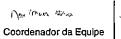


Relatório Técnico

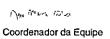
Volume 1


IEMA Instituto Estadual de Meio Ambiente e Recursos Hídricos	
Protocolo nº O JOO JO	ł
Em 25101112 Hora:	
Protocolista (Norde)	d

Revisão 00

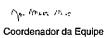
2012

1. APRESENTAÇÃO	06
2. INTRODUÇÃO	07
3. OBJETIVOS	10
4. MATERIAL E MÉTODOS	11
4.1. Área de Estudo	11
4.2. Crustáceos	13
4.2.1. Amostragem e Procedimento Laboratorial	13
4.3 Ictiofauna	16
4.3.1. Amostragem e Procedimento Laboratorial	16
5. RESULTADOS	19
5.1. Carcinofauna	19
5.2.1 Aspectos taxonômicos e abundância	19
5.2.2 Diversidade, riqueza e equitabilidade	36
6. DISCUSSÃO	40
7. CONCLUSÃO	42
8. REFERÊNCIAS BIBLIOGRÁFICAS	43
9. RESPONSÁVEIS TÉCNICOS	49
10 ANEXOS	51



LISTA DE FIGURAS

Figura IV.1 - 1: Esquema de localização dos locais de monitoramento aleatórios.	12
Figura IV.2.1 - 1 – Contagem e medição das galerias de caranguejos em campo.	14
Figura IV.2.2 - 1 - (A) Embarcação utilizada para o monitoramento, (B) arrasto rebocado com rede de balão, (C) redes de espera e (D) lance de tarrafa.	17
Figura V.1.1 - 1 - Abundância relativa (número de tocas.m²) (A) e tamanhos médio em milímetros (B) de crustáceos por Área Amostral na Área de Influência do Terminal Norte Capixaba.	21
Figura V.1.1 - 2 - Análise de variância a partir dos dados de abundância relativa (número de tocas.m²) de crustáceos por Área Amostral na Área de Influência do Terminal Norte Capixaba (Legenda: AR - Área, ES - Estação Seca e EC - Estação Chuvosa).	22
Figura V.1.1 - 3 – Comprimento em milímetros (A) e peso em gramas (B) dos crustáceos registrados por Área Amostral e Estação do Ano na Área de Influência do Terminal Norte Capixaba (Legenda: AR – Área, ES – Estação Seca e EC – Estação Chuvosa).	25
Figura V.1.2 - 1 - Valores de riqueza absoluta de espécies, diversidade, equitabilidade e dominância ao longo das áreas amostrais na Área de Influência do Terminal Norte Capixaba (Legenda: AR – Área, ES – Estação Seca e EC – Estação Chuvosa).	26
Figura V.1.2 – 3 - Cluster os pontos amostrais na área de influência do Terminal Norte Capixaba (Legenda: AR – Área, ES – Estação Seca e EC – Estação Chuvosa).	27
Figura V.2 - 1 - Frequencia das espécies mais representativas coletadas na Área de Influência do Terminal Norte Capixaba na Estação Seca (A) e Estação Chuvosa (B).	29
Figura V.2 - 2 - Número de indivíduos (A) e comprimento total em milímetros (B) coletadas na Área de Influência do Terminal Norte Capixaba na Estação Seca e Estação Chuvosa.	31
Figura V.2 - 3 - Análise de variância a partir dos dados de abundância de peixes por Área Amostral na Área de Influência do Terminal Norte Capixaba (Legenda: AR - Área, ES - Estação Seca e EC - Estação Chuvosa).	32
Figura V.2.2 - 1 - Valores de riqueza absoluta de espécies, diversidade, equitabilidade e dominância ao longo das áreas amostrais na Área de Influência do Terminal Norte Capixaba (Legenda: AR – Área, ES – Estação Seca e EC – Estação Chuvosa).	36
Figura V.2.2 - 2 – Análise de variância a partir dos dados de diversidade de peixes por Área Amostral na Área de Influência do Terminal Norte Capixaba (Legenda: AR – Área, ES – Estação Seca e EC – Estação Chuvosa).	37
Figura V.2.2 – 3 - Cluster os pontos amostrais na área de influência do Terminal Norte Capixaba (Legenda: AR – Área, ES – Estação Seca e EC – Estação Chuvosa).	38



LISTA DE TABELAS

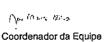
Tabela IV.1 - 1: Coordenadas geográficas para as amostragens de crustáceos.	13
Tabela IV.1 - 2: Coordenadas geográficas para as amostragens de peixes.	13
Tabela V.1.1 – 1 – Lista de espécies de crustáceos registrados na Área de Influência do Terminal Norte Capixaba.	19
Tabela V.1.1 – 2 – Teste de Tukey (HSD) a partir dos dados de abundância relativa (número de tocas.m2) de crustáceos por Área Amostral na Área de Influência do Terminal Norte Capixaba (Legenda: AR – Área, ES – Estação Seca e EC – Estação Chuvosa).	23
Tabela V.1.1 – 3 – Número de indivíduos, comprimento (mm), peso (g) e proporção sexual das espécies de crustáceos registradas na Área de Influência do Terminal Norte Capixaba (Legenda: AR – Área, ES – Estação Seca e EC – Estação Chuvosa).	24
Tabela V.1.2 - 1 - Valores de riqueza absoluta de espécies, diversidade, equitabilidade e dominância ao longo das áreas amostrais na Área de Influência do Terminal Norte Capixaba (Legenda: AR – Área, ES – Estação Seca e EC – Estação Chuvosa).	26
Tabela V.1.2 - 2 – Resultado do teste de hipótese de igualdade realizado a partir do ANOSIM entre os pareamentos de Áreas AmostraisxEstações do Ano ao longo das áreas amostrais na Área de Influência do Terminal Norte Capixaba (Legenda: AR – Área, ES – Estação Seca e EC – Estação Chuvosa).	28
Tabela V.2 - 1 - Lista de espécies registradas na área de estudo.	30
Tabela V.2 - 1 – Lista de espécies registradas na Área de Influência do Terminal Norte Capixaba na Estação Seca e Estação Chuvosa por Área Amostral indicando abundância numérica (número total de indivíduos), abundância relativa (CPUE) e freqüência de ocorrência (%).	33
Tabela V.2 - 2 - Lista das principais espécies registradas na Área de Influência do Terminal Norte Capixaba e seus respectivos comprimentos totais (milímetros), peso (gramas) e estágio de maturação gonadal.	35
Tabela V.2.2 - 1 - Valores de riqueza absoluta de espécies, diversidade, equitabilidade e dominância ao longo das áreas amostrais na Área de Influência do Terminal Norte Capixaba (Legenda: AR – Área, ES – Estação Seca e EC – Estação Chuvosa).	36

LISTA DE ANEXOS

Anexo X - 1 – Catálogo das principais espécies registradas no presente estudo.

Anexo X - 2 – Imagens ilustrativas das palestras realizadas para as comunidades da área de influência do Terminal Norte Capixaba.

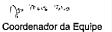
Anexo X - 3 – Lista de presença das palestras realizadas para as comunidades da área de influência do Terminal Norte Capixaba.



1. APRESENTAÇÃO

TRANSPETRO

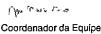
A PETROBRAS TRANSPORTES S. A - TRANSPETRO apresenta o RELATÓRIO TÉCNICO do Programa de Levantamento de Parâmetros Populacionais e Estoque Pesqueiro das Espécies de Crustáceos e Ictiofauna da Área de Influência do Terminal Norte Capixaba, em atendimento a Condicionante 04 da LO 439/2010 Processo 22218939.


2. INTRODUÇÃO

O ecossistema manguezal é um ambiente que proporciona habitat a uma diversificada fauna ao longo de todas as suas feições, incluindo desde formas microscópicas até grandes peixes, aves, répteis e mamíferos (SCHAEFFER-NOVELLI, 1995). Em relação aos crustáceos, é representado principalmente por braquiúros que vivem tanto associados ao sedimento inconsolidado como sobre troncos e raízes das espécies de mangue, sendo a composição e distribuição desses organismos influenciada por distintos fatores ambientais. De acordo com FRANSOZO et al., (1992), várias correlações positivas entre as espécies capturadas e as variáveis ambientais mensuradas já foram estabelecidas para espécies que ocorrem no ecossistema manguezal.

Dentre os crustáceos braquiúros associados ao sedimento, a família Ocypodidae demonstra-se como a mais rica e abundante, sendo representada principalmente pelos gêneros Uca e Ucides (MENDES, 2001). Também podem ser registrados nesse ecossistema caranguejos da Família Grapsidae (Goniopsis cruentata) e Sesarmidae (Aratus pisonii, Sesarma rectum, Chasmagnathus granulata e Armases rubripes (NICOLAU e OSHIRO, 2007). Espécies de siris da Família Portunidae também são importantes representantes do ambiente aquático do ecossistema manguezal (MANTELATTO e FRANSOZO, 1999).

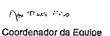
O ecossistema manguezal, assim como a fauna de crustáceos a ele associada, além de apresentar relevantes características ecológicas, é considerado, historicamente, como importante em termos socioeconômicos, uma vez que serve de sítios de pesca e mariscagem para muitas comunidades ao longo da costa brasileira (SCHAEFFER-NOVELLI e CINTRÓN-MOLERO, 1999). O caranguejo-uçá (Ucides cordatus) se destaca como um dos recursos pesqueiros mais importantes em toda a sua área de ocorrência nas zonas de mangue do Brasil, entre os estados do Amapá e de Santa Catarina (IVO e VASCONCELOS, 2000; IVO et al., 2000). Além de ser um dos componentes mais característicos dos ecossistemas manguezal, este crustáceo é bastante abundante e contribui para a


geração de emprego, renda e subsistência em comunidades pesqueiras que vivem nas zonas de estuários (SOUTO, 2007).

Em relação a ictiofauna, os estuários são reconhecidamente locais dos quais muitas espécies de peixes dependem, pelo menos em parte de seu ciclo de vida, para alimentação, reprodução, ou crescimento (BLABER et al., 1995; LOUIS et al., 1995; TONGNUNUI et al., 2002; VENDEL et al., 2003). A alta produtividade característica desses ambientes gera uma variedade de recursos alimentares, associada à presença de refúgios contra predação resultantes da complexidade estrutural, baixa profundidade, turbidez e a ausência de grandes peixes carnívoros. Dessa forma, favorece a abundância de peixes nestas áreas, principalmente àqueles nos estágios iniciais da vida (SPACH et al., 2003).

