). Os nauplios de Crustacea dominaram no ponto Q81 às 12h00 no mês de janeiro e em todos os horários de coletas do ponto Q27 (Montante do remanso do açude Pau dos Ferros) em março (Figura 3.27).

Deste modo diversos fatores podem influenciar nos movimentos verticais do zooplâncton (hidrodinâmica, luminosidade, temperatura, oxigênio dissolvido, pH, estratégias alimentares, entre outras).

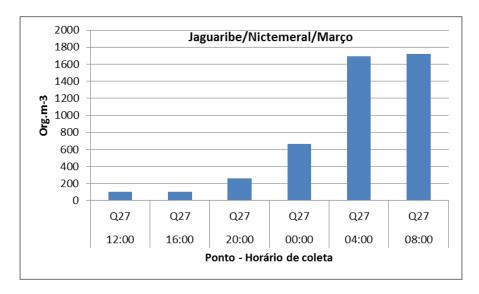
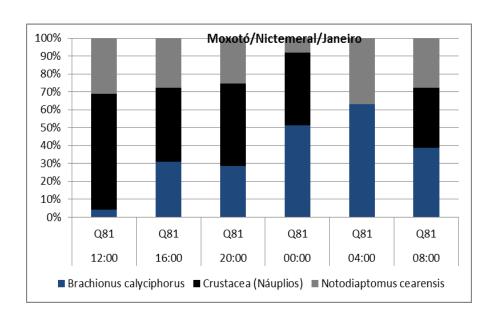
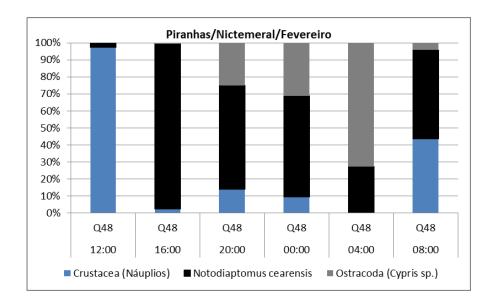
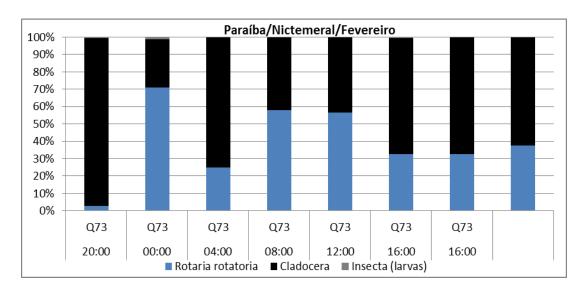





Figura 3.26: Variação nictemeral da densidade (org.m⁻³) dos organismos zooplanctônicos nos reservatórios Moxotó (janeiro), Piranha e Paraíba (fevereiro) e Jaguaribe (março) em 2013 (vê escala).

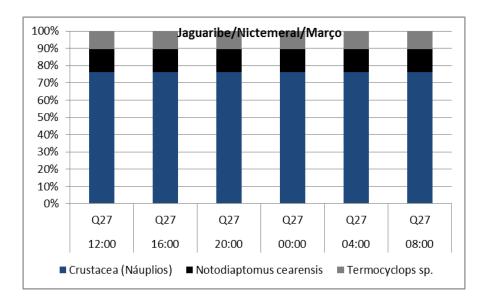


Figura 3.27: Abundância relativa (%) dos organismos zooplanctônicos dominantes nos reservatórios Moxotó (janeiro), Piranha e Paraíba (fevereiro) e Jaguaribe (março) em 2013 (vê escala).

Considerações Finais

A maioria das bacias hidrográficas estudadas apresentou a ocorrência de espécies indicadoras de eutrofização (Rotifera e Copepoda) e de poluição orgânica (Rotifera), indicando deterioração na qualidade ambiental da água em vários trechos.

A presença de grande densidade de espécies jovens de crustáceos planctônicos (náuplios de Crustacea), na maioria das bacias é importante na manutenção e desenvolvimento das populações, além de indicar uma alta taxa de predação sobre os organismos adultos das espécies envolvidas. Essa predação ocorre geralmente por peixes planctívoros ou formas jovens de diversas espécies de peixes presentes nos ecossistemas considerados, indicando a importância da comunidade zooplanctônica para a manutenção do estoque pesqueiro nessas regiões.

Observou-se uma baixa diversidade de espécies, principalmente na bacia hidrográfica do rio Moxotó (3 espécies) em janeiro, sinalizando a ocorrência de diferentes condições ambientais ao longo dos corpos d'água, os quais propiciam variabilidade de habitats e nichos ecológicos a esses organismos.

Entre as bacias hidrográficas também se observou heterogeneidade da comunidade zooplanctônica e, consequentemente, das condições ambientais, porém num grau geralmente menor que aquele observado dentro de cada bacia hidrográfica individualmente, principalmente com relação às comunidades de Copepoda e Rotifera.

A proporção de espécies mais ou menos frequentes não evidenciou a heterogeneidade ambiental entre as bacias, uma vez que 68% dos táxons foram classificados como pouco frequentes, cerca de 23% frequentes, 9% considerados muitos frequentes, indicando que parte dos organismos constitui-se de táxons comuns a todos ou à maioria das bacias hidrográficas estudadas, enquanto outra parte é constituída de organismos restritos a uma ou poucas bacias (espécies raras ou muito raras).

Nesse contexto, a transposição de águas dos corpos hídricos aceptores para os receptores pode influenciar grandemente as comunidades planctônicas, já que incidirá em modificação das condições ambientais nos ambientes aquáticos aqui avaliados.

Considerando que cada ambiente tem suas peculiaridades ambientais, a mistura de águas, diminuição e/ou aumento do volume e vazão, assim como modificações nas características lóticas ou lênticas de cada sistema pode acarretar impactos severos diretos à biota aquática como um todo, incluindo os organismos planctônicos. Esses impactos podem ser prejudiciais ou benéficos a

esses organismos, assim como ao equilíbrio ambiental nos ecossistemas considerados, dependo da similaridade das condições de cada bacia hidrográfica.

Desta forma, no caso do encaminhamento de volumes de água de ambientes mais eutróficos, com grande quantidade de poluentes e reduzidos teores de oxigênio, caracterizados também pela presença de espécies resistentes à condições adversas (Rotifera e Cladocera) e competidoras eficazes (larvas de Insecta), pode prejudicar as condições ambientais em corpos aceptores oligotróficos. O aumento dos níveis de nutrientes nos corpos oligotróficos pode acarretar mudanças na composição e estrutura das comunidades planctônicas, levando a uma menor equitatividade e dominância de organismos competidores que sobressaem sobre as demais espécies, formando grandes populações e interferindo no aumento da matéria orgânica e depleção nos níveis de nutrientes.

Assim, é importante o acompanhamento das modificações nas condições aquáticas das bacias hidrográficas consideradas, ao longo do e após o processo de transposição, a fim de monitorar as mudanças nas comunidades biológicas e avaliar suas consequências para o equilíbrio ecológico e saúde ambiental desses corpos d'água.

Além disso, o uso de espécies bioindicadores (Rotifera, Copepoda e Cladocera) é de suma importância para diagnosticar e nortear as medidas mitigadoras de conservação da biodiversidade dos ambientes aquáticos, enquadrando-se nas classes especial, 1 e 2 da Resolução CONAMA 357/2005 (BRASIL, 2005) que prevêem a preservação da vida aquática.

3.3 Sedimentos e Zoobentos

Os resultados das análises de sedimentos e zoobentos correspondem às coletas realizadas durante a 13ª e 14ª Campanhas, nos eixos leste e norte das Bacias Setentrionais do Nordeste do Brasil.

3.3.1 Sedimento e Matéria Orgânica das Estações do Fundo e da Margem dos Eixos Norte e Leste da 13º Campanha

Composição Granulométrica dos Substratos do Eixo Norte

A análise granulométrica dos substratos nas estações de coleta das Bacias setentrionais do Nordeste do Brasil, eixo norte (Tabelas 3.4 e 3.5, Figuras 3.28 e 3.29) apresentou uma predominância de substratos tipicamente cascalhosos em quatro estações, argilosos em sete estações e arenosos nas demais estações, sendo o teor de areia grossa predominante em duas estações, o de areia média em quatro estações e o de areia muito fina em uma estação. Frações de areia média (AM), de areia muito fina (AMF) e de argila ocorreram em todas as estações.

Tabela 3.4: Porcentagens das frações granulométricas nos sedimentos do Rio São Francisco e Bacias Hidrográficas do Nordeste Setentrional, coletados entre os meses de Outubro e Dezembro de 2012, nas estações do fundo e da margem do eixo norte. Legenda – Q: estações de coleta; AMG: areia muito grossa; AG: areia grossa; AM: areia média; AF: areia fina e AMF: areia muito fina.

Estação	Cascalho	A.M.G	A.G	A.M	A.F	A.M.F	Argila
Q3M13	0,2	0,7	23,5	62,3	2,6	6,3	4,4
Q13F13	71,3	3,1	9	8,9	1,4	4,3	2
Q13M13	65,8	5	16,1	10,3	0,3	0,9	1,6
Q14F13	71,3	3,1	9	8,9	1,4	4,3	2
Q14M13	24,35	7,75	34	8,5	1,6	8,4	15,4
Q23M13	39	5,6	5,4	45	1,5	3	0,5
Q24F13	31,8	4,1	18,1	30,1	3,7	8,7	3,5
Q24M13	0	1,32	4,68	12,1	33,4	6,52	42,02
Q25M13	0	0,32	0,8	1,86	4,22	11,36	81,44
Q26M13	0	0	0	0,32	0,82	6,56	92,3
Q27M13	16	7	20	36,5	1,8	7	11,7

Estação	Cascalho	A.M.G	A.G	A.M	A.F	A.M.F	Argila
Q29M13	34,3	6,6	32,2	15,9	2,2	4,5	4,3
Q30M13	19,7	7,2	28,3	36	2,6	4,4	1,8
Q31F13	0	1,34	4,66	12,1	33,4	6,52	42,02
Q31M13	0	1,3	4,7	12,1	33,4	6,5	42
Q32M13	35,8	4,7	6,57	0,7	0	1,87	50,36
Q33M13	11,8	4,95	47,3	28,35	1,6	4,5	1,5
Q34F13	1	7,3	17,7	40,7	3,3	16,4	13,6
Q34M13	62,47	0,5	1,53	16,4	2,3	10,65	6,15

Os teores de cascalho foram elevados nas estações Q13M13 (65,8%), Q13F13 (71,3%), Q14F13 (71,3%) e Q34M13 (62,47%). Nas demais estações os teores de cascalho variaram entre 0,2% (Q3M13 e Q36M13) e 46,8% (Q37M13).

As porcentagens de areia muito grossa (AMG) foram, em sua maioria, pouco significativas para todas as estações estudadas. Os teor mais elevado ocorreu na estação Q42F13 (25,8%). Para as demais estações foram registrados valores entre 0,32% (Q25M13, Q41M13 e Q48M13) e 12,6% (Q35M13). As estações Q26M13, Q43M13 e Q47M13 não apresentaram frações de areia muito grossa.

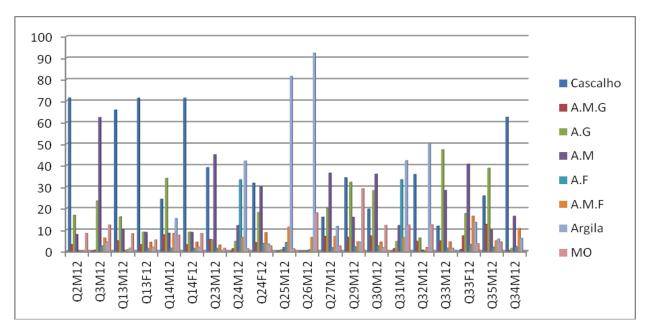


Figura 3.28: Porcentagens das frações granulométricas nos sedimentos do Rio São Francisco e Bacias Hidrográficas do Nordeste Setentrional, coletados entre os meses de Outubro e Dezembro de 2012, nas estações do fundo e da margem do eixo norte. Legenda — Q: estações de coleta; AMG: areia muito grossa; AG: areia grossa; AM: areia média; AF: areia fina e AMF: areia muito fina.

A areia grossa (AG) ocorreu na maioria das estações estudadas, apresentando teor mais elevado nas estações Q48F13 e Q49M13 (65,3%). Nas demais estações os teores variaram entre 0,56% (Q41M13 e Q48M13) e 47,3% (Q33M13). Os teores de areia grossa foram nulos nas estações Q26M13 e Q43M13.

A fração areia média (AM) foi elevada nas seguintes estações Q3M13 com 62,3%, Q36M13 com 65,6%, Q37F13 (57,7%) e Q49F13 (61,6%). Nas demais estações o teor de areia média variou de 0,32% (Q26M13) a 45% (Q42M13).

Tabela 3.5. Porcentagens das frações granulométricas nos sedimentos do Rio São Francisco e Bacias Hidrográficas do Nordeste Setentrional, coletados entre os meses de Outubro e Dezembro de 2012, nas estações do fundo e da margem do eixo norte. Legenda - Q: estações de coleta; AMG: areia muito grossa; AG: areia grossa; AM: areia média; AF: areia fina e AMF: areia muito fina.

Estação	Cascalho	A.M.G	A.G	A.M	A.F	A.M.F	Argila
Q35M13	25,9	12,6	38,7	10	2	5	5,8
Q36M13	0,2	0,5	8,9	65,6	4,5	13,3	7
Q37F13	10,4	4,7	12,5	57,7	2,7	7,3	4,7
Q37M13	46,8	5,5	19,4	20,8	1,3	4,3	1,9
Q38M13	42,5	8,1	20,1	20,9	1,5	3,8	3,1
Q40F13	0	1,34	4,66	12,1	33,4	6,52	42,02
Q40M13	8,9	9,6	24	23,6	18	11,3	4,6
Q41M13	0	0,32	0,56	2,02	4,6	7,78	84,72
Q42F13	43	25,8	5,7	0,6	6,9	6	12
Q42M13	38	6,6	5,4	45	1,5	3	0,5
Q43M13	0	0	0	1,3	11,06	21,46	66,18
Q44M13	24,35	7,75	34	8,5	1,6	8,4	15,4
Q45M13	24,35	7,75	34	8,5	1,6	8,4	15,4
Q47F13	7	2	25,9	23,3	8,4	21,1	12,3
Q47M13	0	0	3,8	8,9	7,9	57,8	21,6
Q48F13	13,4	4,1	65,3	13,4	1,7	1,7	0,4
Q48M13	0	0,32	0,56	2,02	4,6	7,78	84,72
Q49F13	3	0,5	22,6	61,6	2,8	7,5	2
Q49M13	13,4	4,1	65,3	13,4	1,7	1,7	0,4
Q50M13	0	1,04	4,54	14,54	13,26	10,6	56,02

O teor de areia fina foi mais expressivo nas estações Q24M13, Q31F13, Q31M13 e Q40F13, todas com 33,4%. Nas estações restantes os teores variaram de 0,3% (Q13M13) a 18% (Q40M13). A estação Q32M13 não apresentou fração de areia fina.

O teor de areia muito fina foi mais elevado na estação Q47M13 (57,8%). As demais estações apresentaram teores entre 0,9% (Q13M13) a 21,46% (Q43M13).

O teor de argila foi elevado nas seguintes estações: Q25M13 (81,44%), Q26M13 (92,3%), Q32M13 (50,36%), Q41M13 (84,72%), Q43M13 (66,18%), Q48M13 (84,72%), e Q50M13 (56,02%). Nas demais estações os teores variaram entre 0,4% (Q48F13 e Q49M13) e 42,02% (Q24M13, Q31F13 e Q40F13).

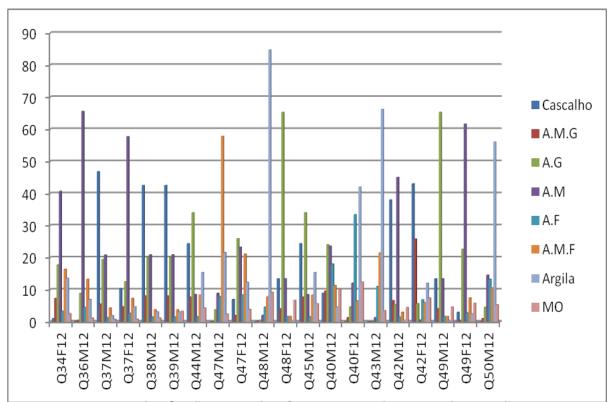


Figura 3.29: Porcentagens das frações granulométricas nos sedimentos do Rio São Francisco e Bacias Hidrográficas do Nordeste Setentrional, coletados entre os meses de Outubro e Dezembro de 2012, nas estações do fundo e da margem do eixo norte. Legenda — Q: estações de coleta; AMG: areia muito grossa; AG: areia grossa; AM: areia média; AF: areia fina e AMF: areia muito fina.

Conteúdo de Matéria Orgânica nas Estações do Fundo e da Margem do Eixo Norte

Dentre os valores de matéria orgânica (M.O.) para os sedimentos amostrados nos pontos de coleta (Tabela 3.6 e Figuras 3.30) do substrato do fundo e da margem das Bacias setentrionais do Nordeste do Brasil, eixo norte, a estação Q29M13 apresentou o valor mais elevado (29,2%). As

demais estações apresentaram teores variando entre 0,2% (Q34M13) e 12,4% (Q40F13 e Q32M13).

Tabela 3.6: Teores de Matéria Orgânica, M.O., (%) no sedimento do fundo (F) e da margem (M) do Eixo Norte do Rio São Francisco e Bacias Hidrográficas do Nordeste Setentrional, nos meses de Outubro e Dezembro de 2013.

Estação	МО	Estação	МО
Q3M13	12,3	Q36M13	1,19
Q13F13	5,34	Q37F13	0,83
Q13M13	8,25	Q37M13	0,81
Q14F13	8,34	Q38M13	1,19
Q14M13	7,65	Q40F13	12,4
Q23M13	1,5	Q40M13	10,2
Q24F13	2,6	Q41M13	2,1
Q24M13	1,3	Q42F13	7,4
Q25M13	1,3	Q42M13	4,5
Q26M13	18	Q43M13	3,5
Q27M13	2,6	Q44M13	4,3
Q29M13	29,2	Q45M13	5,6
Q30M13	12,2	Q47F13	3,9
Q31F13	2,3	Q47M13	2,47
Q31M13	12,3	Q48F13	6,7
Q32M13	12,4	Q48M13	9,2
Q33M13	0,43	Q49F13	5,8
Q34F13	2,6	Q49M13	4,6
Q34M13	0,2	Q50M13	5,3
Q35M13	4,37		

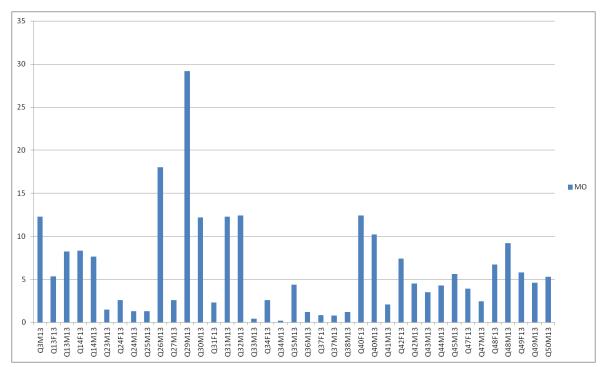


Figura 3.30: Teores de Matéria Orgânica, M.O., (%) no sedimento do fundo (F) e da margem (M) Eixo Norte do Rio São Francisco e Bacias Hidrográficas do Nordeste Setentrional, nos meses de Outubro a Dezembro de 2012.

Composição Granulométrica dos Substratos das Estações do Eixo Leste

A análise da granulométrica do substrato nas estações de coleta das Bacias Setentrionais do Nordeste do Brasil, eixo leste (Tabelas 3.7, Figuras 3.31) revelou uma forte predominância de substratos tipicamente cascalhosos e arenosos, sobretudo os teores de cascalho (C). Os teores de areia fina (AF), areia muito fina (AMF) foram pouco abundantes nas estações estudadas. A areia grossa, areia média, areia fina, areia muito fina e a argila se distribuíram em todas as estações do eixo leste.

Os teores de cascalhos foram elevados nas estações Q78M13 (81,5%), Q81F13 (61,1%), Q81M13 (62,7%), Q86F13 (62,6%) e Q86M13 (62,6%), respectivamente; menos elevados nas demais estações, com teores variando entre 6,5% (Q54M13) e 32,4% (Q1M13). A fração cascalho não esteve presente nas estações Q1F13, Q54F13, Q79M13, Q82M13, e Q85M13.

Tabela 3.7: Porcentagens das frações granulométricas nos sedimentos do Rio São Francisco e Bacias Hidrográficas do Nordeste Setentrional, coletados entre os meses de Outubro e dezembro de 2012, nas estações do fundo e da margem do eixo leste. Legenda – Q: estações de coleta; AMG: areia muito grossa; AG: areia grossa; AM: areia média; AF: areia fina e AMF: areia muito fina.

Estação	Cascalho	A.M.G	A.G	A.M	A.F	A.M.F	Argila
Q1F13	0	0	21,2	16,8	4,8	24	33,2
Q1M13	32,4	1	7	36,6	5	13,5	4,5
Q54F13	0	0	9,1	54,5	7	5,5	23,9
Q54M13	6,5	2,1	62,3	24,9	1,5	1,6	1,1
Q78M13	81,5	4,2	5,8	7,8	0,2	0,1	0,4
Q79M13	0	0	43	29,3	3,8	12,3	11,6
Q81F13	61,1	0,6	9,1	16,3	2,5	4,2	6,2
Q81M13	62,7	1,7	5,4	18	2,2	8,2	1,8
Q82M13	0	1,04	4,54	14,54	13,26	10,6	56,02
Q84F13	14,6	8	32,5	34,3	2	3,9	4,7
Q84M13	8	3	46,6	29,7	3	5,4	4,3
Q85M13	0	1,34	4,66	12	33,46	6,52	42,2
Q86F13	62,6	4,7	2,7	19,6	2	6	2,9
Q86M13	62,6	4,7	2,7	19,6	2	6	2,9

As porcentagens de areia muito grossa (AMG) não foram significativas para todas as estações estudadas, variando entre 1% (Q1M13) e 8% (Q84F13). O teor de areia muito grossa foi nulo nas seguintes estações: Q1F13, Q54F13, Q82M13 e Q86F13.

A areia grossa (AG) apresentou-se mais significativa nas estações Q54M13 (62,3%). Nas outras estações os valores estiveram distribuídos entre 2,7% (Q86F13 e Q86M13) e 46,6% (Q84M13).

Os teores de areia média variaram entre 7,8% (Q78M13) e 54,5% (Q54F12).

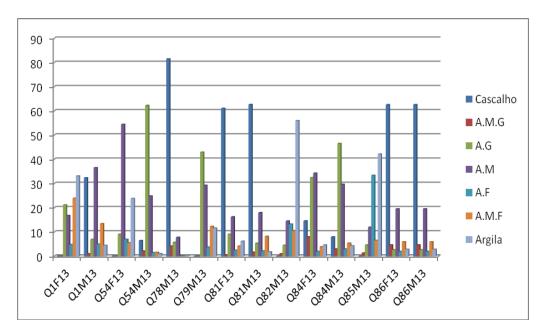


Figura 3.31: Porcentagens das frações granulométricas nos sedimentos do Rio São Francisco e Bacias Hidrográficas do Nordeste Setentrional, coletados entre os meses de Outubro e Dezembro de 2012, nas estações do fundo e da margem do eixo leste. Legenda – Q: estações de coleta; AMG: areia muito grossa; AG: areia grossa; AM: areia média; AF: areia fina e AMF: areia muito fina.

O teor de areia fina foi muito baixo na maioria das estações analisadas, porém, foi mais expressivo nas estações Q85M13 (33,46%) e Q82M13 (13,26%). As estações restantes variaram de 0,2% (Q78M13) a 7% (Q54F13).

O teor de areia muito fina foi baixo na maioria das estações analisadas, variando entre 0,1% (Q78M13) e 24% (Q1F13). O teor de argila variou entre 0,4 (Q78M13) e 56,02 (Q82M13).

Conteúdo de Matéria Orgânica nas Estações do Fundo e da Margem do Eixo Leste

Os valores de matéria orgânica (M.O) para os sedimentos amostrados nos pontos de coleta (Tabela 3.8 e Figura 3.32), do substrato do fundo e da margem das Bacias setentrionais do Nordeste do Brasil, eixo leste, se apresentaram reduzidos, com valores variando entre 0,38% (Q54M13) e 11,4 (Q1F13).

Tabela 3.8: Teores de Matéria Orgânica, M.O., (%) no sedimento do fundo (F) e da margem (M) do Rio São Francisco e Bacias Hidrográficas do Nordeste Setentrional, nos meses de Outubro e Dezembro de 2012.

Estação	МО	Estação	МО
Q01F13	11,4	Q81M13	1,29
Q01M13	6,3	Q82M13	1,74
Q54F13	5,3	Q84F13	3
Q54M13	0,38	Q84M13	7
Q78M13	0,71	Q85M13	3,47
Q79M13	1,82	Q86F12	3,25
Q81F13	4,8	Q86M12	3,3

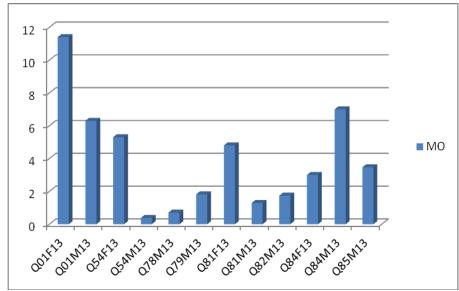


Figura 3.32: Teores de Matéria Orgânica, M.O., (%) no sedimento do fundo (F) e da margem (M) do Rio São Francisco e Bacias Hidrográficas do Nordeste Setentrional, nos meses de Outubro e Dezembro de 2012.

3.3.2 Composição do Zoobentos Zoobentos das Estações da Margem, do Fundo e do Fital, dos Eixos Norte e Leste

Zoobentos do Fundo - Eixo Norte

O Zoobentos coletado em 10 estações do fundo, durante os meses de outubro a dezembro de 2012, no eixo norte, foram constituídos de 31 táxons e 9.396 indivíduos, predominantemente pertencentes aos Filos Mollusca, Annelida, Crustacea, Arthropoda e Nematoda (Figura 3.33, Tabela 3.9).

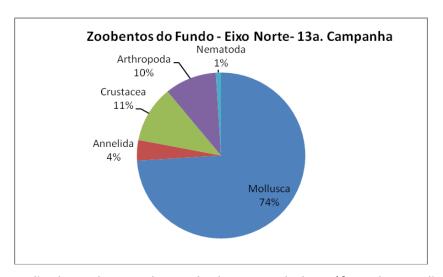


Figura 3.33: Composição do zoobentos do Fundo das Bacias hidrográficas do Rio São Francisco do Eixo Norte, durante as coletas da 13ª campanha, de outubro a dezembro de 2012.

Os moluscos pertencentes as Classes Gastropoda e Bivalvia, foram os mais representativos com 15 táxons e 6.972 exemplares, correspondendo a 74% de todos os organismos coletados nas estações do fundo do eixo norte (Figura 3.33). A Classe Gastropoda foi a mais numerosa, com 9 espécies e 3.642 indivíduos, sendo a maioria pertencente a espécie *Melanoides tuberculatus*, a mais abundante, 34,10 %, presente em todas as estações com uma alta densidade média de 13.251 ind/m2. Os demais gastrópodes, apesar de a maioria ser muito frequente nas estações, tiveram baixas abundancia e densidade média.

A classe Bivalvia constituiu-se por seis espécies e 1.053 exemplares, destacando-se a espécie *Corbicula fluminea* que obteve a maior abundância relativa 34%, alta densidade média, 13.213 ind/m2, a segunda dentre os moluscos em geral, e esteve presente em todas as estações. As outras espécies mostraram tiveram baixa representatividade numérica, com exceção de *Pisidium* sp., a segunda com maior densidade, muito embora, bem inferior, quando comparada com a primeira.

Tabela 3.9: Macroinvertebrados das coletas do fundo do Rio São Francisco e Bacias Hidrográficas do Nordeste Setentrional. Campanha 8 - Eixo Norte, de outubro a dezembro de 2012. Arabundância relativa; Frequência relativa e ind/m²-densidade.

Campanha 13 Eixo Norte	Q13	Q14	Q24	Q31	Q34	Q37	Q42	Q47	Q48	Q49				
Zoobentos do Fundo	F13	F13	F13	F13	F13	F13	F13	F13	F13	F13	Total	AR%	Fr%	ind/m ²
Pomacea lineata		1	2			4	1	2		9	19	0,20	100	78,7
Asolene spixi	5	1	4	1		1				1	13	0.1	100	53,8
ldiopyrgus sp.		5		2		3		14			24	0.3	100	99.4
Aylacostoma tuberculata	1		1	1					2	1	6	0.1	28.6	87.0
Melanoides tuberculatus	1242	60	127	6	1249	8	63	421	19	5	3200	34.1	100.0	13250.5
Littoridina sp.	5	3	2	12		36	12			9	79	0.8	100.0	327.1
Lymnaea columella	2	1	1	2		6	1			7	20	0.2	85.7	96.6
Physa cubensis	2		4	2		6				8	22	0.2	100	91.1
Biomphalaria straminea				59		100			100		259	2.8	100	1072.5
Diplodon sp.		5		3				10			18	0.2	100	74.5
Corbicula fluminea	1234	2	2	2		450			847	654	3191	34.0	100	13213.3
Pisidium sp.	5	32	2	4		2	1			2	48	0.5	100	198.8
Eupera bahiensis	9			9			9			9	36	0.4	100	149.1
Eupera sp	3	2	6	1	2	4	2	4	6	2	32	0.3	100	132.5
Anodontites traézialis	2						2			1	5	0.1	57.14	36.2
Hirudinea		2	3	19		4					28	0.3	100	115.9
Oligichaeta	42						225	24		42	333	3.5	100	1378.9
Conchistracea		2	2	32		6		145			187	2.0	100	774.3
Ostracoda	3	12	4	64	558	7	8		2	3	661	7.0	100	2737.1
Decapoda Pleocyemata	38	1	1	2		2	19	18		38	119	1.3	100	492.8
Amphipoda		3	4	3		2		48		26	86	0.9	100	356.1
Acrina	6	1	1	1		1					10	0.1	100	41.4
Colembola	1	17	2	1		1	2			1	25	0.3	100	103.5
Coleoptera Dysticidae	1	1	3	2	1	1	2		3	3	17	0.2	100	70.4
Coleoptera Hidrobiidae						2	2			2	6	0.1	57.1	43.5
Diptera (Chironomidae)	4	9	6	6		14	43	376		4	462	4.9	100	1913.0
Diptera (Culicidae)	13	2	1	1		1	8	129		13	155	1.6	100	641.8
Diptera	2	2	8	4		6	2	89		2	115	1.2	100	476.2
Odonata	6	5	1	32		2	6	65		6	123	1.3	100	509.3
Hemiptera	6		1	2		1	2			12	24	0.3	100	99.4
Nematoda	4	3	2	2	52	4	1		1	4	73	0.8	100	302.3
Total	1353	172	190	275	1862	1373	1267	1988	684	1000	9396			

O segundo grupo de organismos que mais se destacou nas coletas foi os crustáceos, corresponderam a 11% da macroinfauna do fundo, estando representados por 4 táxons, sendo o mais representativo os pertencentes à ordem e Ostracoda, com uma densidade média de 2.737 ind/m² e muito frequênte nas estações.

Os artrópodes se agruparam em nove táxons e 937 indivíduos, correspondendo a 10% dos organismos, os dípteros Chironomidae se destacaram com uma densidade média de 1.913 ind/m², muito frequentes nos pontos de coleta.

Os Annelida e Nematoda tiveram participação inferior aos demais grupos faunísticos, porém foram muito frequentes na área, os anelídeos oligoquetos foram os mais representativos com 1.379 ind/m^2 .

As coletas do fundo foram realizadas em 10 estações (Tabela 3.9) e mostraram uma relativa homogeneidade com relação ao número de táxons presentes, variando entre 28 e 31, o mesmo não ocorrendo com relação aos indivíduos.

As estações Q 34 e Q 47 foram as mais numerosas, destacando-se em ambas, o bivalve *Corbicula fluminea* e o gastrópode *Melanoides tuberculatus*, a espécie mais abundante (Figuras 3.34 e 3.35). Nestas estações a granulometria do sedimento identificou uma maior proporção de cascalho e areia média grossa.

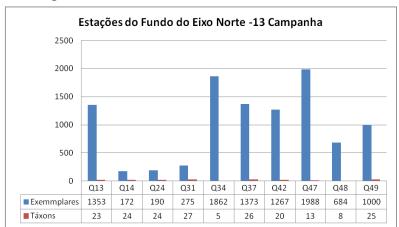


Figura 3.34: Exemplares nas estações do Fundo do Rio São Francisco e Bacias Hidrográficas do Nordeste Setentrional. Campanha 13ª - Eixo Norte, de outubro a dezembro de 2012.

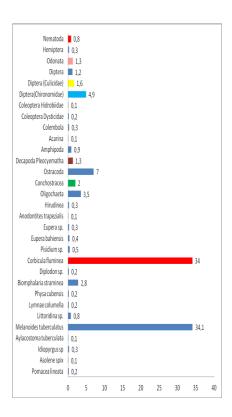


Figura 3.35: Abundância Relativa dos Táxons do Fundo das Bacias hidrográficas do Rio São Francisco do Eixo Norte, durante as coletas de outubro a dezembro de 2012.

Os macroinvertebrados coletados nos sedimentos das margens das Bacias Hidrográficas estudadas no eixo norte, são compostos de 25 táxons e 86.962 exemplares de Mollusca, Annelida, Crustacea, Arthropoda, e Nematoda (Tabelas 3.10 e 3.11, Figura 3.36).

Tabela 3.10: Macroinvertebrados das coletas do fundo do Rio São Francisco e Bacias Hidrográficas do Nordeste Setentrional. Campanha 13 - Eixo Norte, de outubro a dezembro de 2012. Arabundância relativa; Frequência relativa e ind/m²-densidade.

Campanha 13 Eixo Norte	Q03	Q13	Q14	Q23	Q24	Q25	Q26	Q27	Q29	Q30	Q31	Q32	Q33	Q34	Q35	Q36
Zoobentos da Margem	M13	M13	M13	M13	M13	M13	M13									
Pomacea lineata				3		4		3			2		3		4	
Asolene spixi	9	6	6	16	5	6	19	16	5	6	16	19	16	5	6	4
Drepanotrema depressissimu																
Aylacostoma sp.				12	2		17	12	2	15	26	17	12	2		
Melanoides tuberculatus	870	1204	213	253	187	27	1732	253	187	287	281	1732	253	187	27	84
Lymnaea columella										1438						
Hebantocylus moricand	4839	2743	2143	2372	1743	843	874	2372	1743	3985	638	874	2372	1743	843	241
Biomphalaria straminea	3	24	4			12	6			18	23	6			12	9
Diplodon sp.	693	872	543	328	452	264	173	328	452	1738	853	173	328	452	264	632
Corbicula fluminea			2				5				2	5				
Eupera bahiensis						3									3	2
Eupera sp.			3													
Pisidium sp.	54	36				6									6	17
Hirudinea							1				32	1				
Oligochaeta	2		2	2	32			2	32	2	5		2	32		
Conchostracea																
Ostracoda	58	42	53	37	21	34	23	37	21	57	36	23	37	21	34	73
Pleocyematha					34				34					34		
Amphipoda	86	74	173	11	4	9	32	11	4	632	23	32	11	4	9	16
Coleoptera Dysticidae				2		4	6	2			2	6	2		4	2
Diptera (Chironomidae)			2	4		3	5	4			2	5	4		3	4
Diptera (Culicidae)	86	74	12	6	2	6	2	6	2		3	2	6	2	6	8
Odonata				1	4			1	4	1			1	4		
Hemiptera	1684	2843	835	254	2163	943	4826	254	2163	1863	3982	4826	254	2163	943	643
Nematoda	321	473	216	213	124	125	254	213	124	274	213	254	213	124	125	42
Total	8705	8391	4207	3514	4773	2289	7975	3514	4773	10316	6139	7975	3514	4773	2289	1777

Tabela 3.11: Macroinvertebrados das coletas do fundo do Rio São Francisco e Bacias Hidrográficas do Nordeste Setentrional. Campanha 13 - Eixo Norte, de outubro a dezembro de 2012. Arabundância relativa; Frequência relativa e ind/m²-densidade.

