

RELATÓRIO CONSOLIDADO DO PROGRAMA DE CARACTERIZAÇÃO E MONITORAMENTO FÍSICO-QUÍMICO E BIOLÓGICO DO SEDIMENTO MARINHO E ESTUARINO

2011 a 2014

Volume Único

Revisão 00 Dezembro/2014

APRESENTAÇÃO

A PETROBRAS TRANSPORTE S.A. - TRANSPETRO apresenta ao Instituto Estadual do Meio Ambiente e Recursos Hídricos - IEMA o RELATÓRIO CONSOLIDADO DO PROGRAMA DE CARACTERIZAÇÃO E MONITORAMENTO FÍSICO-QUÍMICO E BIOLÓGICO DO SEDIMENTO MARINHO E ESTUARINO, em atendimento à Condicionante 06 da LO 439/2010, Processo IEMA nº 22218939.

Os resultados aqui apresentados foram compilados a partir da caracterização do ambiente entre os anos de 2011 a 2014.

ÍNDICE GERAL

1	CARACTERIZAÇÃO DO EMPREENDIMENTO	16
1.1	IDENTIFICAÇÃO DO EMPREENDEDOR	16
1.1.1	Representante Legal	16
2	EMPRESA RESPONSÁVEL	17
2.1	REPRESENTANTE LEGAL	17
2.2	RESPONSÁVEL TÉCNICO	17
3	INTRODUÇÃO	18
4	OBJETIVOS	19
4.1	OBJETIVO GERAL	19
4.2	OBJETIVOS ESPECÍFICOS	19
5	ÁREA DE ESTUDO	20
6	METODOLOGIA	21
6.1	AMOSTRAGEM	21
6.2	GEOQUÍMICA DO SEDIMENTO	22
6.3	GRANULOMETRIA E COMPOSIÇÃO	22
6.4	ANALISE ESTATÍSTICA	27
7	RESULTADOS	30
7.1	PARÂMETROS DE QUALIDADE DE SEDIMENTO	30
7.1.1	Ambiente Marinho	30
7.1.1.1	Cádmio Total	30
7.1.1.2	Chumbo Total	31
7.1.1.3	Cobre Total	32
7.1.1.4	Cromo Total	33
7.1.1.5	HTP (Fingerprint)	35
7.1.1.6	Mercúrio Total	36

7.1.1.7	Níquel Total	37
7.1.1.8	TPH Total	38
7.1.1.9	Zinco Total	39
7.1.2	Ambiente Estuarino	41
7.1.2.1	Cádmio Total	41
7.1.2.2	Chumbo Total	42
7.1.2.3	Cobre Total	43
7.1.2.4	Cromo Total	44
7.1.2.5	HTP (Fingerprint)	46
7.1.2.6	Mercúrio Total	47
7.1.2.7	Níquel Total	48
7.1.2.8	TPH Total	49
7.1.2.9	Zinco Total	50
7.2	COMUNIDADE BENTÔNICA DE SEDIMENTO INCONSOLIDADO	52
7.2.1	Ambiente Marinho	52
7.2.1.1	Densidade	52
7.2.1.2	Índices Ecológicos	<i>5</i> 3
7.2.1.3	Análise de Similaridade	56
7.2.1.4	Granulometria e relação com a comunidade bentôncia	59
7.2.2	Ambiente Estuarino	64
7.2.2.1	Densidade	64
7.2.2.2	Índices Ecológicos	65
7.2.2.3	Análise de Similaridade	68
7.2.2.4	Granulometria e relação com a comunidade bentôncia	70
8	CONSIDERAÇÕES FINAIS	75
9	CONCLUSÃO	79
10	REFERÊNCIA BIBLIOGRÁFICA	80
11	EQUIPE TÉCNICA	86

12 ANEXOS 89

ÍNDICE DE FIGURAS

Figura 6-1: Demonstração da coleta de sedimento com draga de Petersen, durante
campanha de agosto/201421
Figura 7-1: Valores médios de cádmio total (mg/kg) associados ao sedimento do
ambiente marinho, na temporada de 2011 a 201430
Figura 7-2: Valores médios de cádmio total (mg/kg) associados ao sedimento do
ambiente marinho, entre os pontos amostrais, na temporada de 2011 a 201431
Figura 7-3: Valores médios de chumbo total (mg/kg) associados ao sedimento do
ambiente marinho, na temporada de 2011 a 201431
Figura 7-4: Valores médios de chumbo total (mg/kg) associados ao sedimento do
ambiente marinho, entre os pontos amostrais, na temporada de 2011 a 2014 32
Figura 7-5: Valores médios de cobre total (mg/kg) associados ao sedimento do
ambiente marinho, na temporada de 2011 a 201433
Figura 7-6: Valores médios de cobre total (mg/kg) associados ao sedimento do
ambiente marinho, entre os pontos amostrais, na temporada de 2011 a 2014 33
Figura 7-7: Valores médios de cromo total (mg/kg) associados ao sedimento do
ambiente marinho, na temporada de 2011 a 201434
Figura 7-8: Valores médios de cromo total (mg/kg) associados ao sedimento do
ambiente marinho, entre os pontos amostrais, na temporada de 2011 a 2014 34
Figura 7-9: Valores médios de HTP (mg/kg) associados ao sedimento do ambiente
marinho, na temporada de 2012 a 201335
Figura 7-10: Valores médios de HTP (mg/kg) associados ao sedimento de
ambiente marinho, entre os pontos amostrais, na temporada de 2011 a 2014 35
Figura 7-11: Valores médios de mercúrio total (mg/kg) associados ao sedimento
do ambiente marinho, na temporada de 2011 a 201436
Figura 7-12: Valores médios de mercúrio total (mg/kg) associados ao sedimento
do ambiente marinho, entre os pontos amostrais, na temporada de 2011 a 2014
37
Figura 7-13: Valores médios de níquel total (mg/kg) associados ao sedimento do
ambiente marinho, na temporada de 2011 a 2014
Figura 7-14: Valores médios de níquel total (mg/kg) associados ao sedimento do
ambiente marinho, entre os pontos amostrais, na temporada de 2011 a 2014 38

Figura 7-15: Valores médios de IPH total (mg/kg) associados ao sedimento do
ambiente marinho, na temporada de 2011 a 201439
Figura 7-16: Valores médios de TPH total (mg/kg) associados ao sedimento do
ambiente marinho, entre os pontos amostrais, na temporada de 2011 a 2014 39 $$
Figura 7-17: Valores médios de zinco total (mg/kg) associados ao sedimento do
ambiente marinho, na temporada de 2011 a 201440
Figura 7-18: Valores médios de zinco total (mg/kg) associados ao sedimento do
ambiente marinho, entre os pontos amostrais, na temporada de 2011 a 2014 40 $$
Figura 7-19: Valores médios de cádmio total (mg/kg) associados ao sedimento do
ambiente estuarino, na temporada de 2011 a 2014 41
Figura 7-20: Valores médios de cádmio total (mg/kg) associados ao sedimento do
ambiente estuarino, entre os pontos amostrais, na temporada de 2011 a 2014 42
Figura 7-21: Valores médios de chumbo total (mg/kg) associados ao sedimento do
ambiente estuarino, na temporada de 2011 a 201442
Figura 7-22: Valores médios de chumbo total (mg/kg) associados ao sedimento do
ambiente estuarino, entre os pontos amostrais, na temporada de 2011 a 2014 43 $$
Figura 7-23: Valores médios de cobre total (mg/kg) associados ao sedimento do
ambiente estuarino, na temporada de 2011 a 2014 44
Figura 7-24: Valores médios de cobre total (mg/kg) associados ao sedimento do
ambiente estuarino, entre os pontos amostrais, na temporada de 2011 a 2014 44
Figura 7-25: Valores médio de cromo total (mg/kg) associado ao sedimento do
ambiente estuarino, na temporada de 2011 a 201445
Figura 7-26: Valores médios de cromo total (mg/kg) associados ao sedimento do
ambiente estuarino, entre os pontos amostrais, na temporada de 2011 a 2014 45
Figura 7-27: Valores médio de HTP (mg/kg) associado ao sedimento do ambiente
estuarino, na temporada de 2011 a 2014
Figura 7-28: Valores médio de HTP (mg/kg) associado ao sedimento do ambiente
estuarino, entre os pontos amostrais, na temporada de 2011 a 2014 46
Figura 7-29: Valores médios de mercúrio total (mg/kg) associados ao sedimento
do ambiente estuarino, na temporada de 2011 a 201447
Figura 7-30: Valores médios de mercúrio total (mg/kg) associados ao sedimento
do ambiente estuarino, entre os pontos amostrais, na temporada de 2011 a 2014.
48

Figura 7-31: Valores médio de níquel total (mg/kg) associado ao sedimento do
ambiente estuarino, na temporada de 2011 a 201448
Figura 7-32: Valores médios de níquel total (mg/kg) associados ao sedimento do
ambiente estuarino, entre os pontos amostrais, na temporada de 2011 a 2014 49
Figura 7-33: Valores médios de TPH total (mg/kg) associados ao sedimento do
ambiente estuarino, na temporada de 2011 a 2014 50
Figura 7-34: Valores médios de TPH total (mg/kg) associados ao sedimento do
ambiente estuarino, entre os pontos amostrais, na temporada de 2011 a 2014 50
Figura 7-35: Valores médios de zinco total (mg/kg) associados ao sedimento do
ambiente estuarino, na temporada de 2011 a 201451
Figura 7-36: Valores médios de zinco total (mg/kg) associados ao sedimento do
ambiente estuarino, entre os pontos amostrais, na temporada de 2011 a 2014 51
Figura 7-37: Densidade média (indivíduos/m²) no ambiente marinho entre as
campanhas na temporada de 2011 a 2014 52
Figura 7-38: Densidade média (indivíduos/m²) no ambiente marinho entre os
pontos amostrais na temporada de 2011 a 201453
Figura 7-39: Riqueza média no ambiente marinho entre as campanhas na
temporada de 2011 a 201453
Figura 7-40: Riqueza média no ambiente marinho entre os pontos amostrais na
temporada de 2011 a 201454
Figura 7-41: Diversidade média no ambiente marinho entre as campanhas na
temporada de 2011 a 201454
Figura 7-42: Diversidade média no ambiente marinho entre os pontos amostrais na
temporada de 2011 a 201455
Figura 7-43: Equitabilidade média no ambiente marinho entre as campanhas na
temporada de 2011 a 201455
Figura 7-44: Equitabilidade média no ambiente marinho entre os pontos amostrais
na temporada de 2011 a 201456
Figura 7-45: Análise de similaridade da comunidade bentônica representada por
gráfico de MDS (Multidimensional Scaling) entre as campanhas de monitoramento
e pontos amostrais no ambiente marinho na temporada de 2011 a 2014 57
Figura 7-46: Análise de similaridade da comunidade bentônica representada por
gráfico de MDS (Multidimensional Scaling) entre as campanhas de monitoramento

e pontos amostrais, classificadas por grupos (Seco e Chuvoso; Controle, Monobóia,
Duto e Costeiro) no ambiente marinho na temporada de 2011 a 2014 58
Figura 7-47: Frequencia média das classes de grãos (LA- lama, AMF – areia media
fina, AF – areia fina, AM – areia média, AG – areia grossa e AMG – areia muito
grossa) do sedimento no ambiente marinho na temporada de 2011 a 2014 59
Figura 7-48: Frequencia média das classes de grãos (LA- lama, AMF areia media
fina, AF – areia fina, AM – areia média, AG – areia grossa e AMG – areia muito
grossa) do sedimento entre os pontos amostrais no ambiente marinho na
temporada de 2011 a 2014 60
Figura 7-49: Análise de Correlação Canônica (CCA) entre os dados de
granulometria e abundância dos principais organismos (85% indivíduos) do
zoobentos de fundo inconsolidado na área marinha sobre influência do Termina
Norte Capixaba das campanhas de agosto de 2011 a maio de 2014 62
Figura 7-50: Densidade média (indivíduos/m²) no ambiente marinho entre as
campanhas na temporada de 2011 a 201464
Figura 7-51: Densidade média (indivíduos/m²) no ambiente estuarino entre os
pontos amostrais na temporada de 2011 a 2014 65
Figura 7-52: Riqueza média no ambiente estuarino entre as campanhas na
temporada de 2011 a 2014 65
Figura 7-53: Riqueza média no ambiente estuarino entre os pontos amostrais na
temporada de 2011 a 2014 66
Figura 7-54: Diversidade média no ambiente estuarino entre as campanhas na
temporada de 2011 a 2014 66
Figura 7-55: Diversidade média no ambiente estuarino entre os pontos amostrais
na temporada de 2011 a 2014 67
Figura 7-56: Equitabilidade média no ambiente estuarino entre as campanhas na
temporada de 2011 a 2014 67
Figura 7-57: Equitabilidade média no ambiente estuarino entre os pontos amostrais
na temporada de 2011 a 2014 68
Figura 7-58: Análise de similaridade da comunidade bentônica representada por
gráfico de MDS (Multidimensional Scaling) entre as campanhas de monitoramento
e pontos amostrais no ambiente estuarino na temporada de 2011 a 2014 69

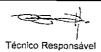
Figura 7-59: Frequencia media das classes de graos (LA- lama, AMF – areia media
fina, AF - areia fina, AM - areia média, AG - areia grossa e AMG - areia muito
grossa) do sedimento no ambiente estuarino na temporada de 2011 a 2014 70
Figura 7-60: Frequência média das classes de grãos (LA- lama, AMF – areia media
fina, AF – areia fina, AM – areia média, AG – areia grossa e AMG – areia muito
grossa) do sedimento entre os pontos amostrais no ambiente estuarino na
temporada de 2011 a 201471
Figura 7-61: Análise de Correlação Canônica (CCA) entre os dados de
granulometria e abundância dos principais organismos (85% indivíduos) do
zoobentos de fundo inconsolidado na área estuarina sobre influência do Termina
Norte Capixaba das campanhas de agosto de 2011 a maio de 2014

INDICE DE TABELAS

Tabela 5-1: Coordenadas geograficas dos pontos de monitoramento em Datum
WGS-84 (zona 24S)
Tabela 6-1: Frações utilizadas na análise granulométrica dos sedimentos e a
abertura Phi (Φ) correspondente. As frações silte a argila foram determinadas por
pipetagem e as frações arenosas e cascalhosas (seixo e grânulo) por peneiramento
a seco
Tabela 6-2: Variação no tempo de sedimentação e profundidade de coleta de cada
fração para a análise granulométrica por pipetagem sob diferentes temperaturas de
acordo com a Lei de Strokes (Suguio, 1973)26
Tabela 6-3: Escala qualitativa para a descrição do grau de seleção dos sedimentos
segundo Folk & Ward (1957)26
Tabela 6-4: Escala qualitativa utilizada na descrição do grau de assimetria dos
sedimentos segundo Folk & Ward (1957)26
Tabela 6-5: Valores de curtose para a classificação da curva de distribuição das
frações granulométricas segundo Folk & Ward (1957)
Tabela 7-1: Siglas e seus respectivos táxons encontrados na análise de Correlação
Canônica (CCA) do zoobentos de fundo inconsolidado na área marinha sobre
influência do Terminal Norte Capixaba das campanhas de agosto de 2011 a maio
de 2014 63
Tabela 7-2: Siglas e seus respectivos táxons encontrados na análise de Correlação
Canônica (CCA) do zoobentos de fundo inconsolidado na área estuarina sobre
influência do Terminal Norte Capixaba das campanhas de agosto de 2011 a maio
de 2014

LISTA DE ANEXOS

Anexo I - Lista de registrada por campanha no monitoramento do TNC entre 2011 e 2014.


Anexo II – Mapa de localização dos pontos de amostragem de sedimento estuarino.

Anexo III - Mapa de localização dos pontos de amostragem de sedimento marinho.

Anexo IV – Catálogo de táxons de bentos mais frequentes e significativos durante o monitoramento.

1 CARACTERIZAÇÃO DO EMPREENDIMENTO

TERMINAL NORTE CAPIXABA - TNC

Localização: Rodovia Campo Grande, Barra Nova, Km 08, S/Nº, CEP: 29.944-370, no município de São Mateus/ES.

1.1 IDENTIFICAÇÃO DO EMPREENDEDOR

NOME: PETROBRAS TRANSPORTE S.A - TRANSPETRO.

CNPJ: 02.709.449/0075-95.

ENDEREÇO: Rodovia Campo Grande, Barra Nova, Km 08, S/Nº, CEP: 29.944-370,

no município de São Mateus/ES.

1.1.1 Representante Legal

NOME: Francisco Antônio Padilha Barreto

CARGO: Gerente dos Terminais Aquaviários do Espírito Santo

E-MAIL: bto@petrobras.com.br

EMPRESA RESPONSÁVEL

RAZÃO SOCIAL: CTA – Serviços em Meio Ambiente Ltda.

CNPJ: 39.793.153/0001-79

ENDEREÇO: Rua Saturnino Rangel Mauro, 283, Pontal de Camburi. Vitória/ES.

TELEFAX: (27) 3345-4222.

HOMEPAGE: www.cta-es.com.br

REPRESENTANTE LEGAL

NOME: Humberto Ker de Andrade **CARGO:** Diretor Geral

Biólogo, Mestre em Aqüicultura

E-MAIL: diretoria@cta-es.com.br

2.2 RESPONSÁVEL TÉCNICO

CARGO: Diretor Técnico NOME: Alessandro Trazzi

Biólogo, Mestre em Engenharia Ambiental.

E-MAIL: alessandro@cta-es.com.br

3 INTRODUÇÃO

A comunidade de macroinvertebrados bentônicos é um importante componente do sedimento de ambientes aquáticos, sendo fundamental para a dinâmica de nutrientes a transformação de matéria e o fluxo de energia. Quaisquer alterações da superfície do sedimento e liberação de compostos na água podem comprometer a saúde e a qualidade desse ambiente (CALLISTO & ESTEVES, 1995).

O Programa de Caracterização e Monitoramento Físico-Químico e Biológico do Sedimento Marinho e Estuarino tem por objetivo avaliar a qualidade do ambiente na região de influência dos dutos e monobóia do Terminal Norte Capixaba (TNC) em atendimento aos requisitos legais do licenciamento ambiental estipulados pelo Instituto Estadual do Meio Ambiente e Recursos Hídricos (IEMA), através da Condicionante 06 da LO 439/2010. O presente documento traz uma compilação de dados entre os anos de 2011 e 2014, sendo esses dados coletados de maneira sistemática e de acordo com procedimentos padrões estabelecidos pela APHA (2000) e CETESB (1987).

OBJETIVOS

OBJETIVO GERAL

Objetivos

Analisar os dados físico-químicos e biológicos do monitoramento do sedimento na região de influência dos dutos e monobóia do Terminal Norte Capixaba (TNC) com ferramentas estatísticas que permitam avaliar a evolução desses parâmetros no tempo e no espaço.

4.2 OBJETIVOS ESPECÍFICOS

- Caracterizar a qualidade do sedimento marinho através de análises geoquímicas, considerando os limites da Resolução CONAMA nº 454/12;
- Identificar possíveis diferenças ao longo do tempo com base nos resultados obtidos de 2011 a 2014;
- Identificar taxonomicamente os exemplares bentônicos capturados. preferencialmente a nível de espécie, e quantificá-los nas estações de monitoramento;
- Determinar os parâmetros populacionais da comunidade zoobentônica (índices ecológicos: riqueza, similaridade, diversidade e dominância), procedendo à análise comparativa entre os pontos de monitoramento das campanhas de 2011 a 2014;

ÁREA DE ESTUDO

As coletas de sedimento para análise do zoobentos, granulometria, metais e HTPs (finger print) são realizadas em três pontos de amostragem no estuário do Rio Barra Nova (Anexo II) e nove pontos de amostragem marinhos (Anexo III).

As coordenadas geográficas das estações de coleta estão apresentadas na Tabela **5-1** abaixo.

Tabela 5-1: Coordenadas geográficas dos pontos de monitoramento em Datum WGS-84 (zona

4S). Estação de monitoramento	Localização	Longitude	Latitude	
PE-01	Estuário	421595,730	7902778,473	
PE-02	_e Estuário	421920,779	7901389,175	
PE-03	Estuário	421107,138	7900166,714	
PM-01	Marinho:	425690,937	7903316,430	
PM-02	Marinho	425690,937	7899316,430	
PM-03	Marinho	423181,951	7900788,075	
PM-04	Marinho	424436,444	7900788,075	
PM-05	Marinho	425690,937	7900788,075	
PM-06	Marinho	426318,184	7901316,430	
PM-07 ·	Marinho	425690,937	7901940,838	
PM-08	Marinho	424436,444	7901940,838	
PM-09	Marinho	423181,951	7901940,838	

Revisão 00

6 METODOLOGIA

Metodologia

6

6.1 AMOSTRAGEM

As amostras de sedimento são coletadas utilizando-se uma draga do tipo busca fundo de *Petersen*, sendo uma amostra por ponto (**Figura 6-1**). Posteriormente, as amostras são acondicionadas em frascaria adequada a cada parâmetro (objeto de estudo), devidamente identificadas e encaminhadas aos locais de análise.

Para a comunidade bentônica de fundo, em cada um dos pontos de amostragem são efetuados três lançamentos (triplicatas). O material deve ser fixado em formol 10%, acondicionado em sacolas plásticas e, posteriormente, enviados ao laboratório para lavagem, triagem e identificação.

Figura 6-1: Demonstração da coleta de sedimento com draga de *Petersen*, durante campanha de agosto/2014.

6.2 GEOQUÍMICA DO SEDIMENTO

As análises de geoquímica do sedimento são compostas pelos seguintes parâmetros:

- Cádmio
- Chumbo
- Cobre
- Cromo
- Mercúrio
- Níquel
- Zinco
- Hidrocarbonetos Totais de Petróleo.

6.3 GRANULOMETRIA E COMPOSIÇÃO

A análise granulométrica é realizada em três amostras oriundas do estuário do Rio Barra Nova (PE1, PE2, PE3) e nove pontos localizados no ambiente marinho (PM1 a PM9).

A primeira etapa do preparo dos sedimentos destinados à análise granulométrica é a retirada do sal. As amostras são lavadas em bacias plásticas e a água destas bacias é trocada pelo menos cinco vezes até que todo o conteúdo do sal solúvel seja removido. Após a secagem dos sedimentos em uma estufa a 80 °C as amostras de sedimentos arenosos são quarteadas e separados cerca de 50 g destinados à análise granulométrica. O quarteamento garante que a amostra destinada à análise granulométrica seja representativa de todas as frações texturais do sedimento coletado.

A análise granulométrica é realizada por dois métodos distintos e complementares: peneiramento a seco e pipetagem. A pipetagem é utilizada para quantificar as frações silte e argila e se baseia na velocidade de decantação de partículas

Pág.

23 / 89

esféricas pequenas em suspensão em um fluido tomando como referência a lei de Stokes (Dias, 2004).

Para a pipetagem é adotada a metodologia de Suguio (1973). Para evitar a floculação da argila durante os ensaios de pipetagem é adicionado peróxido de hidrogênio (H₂O₂) a 17,5%, antes da lavagem com o objetivo de queimar a matéria orgânica presente nos sedimentos (Suguio, 1973). Posteriormente as amostras são secadas em uma estufa a 80 °C. Após a pesagem das amostras secas são separadas 50 g para as análises granulométricas. Entretanto, algumas vezes, estas amostras podem apresentar uma textura dura e homogênea formando torrões compactos que inviabilizam o seu peneiramento. Para a separação das partículas sedimentares estes torrões são inicialmente macerados até a redução a tamanhos inferiores a 4 mm e posteriormente é adicionado H2O2 a 17,5% de concentração a estas amostras até que elas figuem completamente cobertas pelo liquido conforme sugerido por Suguio (1973). Um volume igual de água deve ser acrescentado às amostras para facilitar a dissolução dos torrões. Este processo que rompe os agregados sedimentares pela geração catalítica do oxigênio dentro do espaço poroso é repetido até que toda a amostra esteja livre dos torrões. O passo seguinte é o peneiramento via úmida, em uma peneira com abertura de 0.062 mm. desta amostra de 50 g de sedimento em 1 L de água destilada sobre uma proveta de vidro de 1 L.

Para evitar a floculação de natureza inorgânica da argila (Skinner, 2000) são adicionados 0,67 g do antifloculante oxalato de sódio (Na₂C₂O₄) (Suguio, 1973). O material arenoso retido na peneira de 0,062 mm é seco em estufa a 80 °C, pesado e submetido à análise granulométrica a seco. A solução contida na pipeta é homogeneizada a partir de uma agitação vigorosa por 1 min e depois é colocada em repouso para que as partículas possam decantar. A partir deste momento espera-se o momento para a coleta da amostra destinada à determinação do teor de argila. O tempo transcorrido entre a homogeneização e a coleta da amostra depende da temperatura a que o laboratório foi mantido (**Tabela 6-2**) (Suguio, 1973; Dias, 2004). Uma amostra de 20 mL destinada ao cálculo do teor de argila é coletada com pipeta e colocada em um cadinho e seca em estufa a 105 °C. Através

da diferença de peso é possível calcular o teor de argila contido nesta amostra de 20 mL. O valor da amostra de 20 mL é multiplicado por 50, obtendo-se assim o teor total de argila da amostra. A determinação do teor de silte é realizada subtraindo-se do peso total da amostra as frações cascalho, areia e argila (Suguio, 1973; Kiel, 1979).

Para o peneiramento a seco são utilizadas peneiras granulométricas de acordo com a escala sugerida por Wentworth (1922) e recomendada por (Folk 1974), com aberturas variando de 4 mm a 0,062 mm (**Tabela 6-1**). O tamanho de cada fração granulométrica também é expresso em Phi (Φ) que corresponde ao logaritmo negativo de base 2 da medida do diâmetro da partícula do sedimento dado em milímetros. Os valores de Φ são números inteiros e coincidem com os limites das classes da escala de Wentworth (Krumbein, 1934). Os sedimentos são peneirados a seco durante 15 min em um agitador mecânico Solotest. O peneiramento é realizado após a remoção da matéria orgânica da amostra, mas preserva-se o conteúdo de bioclastos.

Tabela 6-1: Frações utilizadas na análise granulométrica dos sedimentos e a abertura Phi (Φ) correspondente. As frações silte a argila foram determinadas por pipetagem e as frações arenosas e cascalhosas (seixo e grânulo) por peneiramento a seco.