Os peixes também desempenham um papel ecológico importante nos ambientes estuarinos, transferindo a energia a partir da produção primária para níveis tróficos superiores, além de exportar energia para ecossistemas vizinhos, e importar energia de outros ecossistemas, visto que é grande o número de espécies que utilizam temporariamente esse ecossistema, não só como área de alimentação, mas de reprodução, criação de larvas e juvenis (YAÑEZ-ARANCIBIA, 1985; VAZZOLER, 1996). Consequentemente, as associações de peixes estuarinos são geralmente compostas por espécies transientes marinhas e de água doce, além das residentes permanentes, vivendo principalmente em águas rasas (SPACH et al., 2003).

A ictiofauna estuarina tem como representantes característicos espécies das famílias Achiridae, Cynoglossidae, Gerreidae, Lutjanidae e Tetraodontidae, quase sempre utilizados com fins comerciais (ARAÚJO et al., 1998). Dessa forma, os peixes constituem umas das principais razões do interesse do homem pelo estudo desse ecossistema, visto que os recursos pesqueiros potencialmente exploráveis dentro de um estuário representam expressivo suprimento de proteínas e notável biomassa disponível, variando sua composição e abundância em função das características hidrológicas, regionais e sazonais do estuário (CASTRO, 2001).



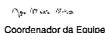
Nesse sentido, o presente estudo procurou identificar a fauna de crustáceos e peixes presentes no ecossistema manguezal de Barra Nova, Município de São Mateus, Espírito Santo, na área de influência do Terminal Norte Capixaba (TNC), de forma a monitorar os seus efeitos sobre essas comunidades.

Pág.

10 / 55

3. OBJETIVOS

O presente estudo teve como objetivo geral levantar os parâmetros populacionais (estrutura das comunidades) e de informações sobre o estoque pesqueiro das espécies de crustáceos e peixes residentes na área de manguezal localizada na área de influência do Terminal Norte Capixaba.


Atendimento a condicionante 04 da LO 439/2010 -

Processo Nº 22218939

Para isto foram abordados os seguintes objetivos específicos:

- Identificar taxonomicamente (em nível de espécie) os exemplares de ictiofauna e de crustáceos capturados;
- Determinar os índices ecológicos, tais como riqueza, similaridade, diversidade, dominância e equitabilidade, para subsidiar o entendimento da dinâmica populacional das espécies de peixes e crustáceos;
- Avaliar a variação quali-quantitava das espécies de peixes e crustáceos capturadas entre as estações de monitoramento e ao longo das campanhas de campo;
- Determinar os parâmetros de comprimento, densidade e densidade comercial para crustáceos, procedendo a análise comparativa entre os pontos de monitoramento;
- Determinar a proporção sexual dos crustáceos coletados;
- Determinar o estágio de maturação gonadal dos peixes coletados;
- Identificar as principais espécies de peixes e crustáceos explotadas para fins comerciais e de subsistência na região de estudo;
- Identificar espécies de peixes e crustáceos que poderão ser utilizados como indicadores ambientais;
- Apresentar/divulgar as informações obtidas no programa de monitoramento para os pescadores e catadores pertencentes às comunidades localizadas na área de influencia direta do TNC;
- Elaborar um catálogo das principais espécies observadas.

Pág. 11/55

4. MATERIAL E MÉTODOS

4.1. Área de Estudo

O monitoramento dos caranquejos no manguezal do Rio Barra Nova foi realizado ao longo da região estuarina do Rio Barra Nova com cerca de 3,5 km de extensão, por meio de amostragens aleatórias estratificadas em 4 áreas de manguezal (Área 1, Área 2, Área 3 e Área 4) com cerca de 870 metros de extensão cada uma (Figura IV.1 - 1). Dentro de cada área, foram sorteados, com o auxílio de um GPS e uma tabela de números aleatórios, quatro locais onde foram demarcados quadrados de 25m2 (quadrado padrão sugerido pelo Centro de Gestão Recursos Pesqueiros do Litoral Pesquisa de CEPENE/IBAMA) em uma faixa de 50 metros a partir da margem do rio. Desse modo, os crustáceos foram amostrados em diferentes tipos de substrato na margem do rio.

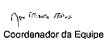


Tabela IV.1 - 1: Coordenadas geográficas para as amostragens de crustáceos.

Áreas	Coordena	das Iniciais	Coordena	idas Finais
	x	У	x	У
Área 1	421400,06	7903337,95	421400,06	7903337,95
Área 2	421944,26	7901691,15	421944,26	7901691,15
Área 3	421597,30	7900996,53	421597,30	7900996,53
Área 4	421178,55	7900275,56	421178,55	7900275,56

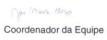
^{*} Coordenadas em UTM, Datum WGS 84, zona 24S

O levantamento da ictiofauna no manguezal do Rio Barra Nova também foi realizado ao longo do curso do rio, abrangendo cerca de 6 km de extensão, área considerada sob influência do TNC para o monitoramento de peixes. Na abrangência citada, foram escolhidas 03 (três) áreas de amostragens, conforme coordenadas geográficas apresentadas a seguir:

Tabela IV.1 - 2: Coordenadas geográficas para as amostragens de peixes.

Áreas	reas Coordenad		Coordena	das Finais	
	X	У	x	У	
Área 1	421801,524	7899468,461	421591,200	7900665,251	
Área 2	421591,200	7900665,251	422041,740	7902247,034	
Área 3	422041,740	7902247,034	421073,188	7903693,362	

^{*} Coordenadas em UTM, Datum WGS 84, zona 24S


4.2. Crustáceos

4.2.1. Amostragem e Procedimento Laboratorial

Dentro de cada área de 25m², foram ser contado o número de aberturas de galerias habitadas e o diâmetro das mesmas com o auxílio de um paquímetro de aço com extensões de 10 cm em forma de espátula. Os dados de diâmetro de galeria foram transformados em comprimento de caranguejo com base no modelo linear determinado por Schmidt (2006), com a seguinte equação de reta:

Abertura de Galeria = 0,36 + 1,04 * Comprimento do Caranguejo

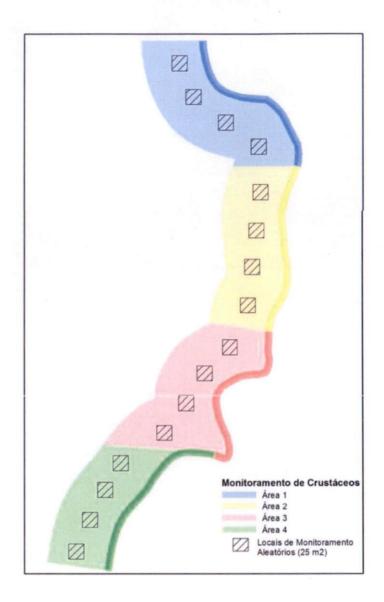
Considerando o menor diâmetro da abertura da galeria, que equivale ao comprimento do respectivo caranguejo. Também foi realizada, dentro de cada quadrado amostrado, uma estimativa da inundação local durante a preamar com base na altura de algas incrustadas nos manguezais (SCHMIDT, 2006) e uma breve descrição da vegetação presente.

Atendimento a condicionante 04 da LO 439/2010 -

Processo Nº 22218939

Figura IV.2.1 - 1 - Contagem e medição das galerias de caranguejos em campo.

Para a determinação da área de coleta dos caranguejos, utilizou-se um quadrado feito de arame de 1 x 1 metro, que foi lançado aleatoriamente em cada área de 25 m², sendo feita a contagem das galerias e coletada de todos os caranguejos dentro do limite; tanto aqueles em deslocamento quanto aqueles situados dentro das galerias, as quais foram escavadas com auxílio de uma pá de jardinagem.


Após a coleta, os exemplares de crustáceos foram acondicionados em sacos plásticos devidamente identificados com data, estação e ponto amostrado e em seguida transportados ao Laboratório para as análises devidas. Posteriormente, os indivíduos coletados foram retirados das sacolas plásticas, lavados e pesados após terem seu excesso de água retirado por leve pressão em papel de filtro

Atendimento a condicionante 04 da LO 439/2010 -

Processo Nº 22218939

Figura IV.1

Esquema de localização dos locais de monitoramento aleatórios.

Os quatro pontos de monitoramento realizado conforme metodologia descrita anteriormente está apresentada na Tabela IV.1 - 1, e serão ser mantidos para as amostragens das outras campanhas ao longo da vigência deste monitoramento para possibilitar a análise temporal dos parâmetros analisados.

Pág. 17 / 55

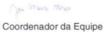

Rede de Arrasto - Tipo Balão (Wing Trawl): foram realizados 03 arrastos simples (com apenas uma rede) por estação amostral. Estes arrastos foram realizados por um período de 10 minutos, percorrendo aproximadamente 1.000 metros. foram utilizadas embarcações e redes da frota local.

Figura IV.2.2 - 1 - (A) Embarcação utilizada para o monitoramento, (B) arrasto rebocado com rede de balão, (C) redes de espera e (D) lance de tarrafa.

As amostras coletadas foram acondicionadas separadamente em sacolas plásticas e conservadas em gelo, sendo posteriormente fixadas em formol e conservados em álcool 70%. A identificação ao nível específico foi realizada, com literatura especializada (FIGUEIREDO MENEZES. 1978: FIGUEIREDO MENEZES, 1980; MENEZES FIGUEIREDO, 1980: FIGUEIREDO e MENEZES, FIGUEIREDO MENEZES, 1985; Procedimentos de laboratório incluíram dissecção dos exemplares, medição do comprimento padrão (mm), pesagem (precisão de 0,1g), sexagem e análise do estágio gonadal utilizando a seguinte escala: imaturo/repouso, em maturação, desovado/esvaziado maduro (VAZZOLER et al.,

Os dados da assembléia de peixes obtidos nas campanhas de monitoramento foram plotados e compilados em gráficos e tabelas possibilitando assim uma melhor compreensão do padrão de variação dos valores obtidos nas Análises Biométricas e dos Índices Ecológicos calculados a partir das amostras de peixes coletadas. A estimativa de abundância adotada para cada espécie e estação de monitoramento, foi obtida por meio da CAPTURA POR UNIDADE DE ESFORCO CPUE.