Campanha 13 Eixo Norte	Q37	Q38	Q40	Q42	Q43	Q44	Q45	Q47	Q48	Q49	Q50				
Zoobentos da Margem	M13	M13	M13	M13	M13	M13	M13	M13	M13	M13	M13	Total	Ar%	Fr%	ind/m2
Pomacea lineata	0	0	0	0	0	1	16	1	() (0	77	23.7	72	23.69
Asolene spixi	36	9	5	19	6	7	0	6	() 4	- 6	88	27.1	72	27.8
Drepanotrema depressissimu	0	0	2	0	0	0	0	0	() (0	3	12.0	6	12
Aylacostoma sp.	0	0	0	27	15	0	0	0	() (2	1607	378.1	94	378.12
Melanoides tuberculatus	1836	870	0	376	287	0	4	0	(84	154	29168	6863.1	94	6863.06
Lymnaea columella	0	0	54	3421	1438	36	7	54	35	5 0	0	2	8.0	6	8.00
Hebantocylus moricand	3962	4839	53	685	3985	552	313	235	422	2 241	835	1	4.0	6	4.00
Biomphalaria straminea	59	3	0	6	18	0	0	0	() 9	4	7545	1775.3	94	1775.29
Diplodon sp.	385	693	47	652	1738	87	76	87	65	632	215	106	28.3	83	28.27
Corbicula fluminea	4	0	0	2	0	0	0	0	() (0	38287	9008.7	94	9008.71
Eupera bahiensis	0	0	553	0	0	24	35	54	54	1 2	2 0	4	16.0	6	16.00
Eupera sp.	32	0	0	3	0	0	0	0	() (0	1	4.0	6	4.00
Pisidium sp.	68	54	0	0	0	5	4	0	4	1 17	0	14	11.2	28	11.20
Hirudinea	4	0	3	0	0	16	3	8	11	1 (0	4	5.3	17	5.33
Oligochaeta	0	2	0	5	2	0	0	0	() (32	1441	339.1	94	339.06
Conchostracea	0	0	0	1	0	0	0	0	() (0	4	5.3	17	5.33
Ostracoda	385	58	0	128	57	4	6	2	(73	543	3648	810.7	100	810.67
Pleocyematha	0	0	4	5	0	5	4	5	1	1 (2	2	4.0	11	4.00
Amphipoda	43	86	0	163	632	0	0	0	(16	21	12	8.0	33	8.00
Coleoptera Dysticidae	0	0	0	2	0	0	0	0	() 2	2 0	19	19.0	22	19.00
Diptera (Chironomidae)	0	0	0	6	0	0	0	0	() 4	0	3966	1133.1	78	1133.14
Diptera (Culicidae)	32	86	0	23	0	1	3	6	(3 (3	320	142.2	50	142.22
Odonata	3	0	0	4	1	0	0	0	() (2	249	55.3	100	55.33
Hemiptera	2698	1684	76	2765	1863	64	53	47	76	643	2143	6	8.0	17	8.0
Nematoda	543	321	21	173	274	26	32	13	(42	125	388	155.2	56	155.20
Total	10090	8705	818	8466	10316	828	556	518	668	3 1777	4087	86962			

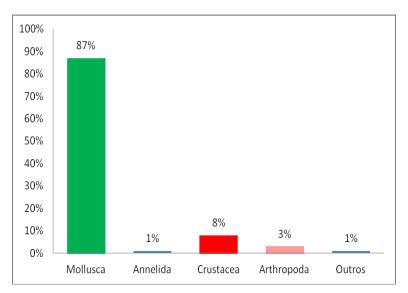


Figura 3.36: Composição do zoobentos da Margem das Bacias hidrográficas do Rio São Francisco do Eixo Norte, durante as coletas de outubro a dezembro de 2012.

Dentre os organismos encontrados nas coletas da margem os moluscos com 13 táxons e 76.903 exemplares (88%); foram os organismos dominantes na área estudada, destes, o bivalve *Corbicula fluminea* e o gastrópode *Melanoides tuberculatus*, ambos com maiores valores de abundância, frequência e densidade, respectivamente, foram os mais representativos nos pontos de coleta, com elevados valores de abundância, frequência e densidade, respectivamente, foram os mais representativos nos pontos de coleta.

Os outros representantes da fauna, juntos contabilizaram apenas 12%; os artrópodes distribuíram-se entre cinco táxons, e 4.560 indivíduos; as larvas de dípteros Chironomidae foram frequêntes nas coletas, mais numerosas que outros insetos com densidade média de 1.133,14 ind/m²d, a maior nesta categoria. O segundo grupo de insetos mais numerosos foram as larvas de dípteros Culicidae com 320 indivíduos e uma densidade média de 142,22 ind/m².

Os crustáceos foram o segundo grupo de macroinvertebrados aquáticos mais numerosos, 4% da fauna, apesar de apresentarem apenas quatro táxons; destacando-se os diminutos exemplares de ostrácodes com 3.648 exemplares e uma densidade média de 810,67 ind/m²; eles fora muito frequêntes nas estações.

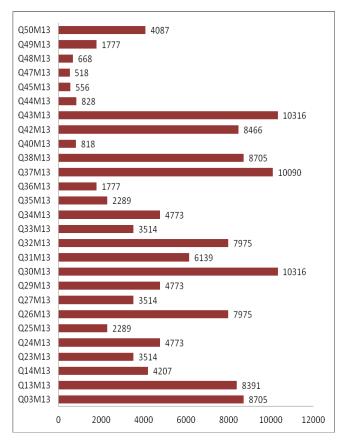


Figura 3.37: Representação do número de exemplares nas estações da Margem das bacias hidrográficas do Rio São Francisco, do eixo norte, durante as coletas de outubro a dezembro de 2012.

Diversidade e Equitabilidade dos Moluscos da Margem do Eixo Norte

A diversidade das espécies de moluscos nas estações da margem do eixo norte, foi considerada baixa e muito baixa, variando de 0,07 a 1,79 bits.ind-1. A menor riqueza de espécies e a dominância de duas delas, *Melanoides tuberculatus* e *Corbicula fluminea*, com grande abundância, em quase todas as estações, foram os fatores causadores. O mesmo ocorreu com os índices de equitabilidae que foi baixo em todas as estações, indicando que o ambiente, é heterogêneo e não está em equilíbrio, com poucas espécies e grande abundância de algumas dominando as demais. Nas estações Q13 e Q37 os valores de diversidade e equitabilidade foram um pouco mais elevados isto porque a abundância foi de apenas 37 indivíduos mais bem distribuídos entre as cinco espécies presentes nesta estação, destacando-se *Littoridina* sp. e *Diplodon* sp. com 49% e 30% dos exemplares, respectivamente (Figura 3.38).

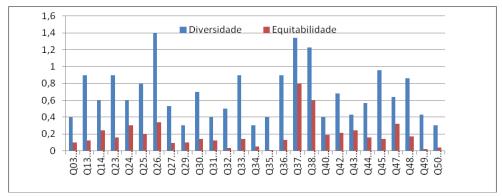


Figura 3.38: Diversidade (expressa em bits.ind⁻¹) e equitabilidade das espécies de moluscos presentes nas estações da Margem das bacias hidrográficas do Rio São Francisco, do eixo norte, durante as coletas de outubro a dezembro de 2012.

Zoobentos Associados às Macrófitas (Fital) - Eixo Norte

Os Mollusca, Annelida, Crustacea, Rotifera e Nematoda, caracterizaram a fauna associada às macrófitas através da presença de 20 táxons e 5.776 indivíduos (Tabela 3.12).

Tabela 3.12: Macroinvertebrados das coletas do Fital do Rio São Francisco e Bacias Hidrográficas do Nordeste Setentrional. Campanha 13 - Eixo Norte, de outubro a dezembro de 2012. Arabundância relativa; Frequência relativa e ind/m²-densidade.

Campanha 13 Eixo Norte	Q3Fi13	Q25Fi13	Q26Fi13	Q27Fi13	Q32Fi13	Q33Fi13	Q35Fi13	Q36Fi13	Q37Fi13	Q38Fi13	Q42Fi13	Q43Fi13	Q50Fi13				
Zoobentos do Fital	Fital	Fital	Fital	Fital	Fital	Fital	Fital	Fital	Fital	Fital	Fital	Fital	Fital	Total	AR %	Fr%	ind/m²
Pomacea lineata		4	2	1		1		2		2	2	2		33	0.6	67	22
Aylacostoma tuberculata				1							1			2	0.0	11	8
Aylacostoma sp.	4	28	7	3		2	6	4	6	4	6	6		115	2.0	56	92
Melanoides tuberculatus	6		2783				2	2	2	2	21			3355	58.1	89	1678
Hebetancylus moricandi							33		36					69	1.2	100	30.7
Biomphalaria straminea	36			348			85		85		2			577	10.0	100	256.4
Diplodon sp.						1								1	0.0	11	4
Corbicula fluminea	325	865	743	760	723	757	3	426	3	426	235	1326		129	2.2	89	64.5
Eupera sp.	3	3	4	4			5	3	5	3	239	8		22	0.4	33	29.3
Pisidium sp.	5	2					2	8	2	8	128		62	2	0.0	11	8
Oligochaeta	2	23	36	30	27	31	2	32	2	32	86			44	0.8	100	19.6
Ostracoda	2	46	9	10	5	867	12	5	12	68	6			1204	20.8	78	688.0
Amphipoda	12	16	4	2	3		32	4	32	4	35		17	23	0.4	100	10.2
Acarina	32	34	26	27	23	30		65		65	11	34		5	0.1	11	20
Collembola			3	3			257	4	257	4	4	9	326	18	0.3	100	8
Diptera (Chrironomidae)	257	253	138	126	144	139	1	8	1	8	239	327		54	0.9	100	24
Odonata	1						39	4	39	4			174	7	0.1	22	14
Hemiptera					12						4			16	0.3	78	9.1
Rotifera							1							1	0.0	11	4
Nematoda	2	26	48	38	55	41	1	9	1	9	5	36		99	1.7	78	56.6
Total	687	1300	3803	1353	992	1869	481	576	483	639	1024	1748	579	5776			

Os moluscos do fital, da mesma forma que nos ambientes do fundo e da margem, foram os de maior abundância (74%) e os de maior riqueza taxonômica (Figura 3.39). Os gastrópodes (83%) dominaram nas estações com as espécies *Melanoides tuberculatus*, a mais abundante e frequênte com uma densidade média de 1.677,5 ind/m², e *Biomphalaria straminea*. Os bivalves

(17%) se distribuíram em duas famílias, Corbiculidae e Pisididae com as espécies *Corbicula fluminea*, que obteve a maior densidade 64.4 ind/m².

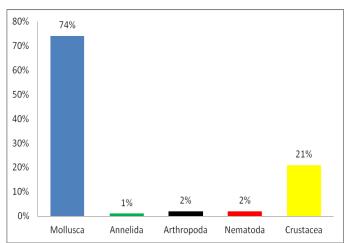


Figura 3.39: Composição do zoobentos do Fital das Bacias hidrográficas do Rio São Francisco do Eixo Norte, durante as coletas da 13ª campanha, de outubro a dezembro de 2012.

Os crustáceos com 1.227 exemplares representaram 21% dos macroinvertebrados associados às macrófitas, destacando-se os ostrácodes com 1.204 indivíduos e densidade média de 688 ind/m^2 .

Os organismos restantes, anelídeos, artrópodes, rotíferos e nematoides, não foram representativos.

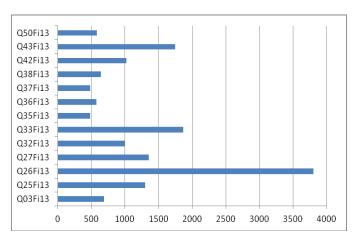


Figura 3.40 Número de indivíduos nos pontos de coleta do zoobentos associados às macrófitas nas bacias hidrográficas do Nordeste Setentrional, do eixo norte, nos meses de julho a outubro de 2012.

Zoobentos do Fundo - Eixo Leste

O Zoobentos coletado nos sedimentos do fundo do Rio São Francisco e das Bacias Hidrográficas do Nordeste Setentrional, no eixo leste, esteve composto pelos representantes de

Porifera, Mollusca, Annelida, Crustacea, Arthropoda, Rotifera e Nematoda reunidos em 34 táxons e 9.725 indivíduos (Tabela 3.13, Figura 3.41).

Tabela 3.13: Zoobentos das coletas do Fundo do Rio São Francisco e Bacias Hidrográficas do Nordeste Setentrional. Campanha 13 - Eixo Leste, de outubro a dezembro de 2012. Ar-abundância relativa; Frequência relativa e ind/m²-densidade.

Campanha 13 Eixo Leste	Q1	Q54	Q81	Q84	Q86				
Zoobentos do Fundo	F13	F13	F13	F13	F13	Total	AR %	Fr %	ind/m ²
Espongilidae		1	2	2	4	9	0.1	80	65
Pomacea lineata	3	5	4	26	6	44	0.5	100	255
Asolene spixil	2	10	1	1	1	15	0.2	100	87
Idiopyrgus sp.		1			1	2	0.0	20	58
Aylacostoma tuberculata	1			2	3	6	0.1	20	174
Aylacostoma sp.				424	1	425	4.4	100	2464
Melanoides tuberculatus	5	3	21	2014	40	2083	21.4	100	12075
Physa cubensis		2	6		30	38	0.4	100	220
Drepanotrema depressissimu	3	1	1	15	20	40	0.4	80	290
Biomphalaria straminea	1	5	462	83	2	553	5.7	100	3206
Biomphalaria glabrata			1	2		3	0.0	20	87
Diplodon sp.	30		4			34	0.3	100	197
Corbicula fluminea	3		3051	16	9	3079	31.7	100	17849
Pisidium sp.	3		3	47	8	61	0.6	100	354
Eupera bahiensis	4		12	73	16	105	1.1	100	609
Eupera sp.	3		10	1	2	16	0.2	100	93
Anodontites trapezialis	2	2	2	5	2	13	0.1	60	126
Hirudinea	3	1	2	9	13	28	0.3	100	162
Oligochaeta	70	4	23	102	9	208	2.1	100	1206
Conchostracea	55	11		33	10	109	1.1	100	632
Ostracoda		1239	4	3	7	1253	12.9	100	7264
Decapoda Pleocyematha	35	5	86	2	52	180	1.9	100	1043
Amphipoda	68	15	1	4	21	109	1.1	100	632
Acarina	3		1	2	2	8	0.1	60	77
Collembola	4	3	2	3	1	13	0.1	20	377
Coleoptera Dysticidae	3	2	8	2	1	16	0.2	80	116
Coleoptera Hidrobiidae	4	2		1	9	16	0.2	60	155
Diptera (Chironomidae)	40	245	68	278	34	665	6.8	100	3855
Diptera (Culicidae)	5	34	363	4	7	413	4.2	100	2394
Diptera	4	2	6	1	2	15	0.2	80	109
Odonata	1	59	2	2	2	66	0.7	100	383
Hemiptera	5	5	17	5	1	33	0.3	100	191
Rorifera				1		1	0.0	20	29
Nematoda	22	1657	4163	8	36	66	0.7	100	383
Total	382	1657	4163	3171	352	9725			

Dentre os grupos faunísticos encontrados, os moluscos foram os mais abundantes, frequentes e os que tiveram as maiores densidades, eles representaram 67% dos macroinvertebrados com seus 6.517 exemplares, além de mostrarem a maior riqueza da fauna com 16 táxons. As duas classes Gastropoda e Bivalvia quase que se uniformizaram em número de indivíduos, ressaltando que, esta grande quantidade deve-se ao fato de que há sempre duas espécies que dominam o ambiente. Os bivalves com seis espécies e 3.308 exemplares, foram representados principalmente por *Corbicula fluminea*, dominante (93%) em todas as coletas do fundo. A espécie *Anodontites trapeziales*, que apesar de ser comestível está sedo pouco

encontrada na área, ocorreu em pequenas quantidades nas estações foi encontrada Q68,Q73 e Q78, as quais o fundo predominante são os cascalhosos.

Os gastrópodes com 10 espécies e 3.209 exemplares destacaram-se dos outros organismos através da espécie *Melanoides tuberculatus*, comum em todas as estações com densidade média de 12.075 ind/m2.

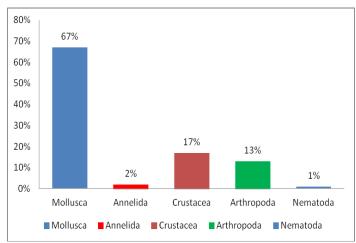


Figura 3.41: Composição do zoobentos do Fundo das Bacias hidrográficas do Rio São Francisco do Eixo Leste, durante as coletas da 13º campanha, de outubro a setembro de 2012.

Com quatro táxons e 1.651 (17%) exemplares, os crustáceos foram representados por Conchostraca, ostrácodes, camarões Pleocyematha e os anfípodes, todos comuns nos sedimentos do fundo e de pequenas dimensões. Dentre esses, os ostrácodes apresentaram a maior densidade média da comunidade carcinológica do fundo com 7.264 ind/m².

O terceiro grupo de organismos presentes no fundo foram os artrópodes, constituídos por nove táxons, oito deles são insetos aquáticos e larvas de insetos, e 1.245 indivíduos (13%). Os dípteros foram os mais abundantes dentre dos artrópodes, especialmente os representantes da família Chironomidae que contabilizou a maior densidade média com 3.855 ind/m², seguido dos membros de Culicidae com 2.394 ind/m².

Os demais componentes da fauna estiveram pouco representados, considerados como raros, devido a participação inferior a 10% nos pontos de coleta do fundo.

As coletas do fundo foram efetuadas em apenas cinco estações, (Tabela 3.13). Observa-se que duas estações foram mais numerosas Q81 e Q84. Em ambas ocorreram 28 táxons, onde os moluscos *Corbicula fluminea* e *Melanoides tuberculatus* foram os mais abundantes. Nestas estações o sedimento predominante foi areia grossa.

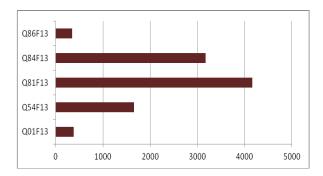


Figura 3.42: Exemplares nas estações do Fundo do Rio São Francisco e Bacias Hidrográficas do Nordeste Setentrional. Campanha 13 - Eixo Leste, de outubro a dezembro de 2012.

Zoobentos do Margem - Eixo Leste

A comunidade bêntica habitante das margens dos rios e reservatórios da área estudada esteve bem representada em número de exemplares, foram coletados 97.623 organismos e 29 táxons, pertencentes aos Mollusca, Annelida, Crustacea , Arthropoda e Nematoda (Tabela 3.14, Figura 3.43).

A maior riqueza da fauna foi encontrada nos moluscos que distribuíram-se entre 16 táxons e uma grande quantidade de exemplares totalizando 87.774 indivíduos e com estes valores, correspondeu a 90% dos organismos presentes nas margens amostradas. Quatro espécies se destacaram pela grande quantidade de exemplares presentes em quase todas as estações, são as exóticas *Melanoides tuberculatus* com 50.631 exemplares, *Corbicula fluminea* com 22.555, *Biomphalaria straminea com* 8.193 e *Aylacostomata* sp. com 5.240. A espécie *M. tuberculatus* foi a mais numerosa, frequente e com a maior densidade média, 15.579 ind/m². O mesmo ocorreu com o bivalve C. fluminea com 7.518 ind/m².

Tabela 3.14: Zoobentos coletados nas estações da Margem das bacias hidrográficas do Nordeste Setentrional. Campanha 13^a - Eixo Leste, de outubro a dezembro de 2012. Ar-abundância relativa; Frequência relativa e ind/m²-densidade.

Campanha 13 Eixo Leste	Q1M13	Q54M13	Q78M13	Q79M13	Q81M13	Q82M13	Q85M13	Q86M13				
Zoobentos da Margem	Margem	Margem	Margem	Margem	Margem	Margem	Margem	Margem	Total	AR %	Fr %	ind/m ²
Pomacea lineata			2	2	5	3	4	170	186	0.19	100,00	57
Asolene spixi	8	1	3	5	3	1		5	26	0.03	54,00	15
Idiopyrgus sp.	2		7		2				11	0.01	23,00	15
Aylacostomata sp.	32	50	586	139	100	300	56	3977	5240	5.37	92,00	1747
Melanoides tuberculatus	690	1500	3856	4738	3241	2897	374	700	50631	51.86	100,00	15579
Lymnea columnella		4			5				9	0.01	15,00	18
Physa cubensis			3		2			5	10	0.01	15,00	20
Diplodon sp.		1	5	10		21		31	68	0.07	92,00	23
Biomphalaria straminea		5956	632	91	234	198	532	550	8193	8.39	100,00	2521
Biomphalaria glabrata			6		7				13	0.01	8,00	52
Corbicula fluminea	600	13197	2045	37	678	5324	674		22555	23.10	92,00	7518
Eupera bahiensis			6	42	2	5	3	179	237	0.24	100,00	73
Eupera sp.	2	4	3	3	109	1	5		127	0.13	85,00	46
Eupera klappenbacki				1	1		3		5	0.01	15,00	10
Pisidium sp.	10	273	20		22	45	4	10	384	0.39	69,00	171
Anodontites trapezialis		2	7	8		1	61		79	0.08	85,00	29
Hirudinea					3				3	0.00	8,00	12
Oligochaeta	1386	4	221	89	400	198	17	8	2323	2.38	100,00	715
Conchostraca		8	19	20	5	32		46	130	0.13	77,00	52
Ostracoda	200		589	1847	35		84	57	2812	2.88	62,00	1406
Decapoda Pleocyematha		1		7			11		19	0.02	38,00	15.2
Amphipoda		1	6	3		11	49		70	0,07	100,00	22
Coleoptera Dytiscidae			1		6		1		8	0.01	23,00	11
Coleoptera Hidrobiidae			1	12		7		4	24	0.02	54,00	14
Diptera (Chironomidae)	167	33	666	763	1716	500	83		3928	4.02	85,00	1428
Diptera (Culicidae)	22	10	43	55	33	12	110	20	305	0.31	77,00	122
Odonata			4		49		3	5	61	0.06	31,00	61
Hemiptera	1	10		9	3	1		5	29	0.03	62,00	15
Nematoda	9	18	28	43	8	6	13	12	137	0.14	85,00	50
Total	3129	21073	8759	7924	6669	9563	2087	5784	97623			

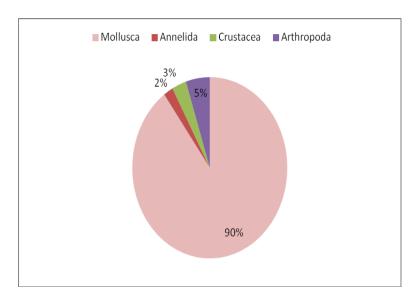


Figura 3.43: Composição do zoobentos da Margem das Bacias hidrográficas do Rio São Francisco do Eixo Leste, durante as coletas da 13º campanha, de de outubro a dezembro de 2012.

Os artrópodes foram o segundo grupo da fauna bênticas mais numeroso com 4.355 exemplares e 6 táxons, destacando-se os insetos Chironomidae com densidade média de 1.428

ind/m². Os artrópodes estiveram constituídos por quatro táxons e 3.031 indivíduos. Os crustáceos estiveram representados por quatro táxons, sendo os Ostracoda muito frequêntes nos pontos de coletas com uma densidade média de 1.406 ind/m². Os Annelida e Nematoda foram pouco representativos nos pontos da margem.

Foram realizadas coletas em 8 estações, todas com grande quantidade de organismos, destacando-se Q 54, 79, 78 e 82 respectivamente (Figura 3.44). Nessas quatro estações o sedimento continha uma fração maior de sedimentos grossos como o cascalho.

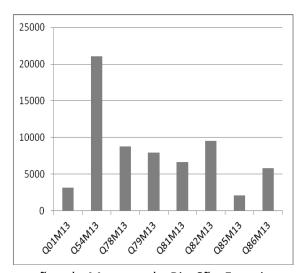


Figura 3.44: Exemplares nas estações da Margem do Rio São Francisco e Bacias Hidrográficas do Nordeste Setentrional. Campanha 13ª - Eixo Leste, de agosto a setembro de 2012.

Zoobentos Associados às Macrófitas (Fital) - Eixo Leste

Os Macroinvertebrados associados às macrófitas distribuíram-se entre os Mollusca, Annelida, Crustacea, Arthropoda, Nematoda e Peixes, com um total de 18 táxons e 8.116 indivíduos coletados em 4 estações (Tabela 3.15 e Figura 3.45).

Da mesma forma que nos ambientes anteriores, no ecossistema das macrófitas os moluscos também foram os dominantes com 73% do total da fauna para esta área amostrada o que corresponde a 5.922 indivíduos entre os nove táxons todos pertencentes aos gastrópodes. Algumas espécies estiveram bem representadas como *Melanoides tuberculatus* com 4.242,4 ind/m², *Hebatancylus morricandi*, 192 ind/m², e *Biomphalaria straminea*, 180,8ind/m², de densidade média.

Tabela 3.15: Zoobentos coletados nas estações do Fital das bacias hidrográficas do Nordeste Setentrional. Campanha 13ª - Eixo Leste, de outubro a dezembro de 2012. Ar-abundância relativa; Frequência relativa e ind/m²-densidade.

Campanha 13 Eixo Leste	Q1Fi13	Q79Fi13	Q85Fi13	Q86Fi13				
Zoobentos do Fital	Fital	Fital	Fital	Fital	Total	AR %	Fr %	ind/m ²
Pomacea lineata	1	1	1	9	12	0.1	56	9.6
Asolene spixi		5		4	9	0.1	56	7.2
Littoridina sp.	5		20	25	50	0.6	67	40
Melanoides tuberculatus	345	502	3400	890	5137	65.3	100	4242
Idiopyrgus sp.		7		3	10	0,12		
Physa cubensis		9		1	2	0.0	11	1.6
Littoridina sp.	40	36	62	32	170	2,09		
Ancylus sp.		5			5	0.1	22	4
Hebetancylus moricandi	67	58	17	45	240	3,00	89	192
Biomphalaria glabrata	162		4	60	226	2.8	67	181
Biomphalaria straminea	2	26	19	28	75	0.9	89	60
Oligochaeta	8	116	59	66	249	3.1	67	199
Ostracoda	6	371	123	3	503	62.0	100	402
Amphipoda	3	5			8	0.1	33	6.4
Collembola	4	23	5	5	37	0.5	67	29.6
Coleoptera Dytiscidae	6	6	10	8	30	0.4	100	24
Diptera (Chironomidae)	150	597	169	401	1317	162.0	67	11.2
Odonata	8	2	22	2	34	0.4	33	27.2
Nematoda	1	1769	1	1582	2	0.0	22	1.6
Total	808	3538	3912	3164	8116			

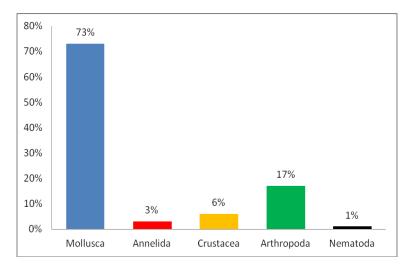


Figura 3.45: Exemplares do zoobentos do fital do Rio São Francisco e Bacias Hidrográficas do Nordeste Setentrional. Campanha 13^a - Eixo Leste, de outubro a dezembro de 2012.

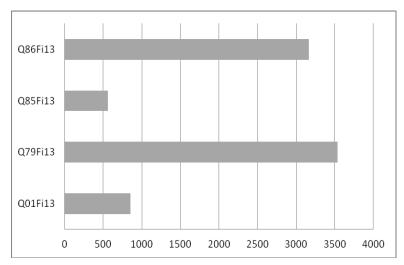


Figura 3.46: Exemplares nas estações do Fital do Rio São Francisco e Bacias Hidrográficas do Nordeste Setentrional. Campanha 13ª - Eixo Leste, Outubro a dezembro de 2012.

Os artrópodes com participação relativa de 17% estiveram representados pelos insetos com quatro táxons. Os pertencentes à família Chironomidae foram os mais numerosos, com densidade média na área de 1.053 ind/m².

Os crustáceos foram pouco representativos com apenas dois táxons, Ostracoda e Amphioida, com poucos exemplares assim como os demais representantes da fauna.

Composição do Zoobentos das Estações da Margem, do Fundo e do Fital, dos Eixos Norte e Leste da 14º Campanha

1.3.1. Zoobentos do Fundo-Eixo Norte

A fauna bêntica coletada nas estações do fundo das bacias hidrográficas estudadas, no eixo norte, durante os meses de janeiro a março de 2013, esteve constituída de sete grupos faunísticos representados por 40 táxons e 29.802 indivíduos, pertencentes a Porífera, Mollusca, Annelida, Crustacea, Arthropoda, Rotifera e Nematoda (Figura 3.47, Tabela 3.16).

Dentre os organismos encontrados no fundo, os moluscos representaram 87% da fauna coletada nas estações do fundo do eixo norte, com 12.538 exemplares e 21 espécies. Os bivalves com sete espécies, foram pouco mais numerosos que os gastrópodes, destacando-se a espécie *Corbicula* sp., abundante nas coletas, representando 45.8% de todos os táxons encontrados e com a maior densidade média, 7,62 ind/cm².

Outros bivalves mais representativos foram as espécies *Anodontites trapesialis* e *Eupera klappenbachi*. Os gastrópodes, apesar de se mostrarem menos numerosos que os bivalves, se

destacaram com 14 espécies, especialmente *Melanoides tuberculatus* com 26% de toda a fauna, com densidade média de 4,33 ind/cm², salientando-se também as espécies *Biomphalaria glabrata*, *Aylacostomata* sp., *Aylacostoma tuberculata* e *Littoridina* sp., a maioria muito frequente nos pontos de coleta.

Os artrópodes constituíram 8% da fauna e se agruparam em dez táxons e 4.254 indivíduos, os dípteros Culicidae se destacaram com uma densidade média de 10.526 ind/m² e muito frequentes nos pontos de coleta. Os crustáceos estiveram presentes com 4 táxons e 4% dos exemplares, muito frequentes nas estações. Os Decapoda Pleocyemata foram os com maior densidade média com 4.564 ind/m². Em segundo lugar vieram os Ostracoda, com uma densidade média de 1.527 ind/m² e muito frequênte nas estações.

Tabela 3.16: Macroinvertebrados das coletas do fundo do Rio São Francisco e Bacias Hidrográficas do Nordeste Setentrional. Campanha 14ª - Eixo Norte, em janeiro a março de 2013. Ar-abundância relativa; Frequência relativa e ind/m²-densidade.

Capanah 14 Eixo Norte	Q13F11	Q14F11	Q31F11	Q37F11	Q40M11	Q42F11	Q47F11	Q48F11	Q49F11				
Zoobentos do Fundo	Fundo	Fundo	Fundo	Fundo	Margem	Fundo	Fundo	Fundo	Fundo	Total	AR%	Fr %	ind/m2
Espongilidae	14	14	32	32	4	6			14	116	0,20	100,00	277
Pomacea lineata	26	26	62	62	4	12	2		26	220	0,30	89,00	554
Asolene spixi	5	5	2	2	12		2		5	33	0,10	56,00	4,46
ldiopyrgus sp.	1	2	2	4	2	1	3	2	3	20	0,00	100,00	68
Aylacostoma tuberculata		206	306	1				306		819	1,60	44,00	50,35
Aylacostomata sp.	284	284	3857	3857	15	274			284	8855	3,80	100,00	6361
Melanoides tuberculatus	104	104	4	4	63	873	326	13	104	1595	26,00	100,00	433,11
Littoridina sp.	2	2	2	2	9	2	2		2	23	1,60	100,00	26,12
Lymnaea columella		2	2	8		0	2	6		20	0,00	5,60	116
Physa cubensis	6	0	5	2	6	5	2	5	2	33	0,10	8,90	120
Drepanotrema depressissimu		2	2	2					2	8	0,00	44,00	58
Biomphalaria straminea	5	5	12	12		6	4		5	49	0,10	100,00	138
Biomphalaria glabrata	84	84	8	8	1	16	14		84	299	5,80	100,00	9675
Ancylus sp.			2							2	0,00	11,00	58
Hebetancylus moricandi			3	3	1					7	0,00	22,00	58
Diplodon sp.	3	3	2	2	1		3		3	17	0,00	44,00	87
Corbicula fluminea	26	26	1863	1863	156	2	8	189	26	4159	0,20	78,00	335
Corbicula sp.	1739	1739				2804			1739	8021	45,80	100,00	76206
Pisidium sp.											0,20	100,00	251
Eupera klappenbachi	42	42			6	12			42	144	0,40	89,00	815
Eupera sp.			32	32	6		14			84	0,00	11,00	29
Anodontites trapesialis	38	38	2	2		19	1		38	138	0,60	100,00	931
Hirudinea			3	3	2		2			10	0,00	22,00	43
Oligochaeta	6	6	79	79	6	5	28		6	215	0,10	89,00	127
Conchostraca	28	28	16	16	3	26	16		28	161	0,50	100,00	844
Ostracoda	8	8	38	38	6	108	62	47	8	323	0,90		1527
Decapoda Pleocyematha	16	16	4	4	6	396	14		16	472	2,70	100,00	4564
Amphipoda	4	4	6	6	1	43	8		4	76	0,30	89,00	591
Acarina	13	13	1	1	6	8	1		13	56	0,10	100,00	248
Collembola	2	2	4	4	1	2	2		2	19	0,00	100,00	55
Coleoptera Dytiscidae	6	6	32	32	6	6	2		6	96	0,10	89,00	272
Coleoptera Hidrobiidae	12	12	6	6	7	4			12	59	0,20	100,00	267
Diptera (Chironomidae)	4	4	159	159	56	1	42	16	4	445	0,10	100,00	97
Diptera (Culicidae)	423	423	86	86	26	382	26		423	1875	4,90	78,00	10526
Diptera	169	169	32	32		128	8		169	707	1,80	100,00	3018
Odonata	32	32	48	48	9	25	16		32	242	0,40	89,00	750
Orthoptera	46	46			6	19			46	163	0,50	100,00	902
Hemiptera	3	3	8	8	1		2	3	3	31	0,00	22,00	87
Rotifera	6	6				6			6	24	0,10	67,00	179
Pisces	54	54				4			54	166	0,30	100,00	512
	3211	3416	6722	6420	428	5195	612	587	3211	29802			

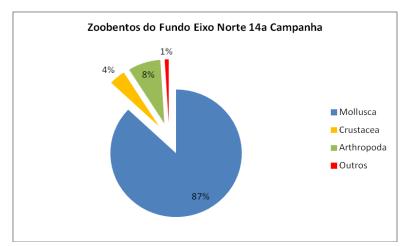


Figura 3.47: Composição do zoobentos do Fundo das Bacias hidrográficas do Rio São Francisco do Eixo Norte, durante as coletas da 14º campanha, em janeiro a março de 2013.

Os grupos restantes tiveram uma pequena participação na área estudada contabilizando apenas 1%, encontram-se nesta categoria os Porifera, Annelida, Rotifera e Peixe.

As coletas foram efetuadas em nove pontos ou estações, sendo determinada a granulometria e a matéria orgânica do sedimento, sendo observado que, nas estações onde houve o predomínio das frações areia média, areia grossa e cascalho foram encontrados a maioria dos macroinvertebrados em proporções semelhantes, sendo que, 26% de organismos, nas estações com areia grossa, 25% no cascalho, em ambos houve predominância de bivalves e 24% na areia média (Figura 3.48) com predominância dos gastrópodes.

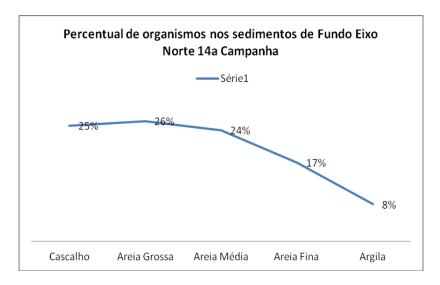


Figura 3.48: Percentual de organismo presentes na granulometria nas estações do Fundo do Rio São Francisco e Bacias Hidrográficas do Nordeste Setentrional. Campanha 14ª - Eixo Norte, em janeiro a março de 2013.

A menor quantidade de macroinvertebrados, a maioria pertencente aos bivalves principalmente a espécie *Corbicula* sp. e insetos, foi constatada onde houve predomínio das frações areia fina, 17% e argila com 8%.

1.3.2. Zoobentos da Margem-Eixo Norte

Os sedimentos das margens das Bacias Hidrográficas estudadas no eixo norte, estiveram povoados por animais agrupados em de 29 táxons e 130.725 exemplares de Porifera, Mollusca, Annelida, Crustacea, Arthropoda, Rotifera e Peixe (Tabela 3.17, Figura 3.49).

Tabela 3.17: Macroinvertebrados nas coletas da Margem do Rio São Francisco e Bacias Hidrográficas do Nordeste Setentrional. Campanha 14ª - Eixo Norte, em janeiro a março de 2013. Ar-abundância relativa; Frequência relativa e ind/m²-densidade.

Campanah 14 Eixo Norte	Q13M14	Q14M14	Q23M14	Q24M14	Q25M14	Q26M14	Q27M14	Q28M14	Q29M14	Q30M14	Q31M14	Q32M14	Q33M14	Q34M14	Q35M14
Zoobentos da Margem	Margem	Margem	Margem	Margem	Margem	Margem	Margem	Margem	Margem	Margem	Margem	Margem	Margem	Margem	Margem
Espongilidae															
Pomacea lineata			3		4		3				2		3		4
Aylacostoma tuberculata	6	6	16	5	6	19	16		5	6	16	19	16	5	6
Aylacostoma sp.															
Melanoides tuberculatus			12	2		17	12	179	2	15	26	17	12	2	
Drepanotrema depressissimu	1204	213	253	187	27	1732	253	1	187	287	281	1732			
Biomphalaria straminea										1438					
Biomphalaria glabrata	2743	2143	2372	1743	843	874	2372		1743	3985	638	874			
Diplodon sp.															
Corbicula fluminea	24	4			12	6				18	23	6			3
Corbicula sp.	872	543	328	452	264	173	328	6	452	1738	853	173			
Pisidium sp.		2				5					2	5			
Eupera bahiensis					3										
Anodontines trapesialis		3													
Hirudinea	36				6										1
Conchostraca						1					32	1			
Ostracoda		2	2	32			2		32	2	5		2	32	
Pleocyematha															
Amphipoda	42	53	37	21	34	23	37		21	57	36	23			10
Acarina				34				4	34					34	
Coleoptera dytiscidae	74	173	11	4	9	32	11		4	632	23	32		50	50
Coleoptera hidrobiidae			2		4	6	2				2	6	2		4
Diptera(chironomidae)		2	4		3	5	4	8			2	5	4		3
Diptera(culicidae)	74	12	6	2	6	2	6		2		3	2	6	2	6
Diptera			1	4			1		4	1			1	4	
Odonata	2843	835	254	2163	943	4826	254	2	2163	1863	3982	4826	254	2163	943
Orthoptera	473	216	213	124	125	254	213		124	274	213	254	213	124	125
Rotifera	37	86	4	2	63		4	1	2	327			4	2	63
Peixes					80						19				
	8428	4293	3518	4775	2432	7975	3518	201	4775	10643	6158	7975	517	2418	1218

Tabela 3.17: (Continuação). Macroinvertebrados nas coletas da Margem do Rio São Francisco e Bacias Hidrográficas do Nordeste Setentrional. Campanha 14^a - Eixo Norte, em janeiro a março de 2013. Ar-abundância relativa; Frequência relativa e ind/m²-densidade.