Fração	Abertura (mm)	Abertura (Φ)	
Seixo	> 4	> -2	
. Grânulo	4 a 2	-2 a -1	
Areia muito grossa	2 a 1	-1 a 0	
Areia grossa	1 a 0;5	0a1	
Areia média	0,5 a 0,25	1 a 2	
Areia fina	0,25 a 0,125	2 a 3	
Areia muito fina	0,125 a 0,0625	3 a 4	
Silte	0,0625 a 0,0039	4 a 8	
Argila	< 0,0039	8 a 12	

Para a classificação dos sedimentos são utilizadas medidas de tendência central como a média, o desvio padrão, a assimetria e a curtose e a classificação dos parâmetros foi realizada de acordo com Folk & Ward (1957) e Folk (1974). A média traz informações sobre o tamanho dos sedimentos e da energia do meio durante o transporte e a deposição (Folk & Ward, 1957). O desvio padrão (Tabela 6-3) é uma medida de dispersão e informa o grau de seleção, sendo que a dispersão dos sedimentos em torno da média indica uma menor seletividade do meio e variações na energia do ambiente deposicional. A assimetria (Tabela 6-4) permite avaliar a contribuição das frações finas e grossas na composição dos sedimentos. A assimetria é positiva quando a contribuição das frações finas é mais importante e negativa quando as frações mais grossas são predominantes (Suguio, 1973). A curtose (Tabela 6-5) retrata o grau de agudez e a dispersão nas curvas de distribuição informando sobre as condições do fluxo durante a deposição dos sedimentos.

Tabela 6-2: Variação no tempo de sedimentação e profundidade de coleta de cada fração para a análise granulométrica por pipetagem sob diferentes temperaturas de acordo com a Lei de Strokes (Suguio, 1973).

Tamanho do sedimento		Profundidade da	Tempo pará a coletá			
Phi (Φ)	mm,	coleta (cm)	¹16 °C	20°C	24 °C	28.°C
4	0,062	20	20s	20s	20s	20s
5	0,031	10	2m 09s	1m 57s	1m 46s	1m 37s
6	0,0156	10	8m29s	7m 40s	6m 58s	6m 22s
7	0,0078	10	34m	31m	28m	25m
8	0,0039	10	2h 15m	2h 03m	1h 51m	1h 42m
9	0,0020	5	4h 18m	3h 53m	3h 32m	3h 14m
10	0,00098	7	25h 05m	22h 41m	20h 37m	18h <u>50m</u>

Tabela 6-3: Escala qualitativa para a descrição do grau de seleção dos sedimentos segundo Folk & Ward (1957).

Cravela calacia	Dhi (dh)
Grau de seleção	Phi (Φ)
Muito bem selecionado	0 a 0,35
Bem selecionado	0,35 a 0,50
Moderadamente bem selecionado	0,50 a 0,71
Moderadamente selecionado	0,71 a 1
Mal selecionado	1 a 2
Muito mal selecionado	2 a 4
Extremamente mal selecionado	>4

Tabela 6-4: Escala qualitativa utilizada na descrição do grau de assimetria dos sedimentos segundo Folk & Ward (1957).

1 511 61 11 61 71	
Assimetria	Phi (Φ)
Muito positiva	1 a 0,3
Positiva	0,3 a 0,1
Aproximadamente simétrica	0,1 a -0,1
Negativa	-0,1 a -0,3
Muito negativa	

Tabela 6-5: Valores de curtose para a classificação da curva de distribuição das frações granulométricas segundo Folk & Ward (1957).

Classificação	Phi (Φ)
Muito Platicurtica	0,41 a 0,67
Platicúrtica	0,67 a 0,90
Mesocúrtica	0,90 a 1,11
Leptocúrtica	1,11 a,1,50.
Muito Leptocúrtica	1,50 a 3
Extremamente Leptocúrtica	>3

•

ANALISE ESTATÍSTICA

Metodologia

As análises estatísticas dos monitoramentos físico-químicos e biológicos do sedimento na região de influência dos dutos e monobóia do Terminal Norte Capixaba (TNC) foram realizadas a partir dos dados brutos, buscando compreender as variações no espaço e tempo e testando a significância dos resultados obtidos.

Para identificar se as variações espaciais e temporais dos dados apresentam significância estatística, foram realizadas análises de variância (ANOVAs) com pvalor de 0,05. Quando necessário, os dados usados na ANOVA foram transformados em log₁₀ (x + 1) com o objetivo de se equalizar a variância e normalizar a distribuição quando diferenças significativas forem detectadas na ANOVA.

Os dados utilizados para descrever os padrões espaciais e temporais das variáveis físico-químicas e biológicas foram os resultados absolutos. As análises foram realizadas utilizando o programa estatístico STATISTICA 7.0 (ZAR, 1984). Os resultados foram expressos de forma gráfica, sendo os seus resultados descritos e discutidos com base na legislação cabível (Resolução CONAMA N° 454, de 08 de novembro de 2012).

Os dados utilizados para descrever os padrões espaciais e temporais das comunidades biológicas foram a densidade, riqueza de espécies, diversidade, dominância e equitabilidade. As análises foram realizadas utilizando o programa estatístico STATISTICA 7.0 (STATSOFT, 1996).

De forma a incrementar as análises estatísticas dos resultados do programa de monitoramento físico-químico e biológico, análises multivariadas também foram realizadas. Nesse sentido, análises de similaridade foram aplicadas aos resultados para o estabelecimento de grupos de amostras (espaciais e temporais) entre as estações de monitoramento com composição semelhante. Para tanto, foi aplicado índice de similaridade de Bray-Curtis (CLARKE & WARWICK, 1994) transformados em raiz quadrada em uma análise de ordenação nMDS ("non-

metricMulti Dimensional Scaling") (KRUSKAL & WISH, 1978) entre os grupos formados pelas estações de monitoramento. A proximidade de dois pontos significa maior similaridade entre eles. Em geral existe um grau de distorção ou "stress" entre os pontos de similaridade e os correspondentes pontos de distâncias no diagrama (CLARKE & WARWICK, 2001).

Análise multivariada permutacional de variância (PERMANOVA: ANDERSON, 2001, 2005) também foi aplicada para comparações multivariadas da base de dados, utilizando como fator ortogonal e fixo as estações de monitoramento para avaliação das variações (espaciais e temporais) da comunidade. A distância de similaridade de Bray-Curtis foi escolhida como base para todas as PERMANOVAS e os dados foram permutados 9.999 vezes por análises a um α-nível de 0.05 (MANLY, 1997). Quando diferenças significativas forem encontradas, comparações *post-hoc* par a par foram realizadas usando 9.999 permutações (ANDERSON, 2005). Os dados para as PERMANOVAs foram transformados utilizando raiz quadrada. As análises multivariadas foram realizadas utilizando o pacote estatístico PRIMER versão 6 (CLARKE & WARWICK, 2001; CLARKE *et al.*, 2006), sendo todos os resultados foram expressos de forma gráfica e os seus resultados descritos e discutidos com base em bibliografia especializada.

Para testar a hipótese da existência de relação entre as comunidades biológicas e os parâmetros físico-químicos foi utilizada a ordenação das estações, espécies e variáveis ambientais pelo método de Análise de Correspondência Canônica (CCA). Esse método realiza uma análise direta de gradientes, pressupondo respostas unimodais, baseadas na média ponderada dos dados (TER BRAAK, 1986, TER BRAAK, 1987). A CCA possibilita a visualização de um padrão de variação da comunidade, bem como das características do ambiente, responsáveis pelas distribuições das espécies em relação às variáveis ambientais (TER BRAAK, 1987).

Para testar a probabilidade (5%) de acerto das relações encontradas entre a matriz ambiental, composta por variáveis ambientais, e a matriz de espécies, será empregado o teste de permutação de "Monte Carlo" (TER BRAAK & PRENTICE, 1988). Para a CCA, serão organizadas duas matrizes, sendo a matriz de espécies

Metodologia

formada pelas espécies que representaram 85% da abundância total da fauna/flora encontrada, e a matriz de variáveis ambientais formada pelos dados ambientais das estações de monitoramento. Todos os procedimentos para as análises da CCA foram efetuadas, utilizando o programa FITOPAC versão 2.1.2.85 (SHEPHERD, 2010), sendo todos os resultados foram expressos de forma gráfica e os seus resultados descritos e discutidos com base em bibliografia especializada.

Cabe ressaltar que para os parâmetros C14, C16, C18, C20, C22, C24, C26, C28, TPH (Faixas Gasolina, Querosene, Diesel, Óleo Lubrificante e TPH Detectado), Cobalto, Mistura Complexa Não Resolvida, Hidrocarbonetos Resolvido de Petróleo e Porcentagem de sólidos, não foi possível realizar as análises estatísticas devido à ausência de dados pelos baixos valores encontrados, muitas vezes abaixo do limite de detecção do método (ausência de variação).

7 RESULTADOS

7.1 PARÂMETROS DE QUALIDADE DE SEDIMENTO

7.1.1 Ambiente Marinho

7.1.1.1 Cádmio Total

A concentração de cádmio total associado ao sedimento da área marinha ao longo das campanhas, apresentou um valor médio de 0,29mg/Kg. As concentrações foram maiores na campanha de fevereiro/2013, sendo ausentes nas demais campanhas. No geral, os valores não ultrapassaram o limite preconizado pela Resolução CONAMA N° 454, de 08 de novembro de 2012 - Água Salina/Salobra - Nível 1 de 1,2 mg/Kg. O teste de hipótese de igualdade entre as campanhas apresentou resultados significativos que indicam essa variação (F=9,99; p=0,000023) (Figura 7-1).

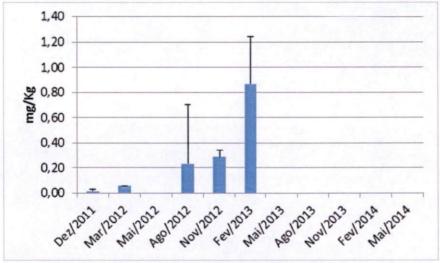


Figura 7-1: Valores médios de cádmio total (mg/kg) associados ao sedimento do ambiente marinho, na temporada de 2011 a 2014.

Em relação à variação espacial, PM09 foi o que obteve a maior concentração, seguido de P04, mais distantes da monobóia. Quando aplicado o teste de hipótese de igualdade, entretanto, não foi observada diferença significativa entre os pontos (F=0,46; p=0,87) (**Figura 7-2**).

Resultados

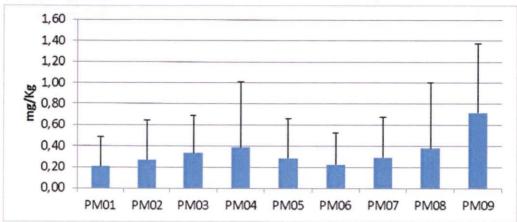


Figura 7-2: Valores médios de cádmio total (mg/kg) associados ao sedimento do ambiente marinho, entre os pontos amostrais, na temporada de 2011 a 2014.

7.1.1.2 Chumbo Total

A concentração de chumbo total associado ao sedimento da área marinha ao longo das campanhas apresentou um valor médio de 8,99mg/Kg. Em geral, os valores não ultrapassaram o limite preconizado pela Resolução CONAMA Nº 454, de 08 de novembro de 2012 - Água Salina/Salobra - Nível 1, sendo este valor de 46,7 mg/Kg . As campanhas que apresentaram concentrações maiores foram a de maio/2012 e fevereiro/2013. O teste de hipótese de igualdade entre as campanhas de estudo apresentou resultados significativos que indicam essa variação sazonal (F=4,11; p=0,0001) (Figura 7-3).

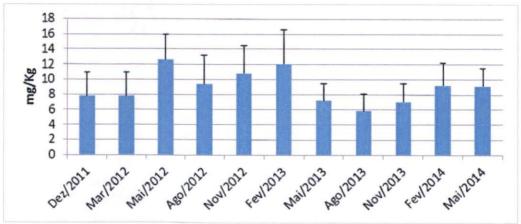


Figura 7-3: Valores médios de chumbo total (mg/kg) associados ao sedimento do ambiente marinho, na temporada de 2011 a 2014.

Em relação aos pontos de coleta foi possível observar que valores de chumbo apresentaram os maiores valores nos pontos PM04, PM08 e PM09, mais distantes da monobóia (**Figura 7-4**). Quando aplicado o teste de hipótese de igualdade observou-se que houve diferença significativa entre os pontos (F=5,97; p=0,000004).

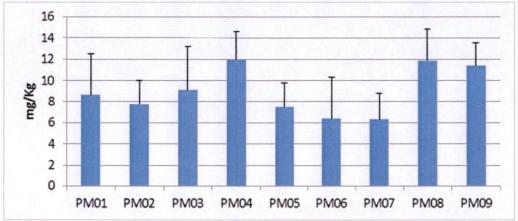


Figura 7-4: Valores médios de chumbo total (mg/kg) associados ao sedimento do ambiente marinho, entre os pontos amostrais,na temporada de 2011 a 2014.

7.1.1.3 Cobre Total

A concentração de cobre total associado ao sedimento da área marinha ao longo das campanhas apresentou um valor médio de 5,42mg/Kg. As concentrações foram maiores nas campanhas de novembro/2012, fevereiro/2013 e agosto/2012. No geral, as campanhas apresentaram valores que não ultrapassaram o limite preconizado pela Resolução CONAMA N° 454, de 08 de novembro de 2012 - Água Salina/Salobra - Nível 1, de 34 mg/Kg. O teste de hipótese de igualdade entre as campanhas de estudo apresentou resultados significativos que indicam essa variação (F=2,84; p=0,004) (Figura 7-5).

Resultados

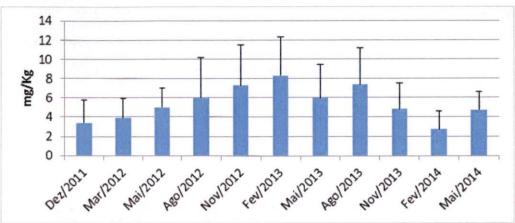


Figura 7-5: Valores médios de cobre total (mg/kg) associados ao sedimento do ambiente marinho, na temporada de 2011 a 2014.

Em relação aos pontos de coleta foi possível observar que os valores de cobre total foram maiores em PM04, PM08 e PM09 (Figura 7-6). Quando aplicado o teste de hipótese de igualdade observou-se que existiu diferença significativa entre os pontos (F=5,06; p=0,00003).

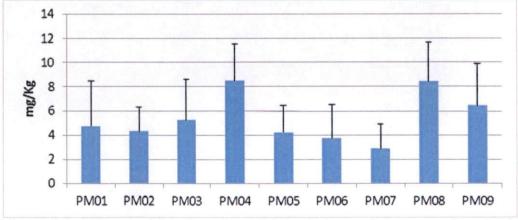


Figura 7-6: Valores médios de cobre total (mg/kg) associados ao sedimento do ambiente marinho, entre os pontos amostrais, na temporada de 2011 a 2014.

7.1.1.4 Cromo Total

A concentração média de cromo total na área de estudo ao longo das campanhas foi de 44,61mg/Kg. Em geral, os pontos não apresentaram valores que ultrapassaram o limite preconizado pela Resolução CONAMA Nº 454, de 08 de

novembro de 2012 - Água Salina/Salobra - Nível 1, de 81 mg/Kg, com exceção do mês de fevereiro/2013, que apresentou uma concentração média 99,24 mg/Kg. O teste de hipótese de igualdade para o cromo, entre os anos de estudo, apresentou diferença significativa no pico de concentração em fevereiro de 2013 (F=10,99; p=0,00) (Figura 7-7).

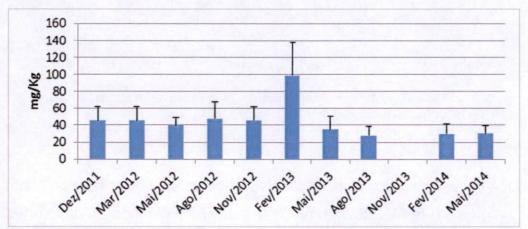


Figura 7-7: Valores médios de cromo total (mg/kg) associados ao sedimento do ambiente marinho, na temporada de 2011 a 2014.

Em relação aos pontos de coleta foi possível observar que os valores de cromo foram maiores no PM04, PM08 e PM09 (**Figura 7-8**). Quando aplicado o teste de hipótese de igualdade observou-se que houve diferença significativa entre todos os pontos, tanto na análise de superfície como do fundo (F=2,65; p=0,01).

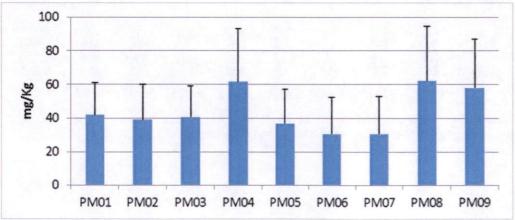


Figura 7-8: Valores médios de cromo total (mg/kg) associados ao sedimento do ambiente marinho, entre os pontos amostrais, na temporada de 2011 a 2014.

7.1.1.5 HTP (Fingerprint)

Resultados

A concentração média de HTP na área de estudo ao longo das campanhas foi de 5,08mg/Kg. Os maiores valores foram encontrados em maio/2012 e fevereiro/2013. O teste de hipótese de igualdade para o cromo entre os anos de estudo apresentou diferenças significativas (F=5,09; p=0,006) (**Figura 7-9**).

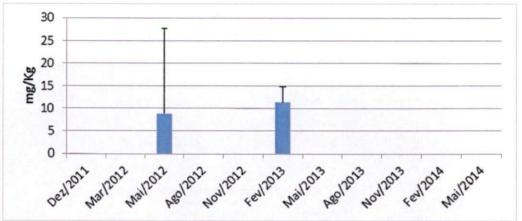


Figura 7-9: Valores médios de HTP (mg/kg) associados ao sedimento do ambiente marinho, na temporada de 2012 a 2013.

Em relação aos pontos de coleta foi possível observar que o valor de HTP foi maior em PM03 (**Figura 7-10**). O teste de hipótese de igualdade para a condutividade entre os pontos não apresentaram resultados significativos (F=0,48; p=0,85).

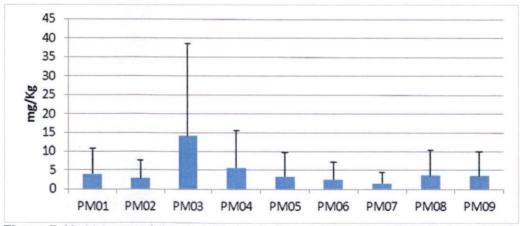


Figura 7-10: Valores médios de HTP (mg/kg) associados ao sedimento do ambiente marinho, entre os pontos amostrais, na temporada de 2011 a 2014.

7.1.1.6 Mercúrio Total

A concentração de mercúrio total associado ao sedimento da área marinha ao longo das campanhas apresentou um valor médio de 0,03mg/Kg. As concentrações foram maiores nas campanhas de fevereiro/2013 e maio/2013, mas no geral não ultrapassaram o limite preconizado pela Resolução CONAMA N° 454, de 08 de novembro de 2012 - Água Salina/Salobra - Nível 1 de 0,3 mg/Kg. O teste de hipótese de igualdade entre as campanhas apresentou diferenças significativas, indicando essa variação (F=31,53; p=0,00) (Figura 7-11).

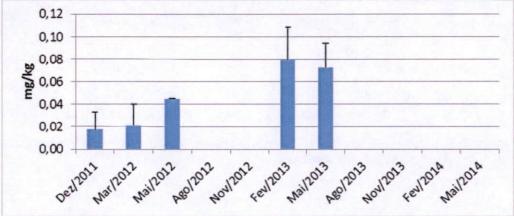


Figura 7-11: Valores médios de mercúrio total (mg/kg) associados ao sedimento do ambiente marinho, na temporada de 2011 a 2014.

Em relação aos pontos de coleta foi possível observar que PM04 foi o que apresentou o maior valor (**Figura 7-12**). Quando aplicado o teste de hipótese de igualdade, entretanto, não foi possível observar diferença significativa entre os pontos (F=0,47; p=0,87).

Resultados

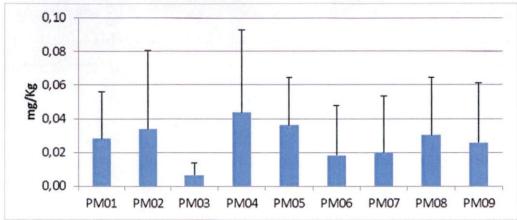


Figura 7-12: Valores médios de mercúrio total (mg/kg) associados ao sedimento do ambiente marinho, entre os pontos amostrais, na temporada de 2011 a 2014.

7.1.1.7 Niquel Total

A concentração de níquel total associado ao sedimento da área marinha ao longo das campanhas apresentou um valor médio de 9,39mg/Kg. Em geral, os valores não ultrapassaram o limite preconizado pela Resolução CONAMA Nº 454, de 08 de novembro de 2012 - Água Salina/Salobra - Nível 1, de 20,9 mg/Kg. As concentrações que apresentaram valores maiores foram em agosto/2012, fevereiro/2013 e maio/2013. O teste de hipótese de igualdade entre as campanhas de estudo apresentou diferenças significativas que indicam essa variação (F=3,47; p=0,0007) (Figura 7-13).

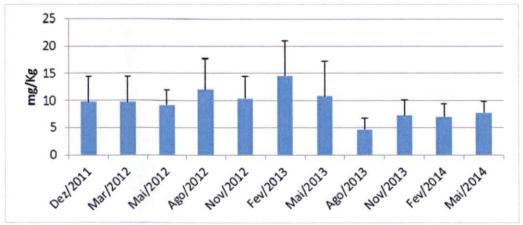


Figura 7-13: Valores médios de níquel total (mg/kg) associados ao sedimento do ambiente marinho, na temporada de 2011 a 2014.

Em relação aos pontos de coleta foi possível observar que os valores médios de níquel total foram maiores em PM04, PM08 e PM09 (**Figura 7-14**). Quando aplicado o teste de hipótese de igualdade foi possível observar diferenças significativas entre os pontos (F=6,11; p=0,000003).

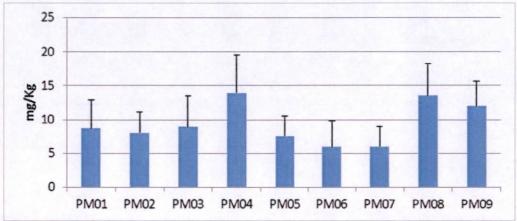


Figura 7-14: Valores médios de níquel total (mg/kg) associados ao sedimento do ambiente marinho, entre os pontos amostrais, na temporada de 2011 a 2014.

7.1.1.8 TPH Total

A concentração de TPH total associado ao sedimento marinho ao longo das campanhas, apresentou um valor médio de 1,27mg/Kg. As concentrações foram maiores nas campanhas de dezembro/2011 e março/2012. O teste de hipótese de igualdade entre as campanhas de estudo apresentou diferenças significativas que indicam essa variação (F=38,89; p=0,00) (**Figura 7-15**).

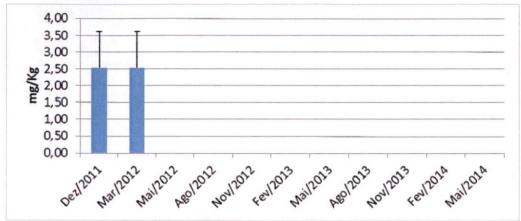


Figura 7-15: Valores médios de TPH total (mg/kg) associados ao sedimento do ambiente marinho, na temporada de 2011 a 2014.

Quanto aos pontos amostrais, os valores médios de TPH foram maiores em PM01, PM06 e PM08. Quando aplicado o teste de hipótese de igualdade não foi possível observar diferença significativa entre os pontos (F=0,87; p=0,46) (Figura 7-16).

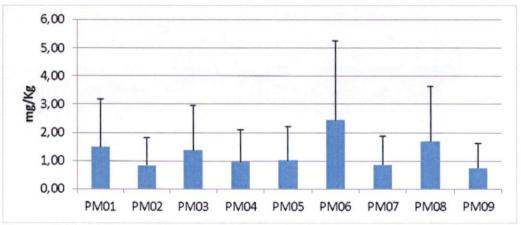


Figura 7-16: Valores médios de TPH total (mg/kg) associados ao sedimento do ambiente marinho, entre os pontos amostrais, na temporada de 2011 a 2014.

7.1.1.9 Zinco Total

A concentração de zinco total associada ao sedimento da área marinha ao longo das campanhas apresentou um valor médio de 32,01mg/Kg. As concentrações não variaram muito, sendo maiores na campanha fevereiro/2013, em uma tendência de

redução. No geral, essas concentrações apresentaram valores que não ultrapassaram o limite preconizado pela Resolução CONAMA N° 454, de 08 de novembro de 2012 - Água Salina/Salobra - Nível 1, de 150 mg/Kg. O teste de hipótese de igualdade entre as campanhas de estudo apresentou diferenças significativas que indicam essa variação (F=2,67; p=0,01) (**Figura 7-17**).

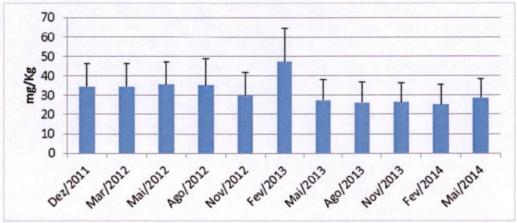


Figura 7-17: Valores médios de zinco total (mg/kg) associados ao sedimento do ambiente marinho, na temporada de 2011 a 2014.

Em relação aos pontos de coleta foi possível observar que PM04, PM08 e PM09 apresentaram os maiores valores (**Figura 7-18**). Quando aplicado o teste de hipótese de igualdade foi possível observar diferença significativa entre essas concentrações nos pontos (F=9,17; p= 0,00).

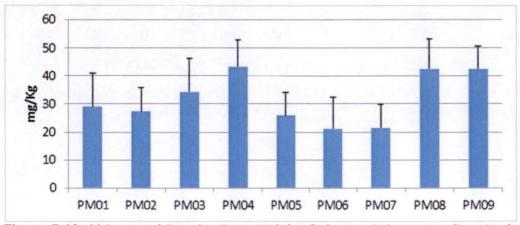


Figura 7-18: Valores médios de zinco total (mg/kg) associados ao sedimento do ambiente marinho, entre os pontos amostrais, na temporada de 2011 a 2014.

7.1.2 Ambiente Estuarino

Resultados

7.1.2.1 Cádmio Total

A concentração de cádmio total associado ao sedimento da área estuarina ao longo das campanhas, apresentou um valor médio de 0,20mg/Kg. As concentrações foram maiores nas campanhas de novembro/2012 e fevereiro/2013. No geral, os valores não ultrapassaram o limite preconizado pela Resolução CONAMA Nº 454, de 08 de novembro de 2012 - Água Salina/Salobra - Nível 1, de 1,2 mg/Kg. O teste de hipótese de igualdade entre as campanhas de estudo apresentou diferenças significativas que indicam essa variação (F=5,22; p=0,03) (Figura 7-19).

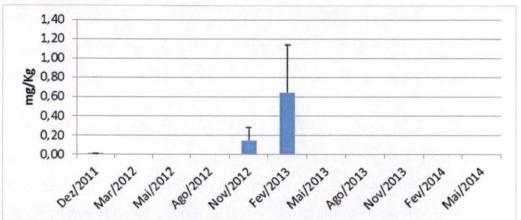


Figura 7-19: Valores médios de cádmio total (mg/kg) associados ao sedimento do ambiente estuarino, na temporada de 2011 a 2014.

Em relação à variação espacial, observou-se que PE02 foi o que obteve o maior valor. Quando aplicado o teste de hipótese de igualdade, entretanto, não foi observada diferença significativa entre os pontos (F=0,75; p=0,5) (Figura 7-20).