A riqueza de espécies será calculada através do número total de espécies encontradas (S). A diversidade de espécies foi calculada utilizando o índice de diversidade de Shannon. A equitabilidade – (índice da "igualdade") um dos componentes do índice de Shannon, que representa a uniformidade do número de exemplares entre as espécies, também foi determinada utilizando-se a razão entre o índice de diversidade de Shannon calculado e a diversidade máxima. A equitabilidade é máxima quando o número de indivíduos é o mesmo para todas as espécies. O valor da equitabilidade pode variar de 0 (zero) ao valor máximo de 1 (um).

Com a finalidade de identificar as principais espécies comerciais exploradas na região de estudo foram realizadas entrevistas com os pescadores artesanais da região. Nessa entrevista, foram apresentadas tábuas de identificação constando as espécies de peixes ocorrentes em manguezal, destacando características visuais marcantes, como coloração, tamanho médio e particularidades fisionômicas.

5. RESULTADOS

5.1. Carcinofauna

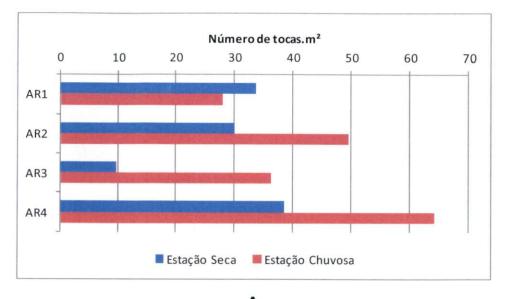
5.1.1 Aspectos taxonômicos e abundância

A comunidade de crustáceos foi constituída por um total de 10 espécies ao longo das quatro áreas de amostragem (**Tabela V.1.1 - 1**). Essas espécies foram registradas a partir das amostragens realizadas no campo dentro dos quadrados delimitados e através da observação aleatória em cada local de coleta.

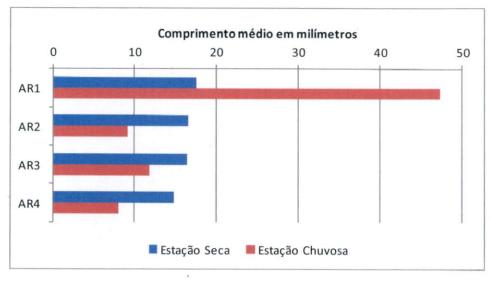
Tabela V.1.1 – 1 – Lista de espécies de crustáceos registrados na Área de Influência do Terminal Norte Capixaba.

Nome vulgar	Família / Espécie
Guaiamu *	Gecarcinidae
	Cardisoma guanhumi (Latreille, 1825)
Chama-maré	Ocypodidae
	Uca rapax (Smith, 1870)
	Uca thayeri (Rathbun, 1900)
	Uca uruguayensis (Nobili, 1901)
Caranguejo-uçá *	Ucides cordatus (Linnaeus, 1763)
Maria-mulata ou Aratú	Grapsidae
	Goniopsis cruentata (Latreille, 1803)
Marinheiro	Sesarmidae
	Aratus pisoni (Edwards, 1837)
	Sesarma rectum (Randall, 1840)
Siri *	Portunidae
	Callinectes ornatus (Ordway, 1863)
	Callinectes danae (Smith, 1869)
* Espécies de interesse comercia	al identificados pelos catadores

Em relação a abundância de crustáceos em termos de número de galerias (tocas) por metro quadrado foi possível observar que a Área 4 (AR4) apresentou maior



concentração de galerias, enquanto que a Área 3 (AR3) apresentou a menor concentração de tocas por metro quadrado. Em relação as estações do ano em que as amostras foram coletadas, um maior número de tocas por metro quadrado foi observado na estação chuvosa (dezembro de 2011). Quando os valores de diâmetro dessas tocas foram transformados a partir da equação linear de Schmidt (2006), foi possível observar que o tamanho estimado dos crustáceos em milímetros foi maior na Área 1 (AR1) e menor na Área 4 (AR4) (**Figura V.1.1 – 1**), indicando um comportamento inversamente proporcional a concentração do número de tocas, ou seja, quanto maior o número de tocas por metro quadrado menores são os diâmetros das galerias e, consequentemente, o tamanho dos caranguejos.



В

Figura V.1.1 - 1 - Abundância relativa (número de tocas.m²) (A) e tamanhos médio em milímetros (B) de crustáceos por Área Amostral na Área de Influência do Terminal Norte Capixaba.

Quando aplicado o teste de hipótese de igualdade entre as áreas amostrais e estações do ano, foi possível observar diferenças significativas entre as Áreas amostrais e Estações do Ano em relação ao número de tocas por metro quadrado (F=5,51, p=0,0007) (Figura V.1.1 - 2). De acordo com o Teste de Tukey (HSD), é possível observar que a Área 4 na estação chuvosa se destacou em relação as demais em termos de densidade de tocas (Tabela V.1.1 - 2).

As distribuições não se apresentaram Normais segundo Teste de Kolmogorov & Smirnov.

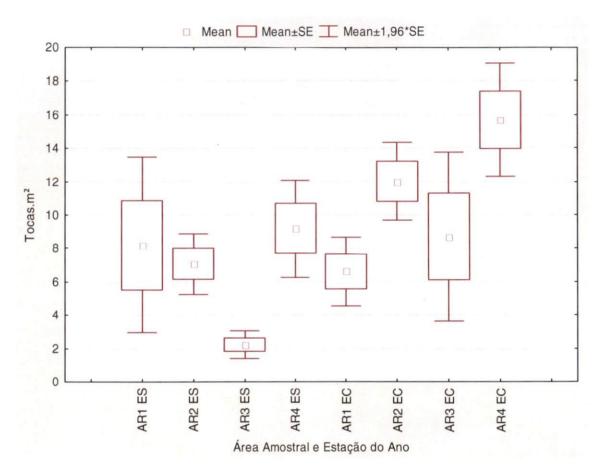


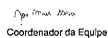
Figura V.1.1 - 2 – Análise de variância a partir dos dados de abundância relativa (número de tocas.m²) de crustáceos por Área Amostral na Área de Influência do Terminal Norte Capixaba (Legenda: AR – Área, ES – Estação Seca e EC – Estação Chuvosa).

Técnico Responsável

Tabela V.1.1 – **2** – Teste de Tukey (HSD) a partir dos dados de abundância relativa (número de tocas.m²) de crustáceos por Área Amostral na Área de Influência do Terminal Norte Capixaba (Legenda: AR – Área, ES – Estação Seca e EC – Estação Chuvosa).

	AR1 ES	AR1 ES						
AR1 ES	_	-		-	**	-	-	-
AR2 ES	0,999701	-	-	-	-	-	-	-
AR3 ES	0,238566	0,480083	-	=	-	-	-	-
AR4 ES	0,999863	0,983907	0,110256	-	-	-	-	-
AR1 EC	0,997476	1,000000	0,593257	0,955604	-	-	~	-
AR2 EC	0,744113	0,456658	0,008104	0,929314	0,354065	-	-	-
AR3 EC	0,999999	0,996761	0,164653	0,999999	0,986436	0,851774	-	-
AR4 EC	0,070074	0,024978	0,000305	0,160715	0,016416	0,773334	0,107432	

O registro em campo das espécies por área amostral (quadrados de 1m²) possibilitou identificar sete espécies de crustáceos em um total de 52 indivíduos, sendo as demais registradas por meio de observação em campo, entrevista com pescadores e catadores artesanais locais. A proporção sexual, de maneira geral, se aproximou de 1:1 entre machos e fêmeas (Tabela V.1.1 - 3). Devido ao baixo número de organismos encontrados, análises estatísticas não foram aplicadas devido à alta variância dos dados. Dentre as espécies encontradas, o Caranguejo-uçá (*U. cordatus*), apresentou maior média de comprimento e peso, seguido do Aratú (*G. cruentata*). A maior parte dos crustáceos amostrados foi do gênero *Uca*, denominado vulgarmente de Chama-maré (**Figura V.1.1 - 3**).



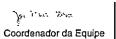
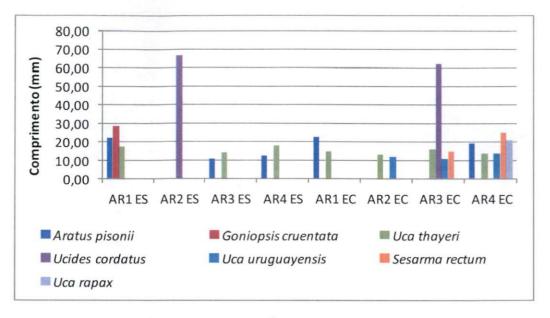
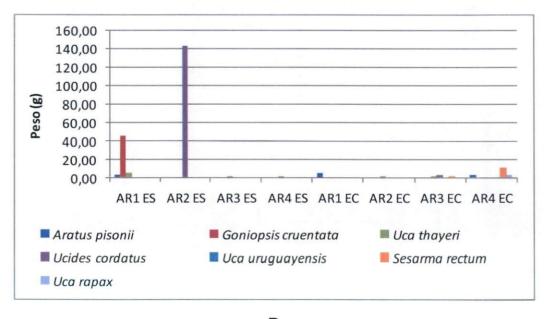


Tabela V.1.1 - 3 - Número de indivíduos, comprimento (mm), peso (g) e proporção sexual das espécies de crustáceos registradas na Área de Influência do Terminal Norte Capixaba (Legenda: AR - Área, ES - Estação Seca e EC – Estação Chuvosa).