Q36M14	Q37M14	Q38M14	Q40M14	Q41M14	Q42M14	Q43M14	Q44M14	Q45M14	Q47M14	Q48M14	Q49M14	Q50M14				
Margem	Total	AR %	Fr%	ind/m2												
			1			5	6						12	0.01	5,00	48
					240		2	1					250	0.19	100,00	50
4	8	1						4000	1	10000	4	6	14051	10.75	100,00	2810
			5	4		4850							4859	3.72	10,00	9718
					27	15	26		42819			2	42903	32.82	100,00	8581
			32		50	50							132	0.10	50,00	52.8
			120		20	8	1000	10000	300	19	1		11468	8.77	100,00	2294
	12			12									24	0.02	35,00	14
		100		100		62							262	0.20	80,00	65.5
	2												5	0.00	10,00	
							20		50				70	0.05	20,00	70
	4		3	1	2	30	2						42	0.03	25,00	33.6
										402	2		404	0.31	60,00	134.7
	32			4	3	80							119	0.09	60,00	39.7
													1	0.00	5,00	4
	4		18			2000	32		39	6			2099	1.61	100,00	419.8
		2			5	2						32	75	0.06	20,00	75
	1000		1	2	1		600						1604	1.23	100,00	320.8
9		1		5			1						26	0.02	40,00	13
												1	35	0.03	45,00	15.6
	1	1	200			200							502	0.38	95,00	105.7
2			1		2		2			89	2	102	23	0.02	45,00	10.2
4					6		2				4		44465	34.01	100,00	8893
8	32	86	1	74	23		3				8	3	5366	4.10	100,00	1073
	3		3		4	1						2	978	0.75	85,00	230.1
643	2698	1684	84	2843	2765	1863	3982	10		21	643	2143	6	0.0	10,00	12
42	543	321	16	473	173	274	213				42	125	627	0.48	100,00	125.4
26	45	76		37	73	327					26	32	202	0.15	95,00	42.5
					4							2	115	0.09	40,00	57.5
738	4384	2272	485	3555	3398	4657	5891	14011	43209	10537	732	2450	130725			

Dentre os sete grupos faunísticos, os moluscos, artrópodes e crustáceos foram os mais abundantes e diversificados, principalmente os moluscos com 13 táxons e 74.589 exemplares, 57% (Figuras 3.48 e 3.49). Os gastrópodes dominaram o ambiente da margem principalmente pela presença de três espécies presentes nas 20 estações amostradas, *Melanoides tuberculatus*, *Aylacostoma tuberculata* e *Biomphalaria straminea*; dentre estas, a primeira obteve a maior densidade média 858,06 ind/cm².

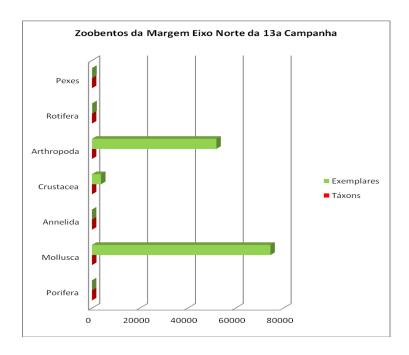


Figura 3.49: Exemplares e táxons do Fundo das Bacias hidrográficas do Rio São Francisco, do Eixo Norte, durante as coletas de janeiro a março de 2013.

Os artrópodes foram o segundo grupo de organismos mais influentes na área, totalizando 52.002 (40%) e oito táxons (Figura 3.50). As larvas dos insetos dípteros Chironomidae e Culicidae destacaram-se pela presença em todos os pontos de coleta, sendo muito frequentes e as mais numerosas quando comparadas com outros insetos presentes na área estudada, com densidades médias de 889,30 e 107,32 ind/cm², respectivamente. Também se pode mencionar outros dípteros, ortópteros e coleópteros (Dysticidae). Poucos exemplares de esponjas e anelídeos foram encontrados, assim como rotíferos e pequenos peixes, que juntos representaram apenas 3% da fauna habitante da margem do eixo norte das bacias hidrográficas estudadas.

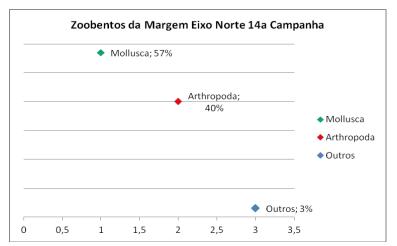


Figura 3.50: Porcentagem do Zoobentos do Fundo das Bacias hidrográficas do Rio São Francisco, do Eixo Norte, durante as coletas de janeiro a março de 2013.

Nas margens dos rios estudados, foram efetuadas coletas em 28 estações, sete delas, os sedimentos foram constituídos principalmente da fração cascalho com 46% dos organismos encontrados sobre estes sedimentos (Figura 3.51). A estação Q25, foi a mais diversificada com 10 moluscos, com destaque para *Aylacostomata* sp. (3.421 exemplares), um anelídeo, 4 crustáceos, 8 artrópodes, dentre eles os 2.765 exemplares de Diptera Chironomidae, um rotífero e um peixe.

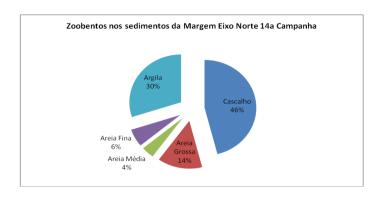


Figura 3.51: Porcentagem do Zoobentos da Margem das Bacias hidrográficas do Rio São Francisco, do Eixo Norte, durante as coletas de janeiro a março de 2013.

Os sedimentos argilosos ou mesmo aqueles cuja fração principal foi a Argila estiveram presentes em cinco estações e reuniram 26% dos organismos. A estação Q43 foi a que apresentou o maior número de indivíduos de todas as estações da margem, devido especialmente a aos moluscos gastrópodes representados principalmente por *Melanoides tuberculatus*. Os artrópodes também foram os mais abundantes neste sedimento, destacando-se os quironomídeos.

1.3.3. Zoobentos do Fital-Eixo Norte

Os organismos encontrados em associação com as macrófitas na área estudada estiveram representados por 42 táxons e 15.659 indivíduos distribuídos nos seguintes grupos: Platyhelminthes, Porífera, Mollusca, Annelida, Crustacea, Arthropoda, Rotifera e Peixes (Tabela 3.18, Figura 3.52).

Os moluscos que vivem sobre as macrófitas, ambiente fital, igualmente aos que habitam outros ambientes das bacias hidrográficas estudadas, foram os dominantes com abundância relativa (73%) e maior riqueza taxonômica. Os gastrópodes superaram numericamente os bivalves, com 96% de abundância nas coletas, destacando-se as espécies *Aylacostomata* sp., *Melanoides*

tuberculatus e Diplodon sp. Estas espécies foram consideradas muito frequêntes no fital, a maior densidade média 129,6 ind/cm² entre elas foi encontrada em Aylacostomata sp.

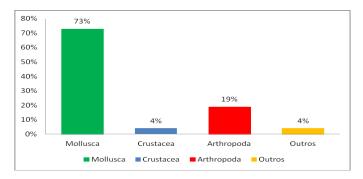


Figura 3.52: Composição do zoobentos do Fital das Bacias hidrográficas do Rio São Francisco do Eixo Norte, durante as coletas da 14ª campanha, janeiro a março de 2013.

Os artrópodes tiveram uma participação de 19% nas coletas, estiveram divididos em oito táxons, os insetos, coleópteros Hidrobiidae e o Chironomidae foram os mais numerosos e frequentes.

Os crustáceos tiveram uma pequena participação nas coletas, 4%, com 4 táxons, e juntos uma densidade de 230 ind/cm². Os organismos restantes, platelmintos, esponjas, anelídeos, rotíferos e peixes, foram pouco representativos, todos jutos com apenas 4% de participação nas coletas. Dentre estes organismos, os anelídeos, representados pelos hirudíneos e oligoquetos foram os mais numerosos.

As coletas do fital foram realizadas em 10 estações, a Q37 foi a mai diversificada com 36 táxons e a Q43 com maior densidade da fauna, com 1031.2 ind/cm².

Tabela 3.18: Macroinvertebrados das coletas do Fital do Rio São Francisco e Bacias Hidrográficas do Nordeste Setentrional. Campanha 14^a - Eixo Norte, em janeiro a março de 2013. Arabundância relativa; Frequência relativa e ind/cm²-densidade.

Campanha 14 Eixo Norte	Q23Fi11	Q25Fi11	Q26Fi11	Q27Fi11	Q32Fi11	Q33Fi11	Q35Fi11	O36Fi11	∩38Fi11	Q42Fi11	Q43Fi11	Q44Fi11	Q45Fi11				
Zoobentos do Fital	Fital	Fital	Fital	Fital	Fital	Fital	Fital	Fital	Fital	Fital	Fital	Fital	Fital	Total	AR %	Fr %	ind/m2
Turbellana		4		2	40	2		1	1	1	4			55	0.35	60	2.2
Espongilidae	3	16		14		14	4	32	15	14		2		114	0.73	90	4.6
Pomacea lineata	16		19							50	2			87	0.56	70	3.5
Asoleni spixi							4		4					8	0.05	20	0.3
ldiopyrgus sp.	12		17		17		35	50				26		157	1.00	70	6.3
Aylacosfoma fuberculata	100			7						1	500			608	3.88	70	24.3
Aylacosfomata sp.		32			40	3000		48	48	59	13		2	3240	20.69	100	129.6
Drepandema depressissimu						12			12		16		2	40	0.26	30	1.6
Melanoides fuberculatus		3		4	70	4	5	3	3	100	1	2000	124	2193	14.00	90	87.7
Littoridina sp.							40		40					80	0.51	70	3.2
Physa cubensis		23					2	155	32	3	10	30		255	1.63	80	10.2
Lynnaea columella			5	9	5	9	1	3	5	6	70	2		115	0.73	80	4.6
Ancyius sp.								4	200	2	53		4	263	1.68	100	10.5
Hebefancyus moncandi		34		26		26	1	7	5	11				110	0.70	70	4.4
Diplodon sp.				1				1539						1540	9.83	80	61.6
Biomphalaria straminea			1		1	53	1	30	1	239	327			653	4.17	50	26.1
Biomphalaria glabrata					800	100	30	3						933	5.96	80	37.3
Corbicula fluminea				357			200							557	3.56	30	22.3
Corbicula sp.			13				13			100	31	4		161	1.03	70	6.4
Eupera bahiensis					11		1	9	9	5	40	6		81	0.52	50	3.2
Eupera klappenhach								5			5			10	0.06	40	0.4
Eupera sp.	2	4	6		6			100	60	3	6	2	1	189	1.21	90	7.6
Pisidium sp.				25			25		12					62	0.40	60	2.5
Anodonflittes trapesialis				25			25		15					65	0.42	80,00	2.6
Hirudinea	1	36		36	100	36	32	6	6	9	16	10		288	1.84	100,00	11.5
Oligochaeta			3			2		100	80					185	1.18	100,00	7.4
Conchostraca	213	2	100		7									322	2.06	100,00	12.9
Ostracoda	4	42	2		10	48	4	4	4	21				139	0.89	100,00	5.6
Decapoda pleocyematha						1		70	1	8	7			87	0.56	100,00	3.5
Amphipoda							17			10				27	0.17	100,00	1.1
Acarina				70		2	6	2	2	1	1		5	84	0.54	90,00	3.4
Collembola	2	8		5		5	4	7	7	14	5			57	0.36	100,00	2.3
Coleoptera Dytiscidae		32		12		12	8			5	4			73	0.47	80,00	2.9
Coleoptera Hidrobiidae		5	33	8	53	8	128	2	2	1000	8	26		1273	8.13	100,00	50.9
Diptera (Chironomidae)		123	147			147		215	12		128			772	4.93	100,00	30.9
Diptera (Culicidae)		78		40				125						243	1.55	100,00	9.7
Diptera		12	4	20	5	4	63	43	43	3	9	100		306	1.95	100	12.2
Odonata		54	42			42		21						159	1.02	30	6.4
Orthoptera]	7					2			23				32	0.20	80	1.3
Hemiptera			5			6								11	0.07	30	0.4
Rotifera							1				13			14	0.09	40	0.6
Nematoda		8	2			1								11	0.07	30	0.4
	353	523	399	661	1165	3534	652	2584	619	1688	1269	2208	138	15659			

1.3.4. Zoobentos do Fundo-Eixo Leste

Os macroinvertebrados encontrados nos sedimentos do fundo das bacias hidrográficas estudadas, no eixo leste, esteve composto pelos representantes de Platyhelminthes, Porifera, Mollusca, Annelida, Crustacea, Arthropoda e Nematoda com 40 táxons e 65.327 indivíduos (Tabela 3.19).

Tabela 3.19: Macroinvertebrados das coletas do Fundo do Rio São Francisco e Bacias Hidrográficas do Nordeste Setentrional. Campanha 14^a - Eixo Leste, em janeiro a março de 2013. Arabundância relativa; Frequência relativa e ind/m²-densidade.

Campanha 14 Eixo Leste	Q1F14	Q54F14	Q68F14	Q70F14	Q73F14	Q81F14	Q84F14	Q86F14				
Zoobentos do Fundo	Fundo	Fundo	Fundo	Fundo	Fundo	Fundo	Fundo	Fundo	Total	AR %	Fr%	ind/m ²
Turbellaria		1	2		2	2	2	2	11	0,02	70	
Espongilidae	3	5	16	11	7	4	7	6	59	0,11	90	0,02
Pomacea lineata	30	10	25	5	22	16	22	21	151	0,39	100	1,07
Asolene spixi	60		4	2	5		2	40	113	0,21	80	0,04
Drepanotrema depressissimu	1		2				2	3	8	0,07	60	0,01
Aylacostoma tuberculata			333				4	4	341	0,49	50	0,09
Aylacostomata sp.	255	260	256	66	55	145	300	67	1404	2,87	100	0,54
Melanoides tuberculatus	3000	820	122	4000	3000	1700	700	1900	15242	31,32	100	5,93
ldiopyrgus sp.	3	1	3	2	5	3	4	20	41	0,10	100	0,02
Physa cubensis	1	5	7	1	8	2	2	2	28	0,06	100	0,01
Littoridina sp.	13	14	89	200	11	1	2	17	347	0,73	100	0,14
Lymnaea columella	7		8	5	3	4	1	6	34	0,06	90	0,01
Ancylus sp.	3				8	2	2	9	24	0,04	70	0,01
Hebetancylus moricandi	3			5		3	1	8	20	0,03	70	0,01
Diplodon sp.	3	2	6	12	3	14	1	2	43	0,07	100	0,01
Biomphalaria straminea	2	233	400	500	500	456	459	1968	4518	7,51	100	1,42
Biomphalaria glabrata	3	1	30		5	2	4	13	58	0,09	90	- , -
Corbicula fluminea	1870	2430	1568	3090	2000	3222	2567	2456	19203	44,82	100	
Eupera bahiensis	55	11	50	12	36	26	33	15	238	0,43	100	0,06
Eupera klappenbachi					4	4	3		11	0,02	60	0
Eupera sp.	35	5	5	3	12	3	2	52	117	0,25	100	.,
Pisidium sp.	68	15	40	13	33	23	4	23	219	0,44	100	.,
Anodontites trapesialis	3			2		1	2	1	9	0,02	70	0
Hirudiena	4	4	7	6	7	21	3	21	73	0,14	100	
Oligochaeta	80	23	30	30	39	39	2	67	310	0,62	100	-,
Conchostraca	18	100	7	7	55	6	4	23	220	0,41	100	0,08
Ostracoda	40	245	18	68	180	68	2	34	655	1,32	100	
Decapoda Pleocyematha	5	34	5	19	19	3	4	7	96	0,19	100	0,04
Amphipoda	7	5	15	9	5	6	2	23	72	0,18		-,
Acarina	1	1	3	4	3	2	2	2	18	0,03	100	0,01
Collembola	5	5	7	22	8	33	6	23	109	0,30		.,
Coleoptera Dytiscidae	33	2	15	7	3	6	4	25	95	0,15	100	0,03
Coleoptera Hidrobiidae	7	2	7	5	2	2	6	4	35	0,06	100	-,-
Diptera (Chironomidae)	160	282	428		240	160	150	321	1741	3,65	99	
Diptera (Culicidae)	90	100	199	35	88	95	70	122	799	1,63	100	-,-
Diptera	33	22	33	4	27	25	6	6	156	0,28	100	-,
Odonata	50	15	56	14	45	58	29	80	347	0,68	100	
Orthoptera			5		2		8		15	0,02	30	
Hemiptera	9	4	7	7	9	5	4	3	48	0,08	100	-,-
Nematoda	2	2	67	3	5	9		6	94	0,13	100	0,02
	5962	4659	3875	8169	6456	6171	4428	7402	47122			

Dentre os organismos que fizeram parte das coletas do fundo no eixo leste, os moluscos com 21 táxons e 58.809 exemplares, representaram 90% (Figura 3.53) de toda a fauna encontrada nos pontos de coleta deste ecossistema. Três espécies contribuíram para a dominância dos moluscos no ambiente, o bivalve *Corbicula fluminea*, e os gastrópodes *Melanoides tuberculatus e Biomphalaria straminea*, espécies mais abundantes, frequentes e com as maiores densidades de todos os organismos coletados na área.

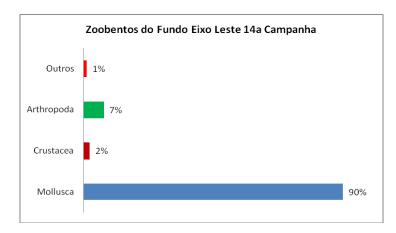


Figura 3.53: Composição do zoobentos do Fundo das Bacias hidrográficas do Rio São Francisco do Eixo Leste, durante as coletas da 14º campanha, janeiro a março de 2013.

O segundo grupo de organismos presentes no fundo foram os artrópodes, constituídos por dez táxons, nove deles são insetos aquáticos e larvas de insetos, e 4.483 indivíduos (7%). Os dípteros Chironomidae e Culicidae foram os mais numerosos.

Os ostrácodes se destacaram entre os crustáceos que, de um modo geral, foram pouco representativos, porém muito frequentes nos pontos de coleta. Os outros organismos, platelmintos, esponjas, anelídeos e nematoides tiveram uma pequena participação (1%) nas coletas do fundo.

As coletas do fundo foram realizadas em oito estações, (Tabela 3.19). Em todas foi constatada a predominância de sedimentos com maior granulometria, a maioria constituída por areia grossa. Foi observado que nem sempre o maior número de táxon corresponderia a um maior número de exemplares, tal como ocorreu na estação Q70 que teve o maior número de exemplares, e a estação Q70 com maior riqueza taxonômica, 40 táxons. Em ambas os sedimentos eram predominantemente arenosos, na primeira a areia grossa e na segunda de areia média, e também 'em ambas os valores de matéria orgânica foram mais baixos, inferiores a 10%. A estação Q86 foi a segunda em número de exemplares, e o sedimento era composto de maior proporção de cascalho. Nestas estações com maior número de indivíduos, duas espécies contribuíram para este aumento, foram *Corbicula fluminea e Melanoides tuberculatus*.

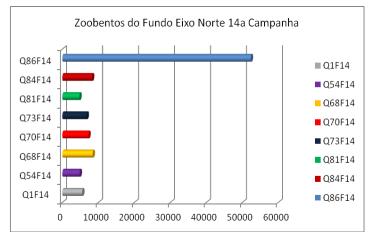


Figura 3.54: Exemplares nas estações do Fundo do Rio São Francisco e Bacias Hidrográficas do Nordeste Setentrional. Campanha 14ª - Eixo Leste, janeiro a março de 2013.

1.3.5. Zoobentos da Margem - Eixo Leste

Os seres bênticos que povoam as margens dos rios e reservatórios da área estudada estiveram bem representados através de sete grupos faunísticos, Platelmintos, esponjas, moluscos, anelídeos, crustáceos, Artrópodes e Nematoda, com 31 táxons e 96.466 exemplares (Tabela 3.20, Figura 3.55).

Dentre os grupos faunísticos encontrados, os moluscos foram os mais abundantes, frequentes e os que tiveram as maiores densidades, eles representaram 91% dos macroinvertebrados com seus 87.667 exemplares e 16 táxons. Os gastrópodes superaram os bivalves, com 63% dos indivíduos e 10 espécies. Quatro espécies se destacaram pela grande quantidade de exemplares presentes em quase todas as estações, *Melanoides tuberculatus* com 31.534 e 741 ind/cm², *Biomphalaria straminea* com 9.357 e 220.2 ind/cm², *Aylacostomata* sp. com 8.484 e 199,62 ind/cm² e *Aylacostoma tuberculata* com 4.859 exemplares e densidade de 114,33 ind/cm². A maioria destas espécies de gastrópodes tiveram 100% de frequencia de ocorrência nas coletas com exceção de *A. tuberculata* presente somente em duas estações porém em grande quantidade.

Tabela 3.20: Macroinvertebrados das coletas da Margem do Rio São Francisco e Bacias Hidrográficas do Nordeste Setentrional. Campanha 14ª - Eixo Leste, em janeiro a março de 2013. Ar-abundância relativa; Frequência relativa e ind/m²-densidade.

Campanha 14 Eixo Leste	Q1M14	Q3M14	Q54M14	Q68M14	Q70M14	Q73M14	Q74M14	Q76M14	Q78M14	Q79M14	Q81M14	Q82M14	Q84M14	Q85M14	Q86M14				
Zoobentos da Margem	Margem	Margem	Margem	Margem	Margem	Margem	Margem	Margem	Margem	Margem	Margem	Margem	Margem	Margem	Margem	Total	AR %	Fr %	ind/m ²
Turbellaria											1					1	0,010	35,00	0,18
Espongilidae		3												4		4	0,01	24,00	0,31
Pomacea lineata								1	2	2	5	3	3	4		15	0,20	100,00	4,48
Asolene spixi	8	0	1		1				3	5	3	1				4	0,11	47,00	2,48
Aylacostomata sp.	32	1	50	100		45	700	500	586	139	100	300	170	56		626	8,79	100,00	199,62
Melanoides tuberculatus	690	67	1500	1000	1567		1222	3000	3856	4738	3241	2897	830	374	700	8042	32,68	100,00	747,98
Idiopyrgus sp.		2		2	4								2			2	0,04	24,00	0,94
Physa cubensis		1		3												0	0,04	18,00	0,87
Biomphalaria straminea						109		100	632	91	234	198	500	532	550	2014	9,70	100,00	220,16
Corbicula fluminea	600	347		1200	500	700	800	900	2045	37	678	5324	2111	674		8787	33,63	100,00	763,22
Eupera bahiensis						3		18	6	42	2	5	3	3		13	0,23	88,00	5,25
Eupera sp.	2	20	4		4	2		6	3	3		1	1	5		7	0,03	41,00	0,68
Pisidium sp.	10	20			23	14	3	60	20		22	45	1	4	10	82	0,19	71,00	4,33
Anodontites trapezialis		4	2	9	20	3	1	11	7	8		1				1	0,00	6,00	0,02
Oligochaeta		27	4	90	80	200	60	209	221	89	400	198	50	17	8	673	1,67	100,00	37,93
Conchostraca		14	8			3	4	3	19	20	5	32				37	0,04	18,00	0,96
Ostracoda	200			38	100		140	678	589		35		170	84	57	346	1,54	100,00	34,99
Decapoda Pleocyematha		2	1		4		5			7						0	0,02	35,00	0,42
Amphipoda		3	1	1	2	1	2		6	3		11	1			12	0,03	41,00	0,61
Collembola											2		5	4		11	0,27	82,00	6,19
Coleoptera Dytiscidae		5							1		6					6	0,03	47,00	0,78
Coleoptera Hidrobiidae					1	3			1			7	1		4	12	0,03	35,00	0,59
Diptera (Chironomidae)	167	30	33		74	150	45	400	666	763	125	500	211	83		919	3,75	100,00	85,22
Diptera (Culicidae)	22	54	10		2	5	20	22	43	55	33	12	80		20	145	0,83	76,00	18,78
Diptera											1					1	0,01	24,00	0,26
Odonata				30			30		4		69		56	3	5	133	0,56	100,00	12,71
Hemiptera	7	4				1	3	1			3	1	2	4	5	15	0,19	94,00	4,31
Nematoda	9		18	2		4		13	28	43	8	6			12	26	0,13	59,00	2,85
	1747	604	1632	2475	2382	1243	3035	5922	8738	6045	4973	9542	4197	1851	1371	21934			

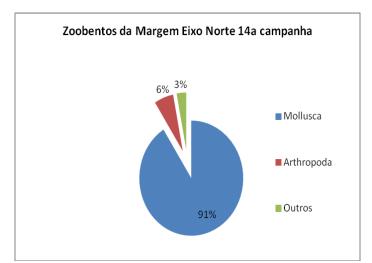


Figura 3.55: Composição do zoobentos da Margem das Bacias hidrográficas do Rio São Francisco do Eixo Leste, durante as coletas da 14ª campanha, janeiro a março de 2013.

Os bivalves com cinco espécies e 32.873 exemplares, foram representados principalmente por *Corbicula fluminea*, dominante em todas as coletas do fundo, com uma densidade média de 763,22 ind/cm².

Os artrópodes, apesar de estarem presentes no ambiente com apenas 6% de participação relativa, foram o segundo grupo da fauna bêntica mais numeroso com 5.473 exemplares e oito táxons, destacando-se os insetos Chironomidae e Culicidae e Odonata. Os Outros organismos, Plathyhelminthes, Annelida, Crustacea e Peixes, tiveram apenas 3% de participação.

Os grupos restantes, Plathyhelminthes, Annelida, Crustacea e Peixes todos reunidos tiveram uma participação relativa na composição da fauna de apenas 3%. Os anelídeos oligoquetas e os crustáceos ostrácodes se destacaram pelo maior número de exemplares, 1.612 e 1.487 respectivamente.

Os sedimentos das 15 estações (Tabela 3.20) da margem foram classificados de acordo com a fração granulométrica, cascalho, areia grossa, areia média e argila, e em não classificados. Observou-se que 40% dos organismos foram encontrados em fundos de areia grossa, 23% em cascalho, 11% em argila e 5% em areia média; as estações Q3, Q54 e Q 79 não foram analisadas com relação ao sedimento, fazendo com que 21% dos organismos estivessem nesta categoria.

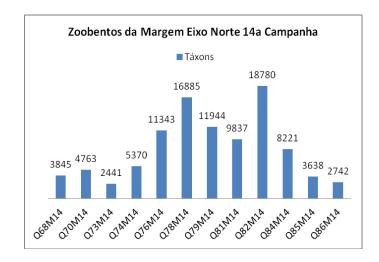


Figura 3.56: Zoobentos nas estações da Margem, das Bacias hidrográficas do Rio São Francisco do Eixo Leste, durante as coletas da 14º campanha, janeiro a março de 2013.

A maioria das estações da margem esteve povoada por grande quantidade de exemplares da fauna bêntica. A estação Q82 foi a mais apresentou a maior quantidade de organismos e consequentemente a maior densidade, com 18.780 indivíduos, a maioria constituída de espécies de moluscos, onde os gastrópodes tiveram uma densidade de 2.138,8 ind/cm² e os bivalves 1.602 ind/cm². Os artrópodes, crustáceos, anelídeos e nematoides, obtiveram 496,8, 252,8, 22,8, e 0,8 ind/m², respectivamente. Nesta estação os fundos de areia grossa tiveram predominância. A estação Q81 foi a mais diversificada com 21 táxons.

1.3.6. Zoobentos do Fital - Eixo Leste

Sobre as macrófitas encontradas no eixo leste das bacias estudadas, foram coletados e identificados 40 táxons do zoobentos com um total de 24.379 exemplares dos seguintes grupos zoológicos: Platyhelminthes, Porifera, Mollusca, Annelida, Crustacea, Arthropoda e Nematoda (Figura 3.57, Tabela 3.21). Apesar de conter grande quantidade de táxons como nos ambientes anteriores, fundo e margem, o número de exemplares foi bastante inferior, correspondente a 14% dos encontrados nos três ambientes.

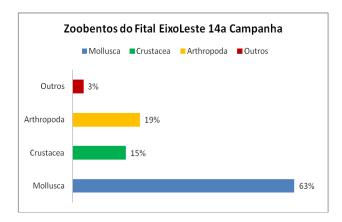


Figura 3.57: Composição do zoobentos do Fital das Bacias hidrográficas do Rio São Francisco do Eixo Leste, durante as coletas da 14ª campanha, janeiro a março de 2013.

Os moluscos (63%), artrópodes (19%) e crustáceos (15%) se destacaram nas coletas do fital. Os outros grupos apenas 3%. Os moluscos gastrópodes *Melanoides tuberculatus*, *Biomphalaria straminea*, *Aylacostomata* sp. , e o bivalve *Corbicula fluminea* foram as mais abundantes e os que tiveram suas populações mais densas no ecossistema fital, motivo pelo qual os moluscos se destacaram numericamente dos outros grupos bênticos.

Tabela 3.21: Macroinvertebrados das coletas do Fital do Rio São Francisco e Bacias Hidrográficas do Nordeste Setentrional. Campanha 14^a - Eixo Leste, em janeiro a março de 2013. Arabundância relativa; Frequência relativa e ind/m²-densidade.

Campanah 14 Eixo Leste	Q3Fi11	Q54Fi11	Q70Fi11	Q73Fi11	Q78Fi11	Q79Fi11	Q85Fi11	Q86Fi11				
Zoobentos do Fital	Fital	Fital	Fital	Fital	Fital	Fital	Fital	Fital	Total	AR %	Fr %	ind/m ²
Turbellaria	2				2	5			9	0,09	57	0,6
Espongilidae	6			4	14	25		3	52	0,38	71	2,63
Pomacea lineata	14	34	3	8	7	50	8	19	143	0,74	100	5,14
Asolene spixi	3	1	7	2		12		4	29	0,25	57	1,77
Drepanotrema depressissimu			1						1	0,01	7	0,06
Aylacostoma tuberculata		50	33						83	0,16	14	1,09
Aylacostomata sp.	34	1500	80	35	260	55		260	2224	500,00	86	34,8
Melanoides tuberculatus	234		322	150	750	188	54	890	2588	25,80	100	179,74
ldiopyrgus sp.	16		3		4	7		3	33	1,18	79	8,23
Physa cubensis	36	1	5			9		1	52	0,78	50	5,4
Littoridina sp.	66		2		36	36	62	32	234	1,91	836	13,31
Lymnaea columella	90		2		9				101	0,70	50	4,86
Ancylus sp.	8		12	25	4	6			55	0,46	64	3,23
Hebetancylus moricandi	6		34	6	26	58	17	45	192	1,81	100	12,6
Diplodon sp.	1	4		2	3	2			12	0,11	64	0,8
Biomphalaria straminea	50		245	422	138	256	326	298	1735	12,40	100	86,34
Biomphalaria glabrata	3	2	1						6	0,03	21	0,23
Corbicula fluminea	33	4	40	180	386	198	174	187	1202	9,23	100	64,26
Eupera bahiensis	4		2	30	48	70	29	4	187	1,18	100	8,2
Eupera klappenbachi		1	1						2	0,02	14	0,14
Eupera sp.	2	1	1	1				34	39	0,02	14	0,14
Pisidium sp.	6		20	23	16	35	21	38	159	1,28	100	8,89
Anodontites trapesialis			1		2	2			5	0,03	36	0,2
Hirudinea	2		28		36	5		1	72	0,57	86	4
Oligochaeta	12	33	35	4	72	7	59	66	288	1,65	100	11,51
Conchostraca	5	10	13	60	16	20	1	5	130	0,78	100	5,4
Ostracoda	22		8	167	48	35	123	3	406	13,92	100	96,94
Pleocyematha	4	1	4	3	4	6	6	4	32	0,27	100	1,89
Amphipoda	3		3	6	8	38	6	3	67	0,44	100	3,09
Acarina			1	2	2	2	2	1	10	0,08	93	0,54
Collembola	11	18	6	2	5	23		5	70	0,47	86	3,29
Coleoptera Dytiscidae	2		4	5	12	6	6	8	43	0,43	86	3
Coleoptera Hidrobiidae	1		8	6	8	3		3	29	0,24	86	1,69
Diptera (Chironomidae)	156		129	278	111	333	169	401	1577	11,34	100	
Diptera (Culicidae)	33		23	60	59	6	53	57	291	3,11	100	21,63
Diptera	5		4		4	8	8	3	32	0,41	93	2,89
Odonata	9		60	57	42	69	26	35	298	2,27	100	15,8
Orthoptera									0	0,03	7	0,2
Hemiptera	2		2	1	6	3	1		15	0,17	93	1,17
Nematoda			1		2	3			41	0,10	50	0,71
	881	1660	1144	1539	2140	1581	1151	2413	12544			

Os artrópodes com 19% de participação relativa nas coletas foram o segundo grupo mais importante, eles se distribuíram em 10 táxons e 4.522 exemplares, os dípteros Chironomidae e Culicidae e os Odonata foram os mais numerosos.

Com 15% de participação nas coletas, os crustáceos distribuíram-se entre quatro táxons, os mesmos das coletas anteriores e 3.756 indivíduos tendo a ordem Ostracoda alcançado o maior valor de densidade média, 96,94 ind/cm². Outros crustáceos, Conchostraca, decápodes Pleocyemata e os anfípodos tiveram densidades médias muito baixas.

Outros invertebrados ocorrentes nos pontos de coleta se mostraram pouco representativos e juntos contabilizado apenas 3% de presença. Os platelmintos e nematoides

tiveram densidades inferiores a 1 org/cm². As esponjas tiveram uma densidade média de 36,8 e os anelídeos, mais numerosos com 543 exemplares, e densidade média de 217,2 ind/cm², além de estarem presentes em todas as estações.

No fital foram feitas coletas em 8 estações (Figura 3.58) a maioria contendo exemplares abaixo de 2.500 organismos, a estação que mais se sobressaiu foi a Q81, Por ter o maior número de organismos, 2413, esta, diferentemente das outras estações, os moluscos não dominaram o ambiente. Os ostrácodes superaram todos os demais táxons desta estação.

Figura 31. Zoobentos nas estações do Fital, das Bacias hidrográficas do Rio São Francisco do Eixo Leste, durante as coletas da 14º campanha, janeiro a março de 2013.

1.4. Sedimentos e Matéria Orgânica das Estações do Fundo e da Margem dos Eixos Norte e Leste da 14ª Campanha.

1.4.1. Composição Granulométrica dos Substratos do Eixo Norte.

A análise granulométrica dos substratos nas estações de coleta das Bacias setentrionais do Nordeste do Brasil, eixo norte (Tabela 3.22, Figura 3.59) revelou uma forte predominância de substratos tipicamente arenosos e argilosos, sobretudo esta primeira fração. As demais frações não obtiveram percentuais expressivos dentre as estações examinadas. As frações areia muito grossa, areia média e areia fina ocorreram em todas as estações estudadas.

Os teores de cascalho (C) foram elevados nas estações Q13F8 e 14F8 (71,3%) e Q13F9 (65,8%) e menos acentuados nas estações Q37M8 (46,8%) Q38M8 (42,5%) Q42F8 (43%) Q23M8 (39%) Q42M8 (38%) Q29M8 (34,3%) Q24F8 (31,8%) e Q44M8 e Q45M8 (ambas com 24,35%). Os menores resultados obtidos para o teor cascalho variaram entre 0,2% (Q36M8) a 13,4% (Q48F8). A fração cascalho não esteve presente nas estações Q24M8, Q41M8, Q43M8, Q47M8 e Q48M8.

As porcentagens de areia muito grossa (AMG) foram pouco significativas para todas as estações estudadas, não apresentando assim teores elevados. O maior nível foi encontrado no ponto Q42F8 (25,8%). Nas demais estações os valores foram baixos ou muito baixos, distribuindose de 0,32% (Q48M8, Q41M8 e Q25M8) a 8,1% (Q38M8). As estações Q47M8 e Q43M8 corresponderam a 0% de areia muito grossa.

A areia grossa (AG) ocorreu na maioria das estações estudadas, sendo mais significativa na estação Q48F8 (65,3%). Nas outras estações os valores estiveram distribuídos entre 32,8% (Q29M8) a 20,1% (Q38M8). Os menores valores de areia grossa foram encontrados nas estações, Q48M8 e Q41M8 (0,56%) e Q24F8 (18,1%). A estação Q43M8 não apresentou a fração areia grossa.

A fração areia média (AM) foi elevada nas estações Q36M8 com 65,63% e Q37F8 com 57,7%. Nas demais estações, o teor de areia média variou de 20,8% (Q37M8) a 45% na estação Q42M8. As menores quantidades de areia média variaram entre 0,6% na estação Q42F8 a 15,9% na estação Q29M8. O teor de areia média ocorreu em todos os pontos estudados.

O teor de areia fina não foi expressivo nas estações analisadas. Apenas no ponto Q24M8 ocorreu com um percentual maior, correspondendo a 33,36%. Nas estações restantes, os teores variaram de 0,3% (Q13M8) a 11,06% (Q43M8), sendo as estações que apresentaram os menores teores de areia fina. Esta fração ocorreu em todas as estações analisadas.

Tabela 3.22: Porcentagens das frações granulométricas nos sedimentos do Rio São Francisco e Bacias Hidrográficas do Nordeste Setentrional, coletados entre os meses de janeiro a março de 2013, nas estações do fundo e da margem do eixo norte. Legenda – Q: estações de coleta; AMG: areia muito grossa; AG: areia grossa; AM: areia média; AF: areia fina e AMF: areia muito fina.

