TERMINAL DE CONTÊINERES DE PARANAGUÁ

EIA
ESTUDO DE IMPACTO AMBIENTAL
VOLUME 4
AMPLIAÇÃO DO CAIS
JUNHO / 2010
ESTUDO DE IMPACTO AMBIENTAL

AMPLIAÇÃO DO CAIS

VOLUMES I II III IV V

JUNHO/2010
SUMÁRIO

VOLUME I

1 IDENTIFICAÇÃO DO EMPREENDEDOR E EMPRESA CONSULTORA78
 1.1 IDENTIFICAÇÃO DO EMPREENDEDOR ...78
 1.2 IDENTIFICAÇÃO DA EMPRESA CONSULTORA ...79
 1.3 DADOS DA EQUIPE TÉCNICA MULTIDISCIPLINAR.................................80

2 REGULAMENTAÇÃO APLICÁVEL..88
 2.1 DISPOSITIVOS NORMATIVOS ..88
 2.1.1 Normas Federais...88
 2.1.2 Normas Estaduais..92
 2.1.3 Normas Municipais..94
 2.2 PLANOS E PROGRAMAS GOVERNAMENTAIS ...95
 2.2.1 Integração do empreendimento com os projetos e políticas governamentais95
 2.2.1.1 Rebatimentos do projeto com a gestão pública municipal97
 2.2.1.2 Rebatimentos do projeto com a política de desenvolvimento em nível estadual101
 2.2.1.3 Rebatimentos do projeto com a política de desenvolvimento em nível federal ..112
 2.3 NORMAS TÉCNICAS...118

3 CARACTERIZAÇÃO DO EMPREENDIMENTO ...119
 3.1 OBJETIVOS E JUSTIFICATIVAS..119
 3.2 HISTÓRICO..121
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.1</td>
<td>O Porto de Paranaguá e sua trajetória</td>
<td>121</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Porto de Paranaguá e a Lei 8630/93</td>
<td>129</td>
</tr>
<tr>
<td>3.3</td>
<td>DESCRIÇÃO DO EMPREENDIMENTO</td>
<td>133</td>
</tr>
<tr>
<td>3.3.1</td>
<td>O TCP – Terminal de Contêineres de Paranaguá</td>
<td>133</td>
</tr>
<tr>
<td>3.3.1.1</td>
<td>Missão do TCP</td>
<td>134</td>
</tr>
<tr>
<td>3.3.1.2</td>
<td>Visão de futuro</td>
<td>134</td>
</tr>
<tr>
<td>3.3.1.3</td>
<td>Objetivos permanentes</td>
<td>134</td>
</tr>
<tr>
<td>3.3.1.4</td>
<td>Infraestrutura geral existente</td>
<td>134</td>
</tr>
<tr>
<td>3.3.1.5</td>
<td>Funcionários</td>
<td>136</td>
</tr>
<tr>
<td>3.3.1.6</td>
<td>Saúde e segurança do trabalhador e terceiros</td>
<td>139</td>
</tr>
<tr>
<td>3.3.1.7</td>
<td>Equipamentos</td>
<td>141</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Ampliação do cais</td>
<td>142</td>
</tr>
<tr>
<td>3.3.2.1</td>
<td>Descrição do projeto</td>
<td>143</td>
</tr>
<tr>
<td>3.3.2.1.1</td>
<td>Cronograma físico de obra</td>
<td>161</td>
</tr>
<tr>
<td>3.4</td>
<td>LOCALIZAÇÃO DA ATIVIDADE</td>
<td>162</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Elaboração dos mapas temáticos</td>
<td>162</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Descrição detalhada da localização</td>
<td>163</td>
</tr>
<tr>
<td>3.5</td>
<td>ÓRGÃO FINANCIADOR E VALOR DA ATIVIDADE</td>
<td>175</td>
</tr>
<tr>
<td>3.6</td>
<td>EFLUENTES LÍQUIDOS</td>
<td>175</td>
</tr>
<tr>
<td>3.7</td>
<td>RESÍDUOS SÓLIDOS</td>
<td>178</td>
</tr>
<tr>
<td>4</td>
<td>ALTERNATIVAS TECNOLÓGICAS E LOCACIONAIS</td>
<td>182</td>
</tr>
<tr>
<td>4.1</td>
<td>ALTERNATIVAS LOCACIONAIS</td>
<td>182</td>
</tr>
</tbody>
</table>
4.2 ALTERNATIVAS TECNOLÓGICAS ..186
5 ÁRARES DE INFLUÊNCIA DO EMPREENDIMENTO187
5.1 ÁREA DIRETAMENTE AFETADA (ADA) ..187
5.1.1 Meio físico, biótico e sócio-econômico ...187
5.2 ÁREA DE INFLUÊNCIA DIRETA (AID) ...188
5.2.1 Meio físico e biótico ..188
5.2.2 Meio socioeconômico ...190
5.3 ÁREA DE INFLUÊNCIA INDIRETA (AII) ...193
5.3.1 Meio físico ..193
5.3.2 Meio biótico ...198
5.3.3 Meio socioeconômico ...199
6 DIAGNÓSTICO AMBIENTAL ..202
6.1 MEIO FÍSICO ..202
6.1.1 Metodologia aplicada ...202
6.1.1.1 Climatologia ..202
6.1.1.2 Geologia e geomorfologia ...202
6.1.1.2.1 Metodologia utilizada para a confecção da carta pedológica da área de
 drenagem da baía de Paranaguá ...202
6.1.1.2.2 Metodologia utilizada para caracterização sedimentológica e geoquímica ..206
6.1.1.3 Oceanografia e hidrodinâmica ..224
6.1.1.4 Recursos hídricos e qualidade da água ...227
6.1.1.5 Qualidade do ar ... 232
6.1.1.6 Níveis de ruído .. 232
6.1.2 Climatologia .. 233
6.1.2.1 Dinâmica atmosférica regional ... 233
6.1.2.2 Temperatura do ar ... 235
6.1.2.3 Umidade relativa do ar .. 244
6.1.2.4 Ventos .. 245
6.1.2.5 Insolação e nebulosidade .. 248
6.1.2.6 Pluviosidade ... 250
6.1.2.7 Considerações finais ... 261
6.1.3 Geologia e geomorfologia ... 262
6.1.3.1 Geologia ... 262
6.1.3.1.1 Escudo ... 264
6.1.3.1.2 Batólito Paranaguá ... 264
6.1.3.1.3 Intrusivas mesozóicas ... 266
6.1.3.2 Geomorfologia .. 269
6.1.3.2.1 Macronezoneamento geomorfológico da área de drenagem da baía de Paranaguá ... 269
6.1.3.2.2 Análise da hipsometria ... 276
6.1.3.2.3 Análise da declividade .. 279
6.1.3.3 Solos .. 282
6.1.3.3.1 Mapeamentos pedológicos existentes na área abrangida pela All 282
6.1.3.3.2 Descrição e quantificação das subordens pedológicas encontradas na área de drenagem da baía de Paranaguá ...283

6.1.3.4 Sedimentos continentais ...303

6.1.3.4.1 Formação Alexandra (Mioceno Inferior)303

6.1.3.4.2 Leques e cones aluviais (Plio-Quaternário)304

6.1.3.5 Sedimentos costeiros ..306

6.1.3.5.1 Classificação granulométrica e caracterização dos sedimentos da ADA (Resolução CONAMA 344/04) ...314

6.1.3.5.2 Descrição dos sedimentos da Área Diretamente Afetada (ADA) pelo empreendimento (geoquímica) ...318

6.1.3.5.3 Integração dos resultados (granulometria e geoquímica)335

6.1.3.5.4 Integração dos resultados (toxicidade) ...344

6.1.3.6 Considerações finais ...348

6.1.4 Oceanografia e hidrodinâmica ..354

6.1.4.1 Área de Influência Indireta (AII) ..356

6.1.4.1.1 Campo de massa e aporte de água doce356

6.1.4.1.2 Campo de correntes e Marês ...359

6.1.4.1.3 Influência dos ventos ...370

6.1.4.2 Área de Influência Direta (AID) ..371

6.1.4.2.1 Campos de Massa e aporte de água doce371

6.1.4.2.2 Campos de correntes e marés ...372

6.1.4.2.3 Influência do vento ...379

6.1.4.3 Área Diretamente Afetada (ADA) ...380
<table>
<thead>
<tr>
<th>Capítulo</th>
<th>Título</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.4.3.1</td>
<td>Campo de Massa e aporte de água doce</td>
<td>380</td>
</tr>
<tr>
<td>6.1.4.3.2</td>
<td>Campo de correntes e marés</td>
<td>380</td>
</tr>
<tr>
<td>6.1.4.3.3</td>
<td>Influência do vento</td>
<td>382</td>
</tr>
<tr>
<td>6.1.5</td>
<td>Recursos hídricos e qualidade da água</td>
<td>383</td>
</tr>
<tr>
<td>6.1.5.1.1</td>
<td>Delimitação da área de estudo</td>
<td>384</td>
</tr>
<tr>
<td>6.1.5.1.2</td>
<td>Ciclo hidrossedimentológico</td>
<td>386</td>
</tr>
<tr>
<td>6.1.5.1.3</td>
<td>Caracterização da área de estudo</td>
<td>388</td>
</tr>
<tr>
<td>6.1.5.1.4</td>
<td>Disponibilidade de dados</td>
<td>397</td>
</tr>
<tr>
<td>6.1.5.1.5</td>
<td>Estudos anteriores</td>
<td>399</td>
</tr>
<tr>
<td>6.1.5.1.6</td>
<td>Balanço hídrico – águas superficiais</td>
<td>414</td>
</tr>
<tr>
<td>6.1.5.1.7</td>
<td>Diagnóstico das demandas hídricas - usos consuntivos</td>
<td>416</td>
</tr>
<tr>
<td>6.1.5.1.8</td>
<td>Diagnóstico das disponibilidades hídricas superficiais</td>
<td>421</td>
</tr>
<tr>
<td>6.1.5.1.9</td>
<td>Considerações finais</td>
<td>424</td>
</tr>
<tr>
<td>6.1.5.2</td>
<td>Qualidade da água</td>
<td>426</td>
</tr>
<tr>
<td>6.1.5.2.1</td>
<td>Caracterização da qualidade da água na Área de Influência Direta (AID) - Eixo Leste-Oeste do CEP</td>
<td>426</td>
</tr>
<tr>
<td>6.1.5.2.2</td>
<td>Qualidade da água na Área Diretamente Afetada (ADA) - com base em dados secundários</td>
<td>430</td>
</tr>
<tr>
<td>6.1.5.2.3</td>
<td>Qualidade da água na Área Diretamente Afetada (ADA) – segundo a Resolução CONAMA 357/05 (Classe II - Águas Salobras) com base em dados primários</td>
<td>433</td>
</tr>
<tr>
<td>6.1.5.2.4</td>
<td>Fontes poluidoras</td>
<td>497</td>
</tr>
</tbody>
</table>
VOLUME II

6.1.6 Níveis de ruido ... 527

6.1.6.1 Aparelhagem utilizada .. 527

6.1.6.2 Enquadramento na legislação .. 527

6.1.6.3 Locais de medição ... 527

6.1.6.4 Níveis de ruído medidos ... 528

6.2 MEIO BIÓTICO .. 530

6.2.1 Metodologia aplicada ... 533

6.2.1.1 Biota terrestre .. 533

6.2.1.1.1 Fauna terrestre ... 533

6.2.1.2 Biota aquática .. 534

6.2.1.2.1 Plâncton ... 534

6.2.1.2.1.1 Fitoplâncton .. 534

6.2.1.2.1.2 Zooplâncton ... 536

6.2.1.2.1.3 Ictioplâncton .. 538

6.2.1.2.1.4 Larvas de decápodos ... 540

6.2.1.2.2 Bentos ... 543

6.2.1.2.2.1 Bentos de sedimentos inconsolidados 543

6.2.1.2.2.2 Bentos de sedimentos consolidados 552

6.2.1.2.3 Ictiofauna ... 556

6.2.1.2.4 Carcinofauna ... 557
6.2.1.2.4.1 Desenho amostral .. 557
6.2.1.2.4.2 Procedimentos de campo .. 561
6.2.1.2.4.3 Procedimentos de laboratório ... 562
6.2.1.2.5 Cetáceos e quelônios .. 563
6.2.1.2.5.1 Delimitação das áreas de influência do empreendimento 564
6.2.1.2.5.2 Monitoramento e coleta de dados durante perfuração dos testemunhos.... 565
6.2.1.2.5.3 Cetáceos vivos ... 567
6.2.1.2.5.4 Cetáceos e tartarugas marinhas mortos .. 573
6.2.1.2.5.5 Monitoramento de área de alimentação de tartaruga-verde (Chelonia mydas). ... 575
6.2.1.2.5.6 Análise estatística dos dados .. 576
6.2.1.3 Flora .. 577
6.2.2 Biota terrestre ... 578
6.2.2.1.1 Caracterização da fauna terrestre .. 578
6.2.2.1.1.1 Anurofauna ... 578
6.2.2.1.1.2 Herpetofauna .. 581
6.2.2.1.1.3 Avifauna ... 583
6.2.2.1.1.4 Mastofauna ... 603
6.2.3 Biota aquática .. 609
6.2.3.1 Plâncton .. 609
6.2.3.1.1 Fitoplâncton ... 609
6.2.3.1.1.1 Levantamento histórico do fitoplâncton para o Complexo Estuarino de Paranaguá ... 614
6.2.3.1.1.2 O fitoplâncton no Complexo Estuarino de Paranaguá ... 621
6.2.3.1.1.3 Considerações finais ... 664
6.2.3.1.2 Zooplâncton .. 665
6.2.3.1.2.1 Apresentação dos resultados .. 666
6.2.3.1.2.2 Discussão e análise dos dados .. 678
6.2.3.1.2.3 Considerações finais ... 683
6.2.3.1.3 Ictioplâncton .. 684
6.2.3.1.3.1 Levantamento histórico do ictiplâncton para o Complexo Estuarino de Paranaguá ... 686
6.2.3.1.3.2 Apresentação dos resultados .. 690
6.2.3.1.3.3 Considerações finais ... 704
6.2.3.1.4 Larvas de decápodos .. 706
6.2.3.1.4.1 Apresentação dos resultados .. 707
6.2.3.1.4.2 Discussão e análise dos dados .. 716
6.2.3.1.4.3 Considerações finais ... 719
6.2.3.2 Bentos .. 720
6.2.3.2.1 Setores ambientais .. 721
6.2.3.2.2 Estudos pretéritos no CEP .. 724
6.2.3.2.2.1 Sedimentos inconsolidados sublitorais .. 725
6.2.3.2.2.2 Substratos consolidados .. 728
6.2.3.2.2.3 Manguezais, marismas e bancos não vegetados ... 730
6.2.3.2.2.4 Gamboas ... 735
6.2.3.2.2.5 Canal da Cotinga ... 737
6.2.3.2.3 Considerações sobre a influência da sazonalidade sobre a macrofauna bêntica .. 739
6.2.3.2.4 Bentos de fundos inconsolidados ... 740
6.2.3.2.4.1 Apresentação dos resultados ... 741
6.2.3.2.4.2 Discussão e análise dos dados ... 763
6.2.3.2.5 Bentos de sedimentos consolidados ... 768
6.2.3.2.5.1 Apresentação dos resultados ... 769
6.2.3.2.5.2 Discussão e análise dos dados ... 778
6.2.3.3 Ictiofauna .. 808
6.2.3.3.1 Apresentação dos resultados ... 808
6.2.3.3.2 Discussão e análise dos dados ... 848
6.2.3.4 Carcinofauna .. 850
6.2.3.4.1 Apresentação dos resultados ... 852
6.2.3.4.2 Discussão e análises dos dados ... 863
6.2.3.5 Cetáceos e quelônios ... 876
6.2.3.5.1 Apresentação dos resultados ... 882
6.2.3.5.2 Discussão e análises dos dados ... 928
6.2.4 Bioindicadores .. 932
6.2.4.1 Zooplâncton .. 932
6.2.4.2 Ictioplâncton...932
6.2.4.3 Larvas de decápodos...933
6.2.4.4 Bentos...933
6.2.4.4.1 Bentos sedimentos incondidos ..933
6.2.4.4.2 Bentos sedimentos consolidados ...935
6.2.4.5 Ictiofauna ...936
6.2.4.6 Carcinofauna...937
6.2.5 Flora..938
6.2.5.1 Flora da Área de Influência Indireta ..939
6.2.5.2 Flora da Área Diretamente Afetada e Área de Influência Direta951
6.2.5.3 Considerações Finais...968
6.2.6 Unidades de Conservação ...968
6.2.6.1 Unidades de conservação na área de influência do empreendimento......974
6.2.6.2 Unidades de conservação em processo de criação............................997
6.2.6.3 Áreas prioritárias para a conservação, utilização sustentável e repartição dos benefícios da biodiversidade ...1004
6.2.6.4 Considerações finais ..1006
VOLUME III

6.3 MEIO SÓCIO-ECONÔMICO ...1007

6.3.1 Metodologia aplicada ...1008

6.3.1.1 Levantamento de variáveis socioeconômicas1008

6.3.1.2 Levantamento sobre a pesca artesanal1012

6.3.1.3 Levantamento sobre o patrimônio histórico..........................1013

6.3.2 Caracterização da população ...1014

6.3.2.1 Dinâmica populacional ...1014

6.3.2.1.1 O bairro D. Pedro II ..1021

6.3.2.1.2 O bairro Costeira/Oceania ...1026

6.3.2.2 Caracterização das condições gerais da infraestrutura1035

6.3.2.2.1 Educação ...1035

6.3.2.2.2 Aspectos da saúde pública em Paranaguá1049

6.3.2.2.3 A inserção do empreendimento no contexto da saúde pública municipal...1065

6.3.2.2.4 Principais características e estratégias no combate à disseminação de doenças endêmicas ...1072

6.3.2.2.5 Estado nutricional da população ..1083

6.3.2.2.6 Infraestrutura de saneamento básico1093

6.3.2.2.7 Segurança social ...1094

6.3.2.2.7.1 Quadro de criminalidade e sua evolução1094

6.3.2.2.7.2 Infraestrutura policial e judicial1095

6.3.2.2.7.3 Corpo de bombeiro ...1096
<p>| 6.3.2.2.7.4 | Estrutura de proteção ao menor e ao idoso | 1098 |
| 6.3.2.2.7.5 | Sistema de defesa civil | 1102 |
| 6.3.2.2.8 | Assentamento humano | 1103 |
| 6.3.2.2.9 | Principais atividades de recreação da população, áreas e equipamentos de lazer | 1109 |
| 6.3.2.2.10 | Jornais, locais e regionais de circulação diária, semanal, quinzenal e mensal | 1113 |
| 6.3.2.2.11 | Rádio e televisão locais e regionais | 1115 |
| 6.3.2.2.12 | Organização social | 1115 |
| 6.3.2.2.12.1 | Lideranças e associações comunitárias | 1115 |
| 6.3.2.2.12.2 | Forças Políticas e sindicatos atuantes | 1121 |
| 6.3.2.2.12.3 | Forças e tensões sociais | 1126 |
| 6.3.2.2.12.4 | Exclusão social, prostituição infantil, violência e drogas | 1130 |
| 6.3.2.2.12.5 | O caminhoneiro e sua inserção na sociedade parnanguara | 1134 |
| 6.3.2.3 | Comunidades indígenas e tradicionais | 1140 |
| 6.3.3 | Atividades produtivas | 1141 |
| 6.3.3.1 | Caracterização da estrutura produtiva e de serviços | 1141 |
| 6.3.3.1.1 | Atividades econômicas | 1141 |
| 6.3.3.1.2 | Mercado de trabalho | 1148 |
| 6.3.3.1.3 | Pessoas ocupadas | 1150 |
| 6.3.3.1.4 | Caracterização da estrutura produtiva e de serviço | 1160 |
| 6.3.3.1.5 | Importância do turismo como fonte de renda da região | 1167 |</p>
<table>
<thead>
<tr>
<th>6.3.3.1.6</th>
<th>Características do empreendimento e seu entorno mais imediato</th>
<th>1176</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.3.3.2</td>
<td>Comunidades pesqueiras</td>
<td>1178</td>
</tr>
<tr>
<td>6.3.3.2.1</td>
<td>Mapeamento e georreferenciamento dos locais de pesca</td>
<td>1178</td>
</tr>
<tr>
<td>6.3.3.2.2</td>
<td>Caracterização das populações tradicionais na área de influência do empreendimento</td>
<td>1178</td>
</tr>
<tr>
<td>6.3.3.2.3</td>
<td>Localização das colônias de pesca ao longo das áreas de influência direta e indireta</td>
<td>1182</td>
</tr>
<tr>
<td>6.3.3.2.4</td>
<td>As comunidades pesqueiras na AID</td>
<td>1193</td>
</tr>
<tr>
<td>6.3.3.2.4.1</td>
<td>Ilha dos Valadares</td>
<td>1193</td>
</tr>
<tr>
<td>6.3.3.2.4.2</td>
<td>Ilha da Cotinga</td>
<td>1195</td>
</tr>
<tr>
<td>6.3.3.2.4.3</td>
<td>Ilha Perdida</td>
<td>1197</td>
</tr>
<tr>
<td>6.3.3.2.4.4</td>
<td>As especificidades dos pescadores artesanais na AID</td>
<td>1198</td>
</tr>
<tr>
<td>6.3.3.2.5</td>
<td>Mapeamento e caracterização das áreas preferenciais utilizadas para a pesca artesanal e esportiva</td>
<td>1214</td>
</tr>
<tr>
<td>6.3.3.2.6</td>
<td>Possíveis conflitos do projeto com o uso atual do ambiente a ser afetado</td>
<td>1223</td>
</tr>
<tr>
<td>6.3.3.3</td>
<td>Finanças municipais</td>
<td>1240</td>
</tr>
<tr>
<td>6.3.3.3.1</td>
<td>Receitas municipais</td>
<td>1240</td>
</tr>
<tr>
<td>6.3.3.3.2</td>
<td>Despesas municipais</td>
<td>1243</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Uso e ocupação do solo</td>
<td>1246</td>
</tr>
<tr>
<td>6.3.4.1</td>
<td>Caracterização e mapeamento do uso e ocupação do solo na área terrestre no entorno do empreendimento</td>
<td>1246</td>
</tr>
<tr>
<td>6.3.4.1.1</td>
<td>Contexto rural</td>
<td>1246</td>
</tr>
<tr>
<td>6.3.4.1.2</td>
<td>Áreas de conservação</td>
<td>1248</td>
</tr>
<tr>
<td>6.3.4.2</td>
<td>Caracterização do entorno do projeto</td>
<td>1248</td>
</tr>
<tr>
<td>6.3.4.3</td>
<td>Compatibilização do empreendimento com o zoneamentos existentes</td>
<td>1257</td>
</tr>
<tr>
<td>6.3.4.4</td>
<td>Apresentação e mapeamento da malha viária existente</td>
<td>1258</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Componente Indígena</td>
<td>1266</td>
</tr>
<tr>
<td>6.3.6</td>
<td>Patrimônio Histórico, Arqueológico e Cultural</td>
<td>1266</td>
</tr>
<tr>
<td>6.3.6.1</td>
<td>Mapeamento das áreas de valor histórico, cultural, paisagístico e ecológico</td>
<td>1266</td>
</tr>
<tr>
<td>6.3.6.2</td>
<td>Manifestações culturais relacionadas com o meio ambiente natural e sócio-religioso</td>
<td>1269</td>
</tr>
<tr>
<td>6.3.6.2.1</td>
<td>Festas Populares</td>
<td>1269</td>
</tr>
<tr>
<td>6.3.6.2.1.1</td>
<td>Festa da Tainha e Festa do Pescador</td>
<td>1269</td>
</tr>
<tr>
<td>6.3.6.2.1.2</td>
<td>Auto de Natal</td>
<td>1269</td>
</tr>
<tr>
<td>6.3.6.2.1.3</td>
<td>Carnaval de Rua</td>
<td>1270</td>
</tr>
<tr>
<td>6.3.6.2.1.4</td>
<td>Fandango</td>
<td>1271</td>
</tr>
<tr>
<td>6.3.6.2.1.5</td>
<td>Festa do Divino</td>
<td>1274</td>
</tr>
<tr>
<td>6.3.6.2.1.6</td>
<td>Festa de Nossa Senhora do Rosário</td>
<td>1275</td>
</tr>
<tr>
<td>6.3.6.2.1.7</td>
<td>Festa de Nossa Senhora do Rosário</td>
<td>1275</td>
</tr>
<tr>
<td>6.3.6.2.1.8</td>
<td>Festa de Nossa Senhora dos Navegantes</td>
<td>1276</td>
</tr>
<tr>
<td>6.3.6.2.1.9</td>
<td>Festa de São Benedito</td>
<td>1276</td>
</tr>
<tr>
<td>6.3.6.2.1.10</td>
<td>Paixão de Cristo</td>
<td>1276</td>
</tr>
<tr>
<td>6.3.6.2.1.11</td>
<td>Aniversário de Paranaguá</td>
<td>1276</td>
</tr>
<tr>
<td>6.3.6.2.1.12</td>
<td>Feira Interativa para Caminhoneiros</td>
<td>1277</td>
</tr>
</tbody>
</table>
6.3.6.2.1.13 Outras festas populares ..1278
6.3.6.2.2 Lendas ..1279
6.3.6.2.3 Pratos típicos ..1280
6.3.6.2.4 Artesanato ...1280
6.3.6.3 Monumentos de valor cultural, paisagístico, histórico e natural ..1283
6.3.6.3.1 Histórico ..1283
6.3.6.3.2 Patrimônio histórico tombado ..1296
6.3.6.3.3 Outros patrimônios históricos ...1326
6.3.6.3.4 Patrimônio documental ..1333
6.3.6.3.5 Patrimônio arqueológico ..1335
6.3.6.3.6 Patrimônio Natural ...1343
6.3.6.3.6.1 Tombamento da Serra do Mar ...1343