Espécies		Estaçã	o Seca			Estação	Chuvosa	
N (Número de indivíduos)	AR1 ES	AR2 ES	AR3 ES	AR4 ES	AR1 EC	AR2 EC	AR3 EC	AR4 EC
Aratus pisonii	1	-	1	1	1	-	-	1
Goniopsis cruentata	5	-	-	-	-	-	-	-
Uca thayeri	2	-	2	6	3	3	6	4
Ucides cordatus	-	1	-	-	-	-	1	-
Uca uruguayensis	-	-	-	-	-	1	1	8
Sesarma rectum	-	-	· -	-	-	-	2	1
Uca rapax	-	-	-	-	-	-	-	1
Total	8	1	3	7	4	4	10	15
Comprimento (mm)	AR1 ES	AR2 ES	AR3 ES	AR4 ES	AR1 EC	AR2 EC	AR3 EC	AR4 EC
Aratus pisonii	22,00	-	11,00	13,00	23,00	-	-	19,00
Goniopsis cruentata	28,60	-	-	-	-	-	-	-
Uca thayeri	17,50	-	14,50	17,83	15,00	13,67	16,33	13,75
Ucides cordatus	-	67,00	-	-	-	-	62,00	- ,
Uca uruguayensis	-	-	-	-	-	12,00	11,25	13,75
Sesarma rectum	-	-	-	-	-	-	15,00	25,00
Uca rapax	-	-	-	-	-	-	-	21,00
Peso (g)	AR1 ES	AR2 ES	AR3 ES	AR4 ES	AR1 EC	AR2 EC	AR3 EC	AR4 EC
Aratus pisonii	3,00	-	1,00	1,00	6,00	-	-	3,00
Goniopsis cruentata	46,00	-	-	-	-	-	-	-
Uca thayeri	6,00	-	1,50	1,83	1,33	1,67	2,00	1,25
Ucides cordatus	-	143,00	-	-	-	-	3,50	-
Uca uruguayensis	-	-	-	-	-	1,00	1,00	1,25
Sesarma rectum	-	-	-	-	-	-	2,50	11,00
Uca rapax	-	-	-	-	-	-	-	3,50
Proporção Sexual (Macho:Fêmea)	AR1 ES	AR2 ES	AR3 ES	AR4 ES	AR1 EC	AR2 EC	AR3 EC	AR4 EC
Aratus pisonii	1:0	<u>-</u>	0:1	0:1	1:0	-	-	0:1
Goniopsis cruentata	3:2	-	-	-	-	-	-	-
Uca thayeri	1:1	-	1:1	4:2	1:2	0:3	3:3	1:3
Ucides cordatus	-	0:1	-	-	-		1:0	-
Uca uruguayensis	-	-	-	-	-	1:0	1:0	5:3
Sesarma rectum	-	-	-	-	-	-	0:1	0:1
Uca rapax	-	-	-	-	-	-	-	1:0





Α

В

Figura V.1.1 - 3 – Comprimento em milímetros (A) e peso em gramas (B) dos crustáceos registrados por Área Amostral e Estação do Ano na Área de Influência do Terminal Norte Capixaba (Legenda: AR – Área, ES – Estação Seca e EC – Estação Chuvosa).

5.1.2 Diversidade, riqueza e equitabilidade

Os índices ecológicos da comunidade indicaram que na estação seca a maior diversidade e riqueza foram observadas na área próxima a saída da barra (AR1), enquanto que na estação chuvosa o padrão foi inverso, sendo observados maiores valores para a área AR4 (**Figura V.1.1 - 1 e Tabela V.1.2 - 1**).

Tabela V.1.2 - 1 - Valores de riqueza absoluta de espécies, diversidade, equitabilidade e dominância ao longo das áreas amostrais na Área de Influência do Terminal Norte Capixaba (Legenda: AR – Área, ES – Estação Seca e EC – Estação Chuvosa).

Área/Estação do Ano	Riqueza Absoluta (S)	Equitabilidade (J')	Diversidade Shannon (H')	Dominância
AR1 ES	3	0,8194	0,9003	0,1806
AR2 ES	1	0	0	1
AR3 ES	2	0,9183	0,6365	0,0817
AR4 ES	2	0,5917	0,4101	0,4083
AR1 EC	2	0,8113	0,5623	0,1887
AR2 EC	2	0,8113	0,5623	0,1887
AR3 EC	4	0,7855	1,089	0,2145
AR4 EC	5	0,7638	1,229	0,2362

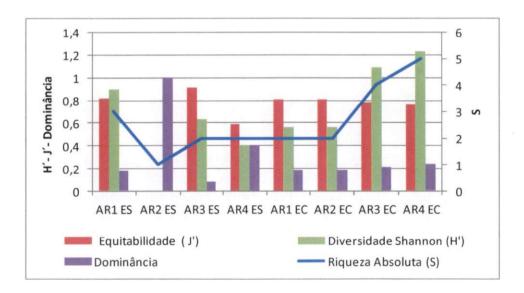


Figura V.1.2 - 1 - Valores de riqueza absoluta de espécies, diversidade, equitabilidade e dominância ao longo das áreas amostrais na Área de Influência do Terminal Norte Capixaba (Legenda: AR – Área, ES – Estação Seca e EC – Estação Chuvosa).

Em relação à distribuição dos organismos pelos pontos amostrais e a similaridades destes, foi observada a formação de grupos, porém estes não foram

Atendimento a condicionante 04 da LO 439/2010 -

Processo Nº 22218939

caracterizados pela área de localização, mas pela estação do ano, tendo sido significativa a diferença entre os mesmos (ANOSIM: Global R – 0,198; p – 0,04)

(Figuras V.1.2 – 3 e Tabela V.1.2 - 2).

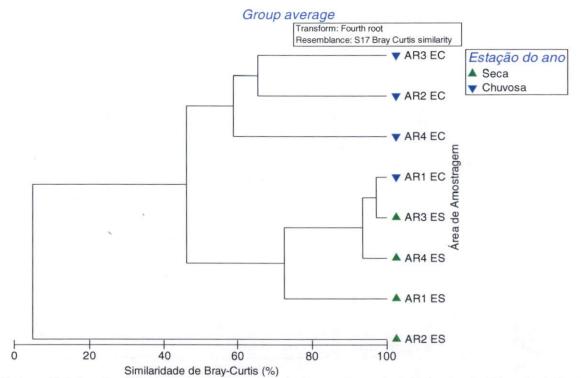
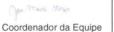


Figura V.1.2 - 3 - Cluster os pontos amostrais na área de influência do Terminal Norte Capixaba (Legenda: AR – Área, ES – Estação Seca e EC – Estação Chuvosa).

Tabela V.1.2 - 2 – Resultado do teste de hipótese de igualdade realizado a partir do ANOSIM entre os pareamentos de Áreas AmostraisxEstações do Ano ao longo das áreas amostrais na Área de Influência do Terminal Norte Capixaba (Legenda: AR – Área, ES – Estação Seca e EC – Estação Chuvosa).


		To The Control of the		
Grupos	R Estatística	Significância (p<5%)		
AR1 ES, AR2 ES	0,667	2,9		
AR1 ES, AR3 ES	0,523	2,9		
AR1 ES, AR4 ES	0,599	5,7		
AR1 ES, AR1 EC	0,523	2,9		
AR1 ES, AR2 EC	0,568	2,9		
AR1 ES, AR3 EC	0,661	2,9		
AR1 ES, AR4 EC	0,786	2,9		
AR2 ES, AR3 ES	0,125	42,9		
AR2 ES, AR4 ES	0,333	14,3		
AR2 ES, AR1 EC	0,125	42,9		
AR2 ES, AR2 EC	0,125	42,9		
AR2 ES, AR3 EC	0,274	14,3		
AR2 ES, AR4 EC	0,556	2,9		
AR3 ES, AR4 ES	-0,097	74,3		
AR3 ES, AR1 EC	-0,167	100		
AR3 ES, AR2 EC	-0,133	100		
AR3 ES, AR3 EC	-0,032	40		
AR3 ES, AR4 EC	0,142	22,9		
AR4 ES, AR1 EC	-0,123	100		
AR4 ES, AR2 EC	-0,071	82,9		
AR4 ES, AR3 EC	-0,067	65,7		
AR4 ES, AR4 EC	0,13	20		
AR1 EC, AR2 EC	-0,133	100		
AR1 EC, AR3 EC	-0,032	40		
AR1 EC, AR4 EC	0,142	22,9		
AR2 EC, AR3 EC	-0,078	74,3		
AR2 EC, AR4 EC	0,006	54,3		
AR3 EC, AR4 EC	0,005	42,9		

5.2. Ictiofauna

5.2.1 Aspectos taxonômicos e abundância

Na área de estudo foram registradas 23 espécies de peixes pertencentes a 17 Famílias em u total de 1396 indivíduos (**Tabela V.2 – 1**). Na estação seca a espécie mais frequente foi a Caratinga (*E. brasilianus*), enquanto que na estação chuvosa a espécie mais frequente foi o Linguado (*A. lineatus*) (**Figura V.2 – 1**). A ictiofauna apresentou composição distinta entre as estações, especialmente devido ao fato de que a barra estava fechada na primeira campanha. Em relação as artes de pesca, apenas o arrasto foi eficiente na captura de espécimes da

ictiofauna, sendo que a rede de espera capturou apenas oito indivíduos e a tarrafa nenhum indivíduo.

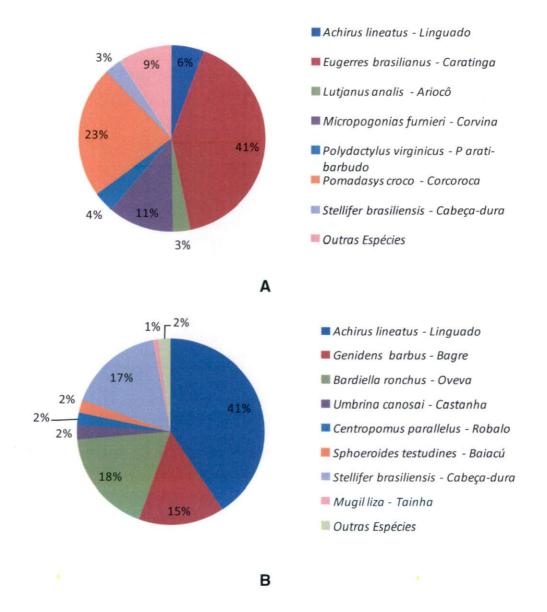


Figura V.2 - 1 – Frequencia das espécies mais representativas coletadas na Área de Influência do Terminal Norte Capixaba na Estação Seca (A) e Estação Chuvosa (B).



Tabela V.2 - 1 – Lista de espécies registradas na área de estudo.