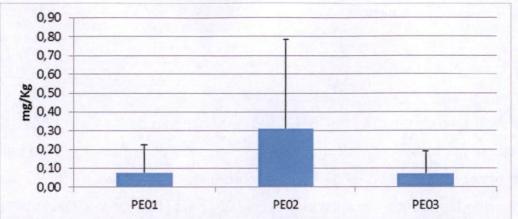


Figura 7-20: Valores médios de cádmio total (mg/kg) associados ao sedimento do ambiente estuarino, entre os pontos amostrais, na temporada de 2011 a 2014.

7.1.2.2 Chumbo Total

A concentração de chumbo total associado ao sedimento da área estuarina ao longo das campanhas apresentou um valor médio de 4,30mg/Kg. Em geral, os valores não ultrapassaram o limite preconizado pela Resolução CONAMA Nº 454, de 08 de novembro de 2012 - Água Salina/Salobra - Nível 1, de 46,7 mg/Kg, sendo que as maiores concentrações foram observadas em novembro/2012 e fevereiro/2013. O teste de hipótese de igualdade entre as campanhas de estudo não apresentou diferenças significativas que indicam essa variação (F=1,14; p=0,38) (Figura 7-21).

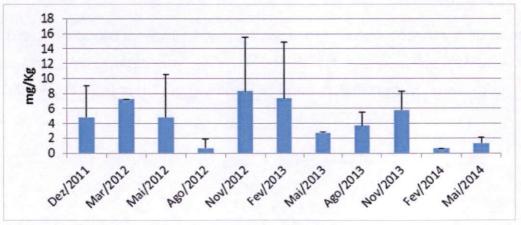


Figura 7-21: Valores médios de chumbo total (mg/kg) associados ao sedimento do ambiente estuarino, na temporada de 2011 a 2014.

Em relação aos pontos de coleta foi possível observar que valores de chumbo não oscilaram muito, sendo que o ponto PE03 apresentou o menor valor (Figura 7-22). Quando aplicado o teste de hipótese de igualdade observou-se que não houve diferença significativa entre os pontos (F=0,64; p=0,53).

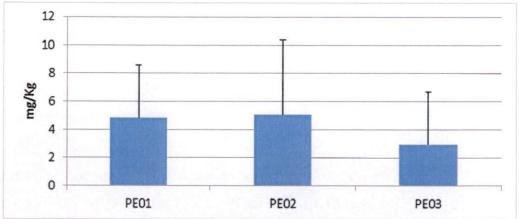


Figura 7-22: Valores médios de chumbo total (mg/kg) associados ao sedimento do ambiente estuarino, entre os pontos amostrais, na temporada de 2011 a 2014.

7.1.2.3 Cobre Total

A concentração de cobre total associado ao sedimento da área estuarina ao longo das campanhas apresentou um valor médio de 3,49mg/Kg. Em geral, as concentrações foram maiores nas campanhas de novembro/2012 e agosto/2013, entretanto, não ultrapassaram o limite preconizado pela Resolução CONAMA Nº 454, de 08 de novembro de 2012 - Água Salina/Salobra - Nível 1, de 34 mg/Kg. O teste de hipótese de igualdade entre as campanhas de estudo não apresentou diferenças significativos que indicam essa variação (F=1,68; p=0,17) (Figura 7-23).

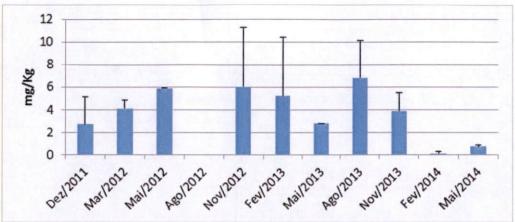


Figura 7-23: Valores médios de cobre total (mg/kg) associados ao sedimento do ambiente estuarino, na temporada de 2011 a 2014.

Em relação aos pontos de coleta foi possível observar que os valores de cobre total foram maiores em PE02 (Figura 7-24). Quando aplicado o teste de hipótese de igualdade observou-se que não existiu diferença significativa entre os pontos (F=0.89; p=0.43).

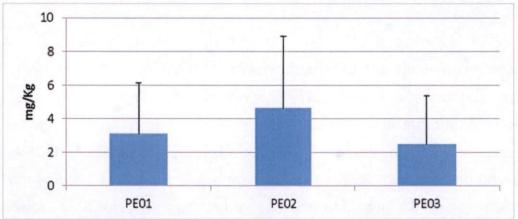


Figura 7-24: Valores médios de cobre total (mg/kg) associados ao sedimento do ambiente estuarino, entre os pontos amostrais, na temporada de 2011 a 2014.

7.1.2.4 Cromo Total

As concentrações médias de cromo total na área de estudo ao longo das campanhas foi de 22,98mg/Kg. Observou-se o maior valor em fevereiro/2013. Em geral, as concentrações não apresentaram valores que ultrapassaram o limite preconizado pela Resolução CONAMA Nº 454, de 08 de novembro de 2012 - Água

Salina/Salobra - Nível 1, de 81 mg/Kg. O teste de hipótese de igualdade para o cromo entre os anos de estudo não apresentou diferenças significativas (F=1,89; p=0,11) (Figura 7-25).

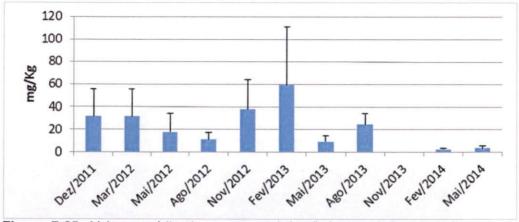


Figura 7-25: Valores médio de cromo total (mg/kg) associado ao sedimento do ambiente estuarino, na temporada de 2011 a 2014.

Em relação aos pontos de coleta foi possível observar que os valores de cromo foram maiores no PE02 (Figura 7-26). Quando aplicado o teste de hipótese de igualdade observou-se que não houve diferença significativa entre os pontos, na análise da superfície e do fundo (F=1,99; p=0,15).



Figura 7-26: Valores médios de cromo total (mg/kg) associados ao sedimento do ambiente estuarino, entre os pontos amostrais, na temporada de 2011 a 2014.

7.1.2.5 HTP (Fingerprint)

As concentrações médias de HTP na área de estudo ao longo das campanhas foi de 7,06mg/Kg. Ao longo do período de estudo foi possível constatar que o valor desse parâmetro não variou, a exceção de um pico de concentração em fevereiro/2013. O teste de hipótese de igualdade para o cromo entre os anos de estudo não apresentou diferenças significativas (F=3,69; p=0,08) (Figura 7-27).

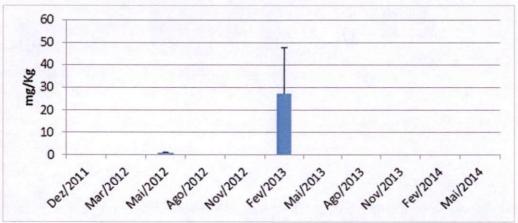


Figura 7-27: Valores médio de HTP (mg/kg) associado ao sedimento do ambiente estuarino, na temporada de 2011 a 2014.

Em relação aos pontos de coleta foi possível observar que valores de HTP foi maior em PE02 (**Figura 7-28**). O teste de hipótese de igualdade entre os pontos não apresentou diferenças significativas (F=0,23; p=0,80).

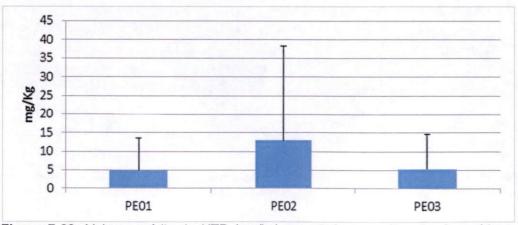


Figura 7-28: Valores médio de HTP (mg/kg) associado ao sedimento do ambiente estuarino, entre os pontos amostrais, na temporada de 2011 a 2014.

7.1.2.6 Mercúrio Total

Resultados

A concentração de mercúrio total associado ao sedimento da área estuarina ao longo das campanhas apresentou um valor médio de 0,07 mg/Kg. As concentrações foram maiores em fevereiro/2013, sendo que apenas nessa campanha a concentração ultrapassou o limite preconizado pela Resolução CONAMA N° 454, de 08 de novembro de 2012 - Água Salina/Salobra - Nível 1, de 0,3 mg/Kg, embora inferior ao Nível 2, de 1,0 mg/Kg. O teste de hipótese de igualdade entre as campanhas de estudo não apresentou diferenças significativas que indicam essa variação (F=2,65; p=0,10) (Figura 7-29).

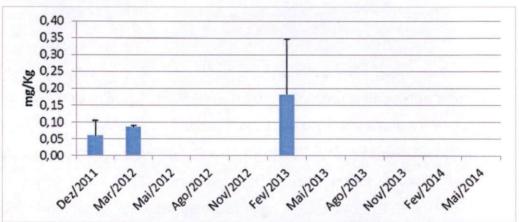


Figura 7-29: Valores médios de mercúrio total (mg/kg) associados ao sedimento do ambiente estuarino, na temporada de 2011 a 2014.

Em relação aos pontos de coleta foi possível observar que PE02 apresentou maior valor (Figura 7-30), entretanto, quando aplicado o teste de hipótese de igualdade não foi possível observar diferença significativa entre os pontos (F=0,72; p=0,51).

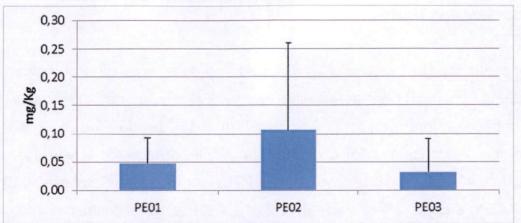


Figura 7-30: Valores médios de mercúrio total (mg/kg) associados ao sedimento do ambiente estuarino, entre os pontos amostrais, na temporada de 2011 a 2014.

7.1.2.7 Niquel Total

A concentração de níquel total associado ao sedimento da área estuarina ao longo das campanhas apresentou um valor médio de 4,93mg/Kg. Em geral, os valores não ultrapassaram o limite preconizado pela Resolução CONAMA N° 454, de 08 de novembro de 2012 - Água Salina/Salobra - Nível 1, de 20,9 mg/Kg, sendo que as concentrações maiores foram observadas em março/2012, com tendência de redução no período. Entretanto, o teste de hipótese de igualdade entre as campanhas de estudo não apresentou diferenças significativas que indicam essa variação (F=1,82; p=0,12) (Figura 7-31).

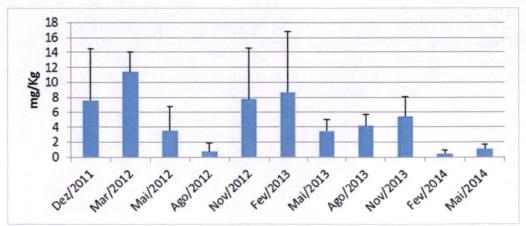


Figura 7-31: Valores médio de níquel total (mg/kg) associado ao sedimento do ambiente estuarino, na temporada de 2011 a 2014.

Em relação aos pontos de coleta foi possível observar que valores médios de níquel total foram maiores em PE02 (Figura 7-32), entretanto, quando aplicado o teste de hipótese de igualdade não foi possível observar diferença significativa entre os (F=1,64; p=0.21).

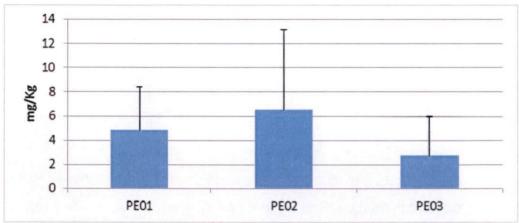


Figura 7-32: Valores médios de níquel total (mg/kg) associados ao sedimento do ambiente estuarino, entre os pontos amostrais, na temporada de 2011 a 2014.

7.1.2.8 TPH Total

A concentração de TPH total associado ao sedimento da área estuarina ao longo das campanhas, apresentou um valor médio de 2,06 mg/Kg. As concentrações foram maiores nas campanhas de dezembro/2011 e março/2012, não sendo detectadas posteriormente. O teste de hipótese de igualdade entre as campanhas de estudo apresentou diferenças significativas que indicam essa variação (F=15,36; p=0,0011) (Figura 7-33).

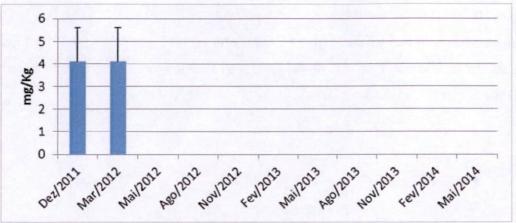


Figura 7-33: Valores médios de TPH total (mg/kg) associados ao sedimento do ambiente estuarino, na temporada de 2011 a 2014.

Quando aplicado o teste de hipótese de igualdade entre os pontos foi possível observar diferença significativa (F=0,36; p=0,71) (**Figura 7-34**), sendo o maior valor médio de TPH encontrado em PE01.

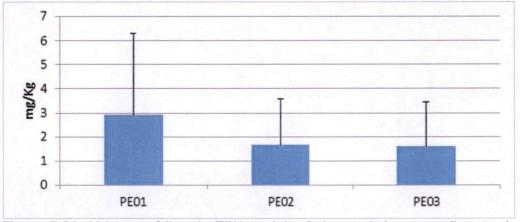


Figura 7-34: Valores médios de TPH total (mg/kg) associados ao sedimento do ambiente estuarino, entre os pontos amostrais, na temporada de 2011 a 2014.

7.1.2.9 Zinco Total

A concentração de zinco total associado ao sedimento da área estuarina ao longo das campanhas apresentou um valor médio de 24,01mg/Kg. As concentrações foram maiores nas campanhas de novembro/2012 e fevereiro/2013. No geral, essas concentrações apresentaram valores que não ultrapassaram o limite preconizado pela Resolução CONAMA N° 454, de 08 de novembro de 2012 - Água

Salina/Salobra - Nível 1, de 150 mg/Kg. O teste de hipótese de igualdade entre as campanhas de estudo não apresentou diferenças significativas que indicam essa variação (F=1,57; p=0,18) (Figura 7-35).

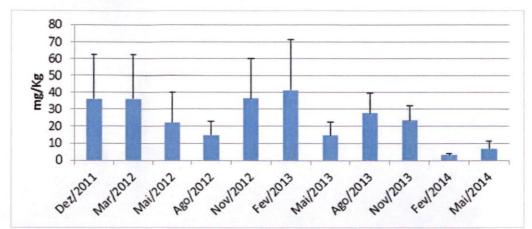


Figura 7-35: Valores médios de zinco total (mg/kg) associados ao sedimento do ambiente estuarino, na temporada de 2011 a 2014.

Em relação aos pontos de coleta também foi possível observar que PE02 apresentou os maiores valores (**Figura 7-36**). Quando aplicado o teste de hipótese de igualdade, entretanto, não foi possível observar diferença significativa (F=1,93; p= 0,16).

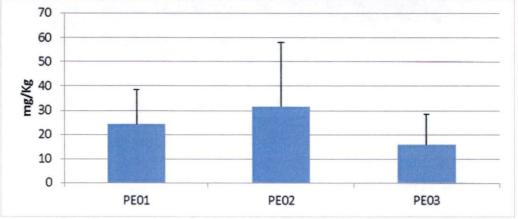


Figura 7-36: Valores médios de zinco total (mg/kg) associados ao sedimento do ambiente estuarino, entre os pontos amostrais, na temporada de 2011 a 2014.

7.2 COMUNIDADE BENTÔNICA DE SEDIMENTO INCONSOLIDADO

7.2.1 Ambiente Marinho

7.2.1.1 Densidade

Em relação a comunidade bentônica de sedimento consolidado foi possível observar um aumento de densidade média ao longo do período, embora sejam observadas variações, sendo que quando aplicado o teste estatístico foi encontrada diferença significativa no período analisado (F=16,89 e p=0,00) (Figura 7-37).

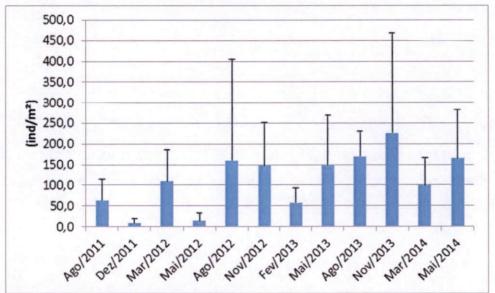


Figura 7-37: Densidade média (indivíduos/m²) no ambiente marinho entre as campanhas na temporada de 2011 a 2014.

Em escala espacial, foi possível observar que as maiores densidades médias ocorreram nos pontos PM06 e PM01, sendo que as diferenças foram significativas quando aplicado o teste estatístico (F=4,46 e p=0,0001) (Figura 7-38).

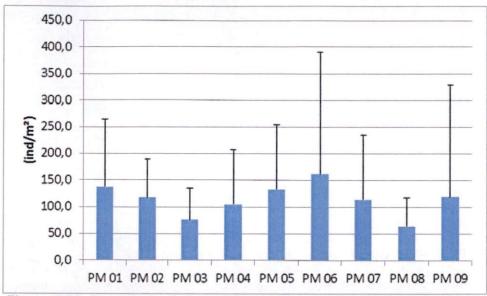


Figura 7-38: Densidade média (indivíduos/m²) no ambiente marinho entre os pontos amostrais na temporada de 2011 a 2014.

7.2.1.2 Índices Ecológicos

Em relação à riqueza bentônica média, também foi possível observar um aumento ao longo do período, sendo que quando aplicado o teste estatístico foi encontrada diferença significativa no período analisado (F=36,55 e p=0,00) (**Figura 7-39**).

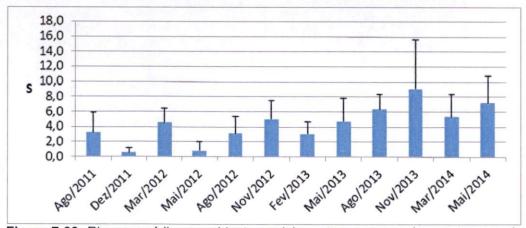


Figura 7-39: Riqueza média no ambiente marinho entre as campanhas na temporada de 2011 a 2014.

Em termos espaciais foi possível observar que a maior riqueza média ocorreu nos pontos PM06, PM01, além de PM02, sendo menores nos pontos costeiros (PM03,

PM04, PM08 e PM09). Quando aplicado o teste estatístico as diferenças foram significativas (F=8,14 e p=0,0001) (**Figura 7-40**).

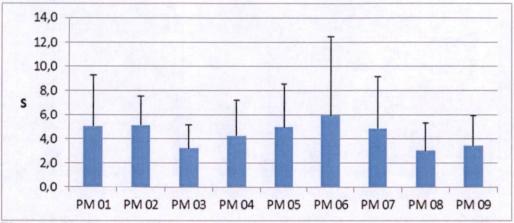


Figura 7-40: Riqueza média no ambiente marinho entre os pontos amostrais na temporada de 2011 a 2014.

A diversidade média também apresentou um aumento ao longo do período, sendo que o teste estatístico confirmou diferença significativa no período analisado (F=45,89 e p=0,00) (Figura 7-41).

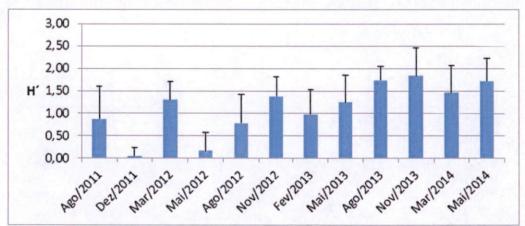


Figura 7-41: Diversidade média no ambiente marinho entre as campanhas na temporada de 2011 a 2014.

Em termos espaciais foi possível observar que diversidade média foi maior no ponto PM02, sendo menores nos pontos costeiros (PM03, PM04, PM08 e PM09). Quando aplicado o teste estatístico as diferenças foram significativas (F=4,55 e p=0,00) (Figura 7-42).

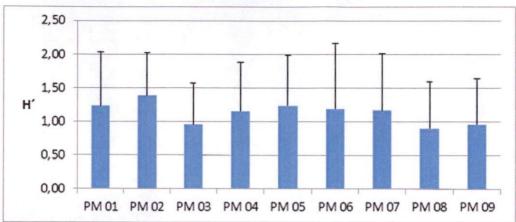


Figura 7-42: Diversidade média no ambiente marinho entre os pontos amostrais na temporada de 2011 a 2014.

A equitabilidade média, assim como os demais índices ecológicos, apresentou um aumento ao longo do período, sendo que o teste estatístico confirmou diferença significativa no período analisado (F=30,07 e p=0,00) (Figura 7-43).

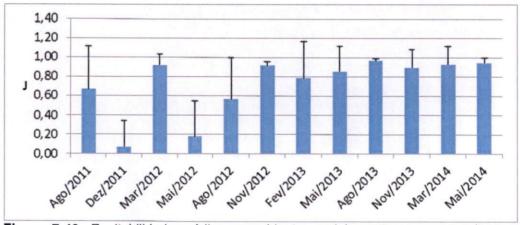


Figura 7-43: Equitabilidade média no ambiente marinho entre as campanhas na temporada de 2011 a 2014.

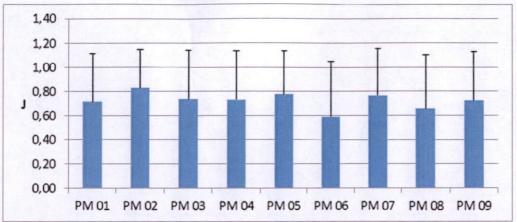

Em termos espaciais foi possível observar que equitabilidade média foi maior no ponto PM02, sendo menor no ponto PM06. Quando aplicado o teste estatístico as diferenças foram significativas (F=2,54 e p=0,01) (Figura 7-44).

Figura 7-44: Equitabilidade média no ambiente marinho entre os pontos amostrais na temporada de 2011 a 2014.

7.2.1.3 Análise de Similaridade

Quando aplicado os dados por espécie da comunidade bentônica em uma análise de similaridade foi possível observar a formação de grupos entre as campanhas e pontos amostrais (Permanova: Campanhas – F=14,28 e p=0,0001; Pontos Amostrais = F=2,75 e p=0,0001), indicando que existe variação temporal e espacial na comunidade bentônica (**Figura 7-45**).

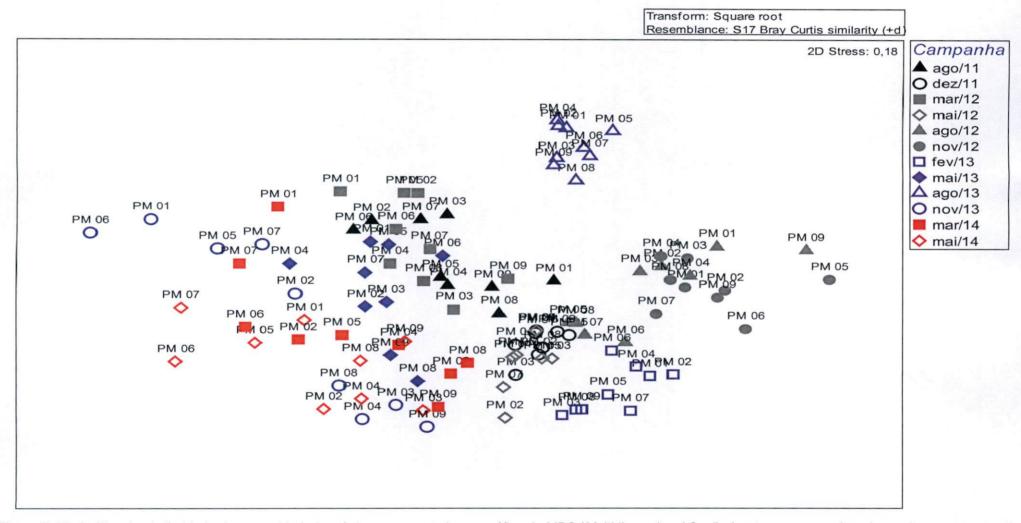
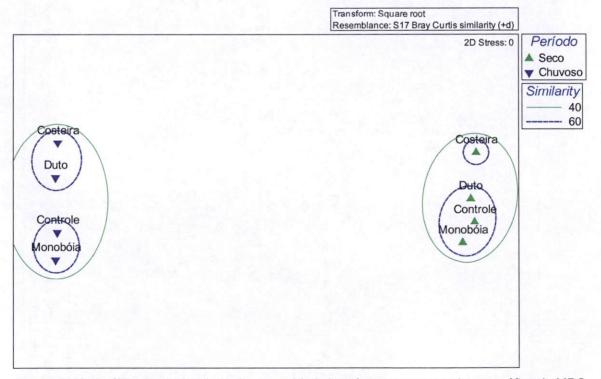


Figura 7-45: Análise de similaridade da comunidade bentônica representada por gráfico de MDS (Multidimensional Scaling) entre as campanhas de monitoramento e pontos amostrais no ambiente marinho na temporada de 2011 a 2014.

De modo a permitir uma melhor visualização da segregação temporal e espacial da comunidade bentônica na área de estudo, as campanhas foram classificadas de acordo com o período Seco e Chuvoso, e os pontos amostrais foram classificados como:


Controle: PM01 e PM02;

Monobóia: PM05, PM06 e PM07;

Duto: PM04 e PM08;

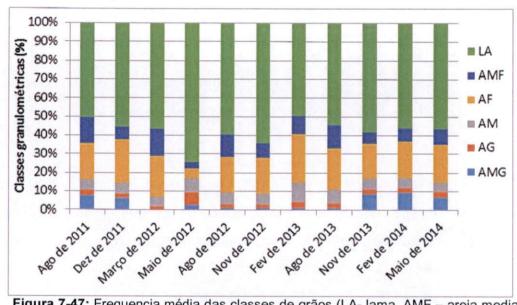
Costeiro: PM03 e PM09

Quando aplicada a análise de similaridade, foi possível observar que existe uma distinção clara da comunidade entre períodos secos e chuvosos, assim como a área costeira distinguiu das demais, sendo essas diferenças significativas quando aplicado o teste estatístico (Permanova: F=4,93 e p=0,0001) (Figura 7-46).

Figura 7-46: Análise de similaridade da comunidade bentônica representada por gráfico de MDS (*Multidimensional Scaling*) entre as campanhas de monitoramento e pontos amostrais, classificadas por grupos (Seco e Chuvoso; Controle, Monobóia, Duto e Costeiro) no ambiente marinho na temporada de 2011 a 2014.

7.2.1.4 Granulometria e relação com a comunidade bentôncia

As classes de grãos do sedimento ao longo do período estudado permitiu verificar que a composição de lama permaneceu predominante em todo o período, sendo a maior porcentagem em março de 2012 (Figura 7-46), enquanto que entre os pontos amostrais, a fração de lama foi mais frequente nos pontos PM04, PM08 e PM09, localizados na região costeira e do duto (Figura 7-46).