7 ANÁLISE INTEGRADA E PROGNÓSTICO AMBIENTAL ...1347

7.1 MODELAGEM HIDRODINÂMICA E DE TRANSPORTE SEDIMENTAR..1358
7.1.1 Área de estudo ..1359
7.1.1.1 Características meteorológicas da região ...1360
7.1.1.2 Características oceanográficas da região ..1361
7.1.1.3 Características dos sedimentos da região ...1362
7.1.2 Análise de dados ...1363
7.1.3 Modelagem hidrodinâmica e transporte de sedimentos ..1391
7.1.3.1 Discretização do domínio ...1391
7.1.3.2 Avaliação da modelagem numérica ...1394
7.1.3.2.1 Avaliação para a elevação ...1396
7.1.3.2.2 Avaliação para as correntes ...1397
7.1.3.2.3 Comentário sobre a modelagem hidrodinâmica1399
7.1.3.3 Alterações hidrodinâmicas ...1399
7.1.3.4 Alterações das taxas de deposição e/ou erosão1404
7.1.4 Modelagem da dispersão do material dragado1409
7.1.4.1 Especificações das operações de dragagem ..1409
7.1.4.2 Dados de entrada e cenários simulados com o modelo SSFATE1412
7.1.4.3 Resultados das simulações com o modelo SSFATE1414
 7.1.4.3.1 Período de verão ..1415
 7.1.4.3.2 Período de inverno ...1418
 7.1.4.3.3 Área total percorrida pelas plumas ...1421
7.1.5 Considerações finais ...1423
7.2 AVALIAÇÃO DE IMPACTOS AMBIENTAIS..1426
 7.2.1 Metodologia de avaliação de impactos ..1426
 7.2.1.1 Critérios de avaliação para aspectos positivos (+) e negativos (-)1429
 7.2.1.1.1 Avaliação de significância para aspectos positivos e negativos1431
 7.2.1.2 Critérios de avaliação para aspectos potenciais (P)1432
 7.2.1.2.1 Avaliação de significância (P) ...1433
 7.2.1.3 Matriz de impactos ...1433
 7.2.2 Responsabilidades ...1435
 7.2.3 Impactos na fase de planejamento ...1438

xix
7.2.4 Impactos nas fases de implantação e operação

7.2.4.1 Meio físico

7.2.4.1.1 Clima e condições meteorológicas

7.2.4.1.2 Qualidade do ar

7.2.4.1.3 Ruídos

7.2.4.1.4 Geologia, geomorfologia e solos

7.2.4.1.5 Hidrodinâmica marinha e recursos hídricos

7.2.4.1.6 Risco de acidentes

7.2.4.2 Meio biótico

7.2.4.2.1 Plâncton

7.2.4.2.2 Bentos

7.2.4.2.3 Ictiofauna

7.2.4.2.4 Carcinofauna

7.2.4.2.5 Cetáceos e quelônios

7.2.4.2.6 Recursos pesqueiros

7.2.4.2.7 Fauna terrestre

7.2.4.3 Meio sócio-econômico

7.2.4.3.1 Geração de empregos e renda diretos

7.2.4.3.2 Geração de empregos e renda indiretos

7.2.4.3.3 Aumento das vendas do comércio local

7.2.4.3.4 Aumento de arrecadação municipal

7.2.4.3.5 Geração de Receita Cambial

xx
7.2.4.3.6	Acidentes de trânsito ..	1514
7.2.4.3.7	Aumento da pressão sobre os serviços públicos de saúde	1517
7.2.4.3.8	Patrimônio arqueológico ...	1519
7.2.5	Impactos na fase de desativação ...	1522
7.2.6	Matriz de impactos ...	1523
VOLUME IV

7.3 MEDIDAS MITIGADORAS/COMPENSATÓRIAS E PROGRAMAS AMBIENTAIS ...1533

7.3.1 Medidas mitigadoras e compensatórias ...1533

7.3.2 Programas de controle e monitoramento..1533

7.3.2.1 Programa de Gestão Ambiental – PGA..1534

7.3.2.2 Plano Ambiental de Construção - PAC.................................1545

7.3.2.3 Programas de monitoramento da biota e bioindicadores.....................1561

7.3.2.3.1 Programa de monitoramento do fitoplâncton..............................1561

7.3.2.3.2 Programa de monitoramento das zooplâncton............................1566

7.3.2.3.3 Programa de monitoramento das larvas de decápodos..................1572

7.3.2.3.4 Programa de monitoramento da macrofauna bêntica.....................1577

7.3.2.3.5 Programa de controle e monitoramento da ictiofauna do sublitoral1583

7.3.2.3.6 Programa de monitoramento de siris e educação ambiental com pescadores de siris da região...1589

7.3.2.3.7 Programa de monitoramento de pequenos cetáceos na região portuária e de influência destas atividades no Complexo Estuarino de Paranaguá, Estado do Paraná...1597

7.3.2.3.8 Programa de monitoramento da avifauna...................................1605

7.3.2.3.9 Programa de monitoramento da atividade reprodutiva de anfíbios na área de influência do empreendimento...1608

7.3.2.4 Programa de gerenciamento de resíduos sólidos..............................1610

7.3.2.5 Programa de gerenciamento de efluentes......................................1616

7.3.2.6 Programa de gerenciamento das emissões atmosféricas....................1623
7.3.2.7	Programa de monitoramento de ruídos e vibrações ...1629
7.3.2.8	Programa de monitoramento da qualidade das águas estuarinas1635
7.3.2.9	Programa de monitoramento hidrodinâmico e morfo-sedimentar da área adjacente ao Terminal de Contêineres de Paranaguá - TCP ..1642
7.3.2.10	Programa de verificação do gerenciamento da água de lastro dos navios 1650
7.3.2.10.1	Sub-programa de monitoramento e educação ambiental relativo à troca oceânica de água de lastro dos navios para prevenir a bioinvasão de espécies exóticas 1650
7.3.2.10.2	Sub-programa de monitoramento de espécies invasoras por água de lastro no Complexo Estuarino de Paranaguá e educação ambiental ...1656
7.3.2.11	Programa de monitoramento da pesca..1661
7.3.2.12	Programa de Auditoria Ambiental...1666
7.3.2.13	Programa de Gerenciamento de Riscos...1676
7.3.2.14	Programa de comunicação social...1693
7.3.2.15	Programa de Educação Ambiental para os colaboradores1697
7.3.2.16	Plano de colocação de mão de obra ...1701
7.3.2.17	Plano de reestruturação viária do acesso ao TCP1704
7.3.3	Alternativas tecnológicas para redução do impacto na saúde do trabalhador e no meio ambiente ..1707
8	COMPENSAÇÃO AMBIENTAL ..1714
9	CONCLUSÕES ..1719
10	BIBLIOGRAFIA ...1720
11	GLOSSÁRIO ...1773
VOLUME V

12 ANEXOS..1809
LISTA DE TABELAS

Tabela 1 - Relação de novas contratações previstas para o TCP. ...119
Tabela 2 – Evolução da Exportação pelo Porto de Paranaguá - 1935-1951.................................121
Tabela 3 – Movimento de Carga Geral pela APPA – 1960-1995...125
Tabela 4 – Navios recebidos no Porto de Paranaguá – 2002 a 2005 ...128
Tabela 5 – Grau de escolaridade dos funcionários do TCP - 2010...136
Tabela 6 – Local de residência dos funcionários do TCP - 2010 ..137
Tabela 7 - Atendimentos médicos efetuados no ambulatório TCP entre 2008/2009......................141
Tabela 8 - Cronograma físico da ampliação do cais em 315m + dolfins.................................161
Tabela 9 – Parâmetro de Zoneamento...174
Tabela 10 - Bacias de drenagem e áreas incrementais da baía de Paranaguá.........................196
Tabela 11 - Municípios abrangidos pela Área de Influência Indireta...196
Tabela 12 - Compartimentos geomorfológicos e relações pedológicas identificadas..............205
Tabela 13 - Planos de informações considerados na delimitação das unidades pedológicas ...205
Tabela 14 - Estações de coleta de sedimentos na área de estudo - coordenadas.206
Tabela 15 - Limites de quantificação (LQ), detecção (LD), padrões e branco das análises químicas ..214
Tabela 16 - Água de diluição utilizada no teste de toxicidade de sedimento integral..........217
Tabela 17 - Sumário das metodologias de amostragem e análises utilizadas nos estudos pretéritos (dados secundários) utilizados na caracterização da qualidade da aguada AID e ADA, do eixo leste-oeste do CEP...227
Tabela 18 - Identificação e coordenadas dos pontos amostrais da coluna d’ água...................229
Tabela 19 - Estações selecionadas para a caracterização da precipitação nas bacias de drenagem da baía de Paranaguá

Tabela 20 – Unidades geomorfológicas da área de drenagem da baía de Paranaguá

Tabela 21 – Classes de declividade existentes da área de drenagem da baía de Paranaguá

Tabela 22 – Subordens de solos estimados e de solos previamente mapeados na área de drenagem da baía de Antonina

Tabela 23 – Características granulométricas dos sedimentos na Área Diretamente Afetada pela expansão do Terminal de Contêineres de Paranaguá

Tabela 24 – Teores de CaCO$_3$ e matéria orgânica contida nos sedimentos Área Diretamente Afetada pela expansão do Terminal de Contêineres de Paranaguá, bem como as porcentagens das diversas classes granulométricas

Tabela 25 – Teores de metais, As, P, N e COT

Tabela 26 - Parâmetros físicos e químicos do teste de toxicidade sedimento integral

Tabela 27 – Teste de sensibilidade do anfípodo *T. viscana.*

Tabela 28 – Resultado do teste de toxicidade com sedimento integral

Tabela 29 – Teste de sensibilidade dos embriões de *E. lucunter.*

Tabela 30 - Parâmetros físicos e químicos do teste de toxicidade com interface sedimento-água

Tabela 31 – Resultado do teste de toxicidade com interface sedimento-água

Tabela 32 - Parâmetros físicos e químicos do teste de toxicidade com elutriatos

Tabela 33 – Resultado do teste de toxicidade com elutriatos

Tabela 34 - Síntese dos testes de toxicidade quanto às formas de exposição, sendo: SI= sedimento integral, ISA interface sedimento-água e ELU= elutriatos

Tabela 35 – Matriz de correlação entre os dados granulométricos e geoquímicos
Tabela 36 – Correlações significativas entre as variáveis analisadas.................................345
Tabela 37 – Autovetores dos fatores gerados pela análise fatorial ..347
Tabela 38 – Correlações das variáveis com os fatores (factor loadings).347
Tabela 39 – Associações dos fatores com as amostras (factor scores)..................................348
Tabela 40 - Informações da maré..362
Tabela 41 - Informações por setores do Complexo ...362
Tabela 42 – Correntes médias na preamar de sizigia em superfície. A última coluna mostra, aproximadamente, quanto tempo após a preamar na entrada do estuário (0 min) ocorre a preamar no respectivo local (coluna 1)...368
Tabela 43 – Correntes máximas de enchente (médias) de sizigia em superfície. As máximas correntes de enchente acontecem aproximadamente entre 3,4 a 4 horas antes da preamar local (duração maior a montante). ...368
Tabela 44 – Correntes máximas de vazante (médias) de sizigia em superfície. As máximas correntes de vazante acontecem aproximadamente entre 2,1 e 2,8 horas após a preamar local (diminui a montante). ...369
Tabela 45 - Classes de erosividade pela chuva ...390
Tabela 46 - Parâmetros fisiográficos das bacias dos principais rios396
Tabela 47 - Principais parâmetros fisiográficos para as áreas incrementais.........................396
Tabela 48 - Estações disponíveis na área de estudo ...397
Tabela 49 - Descarga sólida medida versus descarga sólida calculada401
Tabela 50 - Estações fluviométricas utilizadas em MANTOVANELLI (1999).........................404
Tabela 51 - Dados de campo das campanhas “instantâneas” de inverno...............................406
Tabela 52 - Dados de campo das campanhas “instantâneas” de verão407
Tabela 53 - Dados de campo das campanhas diárias de inverno..411
Tabela 54 - Dados de campo das campanhas diárias de verão ..411
Tabela 55 - Comparação dos resultados com a literatura..412
Tabela 56 - Demandas de dessementação para o setor da pecuária.................................419
Tabela 57 - Demandas de água do sistema superficial para usos consuntivos420
Tabela 58 - Efluentes gerados a partir dos usos consuntivos e respectivos lançamentos ..421
Tabela 59 - Estações fluviométricas consideradas no cálculo da disponibilidade hídrica ...421
Tabela 60 - Disponibilidades hídricas por estação e para a região de interesse.............423
Tabela 61 - Balanço hídrico para a área de estudo (l/s) ..423
Tabela 62 - Descritores físico-químicos da coluna d’água nos setores da AID do TCP – eixo leste-oeste do CEP ..427
Tabela 63 - Qualidade da água nas cercanias dos Terminais Portuários da Ponta do Félix (setor Echo) e limites críticos de alguns contaminantes conforme resolução CONAMA 357/2005 ...429
Tabela 64 - Descritores físico-químicos da coluna d’água na Área de Influência Direta (AID) do TCP (setores Charlie I e II) ...432
Tabela 65 - Freqüência percentual das potencias fontes poluidoras dos Municípios de Antonina, Morretes e Paranaguá. Em "itálico", somatório das categorias. Entre parênteses, número de potencias fontes poluidoras visitadas. O status de potencial contaminação atual refere-se a provável emissão de poluentes ao meio, face a um acidente ao as condições em que as fontes se encontram. ...508
Tabela 66 – Coordenadas dos pontos de coleta do zooplâncton.................................536
Tabela 67 – Coordenadas dos pontos de coleta do zooplâncton.................................541
Tabela 68 – Pontos de amostragem para caracterização do bentos de fundos incondados e respectivas coordenadas geográficas. (UTM – Datum: SAD 69; Zona/Área: 22J).544
Tabela 69 – Pontos de amostragem para caracterização do bentos de fundos consolidados e respectivas coordenadas geográficas. (UTM – Datum: SAD 69 Zona/Área: 22J)553

Tabela 70 – Coordenadas geográficas dos pontos de início e fim de cada arrasto realizado para caracterização da carcinofauna no inverno (UTM – Datum: SAD 69 / Área: 22J)559

Tabela 71 – Coordenadas geográficas dos pontos de início e fim de cada arrasto realizado para caracterização da carcinofauna no verão (UTM – Datum: SAD 69 / Área: 22J)560

Tabela 72 – Estágios de maturação gonadal de *Callinectes* spp (adaptado de PINHEIRO et al., 1998). ..563

Tabela 73 – Coordenadas geográficas das transecções lineares percorridas na Baía de Paranaguá, Estado do Paraná. ..569

Tabela 74 – Anfíbios registrados nas áreas atingidas pelo empreendimento (WISTUBA 2004). ...580

Tabela 75 – Répteis terrestres registrados nas áreas atingidas pelo empreendimento (MORATO 2004). ...582

Tabela 76 – Lista de espécies registradas na AID durante a visita técnica, com a indicação das respectivas famílias e nome popular ...586

Tabela 77 – Lista das espécies de aves citadas para os manguezais da baía de Paranaguá, área de influência do empreendimento ...593

Tabela 78 – Mamíferos terrestres de potencial ocorrência nas áreas atingidas pelo empreendimento. ..604

Tabela 79 – Lista dos táxons fitoplanctônicos (exceto Bacillariophyceae) registrados para o Complexo Estuarino de Paranaguá, PR, com base na literatura.622

Tabela 80 – Densidade celular (células/mL) dos táxons encontrados nos pontos de coleta 1, 2, 3 e 4. Os valores nulos (zero) foram omitidos da tabela ..626

Tabela 81 – Lista das espécies de diatomáceas citadas para o litoral do Paraná, de 1918 a 2010 ...635
Tabela 82 – Espécies de diatomáceas encontradas nas amostragens de setembro de 2009 e janeiro de 2010.

Tabela 83 – Distribuição das espécies de diatomáceas nos pontos de amostragem em setembro de 2009 e janeiro de 2010.

Tabela 84 – Valores de salinidade e temperatura (°C) registrados nas amostragens de setembro de 2009 e janeiro de 2010.

Tabela 85 – Lista de táxons de zooplâncton coletado no inverno nas áreas diretamente afetada e de influência direta do empreendimento.

Tabela 86 – Lista de táxons de zooplâncton coletado no verão nas áreas diretamente afetada e de influência direta do empreendimento.

Tabela 87 – Lista de famílias de larvas de peixes com seus respectivos gêneros e espécies, identificadas no complexo estuarino Baía de Paranaguá, Paraná.

Tabela 88 – Número de ovos e larvas de peixes coletados com a rede cônico-cilíndrica na área diretamente afetada (ADA).

Tabela 89 – Número de exemplares por família de larvas e mês de coleta, obtidos com a rede cônico-cilíndrica na área diretamente afetada (ADA).

Tabela 90 – Número de exemplares com menos de 30 mm de comprimento total por família de larva e mês de coleta, obtidos com a rede de 1 mm de malha na área diretamente afetada (ADA).

Tabela 91 – Número de exemplares com menos de 30 mm de comprimento total por taxa e mês de coleta, obtidos com a rede de 1 mm de malha na área diretamente afetada (ADA).

Tabela 92 – Número de ovos e larvas de peixes coletados com a rede cônico-cilíndrica na área de influência direta (AID).

Tabela 93 – Número de exemplares por família de larvas e mês de coleta, obtidos com a rede cônico-cilíndrica na área de influência direta (AID).
Tabela 94 – Número de exemplares com menos de 30 mm de comprimento total por família de larva e mês de coleta, obtidos com a rede de 1 mm de malha na área de influência direta (AID)..696

Tabela 95 – Número de exemplares com menos de 30 mm de comprimento total por taxa e mês de coleta, obtidos com a rede de 1 mm de malha na área de influência direta (AID).697

Tabela 96 – Número de ovos e larvas de peixes coletados com a rede côncico-cilíndrica na área de influência indireta (AII) em frente ao rio Nhanha...698

Tabela 97 – Número de exemplares por família de larvas e mês de coleta, obtidos com a rede côncico-cilíndrica na área de influência indireta (AII) em frente ao rio Nhanha...............698

Tabela 98 – Número de exemplares com menos de 30 mm de comprimento total por família de larva e mês de coleta, obtidos com a rede de 1 mm de malha na área de influência indireta (AII) em frente ao rio Nhanha...700

Tabela 99 – Número de exemplares com menos de 30 mm de comprimento total por taxa e mês de coleta, obtidos com a rede de 1 mm de malha na área de influência indireta (AII) em frente ao rio Nhanha...701

Tabela 100 – Número de ovos e larvas de peixes coletados com a rede côncico-cilíndrica na área de influência indireta (AII) próxima do rio do Maciel. ...702

Tabela 101 - Número de exemplares por família de larvas e mês de coleta, obtidos com a rede côncico-cilíndrica na área de influência indireta (AII) próxima do rio do Maciel.702

Tabela 102 – Número de exemplares com menos de 30 mm de comprimento total por família de larva e mês de coleta, obtidos com a rede de 1 mm de malha na área de influência indireta (AII) próxima do rio do Maciel. ...703

Tabela 103 – Número de exemplares com menos de 30 mm de comprimento total por taxa e mês de coleta, obtidos com a rede de 1 mm de malha na área de influência indireta (AII) próxima do rio do Maciel. ...704

Tabela 104 – Lista de táxons de decápodes coletados no inverno nas áreas diretamente afetada e de influência direta do empreendimento. ...711
Tabela 105	Lista de táxons de decápodes coletados no verão nas áreas diretamente afetada e de influência direta do empreendimento.	713
Tabela 106	Número de espécies de decápodes registrados na costa brasileira	717
Tabela 107	Táxons mais representativos de cada um dos setores estudados por Hostin et al. (2007), suas porcentagens de contribuição (%C) correspondentes e a porcentagem acumulada (%A) de cada setor.	727
Tabela 108	Listagem de todas as espécies encontradas no inverno (i) e verão (v).	743
Tabela 109	Resultados da ANOSIM pareada. Valores de R próximos de 1 indicam alta dissimilaridade e próximos a 0 indicam alta similaridade	756
Tabela 110	Resultados da análise SIMPER para os agrupamentos: Sublitoral; Baixio não vegetado e Mangueiral	757
Tabela 111	Lista de táxons identificados em substrato consolidado nos manguezais estudados na campanha de inverno	779
Tabela 112	Lista de táxons identificados em substrato consolidado nos manguezais estudados na campanha de verão	780
Tabela 113	Lista de táxons identificados em substrato consolidado sublitoral na campanha de inverno	781
Tabela 114	Lista de táxons identificados em substrato consolidado sublitoral na campanha de verão	786
Tabela 115	Similaridade (distância Euclidiana) entre os pares de locais amostrados, baseados na presença/ausência dos táxons observados	792
Tabela 116	Espécies identificadas nos substratos consolidados e respectivos status, quanto à classificação como espécies nativas (N), criptogênicas (C), introduzidas (I) ou desconhecidas (?)	793
Tabela 117	Táxons registrados por Correia (1989) em painéis experimentais na Ponta da Ilha da Cotinga, na Baía de Paranaguá, e meses de maior porcentagem de cobertura	795
Tabela 118 – Táxons quantificados por ECOWOOD (2002) em substrato consolidado do cais leste do Porto de Paranaguá e porcentagem de cobertura correspondente..............797

Tabela 119 – Ascídias observadas por Rocha & Kremer (2005) em alguns pontos do interior da Baía de Paranaguá e em área costeira próxima (Parque dos Meros).................................801

Tabela 120 – Táxons encontrados por Neves (2007) em uma marina do rio Itiberê, próximo ao TCP...803

Tabela 121 – Táxons encontrados por Cangussu (2008), numa marina do rio Itiberê, próximo ao TCP...806

Tabela 122 – Classificação taxonômica, guilda trófica, distribuição vertical na coluna d'água, importância econômica (IE) e contribuição relativa no número de indivíduos (% N) e biomassa (% B) total, dos taxa de peixes capturados na zona entre-marés da ADA..........810

Tabela 123 – Comprimento médio (±DP), mínimo e máximo (em mm) dos taxa de peixes capturados na zona entre-marés da ADA...811

Tabela 124 – Classificação taxonômica, guilda trófica, distribuição vertical na coluna d'água, importância econômica (IE) e contribuição relativa no número de indivíduos (% N) e biomassa (% B) total, dos taxa de peixes capturados no sublitoral da ADA.814

Tabela 125 – Comprimento médio (±DP), mínimo e máximo (em mm) dos taxa de peixes capturados no sublitoral da ADA.816

Tabela 126 – Classificação taxonômica, número de indivíduos por estação de amostragem, abundância absoluta e relativa (%) dos taxa de peixes capturados na zona entre-marés da AID. ...819

Tabela 127 – Nome vulgar, distribuição vertical na coluna d'água (DV; D, Demersal; P, Pelágica), guilda trófica, guilda ecológica (GE; E, Estuarina; ME, Marinha/ Estuarina; M; marinha) e importância econômica na pesca local (IE) dos taxa de peixes capturados na zona entre-marés da AID. ...823

Tabela 128 – Número de indivíduos por mês de amostragem para os taxa de peixes capturados na zona entre-marés da AID. ...826
Tabela 129 – Classificação taxonômica, número de indivíduos por estação de amostragem, abundância total e relativa (%) das espécies de peixes capturadas no sublitoral da AID. .. 833

Tabela 130 – Distribuição vertical na coluna d’água (DV; D, Demersal; P, Pelágica), guilda trófica, guilda ecológica (GE; E, Estuarina; ME, Marinha/ Estuarina; M; marinha) e importância econômica na pesca local (IE) das espécies de peixes capturadas no sublitoral da AID. ... 835

Tabela 131 – Número de indivíduos por mês de amostragem para as espécies de peixes capturadas no sublitoral da AID .. 841

Tabela 132 – Espécies de crustáceos coletados durante a campanha de inverno. 854

Tabela 133 – Espécies de crustáceos coletados durante a campanha de verão. n= número de indivíduos, LC= largura da carapaça, M=média, DP= desvio padrão, P=peso, CC= comprimento do cefalotórax, CT= comprimento total... 860

Tabela 134 – Estruturação da população da carcinofauna nas campanhas de inverno e verão. .. 873

Tabela 135 – Descriores ecológicos da carcinofauna por ponto amostrado no verão........ 876

Tabela 136 – Lista de publicações que relatam encalhe/ocorrência de cetáceos no Estado do Paraná. .. 886

Tabela 137 – Lista das espécies de cetáceos registrados no Estado do Paraná e seu estado de conservação.. 893

Tabela 138 - Lista das espécies de tartarugas marinhas (quelônios) registradas no Estado do Paraná e seu estado de conservação. ... 894

Tabela 139 - Concentração de grupos, tamanho médio e estrutura dos agrupamentos na área de influência direta do empreendimento do TCP, Paraná.. 898

Tabela 140 – Tamanho e estrutura dos grupos em relação às categorias comportamentais do boto-cinza na Baía de Paranaguá (AID). ... 898

Tabela 141 – Estudos realizados no Estado do Paraná que enfocam a captura de cetáceos ou tartarugas marinhas em redes de pesca de pesca artesanal... 921
Tabela 142 – Lista da composição florística da Floresta Ombrófila Densa das Terras Baixas em Estádio Inicial de Sucessão Secundária na Ilha da Cotinga, no município de Paranaguá–PR..956

Tabela 143 – Lista da composição florística da Floresta Ombrófila Densa das Terras Baixas em Estádio Médio de Sucessão Secundária da Ilha da Cotinga, no município de Paranaguá – PR..960

Tabela 144 – Unidades de Conservação internas à área de influência do empreendimento...
..972

Tabela 145 - Áreas Prioritárias para Conservação internas à área de influência do empreendimento ..974

Tabela 146 – Unidades de Conservação em processo de criação internas à área de influência do empreendimento..997

Tabela 147 – Metodologia utilizada para levantamento dos principais dados e informações sócio-econômicos..1008

Tabela 149 - Taxa anual de crescimento da população residente, segundo a situação de domicílio – Paranaguá e Paraná – 1991 a 2007 ...1016

Tabela 150 - População residente, segundo a faixa etária e razão de dependência, em Paranaguá – 1991 e 2000..1020

Tabela 151 - População residente, por sexo, segundo a faixa etária – bairro D. Pedro II – Paranaguá – 2000..1023

Tabela 152 - Pessoas responsáveis pelos domicílios particulares permanentes por rendimento nominal mensal no bairro D. Pedro II - Paranaguá – 2000...1024

Tabela 153 - Algumas características dos domicílios particulares permanentes no bairro D. Pedro II – Paranaguá – 2000..1025
Tabela 154 - População residente por sexo, segundo a faixa etária, no bairro Costeira/Oceania – Paranaguá – 2000

Tabela 155 - Algumas características dos domicílios particulares permanentes nos bairros Costeira e Oceania – Paranaguá – 2000

Tabela 156 - Pessoas responsáveis pelos domicílios particulares permanentes por rendimento nominal mensal nos bairros Costeira e Oceania - Paranaguá – 2000

Tabela 157 - Ocorrências registradas pelo Corpo de Bombeiros de Paranaguá no bairro Costeira – 2006 – 2007

Tabela 164 - Mortalidade Proporcional (%) por faixa etária segundo grupos de causas, em Paranaguá – 2005.

Tabela 165 - Coeficiente de mortalidade para algumas causas selecionadas, em Paranaguá – 1999-2005 (por 100.000 habitantes).

Tabela 166 - Relação de alguns tipos de equipamentos disponíveis nos estabelecimentos de saúde em Paranaguá – 2008.

Tabela 167 - Especialidades, segundo o número de estabelecimentos, no município de Paranaguá – 2008.