Família	Espécie	Nome vulgar
Achiridae	Achirus lineatus (Linnaeus, 1758)	Linguado
Ariidae	Genidens barbus (Lacepède, 1803)	Bagre
Centropomidae	Centropomus parallelus (Poey, 1860)	Robalo*
Cynoglossidae	Symphurus tessellatus (Quoy & Gaimard, 1824)	Língua-de-mulata
Engraulidae	Cetengraulis edentulus (Cuvier, 1829)	Manjuba*
	Anchoa filifera (Fowler, 1915)	Manjuba*
Gerreidae	Eugerres brasilianus (Curvier, 1830)	Caratinga*
Grammistidae	Rypticus randalli (Courtenay, 1967)	Peixe-sabão
Mugilidae	Mugil liza(Valenciennes, 1836)	Tainha*
Paralichthyidae	Citharichthus spiopterus (Günther, 1862)	Linguado
	Citharichthys macrops (Dresel, 1885)	Linguado
Sciaenidae	Bairdiella ronchus (Cuvier, 1830)	Oveva*
	Stellifer brasiliensis (Schultz, 1945)	Cabeça-dura
	Umbrina canosai (Berg, 1895)	Castanha, Chora-Chora
	Cynoscion sp.	Pescada*
	Micropogonias furnieri (Desmarest, 1823)	Corvina*
Polynemidae	Polydactylus virginicus (Linnaeus, 1758)	Parati-barbudo
Pomadasyidae	Pomadasys croco (Cuvier, 1830)	Corcoroca
Lutjanidae	Lutjanus analis (Cuvier, 1828)	Ariocô*
Serranidae	Epinephelus itajara (Lichtenstein, 1822)	Mero*
Carangidae	Selene vomer (Linnaeus, 1758)	Peixe-galo-de-penacho*
Sparidae	Archosargus probatocephalus (Walbaum, 1792)	Sargo-de-dente*
Tetraodontidae * Espécies de	Sphoeroides testudineus (Linnaeus, 1758) interesse comercial identificados pelos pescadores	Baiacú

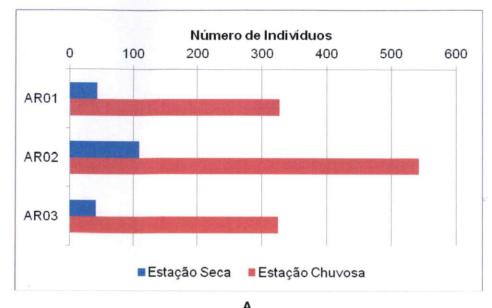

Em relação a abundância de organismos, foi observado que na estação seca o número e comprimento dos indivíduos foi menor do que na estação chuvosa. Esses mesmos parâmetros foram maiores na Área 2 em ambas as estações do ano (**Figura V.2 – 2** e **Tabela V.2 – 2**). Quando aplicado o teste de hipótese de igualdade a partir de uma análise de variância foi observado que essas diferenças foram significativas (F=11,36 e p= 0,0003) (**Figura V.2 – 3**). Em relação ao estágio gonadal das principais espécies de peixes da região, foi possível observar que os juvenis representaram 89,9% da comunidade, embora tenham sido registradas espécies maduras no estuário.



Figura V.2 - 2 - Número de indivíduos (A) e comprimento total em milímetros (B) coletadas na Área de Influência do Terminal Norte Capixaba na Estação Seca e Estação Chuvosa.

В

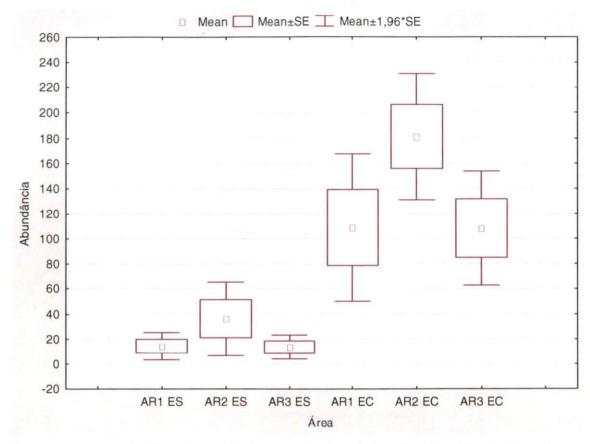


Figura V.2 - 3 – Análise de variância a partir dos dados de abundância de peixes por Área Amostral na Área de Influência do Terminal Norte Capixaba (Legenda: AR – Área, ES – Estação Seca e EC – Estação Chuvosa).

Tabela V.2 - 1 – Lista de espécies registradas na Área de Influência do Terminal Norte Capixaba na Estação Seca e Estação Chuvosa por Área Amostral indicando abundância numérica (número total de indivíduos), abundância relativa (CPUE) e freqüência de ocorrência (%).

Espécies	Número de Indivíduos					CPUE (g/h)				Freqüência (%)			
	Total	A1	A2	A3	Total	A1	A2	A3	Total	A1	A2	A3	
						E	Estação Se	ca					
Anchoa filifera	1	1	0	0	32,00	32,00	-	-	0,52	2,33	-	-	
Achirus lineatus	11	0	5	6	188,80	-	100,00	88,80	5,70	-	4,59	14,63	
Archosargus probatocephalus	2	0	2	0	716,00	-	716,00		1,04	-	1,83	_	
Centropomus paralellus	5	1	2	2	1.424,00	416,00	412,00	596,00	2,59	2,33	1,83	4,88	
Citharichtys macrops	2	1	1	0	36,00	20,00	16,00	-	1,04	2,33	0,92	-	
Eugerres brasilianus	79	17	57	5	2.535,20	571,20	1.710,00	254,00	40,93	39,53	52,29	12,20	
Lutjanus analis	6	1	4	1	793,60	704,00	73,60	16,00	3,11	2,33	3,67	2,44	
Micropogonias furnieri	22	12	9	1	3.024,80	1.872,00	1.108,80	44,00	11,40	27,91	8,26	2,44	
Polydactylus virginicus	7	7	0	0	924,00	924,00	-		3,63	16,28	-	-	
Pomadasys croco	44	0	23	21	3.611,60	-	1.830,80	1.780,80	22,80	-	21,10	51,22	
Rypticus randalli	2	0	2	0	264,00	-	264,00	-	1,04	-	1,83	1.5	
Selene vomer	1	1	0	0	176,00	176,00	-	-	0,52	2,33	-	-	
Sphoeroides testudineus	5	2	0	3	904,00	904,00	-	7 2	83,33	4,65	-	7,32	
Stellifer brasiliensis	6	0	4	2	892,80	-	644,80	248,00	3,11	-	3,67	4,88	
Total	193	43	109	41	1.108,77	401,37	491,14	216,26	100,00	100,00	100,00	100,00	

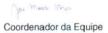


Tabela V.2 - 1 – Lista de espécies registradas na Área de Influência do Terminal Norte Capixaba na Estação Seca e Estação Chuvosa por Área Amostral indicando abundância numérica (número total de indivíduos), abundância relativa (CPUE) e freqüência de ocorrência (%) (Continuação).

Espécies		Número de	Indivíduos			CPUE (g/h)				Freqüência (%)			
Tof	Total	Ar1	Ar2	Ar3	Total	Ar1	Ar2	Ar3	Total	Ar1	Ar2	Ar3	
					E	stação Chuv	osa						
Cetengraulis edentulus	7	1	3	3	1686,67	246,67	726,67	713,33	0,59	0,31	0,55	0,92	
Achirus lineatus	485	191	274	20	16717,56	5730,00	10107,56	880,00	40,59	58,41	50,46	6,15	
Archosargus probatocephalus	2	0	0	2	766,67	0,00	0,00	766,67	0,17	0,00	0,00	0,62	
Genidens barbus	178	71	100	7	61681,99	12846,43	42155,56	6680,00	14,90	21,71	18,42	2,15	
Bardiella ronchus	216	55	120	41	43972,62	11486,67	26228,57	6257,38	18,08	16,82	22,10	12,62	
Cynoscion sp.	1	0	0	1	413,33	0,00	0,00	413,33	0,08	0,00	0,00	0,31	
Eugerres brasilianus	7	2	2	3	8240,00	1913,33	3126,67	3200,00	0,59	0,61	0,37	0,92	
Citharichthus spiopterus	6	0	2	4	506,67	0,00	306,67	200,00	0,50	0,00	0,37	1,23	
Symphurus tessellatus	1	0	0	1	33,33	0,00	0,00	33,33	0,08	0,00	0,00	0,31	
Epinephelus itajara	2	0	0	2	3960,00	0,00	0,00	3960,00	0,17	0,00	0,00	0,62	
Umbrina canosai	30	0	20	10	5026,67	0,00	2660,00	2366,67	2,51	0,00	3,68	3,08	
Centropomus parallelus	26	4	4	18	23640,00	4653,33	3313,33	15673,33	2,18	1,22	0,74	5,54	
Sphoeroides testudines	25	2	7	16	7966,67	633,33	2433,33	4900,00	2,09	0,61	1,29	4,92	
Stellifer brasiliensis	199	0	11	188	46324,17	0,00	2966,67	43357,50	16,65	0,00	2,03	57,85	
Mugil liza	10	1	0	9	33400,00	2993,33	0,00	30406,67	0,84	0,31	0,00	2,77	
Total	1195	327	543	325	16955,76	2700,21	6268,33	7987,21	100,00	100,00	100,00	100,00	

Tabela V.2 - 2 – Lista das principais espécies registradas na Área de Influência do Terminal Norte Capixaba e seus respectivos comprimentos totais (milímetros), peso (gramas) e estágio de maturação gonadal.

Espécies	Média		Desvio Padrão		Mínimo		Máximo		Estágio de Maturação Gonadal (%)			
	mm	g	mm	g	mm	g	mm	g	1	2	3	4
Achirus lineatus	61,82	4,50	7,64	1,40	20	1	77	8	100	-	-	-
Archosargus probatocephalus	104,00	57,50	97,58	79,90	35	1	173	114	75	25		-
Bardiella ronchus	136,11	31,33	22,89	9,40	11	2	166	56	83	-	17	-
Centropomus parallelus	261,50	174,50	36,19	75,74	224	101	305	277	79	3	18	-
Cetengraulis edentulus	178,33	35,67	6,11	4,04	173	32	185	40	100	-	÷	8
Citharichthus spiopterus	123,50	23,00	58,69	26,87	82	4	165	42	100	-	-	2
Cynoscion sp.	184,00	62,00	-	-	184	62	184	62	100	-	-	-
Epinephelus itajara	266,00	297,00	5,66	36,77	262	271	270	323	100	-	-	
Eugerres brasilianus	214,50	143,50	20,51	54,45	200	105	229	182	77	2	21	-
Mugil liza	367,56	506,78	76,41	356,94	286	205	490	1236		-	100	-
Sphoeroides testudines	129,50	47,50	12,02	13,44	121	38	138	57	100	- 1	-	-
Stellifer brasiliensis	148,73	40,45	31,51	16,09	60	2	175	64	83	17	*	-
Symphurus tessellatus	87,00	5,00	-	-	87	5	87	5	100	-	- 1	-
Tachysurus barbus	126,65	27,14	43,75	27,78	68	2	263	137	70	5	-	-
Umbrina canosai	146,10	35,50	40,22	30,24	67	2	224	112	92	-	8	-

^{*}Legenda: 1- imaturo/repouso 2 - em maturação 3 - maduro e 4 - desovado/esvaziado

5.2.2 Diversidade, riqueza e equitabilidade

Os índices ecológicos da comunidade indicaram que na Área 3 na estação chuvosa foram encontrado os maiores índices ecológicos, sendo que um maior número de espécies foi registrado na estação chuvosa, embora a diversidade tenha sido semelhante entre as Áreas Amostrais e Estações do Ano (Figura V.2.2 - 1 e Tabela V.2.2 - 1). Quando aplicado o teste de hipótese de igualdade a partir de uma análise de variância foi observado que as diferenças não foram significativas (F=0,35 e p= 0,86) (Figura V.2.2 - 2).