Estação	Cascalho	A.M.G	A.G	A.M	A.F	A.M.F	Argila
Q13M8	65,8	5	16,1	10,3	0,3	0,9	1,6
Q13F8	71,3	3,1	9	8,9	1,4	4,3	2
Q14M8	24,35	7,75	34	8,5	1,6	8,4	15,4
Q14F8	71,3	3,1	9	8,9	1,4	4,3	2
Q23M8	39	5,6	5,4	45	1,5	3	0,5
Q24M8	0	1,32	4,68	12,1	33,36	6,52	42,02
Q24F8	31,8	4,1	18,1	30,1	3,7	8,7	3,5
Q25M8	0	0,32	0,8	1,86	4,22	11,36	81,44
Q29M8	34,3	6,6	32,2	15,9	2,2	4,5	4,3
Q36M8	0,2	0,5	8,9	65,6	4,5	13,3	7
Q37M8	46,8	5,5	19,4	20,8	1,3	4,3	1,9
Q37F8	10,4	4,7	12,5	57,7	2,7	7,3	4,7
Q38M8	42,5	8,1	20,1	20,9	1,5	3,8	3,1
Q41M8	0	0,32	0,56	2,02	4,6	7,78	84,72
Q42M8	38	6,6	5,4	45	1,5	3	0,5
Q42F8	43	25,8	5,7	0,6	6,9	6	12
Q43M8	0	0	0	1,3	11,06	21,46	66,18
Q44M8	24,35	7,75	34	8,5	1,6	8,4	15,4
Q45M8	24,35	7,75	34	8,5	1,6	8,4	15,4
Q46M8	1,8	0,9	17,7	21,2	7,4	29,3	21,7
Q47M8	0	0	3,8	8,9	7,9	57,8	21,6
Q47F8	7	2	25,9	23,3	8,4	21,1	12,3
Q48M8	0	0,32	0,56	2,02	4,6	7,78	84,72
Q48F8	13,4	4,1	65,3	13,4	1,7	1,7	0,4

O teor de areia muito fina foi elevado apenas na estação Q47M8 com 57,8%. Valores medianos foram encontrados nas estações Q47F8 (21,1%) Q43M8 (21,46%) e Q46M8 (29,3%). Os demais pontos tiveram variação do teor de areia muito fina compreendidas entre 0,9% (Q13M8) e 13,3% (Q36M8). Todas as estações apresentaram o teor de areia muito fina.

O teor de argila foi bastante frequente em algumas estações, onde atingiram valores elevados: Q43M8 (66,18%) Q25M8 (81,44%) Q48M8 e Q41M8 (84,72%). As demais estações com valores significativos variaram entre 21,6% (Q47M8) e 42,02% (Q24M8). Os menores teores de argila foram observados nas estações Q48F8 (0,4%) e Q14M8, Q44M8 e 45M8, todas com 15,4%. A fração argila esteve presente em todas as estações.

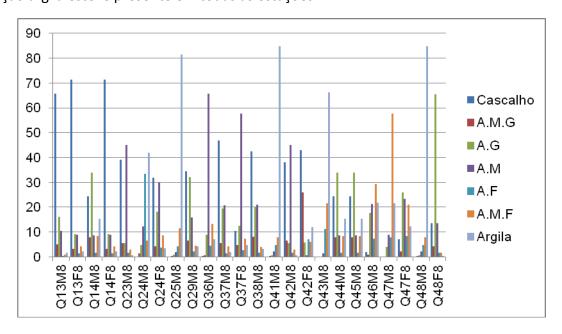


Figura 3.59: Porcentagens das frações granulométricas nos sedimentos do Rio São Francisco e Bacias Hidrográficas do Nordeste Setentrional, coletados entre os meses de janeiro a março de 2013, nas estações do fundo e da margem do eixo norte. Legenda – Q: estações de coleta; AMG: areia muito grossa; AG: areia grossa; AM: areia média; AF: areia fina e AMF: areia muito fina.

1.4.2. Conteúdo de Matéria Orgânica nas Estações do Eixo Norte.

Os valores de matéria orgânica (M.O.) para os sedimentos amostrados nos pontos de coleta (Tabela 3.23 e Figura 3.60) do substrato do fundo e da margem das Bacias setentrionais do Nordeste do Brasil, eixo norte, se apresentou elevada apenas na estação QQ29M8 (29,2%) sendo o sedimento classificado como organogênico. Os pontos com teores significativos foram Q48M8

(9,2%) Q14F8 (8,34%) Q13M8 (8,25%) e Q14M8 (7,65%). As demais estações apresentaram teores muito baixos: Q37M8 (0,81%) Q37F8 (0,83%) Q24M8 (1,3%) e Q23M8 (1,5%).

Tabela 3.23: Teores de Matéria Orgânica, M.O., (%) no sedimento do fundo (F) e da margem (M) do Rio São Francisco e Bacias Hidrográficas do Nordeste Setentrional, nos meses de janeiro a março de 2013.

Estação	M.O.	Estação	M.O.
Q13M8	8,25	Q38M8	1,19
Q13F8	5,34	Q41M8	2,1
Q14M8	7,65	Q42M8	4,5
Q14F8	8,34	Q42F8	7,4
Q23M8	1,5	Q43M8	3,5
Q24M8	1,3	Q44M8	4,3
Q24F8	2,6	Q45M8	5,6
Q25M8	1,3	Q46M8	4,6
Q29M8	29,2	Q47M8	2,47
Q36M8	1,19	Q47F8	3,9
Q37M8	0,81	Q48M8	9,2
Q37F8	0,83	Q48F8	6,7

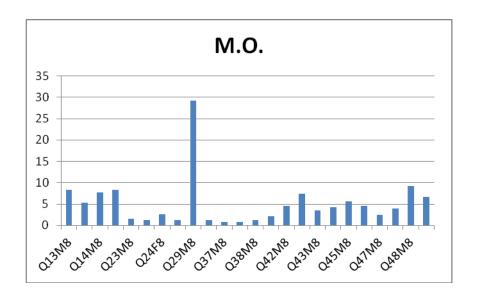


Figura 3.60: Teores de Matéria Orgânica, M.O., (%) no sedimento do fundo (F) e da margem (M) do Rio São Francisco e Bacias Hidrográficas do Nordeste Setentrional, nos meses de janeiro a março de 2013.

1.4.3. Composição Granulométrica dos Substratos do Eixo Leste.

A análise da granulométrica do substrato nas estações de coleta das Bacias Setentrionais do Nordeste do Brasil, eixo leste (Tabela 3.24, Figura 3.61) não apresentou a dominância de nenhum tipo de sedimento. Apenas os teores de areia média e argila estiveram presentes em todas as estações.

Os teores de cascalho foram elevados nas estações Q78M8 (81,5%) e Q74M8 (60,7%). As estações Q68F8 e Q70F8, com 22,8%, Q73M8, com 28% e Q75M8, com 39,2%, apresentaram valores intermediários. Os menores resultados obtidos para cascalho foram atingidos nas estações Q75M8, com 0,5% e Q71M8, com 11,8%. A fração cascalho não esteve presente nas estações Q72M8, Q72F8, Q73F8, Q78F8, Q79M8, Q82M8 e Q83M8.

Tabela 3.24: Porcentagens das frações granulométricas nos sedimentos do Rio São Francisco e Bacias Hidrográficas do Nordeste Setentrional, coletados entre os meses de janeiro a março de 2013, nas estações do fundo e da margem do eixo leste. Legenda – Q: estações de coleta; AMG: areia muito grossa; AG: areia grossa; AM: areia média; AF: areia fina e AMF: areia muito fina.

Estação	Cascalho	A.M.G	A.G	A.M	A.F	A.M.F	Argila
Q68M8	19	3	50,5	13	2	6,25	6,25
Q68F8	22,8	4	40,5	16,7	2,7	8,8	4,5
Q69M8	8,9	9,6	24	23,6	1,8	11,3	20,8
Q70M8	13	5,7	46,5	18,4	2,3	7,4	6,2
Q70F8	22,8	4	40,5	16,7	2,7	8,8	4,5
Q71M8	11,8	9,1	78	0,65	0,15	0,2	0,1
Q72M8	0	1,34	4,66	12,1	33,36	6,52	42,2
Q72F8	0	0	46,3	16,6	3	10	21,1
Q73M8	28	4,7	37,2	14,4	2,6	8,6	4,5
Q73F8	0	0	46,3	16,6	3	10	21,1
Q74M8	60,7	6,8	3,7	26,3	0,6	1,1	0,5
Q75M8	39,2	12,3	17,2	31,2	0	0	0,1
Q76M8	0,5	0,6	11,4	83,2	1,3	2,6	0,4
Q78M8	81,5	4,2	5,8	7,8	0,2	0,1	0,4
Q78F8	0	0	7,8	47,9	4,4	14,7	25,2
Q79M8	0	0	43	29,3	3,8	12,3	11,6
Q82M8	0	1,04	4,54	14,54	13,26	10,6	56,02
Q83M8	0	0	0	0,27	0,38	1,34	98,01

As porcentagens de areia muito grossa (AMG) não foram significativas para todas as estações estudadas, sendo um pouco maior apenas em Q75M8 (12,3%). O menor valor de areia muito grossa foi encontrado na estação Q76M8, com 0,6%. As estações Q72F8, Q73F8, Q78F8, Q79F8 e Q83M8, corresponderam a 0% de areia muito grossa.

A areia grossa (AG) apresentou-se mais significativa apenas na estação Q68M9 com 50,5%. Nas demais estações, os valores variaram entre 3,7% (Q74M8) e 46,3% (Q72F8). O teor da estação Q83M8 correspondeu a 0% de areia muito grossa.

Os valores encontrados para areia média (AM) foram encontrado em todas as estações e considerado elevado apenas no ponto Q76M8 (83,2%). Nas demais estações o teor de areia média variou de 23,6% (Q68M8) a 47,9% (78F8). As menores quantidades de areia média se distribuíram entre 0,27% (Q83M8) a 18,4% (Q70M8).

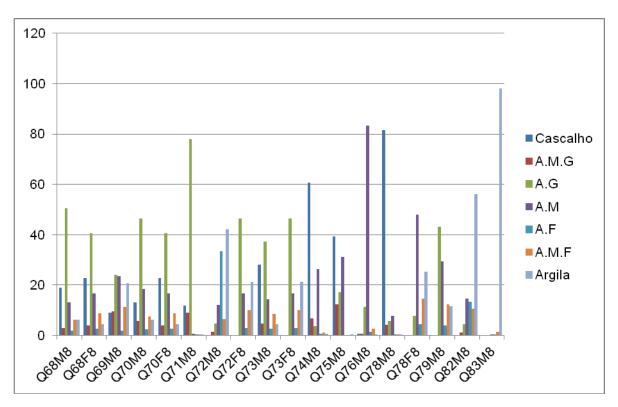


Figura 3.61: Porcentagens das frações granulométricas nos sedimentos do Rio São Francisco e Bacias Hidrográficas do Nordeste Setentrional, coletados entre os meses de janeiro a março de 2013., nas estações do fundo e da margem do eixo leste. Legenda – Q: estações de coleta; AMG: areia muito grossa; AG: areia grossa; AM: areia média; AF: areia fina e AMF: areia muito fina.

O teor de areia fina foi baixo na maioria das estações analisadas, porém, foi mais expressivo nas estações Q72M8 (33,36%) Q82M8 (13,26%) e Q78M8 (0,2%). A estação Q75M8 na

apresentou este teor. Já o teor de areia muito fina foi baixo em todas as estações analisadas. Os valores encontrados variaram entre 14,7% (Q78F8) e 0,1% (Q78M8). A estação Q75M9 não apresentou teor de areia muito fina.

A fração argila apresentou teores elevados apenas nas estações Q82M8 (56,02%) e Q83M8 (98,01%). Os valores intermediários se distribuíram entre 20,8% (Q69M8) a Q72M8 (42,2%). O menor teor de argila foi observado na estação Q71M8 (0,1%). Esta fração ocorreu em todas as estações analisadas.

1.4.4. Conteúdo de Matéria Orgânica nas Estações do Eixo Leste.

Os valores de matéria orgânica (M.O.) para os sedimentos amostrados nos pontos de coleta (Tabela 3.25 e Figura 3.62) do substrato do fundo e da margem das Bacias setentrionais do Nordeste do Brasil, eixo leste, se apresentaram elevados para as estações Q73F8 (34%) Q72F8 (30%) Q79M8 (15%) e Q68F8 (12,9%) sendo considerados do tipo organogênico. Também foram elevados nos pontos Q78F8, com 9% e Q76M8, com 6,44%. Os teores mais baixos foram observados nas estações Q75M8 (0,43%) e Q73M8 (0,9%).

Tabela 3.25: Teores de Matéria Orgânica, M.O., (%) no sedimento do fundo (F) e da margem (M) do Rio São Francisco e Bacias Hidrográficas do Nordeste Setentrional, nos meses de janeiro a março de 2013.

Estação	M.O.	Estação	M.O.
Q68M8	3,23	Q73F8	34
Q68F8	12,9	Q74M8	1
Q69M8	4	Q75M8	0,43
Q70M8	4,3	Q76M8	6,44
Q70F8	6,5	Q78M8	0,71
Q71M8	0,52	Q78F8	9
Q72M8	0,52	Q79M8	15
Q72F8	30	Q82M8	1,74
Q73M8	0,9	Q83M8	0,6

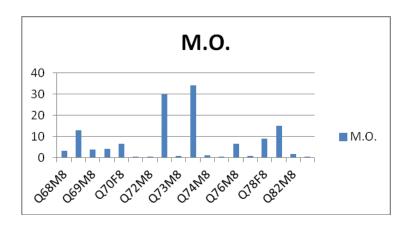


Figura 3.62: Teores de Matéria Orgânica, M.O., (%) no sedimento do fundo (F) e da margem (M) do Rio São Francisco e Bacias Hidrográficas do Nordeste Setentrional, nos meses de janeiro a março de 2013.

3.3.3 Considerações Finais

As comunidades bênticas das bacias hidrográficas estudadas, nos ecossistemas do fundo, da margem e do fital, se distribui, em geral, de forma semelhante nos eixos norte e leste. Ao se verificar a qualidade e quantidade dos seus representantes, constatou-se que, nas coletas do fundo e fital dos dois eixos, a riqueza de táxons foi maior que nas coletas das margens. O inverso foi verificado com relação ao número de exemplares, que na margem atingiram a maior quantidade. O número de estações, mais elevado nas margens, pode explicar o aumento do número de indivíduos, justamente pelo esforço de coleta, o que não é diretamente proporcional ao número de táxons, isto porque, determinadas espécies de moluscos, especialmente as exóticas, ocorrem em grande quantidade.

A fauna bêntica foi caracterizada, principalmente, pelas comunidades de moluscos, artrópodes e crustáceos com maiores números de táxons e indivíduos e pelas maiores densidades; e por outras associações faunísticas também presentes em quase todas as coletas do fundo, da margem e do fital nos dois eixos.

Dentre todos os macroinvertebrados presentes nas estações de coletas, os moluscos em todos os ambientes e nos dois eixos, tiveram uma participação importante pela quantidade mais elevada de táxons e indivíduos. No eixo leste, os moluscos foram mais abundantes do que nas coletas do eixo norte, entretanto o número de táxons foi semelhante, com as mesmas espécies, nas estações dos dois eixos. Duas espécies de moluscos se destacaram pela grande quantidade de exemplares, são as exóticas *Corbicula fluminea* (bivalve) e o gastrópode *Melanoides tuberculatus*, a primeira ocorreu em grande quantidade principalmente no fundo e na margem do eixo leste,

com pobreza de exemplares no eixo norte, e a segunda, teve uma distribuição mais um uniforme nos dois eixos, entretanto, entretanto foi mais numerosa nas coletas da margem e do fundo. Os dois Planorbidae *Biomphalaria straminea*, mais numeroso, e *B. glabrata* também estiveram presentes. Mais dois gastrópodes ocorreram nos dois eixos de forma bastante expressiva, *Aylacostoma tuberculata* no eixo norte, na margem e *Aylacostomata* sp., mais numerosa nas coletas do eixo leste também nas coletas da margem.

O segundo grupo mais importante nas coletas foram os artrópodes com 10 táxons e com distribuição mais equilibrada nos ambientes do eixo leste, estiveram representados por larvas e pupas de insetos. Os dípteros Chironomidae foram mais abundantes nas coletas da margem do eixo norte.

Em menores quantidades que as comunidades anteriores, os crustáceos constituídos por pequenos camarões e os diminutos ostrácodes, conchostráceos e anfípodes, se distribuíram de forma semelhante nas estações dos dois eixos, sendo mais numerosos nas coletas da margem do eixo norte.

Outros componentes da macrofauna encontrados nas bacias hidrográficas estudadas agrupam aqueles seres que apesar de ocorrem em quase todos os ambientes e estações dos dois eixos, estiveram presentes de forma muitas vezes discreta, com baixas densidades e abundância relativa, considerados algumas vezes raros no ambiente são os anelídeos, esponjas, nematoides, platelmintos e rotíferos, citados por ordem de participação.

A fração granulométrica dos sedimentos do fundo e da margem dos dois eixos, indicaram que a areia grossa abrigou uma maior parte dos organismos coletados no fundo e o cascalho os organismos da margem. Nos sedimentos mais finos a fauna esteve presente em menor quantidade.

3.4 Macrófitas

Neste quadrimestre foram realizadas amostragens em 57 pontos. Entretanto, somente em 22 pontos ocorreram registros de macrófitas: Q1, Q3, Q23, Q25, Q26, Q27, Q32, Q33, Q35, Q36, Q40, Q42, Q43, Q44, Q45, Q50 no Eixo Norte, e os pontos Q70, Q73, Q74, Q79, Q85, Q86, no Eixo Leste. Por situações adversas não houve a coleta em alguns pontos: em oito pontos (Q54, Q68, Q75, Q76, Q78, Q81, Q82 e Q84) não tiveram registros devido à ausência de banco de macrófitas; sete pontos (Q67, Q69, Q71, Q72, Q77, Q80 e Q83) apresentaram corpo hídrico seco e em 20 pontos não houve justificativa quanto à ocorrência ou não de macrófitas.

Para o ponto Q35 foi estabelecido uma nova marcação de ponto devido à obra de uma passagem molhada neste local de coleta. O novo local de coleta passou a ser 90m a montante do ponto original de coleta, em área de paisagem similar. Para a escolha do novo ponto levou-se em consideração o possível carreamento de material proveniente da obra.

3.4.1 Composição florística do Eixo Leste

As macrófitas encontradas no Eixo Leste estão representadas por 8 espécies, distribuídas nas Divisões Tracheophyta e Chlorophyta, sendo a segunda representada por associação de algas. O maior número de representantes está na Divisão Tracheophyta, com seis famílias reconhecidas (Tabela 3.26).

A Divisão Tracheophyta está representada pelas famílias: Ceratophyllaceae (*Ceratophyllum demersum*), Pontederiaceae (*Eichornnia azurea e Eichornnia crassipes*), Hydrocharitaceae (*Egeria densa*), Onagraceae (*Ludwigia helminthorrhiza*), Araceae (*Pistia stratiotes*) e Salviniaceae (*Salvinia minima*) (Tabela 3.26; Figuras 3.63 e 3.64).

Nesta campanha é verificada a presença de associações de macro e microalgas, tanto de hábito fitoplanctônico ou como epífita de macrófitas. Tais constatações foram possíveis devido a investigações dos tufos de Cladophora (como era chamado em todos os relatórios anteriores), através da construção de lâminas e visualização no fotomicroscópio.

Tabela 3.26: Descrição taxonômica, nome popular, forma e importância biológica, e estações de coleta das espécies de macrófitas aquáticas do Eixo Leste das Bacias Hidrográficas do Nordeste Setentrional do Rio São Francisco, coletadas entre os meses de outubro a dezembro de 2012.

DIVISÃO	FAMÍLIA	ESPÉCIE	NOME POPULAR	FORMA BIOLÓGICA	IMPORTÂNCIA BIOLÓGICA	PONTO DE COLETA
Chlorophyta		Associação de Algas				74, 79
	Ceratophyllaceae	Ceratophyllum demersum	Rabo de raposa, lodo	Submersa livre	Infestante	74, 85
	Pontederiaceae	Eichornnia azurea	Baronesa- aguapé	Flutuante fixa	Ornamental, Infestante, Despoluidor	85, 86
	Pontederiaceae	Eichornnia crassipes	Baronesa- aguapé	Flutuante livre	Ornamental, Infestante, Despoluidor	74, 79
Tracheophyta	Hydrocharitaceae	Egeria densa	Elodea	Submersa fixa	Ornamental, Infestante	70, 73
	Onagraceae	Ludwigia helminthorrhiza	Lombrigueira	Flutuante livre, Flutuante livre	Ornamental, medicinal	85
	Araceae	Pistia stratiotes	Alface d'agua	Flutuante livre	Despoluidor, Infestante, Medicinal, Ornamental	79
	Salviniaceae	Salvinia minima	Orelha- de- onça	Flutuante livre	Ornamental, Infestante, Despoluidor	85

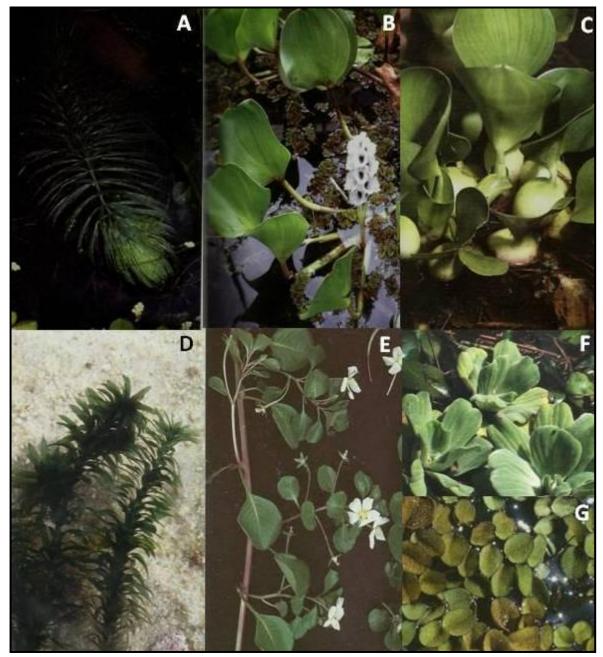


Figura 3.63: Espécies de macrófitas coletadas no Eixo Leste entre os meses de outubro a dezembro de 2012: *Ceratophyllum demersum* (A), *Eichornnia azurea* (B), *Eichornnia crassipes* (C), *Egeria densa* (D), *Ludwigia helminthorrhiza* (E), *Pistia stratiotes* (F) *e Salvinia minima* (G).

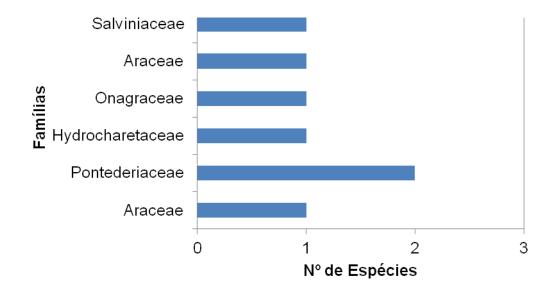


Figura 3.64: Número de espécies por família das macrófitas aquáticas no Eixo Leste das Bacias Hidrográficas do Nordeste Setentrional do Rio São Francisco, coletadas entre os meses de outubro a dezembro de 2012.

Riqueza específica e Freqüência de Ocorrência

Os pontos que apresentaram menor riqueza de espécies foram Q70, Q73 com apenas uma espécie (*E. densa*), e Q86 com *E. azurea*. O ponto que apresentou maior riqueza, com quatro espécies registradas, foi o Q85 (*Cerathophylum demersum*, *Eichornnia azurea*, *Ludwigia helminthorrhiza e Salvinia mínima*). Seguido pelos pontos Q74 (associações de algas, *Cerathophylum demersum* e *E. crassipes*) e Q79 (Associações de Algas, *E. crassipes* e *Pistia stratiotes*) que apresentaram três espécies.

Em relação à freqüência de ocorrência (F.O.), todas as espécies foram classificadas como pouco frequentes: associação de algas, *Cerathophylum demersum*, *Egeria densa*, *Eichornnia azurea*, *Eichornnia crassipes* com 25% e *Ludwigia helminthorrhiza*, *Pistia stratiotes e Salvinia mínima* com 12,5 % (Tabela 3.27).

Biomassa do Eixo Leste

Para verificar se houve diferença significativa com relação à biomassa das espécies entre os pontos de coleta, foram selecionadas as espécies que ocorreram em mais de um ponto de coleta e que obtiveram biomassa mais representativa.

As espécies selecionadas para análise estatística do Eixo Leste foram: *Egeria densa, Eichornnia azurea* e *Eichornnia crassipes*. Destas, apenas em uma espécie foi verificada diferenças significativas. Para *Egeria densa* foi registrado valor mínimo de 72,00 g.ps.m⁻² e máximo de 156,00 g.ps.m⁻², com diferenças significativas entre os pontos de coleta (F=9,638; p=0,036). A biomassa média das macrófitas identificadas no Eixo Leste estão descritas na Figura 3.65 e Tabela 2.

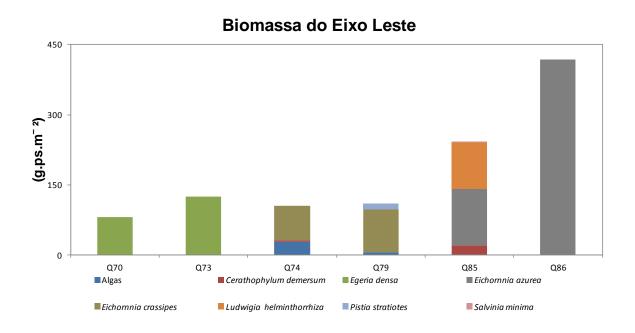


Figura 3.65: Biomassa seca média (g.ps.m⁻²) por pontos de coleta das macrófitas do Eixo Leste do Rio São Francisco com Bacias Hidrográficas do Nordeste Setentrional, coletadas entre os meses de outubro a dezembro de 2012.

Tabela 3.27: Biomassa seca média (g.ps.m⁻²) com desvio-padrão e frequência de ocorrência (F.O.) das macrófitas do Eixo Leste do Rio São Francisco com Bacias Hidrográficas do Nordeste Setentrional, coletadas entre os meses de outubro a dezembro de 2012. *Presença de vegetação somente em um dos três pontos da Estação de Coleta, não sendo calculada a média±desvio-padrão.

Estações	Q70	Q73	Q74	Q79	Q85	Q86	F.O
TAXA			(g.ps./	m²)			%
Associação de Algas			28,00*	4,75±0,81			25,0
CERATOPHYLLACEAE							
Cerathophylum demersum			2,17*		20,00*		25,0
HYDROCHARITACEAE							
Egeria densa	81,33±8,33	125,33±27,23					25,0
PONTEDERIACEAE							
Eichornnia azurea					121,33±53,27	418,67±228,29	25,0
Eichornnia crassipes			74,67±29,48	93,33±26,63			25,0
ONAGRACEAE							
Ludwigia helminthorrhiza					100,00*		12,5
ARACEAE							
Pistia stratiotes				12,00*			12,5
SALVINIACEAE	· · · · · · · · · · · · · · · · · · ·						
Salvinia mínima					0,004*		12,5
TOTAL	81,33	125,33	104,84	110,08	241,33	418,67	

3.4.2 Composição florística do Eixo Norte

As macrófitas encontradas no Eixo Norte estão representadas por 11 espécies, distribuídas nas Divisões Tracheophyta, Charophyta e Chlorophyta, sendo a terceira representada por associações de algas. O maior número de representantes está na Divisão Tracheophyta, com sete famílias reconhecidas e a Divisão Charophyta está representada por uma família.

A Charophyta está representada pela família Characeae (*Chara fragilis*). A Divisão Tracheophyta está representada pelas famílias: Azollaceae (*Azolla filiculoides*), Ceratophyllaceae (*Ceratophyllum demersum*), Araceae (*Pistia stratiotes*), Hydrocharitaceae (*Egeria densa* e *Najas guadalupensis*), Onagraceae (*Ludwigia helminthorrhiza*), Pontederiaceae (*Eichornnia azurea* e *Eichornnia crassipes*) e Salviniaceae (*Salvinia auriculata*) (Tabela 3.28, Figuras 3.66 e 3.67).

Tabela 3.28: Descrição taxonômica, nome popular, forma e importância biológica, e estações de coleta das espécies de macrófitas aquáticas do Eixo Norte das Bacias Hidrográficas do Nordeste Setentrional do Rio São Francisco, coletadas entre os meses de outubro a dezembro de 2012.

DIVISÃO	FAMÍLIA	ESPÉCIE	NOME POPULAR	FORMA BIOLÓGICA	IMPORTÂNCIA BIOLÓGICA	PONTO DE COLETA
Chlorophyta		Associação de Algas				25, 35, 50
	Azollaceae	Azolla filiculoides	Azola	Flutuante livre	Despoluidor, forrageira	44
	Ceratophyllaceae	Ceratophyllum demersum	Rabo de raposa, lodo	Submersa livre	Infestante	23, 25, 35, 43, 45
			Baronesa - aguapé-			
	Pontederiaceae	Eichornnia azurea	camalote	Flutuante fixa	Ornamental, Infestante, Despoluidor	3
			Baronesa - aguapé-			
Tue els e e e le ete	Pontederiaceae	Eichornnia crassipes	camalote	Flutuante livre	Ornamental, Infestante, Despoluidor	25, 32, 35, 36, 43, 44
Tracheophyta	Hydrocharitaceae	Egeria densa	Elodea	Submersa fixa	Ornamental, Infestante	1, 26, 27, 33, 40, 42, 43
				Flutuante livre, Flutuante		
	Onagraceae	Ludwigia helminthorrhiza	Lombrigueira	livre	Ornamental, medicinal	35
	Hydrocharitaceae	Najas guadalupensis	Lodo	Submersa fixa	Ornamental	42, 50
	Araceae	Pistia stratiotes	Alface d`agua	Flutuante livre	Despoluidor, Infestante, Medicinal, Ornamental	23, 25, 43
	Salviniaceae	Salvinia auriculata	Orelha- de- onça	Flutuante livre	Ornamental, Infestante, Despoluidor	35
Charophyta	Characeae	Chara fragillis	Lodo	Submersa fixa	Despoluidor	33, 42

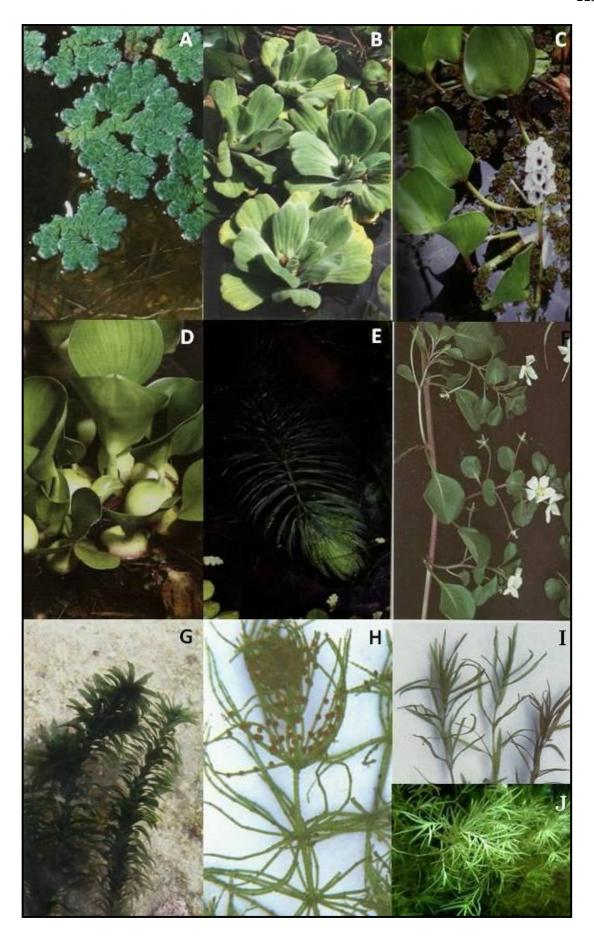


Figura 3.66: Espécies de macrófitas coletadas no Eixo Norte entre os meses de outubro a dezembro de 2012: *Azolla filiculoides (A), Pistia stratiotes* (B), *Eichornnia*

azurea (C), Eichornnia crassipes (D), Ceratophyllum demersum (E), Ludwigia helminthorrhiza (F), Egeria densa (G), Chara fragillis (H), Salvinia auriculata (I) e Najas guadalupensis (J).

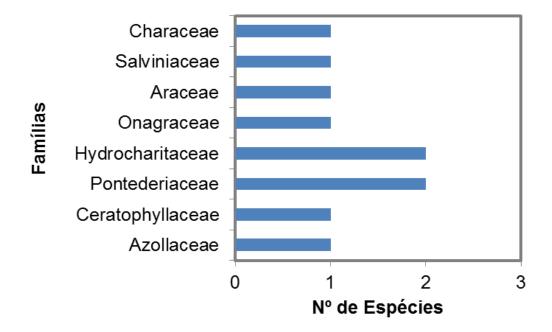


Figura 3.67: Número de espécies por família das macrófitas aquáticas no Eixo Norte das Bacias Hidrográficas do Nordeste Setentrional do Rio São Francisco, nos meses de outubro a dezembro de 2012.

Riqueza Específica e Frequência de Ocorrência

Oito pontos apresentaram menor riqueza de espécies: Q1(*E. densa*), Q3 (*E. azurea*), Q26 (*E. densa*), Q27 (*E. densa*), Q32 (*E. crassipes*), Q36 (*E. crassipes*), Q40 (*E. densa*) e Q45 (*E. densa*), com apenas uma espécie cada.

Três pontos apresentaram maiores valores de riqueza específica: Q35 composto por cinco espécies, (associação de algas, *Cerathophylum demersum, Eichornnia crassipes, Ludwigia helminthorrhiza* e *Salvinia auriculata*), Q24 composta por quatro espécies (Associação de Algas, *Cerathophylum demersum, Eichornnia crassipes* e *Pistia stratiotes*) e Q43 também composta por quatro espécies (*Cerathophylum demersum, Egeria densa, Eichornnia crassipes* e *Pistia stratiotes*).

Em relação à freqüência de ocorrência (F.O.), três espécies foram classificadas como frequentes: *C. demersum* (45,5%), *E. densa* (63,6%) *e E. crassipes* (54,5%); quatro como pouco frequentes: Associação de algas (27,3%), *C. fragillis* (18,2%), *N. guadalupensis* (18,2%), *Pistia stratiotes* (17,3%); *e quatro* como esporádicas: *Azolla filliculoides, E. azurea, L. helminthorrinza e S. auriculata*, todas com 9,1% de F.O. (Tabela 3.29).

Biomassa do Eixo Norte

Para verificar se houve diferença significativa com relação à biomassa das espécies entre os pontos de coleta, foi selecionada a espécie que ocorreu em mais de um ponto de coleta e que obteve biomassa mais representativa.

As macrófitas selecionadas para análise estatística do Eixo Norte foram: Algas, *Chara fragillis*, *Egeria densa*, *Eichornnia crassipes* e *Pistia stratiotes*. Destas, apenas em três espécies foram registradas diferenças significativas. Para biomassa das Algas foi registrado valor mínimo de 3,30 g.ps.m⁻² e máximo de 124,00 g.ps.m⁻², com diferenças significativas entre os pontos de coleta (F=18.38; p=0,013). Para *Egeria densa* os valores de biomassa variaram entre 20,00 g.ps.m⁻² e 320,00g.ps.m⁻², com diferenças significativas entre os pontos de coleta (F=26,76; p<0,001). A biomassa de *Eichornnia crassipes* variou entre 36,00 g.ps.m⁻² e 136,00 g.ps.m⁻², com diferenças significativas entre os pontos (F=19,29; p<0,001). A biomassa das macrófitas identificadas no Eixo Norte estão descritas na Tabela 4 e Figura 3.68.

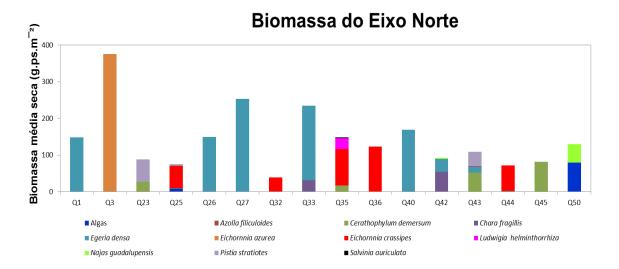


Figura 3.68: Biomassa seca média (g.ps.m⁻²) por pontos de coleta das macrófitas do Eixo Norte do Rio São Francisco com Bacias Hidrográficas do Nordeste Setentrional, coletadas entre os meses de outubro a dezembro de 2012.

Tabela 3.29: Biomassa seca média (g.ps.m⁻²) com desvio-padrão e frequência de ocorrência (F.O.) das macrófitas do Eixo Norte do Rio São Francisco com Bacias Hidrográficas do Nordeste Setentrional, coletadas entre os meses de outubro a dezembro de 2012. *Presença de vegetação somente em um dos pontos da Estação de Coleta, não sendo calculada a média±desvio-padrão.

Estações de Coleta	Q1	Q3	Q23	Q25	Q26	Q27	Q32	Q33
TAXA					(g.ps./m²)			
Associação de Algas				8,52±4,54				
AZOLLACEAE								
Azolla filiculoides								
CERATOPHYLLACEAE								
Cerathophylum demersum			27,17±35,11	1,33±0,95				
CHARACEAE								
Chara fragillis								30,92±25,63
HYDROCHARITACEAE								
Egeria densa	148,00±10,58				149,33±27,23	253,33±57,87		204,00±28,84
Najas guadalupensis								
PONTEDERIACEAE								
Eichornnia azurea		376,00±152,89						
Eichornnia crassipes				61,33±10,07			38,67±2,31	
ONAGRACEAE								
Ludwigia helminthorrhiza								
ARACEAE								
Pistia stratiotes			61,33±33,55	3,88±2,30				
SALVINIACEAE								
Salvinia auriculata								
TOTAL	148,00	376,00	88,50	75,06	149,33	253,33	38,67	234,92

CONTINUA...