Tabela 169 - Notificações registradas no Sinan de acidentes por animais peçonhentos, em Paranaguá, 2007 a 2009

Tabela 170 - Notificações registradas no Sinan de casos confirmados de hepatite, em Paranaguá, 2007 a 2009

Tabela 171 - Notificações registradas no Sinan de intoxicações exógenas, em Paranaguá, 2007 a 2009

Tabela 172 - Casos confirmados notificados no Sinan, em Paranaguá, 2007 a 2009

Tabela 173 - Estado nutricional dos beneficiários até nove anos do Programa Bolsa Família, em Paranaguá e Paraná, junho/2008

Tabela 174 - Consumo alimentar da população de Paranaguá – Período 2000/2003

Tabela 175 - Alimentos consumidos diariamente segundo zona espacial de Paranaguá

Tabela 176 - Domicílios particulares permanentes, moradores em domicílios particulares permanentes e média de moradores por domicílio particular permanente, por situação de domicílio – Paranaguá e Paranaguá – 2000

Tabela 177 - Déficit habitacional segundo classes de renda familiar mensal – Paranaguá – 2000

Tabela 178 - Domicílios com inadequação, segundo classes de renda familiar mensal – Paranaguá – 2000

Tabela 179 - Percentual de pessoas que vivem em domicílios permanentes, por serviços – Paranaguá e Paraná – 2000

Tabela 180 - Relação de equipamentos culturais em Paranaguá – 2006

Tabela 181 - Transportadores e frota de veículos, no Brasil – 2006

Tabela 182 - Estimativa do saldo pessoal líquido do caminhoneiro supondo renovação da frota – 1999

Tabela 189 - Escolaridade dos empregos gerados em Paranaguá – 2000 e 2005 (em %). ..1155

Tabela 190 - Pessoas ocupadas por classes de rendimento nominal mensal de todos os trabalhos – Paranaguá e Paraná – 2000 ..1156

Tabela 191 - Valor do rendimento mediano mensal* do trabalho principal das pessoas ocupadas, por posição na ocupação (em R$) – Paranaguá e Paraná – 2000.1157

Tabela 193 - Total de estabelecimentos segundo o número de funcionários por setor de atividade econômica – Paranaguá – 2005..1161

Tabela 194 - Postos de trabalho na indústria de transformação, segundo os grupos e subgrupos de intensidade tecnológica – Paranaguá – 2005..1163

Tabela 195 - Número de estabelecimentos segundo o número de funcionários na indústria de transformação, por grau de intensidade tecnológica – Paranaguá – 20051165

Tabela 196 - Número de estabelecimentos e participação relativa, segundo o tamanho do estabelecimento, em segmentos do setor turístico, em Paranaguá – 2006.1169
Tabela 197 - Número de empregos segundo o tamanho do estabelecimento, em segmentos do setor turístico, em Paranaguá – 2006...1170

Tabela 198 - Número de pescadores e embarcações registradas por Colônia de Pescadores...1186

Tabela 199 - Estrutura etária dos pescadores artesanais de Paranaguá......................1190

Tabela 200 - Escolaridade dos pescadores artesanais de Paranaguá1191

Tabela 201 - Destinação dos dejetos nas moradias de pescadores artesanais de Paranaguá...1192

Tabela 202 - Valor e quantidade pescada pelos pescadores artesanais de Ilha de Valadares e Ilha da Cotinga...1207

Tabela 203 – Custos mensais da Pesca/ Receita Bruta e Líquida Mensal dos Pescadores da Ilha dos Valadares e Ilha da Cotinga...1212

Tabela 204 - Evolução da receita total per capita - Paranaguá – 2005/2006 (em R$).....1241

Tabela 205 - Receitas tributárias por tipo – Paranaguá, 2005 – 2006 (em R$)..............1242

Tabela 206 - Receitas de transferências correntes, segundo alguns tipos – Paranaguá, 2005 – 2006 (em R$)...1243

Tabela 207 – Proporção das despesas com pessoal e encargos sociais no total das despesas não financeiras em Paranaguá – 2001 – 2006 ...1244

Tabela 208 - Despesas por funções, em Paranaguá – 2006..1245

Tabela 209 - Número de estabelecimentos e área dedicados à atividade agropecuária, em Paranaguá – 2006...1246

Tabela 210 - Número de estabelecimentos segundo o tamanho, em Paranaguá – 1995/96. ...1247

Tabela 211 – Fluxo de veículos por categoria no pedágio de São José dos Pinhais - 2008 ...1259
Tabela 212 - Fluxo de caminhões no pedágio de São José dos Pinhais – 2008
Tabela 213 - Sambaquis cadastrados no município de Paranaguá-PR.
Tabela 214 – Características da AID para os meios físico, biótico e antrópico.
Tabela 215 - Avaliação das variáveis relevantes e a inter-relação com a atividade portuária
Tabela 216 - Diagrama de ocorrência conjunta de intensidade e direção do vento CEP
Tabela 217 – Diagrama de ocorrência conjunta de intensidade e direção do vento NCEP
Tabela 218 - Características do fundeio no par de bóias sinalizadoras 3 e 4.
Tabela 219 - Amplitude (cm) e fase local (°) das principais componentes harmônicas para as estações maregráficas da Ponta da Galheta e do Porto de Paranaguá.
Tabela 220 - Dados de vazão (Qr), concentração de material particulado em suspensão (MPS), carga de MPS por unidade de tempo (Qs), fluxo diário de MPS e área total das bacias de drenagem dos principais rios que desembocam nas baías de Antonina e Paranaguá, na de campanha inverno de 1997.
Tabela 221 - Dados de vazão (Qr), concentração de material particulado em suspensão (MPS), carga de MPS por unidade de tempo (Qs), fluxo diário de MPS e área total das bacias de drenagem dos principais rios que desembocam nas baías de Antonina e Paranaguá, na campanha de verão de 1998.
Tabela 222 - Estações fluviométricas da ANA na região de estudo.
Tabela 223 - Granulometria (%) média do sedimento no CEP.
Tabela 224 - Concentração de sedimentos em suspensão na coluna d’água no CEP.
Tabela 225 - Características da draga.
Tabela 226 - Características do material dragado.
Tabela 227 - Características das operações de dragagem .. 1412
Tabela 228 - Cenários simulados .. 1413
Tabela 229 - Resumo dos resultados obtidos na modelagem .. 1414
Tabela 230 - Critério de avaliação de aspectos e impactos ambientais 1429
Tabela 231 - Critério de avaliação de aspectos e impactos ambientais 1429
Tabela 232 - Critério de avaliação de aspectos e impactos ambientais 1430
Tabela 233 - Critério de avaliação de aspectos e impactos ambientais 1430
Tabela 234 - Critério de avaliação de aspectos e impactos ambientais 1431
Tabela 235 - Critério de avaliação de aspectos e impactos ambientais 1431
Tabela 236 - Critério de avaliação de aspectos e impactos ambientais 1432
Tabela 237 - Critério de avaliação de aspectos e impactos ambientais 1432
Tabela 238 - Critério de avaliação de aspectos e impactos ambientais 1433
Tabela 239 - Critério de avaliação de aspectos e impactos ambientais 1434
Tabela 240 - Principais instituições produtoras de informação estatística do Brasil, fontes de dados e temas abordados .. 1495
Tabela 241 - Fluxos de entradas e saídas de contêineres através do Porto de Paranaguá 1497
Tabela 242 - Relação de novas contratações previstas para o TCP .. 1501
Tabela 243 – Exportações em US$ do Terminal de Contêineres de Paranaguá 1512
Tabela 244 - Matriz de impactos ambientais positivos e negativos de ocorrência real 1524
Tabela 245 - Matriz de impactos ambientais potenciais ... 1527
Tabela 246– Comparativo: Iluminação a LED x Lâmpadas comuns ... 1712
LISTA DE FIGURAS

Figura 1 – Área de risco na área costeira e estuarina do Paraná ..105

Figura 2 – Zoneamento da área costeira e estuarina do Paraná ...106

Figura 3 - Rede de Cidades - Paranaguá entre os destaques com mais de 100 mil habitantes ..115

Figura 4 - Distribuição do PIB municipal ..116

Figura 5 - Domicílios urbanos com esgotamento sanitário por rede geral ou pluvial116

Figura 6 - Índice de Desenvolvimento Humano ...117

Figura 7 – Vista parcial da cantina do TCP disponibilizada para os caminhoneiros139

Figura 8 – Detalhe da localização da ampliação com relação aos cais existente143

Figura 9 - Seção do esquema construtivo do cais ...145

Figura 10 - Localização das áreas de dragagem e despejo ..147

Figura 11 – Localização das estacas ...148

Figura 12 – Localização da plataforma ..150

Figura 13 - Ilustração do cais concluído ..151

Figura 14 - Localização da rede de água ...153

Figura 15 - Detalhe da disposição do canteiro de obras ...154

Figura 16 - Localização do projeto de expansão "Plataforma Aduaneira" (em vermelho) ...160

Figura 17 – Localização geográfica do empreendimento ..164

Figura 18 - Detalhe da estrutura existente e ampliação a ser implantada,165

Figura 19 - Acessos terrestres a Paranaguá (Ministério dos Transportes – 2007) ...166

Figura 20 - Planta da localização do TCP e acessos ...167
Figura 21 – Ilustração dos principais núcleos urbanos na área de influência direta do empreendimento ..168

Figura 22 – Ilustração da localização do Complexo Estuarino de Paranaguá (CEP) com a relação as principais toponímias. ..169

Figura 23 – Bacias hidrográficas analisadas. ..171

Figura 24 – Propostas construtivas lado oeste. ..183

Figura 25 – Fases de expansão do cais do TCP, previstas quando do início do licenciamento ambiental junto ao IAP em 2000..184

Figura 26 – Localização da alternativa atual de expansão do cais ..185

Figura 27 – Demonstração do tipo de estrutura utilizada para a construção do novo cais...186

Figura 28 - Localização da Área Diretamente Afetada..187

Figura 29 – Localização da área de influência direta do empreendimento para os meios físico e biótico (raio de 10km). ...189

Figura 30 – Ilustração da Área de Influência Direta Restringida para o meio sócio-econômico ..191

Figura 31 – Ilustração da AID relativa a pesca artesanal...192

Figura 32 – Ilustração da Área de Influência Direta Expandida para o meio sócio-econômico ..193

Figura 33 - Localização das bacias de drenagem da baía de Paranaguá (AII).195

Figura 34 - Localização das bacias de drenagem da baía de Paranaguá (AII) para a oceanografia e hidrodinâmica estuarina. ...198

Figura 35 – Delimitação da AII para o meio biótico que compreende toda a superfície líquida do CEP até às suas desembocaduras). ...199

Figura 36 – Área de Influência Indireta para o meio sócio-econômico.................................201
Figura 37 - Abrangência espacial dos levantamentos pedológicos existentes para a área de drenagem da baía de Paranaguá ...203

Figura 38 - Localização dos testemunhos realizados na área de expansão do píer do TCP para a coleta de amostras sedimentares ...207

Figura 39 - Localização do ponto referência (R) ..207

Figura 40 - Diagrama demonstrativo das profundidades onde foram tomadas amostras para as análises granulométricas para a expansão do píer do TCP ..208

Figura 41 - Sistema do teste de toxicidade com interface sedimento-água ..221

Figura 42 - Mapa com os pontos amostrais da coluna d’água ..231

Figura 43 - Dinâmica das Massas de Ar atuantes no Brasil ...234

Figura 44 - Temperatura média nas bacias de drenagem da baía de Paranaguá (média histórica – 1974-2003) ..237

Figura 45 - Temperatura máxima média anual e sazonal nas bacias de drenagem da baía de Paranaguá (média histórica – 1974-2003) ..239

Figura 46 - Temperatura mínima média anual e sazonal nas bacias de drenagem da baía de Paranaguá (média histórica – 1974-2003) ..240

Figura 47 - Temperatura média mensal de Paranaguá ...243

Figura 48 - Umidade relativa do ar média mensal de Paranaguá ...244

Figura 49 - Direção e velocidade média do vento predominante (Antonina – 1986-1999)246

Figura 51 – Insolação média mensal de Antonina e Morretes ...248

Figura 52 – Nebulosidade média mensal de Antonina e Morretes ..249

Figura 53 – Estações pluviométricas e meteorológicas selecionadas para a caracterização da pluviosidade das bacias de drenagem da baía de Paranaguá ...252
Figura 54 - Precipitação pluviométrica média anual nas bacias de drenagem da baía de Paranaguá (média histórica – 1975-2005) .. 254

Figura 55 - Precipitação pluviométrica média sazonal nas bacias de drenagem da baía de Paranaguá (média histórica – 1973-2002) .. 255

Figura 56 – Pluviosidade média mensal em Paranaguá (média histórica – 1975-2005) .. 257

Figura 57 – Eventos pluviométricos superiores a 50 mm em 24 horas no município de Paranaguá (1975-2005) .. 258

Figura 58 – Chuva máxima mensal no período 1975-2005 em Paranaguá .. 258

Figura 59 – Número médio de dias com chuva no mês (Paranaguá) .. 260

Figura 61 - Mapa geológico da porção W do Complexo Estuarino de Paranaguá com as principais unidades geocronológicas (ADEMAN – Programa CAD) .. 263

Figura 62 - Detalhe da Carta Náutica 1824 (DHN) com as localizações dos principais auto-fundos próximos as cais do Porto de Paranaguá (Modificado de Carta Náutica 1824, DHN). .. 268

Figura 63 - Levantamento de sismica rasa realizado na adjacência da Ponta da Cruz (ilha da Cotinga) indicando as profundidades em que ocorrem as rochas na área de estudo (Lamour et al., em prep). .. 268

Figura 64 – Ilustração da Carta Geomorfológica da Área de Drenagem da baía de Antonina. .. 272

Figura 65 – Freqüência altimétrica da área de drenagem da baía de Paranaguá .. 277

Figura 66 – Ilustração da carta hipsométrica da área de drenagem da baía de Paranaguá 278

Figura 67 – Ilustração da carta de declividade da área de drenagem da baía de Paranaguá .. 281

Figura 68 – Espacialidade da Sub-Ordem Pedológica dos Argissolos .. 286
Figura 69 – Espacialidade da Sub-Ordem Pedológica dos Cambissolos..............................288
Figura 70 – Espacialidade da Sub-Ordem Pedológica dos Espodossolos..........................290
Figura 71 – Espacialidade da Sub-Ordem Pedológica dos Gleissolos................................294
Figura 72 – Espacialidade da Sub-Ordem Pedológica dos Latossolos...............................296
Figura 73 – Espacialidade da Sub-Ordem Pedológica dos Neossolos.298
Figura 74 – Espacialidade da Sub-Ordem Pedológica dos Organossolos.302
Figura 77 - Mapa de distribuição dos valores de diâmetro médio no Complexo Estuarino de Paranaguá (Fonte: Lamour et al., 2004)...312
Figura 76 – Fotos aéreas em direção à montante do sistema estuarino mostrando os processos de ressuspensão (a) e a formação de frente estuarina (b) na margem do CEP durante maré de enchente. ..339
Figura 77 – Foto das frentes estuarinas, geradas durante a maré enchente, nas margens do Complexo Estuarino da Baía de Paranaguá...340
Figura 78 – Eixo L-O, ao Sul do CEP da Carta Náutica da DHN, sendo que o quadro indica a localização aproximada do empreendimento..355
Figura 79 – Variação espaço-temporal da salinidade entre Antonina e Ilha do Mel em um intervalo de 2 anos, agrupada em setores de 6 km. São apresentadas as variações para as camadas de superfície, meio e fundo (Noernberg, 2001). ...358
Figura 80 – Variação espaço-temporal da salinidade entre Ponta do Poço e Guaraqueçaba em um intervalo de 2 anos, agrupada em setores de 6 km. São apresentadas as variações para as camadas de superfície, meio e fundo (Noernberg, 2001). ...359
Figura 81 – Variações do nível médio do mar devidas principalmente ao efeito da maré astronômica em diversos locais do CEP. ...361
Figura 82 – Elipses de Correntes e vetores progressivos (área aprox. do empreendimento no quadro)..367
Figura 83 - Saída do modelo POM para o nível médio do Mar em Paranaguá (Camargo, 1998).

Figura 84 – Distribuição das direções e intensidades de correntes de superfície no canal de navegação em frente ao Porto de Paranaguá de dezembro/95 a outubro/96.

Figura 85 – Componente da corrente longitudinal (u) ao canal em frente ao Porto de Paranaguá durante um ciclo completo de maré de sizígia.

Figura 86 – Componente da corrente transversal (v) ao canal em frente ao Porto de Paranaguá durante um ciclo completo de maré de sizígia.

Figura 87 – Registros de velocidade (direita) e direção (esquerda) de observações de correntes com ADP Sontek na área do Porto de Paranaguá na frente do píer da Fospar, do píer do Rocio e do TCP.

Figura 89 – Bacias hidrográficas analisadas.

Figura 90 – Mapa de isoerosividade pela chuva.

Figura 91 – Localização de GPS na bacia litorânea e do reservatório no rio Capivari.

Figura 92 – Mapa de localização das estações fluviosedimentométricas.

Figura 93 – Área de estudo considerada em MANTOVANELLI (1999).

Figura 95 - Mapa com os pontos amostrais da coluna d’água.

Figura 96 - Variação da salinidade na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009.

Figura 97 - Variação do pH na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo.
Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. As linhas vermelhas pontilhadas representam os valores mínimo e máximo preconizados pela Resolução CONAMA 357/05, para as águas salobras da classe 1.

Figura 98 - Variação da concentração de oxigênio dissolvido (mg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o valor mínimo preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2.

Figura 99 - Variação da concentração de nitrato (mg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2.

Figura 100 - Variação da concentração de nitrito (mg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2.

Figura 101 - Variação da concentração de nitrogênio amoniacal total (mg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2.

Figura 102 - Variação da concentração de polifosfatos (mg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2.

Figura 103 - Variação da concentração de fósforo total (mg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em
dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2.........................442

Figura 104 - Variação da concentração de carbono orgânico total (mg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2........443

Figura 105 - Variação da concentração de arsênio total (mg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2. (LQ=0,01 mg/L)........445

Figura 106 - Variação da concentração de cádmio (mg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2. (LQ = 0,001 mg/L)446

Figura 107 - Variação da concentração de chumbo (mg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2. (LQ = 0,01 mg/L)447

Figura 108 - Variação da concentração de cromo total (mg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2. (LQ = 0,01 mg/L)448

Figura 109 - Variação da concentração de cobre dissolvido (mg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em
dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2. (LQ = 0,001 mg/L).....449

Figura 110 - Variação da concentração de níquel (mg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2. (LQ = 0,01 mg/L)......450

Figura 111 - Variação da concentração de zinco (mg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2. (LQ = 0,01)................451

Figura 112 - Variação da concentração de mercúrio (mg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2. (LQ = 0,0001 mg/L) ...452

Figura 113 - Variação da concentração de selênio (mg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2. (LQ = 0,01 mg/L)453

Figura 114 - Variação da concentração de cianeto livre (mg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2. (LQ = 0,002 mg/L)455

Figura 115 - Variação da concentração de cloro residual total (mg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico
EIA – Ampliação do Cais

preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2. (LQ = 0,01 mg/L) ... 457

Figura 116 - Variação da concentração de surfactantes (mg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2. (LQ = 0,01 mg/L LAS) 459

Figura 117 - Variação da concentração de óleos e graxas totais (mg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2. (LQ = 5 mg/L) .. 460

Figura 118 - Variação da concentração de óleos e graxas minerais (mg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2. (LQ = 5 mg/L) .. 461

Figura 119 - Variação da concentração de Aldrin (µg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2. (LQ = 0,001 µg/L) 462

Figura 120 - Variação da concentração de Dieldrin (µg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2. (LQ = 0,001 µg/L) 463

Figura 121 - Variação da concentração de Carbaril (µg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano
do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2. (LQ = 0,001 µg/L)......464

Figura 122 - Variação da concentração de Clordano (µg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2. (LQ = 0,001 µg/L)......465

Figura 123 - Variação da concentração de 2,4-D (µg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2. (LQ = 0,01 µg/L)........466

Figura 124 - Variação da concentração de DDT (µg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2. (LQ = 0,001 µg/L)..................467

Figura 125 - Variação da concentração de Demeton (µg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2. (LQ = 0,001 µg/L)......468

Figura 126 - Variação da concentração de Dodecloro Pentaciclorodecano (µg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2. (LQ = 0,001 µg/L)..469

Figura 127 - Variação da concentração de Endrin (µg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano
do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2. (LQ = 0,001 µg/L)......470

Figura 128 - Variação da concentração de Endossulfan (µg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2. (LQ = 0,001 µg/L)......471

Figura 129 - Variação da concentração de Gution (µg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2. (LQ = 0,001 µg/L)......472

Figura 130 - Variação da concentração de Heptacloro Epóxido (µg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2. (LQ = 0,001 µg/L)..473

Figura 131 - Variação da concentração de Heptacloro (µg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2. (LQ = 0,001 µg/L)..474

Figura 132 - Variação da concentração de Lindano (µg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2. (LQ = 0,001 µg/L)......475

Figura 133 - Variação da concentração de Malation (µg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano
do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2. (LQ = 0,01 µg/L)........476

Figura 134 - Variação da concentração de Metoxicloro (µg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2. (LQ = 0,01 µg/L)........477

Figura 135 - Variação da concentração de Paration (µg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2. (LQ = 0,001 µg/L)......478

Figura 136 - Variação da concentração de Pentaclorofenol (µg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2. (LQ = 1 µg/L).............479

Figura 137 - Variação da concentração de 2,4,5-T (µg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2. (LQ = 0,01 µg/L)........480

Figura 138 - Variação da concentração de 2,4,5-TP (µg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2. (LQ = 0,01 µg/L)........481

Figura 139 - Variação da concentração de Toxafeno (µg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em
dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras Classe 2. (LQ = 0,001 µg/L)......482

Figura 140 - Variação da concentração de fenóis (mg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras Classe 2. (LQ = 0,001 mg/L C6H5OH)483

Figura 141 - Variação da concentração de Tributilestanho, TBT (µg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras Classe 2. (LQ = 0,01 µg/L)...484

Figura 142 - Variação da concentração de Benzeno (µg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras Classe 2. (LQ = 1 µg/L).............486

Figura 143 - Variação da concentração de Tolueno (µg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. (LQ = 1 µg/L)487

Figura 144 - Variação da concentração de Etilbenzeno (µg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras Classe 2. (LQ = 1 µg/L).............488

Figura 145 - Variação da concentração de O-Xileno (µg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano
do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. (LQ = 1 µg/L) ...489

Figura 146 - Variação da concentração de M/P-Xileno (µg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. (LQ = 1 µg/L) ...490

Figura 147 - Variação da concentração de Triclorobenzeno (µg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. A linha vermelha pontilhada representa o limite crítico preconizado pela Resolução CONAMA 357/05, para as águas salobras da Classe 2. (LQ = 0,01 µg/L)491

Figura 148 - Variação da concentração de Monoclorobenzeno (µg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. (LQ = 1 µg/L) ...492

Figura 149 - Variação da concentração de Bifenilas Policloradas, PCBs (µg/L) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009. (LQ = 0,001 µg/L)493

Figura 150 - Variação da concentração de Coliformes Totais (UFC/100mL) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009.495

Figura 151 - Variação da concentração de Coliformes Totais Termotolerantes (UFC/100mL) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009.496

Figura 152 - Variação da concentração de *Escherichia coli* (UFC/100mL) na coluna d’água na área diretamente afetada pelas atividades de ampliação do cais oeste do TCP, no setor mediano do eixo leste-oeste do Complexo Estuarino de Paranaguá, em amostragem realizada em dezembro de 2009.497
Figura 153 - Potenciais fontes poluidoras visitadas nos Municípios de Antonina, Morretes e Paranaguá. Coordenadas em UTM.503

Figura 155 – Potenciais fontes poluidoras visitadas no Município de Morretes. Coordenadas em UTM. Os números indicam o nome dos locais visitados: 1) Roquelwe Comércio de Artes Metalizadas Ltda; 2) Lixão a Céu Aberto de Morretes; 3) Lixão Antigo Morretes; 4) C.T.M. Papéis Ltda.; 5) Fábrica de Papel São Marcos 2; 6) Fábrica de Papel Kraft (Induspel); 7) Gnatta e Bolzon Ltda.; 8) Areal Brustolin; 9) Areal Bertazzoni; 10) Extração de Seixos; 11) Areal do Hernesto; 12) Mina de Ouro (desativada); 13) Saibreira Morretes..........................505

Figura 157 – Localização dos pontos de medição (pontos 1 ao 6 a direita)........................528

Figura 160 - Níveis de pressão sonora nos pontos monitorados529

Figura 159 - Pontos de amostragem do fitoplâncton. P1: próximo a foz do Rio Itiberê, P2: Rio Itiberê, P3: em frente ao TCP e P4 em frente ao Porto de Paranaguá.535
Figura 160 – Localização da área de estudo e pontos de coleta. ...536

Figura 161 – Arrasto horizontal de superfície com rede cilindro cônica (Autor: M. Serafim Jr - 20/09/09). ...537

Figura 162 – Acondicionamento das amostras de zooplâncton (Autor: M. Serafim Jr - 20/09/09). ...537

Figura 163 – Localização dos pontos de coleta..539

Figura 164 – Amostradores utilizados nas áreas de influência ADA, AID e AII: a) rede tipo picaré para a coleta de fases larvais e juvenis; b) rede de ictioplâncton para a coleta de ovos e larvas. ...540

Figura 165 – Localização da área de estudo e pontos de coleta. ...541

Figura 166 – Arrasto horizontal de superfície com rede cilindro cônica (Autor: M. Serafim Jr - 20/09/09). ...542

Figura 167 – Acondicionamento das amostras de zooplâncton (Autor: M. Serafim-Junior - 20/09/09). ...542

Figura 168 – Imagem da região do empreendimento com a localização de todos os pontos de coleta...545

Figura 169 – Imagem da ADA do empreendimento com a localização dos cinco pontos de coleta. ...546

Figura 170 – Amostragens da macrofauna bêntica em ambientes distintos: a – Baixio não vegetado (ponto 5); b – Manguezal (ponto 6) e c – Sublitoral (Ponto 2).546

Figura 171 – Equipamentos utilizados nas coletas: a) pegador de fundo do tipo Van-veen e b) amostrador cilíndrico de PVC...547

Figura 172 – Infra-estrutura utilizada: a - galpão de lavagem de amostras; b – lavagem de amostra com peneira de 0,5 mm de abertura; c – microscópio para identificação dos organismos; d – microscópio estereoscópico para triagem e identificação de amostras....549

Figura 173 – Vista aérea da área do empreendimento, com a marcação dos pontos de amostragem. Obs: o ponto Manguezal Ilha da Cotinga 2 não aparece na figura...........554
Figura 174 – Localização das estações amostradas na zona entre-marés e no sublitoral da ADA, para caracterização da ictiofauna. ...557

Figura 175 – Modelo de rede de arrasto de portas utilizado no diagnóstico da carcinofauna. ..558

Figura 176 – Imagem de satélite mostrando as quatro transecções (arrastos) realizadas para caracterização da carcinofauna durante o inverno. As estrelas destacam as áreas de manguezal visitadas. ..560