Tabela V.2.2 - 1 - Valores de riqueza absoluta de espécies, diversidade, equitabilidade e dominância ao longo das áreas amostrais na Área de Influência do Terminal Norte Capixaba (Legenda: AR – Área, ES – Estação Seca e EC – Estação Chuvosa).

Área/Estação do Ano	Riqueza Absoluta (S)	Equitabilidade (J')	Diversidade Shannon (H')	Dominância
AR1 ES	4,666667	0,859633	1,259333	0,140367
AR2 ES	5,666667	0,729167	1,2303	0,270833
AR3 ES	4	0,8156	1,0948	0,1844
AR1 EC	5,666667	0,639567	1,0678	0,360433
AR2 EC	8,333333	0,601633	1,278333	0,398367
AR3 EC	10,66667	0,619467	1,466	0,380533

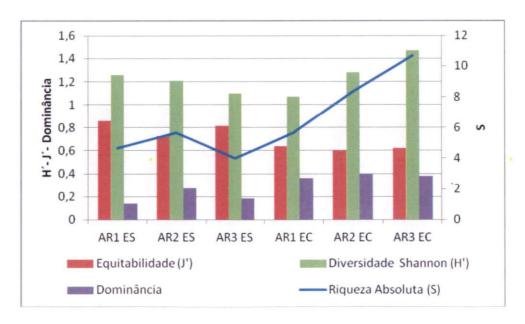
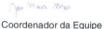


Figura V.2.2 - 1 - Valores de riqueza absoluta de espécies, diversidade, equitabilidade e dominância ao longo das áreas amostrais na Área de Influência do Terminal Norte Capixaba (Legenda: AR – Área, ES – Estação Seca e EC – Estação Chuvosa).

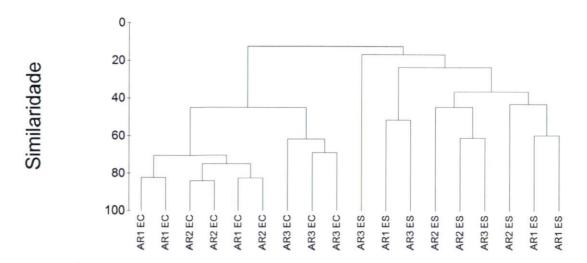

6. DISCUSSÃO

O manguezal de Barra Nova é um ecossistema que se formou a partir da abertura de uma barra para acesso ao oceano, há uma década. O ecossistema se desenvolveu em uma região onde ocorriam restingas, alagados e pastagens, dessa forma, ainda é possível verificar a influência desses ambientes no manguezal. Segundo MENDES e COUTO (2001), a luminosidade, temperatura, pH, matéria orgânica, e salinidade, além da influência antrópica, possuem influência na distribuição das espécies de Brachyura no manguezal. Isso foi evidenciado pela diferença marcante entre as estações do ano, em detrimento das áreas amostrais.

A barra do estuário, fechada na primeira campanha (estação seca), foi o fator predominante na distinção dos grupos de amostras no presente estudo. De maneira geral, a densidade de caranguejos parece estar mais relacionada ao tipo de sedimento e vegetação presente nas áreas amostrais do que em relação a distância da barra do rio ou ao empreendimento em questão.

Em relação às espécies do gênero Uca, grupo predominante na área de estudo. CASTIGLIONI et al., (2006) demonstram sua a plasticidade aos diversos tipos de ambientes, pois mesmo habitando uma área impactada, a sua estrutura populacional e o tamanho dos animais na maturidade sexual não foram afetados. Os aspectos biológicos investigados nesse trabalho não apresentaram diferenças marcantes quando comparados com outras duas populações provenientes de manguezais sujeitos à pequena ou nenhuma ação antrópica (CASTIGLIONI e NEGREIROS-FRANSOZO, 2006). Segundo esses autores, os caranguejos provavelmente estão obtendo energia de outras fontes alternativas de alimento, como bactérias, algas e outros organismos existentes no substrato, as quais são suficientes para a realização das funções vitais e para a manutenção de suas populações.

Em relação à distribuição da espécie *Goniopsis cruentata* no manguezal, SANTOS et al., (2001) observaram no litoral sul de Pernambuco que em períodos de maior precipitação pluviométrica ocorre uma diminuição de aratus no manguezal, que evitam se deslocar em ambientes muito lamosos e áreas alagadas em épocas de chuvas. De acordo com OSHIRO et al. (1998), a Superfamília Grapsoidae encontra-se distribuída basicamente entre a borda e o meio do manguezal, evidenciando uma nítida preferência ecológica para cada espécie, fato observado no presente estudo


Em relação aos sesarmídeos *A. pisonii* e *S. rectum*, registrados em todas as áreas, embora em menor abundância, FRUSHER et al. (1994), afirmam que a tolerância à salinidade e habilidade de osmoregulação não refletem adequadamente a distribuição de caranguejos sesarmídeos nos manguezais, sendo fatores como a competição intraespecífica e predação, que influenciam a abundância da espécie nesse ambiente. O caranguejo guaiamu (*C. guanhumi*) só registrado apenas em entrevistas, é associada às regiões do manguezal mais próximas ao apicum (SCHAEFFER-NOVELLI,1995), razão pela qual não foi registrado nas amostragens de campo.

Em relação aos siris do gênero Callinectes, segundo os pescadores locais, são abundantes na região, embora a comunidade local não tenha como escoar a sua produção. De acordo com MANTELATTO e FRANSOZO (1999), siris do gênero Callinectes são comuns em estuários ao longo da costa do Brasil.

Em relação à população de caranguejo-uçá (*Ucides cordatus*), espécie de crustáceo de maior importância comercial na região, foi observado que sua densidade é inferior as demais espécies, embora o seu tamanho médio tenha sido superior as demais espécies. Segundo documento do IBAMA/CEPENE (2003), em regiões onde a população de *U. cordatus* não apresenta altas densidades, o aratu (*G. cruentata*) tem sido utilizado como alternativa no aumento da renda de comunidades de catadores de caranguejo no nordeste brasileiro.

Figura V.2.2 – 3 - Cluster os pontos amostrais na área de influência do Terminal Norte Capixaba (Legenda: AR – Área, ES – Estação Seca e EC – Estação Chuvosa).

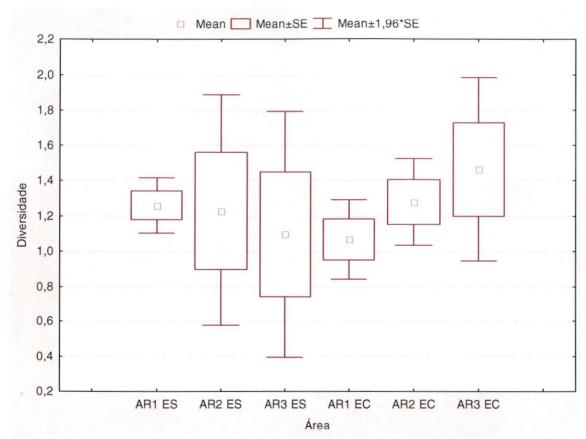
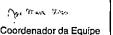


Figura V.2.2 - 2 - Análise de variância a partir dos dados de diversidade de peixes por Área Amostral na Área de Influência do Terminal Norte Capixaba (Legenda: AR - Área, ES - Estação Seca e EC - Estação Chuvosa).

Em relação à distribuição dos organismos pelos pontos amostrais e a similaridades destes, foi observada a formação de grupos, porém estes não foram caracterizados pela área de localização, mas pela estação do ano, assim como para os crustáceos (**Figuras V.2.2 – 3**).



Em relação às espécies da ictiofauna, também foi observada marcante influência no número de indivíduos coletados e tamanho desses quando a barra do rio se encontrava em conexão com o oceano. Foram encontradas 23 espécies de peixes na região, sendo 12 de importância comercial. Umas dessas espécies é o robalo (*Centropomus parallelus* e *C. undecimalis*), peixes que apresentam grande importância econômica, capturadas basicamente pela artesanal (CERQUEIRA, 2002). Estudos realizados com pescadores do Baixo rio Doce na década de 90 já indicavam a redução de sua população, pois 79% dos entrevistados alertaram para a diminuição do estoque e do tamanho dos robalos nas capturas. Atualmente a situação se agravou e pescadores têm solicitado ações compensatórias que permitam suspender a pesca dos centropomídeos por um período préestabelecido para recuperação destas populações (BARROSO et al., 2007).

MACIEIRA (2005) também salienta que os estuários do Espírito Santo são importantes para espécies da família Gerreidae, representadas por duas espécies no presente estudo, além dos Lutjanídeos, que representam elevada importância comercial para a atividade pesqueira artesanal do Estado (FREITAS NETTO et al., 2009). PAIVA e ANDRADE-TUBINO (1998) destacam que lutjanídeos e serranídeos constituem as famílias das principais espécies capturadas pela frota de linheiros no Mar Novo, região que se estende até o banco de Abrolhos, na Bahia. No presente estudo, por exemplo, dois exemplares de mero foram registrados. Nesse sentido, o estuário de Barra Nova pode representar um importante ambiente para recrutamento e desenvolvimento de espécies de peixes e crustáceos de importância ecológica e pesqueira para a costa leste do Brasil.