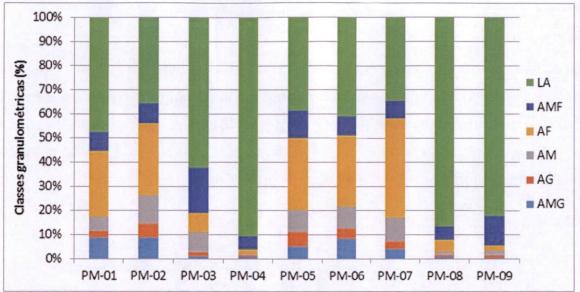

Figura 7-47: Frequencia média das classes de grãos (LA- lama, AMF - areia media fina, AF - areia fina, AM - areia média, AG - areia grossa e AMG - areia muito grossa) do sedimento no ambiente marinho na temporada de 2011 a 2014.

Figura 7-48: Frequencia média das classes de grãos (LA- lama, AMF – areia media fina, AF – areia fina, AM – areia média, AG – areia grossa e AMG – areia muito grossa) do sedimento entre os pontos amostrais no ambiente marinho na temporada de 2011 a 2014.

A analise de Correspondência Canônica (CCA) para a região marinha (PM-01, PM-02, PM-03, PM-04, PM-05, PM-06, PM-07, PM-08 e PM-09) indicou agrupamentos entre composição granulométrica do sedimento e a composição da fauna bentônica com uma explicação dos eixos 1 e 2 de 75,6%, demonstrando correlação significativa dos agrupamentos, uma vez que o teste de Monte Carlo demonstrou correlação significativa para os dois eixos (eixo 1/p=0,001; eixo 2/p=0,001) entre os critérios citados (Figura 7-48 e Tabela 7-1). Desta forma, nota-se que a fauna estaria dentre outros fatores, respondendo diretamente as diferenças na granulometria entre os grupos formados pelos pontos de amostragem e campanhas, podendo ser uma característica da associação com o hidrodinamismo, profundidade e afastamento da costa.

A campanha de Agosto de 2011 demonstrou corelação com a variação da granulometria entre areia fina, areia média e areia grossa. As campanhas de Março de 2012, Agosto de 2012, Novembro de 2012, Fevereiro de 2013 e Agosto de 2013 correlacionaram-se com textura de sedimento fino (Lama e Areia muito fina) e alguns táxons comumente encontrados neste tipo de sedimento mais fino, como os crustáceos Gammaridae sp., os moluscos Dentaliidae sp. e os poliquetas Nereididae, *Glycera* sp., *Glycinde* sp. e Goniadidae, no entanto, as últimas

Pág. 61 / 89

campanhas (Novembro de 2013, Fevereiro de 2014 e Maio de 2014) foram observadas correlação com areia fina a areia muito grossa e os táxons *Exogone breviantennata*, *Magelona* sp1, *Magelona* sp2 e *Lumbrineris latreilli*.

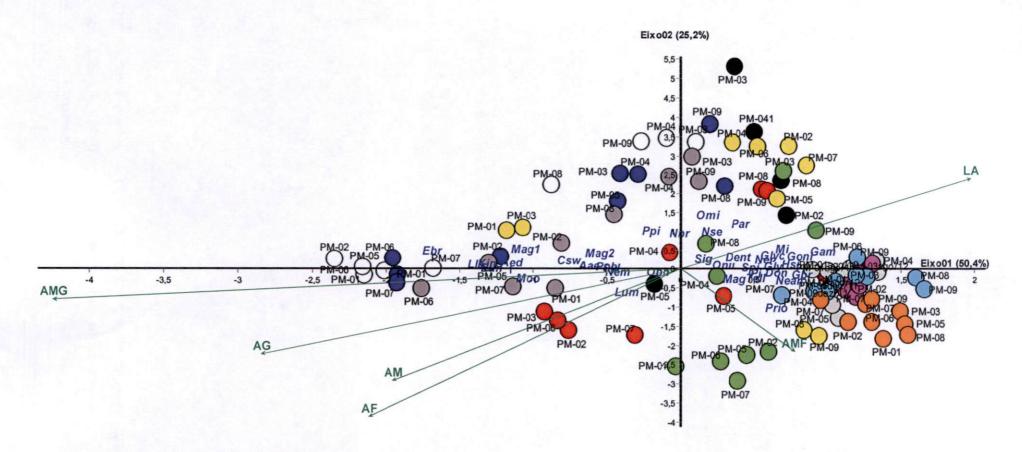


Figura 7-49: Análise de Correlação Canônica (CCA) entre os dados de granulometria e abundância dos principais organismos (85% indivíduos) do zoobentos de fundo inconsolidado na área marinha sobre influência do Terminal Norte Capixaba das campanhas de agosto de 2011 a maio de 2014.

(Legenda: AMF – areia muito fina; AF – areia fina, AMF – areia muito fina, AM – areia média, AG – areia grossa, AMG – areia muito grossa; LA – lama. ■ ago/11; ■ dez/11; □ mar/12; □ mai/12; □ ago/12; □ nov/12; □ ago/13; □ Nov/13; □ fev/14; □ mai/14; → - fatores edáficos (granulometria). As siglas e seus respectivos táxons estão identificados na Tabela abaixo.

Tabela 7-1: Siglas e seus respectivos táxons encontrados na análise de Correlação Canônica (CCA) do zoobentos de fundo inconsolidado na área marinha sobre influência do Terminal Norte Capixaba das campanhas de agosto de 2011 a majo de 2014.

Sigla	Táxons
Spi	Spionidae sp. Grube, 1850
Nem	Nemertea
Ner	Nereididae sp. Blainville, 1818
Gly	Glycera sp. Savigny, 1818
Lla	Lumbrineris latreilli Audouin & Milne Edwards, 1834
Don	Donacidae sp. Fleming, 1828
Prio	Prionospio sp. Malmgren, 1867
Par	Parandalia sp. Emerson & Fauchald, 1971
Dent	Dentaliidae sp. Children, 1834
Lum	Lumbrineris sp. Blainville, 1828
Mag2	Magelona sp2. F. Müller, 1859
Moo	Mooreonuphis sp. Fauchald, 1982
Mag	Magelona sp. F. Müller, 1858
Nse	Nucula semiornata d'Orbigny, 1846
Mi	Mollusca não identificado
Omi	Olivella minuta (Link, 1807)
Eun	Eunice sp. (Cuvier, 1817)
Mag1	Magelona sp1. F. Müller, 1858
Tell	Tellinidae sp. Blainville, 1814
Ebr	Exogone breviantennata Hartmann-Schröder, 1959
Aae	Abra aequalis (Say, 1822)
Aed	Aedicira sp. (Hartman, 1957)
Pi	Polychaeta não identificado
Gbr	Goniada brunnea Treadwell, 1906
Gam	Gammaridae sp. Leach, 1814
Syl	Syllis sp. Lamarck, 1818
Ppi	Paraprionospio pinnata (Ehlers, 1901)
Nbr	Neanthes bruaca Lana & Sovierzovsky, 1987
Hsi	Hemipodia simplex (Grube, 1857)
Glyc	Glycinde sp. Müller, 1858
Nean	Neanthes sp. Kinberg, 1865
Oph	Ophiuroide
Goni	Goniadidae sp. Kinberg, 1866

Continua...

Tabela 7-1(Continuação): Siglas e seus respectivos táxons encontrados na análise de Correlação Canônica (CCA) do zoobentos de fundo inconsolidado na área marinha sobre influência do Terminal Norte Capixaba das campanhas de agosto de 2011 a maio de 2014.

Sigla	Táxons
Kin	Kinbergonuphis sp. Fauchald, 1982
Csw	Corbula swiftiana C. B. Adams, 1852
Pob	Parvanachis obesa (C. B. Adams, 1845)
Onu	Onuphidae sp. Kinberg, 1865
Sig	Sigambra sp. Müller, 1858

7.2.2 Ambiente Estuarino

7.2.2.1 Densidade

Em relação à comunidade bentônica de sedimento consolidado, foi possível observar um pico de densidade média em agosto de 2012, com posterior redução das densidades. Também foi observado ausência de organismos em algumas campanhas. Quando aplicado o teste estatístico foi encontrada diferença significativa no período analisado (F=49,39 e p=0,00) (**Figura 7-50**).

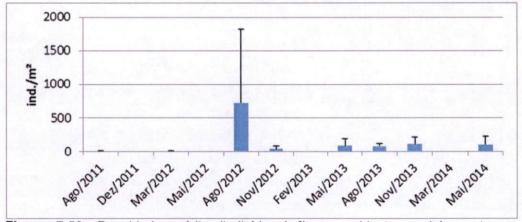


Figura 7-50: Densidade média (indivíduos/m²) no ambiente marinho entre as campanhas na temporada de 2011 a 2014.

Em escala espacial, foi possível observar que a maior densidade média ocorreu no ponto PE01, sendo que as diferenças foram significativas quando aplicado o teste estatístico (F=50,17 e p=0,00) (**Figura 7-51**).

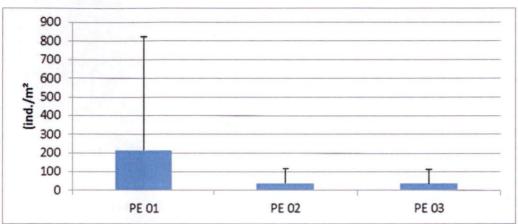
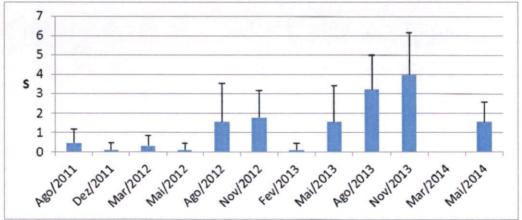



Figura 7-51: Densidade média (indivíduos/m²) no ambiente estuarino entre os pontos amostrais na temporada de 2011 a 2014.

7.2.2.2 Índices Ecológicos

Em relação riqueza bentônica média, foi possível observar um aumento até novembro de 2013, com posterior redução, sendo que quando aplicado o teste estatístico foi encontrada diferença significativa no período analisado (F=14,95 e p=0,00) (Figura 7-52).

Figura 7-52: Riqueza média no ambiente estuarino entre as campanhas na temporada de 2011 a 2014.

Em termos espaciais foi possível observar que a maior riqueza média ocorreu em PE01, reduzindo seus valores até PE03. As diferenças foram significativas quando aplicado o teste estatístico (F=7,08 e p=0,001) (**Figura 7-53**).

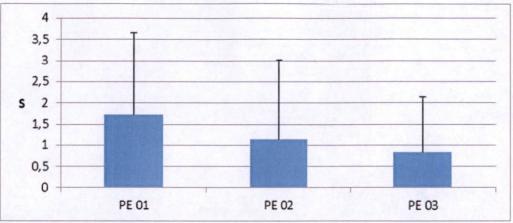


Figura 7-53: Riqueza média no ambiente estuarino entre os pontos amostrais na temporada de 2011 a 2014.

A diversidade média também apresentou um aumento até agosto de 2013, com posterior redução, sendo que o teste estatístico confirmou diferença significativa no período analisado (F=13,84 e p=0,00) (**Figura 7-54**).

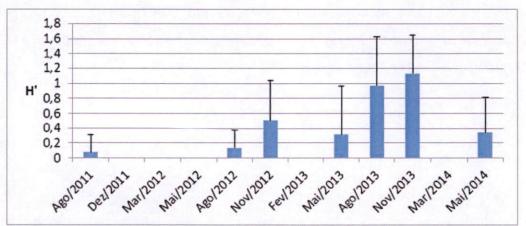


Figura 7-54: Diversidade média no ambiente estuarino entre as campanhas na temporada de 2011 a 2014.

Em termos espaciais também foi possível observar que a maior diversidade média ocorreu em PE01, reduzindo seus valores até PE03. As diferenças foram significativas quando aplicado o teste estatístico (F=5,45 e p=0,006) (**Figura 7-55**).

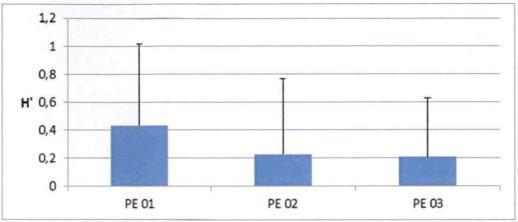
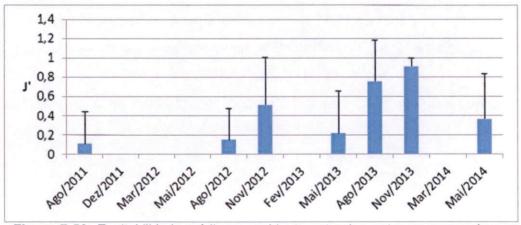
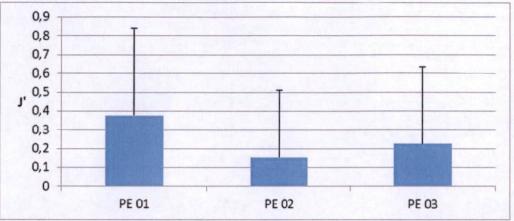


Figura 7-55: Diversidade média no ambiente estuarino entre os pontos amostrais na temporada de 2011 a 2014.

A equitabilidade média, assim como os demais índices ecológicos, apresentou um aumento até novembro de 2013, sendo que o teste estatístico confirmou diferença significativa no período analisado (F=13,79 e p=0,00) (Figura 7-56).




Figura 7-56: Equitabilidade média no ambiente estuarino entre as campanhas na temporada de 2011 a 2014.

Em termos espaciais foi possível observar que equitabilidade média foi maior no ponto PE01, seguido de PE03 e PE02. Quando aplicado o teste estatístico as diferenças foram significativas (F=6,93 e p=0,001) (Figura 7-57).

Figura 7-57: Equitabilidade média no ambiente estuarino entre os pontos amostrais na temporada de 2011 a 2014.

7.2.2.3 Análise de Similaridade

Quando aplicado os dados por espécie da comunidade bentônica em uma análise de similaridade, foi possível observar a formação de grupos entre as campanhas, especialmente de agosto de 2013 (Permanvoa: F=6,46 e p=0,0001). Em relação a variação espacial, o ponto amostral PE02 ficou concentrado no centro do gráfico, formando um grupo distinto dos demais (Permanvoa: F=3,19 e p=0,0001), indicando que existe variação espacial na comunidade bentônica (**Figura 7-58**).

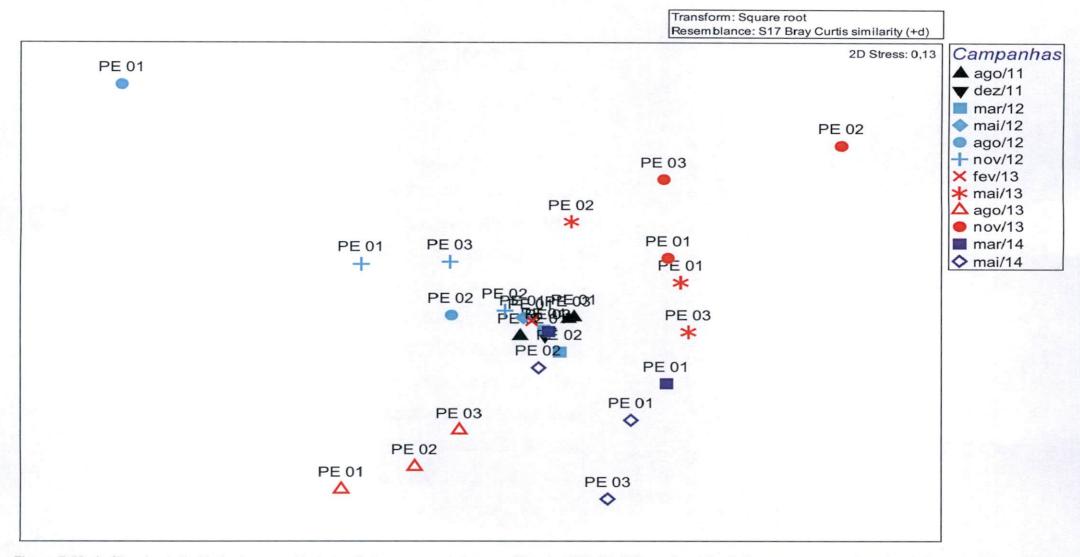
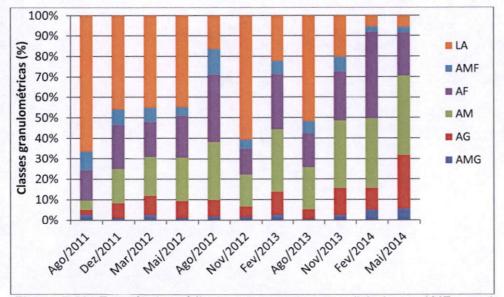


Figura 7-58: Análise de similaridade da comunidade bentônica representada por gráfico de MDS (Multidimensional Scaling) entre as campanhas de monitoramento e pontos amostrais no ambiente estuarino na temporada de 2011 a 2014.



O Anexo I e o Anexo IV apresentam a lista de táxons e o catálogo com os táxons do bentos mais comumente encontrados registrados por campanha no monitoramento do TNC entre 2001 e 2014.

7.2.2.4 Granulometria e relação com a comunidade bentôncia

As classes de grãos do sedimento ao longo do período estudado permitiu verificar que a composição de lama diminuiu ao longo do período, sendo substituídas por sedimentos mais arenosos (Areia Fina e Areia Média) (Figura 7-59). Em relação aos pontos amostrais, a fração de lama diminuiu entre a porção mais próxima a desembocadura do rio e o interior do mesmo, onde as frações arenosas foram dominantes (Figura 7-60).

Figura 7-59: Frequência média das classes de grãos (LA- lama, AMF – areia media fina, AF – areia fina, AM – areia média, AG – areia grossa e AMG – areia muito grossa) do sedimento no ambiente estuarino na temporada de 2011 a 2014.

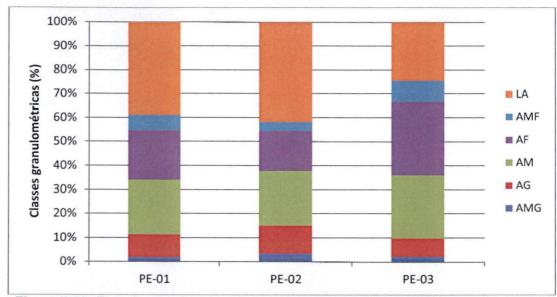


Figura 7-60: Frequência média das classes de grãos (LA- lama, AMF - areia media fina, AF – areia fina, AM – areia média, AG – areia grossa e AMG – areia muito grossa) do sedimento entre os pontos amostrais no ambiente estuarino na temporada de 2011 a 2014.

A analise de Correspondência Canônica (CCA) para a região estuarina (PE-01, PE-02 e PE-03) indicou tendência de agrupamentos entre composição granulométrica do sedimento e a composição da fauna bentônica, com uma explicação dos eixos 1 e 2 foi de 57,2%, no entanto a correlação dos agrupamentos não foi significativa, uma vez que o teste de Monte Carlo demonstrou correlação não significativa para os dois eixos (eixo 1/p=0,3320; eixo 2/p=0,1740) (Figura 7-61 e Tabela 7-2) entre os critérios citados, contudo, nota-se uma tendência de que a fauna estaria dentre outros fatores, respondendo às diferenças na granulometria entre os grupos formados pelos pontos de amostragem, podendo ser uma característica da associação com o hidrodinamismo e outros parâmetros ambientais, tais como, variação de salinidade, condutividade, oxigênio dissolvido, em resposta a variações entre os períodos de chuva e seca.

O eixo 1 demonstrou tendência de correlação das campanhas de Fevereiro de 2014 e Maio de 2014 com a textura do sedimento mais grosseiro (Areia muito grossa, Areia grossa e Areia média), assim como a composição da comunidade bentônica com a presença de táxons como Tellina sp., Hemipodia simplex, Notomastus sp., Scolelepis squamata e Mediomastus sp., enquanto o eixo 2 está indicando tendência de corelação entre Novembro de 2012, Agosto de 2013 e lama, já as

campanhas de Maio, Março e Agosto de 2012, demonstraram tendência de correlação com lama, Areia muito fina e areia fina. Em agosto de 2012 e fevereiro de 2013 alguns táxons como Donacidae sp., Spionidae sp. e Onuphidae sp., indicaram tendência de correlação com a granulometria de areia muito fina.

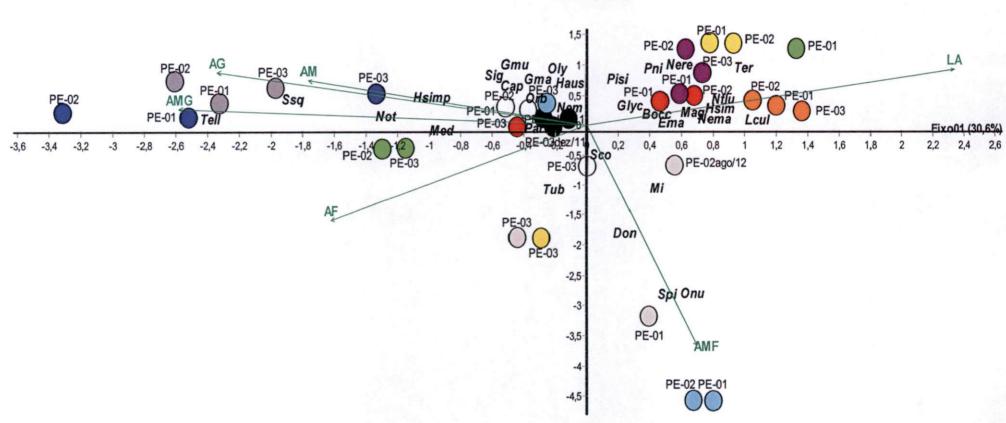


Figura 7-61: Análise de Correlação Canônica (CCA) entre os dados de granulometria e abundância dos principais organismos (85% indivíduos) do zoobentos de fundo inconsolidado na área estuarina sobre influência do Terminal Norte Capixaba das campanhas de agosto de 2011 a maio de 2014.

(Legenda: AMF – areia muito fina; AF – areia fina, AMF – areia muito fina, AM – areia média, AG – areia grossa, AMG – areia muito grossa; LA – lama. ago/11; dez/11; mar/12; mai/12; ago/12; nov/12; ago/13; Nov/13; fev/14; mai/14; -> - fatores edáficos (granulometria). As siglas e seus respectivos táxons estão identificados na Tabela abaixo.

Tabela 7-2: Siglas e seus respectivos táxons encontrados na análise de Correlação Canônica (CCA) do zoobentos de fundo inconsolidado na área estuarina sobre influência do Terminal Norte Capixaba das campanhas de agosto de 2011 a maio de 2014

Sigla	Táxon
Spi	Spionidae sp. Grube, 1850
Ssq	Scolelepis squamata (O.F. Muller, 1806)
Mi	Mollusca não identificado
Nem	Nemertea
Not	Notomastus sp. (Sars, 1850)
Сар	Capitella sp. (Fabricius, 1780)
Pni	Polychaeta não identificado
Sco	Scoloplos sp. Blainville, 1828
Nflu	Nephtys fluviatilis Monro, 1937
Hsim	Heteromastus similis Southern, 1921
Par	Parandalia sp. Emerson & Fauchald, 1971
Orb	Orbinia sp. (Quatrefages, 1865)
Nema	Nematoda
Glyc	Glycera sp. Savigny, 1818
Восс	Boccardiella sp.Blake & Kudenov, 1978
Nere	Nereididae sp. Blainville, 1818
Sig	Sigambra sp. Müller, 1858
Ema	Erodona mactroide Bosc, 1801
Gmu	Glycinde multidens Müller, 1858
Oly	Classe Olygochaeta
Don	Donacidae sp. Fleming, 1828
Gma	Goniada maculata Örsted, 1843
Hsimp	Hemipodia simplex (Grube, 1857)
Pisi	Pisionidae sp. Southern, 1914
Onu	Onuphidae sp. Kinberg, 1865
Mag	Magelona sp. F. Müller, 1858
Tub	Tubificidae sp. Vejdovský, 1884
Haus	Heleobia australis (d' Orbigny, 1835)
Ter	Teredo sp. Linnaeus, 1758
Med	Mediomastus sp. Hartman, 1944
Lcul	Laeonereis culveri (Webster, 1879)
Tell	Tellina sp. Linnaeus, 1758

CONSIDERAÇÕES FINAIS 8

Considerações Finals

De modo a permitir uma compreensão aplicada das caraterísticas da área estudada (marinha e estuarina), considerando seus aspectos de qualidade ambiental no tempo e espaço, a seguir são feitas considerações dos parâmetros que apresentaram resultados que merecem atenção, estatisticamente significativos.

Para melhor organização dessa discussão, foram realizadas considerações, primeiro, em escala temporal, cujo objetivo é avaliar a evolução da qualidade ambiental dos poços entre 2011 e 2014; e segundo, em escala espacial.

Escala Temporal

Ao longo do período estudado não foram observadas variações estatisticamente significativas, sendo que a maioria dos parâmetros se mantiveram abaixo do limite estabelecido pela Resolução Conama 454, com exceção do Cromo Total avaliado em ambiente marinho no mês de fevereiro/2013. Esta Resolução foi utilizada como padrão de qualidade, embora seja aplicada a operações de dragagem . Mesmo que não tenha sido observada variação temporal significativa, cabe ressaltar que a campanha de fevereiro 2013, no ambiente marinho, apresentou maiores concentrações médias para diversos parâmetros, sendo as diferenças significativas. No estuário esse mesmo padrão foi observado, entretanto, as campanhas que apresentaram maiores concentrações médias foram as de novembro de 2012 e fevereiro de 2013.

Em relação a comunidade bentônica, no ambiente marinho e estuarino foi observada um aumento na densidade, riqueza, diversidade e equitabilidade ao longo do período, sendo esses resultados significativos. A comunidade bentônica também apresentou distinção em relação a estação seca e chuvosa na região.

Escala Espacial

Em termos espaciais, no ambiente marinho foi observado que os Pontos Amostrais P04, P08 e P09, localizados ao longo do ducto entre o TNC e a monobóia, apresentaram maiores concentrações médias para diversos parâmetros, obtendo diferenças significativas para diversos parâmetros. No estuário, entretanto, apesar do Ponto Amostral P02 ter apresentado as maiores concentrações médias para quase todos os parâmetros, os resultados nunca apresentaram diferenças significativas.

Em relação à comunidade bentônica em termos espaciais, no ambiente marinho foi observado menores valores de densidade e índices ecológicos nos pontos mais próximos da costa, sendo esses resultados com diferenças significativas e corroborados pelos testes de similaridade também. Esse padrão pode estar associado a pouca profundidade e consequente revolvimento do sedimento, causando defaunação local. No estuário, o ponto PE01, mais próximo da barra, apresentou maiores valores de densidade, riqueza, diversidade e equitabilidade, o que também pode estar relacionado a uma contribuição marinha.