Figura 177 – Imagem de satélite mostrando as quatro transecções (arrastos) realizadas para caracterização da carcinofauna durante o verão. As estrelas destacam as áreas de manguezal visitadas. ..561

Figura 178 - Área dos “dolphins” onde foram realizadas as sondagens, as quais foram acompanhadas pela equipe de cetáceos. ...566

Figura 179 – Monitoramento da presença de botos na área dos “dolphins” durante as sondagens..566

Figura 180 – Complexo Estuarino de Paranaguá, Estado do Paraná, e os setores estudados durante o período de 2007 a 2009-1. ...567

Figura 181 – Rotas utilizadas durante os períodos de amostragem de boto-cinza, Sotalia guianensis (2007 a 2009-1), em áreas internas do Complexo Estuarino de Paranaguá, Estado do Paraná..568

Figura 182 – Área de amostragem utilizada em 2009-2 e transecções lineares utilizada para amostragem dos botos-cinza..568

Figura 183 – Ponto zero (A) utilizado para estimar a distancia dos botos a zona portuária de Paranaguá durante as amostragens de boto-cinza. ...573

Figura 184 – Garça-azul (Egretta caerulea), espécie comum na área de influência direta do empreendimento. ...590

Figura 185 – Grupo de biguás (Phalacrocorax brasilianus) em banco de sedimentos exposto no canal da Cotinga. ...590
Figura 186 – Principal banco de sedimentos utilizado como local de repouso coletivo, localizado ao lado dos dolphings do cais do TCP..591

Figura 187 – Trinta-réis-de-bando (*Thalasseus sandvicensis*), trinta-réis-de-bico-vermelho (*Sterna hirundinacea*), trinta-réis-real (*Thalasseus maximus*), talha-mar (*Rhynchops niger*) e o gaivotão (*Larus dominicanus*) utilizando o mesmo banco de sedimentos na área de influência do empreendimento..592

Figura 190 – Formação Pioneira de Influência Flúvio-Marinha na baía de Paranaguá e a vegetação florestal da Ilha da Cotinga ao fundo: ambientes que dão suporte para a ocorrência de uma avifauna diversificada..599

Figura 189 – Freqüência percentual das classes e grupos fitoplanctônicos encontrados nos pontos de coleta de setembro de 2009 e janeiro de 2010. ...625

Figura 190 – Valores de densidade celular total (células/mL) e concentração de clorofila (µg/L) em relação aos pontos de amostragem em setembro de 2009..630

Figura 191 – Distribuição dos valores de densidade celular total (células/mL) e concentração de clorofila (µg/L) nos pontos de amostragem em janeiro de 2010..630

Figura 192 – Amplitude das marés nos períodos de amostragem do zooplâncton. As setas indicam a hora das coletas. Fonte: Banco Nacional de Dados Oceanográficos (DHN)........667

Figura 193 – Temperatura da água nos pontos de coletas durante o inverno (20/09/09) e o verão (13/01/10). ..667

Figura 194 – Salinidade da água nos pontos de coletas durante o inverno (20/09/09) e o verão (13/01/10). ..668

Figura 195 – Transparência da coluna d’água nos pontos de coletas durante o inverno (20/09/09) e o verão (13/01/10). ..668

Figura 196 – Riqueza de táxons do zooplâncton no inverno (20/09/09) e no verão (13/01/10). ..674

Figura 197 – Densidade média do zooplâncton no inverno (20/09/09) e no verão (13/01/10). ..675
Figura 198 – Abundância relativa dos grupos zooplanctônicos no inverno (20/09/09).......675
Figura 199 – Abundância relativa dos grupos zooplanctônicos no verão (13/01/10).........676
Figura 200 – Abundância relativa das espécies de copépodes no inverno (20/09/09).......676
Figura 201 – Abundância relativa das espécies de copépodes no verão (13/01/10).........677
Figura 202 – Abundância relativa de copepoditos no inverno (20/09/09).........................677
Figura 203 – Abundância relativa de copepoditos no verão (13/01/10)........................678
Figura 204 – Amplitude das marés nos períodos de amostragem do zooplancton: a) maré de sizígia e b) maré de quadratura. As setas indicam a hora das coletas. Fonte: Banco Nacional de Dados Oceanográficos (DHN). ..708
Figura 205 – Temperatura da água nos pontos de coletas durante o inverno (20/09/09) e o verão (13/01/10). ..709
Figura 206 – Salinidade da água nos pontos de coletas durante o inverno (20/09/09) e o verão (13/01/10). ..709
Figura 207 – Transparência da coluna d’água nos pontos de coletas durante o inverno (20/09/09) e o verão (13/01/10). ..710
Figura 208 – Riqueza de táxons de decápodes no inverno (20/09/09) e no verão (13/01/10). ..714
Figura 209 – Densidade média de decápodes no inverno (20/09/09) e no verão (13/01/10). ..715
Figura 210 – Abundância relativa dos táxons de decápodes no inverno (20/09/09)........715
Figura 211 – Abundância relativa dos táxons de decápodes no verão (13/01/10).716
Figura 212 – Complexo Estuarino de Paranaguá indicando os setores: Mes = mesohalino; Pol = polihalino; Euh = euhalino e Mar = marinho. ..723
MAR - Setor Marinho; EUH - Setor Euhalino; POLI - Setor Polihalino e MESO - Setor Mesohalino

Figura 214 – Abundância total dos filos mais representativos nas coletas de inverno e verão.

Figura 215 – Número de espécies que ocorreram nos filos mais representativos coletados no inverno e verão.

Figura 216 – Médias (±), erros-padrão (±EP) (σ) e intervalos com 95% de confiança (±1.96*EP) (τ) da abundância de organismos / m² e riqueza de espécies ao longo dos pontos de coleta nas amostragens de inverno e verão.

Figura 217 – Médias (±), erros-padrão (±EP) (σ) e intervalos com 95% de confiança (±1.96*EP) (τ) da diversidade de Shannon-Wiener e da equitatividade de Pielou ao longo dos pontos de coleta nas amostragens de inverno e verão.

Figura 218 – Análise de proximidade (MDS) entre todas as réplicas do inverno (I) e verão (V).

Figura 219 – Análise de proximidade (MDS) entre todas as réplicas demonstrando os agrupamentos conforme o habitat (sublitoral, baixio não vegetado e manguezal).

Figura 220 – Análise de Cluster entre todas as réplicas demonstrando os agrupamentos conforme o habitat (S = sublitoral, B = baixio não vegetado e M = manguezal).

Figura 221 – Dominância acumulada em porcentagem pelo ranking de espécies logaritimizado dos pontos de sublitoral no inverno e verão.

Figura 222 – Dominância acumulada em porcentagem pelo ranking de espécies logaritimizado dos pontos de baixio no inverno e verão.

Figura 223 – Dominância acumulada em porcentagem pelo ranking de espécies logaritimizado dos pontos de manguezal no inverno e verão.

Figura 224 – Curva do número de espécies acumuladas pelas amostras coletadas.

Figura 227 – a) Manguezal da Ilha da Cotinga; b) Aglomerado de ostras e cracas em caule de mangue na Ilha da Cotinga; c) *Bostrichia radicans* em caule de mangue na Ilha da Cotinga; d) Cais do TCP; e) Incrustações na região entremarés do Cais do TCP; f) Detalhe das incrustações na região entremarés do Cais do TCP..771

Figura 228 – Estimativas de densidade de cracas (média e desvio padrão) nas campanhas de inverno (cinza) e verão (branco) em alguns ambientes estudados..............................772

Figura 229 – a) Dolphin Leste; b) Localização das Palanganas, vista do TCP; c) Ponta da Cotinga; d) Grupo de cracas sobre rocha na Ilha da Cotinga..777

Figura 230 – Grupos mais representativos em número de táxons nas amostragens de substrato consolidado sublitoral. ..791

Figura 231 – Número de táxons observados em cada área amostral nas campanhas de inverno e verão...791

Figura 232 – Localização das estações amostradas na zona entre-marés da AID, de acordo com Falcão et al. (2006)..818

Figura 233 – Valores médios (± erro e desvio padrão) de biomassa, número de indivíduos, número de espécie e dos índices de riqueza de Margalef, diversidade de Shannon-Wiener e equitabilidade de Pielou por mês e estação de amostragem. Os resultados das análises de variância paramétrica (ANOVA - F) e não paramétrica (Kruskal-Wallis - KW - H) são fornecidos dentro dos gráficos..830

Figura 234 – Localização das estações amostradas no sublitoral da AID, de acordo com Queiroz (2005)...832

Figura 235 – Valores médios (± erro e desvio padrão) de biomassa, número de indivíduos, número de espécie e dos índices de riqueza de Margalef, diversidade de Shannon-Wiener e equitabilidade de Pielou por mês e estação de amostragem. Os resultados das análises de variância paramétrica (ANOVA - F) são fornecidos dentro dos gráficos.840

Figura 236 – *Callinectes danae* (o indivíduo marcado é da espécie *C. exasperatus*) coletados no inverno, em vista dorsal (A) e ventral (B)..854
Figura 237 – Distribuição da frequência das classes de largura da carapaça (LC) de machos e fêmeas de *Callinectes danae* amostrados no inverno...855

Figura 238 – Manguezal da Ilha da Cotinga visitado durante as amostragens.856

Figura 239 – Crustáceos observados no manguezal da Ilha da Cotinga. A) *Goniopsis cruentata*, B) *Hexapanaopeus schmitt*, C) toca fechada do caranguejo *Ucides cordatus* e D) toca aberta do caranguejo *Ucides cordatus*...857

Figura 240 – Curva cumulativa de espécies amostradas no verão..858

Figura 241 – Distribuição da frequência das classes de largura da carapaça (LC) de machos e fêmeas de *Callinectes danae* amostrados no verão. ...861

Figura 242 – Distribuição da frequência das classes de largura da carapaça (LC) de machos e fêmeas de *Callinectes ornatus* amostrados no verão. *=fêmea ovígera. ..862

Figura 244 – *Charybdis helleri* coletado na campanha de verão. ..876

Figura 245 – O boto-cinza na região portuária (© Camila Domit). ..881

Figura 246 – Tartaruga-verde na região de Pontal do Paraná (Fonte: LEC/UFPR).881

Figura 247 – Imagens de coletas realizadas durante os estudos de impacto referente ao empreendimento de ampliação do cais leste do Terminal de Contêineres de Paranaguá, PR. ...883

Figura 248 – Pontos de ocorrência do boto-cinza, entre 2007 e 2009, na Área Diretamente Afetada e de Influência Direta do empreendimento do TCP, Estado do Paraná.900

Figura 249 - Pontos de ocorrência de indivíduos ou grupos de boto-cinza durante o período de setembro a dezembro de 2009, na Área Diretamente Afetada e de Influência Direta do empreendimento do TCP, Estado do Paraná. ...900

Figura 250 – Áreas de concentração dos botos na Área Diretamente Afetada e de Influência Direta do empreendimento do TCP e estimativa de densidade de botos na região. Para
estas estimativas foi calculado o número de indivíduos presente em cada grupo representado no mapa como um ponto preto...901

Figura 251 – Distribuição sazonal dos grupos de boto-cinza referente ao período de 2007 a 2009 e seccionada para enfatizar as áreas referentes a ADA e AID do empreendimento do TCP, Estado do Paraná...902

Figura 252 – Área de vida do boto-cinza determinada pelo método do Mínimo Polígono Convexo, na região da Baía de Paranaguá, Estado do Paraná...903

Figura 253 – Distribuição espaço-temporal das avistagens do boto-cinza, delimitação da área de vida e das áreas de concentração (Estimativa de Kernel). Número de grupos observados por área ao longo dos anos (A. 2007; B. 2008; C. 2009 e; D. áreas de concentração – Kernel 50%). ...905

Figura 254 – Grade de distância da área portuária de Paranaguá e os pontos de ocorrência dos botos-cinza na região da Baía de Paranaguá, Estado do Paraná...907

Figura 255 – Grade de profundidade e os pontos de ocorrência dos botos-cinza na região da Baía de Paranaguá, Estado do Paraná. Tons escuros referem-se a áreas de maior profundidade (limites 1.6m a 20m de profundidade)...908

Figura 256 – Áreas de ocorrência de *Pontoporia blainvillei*, no Complexo Estuarino de Paranaguá, Estado do Paraná...909

Figura 257 – *Dermochelys coriacea* em praia do município de Pontal do Paraná durante ocorrência reprodutiva em Janeiro de 2010...911

Figura 258 – Porcentagem de indivíduos encalhados por espécie encontrados entre Janeiro de 2007 e Agosto de 2009, no Litoral do Estado do Paraná...913

Figura 259 – Freqüência de eventos de encalhes nos meses do ano entre Janeiro de 2007 e Agosto de 2009, no litoral paranaense. ...915

Figura 260 – Proporção de sexo de indivíduos encalhados da espécie Sotalia guianensi, no litoral paranaense...915

Figura 261 – Área dos bancos de grama marinha na região do “Baixio do Perigo”, na Baía de Paranaguá, Estado do Paraná...919
Figura 262 – Vista geral com vegetação em estágio inicial de sucessão secundária na Ilha da Cotinga – canal da Cotinga. ... 952

Figura 263 – Vegetação em estágio inicial de sucessão secundária na Ilha da Cotinga – canal da Cotinga. ... 953

Figura 264 – Borda da vegetação em estágio inicial localizado na porção oeste da Ilha da Cotinga – canal da Cotinga. ... 954

Figura 265 – Interior de vegetação em estágio inicial de sucessão secundária. ... 955

Figura 266 – Vista geral da vegetação em estágio médio de sucessão secundária na Ilha da Cotinga – canal da Cotinga. ... 958

Figura 267 – Aspecto do interior da vegetação em estágio médio de sucessão secundária. ... 959

Figura 268 – Vista geral de manguezal – rio Itiberê/canal da Cotinga. 963

Figura 269 – Aspecto de indivíduos de *Rhizophora mangle* (mangue-vermelho) – rio Itiberê. ... 964

Figura 270 – Aspecto geral da vegetação pioneira – área do TCP ... 966

Figura 271 – *Bidens alba* na área do TCP ... 967

Figura 272 – Estação Ecológica do Guaraguacu ... 976

Figura 273 – Parque Nacional Saint Hilaire-Lange ... 977

Figura 274 – Parque Estadual da Graciosa ... 978

Figura 275 – Parque Estadual do Pau Oco ... 980

Figura 276 – Parque Estadual Pico do Marumbi ... 981

Figura 277 – Parque Estadual Pico do Paraná ... 982

Figura 278 – Parque Estadual Roberto Ribas Lange ... 985

Figura 279 – APA Federal de Guaraqueçaba ... 986
Figura 280 – APA Estadual de Guaraqueçaba ... 987
Figura 281 – APA Estadual de Guaratuba ... 988
Figura 282 – Floresta Estadual do Palmito ... 991
Figura 283 – RPPN Águas Belas .. 992
Figura 284 – RPPN Morro da Mina .. 993
Figura 285 – RPPN Rio Cachoeira .. 995
Figura 286 – AEIT do Marumbi .. 996
Figura 287 – Reserva Biológica Bom Jesus ... 999
Figura 288 – Parque Nacional de Guaricana ... 1001
Figura 289 – RPPN Fazenda Cantábrico ... 1002
Figura 290 – RPPN Fazenda Santa Maria .. 1003
Figura 291 - Pirâmide etária e por sexo – Paranaguá – 1980 ... 1018
Figura 292 - Pirâmide etária e por sexo – Paranaguá - 1991 .. 1019
Figura 293 - Pirâmide etária e por sexo – Paranaguá – 2000 .. 1019
Figura 294 - Vista de parte do bairro D. Pedro II, nas proximidades do empreendimento 1022
Figura 295 - Vista de parte do bairro Costeira, próximo ao empreendimento 1027
Figura 296 - Liberação de resíduos à beira do rio do Chumbo .. 1029
Figura 297 - Vista de logradouro no bairro Costeira com a passagem obstruída em função de manobras de uma carreta tipo cegonha .. 1031
Figura 298 - Vista parcial da rua Benjamin Costant que faz divisa com a margem do rio Itiberê ... 1032
Figura 299 - Vista de área de conserto e atracação de barcos no bairro Costeira 1034
Figura 300 - Tela de aluno do Projeto Museu de Arte Jovem..........................1047
Figura 301 - Estrutura de análise dos determinantes da mortalidade infantil.........1051
Figura 302 - Hospital Regional do Litoral...1060
Figura 303 - Imóvel que abriga a Farmácia Popular em Paranaguá..................1062
Figura 304 - Vista parcial de artigos à venda no comércio local de Paranaguá........1064
Figura 305 - Venda de “garrafadas” no comércio local.....................................1065
Figura 306 - Fórum da Justiça do Trabalho de Paranaguá.................................1096
Figura 307 - Posto do Corpo de Bombeiros no Bairro Costeira..........................1097
Figura 308 - Veículo responsável pelo Resgate Social em Paranaguá.................1101
Figura 309 - Vista parcial de algumas residências da Vila Gabriel de Lara, próxima ao empreendimento...1106
Figura 310 - Inadequação habitacional por infra-estrutura – Paranaguá – 2000........1108
Figura 311 - Vista da entrada do Complexo Esportivo.....................................1110
Figura 312 - Escolinha de vôlei no Complexo Esportivo....................................1111
Figura 313 - Escolinha de natação no Complexo Esportivo...............................1111
Figura 314 - Banner de divulgação da escolinha de vôlei de praia Agatha............1112
Figura 315 - Rua do Bairro Costeira...1117
Figura 316 - Centro Comunitário...1118
Figura 317 - Quadra de esportes da comunidade..1120
Figura 318 - Sede do Sindicato dos Condutores Autônomos de Veículos Rodoviários de Paranaguá...1123
Figura 319 - Sede do Sindicato dos Estivadores de Paranaguá e Pontal do Paraná...1124
EIA – Ampliação do Cais

Figura 320 - Sede do OGMO em Paranaguá. ... 1125

Figura 321 - Sede do Conselho Tutelar de Paranaguá.. 1128

Figura 322 - Lanchonete localizada no interior do TCP para atender os caminhoneiros que a ele se dirigem. .. 1140

Figura 324 - Artesanato indígena em madeira à venda no comércio da Rua da Praia.1146

Figura 325 - Artesanato indígena à venda em comércio na Rua da Praia. 1147

Figura 329 - Valor do rendimento mediano (a preços de 2007) do trabalho principal das pessoas ocupadas – Paranaguá – 2000. .. 1157

Figura 327 - Localização do Aquário Marinho próximo ao novo mercado......................... 1174

Figura 328 - Maquete do Aquário Marinho de Paranaguá. ... 1175

Figura 329 - Novo Mercado Municipal de Paranaguá, 6 dez 2007. 1176

Figura 330 - Variação Populacional das Comunidades Pesqueiras do Litoral do Paraná entre os anos 1972-1994.. .. 1181

Figura 331 – Comunidades pesqueiras existentes na costa paranaense. 1184

Figura 332 - Atracadouro para os pescadores artesanais, inadequado para as pequenas embarcações.. .. 1188

Figura 333 - Embarcações atracadas na rua da Praia destinada à pesca. 1188

Figura 334 - Localização de comunidades pesqueiras próximas ao município de Paranaguá a partir de mapa da SEAP – 2004. 1189

Figura 335 – Fotos da Ilha dos Valadares, entrada Portal Ponte e comunidade pesqueira do Bairro Itiberê... ... 1195

Figura 336 – Pesca no Canal da Cotinga. Vista do Canal da Cotinga a partir da Sub Sede do Iate Clube de Paranaguá. Casa de pescador Ilha da Cotinga. 1196
Figura 337 – Localização da Ilha Perdida...1198

Figura 338 - Número de pescadores entrevistados que disseram “sim, utilizam o canal sudoeste, canal norte e canal sul”. ...1199

Figura 339 - Distribuição da freqüência relativa de pescadores APIVA segundo a faixa etária. ...1200

Figura 340 - Distribuição da freqüência de pescadores segundo o tempo de moradia no local. Entre parênteses, número de pescadores entrevistados...............................1201

Figura 341 – Pescadores segundo a suficiência da renda para o sustento da família.1202

Figura 342 – Famílias que vivem da pesca. ...1203

Figura 343 – Fontes de renda dos pescadores entrevistados..1204

Figura 344 – Número de dias que os entrevistados saem à pesca..............................1205

Figura 345- Número de pescadores segundo a jornada de trabalho.1206

Figura 346 – Frequência percentual do tipo de material que são feitas as embarcações. Entre parênteses o número de pescadores entrevistados.................................1209

Figura 347 – Frequência percentual da procedência das embarcações. Entre parênteses o número de pescadores entrevistados...1210

Figura 348 - Frequência percentual da potência dos motores das embarcações com sistema de impulsão a motor. Entre parênteses o número de embarcações que possuíam motor. ..1211

Figura 349 – Margem do rio do Chumbo...1213

Figura 350 – Tubulação de lançamento de esgoto no rio do Chumbo, segundo descrição dos moradores entrevistados. ...1213

Figura 351 – Embarcações ancoradas junto ao rio do Chumbo.1214

Figura 352 – Locais de pesca frequentados pelas comunidades pesqueiras da Ilha dos Valadares e Ilha da Cotinga, Complexo Estuarino de Paranaguá.1215
Figura 353 – Mapa do ordenamento costeiro. ...1222

Figura 354 - Alterações ambientais nos locais de pesca. ..1225

Figura 355 - Prováveis causas da redução do pescado segundo os pescadores artesanais entrevistados. ...1226

Figura 356 – Frequência percentual da opinião dos pescadores sobre uma possível alteração de custos no consumo de combustível e de manutenção ocasionada por mudança de rota. ..1227

Figura 357 – Indicativo de passeio de barco no porto ..1230

Figura 358 - Quadro de horário de saída de barcos de Paranaguá.1235

Figura 359 - Embarcação de acesso às ilhas transportando mercadorias na sua parte superior, no Rio Itiberê. ...1236

Figura 360 – Fachada do Porto Marina Oceanía em Paranaguá.1236

Figura 361 - Fachada da marina Velho Marujo em Paranaguá..................................1237

Figura 362 - Embarcações atracadas no Iate Clube de Paranaguá..............................1238

Figura 363 - Fachada da marina Marlin Azul em Paranaguá.....................................1238

Figura 364 - Fachada da empresa Praticagem em Paranaguá.....................................1239

Figura 365 - Divisão do município de Paranaguá em Macrozona Urbana e Macrozona Rural. ..1250

Figura 366 - Divisão da macrozona rural, em Paranaguá...1251

Figura 367 - Zoneamento Urbano de Paranaguá. ...1253

Figura 368 - Mapa parcial do município de Paranaguá, com localização do depósito de lixo e pontos de extração de areia. ..1254

Figura 369 - Áreas prioritárias para a implantação de ZEIS, em Paranaguá.1256

Figura 370 - Área Portuária e sua inserção na cidade de Paranaguá............................1258
Figura 371 - Vias estruturais permitindo o acesso direto da BR 277 ao Porto de Paranaguá.

Figura 372 - Acesso a Paranaguá por via Rodoviária.

Figura 373 - Malha ferroviária administrada pela ALL.

Figura 374 - Parte da malha ferroviária no perímetro urbano em Paranaguá.

Figura 375 - Zoneamento do Setor de Interesse Histórico em Paranaguá.

Figura 376 - Rabeca à venda no mercado de Paranaguá.

Figura 378 - Artesanato em madeira entalhada de artesão de Paranaguá à venda no comércio local.

Figura 379 - Artesanato em conchas de artesão de Paranaguá à venda no comércio local.

Figura 380 - Artesanato em madeira feita por índios de Paranaguá à venda no comércio local.

Figura 381 - Artesanato em palha e vime feito por artesãos de Paranaguá à venda no comércio local.

Figura 382 - Zoneamento do Setor de Interesse Histórico em Paranaguá.

Figura 384 - Igreja da Ordem Terceira de São Francisco das Chagas – Teatro da Ordem.

Figura 385 - Igreja de São Benedito.

Figura 386 - Rua da Praia atual Rua General Carneiro.

Figura 387 - Mural Sacro de São Francisco das Chagas.
Figura 388 - Mercado do Artesanato. ...1309
Figura 389 - Mercado Municipal do Café..1310
Figura 390 – Palácio Matias Bohn. ...1311
Figura 391 - Casa Elfrida Lobo – Centro de Letras...1312
Figura 392 - Casa onde moraram Brasílio Itiberê e Monsenhor Celso – Casa da Cultura. ...1313
Figura 393 - Sobrado no Largo da Matriz – Casa da Música...............................1314
Figura 394 - Estação Ferroviária de Paranaguá..1315
Figura 395 - Fonte Velha. ..1316
Figura 396 - Igreja da Ordem Terceira de São Francisco das Chagas – Teatro da Ordem. ..1317
Figura 397 - Igreja de São Benedito...1318
Figura 398 - Igreja Nossa Senhora do Rosário – Matriz.....................................1320
Figura 399 - Instituto de Educação Dr. Caetano Munhoz da Rocha..................1321
Figura 400 - Jazigo da Família Correa. ..1323
Figura 401 - Palacete Visconde de Nácar – antiga Câmara Municipal................1324
Figura 402 - Prédio da Alfândega...1326
Figura 403 - Igreja Nossa Senhora do Rocio..1327
Figura 404 - Chafariz com caras de leão ..1328
Figura 405 - Palácio São José – Prefeitura Municipal..1329
Figura 406 - Praça Fernando Amaro. ...1330
Figura 407 - Casa Veiga – futuro Cine-Teatro ...1331
Figura 408 - Antiga Bilheteria do Bondinho.1332
Figura 409 - Palco Tutóia. ...1333
Figura 410 - Instituto Histórico e Geográfico de Paranaguá. ...1334
Figura 411 - Localização do patrimônio histórico de Paranaguá...1335
Figura 412 - Área de Tombamento da Serra do Mar e o município de Paranaguá.1344
Figura 413 - Mapa da Ilha do Mel..1346
Figura 414 - Localização dos principais municípios, rios, canais, enseadas e baías no Complexo Estuarino de Paranaguá...1360
Figura 415 - Localização das estações de medição de correntes, vento e nível do mar...1364
Figura 416 - Diagrama *stick plot* dos valores médios diários de dados de vento NCEP durante o período de janeiro a dezembro de 1997, nas coordenadas 25°42′00,00″S e 48°48′00,00″W...1365
Figura 417 - Histograma direcional dos vetores de vento NCEP para janeiro a março de 1997, próximo ao CEP. Os círculos concêntricos indicam a intensidade do vetor de vento (m/s), enquanto que a barra de cores (lateral) indica a porcentagem de incidência (convenção meteorológica). ..1366
Figura 418 – Histograma direcional dos vetores de vento NCEP para julho a setembro de 1997, próximo ao CEP. Os círculos concêntricos indicam a intensidade do vetor de vento (m/s), enquanto que a barra de cores (lateral) indica a porcentagem de incidência (convenção meteorológica). ...1367
Figura 419 - Diagrama *stick plot* dos vetores de velocidade da corrente (m/s) medida na profundidade de 7 m, na bóia sinalizadora localizada ao sul do canal, entre os dias 16 de abril e 18 de junho de 1997 (preto) e suas respectivas intensidades (azul).1370
Figura 420 - Diagrama *stick plot* dos vetores de velocidade da corrente (m/s) medida nas profundidades de 7 m (a) e 11 m (b), na bóia sinalizadora localizada ao norte do canal, entre os dias 16 de abril e 18 de junho de 1997 (preto) e suas respectivas intensidades (azul). ..1371
Figura 421 - Histograma direcional dos vetores de velocidade de corrente (m/s), calculado a partir dos dados coletados no Canal da Galheta - Sul, durante o período de 16 de abril e 18 de junho de 1997, para a profundidade de 7 m.