Tabela 4

CONTINUAÇÃO

Estações de Coleta	Q35	Q36	Q40	Q42	Q43	Q44	Q45	Q50	F.O
TAXA				(g.ps./m²)				%
Associação de Algas	0,52*							80,00±44,00	27,3
AZOLLACEAE									
Azolla filiculoides						2,63±0,08			9,1
CERATOPHYLLACEAE		<u>-</u>							
Cerathophylum demersum	16,24±5,31				52,00*		81,33±6,11		45,5
CHARACEAE									
Chara fragillis				54,67±28,38					18,2
HYDROCHARITACEAE									
Egeria densa			169,33±30,29	34,67±16,17	16,00*				63,6
Najas guadalupensis				3,22*				49,33±22,03	9,1
PONTEDERIACEAE									
Eichornnia azurea									54,5
Eichornnia crassipes	100,00*	122,67±16,65			1,77*	69,33±18,90			9,1
ONAGRACEAE									
Ludwigia helminthorrhiza	29,51±25,42								18,2
ARACEAE									
Pistia stratiotes					39,49±28,60				27,3
SALVINIACEAE									
Salvinia auriculata	1,99*								9,1
TOTAL	148,26	122,67	169,33	92,55	109,25	71,96	81,33	129,33	

3.4.3 Considerações Finais

Nesta décima terceira campanha foram estudados 57 pontos, dos quais apenas em 22 pontos houveram registros de macrófitas, sendo 16 realizados no Eixo Norte e 6 no Eixo Leste.

No Eixo Leste, as macrófitas da Divisão Tracheophyta predominaram sobre a Divisão Chlorophyta, sendo a Divisão Tracheophyta a mais expressiva com maior número de famílias registradas.

O ponto Q86 apresentou a maior riqueza, composta por quatro espécies de macrófitas. Os pontos de menor riqueza foram Q70 e Q73 com apenas uma espécie. O ponto com maior valor de biomassa foi o Q86 (418,67 g.ps.m⁻²) e o menor foi verificado no ponto Q70 (81.33 g.ps.m⁻²).

Elevados valores de *E. crassipes* continuam ocorrendo nas campanhas do projeto. Tal fato pode ser explicado devido ao porte elevado desta espécie em relação as de menor porte como *C. demersum* e *C. fragilis*. Porém, este fato ainda precisa ser melhor estudado, correlacionando com alguns variáveis abióticas. Em todos os parâmetros estudados não foi observado nenhum padrão de ocorrência.

Com relação à frequência de ocorrência, todas as espécies foram classificadas como pouco frequentes (Associação de Algas, *Cerathophylum demersum, Egeria densa, Eichornnia azurea, Eichornnia crassipes* com 25% e *Ludwigia helminthorrhiza, Pistia stratiotes e Salvinia mínima* com 12,5 % de F.O.

Resultado igual foi verificado no Eixo Leste, onde as famílias das espécies da Divisão Tracheophyta presentes no Eixo Norte continuam a predominar, seguido pelas Divisões Charophyta e Chlorophyta.

A maior riqueza de espécies foi verificada nos pontos Q35 com cinco espécies e a menor riqueza foi observada nos pontos Q1(*E. densa*), Q3 (*E. azurea*), Q26 (*E. densa*), Q27, Q32, Q36, Q40 e Q45, com apenas uma espécie cada.

O ponto de maior valor de biomassa seca média foi registrado em Q3 (376 g.ps.m⁻²), e o menor no ponto Q32 (38,67 g.ps.m⁻²).

Quanto à frequência de ocorrência, as espécies classificadas como frequentes foram *C. demersum* (45,5%), *E. densa* (63,6%) *e E. crassipes* (54,5%). Já as espécies de ocorrência esporádica foram *Azolla filliculoides, E. azurea, L. helminthorrinza* e *S. auriculata* que se destacaram apresentando 9,1% de F.O.

As espécies de Poaceae nesta décima terceira campanha não puderam ser identificadas devido à falta de integridade da sua estrutura, sendo coletados apenas fragmentos da planta, além de não apresentarem suas estruturas reprodutivas.

A impossibilidade de identificação em nível infragenérico das demais macrófitas ainda se deve à falta de exemplares em estágio reprodutivo (presença de flores e frutos). O que poderia ser minimizado se a freqüência de coletas fosse menor (mensal, talvez), aumentando assim, a probabilidade de encontrar indivíduos férteis.

Durante as investigações acerca do epíteto especifico das espécies de macrófitas, ainda foi constatada a existência de verdadeiros tufos de algas filamentosas onde foram dispostas em lâminas, analisadas no fotomicroscópio e classificadas taxonomicamente de acordo com literaturas especificas para identificação de algas. No resultado destas investigações foi observada a presença de associações de algas formando uma única colônia, cujas espécies se dispunham uma sobre as outras, onde pôde ser notado o hábito epifítico de diatomáceas com algas filamentosas e de algas filamentosas entre si.

Conforme estudos de PERES (2002) a vantagem da verificação da qualidade de água através do uso de indicadores biológicos, no caso a flora ficológica, nos pontos de coleta, pode fornecer dados mais corretos sobre a avaliação desta devido ao caráter bioindicador que estas espécies possuem, uma vez que, as medições físicas e químicas só fornecem dados sobre o momento da coleta, enquanto que os indicadores biológicos refletem os efeitos a médio e longo prazo sobre os organismos vivos.

A identificação das algas ocorrentes em ambos os Eixos foi dificultada devido ao rompimento do material citoplasmático das algas, o que impediu a construção de lâminas passiveis de serem analisadas e identificadas em fotomicroscópio. Igualmente, é imprescindível a necessidade de um método especifico para a coleta destas algas, uma vez que a identificação em nível especifico de determinadas algas filamentosas (por exemplo, *Spirogyra* sp.) estejam em estágio reprodutivo.

Sobretudo, a inclusão do método biológico de bioindicação, na verificação da qualidade de água ainda é viável, fazendo uso das microalgas existentes nesses tufos, como por exemplo, utilizando biocenoses de diatomáceas que podem fornecer métodos diversos de bioindicação.

Portanto, o método da bioindicação, tomando por base estudos feitos por Round (1991,1993, apud El Deir & Neurmann-Leitão, 2009) quando utilizada como parâmetro para avaliar as condições do ecossistema, complementam os estudos sobre métodos de analises físicos e químicos da água, que, quando em conjunto, constituem a base para uma correta avaliação da qualidade das águas. **3.5 Parâmetros físico-químicos**

127

A seguir são apresentados os resultados por bacia hidrográfica, referentes à 14ª

campanha, juntamente com os valores estabelecidos na Resolução Conama № 357/05 para

comparação com os resultados obtidos. Os valores que não estão de acordo com a legislação

estão destacados em amarelo.

Os parâmetros analisados foram: Cor aparente, Turbidez, Sólidos dissolvidos totais,

Sólidos suspensos totais, Alumínio dissolvido, Sílica total, DBO, DQO, Carbono Orgânico Total,

Nitrato, Nitrito, Nitrogênio total, Nitrogenio amoniacal, Fósforo reativo total na forma de

ortofosfato (PO₄), Fósforo total na forma de fósforo (P), Clorofila-a, Feofitina, Índice de fenóis,

Coliformes termotolerantes, Coliformes fecais, Carbono Orgânico Total, Índice de Fenóis, Clorofila

A, Feofitina A, Potássio total, Cádmio total, Cálcio total, Chumbo total, Magnésio total, Níquel

total, Sódio total, Zinco total, Cloreto total, Sulfato total, Cobre dissolvido, Ferro dissolvido,

Condutividade elétrica, Alcalinidade bicarbonato, Alcalinidade carbonato, Alcalinidade hidróxidos,

Alcalinidade total, Dureza total, pH, Turbidez e Salinidade.

Para elaboração das tabelas abaixo, os nomes dos pontos de coleta foram apresentados da

seguinte forma: XZY, ex: Q1S10.

Em que:

X: representa o ponto de coleta;

Z: se a coleta é de superfície (S) ou fundo (F);

Y: a campanha da coleta

Bacia do Rio São Francisco

A bacia do rio São Francisco apresentou valores de fósforo total e DBO acima do

permitido na legislação CONAMA 357/05 em todos os pontos analisados (Tabela 3.30). O

reservatório de Sobradinho (Q1) e a captação do eixo norte (Q3) apresentaram concentrações de

ferro dissolvido em não conformidade tanto na superfície quanto no fundo, e o ponto no rio São

Francisco na cidade de Icó (Q86) somente no fundo. Concentrações de cobre dissolvido, um pouco

além do limite estabelecido na Resolução Conama 357, foram encontradas no reservatório de

Itaparica, pontos Q54 e Q84. Estes parâmetros que obtiveram não conformidade, também foram

encontrados na 12ª e 13 ª Campanhas.

Bacia do Rio Brígida

Os valores de fósfoto total, DBO e sólidos dissolvidos totais estavam acima dos limites estabelecidos na legislação nos dois pontos analisados (açude Chapéu – Q49 e açude Entremontes – Q50) (Tabela 3.31). Valores ferro e cobre dissolvido (resultado similar aos da 12ª e 13ª campanhas) e cloretos, também estavam fora padrão exigido na CONAMA 357/05 em pelo menos um dos pontos. O ponto Q2, a foz do rio Brígida, analisado nas campanhas anteriores estava seco na 14ª campanha.

Bacia do Rio Jaquaribe

Todos pontos coletados na bacia do rio Jaguaribe apresentaram concentrações de fósforo total, DBO e cobre, acima do permitido na Resolução CONAMA 357 (Tabela 3.32), indicando grande carga de matéria orgânica na bacia. Destaca-se que o ponto Q13, o açude Atalho, apresentou além dos parâmetros citados anteriormente, valores de ferro, cobre, alumínio e coliformes termotolerantes fora do limite estabelecido na legislação. O açude Castanhão, nos dois pontos analisados, Q26 (centro) e Q27 (eixo), apresentaram baixas concentrações de oxigênio dissolvido, abaixo de 5mg/L.

Bacia do Rio Paraíba

A bacia do rio Paraíba apresentou em todos os pontos com concentrações de DBO, fósforo total e sólidos dissolvidos totais acima do permitido na CONAMA 357 (Tabela 3.33). O açude Poções (Q68) e a jusante do açude epitássio Pessoa (Q74), obtiveram concentrações de cloretos acima do estabelecido na legislação. Em relação às campanhas anteriores, o números de parâmetros em não conformidade diminuiu, mas a evidência dos parâmetros relacionados à poluição dos corpos hídricos e eutrofização se mostra cada vez mais presente nos ambientes.

Tabela 3.30: Resultados parâmetros físico-químicos da bacia do Rio São Francisco

Parâmetros	Unidade	Padrão CONAMA	Q1S14	Q1F14	Q84S14	Q84F14	Q85S14	Q86S14
Turbidez	NTU	máximo 100	41,40	33,00	4,96	11,00	39,10	37,00
Sólidos Suspensos Totais	mg/L		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Sólidos Dissolvidos								
Totais	mg/L	máximo 500	28	97	90	92	32	101
Condutividade Elétrica	mS/cm		6	6	8	8	6	6
pH		entre 6 e 9	7,68	7,01	8,1	7,04	7,05	7,55
Alcalinidade Total	mg/L		29,9	19,9	19,9	39,8	19,9	29,9
Dureza Total	mg/L		29,9	29,9	19,9	29,9	29,9	29,9
Salinidade	%0		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Cálcio Total	mg/L		31,099	29,801	87,042	31,079	27,659	29,117
Magnésio Total	mg/L		0,272	5,033	5,916	2,234	5,797	4,671
Sódio Total	mg/L		14,2	3,1	4	5,5	3,3	3,9
Potássio Total	mg/L		7,166	6,43	6,246	7,072	6,138	6,016
Sulfato	mg/L	máximo 250	22	18	<lq< td=""><td><lq< td=""><td>23</td><td>22</td></lq<></td></lq<>	<lq< td=""><td>23</td><td>22</td></lq<>	23	22
Cloreto	mg/L	máximo 250	3,8	3,6	2,5	4	3,7	3,7
	mg							
Sílica Total	SiO2/L		6,09	5,65	4,64	4,17	5,5	5,27
Ferro Dissolvido	mg/L	máximo 0,3	0,33	0,42	<lq< td=""><td><lq< td=""><td>0,29</td><td>0,29</td></lq<></td></lq<>	<lq< td=""><td>0,29</td><td>0,29</td></lq<>	0,29	0,29
Cobre Dissolvido	mg/L	máximo 0,009	<lq< td=""><td><lq< td=""><td>0,01</td><td>0,01</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,01</td><td>0,01</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	0,01	0,01	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Zinco Total	mg/L	máximo 0,18	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Níquel Total	mg/L	máximo 0,025	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Chumbo Total	mg/L	máximo 0,01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Cádmio Total	mg/L	máximo 0,001	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Alumínio Dissolvido	mg/L	máximo 0,1	<lq< td=""><td>0,3</td><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	0,3	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Oxigênio Dissolvido - OD	mg/L O2	mínimo 5,0	8,24	7,58	7,63	6,08	8,69	8,17
DBO	mg/L O2	máximo 5	25,84	21,9	14,4	22,4	21,9	41,4
DQO	mg/L O2		81,67	84,8	39,85	56,38	62,96	120,19
	mg/L-N							
Nitrogênio - Nitratos	NO ₃	máximo 10	1,3	1,6	0,1	0,4	1,4	1,2
Nitrogênio - Nitritos	mg/L-N NO2	máximo 1	0,083	0,086	0,013	0,027	0,077	0,073
Mitrogenio - Mitritos	mg/L-N	IIIdXIIIIO 1	0,065	0,080	0,015	0,027	0,077	0,073
Nitrogênio - Amoniacal	NH ₃		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Nitrogênio Total	mg/L		1,1	0,7	0,5	0,8	0,7	0,8
Fósforo Reativo	mg/L		0,37	0,33	0,1	0,11	0,23	0,27
Fósforo Total	mg/L	máximo 0,03 p/ ambientes lênticos e 0,1 p/ ambientes						
		lóticos	1,48	0,4	0,96	1,52	1,12	0,52
Carbono Orgânico Total	mg/L		68,6	11,4	68	47,7	6,2	9,1
Clorofila a	mg/L	máximo 30	<lq< td=""><td><lq< td=""><td>0,07</td><td>0,07</td><td>0,82</td><td>0,47</td></lq<></td></lq<>	<lq< td=""><td>0,07</td><td>0,07</td><td>0,82</td><td>0,47</td></lq<>	0,07	0,07	0,82	0,47
Feofitina a	mg/L		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Índice de Fenóis	mg/L		0,19	0,16	0,05	0,05	0,2	0,2
Coliformes	NMP/100	, ,	_	·	_			_
Termotolerantes Coliformes Fecais (E.	mL NMP/100	máximo 1000	2	Ausente	4	21	23	2
Coli)	mL		2	Ausente	Ausente	4	23	2

Parâmetros	Unidade	Padrão CONAMA	Q86F14	Q3S14	Q3F14	Q54S14	Q54F14
Turbidez	NTU	máximo 100	37,90	38,00	38,60	6,70	11,50
Sólidos Suspensos Totais	mg/L		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Sólidos Dissolvidos Totais	mg/L	máximo 500	39	34	96	93	55
Condutividade Elétrica	mS/cm		6	6	6	8	8
рН		entre 6 e 9	7,02	7,24	7,01	8,44	7,14
Alcalinidade Total	mg/L		29,9	29,9	19,9	19,9	49,8
Dureza Total	mg/L		19,9	39,8	29,9	29,9	39,8
Salinidade	%o		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Cálcio Total	mg/L		29,989	26,229	27,26	30,109	29,398
Magnésio Total	mg/L		4,856	5,437	5,098	2,182	3,659
Sódio Total	mg/L		3,2	2,9	3,5	4,8	3,6
Potássio Total	mg/L		6,298	6,051	6,381	6,4	6,27
Sulfato	mg/L	máximo 250	21	23	20	<lq< td=""><td>16</td></lq<>	16
Cloreto	mg/L	máximo 250	3,9	3,9	4	3	4,3
Sílica Total	mg SiO2/L		5,35	5,89	5,77	3,91	3,95
Ferro Dissolvido	mg/L	máximo 0,3	0,34	0,33	0,31	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	_						
Cobre Dissolvido	mg/L	máximo 0,009	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,03</td><td>0,01</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,03</td><td>0,01</td></lq<></td></lq<>	<lq< td=""><td>0,03</td><td>0,01</td></lq<>	0,03	0,01
Zinco Total	mg/L	máximo 0,18	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Níquel Total	mg/L	máximo 0,025	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Chumbo Total	mg/L	máximo 0,01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Cádmio Total	mg/L	máximo 0,001	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Alumínio Dissolvido	mg/L	máximo 0,1	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Oxigênio Dissolvido - OD	mg/L O2	mínimo 5,0	6,99	8,44	7,6	8	6,98
DBO	mg/L O2	máximo 5	42,4	22,4	21,9	18,4	34,4
DQO	mg/L O2		5,67	57,05	54,7	43,62	102,08
Nitrogênio - Nitratos	mg/L-N NO ₃	máximo 10	1,3	1,5	1,4	0,2	0,6
Nitrogênio - Nitritos	mg/L-N NO2	máximo 1	0,075	0,069	0,116	0,011	0,041
Nitrogênio - Amoniacal	mg/L-N NH ₃		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Nitrogênio Total	mg/L		1	0,8	1,1	0,5	0,5
Fósforo Reativo	mg/L		0,28	0,26	0,21	0,075	0,098
Fósforo Total	mg/L	máximo 0,03 p/ ambientes lênticos e 0,1 p/ ambientes lóticos	1,12	0,6	0,48	1,6	1,68
Carbono Orgânico Total	mg/L		7,8	3,7	11,3	64	58,3
Clorofila a	mg/L	máximo 30	3	<lq< td=""><td>0,86</td><td>0,12</td><td>0,14</td></lq<>	0,86	0,12	0,14
Feofitina a	mg/L		3	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Índice de Fenóis	mg/L		0,19	0,2	0,19	0,05	0,19
Coliformes Termotolerantes	NMP/100mL	máximo 1000	> 1,8	33	49	Ausente	4
Coliformes Fecais (E. Coli)	NMP/100mL		> 1,8	13	49	Ausente	Ausente

Tabela 3.31: Resultados parâmetros físico-químicos da bacia do Rio Brígida

Parâmetros	Unidade	Padrão CONAMA	Q49S14	Q49F14	Q50S14
Turbidez	NTU	máximo 100	68,20	70,70	27,20
Sólidos Suspensos Totais	mg/L		<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Sólidos Dissolvidos Totais	mg/L	máximo 500	538	600	1031
Condutividade Elétrica	mS/cm		1	1	2,16
рН		entre 6 e 9	7,82	7,28	7,75
Alcalinidade Total	mg/L		159,4	169,4	89,7
Dureza Total	mg/L		199,3	149,5	318,9
Salinidade	%o		0,58	0,58	1,17
Cálcio Total	mg/L		40,865	34,458	83,363
Magnésio Total	mg/L		54,301	54,989	85,293
Sódio Total	mg/L		125	123	235,1
Potássio Total	mg/L		16,381	16,4	29,007
Sulfato	mg/L	máximo 250	27	29	51
Cloreto	mg/L	máximo 250	270	250	550
Sílica Total	mg SiO2/L		9,14	8,81	1,3
Ferro Dissolvido	mg/L	máximo 0,3	0,14	0,4	<lq< td=""></lq<>
Cobre Dissolvido	mg/L	máximo 0,009	<lq< td=""><td>0,01</td><td><lq< td=""></lq<></td></lq<>	0,01	<lq< td=""></lq<>
Zinco Total	mg/L	máximo 0,18	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Níquel Total	mg/L	máximo 0,025	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Chumbo Total	mg/L	máximo 0,01	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Cádmio Total	mg/L	máximo 0,001	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Alumínio Dissolvido	mg/L	máximo 0,1	0,15	<lq< td=""><td>0,14</td></lq<>	0,14
Oxigênio Dissolvido - OD	mg/L O2	mínimo 5,0	8	5,53	7,77
DBO	mg/L O2	máximo 5	82,4	72,4	42,4
DQO	mg/L O2		169,78	163,8	106,33
Nitrogênio – Nitratos	mg/L-N NO ₃	máximo 10	3,9	4,3	0,6
Nitrogênio – Nitritos	mg/L-N NO2	máximo 1	0,25	0,29	0,036
Nitrogênio – Amoniacal	mg/L-N NH ₃		0,1	0,1	<lq< td=""></lq<>
Nitrogênio Total	mg/L		6	2,1	2,3
Fósforo Reativo	mg/L		0,25	0,28	0,091
Fósforo Total	mg/L	máximo 0,03 p/ ambientes lênticos e 0,1 p/ ambientes lóticos	1,28	0,36	0,32
Carbono Orgânico Total	mg/L		63	<lq< td=""><td>48,9</td></lq<>	48,9
Clorofila a	mg/L	máximo 30	1,51	0,91	1,05
Feofitina a	mg/L		<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Índice de Fenóis	mg/L		0,52	0,51	0,11
Coliformes Termotolerantes	NMP/100mL	máximo 1000	7,8	7,8	23
Coliformes Fecais (E. Coli)	NMP/100mL		2	4,5	4,5

Tabela 3.32: Resultados parâmetros físico-químicos da bacia do Rio Jaguaribe

Parâmetros	Unidade	Padrão CONAMA	Q13S14	Q13F14	Q14S14	Q14F14
Turbidez	NTU	máximo 100	29,40	20,50	8,74	41,90
Sólidos Suspensos Totais	mg/L		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Sólidos Dissolvidos Totais	mg/L	máximo 500	429	282	337	400
Condutividade Elétrica	mS/cm		0,53	0,437	0,57	0,502
рН		entre 6 e 9	8,36	7,47	8,23	7,1
Alcalinidade Total	mg/L		149,5	89,7	129,5	169,4
Dureza Total	mg/L		149,5	129,5	179,4	129,5
Salinidade	%o		0,25	0,2	0,26	0,25
Cálcio Total	mg/L		47,7	40,94	50,67	50,23
Magnésio Total	mg/L		26,67	18,09	28,91	24,04
Sódio Total	mg/L		29,26	20,65	31	26,01
Potássio Total	mg/L		6,29	5,27	6,48	5,83
Sulfato	mg/L	máximo 250	29	90	20	11
Cloreto	mg/L	máximo 250	61	93	58	51
Sílica Total	mg SiO2/L		2,42	3,82	2,22	3,58
Ferro Dissolvido	mg/L	máximo 0,3	<lq< td=""><td>0,72</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	0,72	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
		máximo				
Cobre Dissolvido	mg/L	0,009	<lq< td=""><td>0,13</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	0,13	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Zinco Total	mg/L	máximo 0,18	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Níquel Total	mg/L	máximo 0,025	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Chumbo Total	mg/L	máximo 0,01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Chambo Total	1116/ -	máximo	,LQ	·LQ	·LQ	,LQ
Cádmio Total	mg/L	0,001	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Alumínio Dissolvido	mg/L	máximo 0,1	<lq< td=""><td>0,13</td><td><lq< td=""><td>0,12</td></lq<></td></lq<>	0,13	<lq< td=""><td>0,12</td></lq<>	0,12
Oxigênio Dissolvido - OD	mg/L O2	mínimo 5,0	7,1	5,27	7,06	5,53
DBO	mg/L O2	máximo 5	10	30	14	20
DQO	mg/L O2		43,95	79,26	36,88	51,23
Nitrogênio - Nitratos	mg/L-N NO ₃	máximo 10	0,9	14	0,4	1
Nitrogênio - Nitritos	mg/L-N NO2	máximo 1	0,06	0,8	0,02	0,05
Nitrogênio - Amoniacal	mg/L-N NH ₃		<lq< td=""><td>0,4</td><td><lq< td=""><td>1,9</td></lq<></td></lq<>	0,4	<lq< td=""><td>1,9</td></lq<>	1,9
Nitrogênio Total	mg/L		1,3	2,9	1,5	2,5
Fósforo Reativo	mg/L		0,039	0,7	<lq< td=""><td>0,23</td></lq<>	0,23
Fósforo Total	mg/L	máximo 0,03 p/ ambientes lênticos e 0,1 p/ ambientes lóticos	0,24	1,72	0,52	1,12
Carbono Orgânico Total	mg/L		64,9	48,99	64,4	42,6
Clorofila a	mg/L	máximo 30	0,11	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Feofitina a	mg/L		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Índice de Fenóis	mg/L		0,2	1,2	0,13	0,19
Coliformes Termotolerantes	NMP/100mL	máximo 1000	4	1100	9	150
Coliformes Fecais (E. Coli)	NMP/100mL		Ausente	210	4	28

Parâmetros	Unidade	Padrão CONAMA	Q23S14	Q24S14	Q25S14
Turbidez	NTU	máximo 100	11,1	14,2	3,72
Sólidos Suspensos Totais	mg/L		<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Sólidos Dissolvidos Totais	mg/L	máximo 500	272	237	181
Condutividade Elétrica	mS/cm		0,27	0,376	0,35
рН		entre 6 e 9	8,69	8,34	7,75
Alcalinidade Total	mg/L		99,6	99,6	59,8
Dureza Total	mg/L		149,5	99,6	89,7
Salinidade	%o		0,23	0,19	0,17
Cálcio Total	mg/L		0,8	0,8	0,7
Magnésio Total	mg/L		7,49	6,76	6,35
Sódio Total	mg/L		29,3	29,3	21,3
Potássio Total	mg/L		4,2	4,2	5,3
Sulfato	mg/L	máximo 250	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Cloreto	mg/L	máximo 250	37	31	28
Sílica Total	mg SiO2/L		13,8	13,8	8,55
Ferro Dissolvido	mg/L	máximo 0,3	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
		máximo			
Cobre Dissolvido	mg/L	0,009	0,01	0,02	0,01
Zinco Total	mg/L	máximo 0,18	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Níquel Total	mg/L	máximo 0,025	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Chumbo Total	mg/L	máximo 0,01	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Chambo rotar	6/ -	máximo	,100	120	,100
Cádmio Total	mg/L	0,001	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Alumínio Dissolvido	mg/L	máximo 0,1	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Oxigênio Dissolvido - OD	mg/L O2	mínimo 5,0	6,7	6,56	7,16
DBO	mg/L O2	máximo 5	40,4	42,4	58,4
DQO	mg/L O2		9,39	9,92	126,58
Nitrogênio – Nitratos	mg/L-N NO ₃	máximo 10	0,3	0,3	0,5
Nitrogênio – Nitritos	mg/L-N NO2	máximo 1	0,023	0,02	0,027
Nitrogênio - Amoniacal	mg/L-N NH ₃		<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Nitrogênio Total	mg/L		1	1,2	1,3
Fósforo Reativo	mg/L		0,33	0,22	0,059
Fósforo Total	mg/L	máximo 0,03 p/ ambientes lênticos e 0,1 p/ ambientes lóticos	0,8	0,4	1,12
Carbono Orgânico Total	mg/L		52,69	52,69	<lq< td=""></lq<>
Clorofila a	mg/L	máximo 30	0,83	0,83	0,38
Feofitina a	mg/L		<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Índice de Fenóis	mg/L		0,1	0,08	0,05
Coliformes Termotolerantes	NMP/100mL	máximo 1000	130	130	70
Coliformes Fecais (E. Coli)	NMP/100mL		2	2	1,18

Parâmetros	Unidade	Padrão CONAMA	Q26S14	Q26F14	Q27S14	Q27F14
Turbidez	NTU	máximo 100	0,33	1,62	0,29	1
Sólidos Suspensos Totais	mg/L		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Sólidos Dissolvidos Totais	mg/L	máximo 500	249	235	216	231
Condutividade Elétrica	mS/cm		0,371	0,372	0,37	0,371
рН		entre 6 e 9	7,78	7,42	7,68	7,52
Alcalinidade Total	mg/L		59,8	99,6	129,5	109,6
Dureza Total	mg/L		69,7	79,7	59,8	79,7
Salinidade	%o		0,18	0,18	0,19	0,18
Cálcio Total	mg/L		4,5	4,8	5,3	5,5
Magnésio Total	mg/L		6,64	6,41	5,94	6,6
Sódio Total	mg/L		24,4	21,5	21,4	20,4
Potássio Total	mg/L		5,4	5,1	5	4,7
Sulfato	mg/L	máximo 250	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Cloreto	mg/L	máximo 250	30	28	31	29
Sílica Total	mg SiO2/L		4,09	3,84	3,93	4,04
Ferro Dissolvido	mg/L	máximo 0,3	<lq< td=""><td><lq< td=""><td>0,1</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,1</td><td><lq< td=""></lq<></td></lq<>	0,1	<lq< td=""></lq<>
Cobre Dissolvido	mg/L	máximo 0,009	0,01	<lq< td=""><td><lq< td=""><td>0,01</td></lq<></td></lq<>	<lq< td=""><td>0,01</td></lq<>	0,01
Zinco Total	mg/L	máximo 0,18	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Níquel Total	mg/L	máximo 0,025	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Chumbo Total	mg/L	máximo 0,01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Cádosia Tatal	/1	máximo	40	40	410	41.0
Cádmio Total Alumínio Dissolvido	mg/L mg/L	0,001 máximo 0,1	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	_	mínimo 5,0	<lq 5,39</lq 	<lq 4,54</lq 	<lq 4</lq 	<lq 4,12</lq
Oxigênio Dissolvido - OD	mg/L O2	·				
DBO DQO	mg/L O2 mg/L O2	máximo 5	30,4 99,71	36,4 109,94	40,4 116,21	22,4 72,96
Nitrogênio - Nitratos		máximo 10				
Nitrogênio – Nitritos	mg/L-N NO ₃	máximo 10	0,4 <lq< td=""><td>0,5 <lq< td=""><td>0,4 <lq< td=""><td>0,4</td></lq<></td></lq<></td></lq<>	0,5 <lq< td=""><td>0,4 <lq< td=""><td>0,4</td></lq<></td></lq<>	0,4 <lq< td=""><td>0,4</td></lq<>	0,4
Nitrogênio - Amoniacal	mg/L-N NH ₃	maximo 1	<lq <lq< td=""><td><lq <lq< td=""><td><lq <lq< td=""><td><lq< td=""></lq<></td></lq<></lq </td></lq<></lq </td></lq<></lq 	<lq <lq< td=""><td><lq <lq< td=""><td><lq< td=""></lq<></td></lq<></lq </td></lq<></lq 	<lq <lq< td=""><td><lq< td=""></lq<></td></lq<></lq 	<lq< td=""></lq<>
Nitrogênio Total	mg/L		1,6	1,1	1,4	1,9
Fósforo Reativo			0,097			
Fósforo Total	mg/L mg/L	máximo 0,03 p/ ambientes lênticos e 0,1 p/ ambientes lóticos	0,097	0,078	0,1	0,12
Carbono Orgânico Total	mg/L		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Clorofila a	mg/L	máximo 30	0,42	0,19	0,08	<lq< td=""></lq<>
Feofitina a	mg/L		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Índice de Fenóis	mg/L		0,03	0,03	0,03	0,03
Coliformes Termotolerantes	NMP/100mL	máximo 1000	2	Ausente	Ausente	Ausente
Coliformes Fecais (E. Coli)	NMP/100mL		2	Ausente	Ausente	Ausente

Tabela 3.33: Resultados parâmetros físico-químicos da bacia do Rio Paraíba

Parâmetros	Unidade	Padrão CONAMA	Q68S14	Q70S14	Q73S14	Q73F14	Q74S14	Q76S14
Turbidez	NTU	máximo 100	89,7	3,1	0,48	0,28	67,50	4,00
Sólidos Suspensos Totais	mg/L		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Sólidos Dissolvidos Totais	mg/L	máximo 500	1022	508	502	454	3703	636
Condutividade Elétrica	mS/cm		1,95	1,03	0,97	1,01	5,83	1,39
рН		entre 6 e 9	8,26	8,33	7,81	7,92	8,68	7,47
Alcalinidade Total	mg/L		239,2	119,5	99,6	49,8	368,8	169,4
Dureza Total	mg/L		259,1	149,5	169,4	159,4	1146,3	219,2
Salinidade	%o		1,04	0,57	0,52	0,52	3,34	0,7
Cálcio Total	mg/L		3,1	4	24,92	21,31	41,35	31,7
Magnésio Total	mg/L		15,92	15,02	30,95	27,73	136,06	27,28
Sódio Total	mg/L		73	83	118,39	102,54	573,28	96,7
Potássio Total	mg/L		35	26	5,15	4,66	12,32	5,74
Sulfato	mg/L	máximo 250	22	<lq< td=""><td>12</td><td>44</td><td>107</td><td>20</td></lq<>	12	44	107	20
Cloreto	mg/L	máximo 250	350	130	220	230	1400	320
Sílica Total	mg SiO2/L		11,5	0,28	4,26	4,33	2,24	3,8
Ferro Dissolvido	mg/L	máximo 0,3	0,13	0,1	<lq< td=""><td><lq< td=""><td>0,27</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,27</td><td><lq< td=""></lq<></td></lq<>	0,27	<lq< td=""></lq<>
Cobre Dissolvido	mg/L	máximo 0,009	0,02	0,01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Zinco Total	mg/L	máximo 0,18	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Níquel Total	mg/L	máximo 0,025	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Chumbo Total	mg/L	máximo 0,01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Cádmio Total	mg/L	máximo 0,001	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Alumínio Dissolvido	mg/L	máximo 0,1	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Oxigênio Dissolvido - OD	mg/L O2	mínimo 5,0	6,31	8	5,58	5,93	6,8	7,63
DBO	mg/L O2	máximo 5	64,4	33,4	22	22	100	20
DQO	mg/L O2		235,07	97,9	79	72,56	412,7	57,38
Nitrogênio - Nitratos	mg/L-N NO₃	máximo 10	3,2	<lq< td=""><td>0,1</td><td>1,1</td><td>2,2</td><td>2,9</td></lq<>	0,1	1,1	2,2	2,9
Nitrogênio - Nitritos	mg/L-N NO2	máximo 1	0,25	<lq< td=""><td>0,01</td><td>0,09</td><td>0,174</td><td>0,22</td></lq<>	0,01	0,09	0,174	0,22

Parâmetros	Unidade	Padrão CONAMA	Q68S14	Q70S14	Q73S14	Q73F14	Q74S14	Q76S14
Nitrogênio - Amoniacal	mg/L-N NH ₃		<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,19</td><td>0,16</td><td>1,1</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,19</td><td>0,16</td><td>1,1</td></lq<></td></lq<>	<lq< td=""><td>0,19</td><td>0,16</td><td>1,1</td></lq<>	0,19	0,16	1,1
Nitrogênio Total	mg/L		6,9	1,9	0,6	0,8	4,1	1,8
Fósforo Reativo	mg/L		0,15	<lq< td=""><td>0,11</td><td>0,1</td><td>0,3</td><td>0,29</td></lq<>	0,11	0,1	0,3	0,29
Fósforo Total	mg/L	máximo 0,03 p/ ambientes lênticos e 0,1 p/ ambientes lóticos	1,8	0,15	0,28	0,44	3,76	0,68
Carbono Orgânico Total	mg/L		60,09	<lq< td=""><td>34,19</td><td><lq< td=""><td>8,2</td><td>24,6</td></lq<></td></lq<>	34,19	<lq< td=""><td>8,2</td><td>24,6</td></lq<>	8,2	24,6
Clorofila a	mg/L	máximo 30	6,02	<lq< td=""><td><lq< td=""><td><lq< td=""><td>1,59</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>1,59</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>1,59</td><td><lq< td=""></lq<></td></lq<>	1,59	<lq< td=""></lq<>
Feofitina a	mg/L		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Índice de Fenóis	mg/L		0,56	0,04	0,04	0,53	0,68	0,17
Coliformes Termotolerantes	NMP/100mL	máximo 1000	43	43	4	43	1100	1100
Coliformes Fecais (E. Coli)	NMP/100mL		4	9	Ausente	Ausente	240	15

Bacia do Rio Pajeú

Os dois pontos analisados na bacia do rio Pajeú, assim com nas bacias analisadas anteriormente, apresentaram concentrações de fósforo total e DBO acima do limite máximo estabelecido na resolução CONAMA 357 (Tabela 3.34). O ponto Q78, açude Barra do Juá, apresentou também concentrações de sólidos dissolvidos totais e cloretos em não conformidade. Os pontos Q81 e Q82, respectivamente açude Poço da Cruz e rio Moxotó - a jusante do açude Poço da Cruz, apresentou o cobre desacordo com a legislação.

Bacia do Rio Moxotó

Nos dois pontos analisados nesta bacia, no açude Poço da Cruz (Q81) e no rio Moxotó (Q82), foram encontradas concentrações de fósforo total, DBO e cobre dissolvido foi acima do recomendado na legislação (Tabela 3.35). Ressalta-se que o ponto Q82 também apresentou concentração elevada de sólidos dissolvidos totais. O ponto Q83, onde foi coletada água nas campanhas anteriores estava seco nesta campanha. Os parâmetros em desacordo foram semelhantes aos encontrados nas 12ª e 13 ª campanhas.

Bacia do Rio Apodi

Em todos os pontos foram encontradas elevadas concentrações de DBO acima do limite estabelecido pela resolução CONAMA 357/05 (Tabela 3.36). Elevadas concentrações de fósforo total foram detectadas em quase todos os pontos. Além desses parâmetros, o cobre, ferro e sólidos dissolvidos totais também apresentaram não conformidades em pelo menos um dos pontos coletados.