A variação na abundância da fauna no período chuvoso, como por exemplo, durante o mês de fevereiro/2014, pode ser uma resposta do forte período de chuvas que antecedeu as coletas, determinando uma maior influência de água doce no estuário do Rio Barra Nova, causando uma diminuição na salinidade e interferindo diretamente na ocorrência das espécies, como também observado por BARROSO & MATTHEWS-CASCON (2009) no estuário do rio Ceará, no Ceará, Brasil.

Em relação aos valores de diversidade, riqueza e abundância encontrados no ambiente estuarino, seguiram as características encontradas na literatura (NALESSO et al., 2005, HATJE et al., 2006 e BARROSO & MATTHEWS-CASCON, 2009), as quais indicam uma variação de riqueza e diversidade, com tendência dos maiores valores da parte interna a foz dos estuários, semelhante ao encontrado no estuário do rio Barra Nova, onde foram observados os maiores valores em PE01 e PE02. Desta forma, os resultados dos índices encontrados nessa região indicam

diferenças entre as regiões mais internas e externas do estuário do rio Barra Nova, associadas principalmente a variações na salinidade e granulometria do ambiente.

Em manquezais, os principais fatores determinantes da estrutura e dinâmica das associações de macroinvertebrados bentônicos são as características ambientais (salinidade, temperatura, hidrodinâmica, composição e textura dos sedimentos e disponibilidade de substrato), a dinâmica das populações (recrutamento, natalidade e mortalidade) e as interações biológicas (competição, predação, parasitismo) (KINNE, 1971; ROSENBERG, 1995; WIJSMAN; HERMAN; GOMOIU, 1999; HOGARTH, 1999).

MANINO & MONTAGNA (1997) e MONTEIRO (2009) citam que, nesses ambientes, a distribuição da salinidade e dos diferentes tipos de sedimento são importantes devido ao seu efeito na ecologia das espécies. Estudos sobre a distribuição da fauna estuarina ao longo de gradientes salinos apontam que os diferentes valores de salinidade atuam como uma barreira fisiológica para espécies estenohalinas marinhas (que não penetram nas áreas com baixa salinidade) e de água doce (incapazes de colonizar zonas com água salobra ou marinha) (WOLFF, 1983), o que poderia explicar as diferenças na composição e abundância entre os períodos de amostragem na área do estuário do rio Barra Nova.

PAGLIOSA (2006) estudando a distribuição da macrofauna bêntica em uma área com influência estuarina no sul do Brasil, e MEIßNER & DARR (2009) estudando a distribuição de *Magelona*, encontraram relação entre a composição da comunidade e a granulometria e salinidade dos locais (principalmente em regiões próximas a desembocadura de rios), além de observar a influência na estrutura do sedimento associada a presença de poliquetas tubícolas. Já ARASAKI et al. (2004) observaram que carnívoros e suspensívoros se desenvolviam bem em áreas de areia média ou grossa, assim como MUNIZ & PIRES (1999).

Em contrapartida MIRANDA (2010) encontrou em áreas com mistura de areia com silte, determinando um ambiente com variedade de nichos, e consegüentemente possibilitando a ocorrência dos mais variados grupos tróficos, dentre eles os

depositívoros de superfície (*Magelona*) e predadores (Gliceriformes e *Lumbrineris* sp.). Este mesmo padrão também foi observado para o atual estudo, com a ocorrência de organismos deposítivoros de superfície (*Magelona, Parandalia* e *Capitella*) e predadores (*Lumbrineris e Goniadides carolinae*) em áreas com areia grossa, fina e lama, padrão semelhante ao encontrado por LOPES dos SANTOS & PIRES-VANIN (2004) em enseadas de Ubatuba.

Padrão semelhante também foi observado por MORTIMER & MACKIE (2006), que encontraram *Magelona* em ambientes com sedimentos com predominância granulométrica areia fina, muito fina à silte argila, onde segundo CTA (2007) poderia caracterizar a região como uma área com estas determinações de sedimentos, uma vez em que a taxa também foi dominante e com ocorrência em quase todos os locais e campanhas de amostragem ao longo do período estudado.

Finalmente, a granulometria do substrato é um dos fatores mais influentes na composição e estrutura das comunidades macrobentônicas (PEARSON & ROSENBERG, 1978; GRAY, 1981; ESTACIO et al., 1997; MUCHA et al., 2003) e, junto com a salinidade e a profundidade, é o principal fator determinante das comunidades estuarinas e marinhas de uma forma geral (RAKOCINSKI et al., 1997; PEETERS et al., 2000).

A variabilidade na diversidade de espécies da plataforma ao oceano profundo também tem sido relacionada primariamente à profundidade, provavelmente refletindo alterações na disponibilidade de alimento e composição sedimentar (FLACH et al., 2002). A fauna bêntica geralmente possui padrões de distribuição e abundância associadas à heterogeneidade do ambiente sedimentar em que vivem. Maior diversidade de sedimentos e heterogeneidade intersticial tende a suportar maior diversidade faunística (ETTER & GRASSLE, 1992).

9 CONCLUSÃO

Conclusão

Ao longo do período estudado não foram observadas variações estatisticamente significativas, e, em geral, os parâmetros se mantiveram abaixo do limite estabelecido pela Resolução Conama 454, com exceção do Cromo Total em ambiente marinho no mês de fevereiro/2013. Vale destacar que esta Resolução deve ser aplicada a operações de dragagem.

No ambiente marinho, foi observado variação sazonal entre a estação chuvosa e seca na região, sendo que os Pontos Amostrais P04, P08 e P09, localizados ao longo do ducto entre o TNC e a monobóia, apresentaram maiores concentrações médias para diversos parâmetros, sendo esses resultados significativos.

Em relação a comunidade bentônica, no ambiente marinho e estuarino foi observada um aumento na densidade, riqueza, diversidade e equitabilidade ao longo do período, sendo esses resultados significativos. Além disso, os resultados para as comunidades bentônicas também apresentaram distinção em relação a estação seca e chuvosa na região. Dessa forma, não foi observado influência do empreendimento sobre essa fauna.

10 REFERÊNCIA BIBLIOGRÁFICA

ANDERSON, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46p. 2001.

ANDERSON, M. J. PERMANOVA: A FORTRAN Computer Program for Permutational Multivariate Analysis of Variance. Department of Statistics, University of Auckland. New Zealand. 2005.

APHA: Standard Methods for the Examination of Water and Wastewater - 19 th, Baltimore, 2000.

ARASAKI, E. MUNIZ, P. & PIRES-VANIN, A. M. S. A functional analysis of the benthic macrofauna of the São Sebastião Channel (Southeastern Brazil). Marine Ecology. 25 (4): 249-63p. 2004.

BARROSO, C. X. & MATTHEWS-CASCON, H. Distribuição espacial e temporal da malacofauna no estuário do rio Ceará, Ceará, Brasil Pan-American Journal of Aquatic Sciences, 4(1): 79-86p. 2009.

BRAY, J. R & CURTIS, J. T. An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27: 325–349. 1957.

CALLISTO, M. & ESTEVES, F. A. Distribuição da comunidade de macroinvertebrados bentônicos em um lago amazônico impactado por rejeito de bauxita, Lago Batata (Pará, Brasil). In: Oecologia Brasiliensis. v. 1. Estrutura, Funcionamento e Manejo de Ecossistemas Brasileiros. F. A. Esteves (ed.), pp. 281-291, Programa de Pós-graduação em Ecologia, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, 1995.

CETESB – Companhia de Saneamento Ambiental do Estado de São Paulo - "Guia de Coleta e Preservação de Amostras de Água", 1987.

CLARKE, K. R, & WARWICK R. M. Change in marine communities: an approach to statistical analysis and interpretation, 2nd edition. PRIMER-E, Plymouth. 2001.

CLARKE, K. R. & WARWICK, R. M. Change in marine communities: an approach to statistical analysis and interpretation. Natural Environmental Research Council, UK, 144p, 1994.

CLARKE, K. R.; SOMERFIELD, P. J. & CHAPMAN, M. G. On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray-Curtis coefficient for denuded assemblages. Journal of Experimental Marine Biology and Ecology: 330, 55–80. 2006.

CTA. Monitoramento Biológico Marinho "Monobóia - Terminal Norte Capixaba". Relatório Técnico. 2007.

DIAS, J. M. A. A análise sedimentar e o conhecimento dos sistemas marinhos: introdução à uma oceanografia geológica. e-book. http://w3.ualg.pt/~jdias/JAD/e books.html. 2004.

ESTACIO, F. J.; GARCÍA-ADIEGO, E. M.; FA, D. A.; GARCÍA- GÓMEZ, J. C.; DAZA, J. L.; HORTAS, F. & GÓMEZ-ARIZA, J. L. Ecological analysis in a polluted area of Algeciras Bay (Southern Spain): External "versus" internal outfalls and environmental implications. Marine Pollution Bulletin, 34 (10): 768-779p. 1997.

ETTER, R. J. & GRASSLE, J. F. Patterns of species diversity in the deep sea as a function of sediment particle size diversity. Nature, 360: 576-578p. 1992.

FLACH, E.; MUTHUMBI, A. & HEIP, C. Meiofauna and macrofauna community structure in relation to sediment composition at Iberian margin compared to the Goban Spur (NE Atlantic). Progress in Oceanography, 52: 433-457p. 2002.

FOLK, R. L. & WARD W. C. Brazos river bar: a study of significance of grain size parameters. Journal of Sedimentary Research, 27: 3-26p. 1957.

FOLK, R. L. **Petrology of sedimentary rocks**. Austin, Texas: Hemphill Publishing Company, 181p. 1974.

GRAY, J. S. The ecology of Marine Sediments. An introduction to the structure and function of benthic communities. Cambridge University Press. 184p. 1981.

HATJE, V.; BARROS, F; FIGUEIREDO, D. G.; SANTOS, V. L. C. S. & PESO-AGUIAR M. C. Trace metal contamination and benthic assemblages in Subae estuarine system, Brazil. Marine Pollution Bulletin, v. 52, 969-987p. 2006.

HOGARTH, P. J. **The biology of mangroves**. Oxford: Oxford University Press. 228 p. 1999.

KIEHL, E. J. **Manual de edafologia**: relações solo-planta. São Paulo: Editora Agronômica Ceres, 262p. 1979.

KINNE, O. Salinity. In: KINNE, O. Marine ecology: a comprehensive, integrated treatise on life in oceans and coastal waters. London: John Wiley & Sons. v. 1. n. 2. 683-995p. 1971.

KRUMBEIN, W. C. Size frequency distribution of sediments and the normal phicurve. Journal of Sedimentary Petrology, 8: 84-90p. 1938.

KRUSKAL, J. B. & WISH, M. *Multidimensional Scaling*. Sage University Paper series on Quantitative Applications in the Social Sciences, number 07-011. Sage Publications, Newbury Park, CA. 1978.

LOPES dos SANTOS, M. F & PIRES-VANIN, A. M. S. Structure and dynamics of the macrobentic communities of Ubatuba bay, southeastern Brazilian coast. Brazilian Journal of Oceanography. 52: 59-73p. 2004.

Referência Bibliográfica

MANINO, A. & MONTAGNA, P. A. Small-scale spatial variation of macrobenthic community structure. Estuaries, v. 20, 159-173p. 1997.

MANLY, B. F. J. Randomization, bootstrap and Monte Carlo methods in biology. 2nd edition. London: Chapman & Hall. 1997.

MEIßNER, K. & DARR, D. Distribution of *Magelona* species (Polychaeta: Magelonidae) in the German Bight (North Sea): a modeling approach. Zoosymposia, 2: 567–586p. 2009.

MIRANDA, A. Mapeamento de habitats bentônicos da enseada de Caraguatatuba, Brasil. Dissertação de Mestrado. Universidade de Aveiro, Departamento de Biologia Marinha. 88p. 2010.

MONTEIRO, V. F. Eficiência de diferentes abordagens metodológicas e caracterização das associações macrobentônicas estuarinas da Zona Costeira Amazônica. Dissertação apresentada ao Programa de Pós-Graduação em Ecologia Aquática e Pesca da Universidade Federal do Pará. Mestrado em Ecologia Aquática e Pesca. Instituto de Ciências Biológicas. Universidade Federal do Pará. 96p. 2009.

MORTIMER, K. & MACKIE, A. S. Y. The Magelonidae (Annelida: Polychaeta) from the Seychelles. 2. Description of four additional species, three new to science. Scientia Marina. 125-137p. 2006.

MUCHA, A. P.; VASCONCELOS, M. T. S. D. & BORDALO, A. A. Macrobenthic community in the Douro estuary: relations with trace metals and natural sediment characteristics. Environmental Pollution, 121: 169-180p. 2003.

MUNIZ, P. & PIRES, M. A. S. Trophic structure of polychaetes in the São Sebastião Channel (southeastern Brazil). Marine Biology, 134: 517-28p. 1999.

NALESSO, R. C.; JOYEUX, J. C.; QUINTANA, C. O.; TOREZANI, E. & OTEGUI, A. C. P. Soft-bottom macrobenthic communities of the Vitória Bay estuarine system, south-eastern Brazil. Brazilian Journal of Oceanography, 53(1/2): 23-38p. 2005.

PAGLIOSA. P. R. Distribuição da macrofauna bêntica do entremarés ao sublitoral em uma praia estuarina da Baía da Babitonga, Sul do Brasil. Revista Biotemas, 19 (1): 25-33p. 2006.

PEARSON, T. H. & ROSENBERG, R. Macrobenthic succession in relation to organic enrichment and pollution on the marine environment. Oceanograph Marine Biology Annual Review, 16: 229-311p. 1978.

PEETERS, E. T. H. M.; GARDENIERS, J. J. P. & KOELMANS, A. A. Contribution of trace metals in structuring in situ macroinvertebrate community composition along a salinity gradient. Environmental Toxicology and Chemistry, 19: 1002-1010p. 2000.

RAKOCINSKI, C. F., BROWN, S. S.; GASTON, G. R.; HEARD, R. W.; WALKER, W. W. & SUMMERS, J. K. Macrobenthic Responses to Natural and Contaminant-Related Gradients in Northern Gulf of Mexico Estuaries. Ecological Applications, 7 (4): 1278-1298p. 1997.

ROSENBERG, R. Benthic marine fauna structured by hidrodynamic processes and food availability. Neth. J. Sea Res., v. 34: 303-317p. 1995.

SHEPHERD, G. J. *Fitopac versão 2.1.2.85.* Departamento de Botânica. UNICAMP. 2010.

STATISTICA FOR WINDOWS, StatSoft, Inc. USA. 1996.

SUGUIO, K. Introdução à sedimentologia. São Paulo: Editora Edgar Bucher/EDUSP, 317p. 1973.

TER BRAK, C. J. F. & PRENTICE, I. C. A theory of Gradiente Analysis. Advances in Ecological Research, v. 18, n. 2, p. 271-317. 1988.

TER BRAK, C. J. F. Canonical correspondence analysis: a new eigenvector techiniquue for multivariate direct gradient analysis. Ecology, v. 67, n. 5, p. 1167-1179. 1986.,

TER BRAK, C. J. F. The analysis of vegetation environment relationships by canonical correspondence analysis. Vegetation, v. 69, n. 1, p. 69-77. 1987.

WENTHWORTH, C. A scale of grade and class term for clastic sediment. Journal of Geology, 30: 377-392p. 1922.

WIJSMAN, J. W. M.; HERMAN, P. M. J. & GOMOIU, M. Spatial distribution in sediment characteristics and benthic activity on the northwestern Black Sea shelf. Mar. Ecol. Prog. Ser., v. 181: 25-39p. 1999.

WOLFF, W. J. Estuarine benthos. In: KETCHUM, B. H. (Ed.). Ecosystems of the world: estuaries and enclosed seas. New York: Elsevier. 151-182p. 1983.

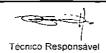
ZAR, J.H. 1984. Biostatistical Analysis. 2nd ed. *Prentice-Hall*, New Jersey, 718pp.

11 EQUIPE TÉCNICA

Realização

CTA – Serviços em Meio Ambiente Ltda.

CRBio: 208/02.


CTEA: 441/2014

CTF IBAMA: 201193

Profissional	Alessandro Trazzi Biólogo, Mestre em Engenharia Ambiental Diretor Técnico
Registro no Conselho de Classe	CRBio 21.590-02
CTEA	398/2014
CTF	201187
Função no Estudo	Supervisão Geral
Assinatura	Alexandro Trazzi Ento

	Marcos Eugênio Pires de Azevedo Lopes								
Profissional	Engenheiro Agrônomo, Mestre e Doutor em Engenharia								
Tonissional	Ambiental								
	Gerente Técnico de Licenciamento Ambiental								
Registro no Conselho de Classe	CREA AL 6816/D Visto CREA-ES 20060539								
CTEA	487/2014								
CTF	1978208								
Função no Estudo	Supervisão Técnica								
Assinatura	Musey								

Profissional	Giovanna Cypriano Lage Bióloga, Especialista em Gestão Ambiental Subgerente de Licenciamento Ambiental
Registro no Conselho de Classe	CRBio 38.858-02
CTEA	412/2014
CTF	4936803
Função no Estudo	Acompanhamento e revisão do Relatório Consolidado
Assinatura	Siovanta ypiano) age

Profissional	Ricardo de Freitas Netto Biólogo, Dr. Ecologia e Recursos Naturais							
Registro no Conselho de Classe	CRBio 29.414/02							
CTEA IEMA	598/2014							
CTF IBAMA	1654307							
Função	Responsável Técnico, Análise de dados e Elaboração do Relatório Consolidado							
Assinatura								

Profissional	Dyoh Tokunaga Engenheiro Ambiental Analista de Projetos
Registro no Conselho de Classe	ES-034708/D
CTEA	394/2014
CTF	66059283
Função no Estudo	Revisão do Relatório Consolidado
Assinatura	Dydl Tollanaga.

Profissional	Graciele Belisário Graduanda em Engenharia Ambiental Estagiária de nível superior								
Função	Co-elaboração e Revisão do Relatório Consolidado								
Assinatura	June 10 Francis								

Droficaional	Carlos Eduardo da Silva Alves							
Profissional	Diagramador							
Função	Diagramação e Impressão							
Assinatura								

Profissional	Marcielle Torezani						
	Tec. Geomática / Graduanda Eng. Ambiental						
Registro no Conselho de Classe	CREA-ES 24120/TD						
Função no Estudo	Elaboração dos mapas						
Assinatura	Marcillegrougani						

Profissional	Micheli Moscon						
	Tecnóloga em Saneamento Ambiental						
	Analista Ambiental / Geoprocessamento						
Registro no Conselho de Classe	Não se aplica						
Função no Estudo	Elaboração dos mapas						
Assinatura	mexol ilehim						

Pág. 89 / 89

Equipe Técnica 11 Relatório Consolidado do Programa de Caracterização e Monitoramento Físico e Químico e Biológico do Sedimento Marinho e Estuarino do TNC

12 ANEXOS

Anexo I

Lista de registrada por campanha no monitoramento do TNC entre 2011 e 2014.

Tabela 1 – Lista de Táxons encontrados na primeira campanha de monitoramento biológico do Terminal Norte Capixaba (TNC) realizado em Agosto de 2011 pela empresa Ethica Ambiental.

		Ethica Ambiental - Agosto/2011 (Seca)												
		Estuário			Marinha									
		PE-01	PE-02	PE-03	PM-01	PM-02	PM-03	PM-04	PM-05	PM-06	PM-07	PM-08	PM-09	TOTAL
Annelida														,
Classe Polychaeta														
Família Phyllodocidae	Phyllodoce sp. Lamarck, 1818	0	0	0	0	0	0	0	0	0	1	0	0	1
Família Goniadidae	Glycinde sp. Müller, 1858	0	0	0	0	0	0	0	1	0	0	0	0	1
	Goniadides carolinae Day, 1973	0	0	0	0	2	0	0	0	0	0	0	0	2
Família Glyceridae	Glycera sp. Savigny, 1818	0	1	0	2	0	0	0	0	0	1	0	1	5
Família Syllidae	Autolytus sp. Grube, 1850	0	0	0	0	0	0	0	o	1	0	0	0	1
Família Hesionidae	Gyptis sp. Marion & Bobretzky in Marion, 1874	0	0	0	0	0	2	0	0	0	0	0	0	2
Família Spionidae	Dispio sp. Hartman, 1951	0	0	0	0	0	1	0	0	0	0	0	0	1
	Paraprionospio sp. Caullery, 1914	0	0	0	0	0	1	0	0	0	2	0	0	3
Família Onuphidae	Onuphis sp. Audouin & Milne Edwards, 1833	0	0	0	0	0	1	0	0	0	0	0	0	1
Familia Eunicidae	Eunice sp. (Cuvier, 1817)	0	0	0	0	0	0	0	0	1	0	0	0	1
	Marphysa sp. Quatrefages, 1865	0	0	0	0	1	0	0	0	0	0	0	0	1
Família Magelonidae	Magelona sp. F. Müller, 1858	1	0	0	0	3	0	1	4	1	3	0	0	13
Família Nereididae	Neanthes bruaca Lana & Sovierzovsky, 1987	0	0	0	0	0	0	2	0	0	0	0	0	2
Família Paraonidae	Aedicira sp. (Hartman, 1957)	0	0	0	0	3	0	0	0	1	1	0	0	5
Familia Lumbrineridae	Lumbrineris sp. Blainville, 1828	0	0	0	0	5	0	0	2	4	6	0	0	17
Familia Pilargidae	Parandalia sp. Emerson & Fauchald, 1971	1	0	1	0	0	0	0	1	0	0	2	5	10
	Sigambra sp. Müller, 1858	0	0	0	1	0	0	1	0	1	0	3	0	6
Família Orbiniidae	Orbinia sp. (Quatrefages, 1865)	0	0	0	0	0	0	0	0	0	1	0	0	1
Familia Nephtydae	Aglaophamus sp. (Kinberg, 1865)	0	0	0	0	0	1	0	0	0	0	0	0	1

Familia Opheliidae	Ophelia sp. Savigny, 1822	0	0	0	0	0	2	0	1	0	2	0	0	5
Familia Chaetopteridae	Phyllochaetopterus sp. (Grube,		-						·					
, anima oriabiopioriado	1863) Poecilochaetus sp. Claparède,	0	0	0	0	0	0	0	0	0	1	0	0	1
Família Poecilochaetidae	1875	0	0	0	0	0	0	0	0	1	0	0	0	1
Classe Clitellata	Oligochaeta	0	0	0	0	0	0	0	0 _	3	0	0	0	3
Arthropoda														
SubFilo Crustacea		ŀ												
Ordem Amphipoda		1												
Família Phoxocephalidae	Phoxocephalidae sp. Sars, 1891	0	0	0	0	1	0	0	0	0	0	0	0	1
Família Anthuridae	Amakuzanthura sp. (Nunomura, 1977)	0	0	0	0	0	1	0	0	0	0	0	0	1
Ordem Cumacea	Cumacea sp. Krøyer, 1846	0	0	0	0	3	2	0	1	0	0	0	0	6
Ordem Decapoda	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,													
Subordem Sergestoidea Infraordem Brachyura	Luciferidae sp. De Haan, 1849	0	0	0	0	0	0	0	0	0	0	0	1	1
Família Xanthidae	Panopeus sp. H. Milne Edwards, 1834	0	0	0	0	0	0	0	0	0	1	0	٠.0	1
Mollusca														
Classe Bivalvia														
Família Lucinidae	Lucinidae sp. Fleming, 1828	0	0	0	0	5	0	0	9	0	0	0	0	14
Echinodermata	_													
Classe Ophiuroidea	Ophiuroide	0	0	0	0	1	0	0	0	2	1	0	0	4
Sipuncula														
Família Golfingiidae	Golfingiidae sp. Stephen & Edmonds, 1972	0	0	0	0	1	0	0	0	0	0	0	0	1
Nemertea										_				
	Nemertea	0	0	0	0	2	1	2	1	7	1	0	1	15
Echlura														
	Echiura	0_	0	0	0	2_	0_	0	0	1	0	0	0	3
Priapulida	_ "													

,

Priapulida	0	0	0	0	0	0	1	0	1	0	2	0	4
N-total N-total	2	1	1	3	24	12	7	11	24	21	7	8	121
S-total	2	1	1	2	11	9 _	_ 5	7	12	12	3	4	33

Tabela 2 – Lista de Táxons encontrados na segunda campanha de monitoramento biológico do Terminal Norte Capixaba (TNC) realizado em Dezembro de 2011 pela empresa Scitech Environmental Science and Technology.

				Scite	ch Envir	nmental	Science a	and Techi	nology - D	ezembro	2011 (Ch	uvosa)		
	Táxons		Estuário						Marinha					
		PE-01	PE-02	PE-03	PM-01	PM-02	PM-03	PM-04	PM-05	PM-06	PM-07	PM-08	PM-09	TOTAL
Annelida	 						_							
Classe Polychaeta														
Familia Goniadidae	Goniada sp. Audouin & Milne- Edwards, 1833	0	0	0	0	0	1	0	0	0	0	0	0	1
Família Spionidae	Spionidae sp. Grube, 1850	0	0	0	0	1	0	0	2	1	0	1	1	6
Família Onuphidae	Onuphidae sp. Kinberg, 1865	0	0	0	0	0	0	0	1	0	0	0	0	1
	Kinbergonuphis sp. Fauchald, 1982	0	0	0	0	0	0	0	1	0	0	0	0_	1
Arthropoda														
SubFilo Crustacea														
Ordem Amphipoda														
Família Ampeliscidae	Ampelisicidae sp. Krøyer, 1842	0	0	0	0	1	0	0	0	0	0	0	0	1_
Mollusca														
	Mollusca não identificado													
Classe Bivalvia														
Família Corbulidae	Corbula sp. Bruguière, 1797	0	0	0	0	0	1	0	0	0	0	0	0	1
Família Nuculidae	Nucula semiornata d'Orbigny, 1846	0	0	0	0	1	0	1	0	0	0	0	0	2
Classe Gastropoda														

Família Hiydrobiidae	<i>Heleobia australis</i> (d' Orbigny, 1835)	1	0	0	0	0	0	0	0	0	0	0	0	1
Família Olividae	Olivella minuta (Link, 1807)	0	0	0	0	0	1	0	0	0	0	1	0	2
Familia Pyramidellidae	<i>Turbonilla brasiliensis</i> Clessin, 1902	0	0	0	1	0	0	0	0	0	0	0	0	1
	N-total	1	0	0	1	3	3	1	4	1	0	2	1	17
	S-total	1	0	0	1	3	3	1	3	1	0	2	1	16

Tabela 3 – Lista de Táxons encontrados na terceira campanha de monitoramento biológico do Terminal Norte Capixaba (TNC) realizado em Março de 2012 pela empresa Scitech Environmental Science and Technology.