Figura 422 - Histograma direcional dos vetores de velocidade de corrente (m/s), calculado a partir dos dados coletados no Canal da Galheta - Norte, durante o período de 16 de abril e 18 de junho de 1997, para a profundidade de 7 m.

Figura 423 - Histograma direcional dos vetores de velocidade de corrente (m/s), calculado a partir dos dados coletados no Canal da Galheta - Norte, durante o período de 16 de abril e 18 de junho de 1997, para a profundidade de 11 m.

Figura 424 - Espectro de amplitudes (m/s) das componentes vetoriais dos dados de corrente coletados no Canal da Galheta - Sul, durante o período 16 de abril e 18 de junho de 1997, para a profundidade de 7 m: u (E-W) em azul e v (N-S) em vermelho.

Figura 425 - Espectro de amplitudes (m/s) das componentes vetoriais dos dados de corrente coletados no Canal da Galheta - Norte, durante o período 16 de abril e 18 de junho de 1997, para a profundidade de 7 m: u (E-W) em azul e v (N-S) em vermelho.

Figura 426 - Espectro de amplitudes (m/s) das componentes vetoriais dos dados de corrente coletados no Canal da Galheta - Norte, durante o período 16 de abril e 18 de junho de 1997, para a profundidade de 11 m: u (E-W) em azul e v (N-S) em vermelho.

Figura 427 - Elevação do nível do mar (m) na Ponta da Galheta, para o ano de 1997.

Figura 428 - Elevação do nível do mar (m) no Porto de Paranaguá, para o ano de 1997.

Figura 429 - Espectro de amplitudes em metros (a) e Espectro de energia (b) da série temporal de elevação de nível do mar na Ponta da Galheta para o ano de 1997.

Figura 430 - Espectro de amplitudes em metros (a) e Espectro de energia (b) da série temporal de elevação de nível do mar no Porto de Paranaguá para o ano de 1997.

Figura 431 - Vazões médias mensais (m3/s) do Rio Nhundiaquara.

Figura 432 - Cotas médias mensais (m3/s) dos rios Nhundiaquara e Cachoeira.
Figura 433 - Localização dos pontos de coleta de sedimento superficial na região da Baía de Paranaguá e no detalhe os pontos mais próximo da área de dragagem.1388

Figura 434 - Domínio considerado na modelagem e projeção da batimetria, com foco na região do TCP. ..1392

Figura 435 - Domínio da grade local implementada na modelagem e projeção da batimetria, com foco na região do TCP.......................... ... 1393

Figura 436 - Séries temporais de elevação de superfície do mar (m), para o período de 1 a 11 de junho de 1997. A série temporal dos dados coletados é plotada em azul, enquanto a série temporal resultante da modelagem hidrodinâmica é plotada em vermelho.1397

Figura 437 - Séries temporais da componente de corrente (m/s), para o período de 18 a 28 de abril de 1997. A série temporal dos dados coletados é plotada em azul, enquanto que a série temporal dos resultados da modelagem hidrodinâmica, é plotada em vermelho.1398

Figura 438 - Distribuição espacial de pontos para avaliação de alterações hidrodinâmicas decorrentes da ampliação do berço do TCP. As letras (A, B, C e D) indicam os pontos de comparação. São ilustrados, ainda, o projeto de ampliação do berço e a área de contenção. ..1401

Figura 439 - Comparação entre os histogramas direcionais da corrente calculada para a posição A: a) configuração atual; e b) configuração futura com área de contenção.1402

Figura 440- Comparação entre os histogramas direcionais da corrente calculada para a posição B: a) configuração atual; e b) configuração futura com área de contenção.1403

Figura 441 - Comparação entre os histogramas direcionais da corrente calculada para a posição C: a) configuração atual; e b) configuração futura com área de contenção.1403

Figura 442 - Comparação entre os histogramas direcionais da corrente calculada para a posição C: a) configuração atual; e b) configuração futura com área de contenção.1404

Figura 443 - Variação batimétrica (em metros) na região do TCP em sua configuração atual para o período de verão. ..1405

Figura 444 - Variação batimétrica (em metros) na região do TCP em sua configuração atual para o período de inverno. ..1406
Figura 445 - Variação batimétrica (em metros) na região do TCP em sua configuração futura com área de contenção, para o período de verão. ... 1407

Figura 446 - Variação batimétrica (em metros) na região do TCP em sua configuração futura com área de contenção, para o período de inverno... 1408

Figura 447 - Localização dos pontos de coleta de sedimento superficial nas proximidades do TCP e da área de dragagem que foram selecionados para a modelagem com o SSFATE. ... 1410

Figura 448 - Pluma de sedimentos ressuspensos no instante final de um único ciclo da operação de dragagem, durante o período de verão.. 1416

Figura 449 - Pluma de sedimentos ressuspensos no instante final da dragagem na simulação de 12 horas contínuas de operação, durante o período de verão. 1417

Figura 450 - Pluma de sedimentos ressuspensos no instante final da dragagem na simulação de um dia contínuo de operação, durante o período de verão.............................. 1418

Figura 451 - Pluma de sedimentos ressuspensos no instante final de um único ciclo da operação de dragagem, durante o período de inverno.. 1419

Figura 452 - Pluma de sedimentos ressuspensos no instante final da dragagem na simulação de 12 horas contínuas de operação, durante o período de inverno. 1420

Figura 453 - Pluma de sedimentos ressuspensos no instante final da dragagem na simulação de um dia contínuo de operação, durante o período de inverno. 1421

Figura 454 - Área total percorrida pelas plumas de sedimentos ressuspensos durante as atividades de dragagem, no período típico de verão. ... 1422

Figura 455 - Área total percorrida pelas plumas de sedimentos ressuspensos durante as atividades de dragagem, no período típico de inverno... 1423

Figura 456 – Organograma para avaliação de impactos .. 1428
ESTUDO DE IMPACTO AMBIENTAL

AMPLIAÇÃO DO CAIS

VOLUME IV

JUNHO/2010
7.3 MEDIDAS MITIGADORAS/COMPENSATÓRIAS E PROGRAMAS AMBIENTAIS

7.3.1 Medidas mitigadoras e compensatórias

De acordo com a metodologia proposta de avaliação de impactos para elaboração dos quadros de AIAs, as medidas preventivas, mitigadoras e compensatórias já foram apresentadas nos respectivos quadros para facilitar a compreensão e agrupar assim as informações relevantes.

7.3.2 Programas de controle e monitoramento

Este item consolida os planos e programas de controle e monitoramento ambiental para o empreendimento, que são propostos como respostas aos impactos previstos e atendimento às diretrizes da legislação ambiental.

São apresentados os programas indicados no Termo de Referência pelo órgão ambiental, e demais, que foram julgados necessários pela equipe multidisciplinar, buscando a prevenção, mitigação e compensação dos impactos previstos.
7.3.2.1 Programa de Gestão Ambiental – PGA

Impactos relacionados

O Plano de Gestão Ambiental do TCP define o processo gerencial a ser adotado para a execução de um conjunto de ações destinadas a evitar e/ou mitigar os impactos provocados pela implantação e operação da expansão do cais leste bem como do terminal como um todo.

Objetivos

A implementação de um Programa de Gestão Ambiental no Terminal de Contêineres de Paranaguá S/A visa o estabelecimento de uma estrutura administrativa de coordenação das ações e procedimentos de todas as medidas e programas ambientais estabelecidos e a serem implantados.

Os objetivos ambientais estão vinculados diretamente com a Política Ambiental já implantada e reconhecida por todos os colaboradores e partes interessadas, a saber:

- Reconhecer suas responsabilidades em relação ao meio ambiente em geral;
- Comprometimento com a prevenção da poluição, junto à comunidade local, seus colaboradores e partes interessadas;
- Comprometimento em cumprir a legislação ambiental e outros requisitos por nós definidos, que se relacionem com os nossos aspectos ambientais;
- Comprometimento em melhorar continuadamente nosso desempenho ambiental através de provisão de recursos necessários para o estabelecimento de uma estrutura que garanta a manutenção de objetivos e metas.
Inter-relação com outros programas

A inter-relação deste programa com os demais é apresentada na tabela a seguir:

<table>
<thead>
<tr>
<th>Programas</th>
<th>Inter-relação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plano Ambiental de Construção</td>
<td>Proporcionará a elaboração do Levantamento de todos os Aspectos Ambientais Significativos; garantirá a gestão de resíduos na fase de instalação da obra; o monitoramento dos efluentes líquidos; o controle das atividades de treinamento dos colaboradores envolvidos direta e indiretamente na obra e; controlará a desmobilização da obra (envolvendo a estrutura física e resíduos remanescentes).</td>
</tr>
<tr>
<td>Monitoramento da Biota Aquática e bioindicadores.</td>
<td>Proporcionará verificar a qualidade da água e dos organismos marinhos na baía de Paranaguá, objetivando a identificação de alterações provenientes das atividades portuárias. Caracterizar alterações da Baía de Paranaguá a partir de do monitoramento de um conjunto de espécies, que pela sua presença e especificações serão indicativos biológicos de uma condição ambiental.</td>
</tr>
<tr>
<td>Gerenciamento de Resíduos Sólidos – PGRS na fase de operação.</td>
<td>Garantirá a gestão de resíduos através da determinação dos meios mais adequados de estoque temporário, destino final, escolha de parceiros no manejo de todas as fases dos serviços correlatos, treinamento de todos os colaboradores que estarão envolvidos com o sistema.</td>
</tr>
<tr>
<td>Gerenciamento de Efluentes na fase de Operação.</td>
<td>Controlará na fase de Operação do empreendimento, a única tarefa derivada de suas operações e que gerará efluentes, através da Resolução CONAMA 357.</td>
</tr>
<tr>
<td>Gerenciamento de Emissões Atmosféricas.</td>
<td>Controlará o lançamento na atmosfera de particulados, derivados da utilização de motores a combustão.</td>
</tr>
<tr>
<td>Gerenciamento da Emissão de Ruídos.</td>
<td>Irá monitorar as operações portuárias em todo o perímetro do sítio da empresa, visando o atendimento NBR’s 101/51 e, 101/52. Avaliação de ruído em áreas habitadas e, Níveis de ruídos para conforto acústico, respectivamente.</td>
</tr>
<tr>
<td>Monitoramento da Qualidade das Águas, conforme Resolução CONAMA No. 357</td>
<td>Garantirá que a qualidade das águas da Baía de Paranaguá na área direta de influência da empresa, esteja dentro dos parâmetros</td>
</tr>
</tbody>
</table>
Programas | Inter-relação
---|---
Verificação do Gerenciamento da Água de Lastro dos Navios. | Assegurar que os navios operados pela empresa recebam orientações a respeito da NORMAM/20, bem como propiciar a Educação Ambiental quanto ao lastro e deslastro de navios.
Auditoria Ambiental | Garantirá, semestralmente, que a empresa esteja atendendo a todo o escopo de gestão ambiental a que se propôs, através de auditorias independentes, atendendo o escopo da Resolução CONAMA 306 e A Norma NBR ISO 14001:2004.
Gerenciamento de Riscos | Garantirá que todos os cenários de operações da empresa, e que representem riscos ambientais, sejam cobertos e determinados seus respectivos planos de ações para suas mitigações em caso de situações emergenciais.
Comunicação Social | Proporcionará a geração de conhecimento aos colaboradores diretos e indiretos, bem como a comunidade do entorno, para que tenham informações relevantes sobre nossas operações e sobre nossos aspectos/impactos ambientais significativos e as formas de mitigação ambiental. Socializará informações relevantes aos colaboradores diretos e partes interessadas, sobre temas ambientais de destaque e específicos a cada população. O controle desta atividade, garantirá ao TCP que a comunidade compreenda melhor o tema Meio Ambiente e interaja com os aspectos ambientais que são comuns em uma comunidade portuária.
Educação Ambiental

Abrangência

A implantação e operação do Cais Leste e todo o Terminal de Contêineres de Paranaguá – TCP, incluindo as partes interessadas que interagem com suas operações.
Metodologia

A metodologia deste programa seguirá as diretrizes constantes da NBR ISO 14001:2004 que visa prover a empresa de elementos de um sistema de gestão ambiental eficaz e a alcançar seus objetivos ambientais.

Esta Norma especifica os requisitos para a elaboração e implantação do Sistema de Gestão Ambiental através do desenvolvimento e implementação da política ambiental e seus objetivos que levem em consideração requisitos legais e informações sobre aspectos ambientais significativos.

Materiais e equipe

Materiais: Não se aplica

A seguir apresenta-se a estrutura administrativa do PGA do terminal.
Programa de Gestão Ambiental

Programa de Auditoria

Gerenciamento de Efluentes
- Programa de gerenciamento da água de lastro
- Programa de gerenciamento de efluentes e águas

Gerenciamentos de Resíduos Sólidos
- Programa de gerenciamento de resíduos da construção civil
- Programa de gerenciamento de resíduos sólidos

Gerenciamento de Riscos/Acidentes
- Plano de auxílio mutuo
- Plano de emergência individual
- Programa de gerenciamento de riscos

Monitoramento Ambiental
- Programas integrados de monitoramento ambiental

Educação Ambiental e Comunicação
- Programa de educação ambiental
- Programa de comunicação social
Atribuições

Coordenador SGA:
- Coordenação Geral do SGA na empresa;
- Responsável pela Elaboração dos Procedimentos Operacionais ambientais;
- Coordenação dos diversos Programas ambientais estabelecidos;
- Representante da Direção nas auditorias externas;
- Representante da Direção nos assuntos ambientais da comunidade.

Assistente de SGA:
- Coordenar as auditorias internas semestrais;
- Controlar a emissão das Não-Conformidades e suas execuções, focando a melhoria contínua do sistema de Gestão ambiental;
- Acompanhar as Auditorias Externas;
- Monitorar a execução dos diversos programas ambientais em curso, bem como os diversos indicadores ambientais da empresa
- Monitorar o atendimento da Legislação pertinente, atentando para novos instrumentos legais estabelecidos.
- Atendimento a partes interessadas na Gestão Ambiental da empresa (órgãos de governo, Institutos ambientais, clientes, entre outros);
- Participação em feiras/congressos de gestão ambiental;
- Participação em trabalhos de Educação ambiental na comunidade;
- Responsável pela aplicação de treinamento e conscientização ambiental a colaboradores internos, partes interessadas e comunidade em geral.

Apoiador PGRS 1:
- Controlar o fluxo de retirada de resíduos, sólidos e líquidos;
- Controlar o fluxo de retirada de recicláveis;
- Apoio logístico a atividades de pesquisa coordenados pela empresa;
Apoiador PGRS 2:
- Contratação de prestadores de serviços de remoção de resíduos;
- Controlar documentação de rastreabilidade dos resíduos em seu destino final;

Serviços Gerais:
- Responsável pela armazenagem temporária dos resíduos sólidos e líquidos;
- Apoio em atividades tais como: Coleta seletiva, higienização; atendimento a emergências operacionais.

Técnicos de Segurança do Trabalho e Meio Ambiente:
- Aplicação de treinamentos operacionais simulados para combate a emergências ambientais;
- Participação na administração do Gerenciamento de riscos da empresa, compreendendo o PEI, PCE, PPRA;
- Contribuir na verificação da eficácia das ações propostas nas diversas Não-Conformidades emitidas pelas áreas da empresa;
- Participar em auditorias internas ambientais.

Ações de monitoramento e controle

As ações de monitoramento e controle são apresentadas conforme instrumentos de gestão estabelecidos de acordo com a norma ISO 14001:2004, compreendendo:

- Identificação e acesso à legislação 1
- Definição da Política Ambiental e sua validação 2
- Definição de Aspectos/Impactos Significativos 3
- Gestão de recursos – implementação e operação 4
- Competência, Treinamento e conscientização de todos os envolvidos diretos e partes interessadas. 5
- Comunicações do SGA 6
EIA – Ampliação do Cais

- Estruturação da documentação do SGA 7
- Controle de documentos 8
- Controle Operacional 9
- Controle e atendimento a emergências 10
- Medicação e monitoramento do Desempenho Ambiental 11
- Controle de Não-conformidades – Ações corretivas / preventivas 12
- Controle de Registros da Gestão Ambiental 13
- Auditorias Internas 14
- Auditorias Externas 15
- Análise crítica do SGA pela Alta Direção 16
- Produção do Manual de Gestão Ambiental 17
- Manutenção do Programa com Auditorias Independentes e semestrais 18

Cronograma

O cronograma considera todas as atividades como sendo de revisão, haja vista a implantação do SGA do Terminal já ter ocorrido em outra oportunidade para que as ações necessárias decorrentes da implantação e operação da expansão do cais leste sejam levados em consideração.

Salientamos que o “produto final” será um manual de Gestão Ambiental do Terminal como um todo.

<table>
<thead>
<tr>
<th>Ação</th>
<th>Mes/1</th>
<th>Mes/2</th>
<th>Mes/3</th>
<th>Mes/4</th>
<th>Mes/5</th>
<th>Mes/6</th>
<th>Mes/7</th>
<th>Mes/8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fase implantação</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identificação e acesso à legislação</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Definição da Política Ambiental e sua</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>validação</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ação</td>
<td>Mes/1</td>
<td>Mes/2</td>
<td>Mes/3</td>
<td>Mes/4</td>
<td>Mes/5</td>
<td>Mes/6</td>
<td>Mes/7</td>
<td>Mes/8</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Definição de Aspectos/Impactos Significativos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comunicações do SGA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estruturação da documentação do SGA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controle de documentos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controle de Registros da Gestão Ambiental</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fase operação</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gestão de recursos – implementação e operação</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Competência, Treinamento e conscientização de todos os envolvidos diretos e partes interessadas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controle Operacional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controle e atendimento a emergências</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medicação e monitoramento do Desempenho Ambiental</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controle de Não-conformidades – Ações corretivas / preventivas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auditorias Internas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auditorias Externas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Análise crítica do SGA pela Alta Direção</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Produção do Manual de Gestão Ambiental</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Desempenho esperado

- Êxito na Avaliação Ambiental e Identificação de Aspectos Ambientais Significativos;

- Controlar efetivamente a Legislação ambiental pertinente através do atendimento aos requisitos estabelecidos;

- Monitorar com eficácia todos os programas ambientais estabelecidos;

- Garantir a capacitação dos colaboradores diretos e indiretos que atuem em nome da empresa em situações ambientais.

- Garantir a realização de auditorias Internas e Externas.

- Obter a melhoria na gestão ambiental através da efetiva aplicação das ações propostas em situações de não-conformidades.

- Possibilitar a Alta Direção da empresa a visão sistêmica sobre o andamento dos diversos trabalhos de gestão ambiental.

Responsabilidades

Terminal de Contêineres de Paranaguá, através da sua gerência de meio ambiente

Equipe técnica responsável pela elaboração do programa

- Luiz Carlos Narok (Administrador de Empresas com especialização em Meio Ambiente e Gestão de Pessoas);
- Cinthia Rosa de Oliveira (Administradora de Empresas com especialização em Meio Ambiente)
7.3.2.2 Plano Ambiental de Construção - PAC

Impactos relacionados

O desencadeamento de processos de degradação ambiental originários das atividades das obras, associados à disposição indevida de resíduos sólidos e efluentes.

Objetivos

O PAC contemplará a necessária estruturação e organização de atividades e tarefas a serem desempenhadas, com a respectiva atribuição de responsabilidades pela execução e controle destas. Para tanto, é imprescindível realizar um planejamento adequado junto à empresa construtora para se definir os principais cuidados a serem tomados durante todo o andamento dos trabalhos, fundamentados pelo atendimento das condicionantes ambientais e legislação aplicável.

Assim os objetivos principais deste programa são:

- Viabilizar a correta implementação ambiental das obras de ampliação do cais leste, controlando os impactos negativos causados pela implantação do empreendimento;

- Garantir que as práticas ambientais propostas ocorram de forma a eliminar ou reduzir possíveis impactos ambientais negativos;

- Implementar ações de monitoramento necessárias a avaliação da eficácia das ações de controle ambiental adotadas;
• Garantir o atendimento da legislação, normas e as ordens de serviços ambientais emitidos pela APPA – Administração dos Portos de Paranaguá e Antonina;

• O programa de gerenciamento ambiental das obras compreende uma série de diretrizes e práticas indicadas para serem aplicadas anteriormente e durante a implantação, destinadas a evitar ou minimizar os impactos ambientais potenciais;

• Programar a adoção de práticas operacionais ambientalmente adequadas;

• Executar ações voltadas a saúde e a segurança dos colaboradores envolvidos direta e indiretamente com as obras;

• Assegurar que as obras se desenvolvam em condições de plena segurança, através da adoção pela empreiteira contratada, de procedimentos que apresentem o menor nível de interferência ambiental possível e do controle de todas as atividades que possam desencadear processos de degradação ou redução da qualidade ambiental.

Inter-relação com outros programas

A inter-relação deste programa com os demais é apresentada na tabela a seguir:

<table>
<thead>
<tr>
<th>Programas</th>
<th>Inter-relação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gerenciamento de Resíduos Sólidos – PGRS na fase de operação.</td>
<td>Examinará a eficácia da gestão de resíduos na fase de instalação da obra de expansão do cais; o controle das atividades de treinamento dos colaboradores envolvidos direta e indiretamente na obra e; verificará as o cumprimento das atividades de desmobilização da obra (envolvendo a estrutura física e resíduos remanescentes).</td>
</tr>
<tr>
<td>Gerenciamento de Efluentes na fase de Operação.</td>
<td>Controlará na fase de implementação das obras de ampliação do cais leste, possíveis efluentes a serem gerados, de forma a evitar</td>
</tr>
</tbody>
</table>
que estes sejam lançados nas águas costeiras e/ou contaminem o lençol freático.

Gerenciamento de Emissões Atmosféricas.

Controlará o lançamento na atmosfera de particulados, derivados da utilização de caminhões e equipamentos móveis ou estacionários equipadas com motores a combustão.

Monitorar as atividades de construção civil de ampliação do cais leste, em todo o seu perímetro, visando o atendimento das NBR’s 10151/00 e 10152/00 – avaliação de ruídos em áreas habitadas e, níveis de ruídos para conforto acústico, respectivamente.

Gerenciamento da Emissão de Ruídos.

Garantirá, semestralmente, através das auditorias internas e externas, verificar se as obras de ampliação do cais leste estão atendendo aos objetivos propostos, que em linhas gerais são: o atendimento da legislação; rastreabilidade da destinação dos resíduos sólidos e líquidos; e, a interação com o SGA – Sistema de Gestão Ambiental do Terminal.

Auditoria Ambiental

A partir do levantamento de aspectos ambientais significativos das obras, será possível a mensuração dos elementos que serão necessários às mitigações ambientais, visualização dos cenários ambientais e os treinamentos especializados para cada função dentro das obras.

Gerenciamento de Riscos

Garantirá que os resultados alcançados e as dificuldades encontradas de viabilização sejam divulgados entre os colaboradores envolvidos direta e indiretamente com as obras, e entre as outras partes interessadas, com o objetivo de melhorar o desempenho com eventuais alterações na condução das diretrizes e práticas ambientais nas obras.

Comunicação Social

Socializará informações consideradas importantes nas fases de pré-obra, construção propriamente dita e desmobilização, envolvendo os colaboradores diretos nas obras, terceiros subcontratados e outras partes interessadas, de forma que, cada um destes atores compreendam o alcance de cada medida/prática ambiental a ser adotada e posta em prática nas obras de ampliação do cais leste.

Educação Ambiental
Abrangência

O gerenciamento ambiental compreenderá as obras de ampliação do cais leste. Agrupará as ações propostas para o monitoramento e a implementação dos procedimentos criados e/ou aplicados pelo SGA do Terminal, que tenha aplicabilidade nas obras, sendo verificados os seguintes itens:

- Ações de infra-estrutura;
- Resíduos sólidos;
- Efluentes;
- Emissões atmosféricas;
- Emissão sonora;
- Desmobilização das obras; e
- Desmobilização do canteiro de obras.

Metodologia

As obras de ampliação do cais leste seguirão procedimentos já consolidados, com características de eficiência e eficácia demonstradas em outras obras deste gênero, bem como de procedimentos usuais adotados em engenharia civil. Serão observadas pela empresa contratada práticas descritas em normas técnicas aplicadas em construções garantindo a construção do empreendimento com ações adequadas sob o ponto de vista ambiental, mitigando efetivamente os potenciais impactos ambientais negativos e potencializando os impactos positivos decorrentes da obra.

Destacam-se as seguintes ações:

- Supervisor das ações de controle ambiental orientando as atividades de construção para a obtenção de um padrão elevado de qualidade ambiental;
• Auxiliar o SGA do Terminal no estabelecimento de procedimentos e instrumentos para controle e gerenciamento ambiental da construção do empreendimento, para suas diversas fases e ações;
• Acompanhar o andamento dos programas ambientais que são complementares ao gerenciamento ambiental das obras;
• Realizar vistorias nos canteiros de obras, nas frentes de serviços, e demais instalações de apoio, e quando necessário promover complementações e ajustes necessários para as questões ambientais;
• Gerar banco de dados e registros sobre as ocorrências evidenciadas em campo, relacionadas ao controle das ações nas diferentes etapas do empreendimento, que possam ser impactantes ao meio ambiente (construção de estruturas de apoio às obras – drenagens provisórias, acessos provisórios, áreas de canteiro, áreas frentes de trabalho, implantação de drenagem, estruturas de contenção, obras de arte especiais e outras);
• Identificar os efeitos ambientais das obras nas áreas de entorno e implementar ações para prevenir, mitigar e compensar os impactos decorrentes;
• Desenvolver medidas integradas para a conservação do meio ambiente e controle dos processos de degradação;
• Verificar o cumprimento dos procedimentos ou de adequações ambientais;
• Vistoriar vias de acesso;
• Vistoriar Obras de Drenagem;
• Vistoriar e acompanhar as atividades nos canteiros de obras, instalações de apoio e frentes de trabalho;
• Adequações de Higiene e Saúde nos canteiros de obras e instalações de apoio;
• Supervisionar os trabalhos de Movimentação de Veículos, Máquinas e Equipamentos;
• Efetuar controle de emissão de material particulado pelos motores das máquinas e pelo tráfego nas vias de acesso;
• Efetuar controle dos níveis de pressão sonora das atividades com utilização de máquinas, explosão de rochas, escavações, construções, etc;
• Supervisionar as atividades de desmobilização de obras e instalações de apoio.