Bacia do Rio Piranhas

Todos os pontos analisados apresentaram concentrações de DBO e fósforo total acima do limite estabelecido pela resolução CONAMA 357/05. Outros parâmetros que também estiveram em desacordo foram o cobre, ferro e alumínio (Tabela 3.37). Pontos no rio Piranha (Q36 e Q41) e no rio Açu (Q46) obtiveram concentração de coliformes termotolerantes em não conformidade.

Tabela 3.34: Resultados parâmetros físico-químicos da bacia do Rio Pajeú

Parâmetros	Unidade	Padrão CONAMA	Q78S14	Q79S14
Turbidez	NTU	máximo 100	28,50	2,83
Sólidos Suspensos Totais	mg/L		<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Sólidos Dissolvidos Totais	mg/L	máximo 500	1296	467
Condutividade Elétrica	mS/cm		2,15	0,81
рН		entre 6 e 9	7,86	7,61
Alcalinidade Total	mg/L		169,4	19,5
Dureza Total	mg/L		398,7	139,5
Salinidade	%0		1,07	0,39
Cálcio Total	mg/L		28,07	108,6
Magnésio Total	mg/L		25,44	51,64
Sódio Total	mg/L		89,33	232,12
Potássio Total	mg/L		6,19	12,57
Sulfato	mg/L	máximo 250	61	12
Cloreto	mg/L	máximo 250	430	140
Sílica Total	mg SiO₂/L		2,94	2,92
Ferro Dissolvido	mg/L	máximo 0,3	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	O,	máximo		
Cobre Dissolvido	mg/L	0,009	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Zinco Total	mg/L	máximo 0,18	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Niferral Takel	/I	máximo	40	4.0
Níquel Total	mg/L	0,025	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Chumbo Total	mg/L	máximo 0,01 máximo	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Cádmio Total	mg/L	0,001	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Alumínio Total	mg/L		0,18	<lq< td=""></lq<>
Oxigênio Dissolvido	mg/L O ₂	mínimo 5	6,14	8,06
DBO	mg/L O ₂	máximo 5	18	24
DQO	mg/L O ₂		86,43	46,31
Nitrogênio - Nitratos	mg/L-N NO ₃	máximo 10	4,7	0,5
Nitrogênio - Nitritos	mg/L-N NO ₂	máximo 1	0,213	0,018
Nitrogênio - Amoniacal	mg/L-N NH ₃		0,3	<lq< td=""></lq<>
Nitrogênio Total	mg/L		1,5	0,7
Fósforo Reativo	mg/L		0,13	0,22
Fósforo Total	mg/l	máximo 0,03 p/ ambientes lênticos e 0,1 p/ ambientes lóticos	0,84	3,8
Carbono Orgânico Total	mg/L		56	112,9
Clorofila a	mg/L	máximo 30	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Feofitina a	mg/L		<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Índice de Fenóis	mg/L		1,8	0,17
Coliformes Termotolerantes	NMP/100mL	máximo 1000	9	11
Coliformes Fecais (E.Coli)	NMP/100mL		9	4

Tabela 3.35: Resultados parâmetros físico-químicos da bacia do Rio Moxotó

Parâmetros	Unidade	Padrão CONAMA	Q81S14	Q81F14	Q82S14
Turbidez	NTU	máximo 100	25,50	19,30	5,00
Sólidos Suspensos Totais	mg/L		<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Sólidos Dissolvidos Totais	mg/L	máximo 500	499	474	507
Condutividade Elétrica	mS/cm		0,86	0,89	0,90
рН		entre 6 e 9	8,32	7,5	7,38
Alcalinidade Total	mg/L		149,5	149,5	189,4
Dureza Total	mg/L		169,4	189,4	179,4
Salinidade	%0		0,42	0,44	0,45
Cálcio Total	mg/L		69,242	60,103	65,586
Magnésio Total	mg/L		28,368	22,794	26,924
Sódio Total	mg/L		66,9	60,8	68,9
Potássio Total	mg/L		11,744	10,896	11,786
Sulfato	mg/L	máximo 250	14	11	<lq< td=""></lq<>
Cloreto	mg/L	máximo 250	156	120	152
Sílica Total	mg SiO₂/L		2,36	1,77	2,79
Ferro Dissolvido	mg/L	máximo 0,3	<lq< td=""><td>0,13</td><td>0,14</td></lq<>	0,13	0,14
	<u> </u>	máximo			-
Cobre Dissolvido	mg/L	0,009	0,01	0,02	0,01
Zinco Total	mg/L	máximo 0,18	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Níquel Total	mg/L	máximo 0,025	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Chumbo Total	mg/L	máximo 0,01	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Cádmio Total	mg/L	máximo 0,001	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Alumínio Total	mg/L	0,001	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Oxigênio Dissolvido	mg/L	mínimo 5	8	5,4	7,15
DBO	mg/L O ₂	máximo 5	48,4	80,4	50,4
DQO	mg/L O ₂	maximo 3	131,25	162,42	133,29
Nitrogênio - Nitratos	mg/L-N NO ₃	máximo 10	0,8	0,7	0,4
Nitrogênio - Nitritos	mg/L-N NO ₂	máximo 1	0,034	0,037	0,027
Nitrogênio - Amoniacal	mg/L-N NH ₃		<lq< td=""><td>0,9</td><td>1,2</td></lq<>	0,9	1,2
Nitrogênio Total	mg/L		1,9	2,7	2,4
Fósforo Reativo	mg/L		0,045	0,091	0,032
Fósforo Total	mg/l	máximo 0,03 p/ ambientes lênticos e 0,1 p/ ambientes lóticos	1,4	0,6	1,04
Carbono Orgânico Total	mg/L		94,3	95,2	86,1
Clorofila a	mg/L	máximo 30	0,06	0,34	0,1
Feofitina a	mg/L		<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Índice de Fenóis	mg/L		0,18	0,29	0,37
Coliformes Termotolerantes	NMP/100mL	máximo 1000	Ausente	Ausente	21
Coliformes Fecais (E. Coli)	NMP/100mL		Ausente	Ausente	4

Tabela 3.36: Resultados parâmetros físico-químicos da bacia do Rio Apodi

Parâmetros	Unidade	Padrão CONAMA	Q28S14	Q29S14	Q30S14	Q31514	Q31F14
Turbidez	NTU	máximo 100	38,5	42,20	4,01	66,00	62,88
Sólidos Suspensos Totais	mg/L		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Sólidos Dissolvidos Totais	mg/L	máximo 500	225	640	586	452	640
Condutividade Elétrica	mS/cm		0,39	1	0,82	0,89	0,89
рН	-	entre 6 e 9	7,37	7,60	8,90	7,95	8,10
Alcalinidade Total	mg/L		119,6	109,6	199,3	239,2	199,3
Dureza Total	mg/L		119,6	79,7	119,6	99,6	129,5
Salinidade	%0		0,19	0,57	0,41	0,44	0,45
Cálcio Total	mg/L		9,71	12,13	39,06	3,51	12,24
Magnésio Total	mg/L		9,84	10,37	23,8	2,85	10,07
Sódio Total	mg/L		98,05	103,51	103,66	27,28	90,3
Potássio Total	mg/L		14,16	14,3	26,62	8,12	12,69
Sulfato	mg/L	máximo 250	20	31	60	32	36
Cloreto	mg/L	máximo 250	31	270	131	140	130
Sílica Total	mg SiO2/L		3,74	4,43	2,24	4,01	2,88
Ferro Dissolvido	mg/L	máximo 0,3	0,39	0,48	0,34	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Cobre Dissolvido	mg/L	máximo 0,009	0,03	0,08	0,1	0,03	0,03
Zinco Total	mg/L	máximo 0,18	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Níquel Total	mg/L	máximo 0,025	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Chumbo Total	mg/L	máximo 0,01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Cádmio Total	mg/L	máximo 0,001	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Alumínio Dissolvido	mg/L	máximo 0,1	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Oxigênio Dissolvido - OD	mg/L O2	mínimo 5,0	6,27	6,52	7,97	6,07	4,67
DBO	mg/L O2	máximo 5	50,4	54,4	41	54,4	54,4
DQO	mg/L O2		173,99	3,9	170,63	21,34	156,23
Nitrogênio - Nitratos	mg/L-N NO ₃	máximo 10	0,8	1,3	4,6	1,5	1,8
Nitrogênio - Nitritos	mg/L-N NO2	máximo 1	0,078	0,1	0,31	0,12	0,13
Nitrogênio - Amoniacal	mg/L-N NH ₃		0,1	0,9	0,2	0,2	0,3
Nitrogênio Total	mg/L		2,9	3,9	7,8	4,2	6,3
Fósforo Reativo	mg/L		0,76	0,81	<lq< td=""><td>0,55</td><td>0,54</td></lq<>	0,55	0,54
Fósforo Total	mg/L	máximo 0,03 p/ ambientes lênticos e 0,1 p/ ambientes lóticos	1,88	1,88	1,32	0,55	0,84
Carbono Orgânico Total	mg/L		132,81	108,29	429,85	395,45	436,36
Clorofila a	mg/L	máximo 30	<lq< td=""><td>0,18</td><td><lq< td=""><td>0,69</td><td>0,74</td></lq<></td></lq<>	0,18	<lq< td=""><td>0,69</td><td>0,74</td></lq<>	0,69	0,74
Feofitina a	mg/L		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Índice de Fenóis	mg/L		0,54	0,35	0,49	0,31	0,25
Coliformes Termotolerantes	NMP/100mL	máximo 1000	240	24	2	11	21
Coliformes Fecais (E. Coli)	NMP/100mL		Ausente	14	Ausente	4	Ausente

Parâmetros	Unidade	Padrão CONAMA	Q32S14	Q33S14	Q34S14	Q34F14	Q35S14
Turbidez	NTU	máximo 100	78,00	12,20	2,00	6,21	5,58
Sólidos Suspensos Totais	mg/L		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Sólidos Dissolvidos Totais	mg/L	máximo 500	793	214	356	232	195
Condutividade Elétrica	mS/cm		1,68	0,35	0,34	0,34	0,32
рН		entre 6 e 9	7,72	8,00	7,89	7,22	8,36
Alcalinidade Total	mg/L		348,8	79,7	69,7	89,7	89,7
Dureza Total	mg/L		239,2	69,7	59,8	49,8	79,7
Salinidade	%o		0,88	0,17	0,17	0,16	0,16
Cálcio Total	mg/L		50,98	5,83	10,95	10,97	10,75
Magnésio Total	mg/L		26,47	4,15	6,16	5,69	5,6
Sódio Total	mg/L		150,13	23,21	22,13	21,99	28,02
Potássio Total	mg/L		25,48	4,04	5,29	5,17	5,08
Sulfato	mg/L	máximo 250	69	<lq< td=""><td><lq< td=""><td><lq< td=""><td>14</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>14</td></lq<></td></lq<>	<lq< td=""><td>14</td></lq<>	14
Cloreto	mg/L	máximo 250	300	36	39	37	35
Sílica Total	mg SiO2/L		5	3,85	4,11	5	3,96
Ferro Dissolvido	mg/L	máximo 0,3	0,45	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
		máximo					
Cobre Dissolvido	mg/L	0,009	0,09	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Zinco Total	mg/L	máximo 0,18 máximo	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Níquel Total	mg/L	0,025	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Chumbo Total	mg/L	máximo 0,01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
	O,	máximo	,	,		,	,
Cádmio Total	mg/L	0,001	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Alumínio Dissolvido	mg/L	máximo 0,1	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Oxigênio Dissolvido - OD	mg/L O2	mínimo 5,0	6,51	6,9	6,38	5,43	8,94
DBO	mg/L O2	máximo 5	54,4	29,4	30,4	28,4	19,4
DQO	mg/L O2		228,1	48,05	89,95	49,97	49,38
Nitrogênio - Nitratos	mg/L-N NO ₃	máximo 10	4,9	0,2	0,2	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Nitrogênio - Nitritos	mg/L-N NO2	máximo 1	0,4	0,012	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Nitrogênio - Amoniacal	mg/L-N NH ₃		9	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Nitrogênio Total	mg/L		15,4	0,9	1	0,9	1,2
Fósforo Reativo	mg/L		1,18	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Fósforo Total	mg/L	máximo 0,03 p/ ambientes lênticos e 0,1 p/ ambientes lóticos	10	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,2</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,2</td></lq<></td></lq<>	<lq< td=""><td>0,2</td></lq<>	0,2
Carbono Orgânico Total	mg/L		448,02	28,99	33,11	45,47	28,73
Clorofila a	mg/L	máximo 30	0,54	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Feofitina a	mg/L		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Índice de Fenóis	mg/L		1	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Coliformes Termotolerantes	NMP/100mL	máximo 1000	1600	130	Ausente	Ausente	130
Coliformes Fecais (E. Coli)	NMP/100mL		1600	40	Ausente	Ausente	130

Tabela 3.37: Resultados parâmetros físico-químicos da bacia do Rio Piranhas

Parâmetros	Unidade	Padrão CONAMA	Q36S14	Q37S14	Q37F14	Q38S14	Q40S14
Turbidez	NTU	máximo 100	54,30	4,71	2,23	8,00	4,84
Sólidos Suspensos Totais	mg/L		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Sólidos Dissolvidos Totais	mg/L	máximo 500	297	241	243	351	315
Condutividade Elétrica	mS/cm		0,36	0,26	0,26	0,27	0,28
рН		entre 6 e 9	6,98	7,74	7,28	7,93	7,47
Alcalinidade Total	mg/L		129,5	99,6	99,6	89,7	69,7
Dureza Total	mg/L		99,6	69,7	69,7	49,8	85,6
Salinidade	%o		0,17	0,14	0,14	0,14	0,14
Cálcio Total	mg/L		44,98	9,62	22,31	21,92	3,86
Magnésio Total	mg/L		2,49	8,61	8,95	8,91	2,79
Sódio Total	mg/L		26,22	20,96	20,95	20,81	7,04
Potássio Total	mg/L		13,14	4,73	4,79	4,8	2,71
Sulfato	mg/L	máximo 250	36	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Cloreto	mg/L	máximo 250	40	19	17	16	19,4
Sílica Total	mg SiO2/L		4,6	5,4	5,5	6,6	3,75
Ferro Dissolvido	mg/L	máximo 0,3	1,19	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Cobre Dissolvido	mg/L	máximo 0,009	0,08	0,02	<lq< td=""><td><lq< td=""><td>0,01</td></lq<></td></lq<>	<lq< td=""><td>0,01</td></lq<>	0,01
Zinco Total	mg/L	máximo 0,18	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Níquel Total	mg/L	máximo 0,025	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Chumbo Total	mg/L	máximo 0,01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Cádmio Total	mg/L	máximo 0,001	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td>< LQ</td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td>< LQ</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>< LQ</td></lq<></td></lq<>	<lq< td=""><td>< LQ</td></lq<>	< LQ
Alumínio Dissolvido	mg/L	máximo 0,1	<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,16</td><td>0,12</td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,16</td><td>0,12</td></lq<></td></lq<>	<lq< td=""><td>0,16</td><td>0,12</td></lq<>	0,16	0,12
Oxigênio Dissolvido - OD	mg/L O2	mínimo 5,0	5,79	6,41	5,42	6,56	6,28
DBO	mg/L O2	máximo 5	52	14,4	24	52	23
DQO	mg/L O2		135,78	85,46	98,31	109,82	65,78
Nitrogênio - Nitratos	mg/L-N NO ₃	máximo 10	2,2	0,4	0,8	0,4	0,3
Nitrogênio - Nitritos	mg/L-N NO2	máximo 1	0,124	0,017	0,035	0,013	0,037
Nitrogênio - Amoniacal	mg/L-N NH ₃		3	<lq< td=""><td>0,1</td><td>0,1</td><td>0,1</td></lq<>	0,1	0,1	0,1
Nitrogênio Total	mg/L		5,1	0,8	0,8	0,9	1,6
Fósforo Reativo	mg/L		1,49	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Fósforo Total	mg/L	máximo 0,03 p/ ambientes lênticos e 0,1 p/ ambientes lóticos	13,2	1,08	1,36	2,88	0,32
Carbono Orgânico Total	mg/L		127,9	34,84	53,4	67,3	55,28
Clorofila a	mg/L	máximo 30	0,11	0,06	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Feofitina a	mg/L		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Índice de Fenóis	mg/L		1,2	0,09	0,07	0,07	<lq< td=""></lq<>
Coliformes Termotolerantes	NMP/100mL	máximo 1000	1600	4,5	2	33	4,5
Coliformes Fecais (E. Coli)	NMP/100mL		48	Ausente	Ausente	33	2

Parâmetros	Unidade	Padrão CONAMA	Q40F14	Q41S14	Q42S14	Q42F14	Q43S14
Turbidez	NTU	máximo 100	4,87	8,67	9	2,82	17,2
Sólidos Suspensos Totais	mg/L		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Sólidos Dissolvidos Totais	mg/L	máximo 500	310	356	222	150	137
Condutividade Elétrica	mS/cm		0,28	0,126	0,307	0,317	0,30
рН		entre 6 e 9	7,09	7,74	8	7,49	7,29
Alcalinidade Total	mg/L		89,7	49,8	99,6	99,6	39,8
Dureza Total	mg/L		49,8	39,8	59,8	69,7	69,7
Salinidade	%o		0,14	0,06	0,15	0,16	0,16
Cálcio Total	mg/L		8,72	136	0,6	0,6	0,3
Magnésio Total	mg/L		5,22	1,82	5,96	5,9	5,51
Sódio Total	mg/L		21,36	81	25,6	26,8	26,8
Potássio Total	mg/L		6,23	16,6	5,2	5,7	5,80.
Sulfato	mg/L	máximo 250	15	92	<lq< td=""><td><lq< td=""><td>23</td></lq<></td></lq<>	<lq< td=""><td>23</td></lq<>	23
Cloreto	mg/L	máximo 250	20	26	18	17	27
Sílica Total	mg SiO2/L		2,6	2,98	7,85	12,4	7,55
Ferro Dissolvido	mg/L	máximo 0,3	<lq< td=""><td>1,12</td><td><lq< td=""><td>0,1</td><td>0,4</td></lq<></td></lq<>	1,12	<lq< td=""><td>0,1</td><td>0,4</td></lq<>	0,1	0,4
Cobre Dissolvido	mg/L	máximo 0,009	0,02	0,19	0,01	0,02	0,06
Zinco Total	mg/L	máximo 0,18	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Níquel Total	mg/L	máximo 0,025	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Chumbo Total	mg/L	máximo 0,01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Cádmio Total	mg/L	máximo 0,001	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Alumínio Dissolvido	mg/L	máximo 0,1	<lq< td=""><td>0,13</td><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	0,13	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Oxigênio Dissolvido - OD	mg/L O2	mínimo 5,0	5,38	5,98	7,35	4	5,29
DBO	mg/L O2	máximo 5	31	48,4	35,9	40,4	44,4
DQO	mg/L O2		83,48	130,62	97,48	117,33	108,04
Nitrogênio - Nitratos	mg/L-N NO₃	máximo 10	0,8	17	0,5	0,3	5
Nitrogênio - Nitritos	mg/L-N NO2	máximo 1	0,08	1,5	0,027	0,02	0,22
Nitrogênio - Amoniacal	mg/L-N NH₃		0,2	0,27	<lq< td=""><td>0,8</td><td>0,23</td></lq<>	0,8	0,23
Nitrogênio Total	mg/L		1,4	5,5	2,1	2	2,3
Fósforo Reativo	mg/L		<lq< td=""><td>1,17</td><td>0,068</td><td><lq< td=""><td>0,85</td></lq<></td></lq<>	1,17	0,068	<lq< td=""><td>0,85</td></lq<>	0,85
Fósforo Total	mg/L	máximo 0,03 p/ ambientes lênticos e 0,1 p/ ambientes lóticos	0,36	5,52	0,52	2,28	1,96
Carbono Orgânico Total	mg/L		63,1	76,23	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Clorofila a	mg/L	máximo 30	4,39	0,21	0,72	0,13	0,98
Feofitina a	mg/L		<lq< td=""><td><lq< td=""><td><lq< td=""><td>0,54</td><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td>0,54</td><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,54</td><td><lq< td=""></lq<></td></lq<>	0,54	<lq< td=""></lq<>
Índice de Fenóis	mg/L		0,08	1,8	0,11	0,12	0,46
Coliformes Termotolerantes	NMP/100mL	máximo 1000	4,5	>2400	9	Ausente	>2400
Coliformes Fecais (E. Coli)	NMP/100mL		2	>2400	4	Ausente	>2400

Parâmetros	Unidade	Padrão CONAMA	Q44S14	Q45S14	Q47S14	Q47F14	Q48S14
Turbidez	NTU	máximo 100	7,20	0,22	14,20	11,50	16,20
Sólidos Suspensos Totais	mg/L		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Sólidos Dissolvidos Totais	mg/L	máximo 500	246	224	208	210	176
Condutividade Elétrica	mS/cm		0,39	0,40	0,34	0,34	0,33
рН		entre 6 e 9	7,55	8	8,24	7,45	8
Alcalinidade Total	mg/L		99,6	79,7	79,6	69,7	69,7
Dureza Total	mg/L		79,7	99,68	69,7	79,7	69,7
Salinidade	%o		0,19	0,2	0,16	0,17	0,16
Cálcio Total	mg/L		6,91	2,39	6,99	7,12	6,67
Magnésio Total	mg/L		5,98	2,31	4,99	4,94	5,99
Sódio Total	mg/L		36,58	12,02	30,31	31,18	33,51
Potássio Total	mg/L		6,4	2,82	4	4,35	5,05
Sulfato	mg/L	máximo 250	10	10	11	10	13
Cloreto	mg/L	máximo 250	44	41	41	35	40
Sílica Total	mg SiO2/L		0,54	1,66	5	2,97	1,73
Ferro Dissolvido	mg/L	máximo 0,3	0,16	<lq< td=""><td>0,1</td><td>0,11</td><td><lq< td=""></lq<></td></lq<>	0,1	0,11	<lq< td=""></lq<>
Cobre Dissolvido	mg/L	máximo 0,009	<lq< td=""><td><lq< td=""><td>0,14</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td>0,14</td><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	0,14	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Zinco Total	mg/L	máximo 0,18	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Níquel Total	mg/L	máximo 0,025	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Chumbo Total	mg/L	máximo 0,01	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Cádmio Total	mg/L	máximo 0,001	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Alumínio Dissolvido	mg/L	máximo 0,1	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Oxigênio Dissolvido - OD	mg/L O2	mínimo 5,0	6,13	8,58	6,67	5,3	8,81
DBO	mg/L O2	máximo 5	17	37,2	28,4	32	10,8
DQO	mg/L O2		53,26	81,77	84,39	127,69	32,84
Nitrogênio - Nitratos	mg/L-N NO ₃	máximo 10	0,8	<lq< td=""><td>0,3</td><td>0,1</td><td>0,2</td></lq<>	0,3	0,1	0,2
Nitrogênio - Nitritos	mg/L-N NO2	máximo 1	0,061	<lq< td=""><td>0,021</td><td>0,019</td><td>0,016</td></lq<>	0,021	0,019	0,016
Nitrogênio - Amoniacal	mg/L-N NH₃		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Nitrogênio Total	mg/L		0,5	0,8	0,9	1	0,9
Fósforo Reativo	mg/L		0,46	0,43	<lq< td=""><td>0,068</td><td>0,16</td></lq<>	0,068	0,16
Fósforo Total	mg/L	máximo 0,03 p/ ambientes lênticos e 0,1 p/ ambientes lóticos	0,64	0,4	0,32	0,72	0,28
Carbono Orgânico Total	mg/L		55,51	50,92	53,38	51,69	32,68
Clorofila a	mg/L	máximo 30	0,14	<lq< td=""><td>0,19</td><td>0,35</td><td>0,27</td></lq<>	0,19	0,35	0,27
Feofitina a	mg/L		<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""><td><lq< td=""></lq<></td></lq<></td></lq<>	<lq< td=""><td><lq< td=""></lq<></td></lq<>	<lq< td=""></lq<>
Índice de Fenóis	mg/L		0,27	0,16	0,07	0,08	0,09
Coliformes Termotolerantes	NMP/100mL	máximo 1000	150	75	Ausente	Ausente	9
Coliformes Fecais (E. Coli)	NMP/100mL		23	75	Ausente	Ausente	Ausente

3.6 Análise da coleta nictimeral

A escolha dos reservatórios onde seriam realizadas a análise nictimeral seguiu a mesma metodologia adotada para análise do perfil da coluna d'água. Os parâmetros escolhidos para esta análise foram os que tem relação com a eutrofização em ambientes aquáticos, nitrogênio total, salinidade, turbidez, condutividade, nitrito, nitrato, fósforo total, nitrogênio amoniacal, clorofila-a, fósforo reativo solúvel.

De acordo com os resultados obtidos, somente dois parâmetros apresentaram concentrações em desacordo com a Resolução CONAMA 357/2005 o fósforo total - PT (≤0,03 mg/L) em todos os reservatórios durante os sete horários coletados na nictimeral (Tabelas 3.38, 3.39, 3.40, 3.41, 3.42, 3.43 e 3.44).

Estes resultados são semelhantes ao de campanhas anteriores. Estes reservatórios apresentam diversas atividades desenvolvidas no seu entorno, lançamentos de efluentes das cidades sem tratamento e alguns a piscicultura, com utilização de grande quantidade de ração rica em nutrientes.

Tabela 3.38: Coleta nictimeral no ponto Q81 – Reservatório Poço da Cruz

	Padrão CONAMA			HORÁI	RIO DA CO	LETA		
PARÂMETROS	357	08:00	12:00	16:00	20:00	00:00	04:00	08:00
Condutividade (μS/cm)		0,82	0,87	0,87	0,88	0,89	0,89	0,89
Fósforo reativo solúvel		0,09	0,07	0,1	0,08	0,06	0,03	<lq< th=""></lq<>
(mg/L)								
Fósforo total (mg/L)	máximo 0,03	0,4	0,48	0,36	0,52	0,44	0,56	0,44
Nitrato (mg/L)	máximo 10	0,7	0,6	0,8	0,8	0,8	0,8	0,7
Nitrito (mg/L)		0,04	0,04	0,05	0,04	0,05	0,05	0,05
Nitrogênio amoniacal		<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,11</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,11</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>0,11</th><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>0,11</th><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th>0,11</th><th><lq< th=""></lq<></th></lq<>	0,11	<lq< th=""></lq<>
(mg/L)								
Nitrogênio total (mg/L)		2,1	2,1	1,7	2	3	2,5	2
Salinidade		0,43	0,43	0,43	0,44	0,44	0,44	0,44
Turbidez		13,7	11,42	13,7	12,48	14,46	11,27	12,18
Clorofila-a	máximo 30	0,27	0,68	0,60	0,77	0,47	0,42	0,34

^{*}LQ: Limite de quantificação do método

Tabela 3.39: Coleta nictimeral no ponto Q81' – Reservatório Poço da Cruz

	Padrão CONAMA			HORÁI	RIO DA CO	LETA		
PARÂMETROS	357	08:00	12:00	16:00	20:00	00:00	04:00	08:00
Condutividade (μS/cm)		0,88	0,89	0,89	0,91	0,88	0,91	0,9
Fósforo reativo solúvel		0,09	0,1	0,07	0,15	0,09	0,08	<lq< th=""></lq<>
(mg/L)								
Fósforo total (mg/L)	máximo 0,03	0,68	0,52	0,52	0,52	3,6	0,6	0,44
Nitrato (mg/L)	máximo 10	0,6	0,6	0,5	0,6	0,6	3,9	0,7
nitrito		0,03	0,03	0,03	0,03	0,03	0,17	0,05
Nitrogênio amoniacal		1,3	1,3	1,3	1,2	1,2	1,3	1
(mg/L)								
Nitrogênio total (mg/L)		2,5	2,5	2,3	2,4	2,9	2,7	3,2
Salinidade		0,44	0,44	0,44	0,45	0,44	0,45	0,44
Turbidez		11,57	10,35	12,64	10,81	11,42	44,61	15,07
Clorofila-a	máximo 30	0,24	0,08	0,08	<lq< th=""><th>0,15</th><th>0,07</th><th>0,09</th></lq<>	0,15	0,07	0,09

^{*}LQ: Limite de quantificação do método

Tabela 3.40: Coleta nictimeral no ponto Q73 – Reservatório Boqueirão

	Padrão CONAMA	•		HORÁI	RIO DA CO	LETA		
PARÂMETROS	357	08:00	12:00	16:00	20:00	00:00	04:00	08:00
Condutividade (μS/cm)		1,02	1,05	1,03	1,05	1,05	1,02	1,03
Fósforo reativo solúvel		3,9	0,19	0,16	0,13	0,18	0,13	<lq< th=""></lq<>
(mg/L)								
Fósforo total (mg/L)	máximo 0,03	0,32	0,96	0,4	0,28	0,32	0,2	<lq< th=""></lq<>
Nitrato (mg/L)	máximo 10	<lq< th=""><th>0,1</th><th><lq< th=""><th>0,1</th><th>0,1</th><th>0,1</th><th><lq< th=""></lq<></th></lq<></th></lq<>	0,1	<lq< th=""><th>0,1</th><th>0,1</th><th>0,1</th><th><lq< th=""></lq<></th></lq<>	0,1	0,1	0,1	<lq< th=""></lq<>
nitrito		<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Nitrogênio amoniacal		<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
(mg/L)								
Nitrogênio total (mg/L)		<lq< th=""><th>0,7</th><th>0,7</th><th><lq< th=""><th>0,8</th><th>0,8</th><th>0,5</th></lq<></th></lq<>	0,7	0,7	<lq< th=""><th>0,8</th><th>0,8</th><th>0,5</th></lq<>	0,8	0,8	0,5
Salinidade		0,51	0,52	0,52	0,51	0,52	0,51	0,51
Turbidez		1,52	1,22	0,15	0,3	0,46	2,28	1,22
Clorofila-a	máximo 30	0,06	0,09	<lq< th=""><th>0,13</th><th>0,21</th><th>0,3</th><th>0,14</th></lq<>	0,13	0,21	0,3	0,14

^{*}LQ: Limite de quantificação do método

Tabela 3.41: Coleta nictimeral no ponto Q73' – Reservatório Boqueirão

	Padrão CONAMA			HORÁI	RIO DA CO	LETA		
PARÂMETROS	357	08:00	12:00	16:00	20:00	00:00	04:00	08:00
Condutividade (μS/cm)		1,06	1,06	1,05	1,01	1,02	1,04	1,03
Fósforo reativo solúvel		0,14	0,12	0,065	0,12	0,14	0,12	0,068
(mg/L)								
Fósforo total (mg/L)	máximo 0,03	0,44	0,28	0,4	0,28	0,56	0,2	0,07
Nitrato (mg/L)	máximo 10	1	0,1	0,3	0,1	0,1	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
nitrito		0,07	0,01	0,01	0,01	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Nitrogênio amoniacal		<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
(mg/L)								
Nitrogênio total (mg/L)		<lq< th=""><th>0,7</th><th>0,6</th><th>0,6</th><th>0,7</th><th>1,1</th><th>0,5</th></lq<>	0,7	0,6	0,6	0,7	1,1	0,5
Salinidade		0,53	0,52	0,52	0,51	0,51	0,51	0,51
Turbidez		18,73	1,98	4,11	4,72	0,46	0,15	1,98
Clorofila-a	máximo 30	0,11	0,11	0,11	0,16	0,06	0,08	0,29

^{*}LQ: Limite de quantificação do método

Tabela 3.42: Coleta nictimeral no ponto Q48 – Reservatório Armando Ribeiro Gonçalves

	Padrão CONAMA			HORÁI	RIO DA CO	LETA		
PARÂMETROS	357	08:00	12:00	16:00	20:00	00:00	04:00	08:00
Condutividade (µS/cm)		0,33	0,33	0,33	0,33	0,34	0,33	0,33
Fósforo reativo solúvel		<lq< th=""><th>0,19</th><th>0,17</th><th>0,18</th><th>0,12</th><th>0,16</th><th><lq< th=""></lq<></th></lq<>	0,19	0,17	0,18	0,12	0,16	<lq< th=""></lq<>
(mg/L)								
Fósforo total (mg/L)	máximo 0,03	0,2	0,28	0,28	0,68	0,2	0,28	0,2
Nitrato (mg/L)	máximo 10	0,3	0,2	0,2	0,2	0,2	0,2	0,3
Nitrito (mg/L)		0,02	0,02	0,02	0,02	0,02	0,02	0,02
Nitrogênio amoniacal		<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
(mg/L)								
Nitrogênio total (mg/L)		0,7	0,9	1,1	1	0,9	0,8	0,7
Salinidade		0,15	0,16	0,16	0,16	0,16	0,16	0,15
Turbidez		9,74	10,05	13,85	14,01	14,16	7,76	9,74
Clorofila-a	máximo 30	0,18	0,27	0,18	0,19	0,08	0,14	0,18

^{*}LQ: Limite de quantificação do método

Tabela 3.43: Coleta nictimeral no ponto Q27 – Reservatório Castanhão

	Padrão CONAMA			HORÁI	RIO DA CO	LETA		
PARÂMETROS	357	08:00	12:00	16:00	20:00	00:00	04:00	08:00
Condutividade (μS/cm)		0,38	0,39	0,39	0,38	0,38	0,38	0,37
Fósforo reativo solúvel		0,11	0,068	0,052	0,068	0,1	0,078	0,075
(mg/L)								
Fósforo total (mg/L)	máximo 0,03	0,24	0,2	0,32	0,28	0,24	0,28	0,28
Nitrato (mg/L)	máximo 10	0,2	0,2	0,2	0,4	0,4	0,3	0,3
Nitrito (mg/L)		<lq< th=""><th>0,03</th><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>0,014</th><th>0,02</th></lq<></th></lq<></th></lq<></th></lq<>	0,03	<lq< th=""><th><lq< th=""><th><lq< th=""><th>0,014</th><th>0,02</th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>0,014</th><th>0,02</th></lq<></th></lq<>	<lq< th=""><th>0,014</th><th>0,02</th></lq<>	0,014	0,02
Nitrogênio amoniacal		<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
(mg/L)								
Nitrogênio total (mg/L)		1,2	0,7	0,7	0,5	0,9	0,8	1
Salinidade		0,18	0,19	0,19	0,19	0,19	0,19	0,18
Turbidez		0,76	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>1,67</th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th>1,67</th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th>1,67</th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th>1,67</th></lq<></th></lq<>	<lq< th=""><th>1,67</th></lq<>	1,67
Clorofila-a	máximo 30	0,16	0,096	0,11	0,11	0,67	0,11	0,096

^{*}LQ: Limite de quantificação do método

Tabela 3.44: Coleta nictimeral no ponto Q27' – Reservatório Castanhão

	Padrão CONAMA			HORÁI	RIO DA CO	LETA		
PARÂMETROS	357	08:00	12:00	16:00	20:00	00:00	04:00	08:00
Condutividade (μS/cm)		0,38	0,39	0,39	0,39	0,38	0,38	0,38
Fósforo reativo solúvel		0,11	0,094	0,1	0,1	0,094	0,1	0,11
(mg/L)								
Fósforo total (mg/L)	máximo 0,03	0,2	0,24	0,24	0,24	0,2	0,44	0,11
Nitrato (mg/L)	máximo 10	0,3	0,2	0,2	0,2	0,1	0,3	0,4
Nitrito (mg/L)		0,03	0,02	0,017	0,016	0,01	0,01	0,01
Nitrogênio amoniacal		<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
(mg/L)								
Nitrogênio total (mg/L)		1,4	1,2	0,8	0,6	<lq< th=""><th>0,9</th><th>1,8</th></lq<>	0,9	1,8
Salinidade		0,19	0,19	0,19	0,19	0,19	0,19	0,19
Turbidez		1,67	0,99	0,15	<lq< th=""><th><lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""><th><lq< th=""></lq<></th></lq<></th></lq<>	<lq< th=""><th><lq< th=""></lq<></th></lq<>	<lq< th=""></lq<>
Clorofila-a	máximo 30	<lq< th=""><th>0,16</th><th>0,10</th><th>0,11</th><th>0,11</th><th>0,67</th><th><lq< th=""></lq<></th></lq<>	0,16	0,10	0,11	0,11	0,67	<lq< th=""></lq<>

^{*}LQ: Limite de quantificação do método

3.7 Cálculo do Índice de Estado Trófico (IET) e o Índice de Qualidade da Água (IQA)

Foram calculados os índices IET e IQA para os reservatórios considerados anteriormente eutróficos para a 14ª, reservatórios de Itaparica, Boueirão, Poço da Cruz, Armando Ribeiro e Castanhão.

O reservatório de Itaparica, a partir do cálculo do IET, foi hipereutrófico na 14ª campanha e o nível da qualidade calculado pelo IQA foi considerado Bom (Quadro 1).

Ponto	IET	Classe de estado trófico	IQA	Nível de qualidade
Q54S14	80,95	Hipereutrófico	56,7	Bom

Quadro 1 - Valor do IET e do IQA para o reservatório Itaparica

O cálculo do IQA demonstrou que o reservatório Poço da Cruz encontrava-se com nível de qualidade de bom a médio. Quanto ao índice de estado trófico os valores apresentodo-se hipereutrófico (Quadro 2), semelhante as campanhas anteriores, fato esperado pela alta concentração de PT encontrada.

Pontos	IET	Classe de Estado Trófico	IQA	Nível de Qualidade
Q81S14	78,7	Hipereutrófico	48,3	Médio
Q82S14	79,0	Hipereutrófico	54,8	Bom

Quadro 2 - Valor do IET e do IQA para o reservatório Poço da Cruz

O reservatório Boqueirão, a partir do cálculo do IET, foi considerado hipereutrófico nos dois pontos e o nível da qualidade calculado pelo IQA foi considerado Bom no ponto 73 e Médio no ponto 74 (Quadro 3), mesmo fato observado nas 12ª e 13ª campanhas.