				Sc	itech Env	ironment	al Science	e and Tec	hnology	Março/2	012 (Chu	/osa)		•
	Táxons		Estuário						Marinha					
		PE-01	PE-02	PE-03	PM-01	PM-02	PM-03	PM-04	PM-05	PM-06	PM-07	PM-08	PM-09	TOTAL
Annelida								<u>-</u>						
Classe Polychaeta														
Família Goniadidae	Glycinde sp. Müller, 1858	0	0	0	0	0	0	0	0	0	0	1	0	1
	Goniadides carolinae Day, 1973	0	0	0	1	0	0	0	0	0	0	0	0	1
Família Glyceridae	Glycera sp. Savigny, 1818	0	0	0	0	1	0	0	0	0	0	0	3	4
	Glycera americana Leidy, 1855	0	0	0	0	1	2	0	0	1	1	0	0	5
Família Hesionidae	Gyptis sp. Marion & Bobretzky in Marion, 1874	0	0	0	0	0	0	0	1	0	0	0	0	1
Família Spionidae	Paraprionospio sp. Caullery, 1914	0	0	0	0	1	1	1	0	0	0	0	0	3
	<i>Prionospio sp</i> . Malmgren, 1867	0	0	0	9	18	0	1	2	8	7	0	0	45
	Spiophanes bombyx (Claparède, 1870)	0	0	0	1	0	0	0	0	0	0	0	0	1
Familia Onuphidae	Diopatra sp. Audouin & Milne Edwards, 1833	0	0	0	0	0	0	0	0	0	0	0	1	1
	Onuphis sp. Audouin & Milne Edwards, 1833	0	0	0	2	0	0	0	0	0	0	0	0	2
Familia Magelonidae	Magelona sp. F. Müller, 1858	0	0	0	4	1	1	5	4	3	4	1	2	25

	•													
Familia Nereididae	Neanthes bruaca Lana & Sovierzovsky, 1987	0	0	0	0	0	0	0	0	0	0	1	0	1
Familia Paraonidae	Aedicira sp. (Hartman, 1957)	0	0	0	1	0	0	0	0	0	0	0	0	1
Família Lumbrineridae	Lumbrineris sp. Blainville, 1828	0	0	0	8	1	0	0	0	3	4	1	0	17
Família Pilargidae	Parandalia sp. Emerson & Fauchald, 1971	0	0	0	0	1	9	4	0	0	0	3	1	18
	Sigambra sp. Müller, 1858	0	0	0	0	0	1	0	0	1	0	1	0	3
Família Orbiniidae	Orbinia sp. (Quatrefages, 1865)	0	0	0	1	0	0	0	0	1	0	0	0	2
Família Nephtydae	Aglaophamus sp. (Kinberg, 1865)	0	0	0	1	0	0	0	0	0	0	0	0	1
	Nephtys sp. Cuvier, 1817	0	0	0	0	0	0	0	1	1	0	0	0	2
Familia Amphinomidae	Hipponoe sp. Audouin & Milne- Edwards, 1830	0	0	0	0	0	0	0	0	0	0	1	0	1
Família Chaetopteridae	Phyllochaetopterus sp. (Grube, 1863)	0	0	0	0	0	0	1	0	0	0	0	0	1
Familia Poecilochaetidae	Poecilochaetus sp. Claparède, 1875	0	0	0	0	0	0	0	1	0	0 .	0	0	1
Família Capitellidae	<i>Mediomastus sp.</i> Hartman, 1944	0	2	0	0	0	0	0	0	0	0	0	0	2
Familia Terebellidae	Artacama sp. Malmgren, 1866	0	0	0	0	0	0	1	0	0	0	0	0	1
Família Sigalionidae	Sthenelanella sp. (Moore, 1910)	0	0	0	0	1	0	0	0	0	0	0	0	1
Familia Eulepethidae	Grubeulepis sp. Pettibone, 1969	0	0	0	0	0	0	0	1	0	0	0	0	1
Arthropoda														
SubFilo Crustacea														
Ordem Amphipoda														
Família Phoxocephalidae	Phoxocephalidae sp. Sars, 1891	0	0	0	2	0	0	0	0	0	0	0	0	2
Família Atylidae	Atylidae sp. Lilljeborg, 1865	0	0	0	0	0	0	0	1	0	0	0	0	1
Família Stenothoidae	Stenothoidae sp. Boeck, 1871	0	0	0	0	1	0	0	1	0	0	0	0	2
Ordem Cumacea	Cumacea sp. Krøyer, 1846	0	0	0	0	1	0	0	0	0	0	0	0	1
Ordem Decapoda														
Familia Ogyrididae	Ogyrides alphaerostris (Kingsley, 1880)	0	0	0	0	0	2	1	0	0	0	1	0	4
Família Processidae	<i>Processa sp.</i> Leach, 1815 [in Leach, 1815-1875]	0	0	0	0	1	0	1	2	0	0	0	0	4

Infraordem Brachyura														
Família Xanthidae	Eurypanopeus sp. A. Milne- Edwards, 1880	0	0	0	0	0	0	0	0	1	0	0	0	1
Família Dromiidae Infraordem Anomura	Hypoconcha parasitica (Linnaeus, 1763)	0	0	0	0	1	0	0	0	0	0	0	0	1
Família Paguridae	Pagurus sp. Fabricius, 1775	0	0	0	0	0	0	1	0	0	0	0	0	1
Mollusca														
Classe Bivalvia														
Família Teredinidae	Teredo sp. Linnaeus, 1758	1	0	0	0	0	0	0	0	0	0	0	0	1
Família Nuculidae	Nucula semiomata d'Orbigny, 1846	0	0	0	0	0	1	0	0	0	0	0	2	3
Família Tellinidae	Tellina exerythra Boss, 1964	0	0	0	0	1	0	0	0	0	0	0	0	1
Familia Semelidae	Abra aequalis (Say, 1822)	0	0	0	0	0	0	1	0	0	0	0	0	1
Classe Gastropoda														
Família Rhizoridae	Volvulella persimilis (Mörch, 1875) Cancellaria petuchi	0	0	0	0	0	0	0	0	0	0	0	1	1
Família Cancellariidae	(Harasewych, Petit & Verhecken, 1992)	0	0	0	0	0	0	0	1	0	0	0	0	1
Família Naticinae -	Sinum perspectivum (Say, 1831) Eulima mulata Rios & Absalāo,	0	0	0	1	0	0	0	0	0	0	0	0	1
Família Eulimidae	1990	0	0	0	0	1	0	0	0	0	0	0	0	1
Classe Scaphopoda				,										
Família Dentaliidae	Dentalium sp. Linnaeus, 1758	0	0	0	0	00	0	0	2	0	0	0	0	2
Echinodermata														
Classe Ophiuroidea	Ophiuroide	0	0	0	0	0	0	0	0	1	0	0	0	1
Sipuncula														
Família Golfingildae	Golfingiidae sp. Stephen & Edmonds, 1972	0	0	0	0	0	0	1	0	0	0	0	0	1
Família Phascolosomatidae	Phascolosoma sp. Leuckart, 1828	0	0	0	1	0	0	0	0	0	0	0	0	1
Nemertea														
	Nemertea	0	0	0	8	6	0	4	3	4	2	3	0	30

x.

Priapulida														
Priapulida		0	0	0	1	0	0	0	0	0	0	0	0	1
	N-total	1	2	0	41	37	17	22	20	24	18	13	10	205
	S-total	1	1	0	14	15	7	12	12	10	5	9	6	48

()

Tabela 4 – Lista de Táxons encontrados na quarta campanha de monitoramento biológico do Terminal Norte Capixaba (TNC) realizado em Maio de 2012 pela empresa Scitech Environmental Science and Technology.

<u> </u>				Sc	citech En	vironmen	tal Sclend	e and Te	chnology	- Maio/20	12 (Chuv	osa)		
	Táxons		Estuário						Marinha					•
		PE-01	PE-02	PE-03	PM-01	PM-02	PM-03	PM-04	PM-05	PM-06	PM-07	PM-08	PM-09	TOTAL
Annelida	<u> </u>													
Classe Polychaeta														
Família Goniadidae	Goniadidae sp. Kinberg, 1866	0	0	0	0	1	0	0	0	0	2	0	0	3
Família Syllidae	Syllidae Grube, 1850	0	0	0	0	1	1	0	1	0	0	0	0	3
Família Spionidae	Spionidae sp. Grube, 1850	0	0	0	0	0	0	0	1	0	0	0	0	1
Família Nereididae	Nereididae sp. Blainville, 1818	1	0	0	0	0	0	0	0 _	_0	0	0	0	1
Arthropoda				_										
SubFilo Crustacea														
Ordem Amphipoda														
Família Ampeliscidae	Ampelisicidae sp. Krøyer, 1842	0	0	0	0	0	0	0	0	1	0	0	0	1
Ordem Decapoda														
Infraordem Brachyura														
Família Xanthidae	Xanthidae sp. MacLeay, 1838	0	0	0	0	0	0	0	0	0	1	0	0	1_
Mollusca	<u> </u>		_											
Classe Bivalvia														
Familia Corbulidae	Corbula caribaea d'Orbigny, 1853	0	0	0	0	0	0	0	3	0	0	0	0	3

Familia Nuculidae	Nucula semiomata d'Orbigny, 1846	0	0	0	0	1	0	1	2	1	1	0	0	6
Classe Gastropoda														}
Família Acteonidae	Acteon sp. Montfort, 1810	0	0	0	0	1	0	0	0	0	0	0	0	1
Familia Olividae	Olivella minuta (Link, 1807)	0	0	0	0	2	0	0	0	0	2	0	0	4
Família Rhizoridae	Volvulella sp. Newton, 1891	0	0	0	0	0	0	2	0	0	0	0	0	2
Classe Scaphopoda														
Família Dentaliidae	Dentalium laqueatum Verrill, 1885	0	0	0	0	0	1	0	0	0	0	0	0	1
Família Gadilidae	Gadila sp. Gray, 1847	0	0	0	_ 0	1	0	00	0	0	0	0	0 _	1
Echinodermata														ļ
Classe Ophiuroidea														
Família Ophiactidae	Ophiactis sp. Lütken, 1856	0	0	0	0	1	0	0	0	0	0	0	0	11
	N-total	1	0	0	0	8	2	3	7	2	6	0	0	29
	S-total	1	0	0	0	7	2	2	4	2	4	0	0	14

Tabela 5 – Lista de Táxons encontrados na quinta campanha de monitoramento biológico do Terminal Norte Capixaba (TNC) realizado em Agosto de 2012 pela empresa Arca Ambiental.

						Arc	a Ambien	tal - Agos	sto/2012 (Seca)				
	Táxons		Estuario						Marinha					
		PE-01	PE-02	PE-03	PM-01	PM-02	PM-03	PM-04	PM-05	PM-06	PM-07	PM-08	PM-09	TOTAL
Annelida														
Classe Polychaeta														
	Polychaeta não identificado	0	0	0	0	0	0	0	2	3	1	0	0	6
Família Paralacydoniidae	Paralacydoniidae sp. Pettibone, 1963	0	0	0	1	0	0	0	0	0	0	0	5	6
Família Goniadidae	Glycinde sp. Müller, 1858	0	0	0	0	0	1	0	0	0	0	0	2	3
Família Glyceridae	Glycera sp. Savigny, 1818	0	1	0	3	5	2	5	0	0	0	0	3	19
Família Syllidae	Syllidae Grube, 1850	0	0	0	0	0	0	0	0	2	0	0	0	2

Família Spionidae	Spionidae sp. Grube, 1850	425	0	0	0	2	7	2	0	0	1	0	78	515
Família Onuphidae	Onuphidae sp. Kinberg, 1865	2	0	0	4	0	0	2	0	1	0	1	0	10
Família Nereididae	Nereididae sp. Blainville, 1818	0	0	0	19	4	0	11	0	2	0	1	9	46
Classe Clitellata	Oligochaeta						-		-	_	•	·	J	,,,
Família Tubificidae	Tubificidae sp. Vejdovský, 1884	1	0	0	0	0	0	0	0	1	0	0	2	4
Arthropoda			-				-							
SubFilo Crustacea														
Ordem Amphipoda														
Família Gammaridae	Gammaridae sp. Leach, 1814	0	0	0	0	1	2	0	0	0	0	0	19	22
Família Hiperiidae	Hiperiidae sp.	1	0	0	0	0	0	0	0	0	0	0	6	7
Ordem Decapoda	Decapoda	0	0	0	1	0	0	0	1	o	2	0	0	4
Mollusca														
	Mollusca não identificado	10	0	0	0	0	0	1	0	0	0	0	7	18
Classe Bivalvia														
Família Donacidae	Donacidae sp. Fleming, 1828	2	1	0	1	0	1	6	0	0	0	0	1	12
Família Tellinidae	Tellina sp. Linnaeus, 1758	0	0	0	1	3	6	1	0	0	0	0	3	14
Classe Scaphopoda														
Família Dentaliidae	Dentaliidae sp. Children, 1834	1	1	0	32	15	0	3	0	0	0	0	1	53
	N-total	442	3	0	62	30	19	31	3	9	4	2	136	741
	S-total	7	3	0	8	6	6	8	2	5	3	2	11	16

-

Tabela 6 – Lista de Táxons encontrados na sexta campanha de monitoramento biológico do Terminal Norte Capixaba (TNC) realizado em Novembro de 2012 pela empresa Arca Ambiental.

		1				Arca A	mbiental	- Novemb	ro/2012 (Chuvosa)				
	Táxons		Estuário						Marinha					
		PE-01	PE-02	PE-03	PM-01	PM-02	PM-03	PM-04	PM-05	PM-06	PM-07	PM-08	PM-09	TOTAL
Annelida														
Classe Polychaeta														
	Polychaeta não identificado	5	1	1	4	2	4	0	2	3	0	1	1	24
Familia Goniadidae	Glycinde sp. Müller, 1858	0	0	0	1	2	3	4	0	1	0	0	1	12
Familia Glyceridae	Glycera sp. Savigny, 1818	1	0	0	2	1	4	4	1	0	0	5	2	20
Familia Pisionidae	Pisionidae sp. Southern, 1914	2	0	0	0	0	2	1	0	0	0	0	2	7
Família Pisiolaridae	Pisiolaridae sp.	0	٥	0	0	2	3	0	0	0	0	0	0	5
Família Syllidae	Syllidae Grube, 1850	0	0	0	0	0	0	0	0	0	0	0	1	1
Família Spionidae	Spionidae sp. Grube, 1850	0	0	0	2	3	0	0	1	0	0	1	3	10
Familia Onuphidae	Onuphidae sp. Kinberg, 1865	0	0	0	2	0	0	0	3	1	0	0	0	6
Família Nereididae	Nereididae sp. Blainville, 1818	1	1	1	3	1	3	1	3	1	0	1	7	23
Familia Lysaretidae	Lysaretidae sp. Kinberg, 1865	0	0	0	0	0	0	1	1	0	0	0	0	2
Família Lumbrineridae	Lumbrineridae sp. Schmarda, 1861	0	0	0	0	3	0	0	1	0	0	0	0	4
Família Maldanidae	Maldanidae sp. Malmgren, 1867	0	0	0	0	0	0	0	0	0	0	1	0	1
Classe Clitellata	Oligochaeta													
Família Tubificidae	Tubificidae sp. Vejdovský, 1884	0	0	0	0	0	0	1	0	0	0	0	0	1
Arthropoda	-			_										
SubFilo Crustacea														
Ordem Decapoda	Decapoda	0	0	0	0	1	0	0	0	0	0	0	0	1
Mollusca								-						
	Mollusca não identificado	8	0	2	2	0	2	3	7	1	1	5	7	38
Classe Bivalvia		•	_	_	_	-		-						

<u> </u>	S-total	5	2	4	8	12	7	8	17	12	4	9	13	24
	N-total	17	2	5	23	33	24	19	82	29	12	20	31	297
Classe Scaphopoda	Scaphopoda	0	0_	1_	0	1	0	0	4	1	3	0	0	10
Família Pectinidae	Pectinidae sp. Rafinesque, 1815	0	0	0	0	0	0	0	3	4	0	0	0	7
Família Osteidae	Osteidae sp.	0	0	0	0	0	0	0	8	6	0	0	0	14
Família Semelidae	Semelidae sp. Stoliczka, 1870 (1825)	0	0	0	0	0	0	0	2	0	0	0	1	3
Família Tellinidae	Tellinidae sp. Blainville, 1814	0	0	0	2	2	0	0	14	2	2	4	1	27
Família Donacidae	Donacidae sp. Fleming, 1828	0	0	0	5	10	2	4	18	5	4	1	3	52
Família Lucinidae	Lucinidae sp. Fleming, 1828	0	0	0	0	5	0	0	9	0	0	0	0	14
Família Veneridae	Veneridae sp. Rafinesque, 1815	0	0	0	0	0	1	0	1	2	1	1	1	7
Família Arcidae	Arcidae sp. Lamarck, 1809	0	0	0	0	0	0	0	4	2	1	0	1	8

Tabela 7 – Lista de Táxons encontrados na sétima campanha de monitoramento biológico do Terminal Norte Capixaba (TNC) realizado em Fevereiro de 2013 pela empresa Ápice Projetos Ambientais.

	•					Ápice P	rojetos A	mblentais	s - Fevere	reiro/201	3	_		
	Táxons	1	Estuário	ı					Marinha					
		PE-01	PE-02	PE-03	PM-01	PM-02	PM-03	PM-04	PM-05	PM-06	PM-07	PM-08	PM-09	TOTAL
Annelida	<u> </u>								_					
Classe Polychaeta														
Família Phyllodocidae Família	Anaitides sp. Czemiavsky, 1882 Paralacydoniidae sp. Pettibone,	0	0	0	0	1	0	0	1	0	0	0	0	2
Paralacydoniidae	1963	0	0	0	0	1	0	0	0	0	1	0	0	2
Família Goniadidae	Goniadidae sp. Kinberg, 1866	0	0	0	3	0	0	1	5	0	1	1	2	13
Família Glyceridae	Glyceridae sp. Grube, 1850	0	0	0	2	6	0	1	0	1	1	0	1	12
Família Pisionidae	Pisionidae sp. Southern, 1914	0	0	0	0	0	0	0	0	0	0	0	1	1
Família Syllidae	Syllidae Grube, 1850	0	0	0	0	1	0	0	2	0	2	2	0	7
Família Spionidae	Spionidae sp. Grube, 1850	1	a	0	3	4	0	3	3	0	4	0	0	18

Família Eunicidae	Eunicidae sp. Berthold, 1827	0	0	0	2	0	0	0	0	1	1	1	1	
Família Nereididae	Nereididae sp. Blainville, 1818	o	0	0	2	1	0	3	0	1	0	0	0	
Arthropoda	-										_	_		-
SubFilo Crustacea														
Ordem Amphipoda														
Família Ampeliscidae	Ampelisicidae sp. Krøyer, 1842	0	0	0	1	0	0	0	0	0	0	1	0	
Familia Phoxocephalidae Ordem Isopoda	Phoxocephalidae sp. Sars, 1891	0	0	0	0	0	1	0	0	0	0	0	0	
Família Cirolanidae	Cirolanidae sp. Dana, 1852	0	0	0	0	0	0	0	0	1	0	0	0	
Ordem Tanaidacea														
Família Diastylidae	Diastylidae sp. Bate, 1856	0	0	0	1	0	0	0	1	1	1	0	0	
Ordem Decapoda	Decapoda													
Família Alpheidae	Alpheidae sp. Rafinesque, 1815	0	0	0	1	0	0	0	0	0	0	1	0	
Infraordem Brachyura														
Familia Xanthidae	Xanthidae sp. MacLeay, 1838	0	0	0	0	0	0	0	0	0	1	1	0	
Familia Penaeidae	Penaeidae sp. Rafinesque, 1815	0	0	0	0	0	2	0	1	0	0	0	1	
Familia Pinnotheridae	Pinnotheridae sp. De Haan, 1833	0	0	0	0	1	0	0	0	0	0	0	0	
Família Grapsidae	Grapsidae sp. MacLeay, 1838	0	0	0	0	0	1	0	0	1	0	0	1	
Infraordem Anomura														
Família Paguridae	Pagurus sp. Fabricius, 1775	0	0	0	0	4	0	0	0	0	0	0	0	
Infraordem Caridea														
Família Crangonidae	Crangonidae sp. Haworth, 1825	0	0	0	0	0	0	4	0	0	0	0	0	
Mollusca														
Classe Bivalvia														
Família Nuculidae	Nucula sp. Lamarck, 1799	0	0	0	0	1	0	0	0	0	0	0	0	
Família Mactridae	Mactotroma sp. Dall, 1894	0	0	0	0	1	1	1	0	0	0	0	0	
Familia Limopsidae	Limopsidae sp. Dall, 1895	0	0	0	0	0	1	0	0	0	0	٥	0	
Classe Gastropoda														

Família Olividae	Olividae sp. Latreille, 1825	0	0	0	0	0	0	0	0	0	1	0	0	1
Família Turritelidae	Turritella hookeri Reeve, 1849	0	0	0	0	0	0	0	0	0	1	0	0	1
Echinodermata	-				-		-							
Classe Ophiuroidea	Ophiuroide	0	0	0	0	0	0	0	2	0	2	0	0	4
Classe Echinoidea														
Família Clypeasteridae	Clypeaster sp. Lamarck, 1801	0	0	0	0	0	1	0_	0	0	0	0	0	1
	N-total	1	0	0	15	21	7	13	15	6	16	7	7	108
_	S-total	1	0	0	8	10	6	5	7	6	11	6	6	27

Tabela 8 – Lista de Táxons encontrados na oitava campanha de monitoramento biológico do Terminal Norte Capixaba (TNC) realizado em Maio de 2013 pela empresa Ápice Projetos Ambientais.

						Ápice Pro	jetos Am	bientais -	Maio/201	3 (chuvo:	so)			
	Táxons		Estuário						Marinha					
		PE-01	PE-02	PE-03	PM-01	PM-02	PM-03	PM-04	PM-05	PM-06	PM-07	PM-08	PM-09	TOTAL
Annelida														
Classe Polychaeta														
Familia Goniadidae	Goniada maculata Örsted, 1843	0	0	0	1	0	0	2	0	0	0	0	0	3
	Goniada vorax (Kinberg, 1866)	0	0	0	0	0	0	0	0	0	0	1	0	1
	Goniadides carolinae Day, 1973	0	0	0	0	0	1	0	0	6	0	0	0	7
Família Glyceridae	Glycera americana Leidy, 1855	0	0	0	0	0	2	0	0	0	o	0	1	3
	Glycera oxycephala Ehlers, 1887	0	0	0	0	1	0	0	1	0	0	0	1	3
	Hemipodia simplex (Grube, 1857)	0	0	0	0	0	2	0	0	0	0	0	0	2
Família Syllidae	Exogone sp. Örsted, 1845	0	0	0	0	0	0	0	0	1	0	0	0	1
	Syllis sp. Lamarck, 1818	0	0	0	1	0	0	1	0	0	0	0	0	2
Familia Spionidae	Paraprionospio pinnata (Ehlers, 1901)	0	0	0	0	0	1	0	0	0	0	0	0	1
Família Onuphidae	Diopatra tridentata Hartman, 1944	0	0	0	1	0	0	1	0	0	0	0	1	3

	Kinbergonuphis sp. Fauchald, 1982	0	0	0	1	1	0	0	0	0	0	0	0	2
	Mooreonuphis sp. Fauchald, 1982	0	0	0	0	1	0	1	0	0	0	0	0	2
	Nothria sp. Malmgren, 1866	0	0	0	0	2	0	0	0	0	0	0	0	2
Família Eunicidae	Lysidice sp. Lamarck, 1818	0	0	0	1	0	0	0	0	0	0	0	0	1
Familia Magelonidae	Magelona sp. F. Müller, 1858	0	O	0	2	1	3	15	12	1	3	10	0	47
Família Nereididae	Neanthes bruaca Lana & Sovierzovsky, 1987 Nereis broa Lana & Sovierzovsky,	0	0	0	1	1	0	4	0	0	0	1	0	7
Família Lumbrineridae	1987	0	0	0	0	0	1	1	0	0	0	0	0	2
	Lumbrineris sp. Blainville, 1828 Parandalia sp. Emerson &	0	0	0	2	1	0	0	1	2	8	0	0	14
Familia Pilargidae	Fauchald, 1971	1	0	0	0	0	4	2	0	0	0	0	5	11
	Sigambra sp. Müller, 1858	0	0	1	0	0	1	1	1	0	0	0	0	3
Família Ampharetidae	Isolda sp. Mueller, 1858	0	0	0	1	0	0	0	0	0	0	0	0	1
Familia Cirratulidae	Cirratulus sp. Lamarck, 1801	0	0	0	1	0	0	1	0	0	1	0	0	3
Família Owenidae	<i>Owenia sp.</i> Delle Chiaje, 1844	0	0	0	0	0	0	0	0	0	1	0	0	1
Familia Polynoidae	Harmothoe sp. Kinberg, 1856	0	0	0	0	0	0	1	0	0	0	0	0	1
Arthropoda			_						-	-				
SubFilo Crustacea														
Ordem Amphipoda Família Phoxocephalidae Ordem Isopoda	<i>Metharpinia sp.</i> (Schellenberg, 1931)	0	0	0	0	0	1	0	0	0	0	0	0	1
Familia Cirolanidae														
	Eurydice sp. Leach, 1815	0	0	0	0	0	0	0	0	0	1	0	0	1
Ordem Decapoda	ı													
Infraordem Brachyura														
Família Xanthidae	Eurypanopeus sp. A. Milne- Edwards, 1880 Panopeus americanus Saussure	0	0	0	0	0	1	0	0	0	0	0	0	1
	1857	0	0	0	0	0	0	0	0	0	1	0	0	1
	Persephona punctata (Linnaeus,													

4,5

Família Parthenopidae Infraordem Anomura	Heterocrypta lapidea Rathbun 1901	0	0	0	1	0	0	0	0	0	0	0	0	
Família Paguridae	Pagurus sp. Fabricius, 1775	0	0	0	0	1	0	0	0	0	0	0	0	
Infraordem Caridea	r agains op. r abiliado, 1170	·	·	·	ŭ	•	Ū	Ū	J	v	Ů	Ū	U	
Ordem Mysida	Mysidacea	0	0	0	0	0	0	1	0	1	0	1	1	
Mollusca							_	_						
Classe Bivalvia														
Família Solecurtidae	Tagelus plebeius (Lightfoot, 1786)	0	0	1	0	0	0	0	0	0	0	0	0	
Família Corbulidae	Corbula sp. Bruguière, 1797 Corbula caribaea d'Orbigny, 1853				_		_	_						
	Corbula contracta (Say, 1822)	0 2	0	0	0	1 0	0	0 1	1	0	0	0	0	
Família Nuculidae	Nucula semiomata d'Orbigny, 1846	0	0	0	0	1	1	0	0	0	1	1	2	
Família Ungulidae	Felaniella candeana (d'Orbigny, 1842)	0	0	0	0	0	0	0	0	0	1	0	0	
Familia Arcidae	Anadara chemnitzi (Philippi, 1851)	0	0	0	0	1	0	1	0	0	0	0	0	
Família Mactridae	Mulinia cleriana (d'Orbigny, 1846)	0	0	0	0	0	0	0	0	0	0	0	1	
Familia Tellinidae	Temnoconcha brasiliana Dall, 1921	0	0	0	1	0	0	0	0	0	0	0	0	
Familia Semelidae														
	Abra aequalis (Say, 1822) Semele purpurascens (Gmelin,	0	0	0	0	0	0	0	1	0	2	0	0	
Classe Gastropoda	1791)	0	0	0	0	0	0	1	0	0	0	0	0	
Família Columbellidae	Costoanachis sparsa (Reeve, 1859)	0	0	0	0	0	0	1	1	0	0	1	0	
Família Olividae	<u></u> ,	_	-	_	_	-	-							
	Olivella minuta (Link, 1807)	0	0	0	0	0	2	2	0	0	0	5	7	
Familia	Olivella nivea (Gmelin, 1791) Heliacus bisulcatus (d'Orbigny,	0	0	0	0	1	0	0	1	0	0	1	0	
Architectonicidae	1842) Terebra riosi Bratcher &	0	0	0	0	0	0	1	0	0	0	1	0	
Família Terebridae	Cemohorsky, 1985	0	0	0	0	0	0	1	0	ō	1	0	0	
Classe Scaphopoda	,													

• •

Família Dentaliidae	Paradentalium disparile (d'Orbigny, 1847)	0	0	0	0_	0	0	0	1 _	0	0	0	0	11
Echinodermata			-											
Classe Ophiuroidea	Ophiuroide	0	0	0	0	1	0	0	0	0	0	0	0	1
Classe Echinoidea	1													
Família Cassidulidae	Cassidulus infidus Loven, 1874	0	0	0	0	0	0	1	0	0	0	0	0	1
Sipuncula														
Família Phascolosomatidae	Phascolosoma sp. Leuckart, 1828	0	0	0	1	0	0	0	0	_0	0	0	0	1
Nemertea		-												
	Nemertea	1	0	0	0	1	1	_ 2	2	1	2	0	2	11
	N-total	7	10	7	15	15	21	43	22	12	22	22	21	193
	S-total	6	3	5	13	14	13	22	10	6	11	9	9	52

Tabela 9 – Lista de Táxons encontrados na nona campanha de monitoramento biológico do Terminal Norte Capixaba (TNC) realizado em Agosto de 2013 pela empresa Aplysia Soluções Ambientais.