Materiais e equipe

Materiais:
• Canteiro de obras;
• Alojamentos para mão-de-obra;
• Refeitório;
• Administração;
• Área para alocação de matérias;
• Almoxarifado;
• Estacionamento;
• Rampa de manutenção;
• Oficina de manutenção;
• Recipientes de coleta seletiva de resíduos;
• Espaço para armazenamento de resíduos sólidos Classe I;
• Espaço para armazenamento de resíduos sólidos Classe II;
• Caçambas estacionárias para caliça (material de demolição de construção civil);
• Banheiros químicos na obra.

Equipe:
• Engenheiro civil para a coordenação do Programa;
• Técnicos de segurança da obra;
• Coordenador de gestão ambiental do Terminal (apoio);
• Assistente de gestão ambiental do Terminal (apoio);
Mão-de-obra aplicada na construção que terão influência direta no êxito do programa, distribuída da seguinte forma:

- Engenheiros civis;
- Encarregados de obras;
- Colaboradores administrativos;
- Operadores de máquinas;
- Oficiais (pedreiros /carpinteiros/armadores) e;
- Serventes.

Ações de monitoramento e controle

Ações e controle de infra-estrutura

São aquelas ligadas ao gerenciamento de apoio às obras:

Canteiro de obras

O canteiro de obras será instalado dentro do condomínio portuário, situado ao lado do perímetro do Terminal, será construído alojamento para os colaboradores diretos para alocar parte da mão-de-obra necessária às obras, outra fração será mão-de-obra local. O canteiro de obras abrigará o prédio da administração, almoxarifado, refeitório, estoques de matéria-prima solta e volumosa, oficinas. Nas situações que requeiram sua utilização de ambulatório poderá ser também utilizada a estrutura já existente montada do SESMT (Serviço Especializado de Segurança e Medicina do Trabalho) do Terminal.
Controle de acesso

Em função da existência da implantação do programa de acesso ao Terminal – “Código ISPS”, ficarão os colaboradores da obra condicionados a portarem crachás de identificação, entregues àqueles que participarem de treinamento de integração de gestão de segurança e meio ambiente, focadas na sua essência em aspectos ligados aos programas ambientais relevantes ao Terminal e aplicáveis às obras de ampliação do cais leste, além das práticas ambientais adotadas pelo Terminal.

Treinamento e Conscientização

A mobilização de uma obra civil inserida dentro do Terminal de contêineres de Paranaguá exigirá a inserção dos trabalhadores da obra em aspectos operacionais do Terminal, pois envolvem riscos de movimentação de cargas, equipamentos de grande porte em deslocamento; içamento de cargas, manuseio de materiais perigosos, etc.; desta forma, o SESMT do Terminal, bem com, a equipe de gestão ambiental do Terminal, participará das atividades de treinamentos em normas e procedimentos especializados, em parceria com a equipe de segurança do trabalho da empreiteira da obra.

Além das medidas que serão adotadas conforme definidas acima, também deverão ser implementadas atividades de conscientização e educação ambiental dos colaboradores com relação à minimização dos impactos e conservação ambiental.
Saúde e Segurança

Analogamente as Ações do item anterior, a empreiteira manterá uma sistemática destinada ao cumprimento das normas e procedimentos visando à manutenção de condições adequadas de saúde e segurança dos colaboradores. Deverá ser implementada uma estrutura, com mão-de-obra especializada, que garantam esta sistemática. Terá o opôe do SESMT do Terminal.

Geração de Resíduos Sólidos

Serão adotados os procedimentos adequados nas questões relativas ao gerenciamento de resíduos sólidos gerados na ampliação do cais leste do Terminal.

Os procedimentos a serem seguidos serão compatíveis com os estabelecidos pelo Terminal no seu plano de gerenciamento de resíduos sólidos. Deverão ser seguidos desde o início da obra até sua conclusão e desmobilização do canteiro de obras. As ações específicas visam reduzir a geração de resíduos e determinar o manejo e disposição correta dos mesmos, de forma a minimizar os seus impactos ambientais durante a fase de obras e desmobilização do canteiro de obras. Sucintamente, as fases do gerenciamento dos resíduos sólidos gerados serão as seguintes:

- Classificação e caracterização dos resíduos gerados;
- Segregação dos resíduos;
- Acondicionamento e armazenamento temporários;
- Transporte ao destino final;
Manifesto de transporte e certificado de destinação dos resíduos;

Destinação adequada.

Para cada uma das fases relatadas, o SGA do Terminal, representada pelos procedimentos inseridos em seu PGRS, oferecerão auxílio à empreiteira nesta administração, como por exemplo, a aplicação das rotinas estabelecidas, treinamento, utilização de serviços de terceiros como o transporte e destinação final de resíduos, bem como no acondicionamento e armazenamento temporário de resíduos específicos.

Controle de Efluentes

Terá o caráter de prevenção, controle e monitoramento dos possíveis efluentes líquidos a serem gerados na fase das obras de ampliação do cais leste, de forma a evitar que estas sejam lançadas nas águas costeiras.

As principais fontes de geração de efluentes são:

1. Efluentes contendo óleo e graxas, derivado das atividades de manutenção dos caminhões e equipamentos estacionários ou móveis, que serão utilizados na obra. Inclui vazamentos e limpeza (lavação); neste item específico, a lavação dos caminhões e equipamentos acontecerá em área reservada para este fim, contendo bacia separadora de água/óleo compatível em volume e monitorada quanto ao lançamento no corpo d’água.

2. Esgotos sanitários – Deverão ser implantados sistemas de tratamento tipo fossa séptica para atendimento aos sanitários do canteiro de obras. Às frentes de obra, serão instalados banheiros químicos adequados e dimensionados em quantidade suficiente, administrado por empresa especializada e licenciada para este fim e monitorado pela empreiteira da obra.
Controle de Emissões Atmosféricas

A obra de ampliação do cais leste demandará atividades que gerarão emissões atmosféricas, proporcionadas pela movimentação de veículos e equipamentos, limpeza e preparação dos terrenos (na obra e no canteiro), recebimento de materiais, preparação do concreto, etc. Terá como objetivo estabelecer ações para minimizar a ocorrência de emissões atmosféricas, conforto aos trabalhadores e manutenção da qualidade do ar. A seguir expomos as ações que garantirão a qualidade do ar:

1. Umedecção das vias não pavimentadas. É a medida mais eficaz e com grande utilização. O borrifo de água propicia o imediato controle das emissões de particulados;

2. Definição de velocidade de veículos nas vias de tráfego. A emissão de particulados está vinculada diretamente com a velocidade dos veículos; quanto maior a velocidade, maior o potencial de arraste dos particulados, portanto a definição de velocidades auxiliará no controle das emissões;

3. Manutenção dos equipamentos movidos a óleo diesel. A perfeita manutenção tais como: a regulagem dos motores atendendo as especificações do fabricante, regulagem da bomba injetora, bicos injetores, troca do filtro de ar e de óleo, utilização de óleo diesel filtrado, são ações que propiciam um eficaz controle das emissões de gases e partículas (fumaça preta).

4. Inspeção da emissão da fumaça preta. A inspeção da emissão da fumaça preta proporcionada pelos veículos e motores a combustão estacionários, será efetuada utilizando a Escala de Ringelmann, orientando as manutenções corretivas, aqueles que apresentem emissões acima do grau 2 da escala.
Controle da Emissão Sonora

Esta ação tem como principal objetivo avaliar os níveis de ruído/vibrações nas áreas vizinhas do Terminal, visando comparar os resultados com os critérios técnicos relacionados ao conforto dos indivíduos nas áreas adjacentes, muito embora o entorno do Terminal e da obra de ampliação do cais leste, esteja desprovida de comunidades adjacentes, servirá para o conforto acústico dos colaboradores diretos e indiretos da obra e os envolvidos nas operações do Terminal.

As avaliações de ruído deverão ser realizadas conforme a NBR 10151/00 e 10152/00 – Avaliação de ruídos em áreas habitadas visando o conforto da comunidade e, Níveis de ruídos para o conforto acústico, respectivamente. Durante as obras, a circulação de veículos e a operação de máquinas e equipamentos, poderão provocar ruídos e incômodos aos colaboradores da obra e aos diretamente envolvidos nas operações do Terminal, e para sua mitigação, deverão ser obedecidas as seguintes diretrizes:

1. Atender aos limites máximos de ruídos permitidos pela legislação, de acordo com as NBR’s 10151/00 e 10152/00;

2. Os equipamentos deverão ter especificações técnicas rigorosas com relação à emissão de ruídos, adotando-se sempre que possível, a melhor tecnologia possível;

3. As máquinas e equipamentos deverão passar por serviços de manutenção e regulagem periódicos, bem como os veículos deverão ser auditados para a verificação do nível de ruídos e a manutenção das características originais do escapamento;

4. Os equipamentos mais ruidosos deverão ser dotados de sistemas eficazes de rebaixamento de ruídos, tais como enclausuramento, barreiras, isolamento, etc.
Desmobilização da obra

Após o encerramento da obra, as originalidades previamente deverão ser resguardadas. Todos os resíduos sólidos e líquidos remanescentes da obra deverão ter seus destinos adequados seguindo seus respectivos procedimentos, como definidos em subitens específicos. As máquinas e equipamentos deverão ser retirados do canteiro de obras, bem como a desmontagem de toda a infraestrutura deverá ser garantida, atendendo as boas práticas ambientais.

Haverá necessidade da apresentação final à coordenação ambiental do Terminal de evidências que comprove regularidade desta desmobilização final, tais como: Certificação de inspeção da prefeitura, MTR’s dos últimos lotes de resíduos sólidos/líquidos; certificados de destino final.

Cronograma

O cronograma para a elaboração do programa de gerenciamento ambiental das obras deve ser considerado levando-se em consideração a data firmada para início dos trabalhos

<table>
<thead>
<tr>
<th>Ação</th>
<th>Mês 01</th>
<th>Mês 02</th>
<th>Mês 03</th>
<th>Mês 04</th>
<th>Mês 05</th>
<th>Mês 06</th>
<th>Mês 07</th>
<th>Mês 08</th>
<th>Mês 09</th>
<th>Mês 10</th>
<th>Mês 11</th>
<th>Mês 12</th>
<th>Mês 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fase implantação</td>
<td></td>
</tr>
<tr>
<td>Supervisão ambiental das ações de controle ambiental das atividades da obra</td>
<td></td>
</tr>
<tr>
<td>Supervisionar a instalação do Canteiro de Obras</td>
<td></td>
</tr>
</tbody>
</table>
Desempenho esperado

- Espera-se que sejam determinadas ações que permitam o efetivo monitoramento do desempenho ambiental das obras de ampliação do cais leste;

- Que a adoção das medidas de prevenção contribua para a minimização de acidentes associados aos riscos de trabalho;

- Promover a manutenção e melhoria das condições de saúde ocupacional;

- Espera-se reduzir a geração de resíduos e determinar o manejo e disposição dos mesmos, de forma a minimizar os impactos ambientais durante as obras de ampliação do cais leste;
Que as medidas propostas para minimizar a ocorrência de emissões atmosféricas proporcionem conforto aos trabalhadores envolvidos e colabore com a manutenção da qualidade do ar do Terminal e áreas adjacentes;

Espera-se que ao término das obras com a desmobilização da infraestrutura e o canteiro de obras em geral, resguardem as condições prévias ao empreendimento uma vez que seguirão todas as normas, procedimentos criados ou assimilados do SGA do Terminal.

Responsabilidades

Empreiteira, através do Engenheiro Civil responsável pela obra e Terminal de Contêineres de Paranaguá, através da sua gerência de meio ambiente

Equipe técnica responsável pela elaboração do programa

Djalma Llupi – (Engenheiro civil responsável pela obra de ampliação do cais leste, contratado pela empreiteira);

Técnicos de Segurança da empreiteira contratada;

Luiz Carlos Narok - (Administrador de Empresas com especialização em Meio Ambiente e Gestão de Pessoas, gestor ambienta do Terminal de Contêineres de Paranaguá);

Cinthia Rosa de Oliveira - (Administradora de Empresas com especialização em Meio Ambiente, Assistente de Gestão Ambiental do Terminal de Contêineres de Paranaguá);
Fernando Henrique Lopes e Marcos Aurélio Jacinto – (Técnicos de Segurança do Trabalho do Terminal de Contêineres de Paranaguá).
7.3.2.3 Programas de monitoramento da biota e bioindicadores

7.3.2.3.1 Programa de monitoramento do fitoplâncton

Impactos relacionados

Ocorrências de espécies exóticas e/ou nocivas, bem como ressuspensão de cistos de dinoflagelados e outras microalgas nocivas na área do empreendimento durante as fases de instalação e operações da obra.

Objetivos

Realizar o monitoramento da comunidade fitoplanctônica durante as fases de instalação e fase inicial de operação da obra, afim de verificar a ocorrência de espécies nocivas e/ou exóticas nas águas do Complexo Estuarino de Paranaguá, principalmente nas proximidades do TCP.

Abrangência

Proximidades do Terminal de Contêineres de Paranaguá – TCP.

Metodologia

Para coleta de fitoplâncton total, as amostras serão coletadas com Garrafa de Van Dorn e acondicionadas em frascos âmbar de 100 ml e fixadas com lugol acético (WETZEL e LIKENS, 2000).

Para a coleta de amostras qualitativas serão feitos arrastos verticais do fundo até a superfície com rede de plâncton (60cmX1,30m, 20µm de abertura de malha. As amostras serão acondicionadas em frascos de polietileno de 300mL em solução de formaldeído até a concentração final de 1%. Sub-amostras do fitoplâncton total serão sedimentadas em câmaras de 10 ml, segundo a técnica de ÜTERMOHL (1958), e deixadas em repouso por 24 horas (WETZEL e LIKENS, 1996). A determinação de abundância, em céls/ml (células por mililitro), será feita em microscópio invertido Olympus IX70 através de contagem em transectos, com aumentos de 300 e 600X para otimizar a contagem (LUND, KILPLING e LE CREN, 1958; LAWTON et al., 1999). As amostras serão contadas e identificadas com auxílio do microscópio invertido Olympus IX70 e microscópio óptico Olympus CBB, equipados com oculares micrometras. Para determinar o número de células por mililitro, serão seguidas as orientações de WETZEL e LIKENS (1996).

Após a coleta, as amostras serão armazenadas em frascos de polietileno, mantidas em local escuro e acondicionadas em caixa de isopor com gelo. Alíquotas de 500-900 ml serão filtradas em laboratório (filtros Whatman GF/C diâmetro 4,7 cm) e mantidas em freezer a -20°C. Posteriormente, as amostras serão maceradas com acetona 90% para extrair a clorofila-a para a leitura em espectrofotômetro Hitachi U-2001. A concentração da clorofila-a em gg/l será obtida aplicando-se a fórmula de WETZEL e LIKENS (1996).

A temperatura da água será medida em campo, com termômetro de mercúrio e transparência da água será obtida com disco de Secchi (diâmetro 22 cm). A salinidade da água será medida, com a utilização de salinômetro.
Materiais e equipe

Recursos materiais necessários da etapa dos monitoramentos

- Barco motorizado para as coletas, regularizado conforme as regulamentações de segurança da Marinha do Brasil.
- Diárias para a realização do trabalho em campo (inclui combustível, alimentação, pedágio e outros gastos eventuais).
- Formaldeído, lugol.
- Frascos âmbar e frascos polietileno.
- Filtros Whatman GF/C diâmetro 4,7 cm.

Equipe da etapa dos monitoramentos

Graduados e especialistas na área de biologia

Ações de monitoramento e controle

O monitoramento poderá fornecer subsídios para prevenir possíveis florações nocivas e permitirá identificar a ocorrência de espécies exóticas e/ou nocivas presentes nos arredores do TCP.

Cronograma

<table>
<thead>
<tr>
<th>Ação</th>
<th>Mês 1</th>
<th>Mês 2</th>
<th>Mês 3</th>
<th>Mês 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fase implantação:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planejamento e coletas</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>trimestrais</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ação</td>
<td>Mês 5</td>
<td>Mês 6</td>
<td>Mês 7</td>
<td>Mês 8</td>
</tr>
</tbody>
</table>
Desempenho esperado

Espera-se que as espécies nocivas e exóticas possam ser identificadas a tempo de se evitar maiores impactos devido a implantação e operação da obra.

Responsabilidades

Terminal de Contêineres de Paranaguá
Equipe técnica responsável pela elaboração do programa

7.3.2.3.2 Programa de monitoramento das zoôplancton

Nas regiões litorâneas os maiores impactos têm ocorrido nos estuários, que representam locais de transição e conhecidos pela alta produtividade. Estes ecossistemas funcionam como verdadeiros berçários naturais de uitas espécies marinhas, estuarinas e de água doce, sendo vitais na sustentabilidade das populações ribeirinhas que fazem uso de seus recursos naturais (MACEDO et al., 2000). O zooplâncton desempenha um papel importante nos ecossistemas aquáticos e tem sido bastante enfocado sob diferentes aspectos ecológicos em baías e estuários, principalmente quanto a distribuição espacial e temporal com influência de algumas variáveis ambientais e aos efeitos da poluição (PORTO NETO, 2003). A distribuição, composição e abundância deste grupo podem fornecer informações sobre a qualidade do ambiente. Desse modo, vários organismos do zooplâncton podem indicar condições ambientais ou oceanográficas relevantes para o gerenciamento dos ecossistemas aquáticos. O programa de monitoramento do zooplâncton deverá servir de base para a tomada de medidas de precaução para possíveis impactos moderados ou severos sobre a integridade do sistema aquático estudado, e é recomendável que tal programa perdure um período após o término das obras, com a inclusão de um número significativo de pontos de amostragem.

As informações obtidas sobre o zooplâncton devem ser respaldada pelos dados abióticos, visando caracterizar o sistema aquático como um todo. Atributos ecológicos básicos da comunidade (composição, abundância, diversidade) deverão servir de base para verificações da complexidade ambiental e manutenção da estrutura trófica.
Objetivos

Este programa tem como objetivo realizar o monitoramento do zooplâncton nas Áreas Diretamente Afetada, de Influência Direta Leste do Porto de Paranaguá.

Objetivos específicos

- Realizar um inventário faunístico do zooplâncton do CEP;

- Estudar os atributos ecológicos da comunidade zooplanctônica nas Áreas Diretamente Afetada, de Influência Direta e Indireta da ampliação do Cais Leste do Porto de Paranaguá;

- Monitorar o zooplâncton durante as fases de implantação e operação;

- Identificar os principais impactos à comunidade zooplanctônica e propor medidas para a gestão dos recursos hídricos nas Áreas Diretamente Afetadas, de Influência Direta e Indireta da ampliação do Cais Leste do Porto de Paranaguá.

Metodologia

O monitoramento do zooplâncton deverá ocorrer mensalmente no primeiro ano de operação, e trimestralmente no ano seguinte. Os pontos de coleta deverão cobrir a Área Diretamente Afetada e Área de Influência do empreendimento. As coletas do zooplâncton deverão ser realizadas nas marés baixa e alta. Os arrastos para a captura dos organismos devem ser realizados com uma rede cilindro cônica, com abertura de malha de 200 µm de tamanho, com 1,5 m de comprimento e boca de 30 cm de diâmetro, e equipada com um fluxômetro mecânico previamente calibrado. Arrastos podem ser horizontais de superfície com aproximadamente 3
min de duração numa profundidade em torno de 1,5 m ou executados de forma obliqua desde o fundo até a superfície nos pontos de maior profundidade. Após a coleta, as amostras devem ser imediatamente acondicionadas em frascos plásticos de 500 mL e fixadas em solução de formol a 4 % tamponado com bicarbonato de sódio.

No laboratório as amostras devem ser analisadas qualitativamente e quantitativamente, através de microscópio estereoscópico binocular, microscópio biológico e câmaras de Bogorov. As subamostragens devem ser realizadas com pipeta tipo Stampell ou subamostrador Motoda. A identificação dos organismos deve ser feita ao menor nível taxonômico possível, utilizando bibliografia especializada.

Na análise dos resultados, os dados deverão ser tabulados para avaliar os seguintes aspectos: composição, abundância e diversidade de espécies, por grupos e ambientes de ocorrência. A densidade de organismos (org.m⁻³) e índice de diversidade de Shannon (bits.ind⁻¹) e equitabilidade (J) (PIELOU, 1997) devem ser calculados para cada unidade amostral. A freqüência de ocorrência e abundância relativa deverão ser determinadas considerando o menor nível taxonômico, sendo abundantes aquelas que apresentaram densidade média maior que a densidade média total. As correlações entre o zooplâncton e as variáveis abióticas poderão ser avaliadas através de análises multivariadas.

Planejamento estratégico

A tabela a seguir apresenta informações sobre as ações necessárias para o monitoramento do zooplâncton na Área Diretamente Afectada, Área de Influência Direta.
<table>
<thead>
<tr>
<th>Metas Físicas</th>
<th>Ação</th>
<th>Detalhamento</th>
<th>Indicadores</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Licença Ambiental</td>
<td>Encaminhamento do pedido de licença de coleta ao IBAMA</td>
<td>Liberação da licença</td>
</tr>
<tr>
<td>02</td>
<td>Definição da grade amostral</td>
<td>Georeferenciar os pontos de amostras; Gerenciar recursos para despesas com, transporte, alimentação e hospedagem; Preparar equipamentos e materiais de coleta</td>
<td>Mapa com pontos amostrais; Planilha de custos; revisão dos equipamentos e materiais</td>
</tr>
<tr>
<td>03</td>
<td>Logística de campo</td>
<td>Coleta de material biológico</td>
<td>Amostras coletadas</td>
</tr>
<tr>
<td>04</td>
<td>Saída a campo</td>
<td>Coleta de material biológico</td>
<td>Amostras coletadas</td>
</tr>
<tr>
<td>05</td>
<td>Análises das amostras</td>
<td>Análises qualitativas e quantitativas</td>
<td>Elaboração de matriz de dados em planilhas</td>
</tr>
<tr>
<td>06</td>
<td>Elaborar listagem taxonômica</td>
<td>Gerar informações sobre a composição do zooplâncton</td>
<td>Inventário faunístico</td>
</tr>
<tr>
<td>07</td>
<td>Apresentar informações sobre os atributos ecológicos da comunidade zooplanctônica</td>
<td>Realizar análises estatísticas multivariadas</td>
<td>Interpretar os resultados obtidos graficamente</td>
</tr>
<tr>
<td>08</td>
<td>Relatórios</td>
<td>Repassar informações ao TCP</td>
<td>Aprovação técnica da TCP</td>
</tr>
<tr>
<td>09</td>
<td>Revisão bibliográfica</td>
<td>Pesquisa de trabalhos publicados sobre o zooplâncton marinho em bibliotecas e internet</td>
<td>Banco de dados sobre bibliografias na área</td>
</tr>
</tbody>
</table>
Cronograma

<table>
<thead>
<tr>
<th>Meta Física</th>
<th>1º Ano</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Meses</td>
</tr>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
<tr>
<td>1</td>
<td>X X</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>X X X X X X X X X X X X</td>
</tr>
<tr>
<td>4</td>
<td>X X X X X X X X X X X X</td>
</tr>
<tr>
<td>5</td>
<td>X X X X X X X X X X X X</td>
</tr>
<tr>
<td>6</td>
<td>X X</td>
</tr>
<tr>
<td>7</td>
<td>X X</td>
</tr>
<tr>
<td>8</td>
<td>X X</td>
</tr>
<tr>
<td>9</td>
<td>X X X X X X X X X X X X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Meta Física</th>
<th>2º Ano</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Meses</td>
</tr>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
<tr>
<td>1</td>
<td>X X</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>X X X X X X X X</td>
</tr>
<tr>
<td>4</td>
<td>X X</td>
</tr>
<tr>
<td>5</td>
<td>X X X X X X X X</td>
</tr>
<tr>
<td>6</td>
<td>X X</td>
</tr>
<tr>
<td>7</td>
<td>X X</td>
</tr>
<tr>
<td>8</td>
<td>X X</td>
</tr>
<tr>
<td>9</td>
<td>X X X X X X X X X X X X</td>
</tr>
</tbody>
</table>

Responsabilidades

Terminal de Contêineres de Paranaguá
Equipe técnica responsável pela elaboração do programa

Dr. Moacyr Serafim Junior (CRBio: 17.499-07, CTF IBAMA: 1811)
7.3.2.3.3 Programa de monitoramento das larvas de decápodos

No plâncton nerítico, as larvas de decápodes são consideradas como um dos grupos mais representativos. Estes invertebrados na fase adulta estão presentes em quase todas as comunidades marinhas. No período reprodutivo ocorre uma maior abundância e concentração de larvas em amostras do plâncton. Em razão da complexa vida larval, alguns grupos de crustáceos mais primitivos apresentam diferentes estágios larvais.

O período de desenvolvimento larval pode compreender uma ou mais fases que, por sua vez, são compostas por poucos ou diversos estágios cada uma, dependendo da espécie. Cada fase larval quase sempre é distinguida por uma metamorfose que gera mudanças profundas, no comportamento, alimentação, ecologia e fisiologia. Em contraste, os estágios larvais são períodos sequenciais de desenvolvimento, sem mudanças de hábito e discernidos por pequenas mudanças morfológicas (ANGER, 2001). Os Penaeidae por exemplo emergem como náuplio em uma região diferente daquela em que habitará nos seguintes estágios larvais de protozoa, mysis, e poslarva. Para os grupos mais sedentários e pouco móveis, a fase larval é a única via de dispersão e colonização de novas áreas (BOLTOVSKOY, 1981).

Neste contexto, os estudos sobre a diversidade biológica e distribuição ecológica das larvas de decápodes podem representar um conjunto de informações de grande importância, pois fornecem bases para o desenvolvimento de mecanismos de conservação da biodiversidade.

O presente programa visa garantir o monitoramento das larvas de decápodes na Área Diretamente Afetada e Área de Influência Direta ampliação do Cais Leste do Porto de Paranaguá.
Objetivos

Monitorar as larvas de decápodes na Área Diretamente Afetada e Área de Influência Direta da ampliação do Cais Leste do Porto de Paranaguá.

Objetivos específicos

- Realizar um inventário faunístico das larvas de decápodes;

- Estudar os atributos ecológicos das larvas de decápodes nas Áreas Diretamente Afetada, de Influência Direta da ampliação do Cais Leste do Porto de Paranaguá;

- Realizar coletas das larvas de decápodes durante as fases de implantação e operação;

- Identificar os principais impactos sobre as larvas e propor medidas para a gestão nas Áreas Diretamente Afetadas, de Influência Direta e Indireta da ampliação do Cais Leste do Porto de Paranaguá.