Pontos	IET	Classe de Estado Trófico	IQA	Nível de Qualidade
Q73S14	76,6	Hipereutrófico	64,0	Bom
Q74S14	89,7	Hipereutrófico	37,5	Médio

Quadro 3 - Valor do IET e do IQA para o reservatório Boqueirão

O cálculo do IET demonstrou que o reservatório Armando Ribeiro Gonçalves encontra-se hipereutrófico nas duas campanhas, fato observado nas 12ª e 13ª campanhas. Quanto ao índice de qualidade da água foi classificado como Bom(Quadro 4).

Pontos	IET	Classe de Estado Trófico	IQA	Nível de Qualidade
Q47S14	78,5	Hipereutrófico	59,1	Bom

Quadro 4 - Valor do IET e do IQA para o reservatório Armando Ribeiro Gonçalves

Assim como em campanhas anteriores, o reservatório do Castanhão foi considerado hipereutrófico de acordo com o IET em função da elevada concentração de fósforo e apresentou nível de qualidade considerado Bom (Quadro 5).

Pontos	IET	Classe de Estado Trófico	IQA	Nível de Qualidade
Q26S14	82,4	Hipereutrófico	67,7	Bom
Q27S14	74,0	Hipereutrófico	63,2	Bom

Quadro 5 - Valor do IET e do IQA para o reservatório Castanhão

Abaixo (Tabela 3.36) encontram-se as concentrações de fósforo total (PT), clorofila-a e os Índices de Estado Trófico dos açudes/reservatórios onde não houve coleta nictimeral. Os locais escolhidos para a coleta nictimeral foram determinados para os açudes e reservatórios de Poço da Cruz, Boqueirão, Armando Ribeiro Gonçalves e Castanhão por serem considerados importantes reservatórios em seus respectivos Estados, estarem em situação crítica de gestão e possuírem histórico de dados físico-químicos, grande dimensão em termo de volume e extensão. São corpos hídricos construídos para múltiplos usos, responsáveis pelo abastecimento público de várias cidades e que suas águas também são utilizadas para atividades diversas como a aquicultura, indústria, criação de gado, lazer.

Tabela 3.46: Valores de IET (Índice de Estado Trófico), sendo o índice > 59= Eutrófico

		14 CAMPANHA				
AÇUDE/RESERVATÓRIO	PONTO	PT (mg/L)	CL (mg/L)	IET		
Sobradinho	Q01	1,48	ND	86,7		
Terra Nova	Q06			Não houve coleta		
Atalho	Q14	0,52	ND	80,4		
Oros	Q24	0,4	0,83	81,3		
Angicos	Q29	1,88	ND	88,2		
Pau dos Ferros	Q31	0,55	0,69	81,9		
Santa Cruz	Q34	ND	ND	Não detectado		
Eng. Avidos	Q37	1,08	0,06	77,9		
São Gonçalo	Q40	0,32	ND	77,4		
Coremas	Q42	0,52	0,72	81,8		
Chapéu	Q49	1,28	1,51	86,4		
Entremontes	Q50	0,32	1,05	81,2		

		14 CAMPANHA				
AÇUDE/RESERVATÓRIO	PONTO	PT (mg/L)	CL (mg/L)	IET		
Poções	Q68	1,8	6,02	90,8		
Camalaú	Q70	0,15	ND	72,8		
Barra do Juá	Q78	0,84	ND	83,3		

Legenda: Eutrófico: 59<IET=63; Supereutrófico: 63<IET=67; Hipereutrófico: > 67. ND: não detectado

De acordo com o IET, a maior parte dos açudes/reservatórios estão considerados hipereutróficos. Isto se deve pela elevada concentração de fósforo total, parâmetro este utilizado para o cálculo do IET. Praticamente todas as concentrações de clorofila-a ficaram abaixo do limite de detecção do método, não sendo possível calcular o IET da clorofila e fazer a média aritimética com o do PT.

Porém para definição do potencial de eutrofização de cada corpo d'água levamos em consideração outros fatores como o uso e ocupação do solo no seu entorno e suas finalidades (abastecimento, piscicultura, irrigação, geração de energia, etc). Por isso, nestes corpos d'água não houve coleta nictmeral e de perfil da coluna d'água.

3.8 Seleção do modelo proposto para avaliação da qualidade da água gerenciamento da qualidade de água dos reservatórios e seu entorno

O modelo matemático selecionado para ser aplicado após a operação do Projeto, como previsto nas condicionantes, foi o QUAL-UFMG. Um dado essencial para aplicação do modelo é a vazão de entrada e de saída nos corpos hídricos. Como este valor ainda não está disponível, a aplicação do modelo será juntamente com a operação do Projeto.

Diversos autores tem utilizado recentemente o modelo QUAL-UFMG (VON SPERLING, 2007) para avaliar a qualidade da água, simular cenários e prever o comportamento de corpos hídricos em todo o país, visando com isso subsidiar a tomada de decisão na gestão dos recursos hídricos.

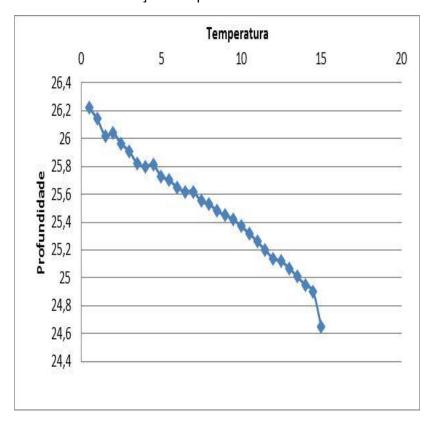
Diante da utilização e aplicabilidade diversificada, a opção pelo QUAL-UFMG baseou-se ainda na facilidade de utilização, considerando a interface e o idioma, e a utilização de parâmetros básicos para a avaliação qualitativa do recurso hídrico (OD, DBO, Fósforo total e coliformes termotolerantes).

Este modelo, baseado no modelo QUAL2E, desenvolvido pela USEPA nos Estados Unidos, permite simulações mais rápidas e simples, facilitando o contato inicial dos usuários com a modelagem avançada.

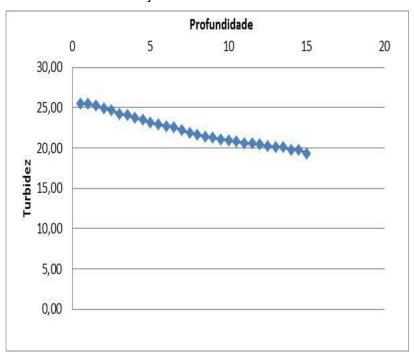
O QUAL-UFMG foi utilizado por Ide e Ribeiro (2009) para simular cenários e prever o comportamento no rio Taquarizinho, na bacia do rio Taquari, no Mato Grosso do Sul, em consequência das constantes modificações em seu cenário devido à ocupação e ao manejo inadequado do solo. Fato que também irá acontecer quando da implementação do PISF.

No estudo de Guedes (2009), utilizou-se os modelos matemáticos de Streeter e Phelps, QUAL2K e QUAL-UFMG na modelagem da água como subsídio para a tomada de decisão nos processos de planejamento e gestão dos recursos hídricos do rio Pomba em Minas Gerais. Dentre os modelos, foi identificado que o QUAL-UFMG foi o que melhor representou as informações qualitativas observadas nas seções de monitoramento do rio estudado.

Paula (2011) avaliou a capacidade de autodepuração do rio Jordão considerando as contribuições do córrego Brejo Alegre em período seco e chuvoso, tendo em vista o lançamento de efluentes brutos de parte da cidade de Araguari (MG) no córrego. Para esta avaliação foi utilizado o modelo QUAL-UFMG.


3.9 Análise do perfil da coluna d'água

Foram analisados os perfis da coluna d'água dos reservatórios de Poço da Cruz, Boqueirão, Armando Ribeiro Gonçalves e Castanhão. Como em coletas anteriores, os reservatórios não apresentaram grande estratificação ao longo da coluna d'água no dia da coleta. O reservatório Poço da Cruz apresentou uma estratificação no hipolímnio, abaixo de 1,5m em relação à temperatura e turbidez. O Boqueirão e Castanhão também apresentaram estratificação em relação à turbidez.


Q81 – Reservatório Poço da Cruz

Profundidade (m)	рН	Cond.E (Ms/cm)	Turb (NTU)	OD (mg/L)	T (°C)	SAL (ppt)	SDT(g/L)
0,5	8,31	0,865	25,50	8,78	26,22	0,02	0,554
1,0	8,20	0,868	25,47	8,53	26,14	0,02	0,554
1,5	8,22	0,874	25,21	8,41	26,02	0,02	0,557
2,0	8,17	0,875	24,90	8,09	26,04	0,02	0,557
2,5	8,12	0,878	24,71	8,07	25,96	0,02	0,560
3,0	8,12	0,878	24,21	7,89	25,91	0,02	0,560
3,5	8,05	0,878	24,07	7,71	25,82	0,02	0,562
4,0	7,97	0,878	23,71	7,66	25,80	0,02	0,562
4,5	7,92	0,877	23,48	7,54	25,81	0,02	0,562
5,0	7,93	0,877	23,17	7,48	25,73	0,02	0,564
5,5	7,87	0,879	22,88	7,36	25,70	0,02	0,564
6,0	7,90	0,879	22,75	7,28	25,65	0,02	0,564
6,5	7,85	0,880	22,61	7,19	25,62	0,02	0,564
7,0	7,82	0,880	22,17	7,11	25,62	0,02	0,564
7,5	7,82	0,880	21,92	7,07	25,55	0,02	0,564
8,0	7,78	0,880	21,65	6,93	25,53	0,02	0,564
8,5	7,80	0,880	21,42	6,81	25,48	0,02	0,565
9,0	7,76	0,880	21,27	6,73	25,45	0,02	0,565
9,5	7,81	0,880	21,11	6,60	25,42	0,02	0,565
10,0	7,77	0,880	20,97	6,53	25,37	0,02	0,565
10,5	7,70	0,881	20,78	6,45	25,32	0,02	0,565
11,0	7,70	0,881	20,62	6,33	25,26	0,02	0,565
11,5	7,72	0,881	20,54	6,26	25,20	0,02	0,565
12,0	7,68	0,881	20,41	6,18	25,14	0,02	0,565
12,5	7,71	0,881	20,23	6,12	25,12	0,02	0,565
13,0	7,72	0,881	20,15	6,09	25,07	0,02	0,565
13,5	7,72	0,881	20,07	6,02	25,01	0,02	0,565
14,0	7,67	0,882	19,82	5,93	24,95	0,02	0,565
14,5	7,61	0,886	19,80	5,78	24,90	0,02	0,568
15,0	7,50	0,888	19,30	5,40	24,65	0,02	0,568

Estratificação Temperatura X Profundidade

Estratificação Turbidez X Profundidade

Q73 – Reservatório Boqueirão

Profundidade (m)	рН	Cond.E (Ms/cm)	Turb (NTU)	OD (mg/L)	T (°C)	SAL (ppt)	SDT(g/L)
0,5	8,00	1,02	12,68	5,93	24,98	0,03	0,652
1,0	7,97	1,01	12,23	5,92	24,93	0,03	0,647
1,5	7,98	1,00	11,81	5,68	24,90	0,03	0,643
2,0	7,97	0,999	11,26	5,76	24,88	0,03	0,639
2,5	7,95	0,999	11,87	5,76	24,87	0,03	0,637
3,0	7,93	0,992	11,3	5,80	24,85	0,03	0,635
3,5	7,91	0,991	10,82	5,66	24,85	0,03	0,634
4,0	7,90	0,990	10,5	5,59	24,84	0,03	0,633
4,5	7,89	0,990	10,5	5,57	24,83	0,03	0,634
5,0	7,91	0,989	9,08	5,69	24,81	0,03	0,633
5,5	7,91	0,989	10,27	5,52	24,82	0,03	0,633
6,0	7,94	0,989	11,76	5,51	24,81	0,03	0,633
6,5	7,93	0,990	10,84	5,74	24,81	0,03	0,633
7,0	7,96	0,991	10,44	5,74	24,81	0,03	0,634
7,5	7,96	0,999	9,65	5,61	24,81	0,03	0,634
8,0	7,97	0,991	9,8	5,50	24,81	0,03	0,634
8,5	8,01	0,992	10,13	5,37	24,79	0,03	0,635
9,0	8,00	0,991	9,38	5,48	24,79	0,03	0,634
9,5	8,00	0,991	9,33	5,19	24,76	0,03	0,635
10,0	7,96	0,992	9,1	5,19	24,76	0,03	0,635
10,5	7,95	0,992	8,26	5,31	24,75	0,03	0,635
11,0	7,98	0,992	7,74	5,11	24,75	0,03	0,635
11,5	7,97	0,991	7,02	5,17	24,67	0,03	0,634
12,0	7,96	0,991	7,32	5,29	24,65	0,03	0,633
12,5	7,96	0,990	7,09	5,35	24,59	0,03	0,633
13,0	7,97	0,989	7,18	5,28	24,58	0,03	0,633

Q27 - Reservatório Castanhão

Profundidade (m)	рН	Cond.E (Ms/cm)	Turb (NTU)	OD (mg/L)	T (°C)	SAL (ppt)	SDT(g/L)
0,5	8,00	0,378	0,87	6,10	27,42	0,01	0,246
1,0	7,58	0,373	0,79	5,40	27,35	0,01	0,243
1,5	7,55	0,373	0,63	4,25	27,23	0,01	0,243
2,0	7,45	0,373	0,65	4,27	27,16	0,01	0,242
2,5	7,53	0,373	0,61	4,29	27,15	0,01	0,242
3,0	7,54	0,372	0,59	4,43	27,14	0,01	0,242
3,5	7,56	0,372	0,51	4,59	27,13	0,01	0,242
4,0	7,57	0,372	0,48	4,40	27,12	0,01	0,242
4,5	7,54	0,372	0,48	4,15	27,12	0,01	0,242
5,0	7,52	0,372	0,42	4,04	27,10	0,01	0,242
5,5	7,50	0,372	0,41	4,16	27,08	0,01	0,242
6,0	7,51	0,372	0,37	4,19	27,08	0,01	0,242
6,5	7,53	0,372	0,4	4,09	27,08	0,01	0,242
7,0	7,54	0,372	0,53	4,08	27,07	0,01	0,242
7,5	7,54	0,372	0,2	4,07	27,08	0,01	0,242
8,0	7,55	0,372	0,18	4,05	27,08	0,01	0,242
8,5	7,56	0,372	0,17	4,06	27,08	0,01	0,242
9,0	7,56	0,372	0,27	4,05	27,07	0,01	0,242
9,5	7,57	0,372	0,14	4,05	27,07	0,01	0,242
10,0	7,56	0,372	0,19	4,07	27,06	0,01	0,242
10,5	7,93	0,374	0,36	4,85	27,04	0,01	0,243
11,0	7,91	0,371	0,36	4,44	27,05	0,01	0,241
11,5	7,93	0,373	0,36	4,07	27,06	0,01	0,242
12,0	7,90	0,374	0,11	4,01	27,02	0,01	0,243
12,5	7,86	0,374	0,11	4,01	27,01	0,01	0,243
13,0	7,92	0,373	0,16	4,02	27,03	0,01	0,242
13,5	7,89	0,372	0,16	4,02	27,05	0,01	0,242
14,0	7,88	0,371	0,16	4,01	27,06	0,01	0,242

Q48- Reservatório Armando Ribeiro Gonçalves

Profundidade (m)	рН	Cond.E (Ms/cm)	Turb (NTU)	OD (mg/L)	T (°C)	SAL (ppt)	SDT(g/L)
0,5	8,45	0,331	16,10	8,76	27,95	0,01	0,215
1,0	8,42	0,331	16,02	8,72	27,91	0,01	0,215
1,5	8,36	0,333	16,00	8,58	27,85	0,01	0,216
2,0	8,30	0,333	15,92	8,60	27,81	0,01	0,216
2,5	8,21	0,333	15,96	8,28	27,83	0,01	0,217
3,0	8,15	0,334	15,88	8,31	27,75	0,01	0,217
3,5	8,18	0,334	15,81	8,17	27,80	0,01	0,217
4,0	8,13	0,335	15,74	8,02	27,77	0,01	0,218
4,5	8,07	0,335	15,70	7,96	27,78	0,01	0,218

É importante destacar que a profundidade no eixo destes reservatório oscilou bastante em relação às campanhas anteriores. Destacando-se o Boqueirão, o Armando Ribeiro Gonçalves e o Castanhão, que diminuíram sua profundidade em 44%, 31% e 20% respectivamente.

3.10 Análise estatística múltiparâmetros

De acordo com a análise realizada no Programa SPSS, uma análise discriminante para evidenciar como os parâmetros se comportam em cada bacia e se existe diferença entre elas, e ficou demonstrado que as bacias dos rio São Francisco e Moxotó se diferenciam em relação às demais (Tabela 3.46).

Na matriz de estruturas, segundo cada função canônica (1 a 7), foram determinados os parâmetros que mais influenciaram na definição dos grupos de bacias, com nota de qua a função numero 4 é a que mais distingue os grupos. Os parâmetros que se destacaram foram o magnésio, a dureza e a condutividade (Tabela 3.47).

O gráfico representado na Figura 3.69, em relação à Função 1 e 2, demonstra a separação entre as bacias analisadas, demonstrando que em relação aos parâmetros físico-químicos da 14ª campanha as Bacias dos rios São Francisco e Moxotó se diferenciam das demais.

Tabela 3.46:Resultado da classificação por Bacias

Resultados da classificação^{a,c}

		Bacia			Associaç	ão ao grup	o prevista				Total
			Piranhas	Paraiba	SãoFran cisco	Brigida	Jaguarib e	Apo di	Moxo tó	Pajeu	
	-	Piranhas	14	0	0	0	0	0	0	0	14
		Paraiba	0	6	0	0	0	0	0	0	6
		SãoFrancisco	0	0	6	0	0	0	0	0	6
		Brigida	0	0	0	3	0	0	0	0	3
	Contagem	Jaguaribe	0	0	0	0	11	0	0	0	11
		Apodi	0	0	0	0	0	10	0	0	10
		Moxotó	0	0	0	0	0	0	3	0	3
		Pajeu	0	0	0	0	0	0	0	2	2
Original		Piranhas	100,0	,0	,0	,0	,0	,0	,0	,0	100,0
		Paraiba	,0	100,0	,0	,0	,0	,0	,0	,0	100,0
		SãoFrancisco	,0	,0	100,0	,0	,0	,0	,0	,0	100,0
		Brigida	,0	,0	,0	100,0	,0	,0	,0	,0	100,0
	%	Jaguaribe	,0	,0	,0	,0	100,0	,0	,0	,0	100,0
		Apodi	,0	,0	,0	,0	,0	100	,0	,0	100,0
		Moxotó	,0	,0	,0	,0	,0	,0	100,0	,0	100,0
		Pajeu	,0	,0	,0	,0	,0	,0	,0	100,0	100,0
		Piranhas	7	0	0	1	2	3	0	1	14
		Paraiba	1	0	0	1	2	1	0	1	6
		SãoFrancisco	0	0	6	0	0	0	0	0	6
	Cantagam	Brigida	0	1	0	2	0	0	0	0	3
	Contagem	Jaguaribe	1	0	0	0	9	0	0	1	11
		Apodi	2	2	0	0	1	4	1	0	10
		Moxotó	0	0	0	0	0	0	3	0	3
Com		Pajeu	1	1	0	0	0	0	0	0	2
validação cruzada ^b		Piranhas	50,0	,0	,0	7,1	14,3	21,4	,0	7,1	100,0
		Paraiba	16,7	,0	,0	16,7	33,3	16,7	,0	16,7	100,0
		SãoFrancisco	,0	,0	100,0	,0	,0	,0	,0	,0	100,0
	0/	Brigida	,0	33,3	,0	66,7	,0	,0	,0	,0	100,0
	%	Jaguaribe	9,1	,0	,0	,0	81,8	,0	,0	9,1	100,0
		Apodi	20,0	20,0	,0	,0	10,0	40,0	10,0	,0	100,0
		Moxotó	,0	,0	,0	,0	,0	,0	100,0	,0	100,0
		Pajeu	50,0	50,0	,0	,0	,0	,0	,0	,0	100,0

a. 100,0% de casos originais agrupados corretamente classificados.

b. A validação cruzada é feita apenas para os casos da análise. Na validação cruzada, cada caso é classificado pelas funções derivadas de todos os casos diferentes desse caso.

c. 56,4% de casos com validação cruzada agrupados corretamente classificados.

Tabela 3.47: Parâmetros que proporcionaram a distinção por bacias

Matriz de estruturas

			Matriz de es	Função			
	1	2	3	4	5	6	7
Magnésio	-,025	,116	,080,	<mark>,302</mark> *	, <mark>215</mark>	,008	,003
Dureza	-,019	,033	,032	, <mark>236</mark> *	,235	-,137	,068
Cond.	,174	,107	,005	, <mark>234</mark> *	,222	-,131	,062
Cobre	-,008	-,029	-,043	-,114*	-,008	,085	,004
Salinidade	-,021	,050	,016	,247	,342*	-,106	,061
Cloreto	-,019	,064	,015	,259	,340*	-,070	,056
Sódio	-,021	,052	,018	,256	,322*	,017	,006
Potássio	-,013	,077	,032	,057	,319*	,106	-,010
alcalTot	-,035	,017	,050	-,024	,299*	-,099	-,020
Ntotal ^b	-,052	,004	,008	-,094	,291*	,175	-,077
solDisso	-,021	,028	,011	,218	,286*	-,080	,051
СОТ	-,006	-,042	,027	-,207	,277*	,209	-,266
ClorofA	-,003	,014	-,075	,152	,200*	-,088	-,012
Turbidez	,006	,071	,007	-,008	,199*	,103	-,135
DBO	-,022	,074	,086	-,067	,182*	,065	,123
sulfatoTot	-,005	,020	-,020	,087	,148*	,029	-,105
Sílica	,002	,036	-,041	-,002	-,118 [*]	-,072	-,096
nAmoniacal	-,004	-,017	,010	-,085	,088*	,027	-,057
Fenois ^b	,025	-,020	-,041	-,067	-,083*	-,004	-,032
Ecoli ^b	-,065	-,014	-,053	,040	,077*	-,031	,024
ColTermoT	-,009	-,010	-,055	,000	,074*	-,071	,054
Cálcio	,003	,023	,147	,147	-,001	,172*	,075
Alumínio	,012	,030	,006	,118	-,113	,161*	-,068
рН	-,018	-,009	-,003	,012	,142	-,156 [*]	-,080
OD	,027	,024	,021	,058	,125	,136 [*]	,068
FostTotal	-,002	-,027	-,031	,009	,021	,118*	,066
FosfReat	-,001	-,012	-,048	-,077	,050	,096 [*]	-,085
FerroDiss	,007	,004	-,037	-,061	-,014	,089*	,044
Nitrito	-,005	,009	-,028	,013	,001	,048*	-,002
DQO	-,012	,040	,014	,038	,197	-,009	,219*
FeofA	,003	,012	,035	,011	,057	-,067	-,110 [*]
Nitratos	-,005	,010	-,013	,037	-,019	,041	-,052 [*]

As correlações dentro de grupos em pool entre variáveis discriminantes e funções discriminantes canônicas padronizadas

Variáveis ordenadas por tamanho absoluto de correlação dentro da função.

^{*.} Maior correlação absoluta entre cada variável e qualquer função discriminante

b. Essa variável não é usada na análise.

Funções discriminantes canônicas Bacia Piranhas OParaiba 40-SãoFrancisco ○Brigida Jaguaribe O Apodi O Moxotó Brigida ○ Pajeu ■ Centroide de grupo 20-Paraiba <u>Jag</u>uaribe SãoFrancisco Moxotó Pajeu Apodi -20 -40° -40 -20 20 0 40 Função 1

Figura 3.69: Gráfico das funções discriminantes canônias

4. Considerações finais

Os resultados alcançados na 14ª campanha, assim como nas anteriores, demonstram que os principais parâmetros analisados apresentam-se com a mesma variação das campanhas anteriores. Em relação aos biológicos, as espécies que são dominantes e freqüentes praticamente se repetem a cada coleta. Entre os físico-químicos, os parâmetros que indicam eutrofização do ambiente como fósforo, DBO e clorofila-a, apresentam constantemente valores elevados, fato evidenciado pela literatura existente sobre esses corpos d'água.

O histórico período da seca na região do semiárido nordestino, maior seca das últimas décadas, fez com que o nível diminuísse nos açudes e reservatórios, e muitos pontos de rio encontravam-se secos. Em campo foi possível observar o baixo nível de água, fazendo com que a concentração de poluentes, caso existisse no ambiente, prejudicasse a qualidade da água, interferindo nos principais parâmetros e espécies encontradas.

A importância dos dados destas campanhas e da próxima, prevista para o segundo semestre, irão demosntrar como se comportarão os dados no período de estiagem, onde praticamente não choveu.

Como previsto anteriormente, os reservatórios considerados corpos receptores, que apresentam múltiplos usos, como abastecimento público e industrial, irrigação, piscicultura; foram analisados em relação ao índice de estado trófico (IET) e de qualidade da água (IQA). Salienta-se que grande parte dos reservatórios existentes, de acordo com literatura científica e resultados do EIA-RIMA do empreendimento, já apresentaram históricos de eutrofização, não causados pela implementação da obra. O PISF, quando em operação, irá favorecer a melhora nas condições desses corpos d'água com a mistura de suas águas com as do rio São Francisco, de melhor qualidade.

Torna-se importante o acompanhamento das modificações nas condições aquáticas dos rios, açudes e reservatórios estudados, a fim de monitorar as mudanças nas comunidades biológicas e nos prâmetros físico-químicos. Com isso, posteriormente, após a operação do projeto, será possível comparar os dados atuais com os futuros, que serão influenciados pela obra propriamente dita. Os dados atuais não sofrem impacto pela implementação do PISF.

5. Referências bibliográficas

ALLAN, J.D. Life history patterns in zooplankton. Am. Nat., v. 110, n. 71, p.165-180, 1976.

AMATO C. G.; SPONCHIADO, M.; SCHWARZBOLD, A. 2007. Estrutura de uma Comunidade de Macrófitas Aquáticas em um Açude de Contenção (São Jerônimo, RS). **Revista Brasileira de Biociências**, Porto Alegre, v. 5, supl. 1, p. 828-830, jul.

ANDRÉA TUCCI A., SANT'ANNA C. L., GENTIL R. C., AZEVEDO M. T. P. Fitoplâncton do Lago das Garças, São Paulo, Brasil: um reservatório urbano eutrófico. **Hoehnea**, v.33, n.2, p.147-175, 2006.

AZEVEDO, S. M. F. O.; EVANS, W. R.; CARMICHAEL, W. W.; NAMIKOSHI, M. (1994), First Report of Microcystis from a Brazilian isolate of the cyanobacterium, Microcystis aeruginos, **J. Appl. Phycol.**, 6, 261-265.

BELLINGER, E.G.; SIGEE, D, C. Freshwater algae. Published for Jonh Willey & Sons, Ltda. First edition: USA, 2010.

BICUDO, C.E.; MENEZES, M. **Gênero de algas de águas continentais do Brasil.** 2° edição. São Carlos, SP. Ed. Guanabara. 2006

BIRABEN, M. Los cladoceros de La família chydoridae. Physis (XVII), pp. 651-70.1939.

BOSCHILIA, S. M.;. OLIVEIRA, E.F.; THOMAZ, S.M. 2008. Do aquatic macrophytes co-occur randomly? An analysis of null models in a tropical floodplain. **Oecologia.** 156:203–214.

BOUVY M, BARROS-FRANÇA L, CARMOUZE JP. Compartimento microbiano no meio pelágico de sete açudes do estado de Pernambuco (Brasil). **Acta Limnol bras**. 10:93-101. 1998.

BOUVY, M.; FALCÃO, D.; MARINHO, M.; PAGANO, M. & MOURA, A. 2000. Occurrence of Cylindrospermopsis (Cyanobacteria) in 39 brazilian tropical reservoirs during the 1998 drought. **Aquatic Microbial Ecology** 23: 13-27.

BOUVY, M.; MOLICA, R.; DE OLIVEIRA, S.; MARINHO, M. & BECKER, B. 1999. Dynamics of a toxic cyanobacterial Bloom (Cylindrospermopsis raciborskii) in a shallow reservoir in the semi-arid region of northeast Brazil. **Aquatic Microbial Ecology** 20: 285-297.

BOUVY, M.; MOLICA, R.; OLIVEIRA, S.; MARINHO, M. & BEKER, B. 2001. Effects of a cyanobacterial bloom Cylindrospermopsis raciborskii) on bacterial and zooplankton communities in Ingazeira reservoir (Northeast, Brazil). **Aquatic Microbial Ecology** 25: 215-227.

BRASIL. Ministério de Meio Ambiente. **Programa Nacional de Meio Ambiente II (PNMA II). Brasília**, 2000.

BRASSAC N.M., LUDWIG T.A.V. Fragilariaceae (Bacillariophyceae) de rios da bacia do Iguaçu, Estado do Paraná, Brasil. **Revista Brasil. Bot**., v.26, n.3, p.311-318. 2003.

CHELLAPPA N. T., CHELLAPPA, S. L., CHELLAPPA S. Harmful Phytoplankton Blooms and Fish Mortality in a eutrophicated reservoir of Northeast Brazil **BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY** Vol. 51, n. 4: pp.833-841, July-Aug 2008.

CHELLAPPA, N.T. & COSTA, M.A.M. 2003. Dominant and co-existing epecies of Cyanobacteria from a eutrophicated reservoir of Rio Grande do Norte State, Brazil. Acta Oecologica 24: S3-S10.

COOK, C.D. K.; GUT, B.J.; RIX, E.M.; SCHNELLER, J.; SEITZ, M. Water plants of the world: a manual for the identification of the genera of freshwater macrophytes. **The Hague**, W. Junk. 1974.

CRONQUIST, A. **An integrated system of classification of flowering plants**. New York, Columbia University Press, 1981.

DANTAS, Ê. W., MOURA, A. N., BITTENCOURT-OLIVEIRA, M. C., ARRUDA NETO, J. D. T., CAVALCANTI, A. D. C. Temporal variation of the phytoplankton community at short sampling intervals in the Mundaú reservoir, Northeastern Brazil. **Acta bot. bras**. 22(4): 970-982. 2008.

EL-DEIR, S. NEURMANN-LEITÃO, S. **Bioindicadores da Qualidade Ambiental.** 1º edição. Recife, Pernambuco. Editado pelo Instituto Brasileiro Pró-Cidadania. 2002.

ELMOOR-LOUREIRO, L.M.A. **Manual de identificação de cladóceros límnicos do Brasil.** Universa Brasília, 156p., 1997.

ESTEVES, F.A. Fundamentos de limnologia. Rio de janeiro: Ed. Interciência/Finep. 1988.

GANNON, J.E.; STEMBERGER, R.S. Zooplankton (especially crustaceans and rotifers) as indicators of water quality. *Trans. Am. Microsc. Soc.*, v. 1, n. 97, p. 16-35, 1978.

GUEDES, H. A. S. **Modelagem da qualidade da água e da autodepuração do rio Pomba**. Dissertação de Mestrado. Universidade Federal de Viçosa-MG, 2009.

GOMES C.T.S. **Análise da variação qualiquantitativa do fitoplâncton no reservatório do Carpina- PE**. [Dissertação de mestrado]. Universidade Federal Rural de Pernambuco (UFRPE). No prelo 2008.

IDE, W.; RIBEIRO, M. L. Calibração do modelo de qualidade da água QUAL-UFMG para o rio Taquarizinho em período de estiagem. Caderno de Recursos Hídricos, 2009.

IRGANG, B.E.; GASTAL JR., V.C.S. **Macrófitas aquáticas da planície costeira do RS.** Porto Alegre. Edição dos autores, 1ª ed., 290 p. 1996.

JOLY, A. B. Botânica: introdução a taxonomia vegetal. São Paulo: Ed. Nacional. 1987.

JUDD, W.S.; KELLOG, E. A.; STEVENS, P.F. **Plant Systematics: a Phylogenetic Approach.** Sinauer Associates, Sunderland. 2002.

KOSTE, W. Rotatotia: Die Rädertierre Mitteleuropas. Uberordnung monogononta. Gebrüder Borntraeger, Berlin, 637p.1978.

LAGOS, N.; ONODERA, H.; ZAGASTTO, H.; ANDRINOLO, D.; AZEVEDO, M.F.Q.; OSHIMA, Y. (1999), The first evidence of paralytic shellfish toxins in the fresh water cyanobacterium Cylindrospermopsis raciborskii, isolated from Brazil. **Toxicon**., 3, 1357-1373.

LOBO, E. A., CALLEGARO, V. L. M., BENDER, E. P. Utilização de Algas Diatomáceas Epilíticas como Indicadores da Qualidade da Água em Rios e Arroios da Região Hidrográfica do Guaiba, RS, Brasil. Santa Cruz do Sul, RS: EDUNISC, p. 127. 2002.

MATIAS, L. Q.; AMADO, E.R.; NUNES, E.P. 2003. Macrófitas aquáticas da lagoa de Jijoca de Jericoacoara, Ceará, Brasil. **Acta bot. bras**. 17(4): 623-631.

MOLICA, R.J.R.; OLIVEIRA, E.J.A.; CARVALHO, P.V.V.C.; COSTA, A.N.S.F.; CUNHA, M.C.C.; MELO, G.L. & AZEVEDO, S.M.F.O. 2005. Occurrence of saxitoxins and an anatoxin-a(s)-like anticholinesterase in a Brazilian drinking water supply. **Harmful Algae** 4: 743-753.

MORI, S.A. SILVA, L.A.M.; LISBOA, G.; CORANDIN, L. **Manual de manejo do herbário fanerogâmico**. Ilhéus: Centro de Pesquisas do Cacau, 103p. 1989.

NORDI, N. & WATANABE, T. 1978. Nota preliminar sobre os rotíferos (zooplâncton) do Açude Epitácio Pessoa, Boqueirão, Paraíba. **Revista Nordestina de Biologia 1**(1):31-39.

OLIVEIRA, N. M. B.; SAMPAIO, E. V. S. B.; PEREIRA, S. M. B.; MOURA JUNIOR, A. M. 2005. Capacidade de regeneração de *Egeria densa* nos reservatórios de Paulo Afonso, BA. **Planta Daninha**, Viçosa-MG, v. 23, n. 2, p. 363-369.

PAULA, L. M. Avaliação da qualidade da água e autodepuração do rio Jordão, Araguari (MG). Dissertação de Mestrado. Universidade Federal de Uberlândia-MG, 2011.

PEREIRA, R. C.; SOARES-GOMES, A. Biologia marinha. Rio de Janeiro: Interciência, 380p., 2002.

PERES, A. C. Uso de macroalgas e variáveis físicas, químicas e biológicas para avaliação da qualidade da água do Rio do Monjolinho, São Carlos, estado de São Paulo. 2002.131 f. Tese (Doutorado em Ecologia, com campo de pesquisa em Limnologia). Programa de pós-graduação em Ecologia e Recursos naturais da Universidade Federal de São Carlos, São Carlos, SP, 2002.

PITELLI, R. A. 1998. Macrófitas aquáticas no Brasil, na condição de problemáticas. In: WORKSHOP DE CONTROLE DE PLANTAS AQUÁTICAS, Brasília. **Resumos...** Brasília: IBAMA, 1998. p. 12-15.

PIVARI, M. O. D.; POTT, V. J.; POTT, A. 2008. Macrófitas aquáticas de ilhas flutuantes (baceiros) nas ilhas flutuantes (baceiros) nas sub-regiões do Abobral e Miranda, MS, Brasil. **Acta Botanica Brasilica** 22: 559-567.

POTT, V.J.; POTT, A. **Plantas Aquáticas do Pantanal**. EMBRAPA. Corumbá: Centro de Pesquisa Agropecuária do Pantanal. 2000.

REID, J. W. e TURNER, P. N. **Plankton Rotifera, Copepoda and Cladocera from Lagos Açú and Viana,State of Maranhão, Brazil**. Rev. Brasil. Biol., 43 (3): 485-495. 1988.

RODRIGUES L. L., SANT'ANNA C. L., TUCCI A. Chlorophyceae das represas Billings (Braço Taquacetuba) e Guarapiranga, SP, Brasil. **Rev. Bras. Bot**. v.33, n.2, p.247-264. 2010.

ROUND, F. E. Biologia das Algas. 2 ed. Rio de Janeiro, Guanabara Dois. 1983.

RUTTNER-KOLISCO, A. **Plankton rotifers: biology and taxonomy**. E. Schweizerbart'Sche Verlagsbuchlandlung, Stuttgart, 146p. 1974.

SANT'ANNA, C. L. et al. Review of toxic species of cyanobacteria in Brazil. **Algological Studies**. p. 251-265. 2008.

SEGERS, H. Rotifera: The Lecanidae (Monogonota). In: H. Dumont e T. Nogrady (eds.), Guides to the identificationion of the microinvertebrates of the continental water of the world, v. 6., 226p. SPC Academic Publishing. 1995.

SLÁDECEK, V., 1983. Rotifers as indicators of water quality. Hydrobiologia, 100: 169-201.

STRASKRABA, M.; TUNDISI, J.G. **Diretrizes para o gerenciamento de lagos**. Gerenciamento da qualidade da água de represas. Tradução: VANNUCCI, D. (Trad.). TUNDISI, J.G (Ed.) v. 9. ILEC. IIE. 2000. 258 p.

VON SPERLING, M. **Estudos e modelagem da qualidade da água de rios**. 1ª. ed. Belo Horizonte: Departamento de Engenharia Sanitária e Ambiental; Universidade Federal de Minas Gerais, p. 317-576, 2007.

WOYNAROVICH E. Manual de piscicultura. Brasília: MINTER/CODEVASF

ANEXO

ZOOBENTOS MAIS REPRESENTATISVOS DO RIO SÃO FRANCISCO E BACIAS SETENTRIONAIS DO NORDESTE DO BRASIL.