7. CONCLUSÃO

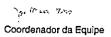
A partir das análises dos resultados encontrados na presente campanha de monitoramento, pode-se concluir que:

- Em relação a carcinofauna, foi possível observar que nas áreas mais distantes da barra, foram encontrados o maior número de tocas, entretanto, os maiores caranguejos foram encontrados nas áreas mais próximo a barra;
- Cabe ressaltar que as características do manguezal é um fator importante no número e tamanho de tocas encontradas;
- Em relação aos peixes, a porção central do manguezal apresentou o maior número de peixes, além de tamanhos maiores, sendo que a abertura da barra influenciou marcadamente nessa comunidade;
- O estuário de Barra Nova, além de apresentar espécies de importância econômica, também se mostra importante como área de recrutamento e crescimento de espécies marinhas, como o mero, que se encontra protegido por uma moratória de pesca.

8. REFERÊNCIAS BIBLIOGRÁFICAS

ARAÚJO, F. G. CRUZ-FILHO, A. G. AZEVÊDO, M. C. C. SANTOS, A. C. A. 1998. Estrutura da comunidade de peixes demersais da Baía de Sepetiba, RJ, Brasil. Revta. Bras. Biol., v.58, p. 417-430.

BARROSO, M. V. SOUZA, G. A. P. THOMÉ, J. C. A. LEITE JÚNIOR, N. O. MOREIRA, L. M. P. SANGALIA, C. SALES, E. F. DURÃO, J. N. 2007. Estratégias de conservação das populações de robalos Centropomus spp. na foz do Rio Doce, Linhares, Espírito Santo, Brasil. Rev. Bras. de Agroecologia, 2(2):1465-1468.


BLABER, S. M. J. BREWER, D. T. SALINI, J. P. 1995. Fish communities and the nursery role of the shallow inshore waters of a tropical bay in the Gulf of Carpentaria, Australia. Estuarine Coastal and Shelf Science 40: 177-193.

CASTIGLIONI, D. S. NEGREIROS-FRANSOZO, M. L. 2006. Physiologic sexual maturity of the fiddler crab Uca rapax (Smith, 1870) (Crustacea, Ocypodidae) from two mangroves in Ubatuba, Brazil. Braz. Arch. Biol. Tech. 49(2): 239-248.

CASTIGLIONI, D. S. NEGREIROS-FRANSOZO, M. L. MORTARI, R. C. 2006. Biologia populacional do caranguejo violinista Uca rapax (SMITH, 1870) (Crustacea, Ocypodoidea), proveniente de uma área de manguezal degradado em Paraty, RJ, Brasil. Atlântica, 28(2):73-86.

CASTRO, A. C. L. 2001. Diversidade da assembléia de peixes em Igarapés do estuário do rio Paciência (MA - Brasil). Revista Atlântica, Rio Grande, v.23, p. 39-46.

CERQUEIRA, V. R. 2002. Cultivo do Robalo: Aspectos da Reprodução, Larvicultura e Engorda. Ed. Do autor. Florianópolis: Universidade Federal de Santa Catarina, 94p.

FIGUEIREDO, J. L. MENEZES, N. A. 1978. Manual de peixes marinhos do sudeste do Brasil. II. Teleostei (1). Museu de Zoologia/Universidade de São Paulo, São Paulo, 110 p.

FIGUEIREDO, J. L. MENEZES, N. A. 1980. **Manual de peixes marinhos do sudeste do Brasil. III.** Teleostei (2). Museu de Zoologia/Universidade de São Paulo, São Paulo, 90 p.

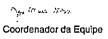
FIGUEIREDO, L. L. MENEZES, N. A. 2000. Manual de peixes marinhos do sudeste do Brasil. VI. Teleostei (5). 1ª ed. São Paulo: Museu de Zoologia de São Paulo. 90 p.

FRANSOZO, A. NEGREIROS-FRANSOZO, M. L. MANTELATTO, F. L. M. PINHEIRO, M. A. A. SANTOS, S. 1992. Composição e distribuição dos Brachyura (Crustacea, Decapoda) do sublitoral não consolidado na Enseada da Fortaleza, Ubatuba (SP). Revista Brasileira de Biologia, Rio de Janeiro, 52 (4): 667-675.

FREITAS NETTO, R. KROHLING, K. ROCHA, M. B. DI BENEDITTO, A. P. M. 2009. Produção pesqueira no triênio 2003-2005 na Cooperativa de pesca de Vila Velha, Espírito Santo, sudeste do Brasil. Boletim do Instituto de Pesca, 00:000-000.

FRUSHER, S. D. GIDDINS, R. I. SMITH III, T. J. 1994. **Distribution and abundance of grapsid crabs (Grapsidae) in a mangrove estuary: effects of sediment characteristics, salinity tolerances, and osmoregulatory ability.** Estuaries 17 (3): 647-654.

IBAMA/CEPENE. **Boletim estatístico da pesca marítima e estuarina do Nordeste do Brasil – 2002.** Tamandaré, 2003. 306 p.


IVO, C. T. C. VASCONCELOS, S. E. M. 2000. Potencial reprodutivo do caranguejo-uçá, Ucides cordatus (Linnaeus, 1763), capturado na região estuarina do rio Curimatau (Canguaretama, Rio Grande do Norte, Brasil). Boletim Técnico Científico do CEPENE, 8 (1): 45-53.

IVO, C. T. G. DIAS, A. F. BOTELHO, E. R. O. MOTA, R. I. VASCONCELOS, J. A. VASCONCELOS, E. M. S. 2000. Caracterização das populações de caranguejo-uçá, Ucides cordatus (Linnaeus, 1763), capturadas em estuários do Nordeste do Brasil. Boletim Técnico Científico do CEPENE, 8 (1): 9-43.

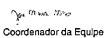
LOUIS, M. BOUCHON, C. BOUCHON-NAVARO, Y. 1995. **Spatial and temporal variations of mangrove fish assemblages in Martinique (French West Indies).** Hydrobiologia 295:275-284.

MACIEIRA, R. M. 2005. Aspectos da ictiofauna do sistema estuarino dos rios Piraquê-açu e Piraquê-mirim, ES. Monografia de Graduação (Oceanografia), Universidade Federal do Espírito Santo. 49p.

MANTELATTO, F. L. M. FRANSOZO, A. 1999. Reproductive biology and moulting cycle of the crab Callinectes ornatus (Decapoda, Portunidae) from the Ubatuba region, São Paulo, Brazil. Crustaceana. 72(1): 63-76.

MANTELATTO, F. L. M. FRANSOZO, A. 1999. Reproductive biology and moulting cycle of the crab Callinectes ornatus (Decapoda, Portunidae) from the Ubatuba region, São Paulo, Brazil. Crustaceana. 72(1): 63-76.

MENDES, V. M. T. COUTO, E. C. G. 2001. A família Ocypodidae Rafinesque, 1815 (Crustacea: Decapoda: Brachyura) na costa sergipana. Revista Nordestina de Biologia, 15 (2): 27-40.


MENDES, V. M. T. COUTO, E. C. G. 2001. A família Ocypodidae Rafinesque, 1815 (Crustacea: Decapoda: Brachyura) na costa sergipana. Revista Nordestina de Biologia, 15 (2): 27-40.

MENEZES, N. A. FIGUEIREDO, J. L. 1980. Manual de peixes marinhos do sudeste do Brasil. IV. Teleostei (3). Museu de Zoologia/Universidade de São Paulo, São Paulo, 96 p.

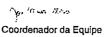
MENEZES, N. A. FIGUEIREDO, J. L. 1985. Manual de peixes marinhos do sudeste do Brasil. V. Teleostei (4). Museu de Zoologia/Universidade de São Paulo, São Paulo, 105 pp.

NICOLAU, C. F. OSHIRO, L. M. Y. 2007. Distribuição espacial, sazonal e estrutura populacional do caranguejo Aratus pisonii (H. Milne Edwards) (Crustacea, Decapoda, Sesarmidae) do manguezal de Itacuruçá, Rio de Janeiro, Brasil. Revista Brasileira de Zoologia 24(2):463–469.

SANTOS, M. C. F. BOTELHO, E. R. O. IVO, C. T. C. 2001. **Biologia** populacional e manejo da pesca de aratu, Goniopsis cruentata (LATREILLE, 1803) CRUSTACEA: DECAPODA: GRAPSIDAE) no litoral sul de Pernambuco-Brasil. Bol. Técn. Cient. CEPENE, 9(1):87-123.

SCHAEFFER-NOVELLI, Y. 1995. **Manguezal, ecossistema entre terra e o mar**. São Paulo: Caribbean Ecological Research. 62 p.

SCHAEFFER-NOVELLI, Y. CINTRON-MOLERO, G. 1999. **Brazilian mangroves:** a historical ecology. Ciência e Cultura, 51 (3/4): 271-286. Sick, H. 1997. Ornitologia brasileira. 2. ed. Editora Nova Fronteira, Rio de Janeiro, Brasil, 912pp.


SCHMIDT, A. J. 2006. Estudo da dinâmica populacional do caranguejo-uçá, Ucides cordatus cordatus (LINNAEUS, 1763) (CRUSTACEA-DECAPODABRACHYURA), e dos efeitos de uma mortalidade em massa desta espécie em manguezais do Sul da Bahia. Dissertação apresentada ao IOUSP para obtenção de título de Mestre em Ciências, área de Oceanografia Biológica.

SOUTO, F. J. B. 2007. Uma abordagem etnoecológica da pesca do caranguejo, Ucides cordatus, Linnaeus, 1763 (Decapoda: Brachyura), no manguezal do Distrito de Acupe (Santo Amaro-BA). Biotemas, 20(1):69-80.

SPACH, H. L. SANTOS, C. GODEFROID, R. S. 2003. Padrões temporais na assembleia de peixes na gamboa do Sucuriú, Baía do Paranaguá, Brasil.

Revta. Bras. Zool., v.20, p. 591-600.

TONGNUNUI, P. IKEJIMA, K. YAMANE, T. HORINOUCHI, M. MEDEJ, T. SANO, M. KUROKURA, H. TANIUCHI, T. 2002. **Fish fauna of the Sikao creek mangrove estuary, Trang, Thailand.** Fisheries science, v.68, p. 10-17.

VENDEL, A. L. LOPES, S. G. SANTOS, C. SPACH, H. L. 2003. **Fish assemblages in a tidal flat.** Brazilian archives of biology and technology, v.46, p. 233-242.

VAZZOLER, A. E. M. 1996. Biologia da reprodução de peixes teleósteos: teoria e prática. Maringá, EDUEM, 169p.

YÁÑEZ-ARANCIBIA, A. 1985. The estuarine nekton: why and how an ecological monograph. Preface. In: YÁÑEZ-ARANCIBIA, A. Fish community ecology in estuaries and coastal lagoons: towards an ecosystem integration. Mexico: UNAM, p. 1-8.