Metodologia

O monitoramento do zooplâncton deverá ocorrer no primeiro ano de operação. Conforme resultados avalia-se a possibilidade de manutenção das avaliações. Os pontos de coleta deverão cobrir a Área Diretamente Afetada e Área de Influência Direta do empreendimento. As coletas deverão ser realizadas nas marés baixa e alta. Os arrastos para a captura dos organismos devem ser realizados com uma rede cilindro cônica, com abertura de malha de 200 µm de tamanho, com 1,5 m de comprimento e boca de 30 cm de diâmetro, e equipada com um fluxômetro mecânico previamente calibrado. Arrastos podem ser horizontais de superfície com aproximadamente 3 min de duração numa profundidade em torno de 1,5 m ou executados de forma oblíqua desde o fundo até a superfície nos pontos de maior profundidade. Após a coleta, as amostras devem ser imediatamente acondicionadas.
em frascos plásticos de 500 mL e fixadas em solução de formol a 4 % tamponado com bicarbonato de sódio.

Os dados de densidades dos táxons identificados devem ser calculados de acordo com o volume de água filtrada em cada arrasto, o volume médio filtrado pela rede foi de 13,59 m³, sendo determinado através da seguinte equação:

\[V = \pi r^2 F \Delta \text{rotação}, \]

onde:

- \(r = \) raio da rede (0,2 m);
- \(F = \) fator de aferição do fluxômetro (0,3);
- \(\Delta \text{rotação} = \) diferença entre número de rotação inicial e final do fluxômetro em cada arrasto.

No laboratório as amostras deverão ser analisadas qualitativamente e quantitativamente, através de microscópio estereoscópico binocular, microscópio biológico e câmaras de Bogorov. As subamostragens devem ser realizadas com pipeta tipo Stampell ou subamostrador Motoda. A identificação dos organismos deverá ser realizada ao menor nível taxonômico possível, utilizando bibliografia especializada.

Na análise dos resultados, os dados deverão ser tabulados para avaliar os seguintes aspectos: composição, abundância e diversidade de espécies, por grupos e ambientes de ocorrência. A densidade de organismos (org.m\(^{-3}\)) e índice de diversidade de Shannon (bits.ind\(^{-1}\)) e equitabilidade (\(J\)) (PIELOU, 1997) devem ser calculados para cada unidade amostral. A frequência de ocorrência e abundância relativa deverão ser determinadas considerando o menor nível taxonômico, sendo abundantes aquelas que apresentaram densidade média maior que a densidade média total. As correlações entre o zooplâncton e as variáveis abióticas poderão ser avaliadas através de análises multivariadas.
Planejamento estratégico

A tabela a seguir apresenta informações sobre as ações necessárias para o monitoramento das larvas de decápodes na Área Diretamente Afetada, Área de Influência Direta e Área de Influência Indireta.

Planejamento estratégico para monitoramento das larvas de decápodes.

<table>
<thead>
<tr>
<th>Metas Físicas</th>
<th>Ação</th>
<th>Detalhamento</th>
<th>Indicadores</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Licença Ambiental</td>
<td>Encaminhamento do pedido de licença de coleta ao IBAMA</td>
<td>Liberação da licença</td>
</tr>
<tr>
<td>02</td>
<td>Definição da grade amostral</td>
<td>Georeferenciar os pontos de amostragens</td>
<td>Mapa com pontos amostrais</td>
</tr>
<tr>
<td>03</td>
<td>Logística de campo</td>
<td>Gerenciar recursos para despesas, transporte, alimentação e hospedagem; Preparar equipamentos e materiais de coleta</td>
<td>Planilha de custos; revisão dos equipamentos e materiais</td>
</tr>
<tr>
<td>04</td>
<td>Saída a campo</td>
<td>Coleta de material biológico</td>
<td>Amostras coletadas</td>
</tr>
<tr>
<td>05</td>
<td>Análises das amostras</td>
<td>Análises qualitativas e quantitativas</td>
<td>Elaboração de matriz de dados em planilhas</td>
</tr>
<tr>
<td>06</td>
<td>Elaborar listagem taxonômica</td>
<td>Gerar informações sobre a composição e abundância das larvas de decápodes</td>
<td>Inventário faunístico e dados quantitativos</td>
</tr>
<tr>
<td>07</td>
<td>Apresentar informações sobre os atributos ecológicos da comunidade</td>
<td>Realizar análises estatísticas multivariadas</td>
<td>Interpretação dos resultados obtidos graficamente</td>
</tr>
<tr>
<td>08</td>
<td>Relatórios</td>
<td>Repassar informações a TCP</td>
<td>Aprovação técnica da TCP</td>
</tr>
<tr>
<td>09</td>
<td>Revisão bibliográfica</td>
<td>Pesquisa de trabalhos publicados sobre o zooplâncton marinho em bibliotecas e internet</td>
<td>Banco de dados sobre bibliografias na área</td>
</tr>
</tbody>
</table>
Cronograma

<table>
<thead>
<tr>
<th>Meta Física</th>
<th>1º Ano</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Meses</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
</tr>
<tr>
<td>3</td>
<td>X</td>
</tr>
<tr>
<td>4</td>
<td>X</td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Responsabilidades

Terminal de Contêineres de Paranaguá

Equipe técnica responsável pela elaboração do programa

Dr. Moacyr Serafim Junior (CRBio: 17.499-07, CTF IBAMA: 1811)
7.3.2.3.4 Programa de monitoramento da macrofauna bêntica

Os impactos provenientes das atividades de instalação e operação do novo cais do Terminal de Contêineres de Paranaguá irão envolver mobilização de sedimentos, criação de habitas consolidados (com a construção do novo cais) e modificações na morfologia dos fundos adjacentes. A fauna bêntica do entorno será diretamente afetada provavelmente mudando as características das associações com a implantação final da obra.

Para que o empreendedor possa avaliar o real impacto ao meio ambiente provocado pela construção de obras costeiras sugere-se a implantação de um programa de monitoramento que tenha duração e amplitude compatíveis com o tamanho da obra. Um monitoramento bem desenvolvido produz informações estratégicas que: 1) auxiliam na tomada de decisões, 2) suprem as demandas dos órgãos ambientais, 3) contribuem para ações de responsabilidade sócio-ambiental.

A macrofauna bêntica é usada com frequência na avaliação da integridade de ecossistemas aquáticos e em monitoramentos ambientais devido principalmente aos seguintes fatores: 1) é composta por organismos com tamanho reduzido e hábito de vida sedentário (a mobilidade restrita impede que a maioria dos organismos se mude frente aos impactos); 2) possuem dinâmica populacional intimamente relacionada com os fatores físico-químicos em escala local; 3) pela relativa facilidade na obtenção de amostras precisas que permitem estimativas quantitativas confiáveis; 4) por apresentarem boa relação custo benefício; 5) por ser um compartimento bastante conhecido taxonômica e ecologicamente.

Impactos causados pela construção de estruturas em estuários, apresentam fases com características específicas e também com impactos determinados (Newell et al., 1998, Thrush & Dayton, 2002). A macrofauna bêntica é afetada de diferentes formas, de acordo com a natureza e duração dos impactos, mas invariavelmente recoloniza áreas degradadas pelo processo de dispersão de larvas (e até organismos juvenis e adultos) pela coluna d’água (Günther et al., 1992).
Até em eventos que causam a remoção completa da fauna (como em áreas alvo de dragagem) imediatamente é iniciado o processo de colonização que só é conhecido com a implantação de programas de monitoramento (Thrush et al., 1994).

Objetivos

- Avaliar criticamente as modificações na fauna bêntica de substrato consolidado e inconsolidado decorrentes das atividades construtivas (e operacionais) do novo cais do TCP;
- Fornecer informações sobre a intensidade dos impactos e da taxa recuperação dos ambientes sedimentares e rochosos adjacentes;
- Monitorar as populações de organismos exóticos encontradas no cais existente e ambientes rochosos adjacentes.

Metodologia

- Substrato consolidado

Procedimento de campo

As amostras serão obtidas por meio de mergulho autônomo e raspagem do substrato. Será realizada quantificação dos principais organismos sésseis/incrutanentes a partir de estimativas visuais pelo método dos quadrados, estimando-se a porcentagem de recobrimento ou número de indivíduos em cinco áreas de 225 cm

Vale ressaltar a dificuldade logística da atividade de mergulho autônomo na região, caracterizada por correntes extremamente fortes e baixa transparência da água. Ainda assim, considera-se que o método amostral utilizado seja suficiente para uma caracterização adequada da macrobiota, em especial, daqueles organismos mais conspicuos e mais importantes na ocupação do substrato.
Procedimentos de laboratório

As amostras serão analisadas sob microscópio estereoscópico e óptico, buscando-se identificar todos os organismos presentes, porém com ênfase àqueles importantes ocupadores de espaço. A identificação será realizada a partir de literatura especializada e por comparação com coleções de referência já existentes.

Análises dos dados

Cada local de coleta foi descrito a partir da composição e abundância de organismos identificados, além de uma descrição dos próprios substratos. A abundância dos organismos está descrita em cada local de coleta em número de indivíduos – para espécies solitárias - e por estimativa de porcentagem de cobertura – para as coloniais e incrustantes.

Os locais foram comparados por meio da riqueza de táxons, e pela similaridade entre a composição da comunidade em cada local. A similaridade foi calculada pelo índice de Distância Euclidiana, baseada na presença/ausência dos organismos nas amostras. Amostras de inverno e verão também foram comparadas a fim de verificar alterações sazonais na composição da biota.

- Substrato inconsolidado

Delineamento amostral

O monitoramento será efetuado utilizando-se metodologia específica da macroecologia aplicada a ambientes sedimentares (Zajac, 1999). A primeira etapa do presente programa de monitoramento é a definição de áreas de relevância, ou seja, áreas próximas ao empreendimento que passarão pelo processo de interferência/modificação durante as atividades construtivas. Devem ser excluídas áreas que serão completamente suprimidas, como a própria região imediatamente abaixo do cais e a retro área passiva de aterramento.
Uma grade amostral será aplicada ao entorno do TCP, na parte frontal do cais e lateral ao canal da Cotinga de onde serão tiradas 30 amostras em pontos pré-estabelecidos. Uma grade secundária, com 9 amostras será aplicada ao banco não vegetado, na margem continental e um transecto com 9 pontos será aplicado à franja do manguezal da Ilha da Cotinga. Serão sorteados 3 pontos em cada ambiente para amostragem replicada (3 réplicas); nos demais uma amostra será retirada por ponto amostral.

A periodicidade amostral será de 6 meses, nos períodos imediatamente após o verão (março/abril) e imediatamente após o inverno (setembro/outubro). Desta forma o grid irá ilustrar indiretamente o efeito das estações do ano onde ocorrem os máximos e mínimos de temperatura. O efeito (acumulado de três meses) das estações do ano na macrofauna será acessado após a passagem das estações, e não no decorrer da estação. O trabalho ocorrerá durante a fase de implantação.

Procedimento de campo

Primeiramente os pontos amostrais serão plotados em carta náutica digital. Em campo os pontos serão encontrados com o auxílio de GPS. As amostras de sublitoral serão obtidas por meio de uma draga tipo “Van veen”. As amostras de manguezal e baixio serão coletadas com o auxílio de um amostrador com área e volume equivalentes ao Van veen. As amostras serão acondicionadas em sacos plásticos e levadas ao laboratório para processamento.

Procedimentos de laboratório

O sedimento será lavado em peneiras de malha 0,5mm, e fixado com formaldeído 4% tamponado com tetraborato de sódio, por pelo menos 72 horas. Em seguida, as amostras serão transferidas para potes plásticos com álcool 70% e triadas em microscópio estereoscópico. Os organismos separados serão identificados ao
menor nível taxonômico possível, ou em morfotipos, e serão quantificados com o auxílio de microscópio estereoscópico e microscópio.

Ações, detalhamento e acompanhamento

A seguir será apresentado um quadro com as ações a serem desenvolvidas, com um breve detalhamento e indicadores que permitirão acompanhar o cumprimento das etapas.

<table>
<thead>
<tr>
<th>Número da Ação</th>
<th>Ação</th>
<th>Detalhamento</th>
<th>Acompanhamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Definição da grade amostral</td>
<td>Conseguir mapa georeferenciado da área e GPS, plotar pontos e incluir coordenadas no GPS</td>
<td>Mapa com pontos amostrais pronto</td>
</tr>
<tr>
<td>02</td>
<td>Organização de logística de campo</td>
<td>Alugar embarcação, comprar sacos plásticos, lacres, frascos, alimentação para a coleta</td>
<td>Check up de lista antes de ir ao campo</td>
</tr>
<tr>
<td>03</td>
<td>Saída a campo</td>
<td>Preparar material de coleta, Coletar amostras</td>
<td>Amostras coletadas</td>
</tr>
<tr>
<td>04</td>
<td>Amostras lavadas no dia da coleta</td>
<td>Lavar as amostras em no máximo 24 horas após a coleta, fixando-as a seguir</td>
<td>Amostras acondicionadas em frascos, etiquetadas, fixadas</td>
</tr>
<tr>
<td>05</td>
<td>Triagem e identificação</td>
<td>Processar as amostras seguindo metodologia sugerida</td>
<td>Fichas de triagem preenchidas</td>
</tr>
<tr>
<td>06</td>
<td>Montar listagem taxonômica e planilha de riqueza e abundância por amostra</td>
<td>Digitar conteúdo das fichas de triagem numa planilha Excel</td>
<td>Planilha completa salva e com backup</td>
</tr>
<tr>
<td>07</td>
<td>Levantamento bibliográfico</td>
<td>Procurar trabalhos realizados anteriormente na biblioteca do CEM e internet</td>
<td>Cópia dos trabalhos selecionados</td>
</tr>
<tr>
<td>08</td>
<td>Redação de relatório parcial</td>
<td>Juntar todas as informações e escrever</td>
<td>Relatório escrito e entregue ao TCP</td>
</tr>
</tbody>
</table>
Cronograma

<table>
<thead>
<tr>
<th>Ação</th>
<th>Mês</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
</tr>
<tr>
<td>2</td>
<td>X X</td>
</tr>
<tr>
<td>3</td>
<td>X X</td>
</tr>
<tr>
<td>4</td>
<td>X X</td>
</tr>
<tr>
<td>5</td>
<td>X X X X X X X</td>
</tr>
<tr>
<td>6</td>
<td>X X</td>
</tr>
<tr>
<td>7</td>
<td>X X X X X X X X</td>
</tr>
<tr>
<td>8</td>
<td>X X</td>
</tr>
<tr>
<td>9</td>
<td>X X</td>
</tr>
</tbody>
</table>

Responsabilidades

Terminal de Contêineres de Paranaguá

Equipe técnica responsável pela elaboração do programa

MSc. Leonardo Morrissy Hostin (CRBio: 25.545-07, CTF IBAMA: 2.686.701)

Dr. Orlei Antonio Negrello Filho (CRBio: 28536-07D, CTF IBAMA: 245.062)

Dr. Rafael Metri (CTF IBAMA: 605.789)
7.3.2.3.5 Programa de controle e monitoramento da ictiofauna do sublitoral

O estabelecimento de grandes cidades e o desenvolvimento econômico impulsionado nas zonas litorâneas de todo mundo fazem com que os estuários estejam entre os ecossistemas aquáticos mais vulneráveis a alterações nas suas condições naturais, sendo submetidos a pressões antrópicas que usualmente levam a mudanças biológicas (Costa et al., 2007; Halpern et al., 2007).

Os habitats estuarinos e a biota associada a eles são potencialmente impactados por diversas ações humanas, que podem ter uma influência direta nos recursos alimentares, distribuição, diversidade, reprodução, abundância, crescimento, sobrevivência e comportamento tanto das espécies residentes quanto das migratórias. A manutenção da qualidade ambiental dos estuários leva a necessidade do estabelecimento de uma condição de referência sobre a abundância das espécies e das relações de suas histórias de vida com o sistema, sendo fundamental para o embasamento de estratégias de manejo e para o uso sustentável dos recursos (Vasconcelos et al., 2007).

Diversos grupos de organismos têm sido sugeridos e usados como indicadores de alterações ambientais e ecológicas (Karr et al., 1986). Embora não haja um consenso sobre o grupo mais eficiente em detectar alterações na qualidade ambiental, os peixes têm sido sucessivamente usados em vários habitats aquáticos e possuem algumas vantagens como organismos indicadores para programas de monitoramento ambiental, incluindo: (1) são relativamente fáceis de identificar, em comparação a muitos invertebrados; (2) as comunidades de peixes possuem espécies que representam vários níveis tróficos; (3) eles apresentam grande variedade de histórias de vida e guildas funcionais, então são esperados para abranger todas as partes do ecossistema afetadas pelos distúrbios antrópicos; (4) os peixes têm uma vida relativamente longa, o que permite providenciar um cenário do estresse ambiental em longo prazo; (5) possuem alta abundância; (6) são relativamente fáceis de serem encontrados e capturados; e (7) por possibilitar uma análise do custo-benefício social da degradação ambiental, devido ao valor
Impactos Relacionados

Possível contaminação química da água, supressão e modificação do habitat que impacte direta ou indiretamente a ictiofauna.

Objetivos

- Analisar o efeito das obras de ampliação e da operação do novo cais do TCP sobre a composição taxonômica e abundância relativa das espécies, na assembléia de peixes do sublitoral adjacente;
- Determinar a magnitude espacial e temporal das modificações na estrutura da ictiofauna geradas pelo empreendimento;
- Gerar informações que possam auxiliar na compreensão dos efeitos da construção e operação dos demais empreendimentos portuários presentes na Baía de Paranaguá, na ictiofauna da região.

Abrangência

Proximidades do Terminal de Contêineres de Paranaguá – TCP.
Metodologia

Procedimentos de campo e laboratório

Para o monitoramento da ictiofauna do sublitoral, serão realizadas amostragens em nove pontos distribuídos em três radiais perpendiculares ao novo cais do TCP, sendo três pontos localizados a 100, três a 600 e três a 1100 metros da linha de atracação.

Plano de amostragem da ictiofauna no sublitoral da ADA. A linha vermelha indica o local de implantação do novo cais, os pontos indicam os locais de amostragem e os valores indicam as distâncias da linha de atracação.

As amostragens ocorrerão trimestralmente no primeiro ano e sazonalmente no ano seguinte, durante o final do verão e do inverno, abrangendo todo o período previsto de duração das obras.

Em cada expedição de amostragem, serão realizados por ponto cinco arrastos de fundo com duração de cinco minutos cada, a uma velocidade aproximada de 1,5
nós. Os arrastos ocorrerão no período diurno, em marés de quadratura. A ordem de coleta entre os pontos será determinada previamente através de sorteio.

Para a obtenção das amostras será utilizada uma rede de arrasto com portas, com 8,6 m de boca, malha de 13 mm entre nós adjacentes nas mangas e barriga e 5 mm no saco, puxada por uma embarcação tipo "Bote". Os peixes capturados em cada arrasto serão acondicionados em sacos plásticos devidamente identificados e conservados em gelo. Em laboratório, os peixes serão identificados, medidos, pesados e analisados quanto ao sexo e estágio de maturidade gonadal, seguindo-se a escala de Vazzoler (1996).

Antes de cada arrasto, será mensurada a temperatura, salinidade, pH, oxigênio dissolvido e turbidez, através de um CTD. A profundidade será monitorada em intervalos de um minuto, para o cálculo da profundidade média do arrasto, através de um ecobatímetro. Serão coletadas ainda amostras de sedimento em cada ponto amostral para a análise sedimentológica (granulometria e matéria orgânica), utilizando-se para isto um buscador de fundo do tipo Petit-Ponar.

Materiais e equipe

Graduados e especialistas na área

Ações de monitoramento e controle

As ações previstas durante o monitoramento da ictiofauna e seus respectivos indicadores são apresentadas no quadro a seguir:
<table>
<thead>
<tr>
<th>Número da ação</th>
<th>Ação</th>
<th>Detalhamento</th>
<th>Indicadores</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Coletas</td>
<td>Coletas de amostras da ictiofauna e mensuramento dos dados abióticos no sublitoral</td>
<td>Número de coletas realizadas</td>
</tr>
<tr>
<td>2</td>
<td>Processamento das amostras</td>
<td>Identificação taxonômica, biometria e análise do estágio de maturidade dos peixes coletados</td>
<td>Número de indivíduos coletados por espécie</td>
</tr>
<tr>
<td>3</td>
<td>Planilhamento dos dados</td>
<td>Digitar conteúdo das fichas de triagem numa planilha do software Excel</td>
<td>Número de coletas incluídas na planilha de dados</td>
</tr>
<tr>
<td>4</td>
<td>Levantamento bibliográfico</td>
<td>Procurar trabalhos realizados anteriormente na biblioteca do CEM e internet</td>
<td>Cópia dos trabalhos selecionados</td>
</tr>
<tr>
<td>5</td>
<td>Redação dos relatórios parciais</td>
<td>Apresentação e análise dos dados preliminares obtidos durante o monitoramento</td>
<td>Relatórios escritos e entregues ao TCP</td>
</tr>
<tr>
<td>6</td>
<td>Redação do relatório final</td>
<td>Apresentação e análise dos dados obtidos durante todo o monitoramento</td>
<td>Relatório escrito e entregue ao TCP</td>
</tr>
</tbody>
</table>

Cronograma

| Ações | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |
|-------|---|---|---|---|---|---|---|---|---|----|----|----|----|----|----|----|----|
| 1 | X | X | X | X | X | X | | | | | | | | | | | |
| 2 | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | | |
| 3 | X | X | X | X | X | X | X | X | X | X | X | X | | | | | |
| 4 | | X | X | X | X | X | X | X | | | | | | | | | |
| 5 | | | X | X | | | | | | | | | | | | | |
| 6 | | X | | | | | | | | | | | | | | | |

1587
EIA – Ampliação do Cais

Desempenho esperado

Avaliação dos impactos que podem ser detectados através de mudanças na estrutura da comunidade, analisando a ocorrência de alterações na diversidade, dominância, relação entre a abundância e biomassa, intensidade de infestações parasitárias e composição de parasitas ou pela taxa de doenças degenerativas.

Responsabilidades

Terminal de Contêineres de Paranaguá

Equipe técnica responsável pela elaboração dos programas

Dr. Henry Louis Spach (CRBio: 17006/07-D, CTF IBAMA: 511462)

MSc. Ciro Colodetti Vilar de Araujo (CTF IBAMA: 1823971)
7.3.2.3.6 Programa de monitoramento de siris e educação ambiental com pescadores de siris da região

Impactos relacionados

Manutenção de espécies introduzidas e competição com espécies nativas/alteração da ecologia trófica para a carcinofauna.

Objetivos

- Desenvolver um programa de monitoramento para a avaliação das possíveis alterações na reprodução de *C. danae* e *C. sapidus*.

- Monitoramento da população de *Charybdis helleri* e educação ambiental com os pescadores de siris sobre o problema da invasão desse siri;

Metodologia

- **Carcinofauna nativa**

Delineamento amostral

A avaliação dos impactos provocados pelo empreendimento na reprodução dos siris nativos, *C. danae* e *C. sapidus* será realizada durante 2 anos consecutivos, por meio de estimativa de densidade da população dessas espécies no Rio Itiberê e da frequência de fêmeas ovígeras.

A densidade da população será estimada por meio de amostragens semestrais no primeiro ano e semestrais no ano seguinte, com o uso de puçás em áreas adjacentes ao manguezal do canal da Cotinga, baixios e marismas. No rio Itiberê essa metodologia será aplicada a mesma frequência durante o primeiro ano de monitoramento para maior detalhamento da estrutura das populações de siris, especialmente *C. danae*, pois neste local provavelmente ocorrem todas as parcelas.
da população. Após análise resultados será avaliada a necessidade de continuidade do programa.

Com intuito de estimar a freqüência da carcinofauna em geral, especialmente de fêmeas ovígeras de siris, serão realizados arrastos de fundo, com 10 minutos de duração em três locais: na foz do Rio Itiberê, no Canal da Cotinga, a frente do TCP, e na entrada do canal da Ilha Rasa da Cotinga. Essas coletas serão realizadas trimestralmente no primeiro ano e semestralmente no segundo ano.

- Carcinofauna exótica

Delineamento amostral

Para detectar a presença e estudar a estrutura populacional do siri invasor *Charybdis helleri* no Complexo Estuarino da Baía de Paraguá, serão realizados os mesmos arrastos descritos anteriormente e amostragens com puçás, além de coletas em áreas de cultivo de ostras.

No caso de presença marcante do siri exótico *C. helleri*, a periodicidade das amostragens deve aumentar para permitir a determinação dos períodos reprodutivo e de recrutamento.

Devido à constatação da presença deste siri exótico associado ao cultivo de ostras na baía de Guaratuba (FRIGOTTO E SERAFIM-JUNIOR, 2007), serão realizadas amostragens em cultivos de ostras próximos ao empreendimento. Essas amostragens serão semestrais.

Serão realizadas entrevistas com pescadores de siris em localidades identificadas como áreas importantes desse tipo de pescaria, tais como: Valadares, vila São Miguel, Guaraqueçaba e Antonina. As entrevistas serão realizadas sazonalmente (inverno e verão) com o intuito de registrar a presença dessa espécie nas áreas de pesca. O programa de educação ambiental com os pescadores e com a comunidade em geral visa realizar um processo educativo desenvolvido por meio de
material impresso educativo com instruções sobre a problemática do estabelecimento dessa espécie e as conseqüências negativas para as populações de siris e para a biodiversidade local.

As informações levantadas serão incorporadas ao banco de dados do programa de educação ambiental e monitoramento da bioinvasão por água de lastro.

Procedimentos de campo

Os arrastos de fundo serão realizados com o uso de rede de arrasto de portas, operada por pescador contratado. Os arrastos terão duração padronizada de 10 minutos, com velocidade constante. Os arrastos serão realizados no sentido oposto à maré. Os pontos iniciais e finais dos arrastos serão marcados com GPS para estimativa da distância arrastada. Os arrastos subseqüentes serão realizados respeitando as coordenadas registradas.

A pesca com puçás será realizada com a utilização da mesma embarcação contratada, serão lançados 15 puçás com iscas previamente fixadas, cada um será lançado de uma distância de 3 metros, perfazendo um total de 45 metros.

As coletas nas lanternas de cultivo de ostras serão feitas mediante a retirada das lanternas e coleta manual dos siris quando presentes.

Os siris coletados serão acondicionados em sacos plásticos etiquetados, transportados em isopor com gelo e congelados para posterior processamento em laboratório.

Procedimentos de laboratório

Em laboratório, o material será identificado a partir de bibliografia especializada (MELO, 1996 E 1999; BUCKUP E BOND-BUCKUP, 1999; FRIGOTTO E SERAFIM-JUNIOR, 2007) e quantificado. Os siris capturados serão também sexados, medidos
(largura entre espinhos e comprimento da carapaça), pesados e terão o estágio de maturação gonadal determinado. As estruturas morfológicas serão medidas com auxílio de um paquímetro digital de precisão de 0,5mm e a pesagem dos indivíduos será realizada com balança semianalítica, com precisão de 0,01g.

Os siris serão classificados pelo seu estágio de desenvolvimento (jovem e adulto), de acordo com as características morfológicas externas do abdome, sendo selado nos jovens e não selado nos adultos.