	·	Ì			F	Aplysia Sc	luções A	mbientais	s - Agosto	/2013 (Se	eca)	-		
	Táxons		Estuário						Marinha					
		PE-01	PE-02	PE-03	PM-01	PM-02	PM-03	PM-04	PM-05	PM-06	PM-07	PM-08	PM-09	TOTAL
Annelida		ĺ											<u>-</u>	
Classe Polychaeta		İ												
Família Phyllodocidae	Eumida sp. Malmgren, 1865	1	0	0	0	0	1	1	1	0	0	0	1	5
Família Goniadidae	Goniada brunnea Treadwell, 1906	0	0	0	3	1	1	3	6	1	3	3	1	22
Família Glyceridae	Glycera sp. Savigny, 1818	1	0	0	1	1	2	1	6	5	2	3	4	26
	Hemipodia simplex (Grube, 1857)	0	0	0	2	3	1	3	1	1	2	0	1	14
Família Syllidae	Exogone sp. Örsted, 1845	0	0	0	3	1	2	1	2	2	1	1	0	13
	Syllis sp. Lamarck, 1818	0	0	0	1	1	0	3	0	1	1	0	0	7
Família Spionidae	Boccardiella sp. Blake & Kudenov, 1978	1	3	0	0	0	0	0	0	0	0	0	1	5

	Dispio sp. Hartman, 1951	0	0	0	1	1	0	1	0	1	0	0	0	4	1
	Polydora sp. Bosc, 1802	0	0	0	2	1	0	2	0	1	1	0	0	7	Ì
	Prionospio sp. Malmgren, 1867	0	0	0	3	2	0	0	2	1	0	1	0	9	1
	Scolelepis squamata (O.F. Muller, 1806)	0	0	0	1	1	0	2	1	1	2	2	0	10	١
Família Magelonidae	Magelona sp. F. Müller, 1858	1	0	0	0	0	1	0	0	0	0	1	1	4	١
Família Nereididae	Laeonereis culveri (Webster, 1879)	1	0	1	0	0	0	0	0	0	0	0	0	2	
	Namalycastis sp. Hartman, 1959	1	1	0	o '	0	1	0	1	0	0	0	1	5	
	Neanthes sp. Kinberg, 1865	0	0	0	3	1	2	2	3	3	1	1	1	17	
Família Pilargidae	Sigambra sp. Müller, 1858	0	0	0	0	1	0	1	1	0	0	0	1	4	l
Familia Nephtydae	Nephtys fluviatilis Monro, 1937	3	2	1	0	0	0	0	0	0	0	0	0	6	
Família Amphinomidae	Chloeia viridis Schmarda, 1861	0	0	0	2	3	1	1	0	0	1	0	0	8	
Familia Capitellidae	Heteromastus similis Southern, 1921	3	2	1	0	0	0	0	0	0	0	1	2	9	
Família Acydoniidae	Lacydonia sp. Marion & Bobretzky, 1875	0	0	0	0	1	0	0	1	1	0	0	0	3	
Arthropoda]
SubFilo Crustacea															
Ordem Amphipoda															
Família Ampeliscidae	Ampelisca sp. Krøyer, 1842	0	0	0	0	0	0	1	0	1	1	0	0	3	1
Família Phoxocephalidae Ordem Isopoda	Phoxocephalidae sp. Sars, 1891	0	0	0	0	0	1	0	1	0	1	0	0	3	
Família Arcturidae	Arcturidae sp. Dana, 1849	0	0	0	0	0	1	0	0	0	0	0	1	2	۱
Família Cirolanidae	Cirolanidae sp. Dana, 1852	0	0	0	1	3	0	0	0	1	1	0	0	6	ĺ
Ordem Tanaidacea															l
Família Kalliapseudidae	Kalliapseudes sp. Stebbing, 1910	1	0	0	0	0	0	0	0	0	0	0	0	1	
Ordem Cumacea															
Família Diastylidae	Diastylidae sp. Bate, 1856	0	0	0	0	1	0	1	1	0	0	0	0	3	
Ordem Decapoda															
Família Alpheidae	Alpheus sp. (Fabricius, 1798)	0	0	0	0	0	3	1	0	0	0	0	1	5	
	·														

	S-total	12	6	5	15	19	15	19	18	16	15	12	16	3
	N-total	17	11	6	28	27	21	29	34	23	20	17	20	25
	Nematoda	2	1	2	0	1	1	2	1	1	0	1	0	_ 1
Nematoda														
Familia Golfinglidae	Golfingiidae sp. Stephen & Edmonds, 1972	0	0	0	0	0	0	1	0	0	0	1	0	
Sipuncula														
Familia Clypeasteridae	Clypeaster sp. Lamarck, 1801	0	0	0	0	0	0	0	1	0	0	0	0	
Classe Echinoidea	opinale sp. Lamarck, 1001	J	Ü	Ū	Ū	J	•	Ū	•	J	J	U	•	
Familia Ophiuridae	Ophiura sp. Lamarck, 1801	0	a	0	0	0	0	0	0	0	0	0	1	
Classe Ophiuroidea														
Echinodermata	Onvena sp. Gwainson, 1651	U	<u> </u>			'_								
Familia Olividae	Olivella sp. Swainson, 1831	0	0	0	1	1	0	0	1	0	1	1	1	
Familia Mactildae	Erodona mactroide Bosc, 1801	1	2	1	0	0	0	0	0	0	0	0	0	
Familia Mactridae	Mactrotoma fragilis (Gmelin, 1791)	1	0	0	0	0	1	0	0	0	0	0	1	
Classe Bivalvia Família Nuculidae	Nucula sp. Lamarck, 1799	0	0	0	3	2	0	1	1	1	1	1	0	
Mollusca														
Família Raninidae	1837	0	0	0		0	2	1	<u> </u>	0	0	0		
Infraordem Anomura	Raninoides sp. H. Milne Edwards,	_		_	_	_	_					_		
Família Pinnotheridae	Pinnixa sp. White, 1846	0	0	0	1	1	0	0	3	1	1	0	0	
Infraordem Brachyura		•												

٠___

· ...

.

Tabela 10 – Lista de Táxons encontrados na décima campanha de monitoramento biológico do Terminal Norte Capixaba (TNC) realizado em Novembro de 2013 pela empresa CTA Meio Ambiente..

						CTA Mei	o Ambien	te- Noven	nbro/2013	(Chuvos	a)			
	Tánoxs		Estuário						Marinha					
		PE-01	PE-02	PE-03	PM-01	PM-02	PM-03	PM-04	PM-05	PM-06	PM-07	PM-08	PM-09	TOTAL
Annelida												_		
Classe Polychaeta														
Família Goniadidae	Glycinde multidens Müller, 1858	0	3	0	0	0	0	0	1	0	0	0	0	4
	Goniada maculata Örsted, 1843	1	1	0	0	0	0	0	0	0	0	0	0	2
	Goniada vorax (Kinberg, 1866)	1	0	0	0	0	0	0	0	0	0	0	0	1
	Goniadides carolinae Day, 1973	0	0	0	1	0	0	0	0	7	0	0	0	8
Família Glyceridae	Glycera americana Leidy, 1855	0	0	0	0	0	0	1	1	1	0	0	0	3
	Glycera oxycephala Ehlers, 1887	0	0	0	1	0	1	0	0	0	1	0	0	3
Família Syllidae	Exogone breviantennata Hartmann- Schröder, 1959	0	0	0	2	0	0	0	1	21	0	0	0	24
	Syllis sp. Lamarck, 1818	0	0	0	3	0	0	0	1	1	3	1	0	9
	Typosyllis sp. Langerhans, 1879	0	0	0	2	1	0	0	0	3	0	0	0	6
Família Spionidae	Dispio sp. Hartman, 1951	0	0	0	0	0	0	0	0	1	0	0	0	1
	Laonice sp. (Malmgren, 1867)	0	0	0	0	0	0	0	0	1	0	0	0	1
	Paraprionospio pinnata (Ehlers, 1901)	0	0	0	0	1	1	1	0	0	0	0	4	7
	Polydora comuta (Bosc, 1802)	0	0	0	1	0	0	0	0	0	0	0	0	1
	Prionospio steenstrupi (Malmgren, 1867)	0	0	0	1	0	0	0	0	1	0	0	0	2
	Spiophanes bombyx (Claparède, 1870)	0	0	0	4	1	0	0	1	5	0	1	0	12
Família Onuphidae	Diopatra dexiognatha Paxton & Bailey-Brock, 1986	0	0	0	2	0	0	0	1	0	0	0	0	3
	Diopatra tridentata Hartman, 1944	0	0	0	0	1	1	0	0	0	1	0	0	3
	Kinbergonuphis sp. Fauchald, 1982	0	0	0	0	2	0	0	1	2	0	0	0	5
	Mooreonuphis sp. Fauchald, 1982	0	0	0	3	0	0	0	1	6	1	0	0	11

	Nothria sp. Malmgren, 1866	0	0	0	2	0	0	0	0	5	1	0	0
Família Eunicidae	Eunice sp. (Cuvier, 1817)	0	0	0	1	1	0	0	1	5	1	0	0
	Nematonereis sp. Schmarda, 1861	0	0	0	1	0	0	0	0	0	0	0	0
Familia Magelonidae	Magelona sp1. F. Müller, 1858	0	0	0	3	2	0	0	5	2	1	4	0
	Magelona sp2. F. Müller, 1859	0	0	0	8	0	1	3	9	5	1	5	1
Família Nereididae	Gymnonereis sp. (Horst, 1919)	0	0	0	0	0	0	0	1	0	0	0	0
	Neanthes bruaca Lana & Sovierzovsky, 1987	0	0	0	0	0	2	2	0	1	0	3	0
	Neanthes succinea (Leuckart, 1847)	0	0	0	0	0	0	0	0	1	0	0	0
	Nereis broa Lana & Sovierzovsky, 1987	0	0	0	0	0	0	0	0	1	0	0	0
Família Paraonidae	Aedicira sp. (Hartman, 1957)	0	0	0	4	0	0	0	0	4	1	1	0
	Aricidea sp. (Webster, 1879)	0	1	0	0	0	0	0	0	0	0	0	0
	Paradoneis sp. Hartman, 1965	0	0	0	0	0	0	0	1	0	1	0	0
	Paraonis sp. (Cerruti, 1909)	0	0	0	1	0	0	0	0	0	0	0	0
Familia Lumbrineridae	Lumbrineris latreilli Audouin & Milne Edwards, 1834	0	0	0	20	7	0	0	6	19	9	0	0
Familia Pilargidae	Parandalia sp. Emerson & Fauchald, 1971	2	1	0	0	0	4	2	0	1	1	1	0
	Sigambra sp. Müller, 1858	1	3	0	0	0	0	0	0	0	1	0	0
Família Orbiniidae	Orbinia sp. (Quatrefages, 1865)	0	5	0	0	1	0	0	0	1	0	0	0
	Scoloplos sp. Blainville, 1828	0	1	5	1	0	0	1	0	1	0	0	0
Família Nephtydae	Aglaophamus sp. (Kinberg, 1865)	0	0	0	0	0	0	1	0	0	0	0	0
Família Opheliidae	Armandia sp. Filippi, 1861	0	0	0	0	0	0	0	2	1	0	0	0
	Ophelia sp. Savigny, 1822	0	0	0	2	0	0	0	1	4	2	0	0
Familia Amphinomidae	Paramphinome besnardii Temperini, 1981	0	0	0	0	0	0	1	0	0	0	0	0
Família Chaetopteridae	Phyllochaetopterus sp. (Grube, 1863)	0	0	0	0	0	0	1	0	2	0	0	0
Familia Capitellidae	Capitella sp. (Fabricius, 1780)	0	8	1	0	0	0	0	0	0	0	0	0
	Capitella capitata (Fabricius, 1780)	0	2	0	0	0	0	0	1	4	0	0	0
	Notomastus sp. (Sars, 1850)	0	5	0	0	0	0	0	0	0	0	0	1

Família Maldanidae Lumbriclymene sp. Sars, 1872 Petaloproctus sp. Quatrefages, Familia Ampharetidae Isolda sp. Mueller, 1858 Família Cirratulidae Caulleriella sp. Chamberlin, 1919 Cirratulus sp. Lamarck, 1801 Tharyx sp. (Webster & Benedict, 1887) Família Terebellidae Pista sp. (Malmgren, 1866) Streblosoma sp. (Sars, 1872) Owenia sp. Delle Chiaje, 1844 O Família Owenidae Família Polynoidae Eunöe sp. (Malmgren, 1866) Harmothoe sp. Kinberg, 1856 Classe Clitellata Oligochaeta Arthropoda SubFilo Crustacea Ordem Amphipoda Familia Caprellidae Caprella sp. (Lamarck, 1801) Família Ischyroceridae Jassa sp. (Leach, 1814) Família Photidae Photis sp. Krøyer, 1842 Stenothoe sp. Dana, 1852 Família Stenothoidae Família Leucothoidae Leucothoe sp. Leach, 1814 Ordem Isopoda Família Cirolanidae Eurydice sp. Leach, 1815 Amakuzanthura sp. (Nunomura, Familia Anthuridae 1977) Ordem Tanaidacea Familia Apseudidae Apseudes sp. (Leach, 1814) Ordem Decapoda Acetes sp. (H. Milne Edwards, Familia Sergestidae 1830)

ي ڪي

•

Família Alpheidae	Alpheus sp. (Fabricius, 1798)	0	0	0	1	0	0	2	0	2	0	0	0	
Infraordem Brachyura														
Familia Xanthidae	Hexapanopeus paulensis Rathbun, 1930	0	0	0	0	0	0	0	0	1	0	0	0	
	Panopeus americanus Saussure 1857	0	0	0	0	1	0	0	0	3	1	0	0	
Familia Pinnotheridae	Pinnixa cristata (Rathbun, 1900)	0	0	0	0	0	0	1	0	0	0	0	0	
Infraordem Anomura														
Família Paguridae	Pagurus sp. Fabricius, 1775	0	0	0	0	0	0	0	0	0	0	0	1	
Ordem Mysida	Mysidacea	0	1	0	1	0	3	0	1	0	0	1	1	
Mollusca			<u></u>								<u>-</u>			
Classe Bivalvia														
Família Corbulidae														
	Corbula caribaea d'Orbigny, 1853	0	0	0	0	0	0	0	0	0	0	1	0	
Família Nuculidae	Nucula semiomata d'Orbigny, 1846	0	0	0	0	0	1	0	0	0	0	0	1	
Família Cardiidae	Dollocardia manueli (Prado, 1993)	0	0	0	0	1	0	0	0	0	0	0	0	
Família Mactridae	Mactrotoma fragilis (Gmelin, 1791)	0	0	0	0	0	0	0	0	1	0	0	0	
Família Veneridae	Dosinia sp. Scopoli, 1777	0	0	2	0	0	0	0	0	0	0	0	0	
Família Tellinidae	Macoma brevifrons (Say, 1834)	0	0	1	0	0	0	0	0	0	0	0	0	
	Macoma pseudomera Dall & Simpson, 1900	0	0	0	0	0	0	0	0	1	0	0	0	
	Macoma tenta (Say,1834)	0	0	1	0	0	1	0	0	0	0	0	0	
•	Temnoconcha brasiliana Dall, 1921	0	0	0	0	0	1	0	0	0	0	1	0	
Classe Gastropoda														
Família Olividae	Olivella minuta (Link, 1807)	0	0	0	0	0	0	3	0	0	0	_ 4 _	_ 1	
Echinodermata														
Classe Ophiuroidea														
Família Amphiuridae	Amphiodia atra (Stimpson, 1852)	0	0	0	0	0	0	1	0	1	0	0	0	
	Ophiophragmus luetkeni (Ljungman, 1872)	0	0	0	0	0	0	0	0	0	0	0	2	
Classe Holoturoidea														

•

Familia Synaptidae	Leptosynapta sp. (Verrill, 1867)	0	0	0	0	0	0	0	0	6	1	0	0	7
Sipuncula														
Família Phascolosomatidae	Phascolosoma sp. Leuckart, 1828	0	0	0	0	0	0	0	0	1	0	0	0	1
Platyhelminthes														
	Rhabditophora	0	0	0	0	0	0	0	0	0	2	0	0	2
Nemertea								_			•	_		
	Nemertea	4	12	2	4	1	0	0	9	19	2	0	0	53
Echlura										-			_	
	Echiura	0	0	0	0	0	0	0	0	1	0	0	0	1
	N-total	9	46	13	78	22	17	23	48	154	35	25	14	484
	S-total	5	13	7	30	13	11	14	22	46	22	13	10	89

Tabela 11 – Lista de Táxons encontrados na décima primeira campanha de monitoramento biológico do Terminal Norte Capixaba (TNC) realizado em Fevereiro de 2014 pela empresa CTA Meio Ambiente.

	-					CTA Mei	o Ambien	te - Feve	reiro/2014	(chuvos	o)			
	Tánoxs		Estuário						Marinha					
		PE-01	PE-02	PE-03	PM-01	PM-02	PM-03	PM-04	PM-05	PM-06	PM-07	PM-08	PM-09	TOTAL
Annelida			-									-		
Classe Polychaeta														
Família Phyllodocidae	Mystides sp. Théel, 1879	0	0	0	0	0	0	0	1	0	0	0	0	1
	Phyllodoce mucosa Örsted, 1843	0	0	0	0	0	0	0	0	0	0	1	0	1
Familia Sphaerodoridae	Ephsiopsis guayanae Hartman & Fauchald, 1971	0	0	0	0	0	0	0	0	0	0	1	0	1
Família Goniadidae	Goniadides carolinae Day, 1973	0	0	0	1	0	0	0	0	1	0	0	0	2
Família Glyceridae	Glycera dibranchiata (Ehlers, 1869)	0	0	0	0	0	1	0	0	0	0	0	0	1
	Giycera oxycephala Ehlers, 1887	0	0	0	0	0	0	0	0	0	2	0	0	2
Família Syllidae	Exogone breviantennata Hartmann- Schröder, 1959	0	0	0	0	0	0	0	0	1	0	0	0	1

	Syllis sp. Lamarck, 1818	0	0	0	1	0	0	0	0	0	0	0	0	1
Familia Hesionidae	Hesione sp. Savigny in Lamarck, 1818	0	0	0	0	0	0	0	1	0	0	0	0	1
Família Spionidae	Laonice sp. (Malmgren, 1867)	0	0	0	0	0	0	0	0	1	0	0	0	1
	Paraprionospio pinnata (Ehlers, 1901)	0	0	0	0	0	0	0	1	2	0	0	3	6
	Prionospio steenstrupi (Malmgren, 1867)	0	0	0	0	0	0	0	0	1	0	0	0	1
	Spiophanes bombyx (Claparède, 1870)	0	0	0	1	0	0	0	0	0	0	0	0	1
Família Onuphidae	Diopatra dexiognatha Paxton & Bailey-Brock, 1986	0	0	0	1	0	0	0	0	0	0	0	1	2
	Kinbergonuphis sp. Fauchald, 1982	0	0	0	0	0	0	0	0	5	1	0	0	6
	Nothria sp. Malmgren, 1866	0	0	0	0	0	0	0	0	0	3	0	0	3
	Onuphis eremita oculata Hartman, 1951	0	0	0	1	0	0	0	1	0	1	0	0	3
Familia Eunicidae	Eunice sp. (Cuvier, 1817)	0	0	0	0	0	0	0	0	3	1	0	0	4
Família Magelonidae	Magelona sp1. F. Müller, 1858	0	0	0	1	1	0	0	0	5	1	0	0	8
	Magelona sp2. F. Müller, 1859	0	0	0	0	1	1	0	0	1	0	0	0	3
Família Nereididae	Neanthes bruaca Lana & Sovierzovsky, 1987	0	0	0	0	0	0	0	1	0	0	0	1	2
	Nereis broa Lana & Sovierzovsky, 1987	0	0	0	0	0	0	1	0	0	0	0	0	1
Familia Paraonidae	Aedicira sp. (Hartman, 1957)	0	0	0	1	1	0	1	0	1	4	0	0	8
	Cirrophorus sp. Ehlers, 1908	0	0	0	0	2	0	0	0	1	0	0	0	3
Família Lumbrineridae	Lumbrineris coccinea (Renier, 1804)	0	0	0	6	0	0	0	4	1	3	0	0	14
	Lumbrineris latreilli Audouin & Milne Edwards, 1834	0	0	0	1	0	1	0	0	0	3	0	0	5
Família Pilargidae	Parandalia sp. Emerson & Fauchald, 1971	0	0	0	0	0	2	1	0	0	0	1	4	8
	Sigambra sp. Müller, 1858	0	0	0	0	0	0	0	0	0	0	1	0	1
Família Orbiniidae	Orbinia sp. (Quatrefages, 1865)	0	0	0	2	0	0	0	0	0	2	0	0	4
	Scolopios sp. Blainville, 1828	0	0	0	0	0	0	1	0	0	0	0	0	1
Familia Nephtydae	Aglaophamus sp. (Kinberg, 1865)	0	0	0	0	0	0	0	0	0	2	0	0	2
Família Capitellidae	Notomastus sp. (Sars, 1850)	0	0	0	0	0	0	0	0	2	0	0	0	2

.

,

Familia Maldanidae	Lumbriclymene sp. Sars, 1872	0	0	0	0	0	0	0	0	0	1	0	0	1
Família Cirratulidae	Tharyx sp. (Webster & Benedict, 1887)	0	0	0	0	0	0	0	0	1	0	0	0	1
Família Trochochaetidae	Disoma sp. (Örsted, 1844)	0	0	0	0	1	0	0	0	0	0	0	0	1
Família Pectinaridae	Amphictene sp. Savigny, 1818	0	0	0	2	0	0	0	1	0	0	0	0	3
Família Polynoidae	Harmothoe sp. Kinberg, 1856	0	0	0	1	1	0	0	0	0	0	0	0	2
Família Sigalionidae	Sthenelanella sp. (Moore, 1910)	0	0	0	0	1	0	0	0	0	0	1	0	2
Arthropoda		•												
SubFilo Crustacea														
Ordem Amphipoda	•													
Família Ampeliscidae	Ampelisca sp. Krøyer, 1842	0	0	0	0	0	0	0	0	0	0	1	0	1
Família Platyischnopidae	Eudevenopus gracilipes (Schellenberg, 1931)	0	0	0	1	2	0	0	0	0	0	0	0	3
Família Ischyroceridae	Ericthonius sp. Milne-Edwards, 1830	0	0	0	0	1	0	0	0	0	0	0	0	1
Família Synopiidae	Symhoe sp. Goës, 1866	0	0	0	0	0	0	0	0	1	0	0	0	1
Ordem Isopoda														
Família Aegidae	Rocinela signata Schìoedte & Meinert, 1879	0	0	0	1	0	0	0	0	0	0	0	0	1
Ordem Tanaidacea														
Familia Apseudidae	Apseudes sp. (Leach, 1814)	0	0	0	1	0	0	0	0	0	0	0	0	1
Ordem Cumacea														
Família Bodotriidae	Bodotria sp. (Goodsir, 1843)	0	0	0	1	0	0	0	0	0	0	0	0	1
Ordem Decapoda														
Familia Sergestidae	Acetes sp. (H. Milne Edwards, 1830)	0	0	0	0	0	0	0	0	0	0	0	2	2
Família Alpheidae	Alpheus sp. (Fabricius, 1798)	0	0	0	0	2	0	0	2	0	0	0	0	4
Família Axiidae	Calastacus spinosus Coelho, 1973	0	0	0	0	0	0	0	1	1	0	0	1	3
Infraordem Brachyura														
Família Xanthidae	Panopeus americanus Saussure 1857	0	0	0	1	0	0	0	0	0	2	0	0	3
Família Pinnotheridae	Pinnixa sayana Stimpson, 1860	0	0	0	0	0	0	2	0	0	0	0	0	2

Família Leucoslidae	Persephona punctata (Linnaeus, 1758)	0	0	0	o	1	0	0	0	0	0	0	0	1
Mollusca														
Classe Bivalvia														
Família Corbulidae														
	Corbula contracta (Say, 1822)	0	0	0	0	1	0	0	0	0	0	0	0	1
	Corbula swiftiana C. B. Adams, 1852	0	0	0	1	0	0	0	0	1	2	0	0	4
Família Nuculidae	Nucula semiomata d'Orbigny, 1846	0	0	0	0	1	2	1	0	0	0	0	0	4
Familia Arcidae	Anadara ovalis (Bruguière, 1789)	0	0	0	0	0	0	0	0	0	0	0	1	1
Família Veneridae	Dosinia sp. Scopoli, 1777	0	D	0	0	1	0	0	0	0	0	0	0	1
Classe Gastropoda														
Família Olividae	Olivella minuta (Link, 1807)	0	0	0	0	0	0	3	1	0	0	1	0	5
Família Terebridae	<i>Duplicaria gemmulata</i> (Kiener, 1839)	0	0	0	0	0	0	1	0	0	0	0	0	1
Família Dentaliidae	Paradentalium americanum (Chenu, 1843)	0	0	0	0	0	1	0	0	0	0	0	0	1
Echinodermata														
Classe Ophiuroidea	Ophiuroide	0	0	0	0	0	0	0	0	1	3	1	0	5
Classe Holoturoidea														
Familia Synaptidae	Leptosynapta sp. (Verrill, 1867)	0	0	0	0	2	0	0	0	0	0	0	0	2
Sipuncula					_									
Família Phascolosomatidae	Phascolosoma sp. Leuckart, 1828	0	0	0	0	0	0	0	1	0	3	0	0	4
Nemertea						<u>_</u>							-	
	Nemertea	0	0	0	1	6	0	2	4	4	3	0	0	20
	N-total	0	0	0	26	25	8	13	19	34	37	В	13	183
	S-total	O	0	0	19	16	6	9	12	19	17	8	7	63

Tabela 13 – Lista de Táxons encontrados na décima tereceira campanha de monitoramento biológico do Terminal Norte Capixaba (TNC) realizado em Maio de 2014 pela empresa CTA Meio Ambiente..