9. RESPONSÁVEIS TÉCNICOS

Profissional	Ricardo de Freitas Netto
Empresa	Ethica Ambiental
Registro no Conselho de Classe	CRBIO nº: 29.414/02D
Cadastro Técnico Federal de Atividades	IBAMA nº: 1654307
e Instrumentos de Defesa Ambiental	l
Responsável pelas Seções	Todas – Técnico Responsável
Assinatura	

Ministério do Meio Ambiente Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis

CADASTRO TÉCNICO FEDERAL CERTIFICADO DE REGULARIDADE

Nr. de Cadastro:	CPF/CNPJ:	Emitido em:	Válido até:
1654307	072.185.127-47	20/01/2012	20/04/2012

Nome/Razão Social/Endereço

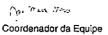
Ricardo de Freitas Netto

Rua Desembargador joão Manoel de Carvalho 291

Barro Vermelho

VITORIA/ES

29057-630


Este certificado comprova a regularidade no

Cadastro de Instrumentos de Defesa Ambiental

Consultor Técnico Ambiental - Classe 5.0

Ecossistemas Terrestres e Aquaticos

Profissional	José Mauro Sterza
Empresa	Ethica Ambiental
Registro no Conselho de Classe	CRBIO nº: 32.344/02D
Cadastro Técnico Federal de Atividades	IBAMA nº: 587931
e Instrumentos de Defesa Ambiental	<u> </u>
Responsável pelas Seções	Todas - Coordenação
Assinatura	_
	My. Man. Hino.

Ministério do Meio Ambiente Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis

CADASTRO TÉCNICO FEDERAL CERTIFICADO DE REGULARIDADE

Nr. de Cadastro:	CPF/CNPJ:	Emitido em:	Válido até:
587931	073.583.117-36	04/08/2011	04/11/2011

Nome/Razão Social/Endereço

José Mauro Sterza

Rua Acre n.276

Praia da Costa

VILA VELHA/ES

29101-230

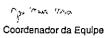
Este certificado comprova a regularidade no

Cadastro de Instrumentos de Defesa Ambiental

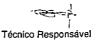
Consultor Técnico Ambiental - Classe 5.0

Qualidade da Água

Educação Ambiental


Recursos Hídricos

Controle da Poluição


Gestão Ambiental

Ecossistemas Terrestres e Aquaticos

10. ANEXOS

Anexo X - 1 – Catálogo das principais espécies registradas no presente estudo.

Citharichthus macrops

Genidens barbus

Eugerres brasilianus

Achirus lineatus

Stellifer brasiliensis

Sphoeroides testudineus

Anexo X - 1 - Catálogo das principais espécies registradas no presente estudo (Continuação).

Centropomus parallelus

Mugil liza

Cetengraulis edentulus

Bairdiella ronchus

Micropogonias furnieri

Epinephelus itajara

Anexo X - 1 - Catálogo das principais espécies registradas no presente estudo (Continuação).

Ucides cordatus

Callinectes danae

Goniopsis cruentata

Uca thayeri

Anexo X - 2 – Imagens ilustrativas das palestras realizadas para as comunidades da área de influência do Terminal Norte Capixaba.

Comunidade de Campo Grande

Comunidade de Barra Nova Sul

Comunidade de Barra Nova Norte

Comunidades de Gameleira e Nativo

Anexo X - 3 – Lista de presença das palestras realizadas para as comunidades da área de influência do Terminal Norte Capixaba.

NOME	COMUNIDADE	IDADE	PROFISSÃO	CONTATO
Carlindo das Dontan Casto	nativo	36	CATADOX	Par
Courinte Santo	nativo	26	Pescadora	946 + 1091
Cerezinha placido dos regl				,
ma tosta 5. marcil	gamlera	52	Resconday	98/56099
Rosangela R. de Lima Santos	nativo	44	postatora	991433 %
Rosiano Pasa de Dima	natino	3.4	catadora	
Jaria Barbosa	aritan	38		98176211
Aliane des Santes Pêgo	native	25	Marigulira	
John Homas		26	1	
Goas Bu de de mirando				
Time Enteror de selsa Etimindia	vatinsa			
Maril 3a Roch Jus Dosanto-				
Admir Placedo des santos	Jameleiro	46		
Beatris Esteros Simos				

NOME	COMUNIDADE	IDADE	PROFISSÃO	CONTATO
apples Antonto Backosa	mations			
Valdemor Rosa Tilho				
Eliane da silva reison				
morineide da s mendos	Nativo			
mariada Penha Cartro do Silve	a Native			
Alginete Costro da Silva	vains			
Maria Maladora Partro desig	nativo			
Bestron Partro da Selva	nativo			
Corinal pereira Rangel	nativo		Askados	
Benichta Pinto	natirjo	1	()	
Brandina B. Balista	Vaterio	25aus	Percador	
Blita Barros dos Santos	Ferrgen			
Rymold Ferris Ceri	Joneson			
Jonewilan Fra	1 PA7100	33	PEGLADOR	9900 9518

NOME	COMUNIDADE	IDADE	PROFISSÃO	CONTATO	
Amor bargel she silva	gamelina	48	Brado	9914709	17
Devilde Butinho					
Valdeu Rosa					
Paulo ellortis					
maria Elena serra-		1			
Joersmins N. Contral	ASS ASTIVO	31	TEC. 620	9835380	7
Handira murice	Ferrugen	93	Persender	974	3 139
Dianicia Es Derunea Sidorio	1 some ferm		230000	0 7 -1	7 7 6
Amalia Plácido da Costa	Ferrigen				
- 1/	BINOUS - NORTE	46	PESCADOR	9904.9044	

NOME	COMUNIDADE	IDADE	PROFISSÃO	CONTATO
on Soulie	Barra Nova Noit	249.	ACLA	9806-8888
Juana Sima Pereira	Barra Nova Nort	26	Rescodora	9806-888
of da Claric A Souts	Edomia Z-43	55	Pacadora	9838894
CARLINHO SIMIAS	COMARA	50	VETTERMOR	97443923
buck 1280 1296s				97 51198
Miguele Santan Conta Daguira		22	Threadown	9835 1806
Mangel des frost				,
Valdominodesana				
Emandina A goans	BNN			
Valder Texter	BATTA NOVA SUL	51	Pescador	98382876
Maria Eurice Santos	Barra Nova Sul	49	Properora	99126696
S. Valdo Jus do acero			0	
Marine do sobre	Barrie Mene Seel	26		9807 8958
Edeleni P. corrallo	Garrie mare sell			

NOME	COMUNIDADE	IDADE	PROFISSÃO	CONTATO
Ideede 3. M. do naximento	Barra neva Sul			
Olga elandolf da Silva	Barra negas	lul	Servento	980326
long' montures Trixing	Barra nova Sul			
Vera Lucia Jeixeira P.	Barre noon su			98029515
Ma da Perha Camilia Monteiro	Barra morasul			
Morinete Borge Leite monte	ino Barna Novasi			
Songra vontura da Silva	Bara NOUP Sul			
Samuel Sedano Vines	Side - S. Maters	52	A gente Fiscal	99589355
Valquires gazentino de sago	Barramona SUL		POP	96400149
Johnar Martins	Barra Nova Sul		Pescador	
Edsor Mo	BARNA NOW SUL			
Ray	CAMPO GPANSE		FODOSFUTAND	- 1
Lace Unglass	Camp grande	_	Comerzia	991188
maria Benza germoli	Campo Grande	53	Conserciante	99879547

NOME	COMUNIDADE	IDADE	PROFISSÃO	CONTATO
Sulet do selea rartins	compo Grande	18 AVOS	pescadara	66876 9706-34
Chrystina Beneralte Byin Martins	cam po grande	1fons	percadora	9+08-8112
	Gildast Goor 2	Vier	98230490	242
Solvention Paris Concerno	SENAR	57-	(27) 8155-3085	
Instiso Carios (NACARRÃO)	SENAR	57	CONSULTOR	(24) 8155-30 85
Marcia Cristina Capucho	SENAR Sindicate Rural	35	Administradora Mobi lizadora	9106.9126.9952 76
Luciele Barioco	Corn po Grande.	32.	Privaclopes	9978-1527
Luciana flyria do maramento	Panes Errande		SICILLINO APESCA	
Redigat Amotin Ramatho	Campo Grande	21	Vaci- Presidente	9988-2040
Kelly Ramatho of Dena	Campo Guranak	21	Sicutaria da	(21) 9850-2382
Marineuxa aeraldino	Parrie grande	26	Percadora.	127)9809.132
moverile Patarino Almeida	Campo grande	25	PerPadora	9627-1847
Jo Siane Bernardo	Campo Grande	31	percadora	96292600
Vildo Morros BOTGES	campo grande	39	PEZC4DOR	99005606

P

NOME	COMUNIDADE	IDADE	PROFISSÃO	CONTATO
Aureline Bernardo clarindo	Vativo			
laudiene Bernardo Ribeiro	Nativo			
maic Bernardo	native			
fatime Bernardo	nativo			
Grandra Batista Rangel	nativo	32	Rexadora	9911-7322
Resalba Batista	nativo	50	Piscadera	9911-732
Mariba Bernardo continho	Nativo de 3. Nava	39	Ascado antigor	29274264
Julius Gur Res				
busenir de souza dima	native B some	37	percadoa	
Jose andré Partro da Silva	natio B sac	41	percodor	9996830
Beatriza Pastro da Silva	nativo B son		pecados	
Liozand do sontos Enão			,	9987922
Pedro Comie more	Gamelino	54		981568
Maria José Bergrando dos Santos	Lerrudery		Percador	383704B

NOME	COMUNIDADE	IDADE	PROFISSÃO	CONTATO
ROYALDS ROSES Presile	CAMPO GRANDE			
Mento	Crampo Grande			
Rigida Momor Marges	Campo Grande			
Pelianos Santos Francisco	Pampo Grande			
Gerlidia P. p. negrus	Campo grande			
gelma B. Romallio	campo Glande			
Queuni C. do roscimento	Campo grande		*	
DAVID N MACHADO	COMPOGRONDE	-		
Adrianothonias Borges	CAMPOGRANDE	21	40.	02121126
sonia Ferreira santana	campo grande		percodor	
Doeue PERCIRA NEGRIS	CAMPO GRANDE		Catador	
Loondra Dreino Negrin	Compa Grande	250MM	Calasor	V6 3700 6

100