Figura 1- (Zoobentos-Mollusca-Bivalvia) *Anodontites trapezialis*, coletados nas bacias setentrionais do NE do Brasil. Ímpares, vista dorsal; Pares, vista interna.

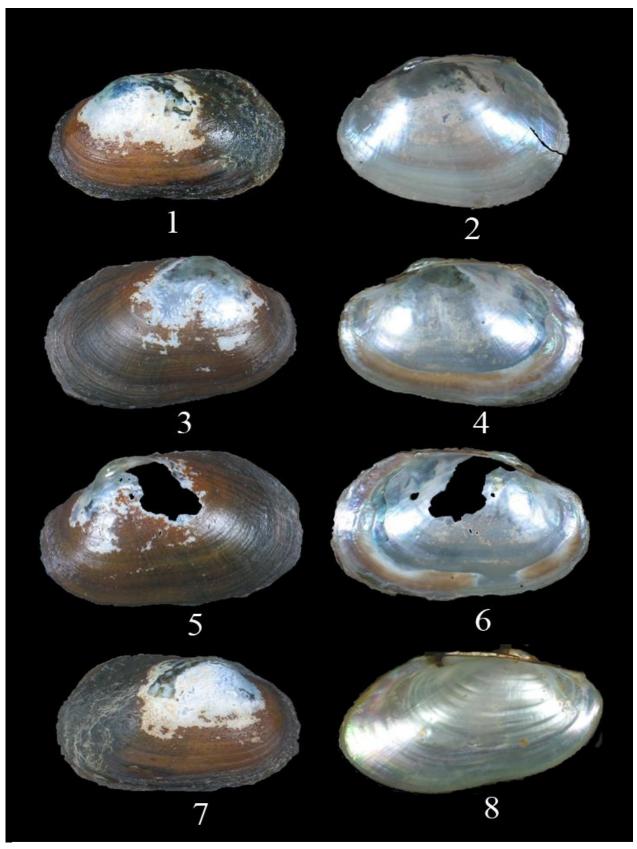


Figura 2- (Zoobentos-Mollusca-Bivalvia) *Anodontites trapezialis*, coletados nas bacias setentrionais do NE do Brasil. Ímpares, vista dorsal; Pares, vista interior.

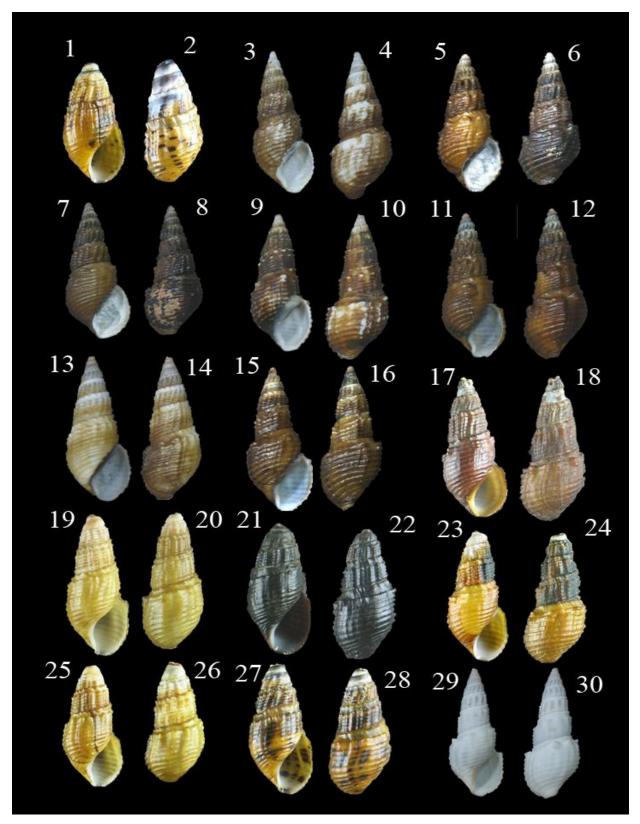


Figura 3- (Zoobentos-Mollusca-Gastropoda) coletados nas bacias setentrionais do NE do Brasil. *Aylacostoma* sp. 1, 19,21,23,25,27, vista ventral; 2, 20, 22, 24, 26, 28, vista dorsal; *Aylacostoma tuberculata* . 3, 5, 7, 9, 11, 13, 15, 17, 29, vista ventral; 4, 6, 8, 10, 12, 14, 16, 18, 30 - vista dorsal.

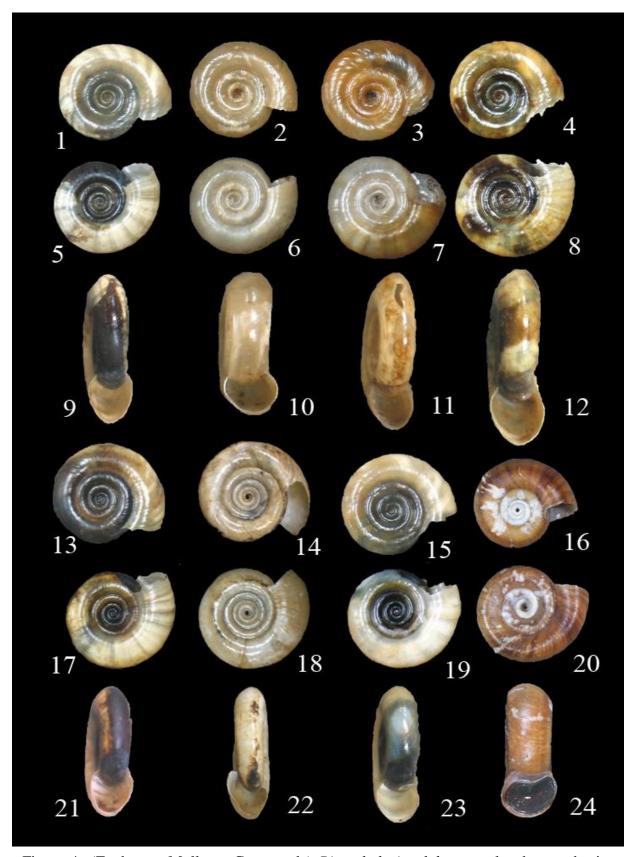


Figura 4- (Zoobentos-Mollusca-Gastropoda) *Biomphalaria glabrata*, coletadas nas bacias setentrionais do NE do Brasil. 1-4, 13-16, vista dorsal; 5-8, 17-20, vista ventral; 9-12, 21-24, vista anterior.

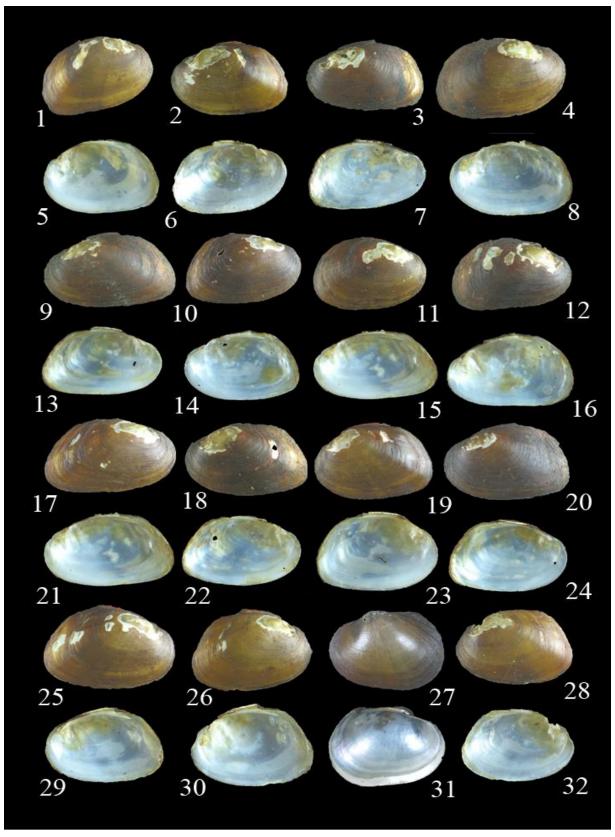


Figura 5- (Zoobentos-Mollusca-Bivalvia) *Diplodon* sp., coletados nas bacias setentrionais do NE do Brasil. 1-4, 9-12, 17-20, 25-28, vista dorsal; 5-8, 13-16, 21-24, 29-32, vista interior.

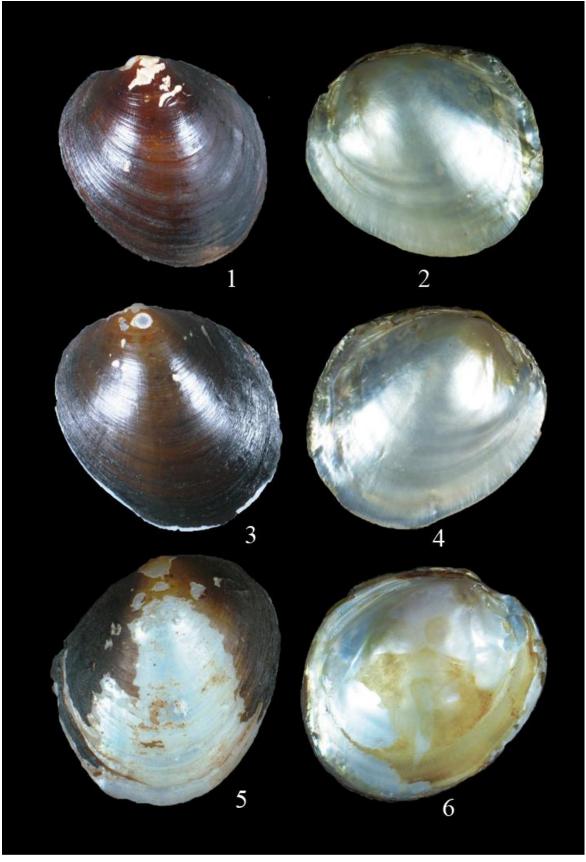


Figura 6- (Zoobentos-Mollusca-Bivalvia) *Diplodon* sp., coletados nas bacias setentrionais do NE do Brasil. Ímpares, vista dorsal; Pares, vista interior.

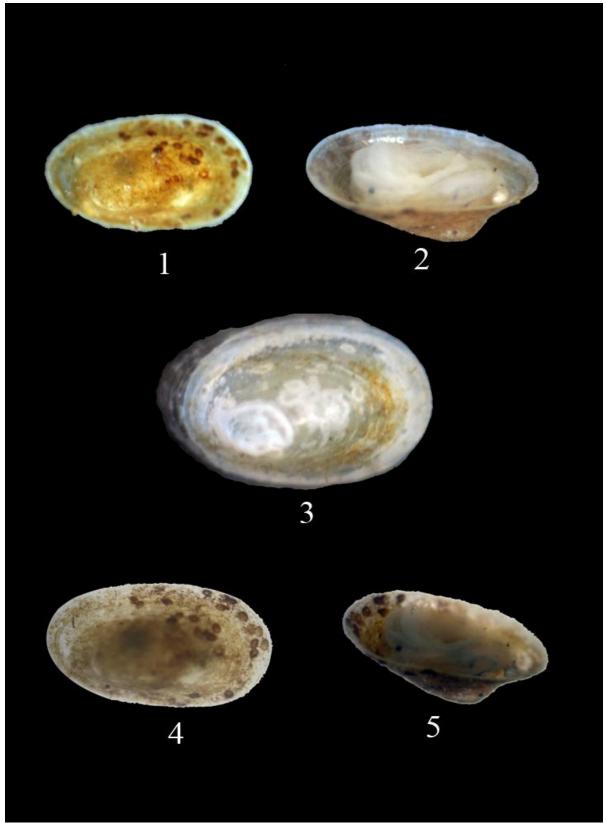


Figura 7- (Zoobentos-Mollusca-Gastropoda) *Hebetancylus moricandi,* coletados nas bacias setentrionais do NE do Brasil.. 1-5, vista interior com partes moles.

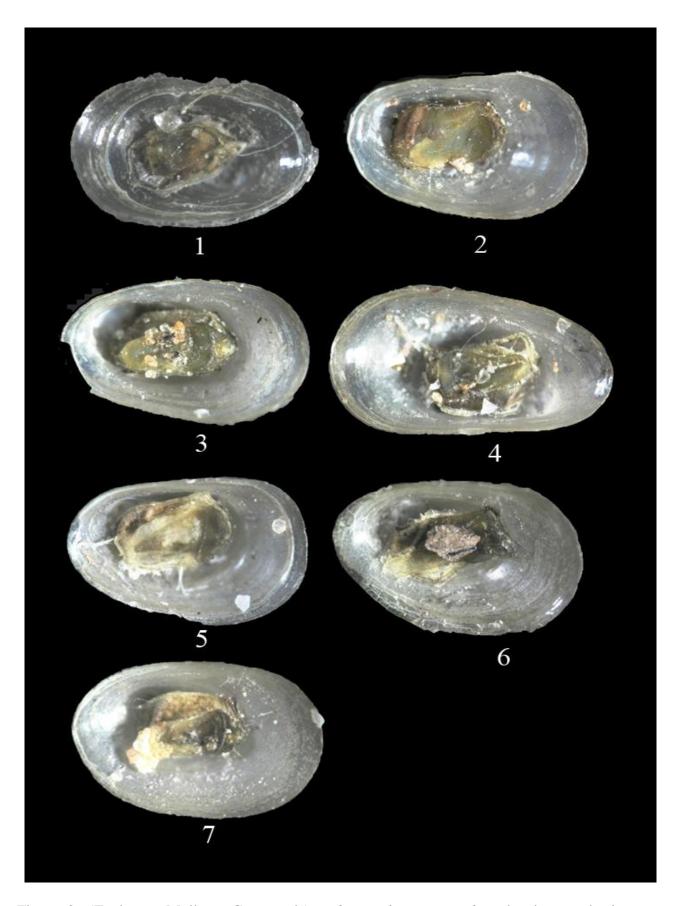


Figura 8- (Zoobentos-Mollusca-Gastropoda) *Hebetancylus moricandi*, coletados nas bacias setentrionais do NE do Brasil. 1-7, vista interior com partes moles.

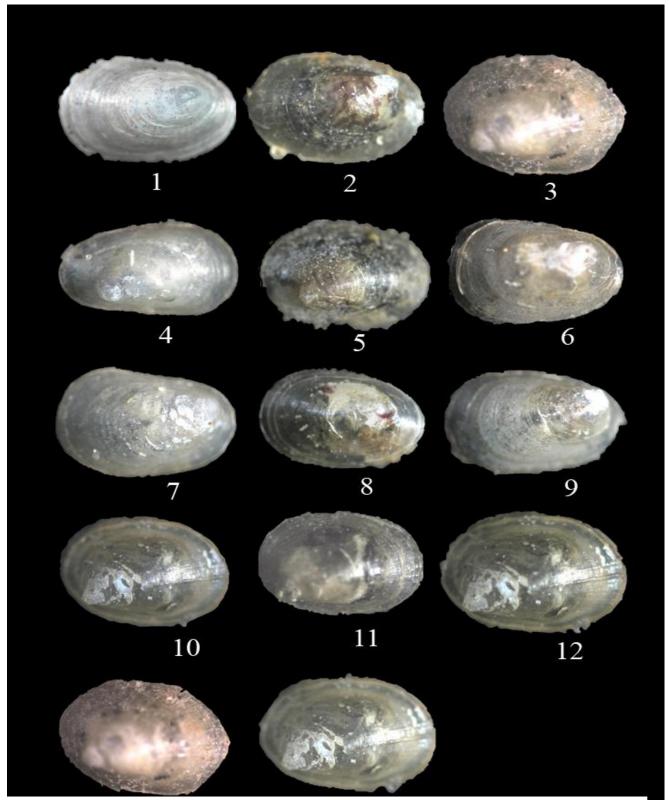


Figura 9- (Zoobentos-Mollusca-Gastropoda) *Hebetancylus* m*oricandi*, coletados nas bacias setentrionais do NE do Brasil. 1-14, vista dorsal.

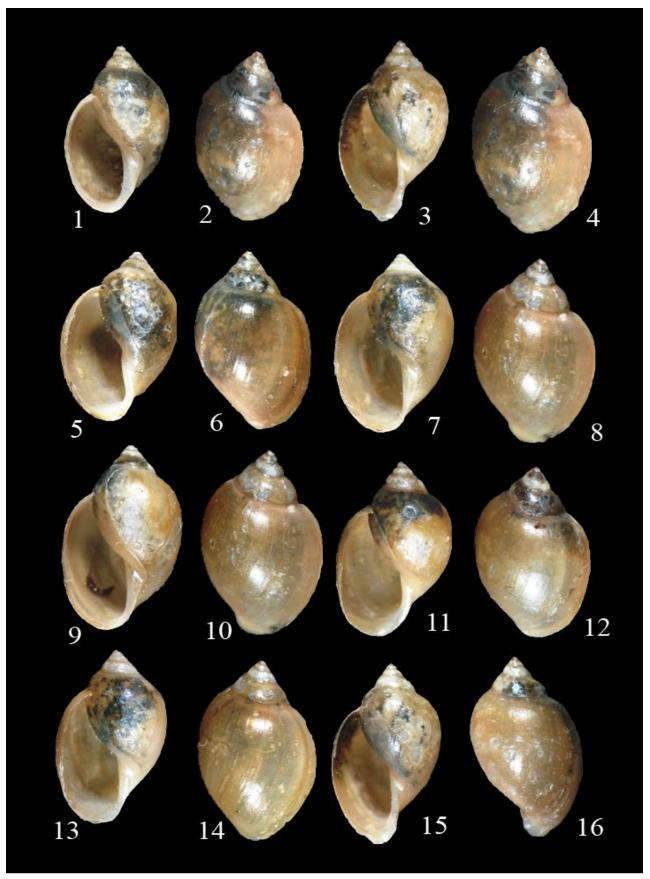


Figura 10- (Zoobentos-Mollusca-Gastropoda) *Physa cubensis*, coletadas nas bacias setentrionais do NE do Brasil.. Ímpares, vista ventral ; Pares, vista dorsal.

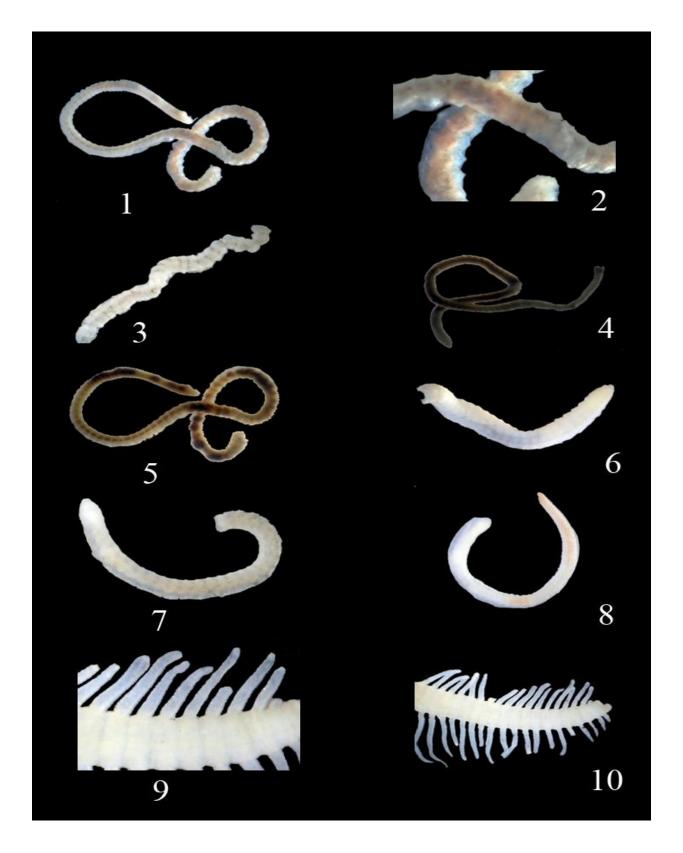


Figura 11- (Zoobentos-Annelida-Oligochaeta) coletados nas bacias setentrionais do NE do Brasil. 1-8, vista geral; 9-10, detalhe dos metâmeros e parapodia.

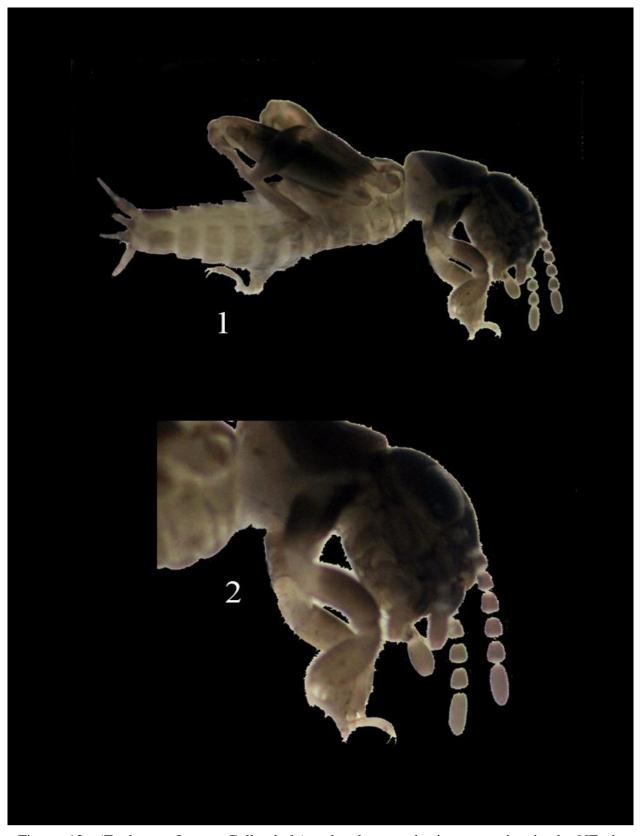


Figura 12- (Zoobentos-Insecta-Collembola) coletados nas bacias setentrionais do NE do Brasil. 1, vista geral; 2, cabeça, tórax e primeiro par de patas.

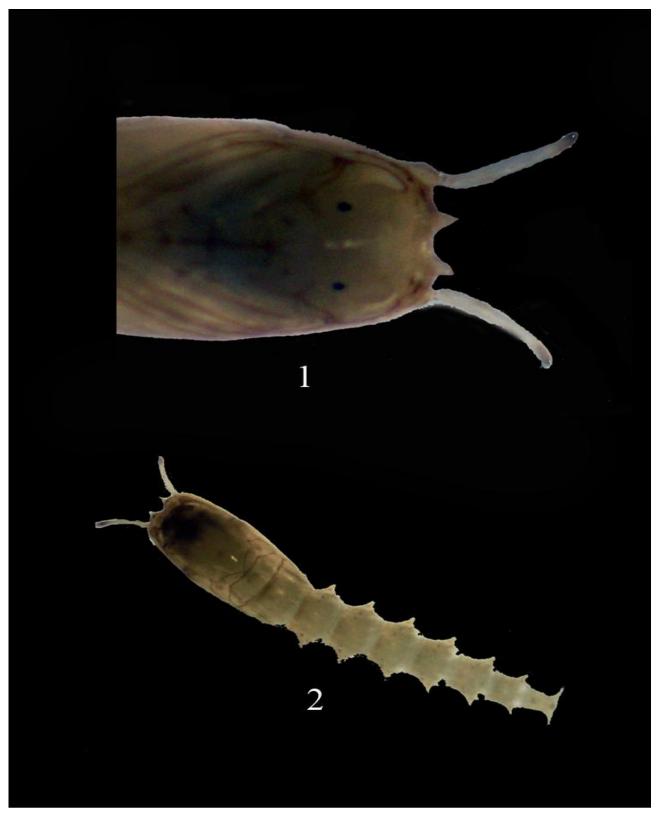


Figura 13- (Zoobentos-Insecta-Diptera) C*ulicidae*, coletados nas bacias setentrionais do NE do Brasil. 1, detalhe da cabeça; 2, vista geral.

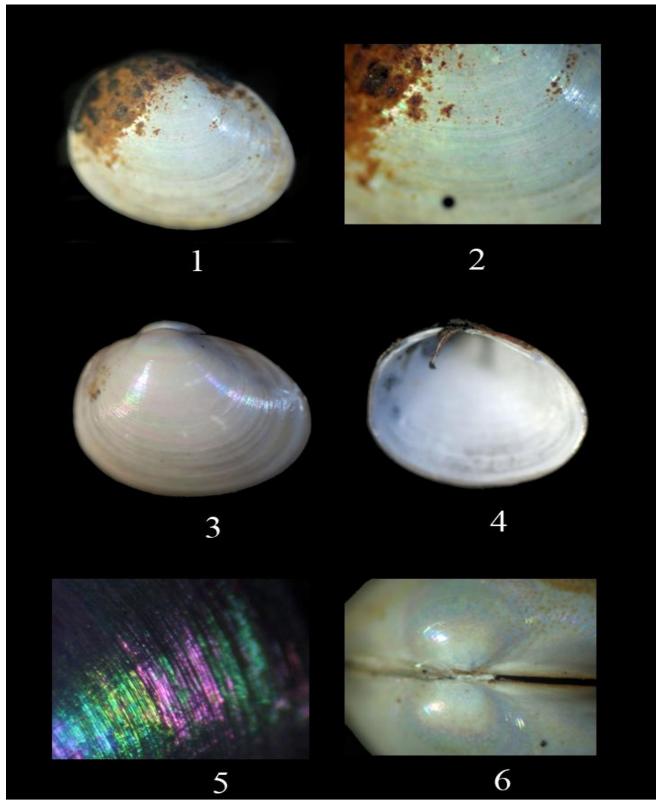


Figura 14 - (Zoobentos-Mollusca-Bivalvia) *Pisidium* sp., coletados nas bacias setrentionais do NE do Brasil. 1, 3, Vista dorsal; 2, Detalhe da valva; 4, vista interior; 6, detalhe da região umbonal; 5, linhas de crescimento.

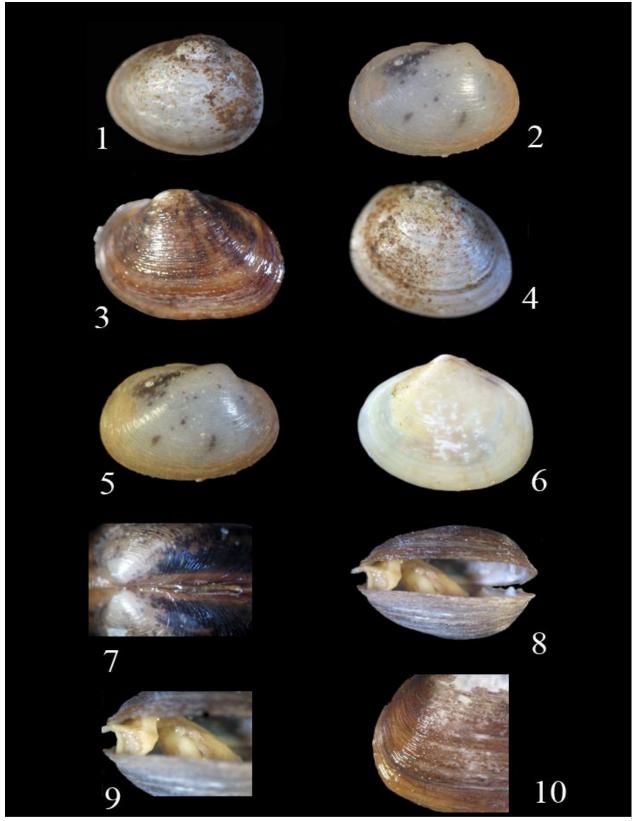


Figura 15- (Zoobentos-Mollusca Bivalvia) coletados nas bacias setentrionais do NE do Brasil. *Pisidium* sp, 1, 4, vista dorsal; Eu*pera* sp, 2, 5 vista dosal; Eu*pera bahiensis*, 3, vista dorsal; 7, detalhe da região umbonal; 8-9, Detalhe da margem e partes moles; 10, escudo; *Eupera klappeabach*, 6, vista dorsal.

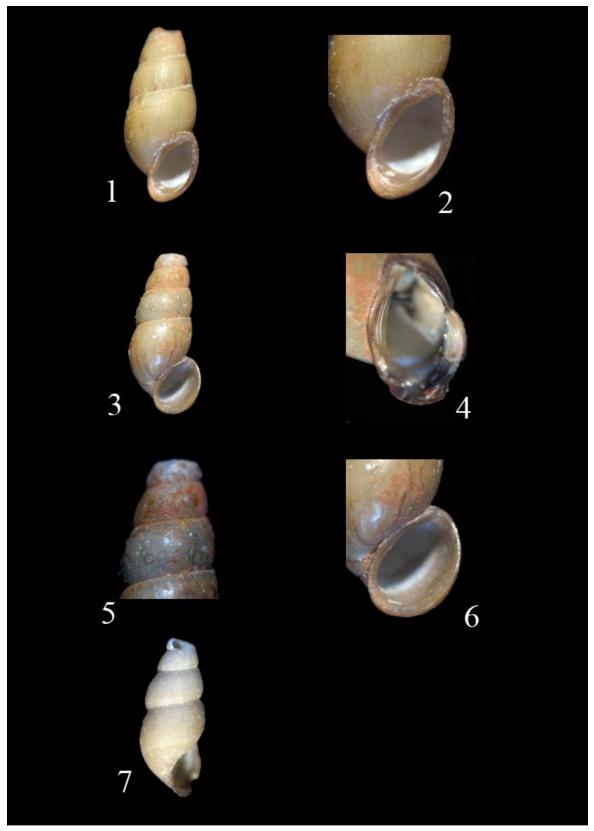


Figura 16- (Zoobentos-Mollusca-Gastropoda) *Idiopyrgus* sp., coletados nas bacias setrentionais do NE do Brasil. 1, 3, 7, vista ventral; 2, 4, 6, detalhe da abertura; 5, espiral.

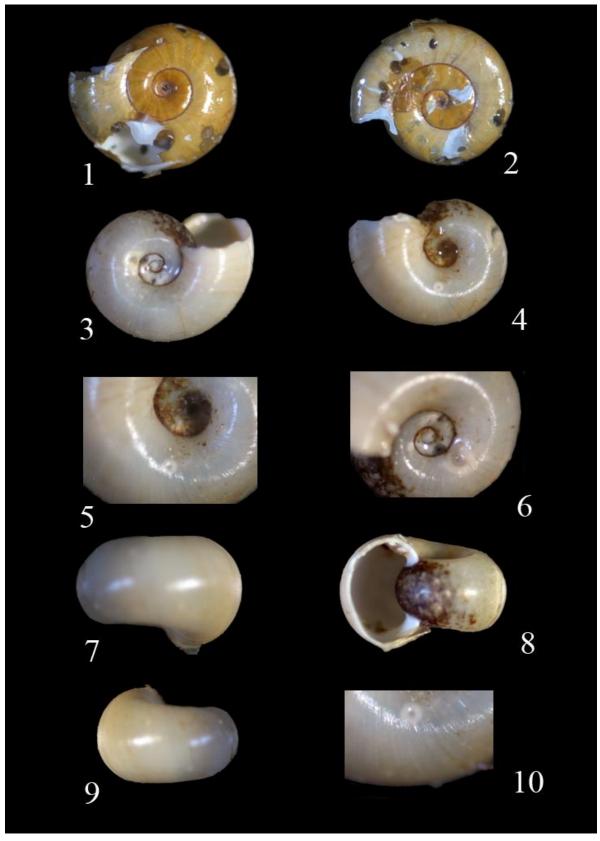


Figura 17 - (Zoobentos-Mollusca-Gastropoda) *Biomphalaria straminea*, coletados nas bacias setentrionais do NE do Brasil. 1, vista dorsal; 2-6, vista ventral; 5-7, vista posterior; 8, vista anterior; 10, detalhe das linhas de crescimento.

Figura 18- (Zoobentos-Crustacea-Ostacoda) coletados nas bacias setentrionais do NE do Brasil. 1, 3-4, 9-10, vista geral; 2, 7 região posterior; 5-6, detalhe dos pleiópodos; 8,

Figura 19- (Zoobentos-Insecta-Coleoptera) coletados nas bacias setentrionais do NE do Brasil. 1, Vista ventral; 2-vista dorsal.

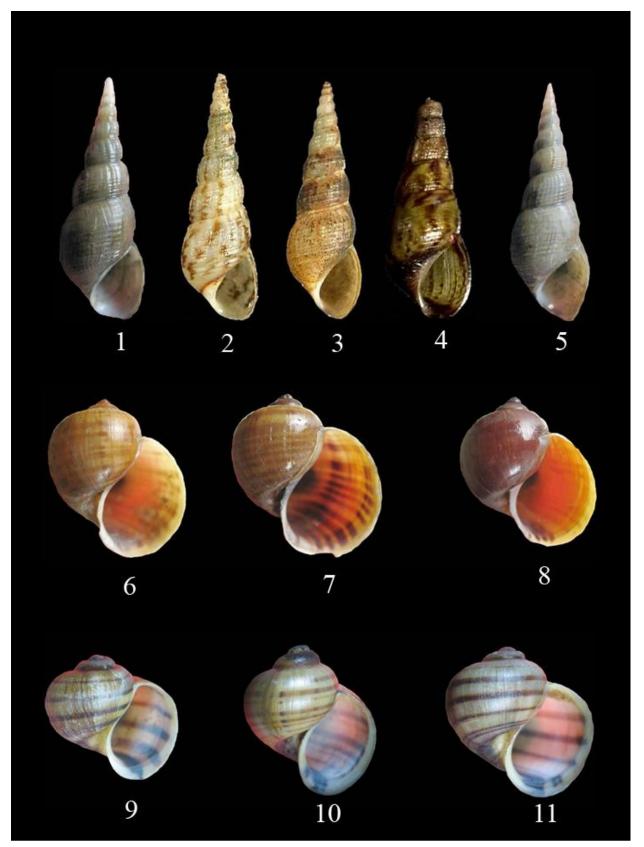


Figura 20- (Zoobentos-Mollusca-Gastropoda) coletados nas bacias setentrionais do NE do Brasil. *Melanoides tuberculata*, 1-5, vista ventral; *Pomacea lineata*, 6-8 vista ventral; *Asolene spix*, 9-11 vista ventral.

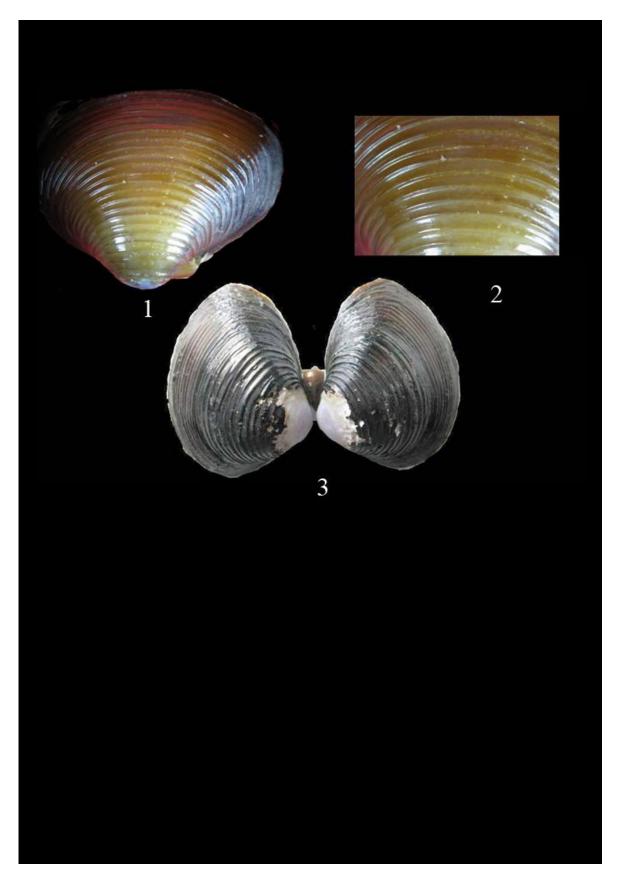


Figura 21 - (Zoobentos-Mollusca-Bivalvia). *Corbicula fluminea*, coletadas nas bacias setrentionais do NE do Brasil. 1, 3, Vista dorsal; 2, detalhe das linhas de crescimento.

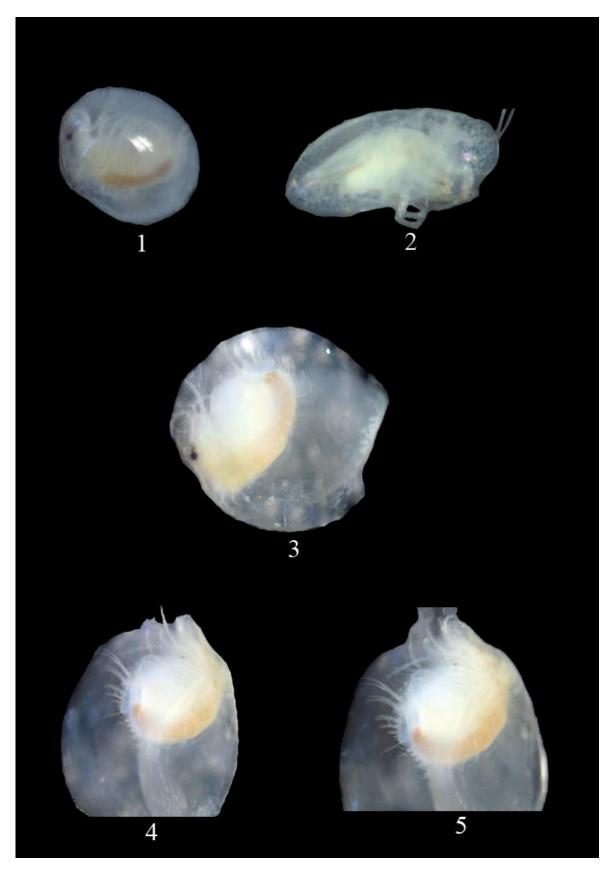


Figura 22- (Zoobentos-Crustacea-Conchostracea) Coletados nas bacias setentrionais do NE do Brasil. 1-5, vista geral.