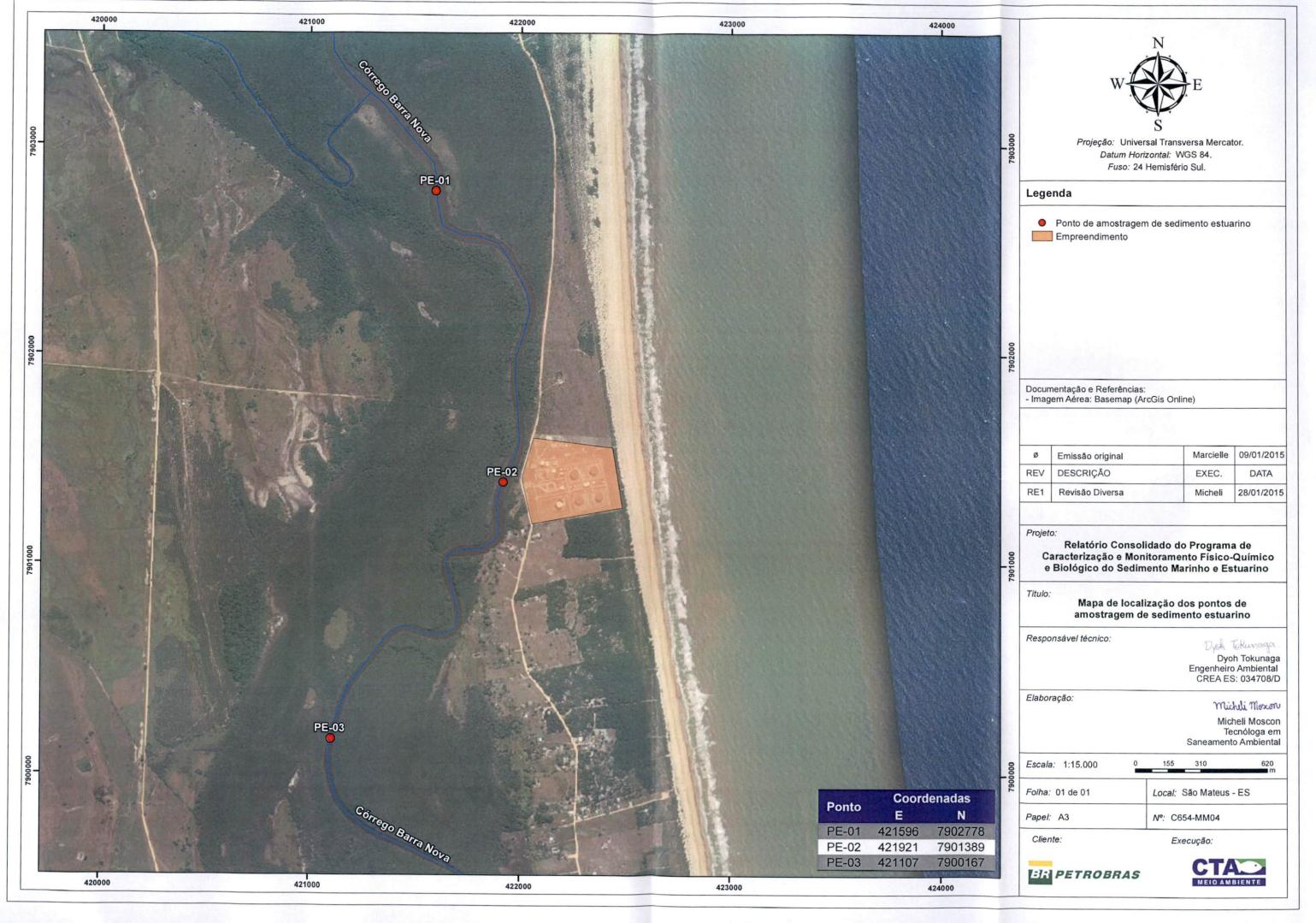
						CTA M	eio Ambie	ente. – M	aio/2014 (chuvoso)	l			
	Tánoxs		Estuário						Marinha					
		PE-01	PE-02	PE-03	PM-01	PM-02	PM-03	PM-04	PM-05	PM-06	PM-07	PM-08	PM-09	TOTA
Annelida													_	
Classe Polychaeta														
Familia Phyllodocidae	Phyllodoce mucosa Örsted, 1843	0	0	0	0	0	0	1	0	0	0	0	0	1
Família Glyceridae	Hemipodia simplex (Grube, 1857)	1	0	1	1	0	0	2	0	0	0	0	1	6
Família Syllidae	Syllis sp. Lamarck, 1818	0	0	0	0	0	0	0	2	0	1	0	0	3
Familia Spionidae	Laonice sp. (Malmgren, 1867)	0	0	0	0	0	0	0	0	3	0	0	0	3
	Paraprionospio pinnata (Ehlers, 1901)	0	0	0	0	1	4	0	1	0	0	0	0	6
	<i>Prionospio steenstrupi</i> (Malmgren, 1867)	0	0	0	0	1	0	0	0	0	0	1	0	2
	Scolelepis squamata (O.F. Muller, 1806)	0	1	47	0	0	0	0	0	0	0	0	0	48
Família Onuphidae	Diopatra sp. Audouin & Milne Edwards, 1833	0	0	0	0	0	0	0	0	1	2	0	0	3
	Diopatra aciculata (Knox & Cameron, 1971)	0	0	0	0	0	0	0	0	0	1	0	0	1
	Kinbergonuphis sp. Fauchald, 1982	0	0	0	1	0	0	0	2	1	0	0	0	4
	Mooreonuphis sp. Fauchald, 1982	0	0	0	0	3	0	0	7	8	14	0	0	32
	Mooreonuphis lineata (Lana, 1991)	0	0	0	0	0	0	0	2	1	2	0	0	5
	Onuphis eremita oculata Hartman, 1951	0	0	0	0	0	0	0	0	0	1	0	0	1
Família Eunicidae	Eunice sp. (Cuvier, 1817)	0	0	0	0	0	0	0	0	14	1	0	0	15
Família Magelonidae	<i>Magelona sp1.</i> F. Müller, 1858	0	0	0	0	0	0	1	1	0	0	0	0	2
	Magelona sp2. F. Müller, 1859	0	0	0	0	2	0	0	2	0	3	1	1	9
Família Nereididae	Neanthes bruaca Lana & Sovierzovsky, 1987	0	0	0	0	0	0	0	1	1	0	3	1	6
	<i>Nereis broa</i> Lana & Sovierzovsky, 1987	0	0	0	1	1	1	6	0	1	0	0	0	10
Família Lumbrineridae	Lumbrineris sp. Blainville, 1828	0	0	0	5	2	0	0	2	0	7	0	0	16
	Lumbrineris brevicirra (Schmarda, 1861)	0	0	0	0	0	0	0	2	0	0	0	0	2
Família Pilargidae	Parandalia sp. Emerson & Fauchald, 1971	0	0	0	0	0	4	1	0	0	0	3	1	9
Familia Orbiniidae	Orbinia sp. (Quatrefages, 1865)	0	0	0	0	0	0	1	0	0	0	0	0	1
Família Nephtydae	Nephtys sp. Cuvier, 1817	0	0	0	0	0	0	1	0	0	0	0	0	1
Família Capitellidae	Notomastus sp. (Sars, 1850)	5	0	0	0	0	0	0	0	0	0	0	0	5

Familia Ampharetidae	Isoida sp. Mueller, 1858	0	0	0	1	1	0	0	0	0	1	0	0	3
Familia Trichobranchidae	Tanahallidaa oo Saaa 4005	0	0	0	1	0	0	0	0	1	1	0	0	3
Familia Owenidae	Terebellides sp. Sars, 1835 Owenia sp. Delle Chiaje, 1844	0	0	0	0	1	0	0	0	1	1	0	0	3
Familia Sigalionidae	Sigalion sp. Cuvier, 1830	0	0	0	0	1	0	0	0	Ö	Ö	0	0	1
i amina Siganomidae	Sthenelanella sp. (Moore, 1910)	0	0	0	0	1	0	0	0	0	0	0	0	1
Arthropoda	Concording op. (Micord, 1010)					•								•
SubFilo Crustacea														
Ordem Isopoda														
Familia Anthuridae	Amakuzanthura sp. (Nunomura, 1977)	0	0	0	0	0	0	0	0	1	0	0	0	1
Ordem Decapoda	•													
Família Sergestidae	Acetes sp. (H. Milne Edwards, 1830)	0	0	0	2	0	0	0	0	0	0	0	0	2
Família Axiidae Infraordem Brachyura	Calastacus spinosus Coelho, 1973	0	0	0	1	0	0	0	0	0	3	0	0	4
Familia Xanthidae	Panopeus americanus Saussure 1857	0	0	0	0	0	0	0	0	0	1	0	0	1
Infraordem Anomura														
Familia Paguridae	Pagurus sp. Fabricius, 1775	0	0	0	0	0	2	0	0	0	0	0	0	2
Mollusca														
Classe Bivalvia														
Família Corbulidae	Corbula contracta (Say, 1822)	2	0	0	0	2	0	0	3	2	3	0	0	12
	Corbula swiftiana C. B. Adams, 1852	0	0	0	2	0	0	1	2	3	2	2	0	12
Família Nuculidae	Nucula semiornata d'Orbigny, 1846	0	0	0	2	4	3	2	0	0	8	2	2	23
Família Ungulidae	Diplodonta punctata (Say, 1822)	0	1	0	1	1	0	0	0	0	1	1	0	5
Família Arcidae	Anadara ovalis (Bruguière, 1789)	0	0	0	0	0	0	0	1	0	0	0	0	1
Família Cardiidae	Dallocardia muricata (Linnaeus, 1758)	0	0	0	0	0	0	0	0	1	2	0	0	3
Familia Tellinidae	Macoma cleryana (d'Orbigny, 1846)	2	0	0	0	0	0	0	0	0	0	0	0	2
	Temnoconcha brasiliana Dall, 1921	0	0	0	0	0	0	1	0	0	0	1	1	3
	Tellina sp. Linnaeus, 1758	2	0	0	0	0	0	0	0	0	0	0	0	2
	Tellina versicolor (De Kay, 1843)	0	0	0	0	0	0	0	0	1	0	0	0	1
Família Semelidae	Abra aequalis (Say, 1822)	0	0	0	3	2	0	1	4	10	3	1	0	24
Família Pectinidae	Chlamys sp. Röding, 1798	0	0	0	0	0	0	0	0	1	0	0	0	1
Familia Crassatellidae	Crassinella lunulata (Conrad, 1834)	0	0	0	2	0	0	0	1	1	0	0	0	4

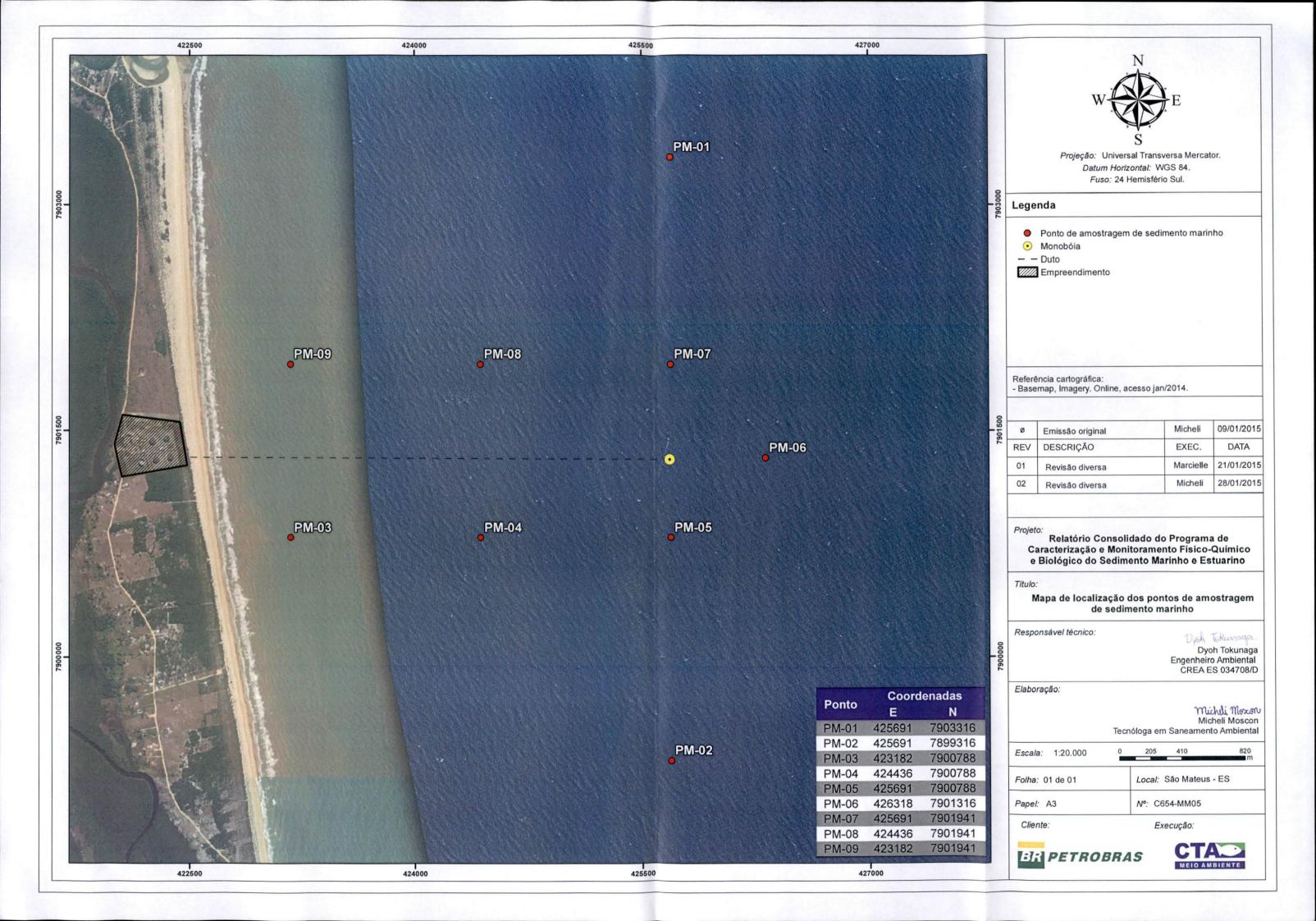
. _

Classe Gastropoda														
Familia Columbellidae	Parvanachis obesa (C. B. Adams, 1845)	1	0	0	1	1	1	0	2	5	4	2	0	17
Família Olividae	Olivella minuta (Link, 1807)	0	0	0	0	1	1	5	2	0	0	0	3	12
	Olivella nivea (Gmelin, 1791)	0	0	0	1	0	0	0	0	0	0	0	0	1
Família Rhizoridae	Volvulella texasiana (Harry, 1967)	0	0	0	0	0	0	0	1	0	0	0	0	1
Família Cancellariidae	Cancellaria petuchi (Harasewych, Petit & Verhecken, 1992)	0	0	0	0	0	0	0	0	0	1	0	0	1
Família Nassariidae	Nassarius albus (say, 1826)	0	0	0	0	0	0	0	1	0	0	0	0	1
Familia Mangeliidae	Cryoturris fargoi (McGinty, 1955)	0	0	0	0	0	0	1	0	1	0	0	0	2
Família Pyramidellidae	Turbonilla brasiliensis Clessin, 1902	0	0	0	2	0	0	0	_ 0	0	1	0	0	3
Cnidaria														
Família Turbinoliidae	Sphenotrochus auritus (Milne Edwards & Haime, 1848)	0	0	0	0	0	0	0	0	1	0	0	0	1
Echinodermata														
Classe Ophiuroidea	Ophiuroide	0	0	0	0	0	1	0	0	0	0	1	1	3
Familia Ophiactidae	Hemipholis elongata (Say, 1825)	0	0	0	0	0	0	0	0	0	0	0	2	2
Sipuncula														
Família Aspidosiphonidae	Aspidosiphon sp. Diesing, 1851	0	0	0	0	0	1	0	0	1	1	0	0	3
Familia Sipunculidae	Sipunculus nudus (Linnaeus1 1766)	0	0	0	0	0	0	1	0	0	0	0	0	1
Nemertea								-						
	Nemertea	0	0	0	2	0	0	0	1	2	7	_ 1	1	14
	N-total	13	2	48	29	25	18	25	40	62	72	19	14	367
	S-total	6	2	2	17	16	9	14	20	23	25	12	10	61

· .

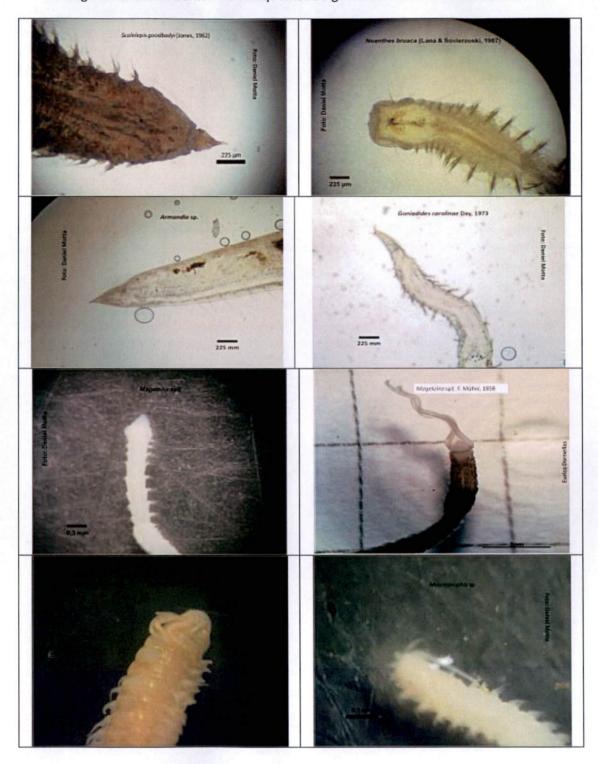

Anexo II

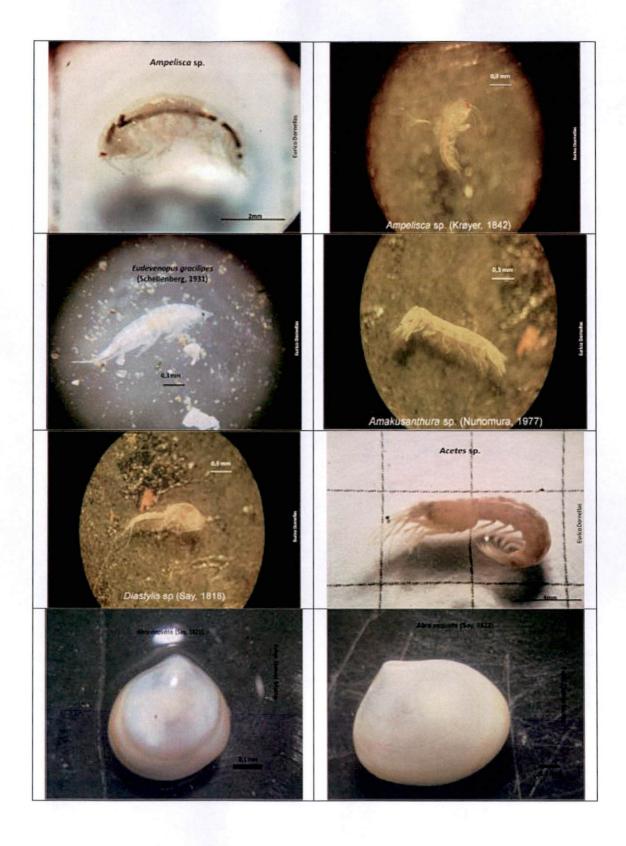
Mapa de localização dos pontos de amostragem de sedimento estuarino.

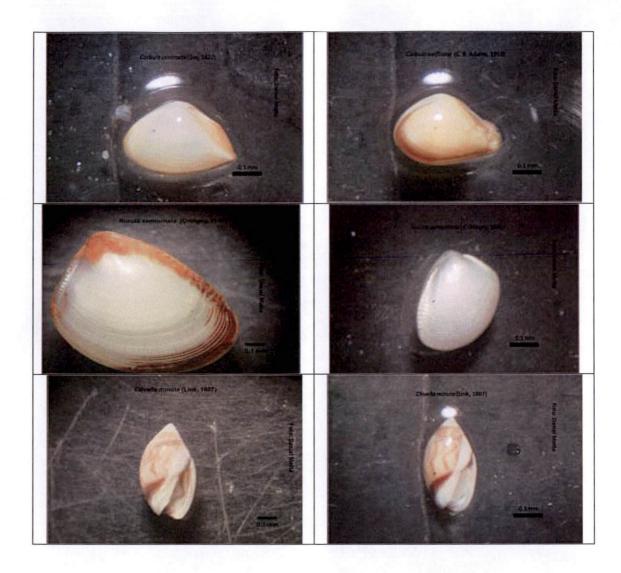

Anexo III

Mapa de localização dos pontos de amostragem de sedimento marinho.

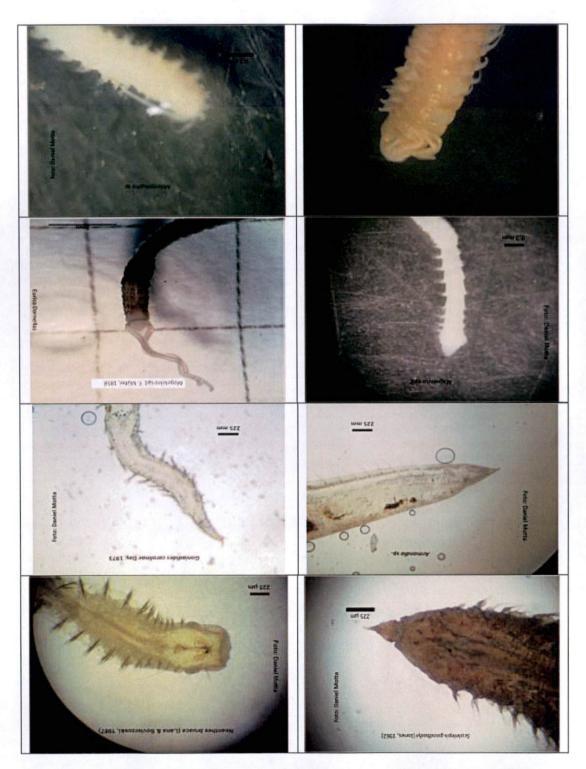
Anexo IV

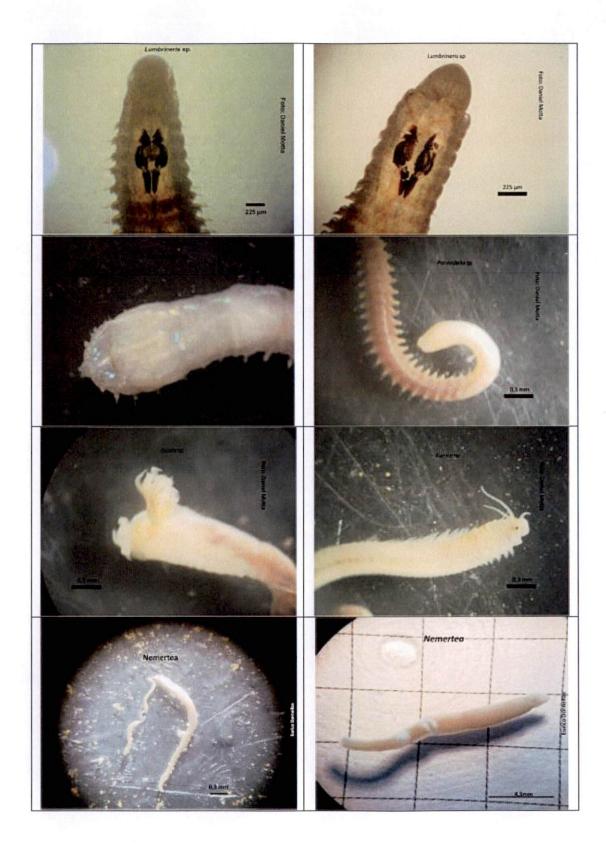

Catálogo de táxons de bentos mais frequentes e significativos durante o monitoramento.

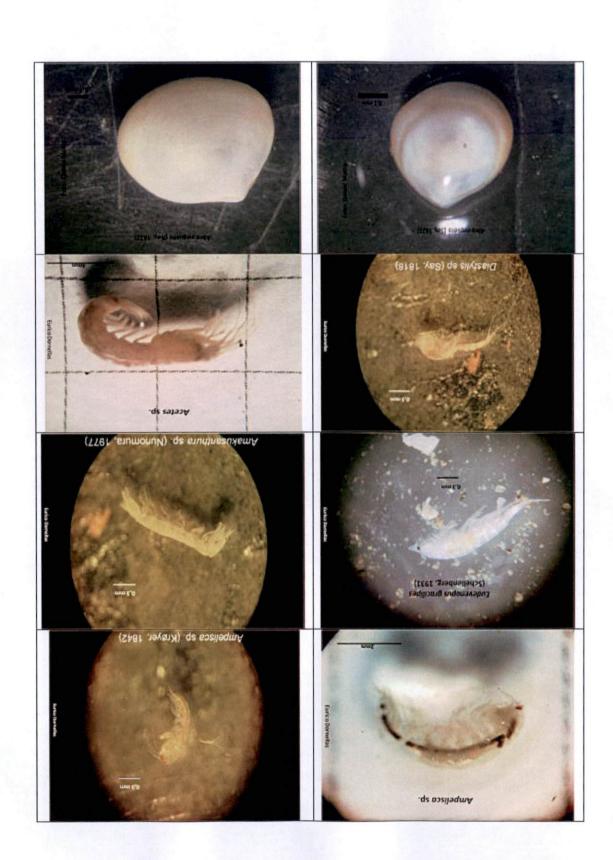




Catálogo de táxons de bentos mais frequentes e significativos durante o monitoramento.







Catálogo de táxons de bentos mais frequentes e significativos durante o monitoramento.