O estágio de maturação gonadal será determinado de acordo com a morfologia interna dos siris. Por meio de dissecação as gônadas serão visualizadas e seus estágios de desenvolvimento registrados segundo o aspecto macroscópico, pela coloração das gônadas e sua relação de tamanho com o hepatopâncreas, como descrito abaixo:

Estágios de maturação gonadal de Callinectes spp (adaptado de PINHEIRO et al., 1998).

<table>
<thead>
<tr>
<th>Estágio</th>
<th>Machos</th>
<th>Fêmeas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imaturo</td>
<td>Gônadas não visíveis ou visíveis apenas sob aumento. Vasos deferentes filamentosos e opacos.</td>
<td>Gônadas não visíveis ou visíveis apenas sob aumento. Ovários filamentosos e opacos, mas translúcidos.</td>
</tr>
<tr>
<td>Em maturação</td>
<td>Filamentos dos vasos deferentes visíveis a olho nu, correspondendo a cerca de ¼ do tamanho do hepatopâncreas. Gônadas translúcidas a brancas.</td>
<td>Ovário filamentoso, mas visível a olho nu, com cerca de ½ do tamanho do hepatopâncreas. Gônada amarela a laranja claro.</td>
</tr>
<tr>
<td>Maturo</td>
<td>Gônadas e hepatopâncreas com tamanhos similares até gônada maior que o hepatopâncreas, ocupando toda a cavidade cefalotorácica. Gônadas brancas.</td>
<td>Ovário com tamanho similar a maior que o hepatopâncreas, ocupando toda a cavidade cefalotorácica. Ovário laranja escuro. Ova visível a olho nu.</td>
</tr>
</tbody>
</table>
O estágio de desenvolvimento de cada massa ovígera será verificado de acordo com a cor dos ovos, sendo laranja o estágio inicial, pardo o intermediário e a cor vinho que indica um estágio próximo à eclosão. O escurecimento da massa ovígera ao longo do desenvolvimento dos ovos se dá graças ao desenvolvimento dos olhos das larvas, conferindo assim a coloração escura da massa (BAPTISTA, 2002).

Detalhamento de cada uma das ações específicas de execução do programa

<table>
<thead>
<tr>
<th>Número da ação</th>
<th>Ação</th>
<th>Detalhamento</th>
<th>Acompanhamento</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Organização da logística de campo</td>
<td>Alugar embarcação, comprar sacos plásticos, lacres, frascos, alimentação para a coleta</td>
<td>Check up de lista antes de ir ao campo</td>
</tr>
<tr>
<td>2</td>
<td>Arrasto de fundo</td>
<td>Preparar material de coleta, coletar</td>
<td>Amostras coletadas, acondicionadas e etiquetadas</td>
</tr>
<tr>
<td>3</td>
<td>Coleta com puçás</td>
<td>Preparar material de coleta, coletar</td>
<td>Amostras coletadas, acondicionadas e etiquetadas</td>
</tr>
<tr>
<td>4</td>
<td>Definição das áreas de coleta em cultivos de ostras</td>
<td>Localizar os cultivos, contatar os responsáveis</td>
<td>Seleção dos cultivos</td>
</tr>
<tr>
<td>5</td>
<td>Coletas em lanternas de cultivo de ostras</td>
<td>Preparar material de coleta, coletar</td>
<td>Amostras coletadas, acondicionadas e etiquetadas</td>
</tr>
<tr>
<td>6</td>
<td>Triagem do material de coleta</td>
<td>Processar amostras segundo metodologia sugerida</td>
<td>Fichas de triagem preenchidas</td>
</tr>
<tr>
<td>6</td>
<td>Entrevista com pescadores de siris</td>
<td>Preparação da entrevista, contato com os pescadores</td>
<td>Entrevistas realizadas, dados computados</td>
</tr>
<tr>
<td>7</td>
<td>Análises dos dados</td>
<td>Digitalização dos dados e análises estatísticas</td>
<td>Detecção das áreas de ocorrência e estrutura populacional das principais espécies da carcinofauna</td>
</tr>
<tr>
<td>8</td>
<td>Redação de relatório parcial</td>
<td>Juntar todas as informações e escrever</td>
<td>Relatório escrito e entregue ao TCP</td>
</tr>
</tbody>
</table>

Materiais e equipe

Equipe: consistirá em dois pesquisadores e dois estagiários a serem selecionados. Serão treinados membros das comunidades de pescadores para a identificação do siri exótico e compreensão da problemática da bioinvasão.
Materiais: para a realização das coletas serão necessários canoa de pesca com rede de porta, 30 puçás, caixa de isopor e caixa plástica para triagem dos organismos.

Para as triagens serão utilizados 2 paquímetros digitais (precisão de 0,01mm), balança digital (0,001g), 4 pinças de ponta romba, 4 pinças de ponta fina, 4 tesouras cirúrgicas e bandejas plásticas.

Como material de consumo serão necessários: formol (10 litros), álcool (50 litros), iscas para os puçás, sacos plásticos, papel vegetal, lápis, lacres, papel toalha.
Cronograma

<table>
<thead>
<tr>
<th>Ação</th>
<th>Mês</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Responsabilidades

Terminal de Contêineres de Paranaguá

Equipe técnica responsável pela elaboração do programa

Dr. Rafael Metri (CTF IBAMA: 605.789)
7.3.2.3.7 Programa de monitoramento de pequenos cetáceos na região portuária e de influência destas atividades no Complexo Estuarino de Paranaguá, Estado do Paraná

Impacto relacionado

Como conseqüência ou em respostas às atividades geradoras de ruídos intensos e acréscimo de tráfego de embarcações é possível que ocorra modificações físicas na região auditiva e demais órgãos dos pequenos cetáceos, abandono de área ou modificação na forma de uso do habitat, alteração de nicho acústico ou de padrões comportamentais.

Objetivos

Na zona estuarina e costeira do Estado do Paraná são realizadas diversas atividades pesqueiras, portuárias, de exploração de recursos naturais e de turismo e todas causam modificações no meio e têm impacto sobre o ambiente. Para garantir a conservação da biodiversidade local é essencial conhecer e mensurar os efeitos das diferentes atividades.

Entre diversos grupos de organismos que podem indicar o estado de saúde dos ecossistemas os cetáceos são considerados uma ferramenta importante nos processos de conservação e gestão sócio-ambiental, pois possuem capacidade de bioacumulação (Dorneles et al., 2008; Endo et al., 2007; Monteiro-Neto et al., 2003) e uma rápida reação comportamental devido às mudanças do entorno (Moore & Clarke, 2002; Watkins, 1986; Domit, 2010). Além disto, devido a sua posição no topo da cadeia trófica, estes mamíferos são reguladores de populações de níveis tróficos inferiores (Savenkoff et al., 2008; Cuty et al., 2001) e são considerados “espécies bandeira” e “espécies guarda-chuva”. O primeiro termo se refere a espécie carismática usada como propaganda para proteger uma região e outras espécies e o segundo à espécie usada para especificar o tamanho e tipo de habitat a ser protegido, a fim de acolher outras espécies (O’shea e Odell, 2008).
As informações obtidas por meio do monitoramento sistemático de cetáceos vivos e pelas análises de animais mortos (carcaças encontradas em praias) permitem identificar problemas na qualidade das áreas e de forma rápida estabelecer procedimentos corretivos e preventivos (Andriolo & Simões-Lopes, 2003). Os métodos para estes monitoramentos são não invasivos, são de custo baixo a moderados, as informações são confiáveis e robustas e de fácil interpretação e avaliação.

A implantação do novo cais de atracação do TCP, em conjunto com outras atividades portuárias relacionadas com sua operação e demais terminais em seu entorno, poderá causar alterações nos padrões comportamentais (sociais e acústicos), na forma de uso de área ou mesmo o abandono de áreas importantes para a manutenção de atividades vitais para estes animais (áreas de reprodução e alimentação). Desta forma, o monitoramento possibilitará a determinação das principais mudanças geradas pela implantação do empreendimento nos padrões ecológicos e biológicos das populações das duas principais espécies de pequenos cetáceos da região: o boto-cinza (*Sotalia guianensis*) e a toninha (*Pontoporia blainvillei*), ambas espécies consideradas ameaçadas com relação ao seu estado de conservação (IBAMA, 2001; IAP 2010). As informações obtidas também subsidiarão futuras propostas de manejo para o zoneamento das áreas prioritárias para as espécies (em discussão junto ao ICMBio) e para os planos de manejo das Unidades de Conservação (Federais), que estão no entorno da área de influência direta e indireta do setor portuário de Paranaguá.

Os objetivos deste monitoramento são:

- Caracterizar os sons emitidos pelos cetáceos residentes na região e os ruídos realizados pelas diferentes atividades, além de demarcar a área de influência acústica desta “poluição sonora”;

- Analisar as alterações acústico/comportamentais e, se possível, a relação com a instalação do cais do TCP e outras atividades portuárias;
Acompanhar e avaliar as variações comportamentais e de organização social do boto-cinza e da toninha;

Determinar os padrões de forma de uso da região pelas duas espécies de pequenos cetáceos;

Monitorar os eventos de mortalidade de diferentes espécies de cetáceos e suas causas de morte.

Fase na qual o programa deverá ser desenvolvido

Ruídos e Caracterização acústica: Pela carência e necessidade premente de dados de sons e poluição sonora no local do empreendimento, e em todas as Baías do Complexo Estuarino de Paranaguá (CEP), recomenda-se a execução deste programa imediatamente antes do início da obra, durante a obra e depois de sua implantação, nesta última fase por um período de 02 (dois) anos. Este acompanhamento será inédito e poderá balizar análises de outros empreendimentos na região.

Comportamento, organização, abundância e distribuição: Como existem dados pretéritos para comparações esta etapa deverá ser executada durante a implantação e operação do empreendimento, principalmente durante períodos de intensificação de ruídos e tráfego de embarcações (construção e operação do novo cais).

Mortalidade e análise da saúde dos animais: Como existem dados pretéritos para comparações esta etapa deverá ser executada durante a implantação e operação do empreendimento, de forma contínua para que se obtenha um bom número de indivíduos e respostas quanto à causa de morte. Deve ser considerado que o número de indivíduos analisados (N amostral) é o determinante para obter informações robustas e poder discutir quanto ao estado de saúde do ambiente, por isto quanto maior o esforço maior o sucesso desta meta.
Materiais e equipamentos

Equipe/Pessoal
Pesquisador com mestrado para dedicação exclusiva ao programa de monitoramento

Equipamentos
GPS Garmin etrex vista
Freezer horizontal
Sonda multiparametros manual (Salinidade, temperatura e profundidade)
Teleobjetiva para maquina fotografica Sony α100 - TC-DC58B (70-300mm)
Computador Positivo Plus S440XL 2 GB RAM (DDR2),HD250GB 2.4 GHz.
Rangefinder (Estimador de distância)

Material de consumo
Combustível (para embarcação e carro)
Formaldeído 40%
Álcool absoluto
Ácido acético
Sal grosso
Bandejas
Baldes
Lâminas de bisturis
Cabo de bisturi
Sacolas Plásticas (diferentes tamanhos para armazenar material biológico)
Potes de plástico
Luvas
Facas para dissecação
Tonner para impressora
Caixas de papelão para armazenar material osteológico
Material de Assepcia e Segurança
Botas de borracha
Silica Gel
Divulgação
Banners
Cartazes informativos
Material de consumo
Combustível (para embarcação e carro)
Formaldeído 40%
Álcool absoluto
Ácido acético
Sal grosso
Bandejas
Baldes
Lâminas de bisturis
Cabo de bisturi
Sacolas Plásticas (diferentes tamanhos para armazenar material biológico)
Potes de plástico
Luvas
Facas para dissecação
Tonner para impressora
Caixas de papelão para armazenar material osteológico
Material de Assepcia e Segurança
Botas de borracha
Silica Gel
Divulgação
Banners
Cartazes informativos

Desempenho esperado

Os resultados esperados pelo monitoramento seguem em respostas as metas elaboradas. Os indicadores servirão aos técnicos, empreendedores e analistas dos órgãos gestores para avaliação do andamento dos estudos e das alterações populacionais e ambientais que possam ser observadas.
<table>
<thead>
<tr>
<th>METAS</th>
<th>INDICADORES</th>
<th>RESULTADOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identificar mudanças comportamentais dos cetáceos nas áreas do porto e determinar o impacto das atividades nos organismos.</td>
<td>Padrão acústico dos cetáceos e de atividades humanas Índices de abundância de cetáceos Composição dos grupos Presença e abundância de filhotes Informação qualitativa e quantitativa quanto aos comportamentos dos cetáceos na presença de embarcações Discernir comportamentos “positivos” e “negativos” dos organismos frente às diferentes atividades</td>
<td>Mapas temáticos com a caracterização das populações que utilizam as áreas do projeto e análises comparativas na identificação de mudanças ao longo do período de monitoramento Sonogramas do repertório acústico dos cetáceos residentes na região estuarina e dos ruídos de atividades portuárias</td>
</tr>
<tr>
<td>Determinar a forma de uso e o tamanho da área de vida dos cetáceos estuarinos do Complexo Estuarino de Paranaguá</td>
<td>Características ambientais utilizadas pelos pequenos cetáceos para cada uma das suas atividades (alimentação, reprodução, cuidado parental e deslocamento) Mudanças nas condições ambientais das áreas de atividade, ao longo do período do monitoramento Levantamento qualitativo e quantitativo dos espécimes de cetáceos que encalham no litoral do Estado do Paraná</td>
<td>Mapas temáticos com a forma de uso de cada área pelos botos-cinza, delimitação das áreas de vida e concentração dos grupos, das áreas prioritárias para o desenvolvimento dos infantes e existência de informações disponíveis para ações de gestão</td>
</tr>
<tr>
<td>Caracterizar as espécies que encalham no litoral do Paraná e definir possíveis causas de morte</td>
<td>Número de mortes causadas por ações antrópicas de forma direta ou mesmo indiretamente doenças Locais de maior ocorrência de encalhes Variação temporal dos encalhes</td>
<td>Gráficos de variação temporal e espacial do encalhe Determinação das principais ações antrópicas responsáveis pela morte de cetáceos no litoral do Estado do Paraná</td>
</tr>
</tbody>
</table>

Cronograma

Monitoramento de encalhe

As praias da Ilha das Peças e Ilha do Mel e a região entre o balneário de Pontal do Sul e o município de Matinhos devem ser monitoradas mensalmente para a coleta
de animais encalhados e amostras biológicas. Também deve ser estabelecida uma rede de contatos com as comunidades locais para recebimento de animais e avisos de encalhes.

Monitoramento de emissões sonoras e ruidos, abundância, comportamento e área de vida

As coletas deve ocorrer com periodicidade bimensal, nas baías do Complexo Estuarino de Paranaguá (Baía de Paranaguá, Antonina e das Laranjeiras). As observações dos animais e coleta sonora serão realizadas a partir de expedições embarcadas, seguindo rotas guias e direcionadas a busca de grupos de cetáceos. Para a coleta de abundância é essencial que seja utilizado o método de transecções lineares, dispostas em todas as baías, as quais devem ser percorridas de maneira aleatória (em ordem sorteada).

Relatórios e avaliação

Os resultados devem ser apresentados em relatórios semestrais na forma escrita, os quais devem informar esforço amostral, áreas de coleta, número de animais resgatados (encalhes), número de amostras coletas e enviadas para análises de contaminação química, histopatológicas ou parasitológicas, além dos mapas propostos na tabela de metas, com os resultados prévios e uma avaliação sobre as interferências observadas, sejam estas positivas, neutras ou negativas. Este relatório deverá ser enviado aos órgãos ambientais federais e estaduais e ao empreendedor. Anualmente os resultados devem ser apresentados em forma oral e por meio de banners à comunidade local, principalmente durante reuniões dos conselhos gestores das Unidades de Conservação localizadas no entorno da zona portuária de Paranaguá, e a comunidade científica durante conferências e encontros técnicos.

Responsabilidades

Terminal de Contêineres de Paranaguá
Equipe responsável pela elaboração do programa

- Camila Domit.
 Bióloga - Universidade Estadual do Londrina (UEL)
 Mestre em Zoologia - Universidade Federal do Paraná (UFPR)
 Doutora em Zoologia - Universidade Federal do Paraná (UFPR)

- Liana Rosa
 Bióloga - Universidade Federal do Paraná (UFPR)
 Mestre em Sistemas Costeiros e Oceânicos - Universidade Federal do Paraná – Centro de Estudos do Mar (CEM/UFPR)

- Glaucia Sasaki
 Bióloga - Universidade Federal do Paraná (UFPR)
 Mestre em Sistemas Costeiros e Oceânicos - Universidade Federal do Paraná – Centro de Estudos do Mar (CEM/UFPR)

- Maria Camila Rosso-Londoño
 Bióloga Marinha - Universidade de Bogotá Jorge Tadeo Lozano (UJTL) – Bogotá – Colômbia
 Mestre em Sistemas Costeiros e Oceânicos - Universidade Federal do Paraná – Centro de Estudos do Mar (CEM/UFPR)

- Equipe de estagiários e pesquisadores colaboradores vinculados ao Laboratório de Ecologia e Conservação (CEM/UFPR)
7.3.2.3.8 Programa de monitoramento da avifauna

Impactos relacionados

Alterações físico-biológicas em sítios de alimentação de aves aquáticas.

Perturbação de locais de repouso coletivo.

Objetivos

A exposição periódica de bancos de sedimento, em decorrência dos fluxos de marés, permite que um elevado número de indivíduos, principalmente de trinta-réis (*Thalasseus sandvicensis*, *T. maximus* e *Sterna hirundinacea*) repouse entre as atividades de pesca. Caso haja perturbações nestes locais de repouso coletivo, pode ocorrer o abandono da área por estas aves. A dragagem e o respectivo depósito dos sedimentos, os ruídos e explosões provocados pelo processo de derrocagem, a construção dos dolphins e a atividade humana são fatores geradores de perturbações, uma vez que grandes concentrações destas espécies foram observadas na área de influência direta do empreendimento. A presença de grandes embarcações, no local projetado para a ampliação do cais, pode ser outro fator de impacto.

Foi observado também, que os bancos de sedimento localizados na área de influência direta são importantes sítios de alimentação para várias espécies. As alterações do substrato, dos fluxos de maré e da dinâmica de sedimentos podem modificar toda esta área, interferindo na disponibilidade de peixes. O assoreamento do canal da Cotinga pode tornar o local muito raso, não permitindo que espécies de aves, que mergulham para obter suas presas, executem suas atividades de forrageamento.
Metodologia

Para atender a parte do programa que visa avaliar as alterações físico-biológicas em sitios de alimentação de aves aquáticas, deve ser conduzido um monitoramento dos principais locais utilizados para alimentação dos trinta-réis (*Sterna hirundinacea, Thalasseus spp.*), talha-mar (*Rhynchops niger*), biguás (*Phalacrocorax brasilianus*), atobás (*Sula leucogaster*) e garças (*E. caerulea, Egretta thula, Ardea cocoí e A. alba*) imediantamente antes da obra, durante a construção e na fase de operação. Apenas com a comparação dos locais mais utilizados por estas espécies, durante os três períodos, poder-se-á inferir sobre possíveis modificações na oferta de alimento em decorrência de alterações no ambiente aquático.

Para a avaliação da perturbação dos locais de repouso coletivo, devem ser monitoradas as concentrações expressivas das aves nos bancos de sedimentos durante as ações de execução da obra. Deve-se atentar ao fato que, durante marés cheias, alguns bancos de sedimento permanecem cobertos pela água, o que, naturalmente, não permite o repouso dessas espécies.

Materiais e equipamentos

Equipe: consistirá em 01 pesquisador e estagiários a serem selecionados.

Materiais: máquina fotográfica, GPS, barco, computador e demais materiais de consumo (combustível, alimentação, entre outros).

Cronograma

Deverá ter início antes da implantação e devem prosseguir até pelo menos um ano após a conclusão da obra.
Desempenho esperado

Criar um panorama detalhado dos impactos gerados à avifauna que utiliza os bancos de sedimento na área de influência direta da obra.

Responsabilidades

Terminal de Contêineres de Paranaguá

Equipe responsável pela elaboração do programa

Raphael Eduardo Fernandes Santos, Biólogo (Registro IBAMA: 324792, CRBio: 45317-07D)

Vinícius Abilhoa, Biólogo, doutor em zoologia (Registro IBAMA: 57799, CRBio: 09978-07D)
7.3.2.3.9 Programa de monitoramento da atividade reprodutiva de anfíbios na área de influência do empreendimento

Impactos relacionados

Possível alteração no regime hídrico de alguns setores da Baía de Paranaguá ocasionando impactos na atividade reprodutiva dos anfíbios da região.

Objetivos

O atual conhecimento da herpetofauna, na área de influência do empreendimento, não permite ainda soluções definitivas para mitigar e compensar impactos causados, todavia, medidas que visam desacelerar o atual processo de modificação ambiental podem ser adotadas com base no conhecimento adquirido. Um programa de inventário e monitoramento da atividade reprodutiva da anurofauna, deve procurar áreas que estão em perigo imediato de alteração, assim como identificar as alterações na dinâmica da fauna terrestre que habita os diferentes ambientes na área em questão, através de monitoramento de médio e longo prazo.

Metodologia

Para o monitoramento da atividade reprodutiva dos anfíbios, áreas serão selecionadas no interior e/ou arredores dos remanescentes florestais da área de influência do empreendimento. A procura dos espécimes será efetuada por uma combinação de busca visual e auditiva em sítios de reprodução. Quando necessário, exemplares testemunho serão capturados manualmente, anestesiados, sacrificados e depositados em coleções científicas.

Materiais e equipe

Equipe: consistirá em pesquisador e estagiários a serem selecionados.

Materiais: canoa de pesca, puçás, isopor e outros materiais necessário para a triagem do material coletado.
Cronograma

O programa de monitoramento da atividade reprodutiva de anfíbios, deverá ter início antes da implantação e devem prosseguir até pelo menos um ano após a conclusão da obra.

Desempenho esperado

Criar um panorama detalhado dos impactos gerados à anurofauna da área de influência da obra.

Responsabilidades

Terminal de Contêineres de Paranaguá.

Equipe responsável pela elaboração do programa

Raphael Eduardo Fernandes Santos, Biólogo (Registro IBAMA: 324792, CRBio: 45317-07D

Vinícius Abilhoa, Biólogo, doutor em zoologia (Registro IBAMA: 57799, CRBio: 09978-07D)
7.3.2.4 Programa de gerenciamento de resíduos sólidos

Impactos relacionados

Alteração da qualidade de águas superficiais, solo e águas subterrâneas por disposição indevida de resíduos sólidos.

Objetivos

Organizar a implementação das melhorias necessárias para o adequado gerenciamento de resíduos, minimizando impactos e riscos ambientais relacionados.

Buscar atender ao conceito de Prevenção da poluição evitando-se ou reduzindo a geração de resíduos e poluentes prejudiciais ao meio ambiente e à saúde pública. Desta forma, buscar-se-á priorizar a redução na geração de resíduos, o reaproveitamento, o tratamento e a disposição final adequada para cada classe de resíduos.

Inter-relação com outros programas

A inter-relação deste programa com os demais é apresentada na tabela a seguir:

<table>
<thead>
<tr>
<th>Programas</th>
<th>Inter-relação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plano Ambiental de Construção</td>
<td>Proporcionará a elaboração do Levantamento de todos os Aspectos Ambientais Significativos; garantirá a gestão de resíduos na fase de instalação da obra; o controle das atividades de treinamento dos colaboradores envolvidos direta e indiretamente na obra e; controlará a desmobilização da obra (envolvendo a estrutura física e resíduos remanescentes).</td>
</tr>
<tr>
<td>Auditoria Ambiental</td>
<td>Garantirá, semestralmente, através das auditorias internas e externas, que a empresa esteja atendendo a todo o PGRS estabelecido, oferecendo principalmente rastrearibilidade no destino final dos resíduos com a contratação de empresas parceiras neste processo.</td>
</tr>
<tr>
<td>Programas</td>
<td>Inter-relação</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Com a proposição de um Gerenciamento de riscos, será possível determinar elementos que serão utilizados em mitigações ambientais (mantas absorventes, serragem, entre outros) sua quantidade necessária aos cenários verificados e o seu correto destino final em caso de aplicações em situações emergenciais.</td>
</tr>
<tr>
<td>Comunicação Social</td>
<td>Proporcionará a geração de conhecimento aos colaboradores diretos e indiretos, bem como a comunidade do entorno, para que tenham informações relevantes sobre nossas práticas de Gerenciamento de Resíduos sólidos para que participem com o comprometimento necessário ao sucesso, haja vista, que o estabelecimento de um PGRS depende com muita ênfase ao empenho dos indivíduos envolvidos diretamente, e indiretamente no processo.</td>
</tr>
<tr>
<td>Educação Ambiental</td>
<td>Socializará informações relevantes aos colaboradores diretos e partes interessadas, sobre o tema Gerenciamento de resíduos, divulgando nossas práticas ambientais nestes tema, bem como divulgando resultados alcançados.</td>
</tr>
</tbody>
</table>

Abrangência

Terminal de Contêineres de Paranaguá, incluindo as partes interessadas que interagem com suas operações e dentro do seu perímetro físico.

Metodologia

As atividades portuárias de movimentação de contêineres geram resíduos inertes e de classes I e II, com potencial de impacto ao meio ambiente. Muitos deles possuem viabilidade para a reciclagem, processo este que traz diversos benefícios ao meio ambiente, à empresa e a atores sociais, que são estimulados por uma cadeia de negócio.
O gerenciamento destes materiais deve ser realizado dentro de rígidos critérios que minimizem impactos ambientais, e de maneira a gerar as importantes informações necessárias ao controle e monitoramento do sistema.

Os procedimentos de segregação, coleta, transporte e armazenamento interno devem ser aperfeiçoados para que os resíduos recicláveis possam receber esta destinação mais nobre, buscando-se prestadores de serviços adequados a este fim.

Para cada tipo de resíduo gerado haverá um procedimento específico definindo as fases de tratamento desde a sua geração até o destino final e/ou a sua disponibilização a Cooperativas de reciclagem através de doação, o que caracterizará uma fração muito significativa de responsabilidade social corporativa.

Materiais e equipe

Materiais:
- Parque instalado de recipientes de coleta seletiva de resíduos a partir de peculiaridades produtivas de cada setor da empresa;
- 01 Contêiner de 40” para armazenamento temporário de resíduos recicláveis (papel, papelão e plásticos);
- 01 Contêiner de 40” para armazenamento temporário de madeiras utilizados na peação de cargas entre outras atividades correlatas;
- 01 Contêiner de 40” para armazenamento temporário de resíduos classe I e II.

Equipe:
- Coordenador de Gestão Ambiental;
- Assistente de Gestão Ambiental;
- Coordenadores Operacionais de áreas específicas de Operação;
- Auxiliares de Serviços gerais responsáveis pelo trânsito interno, acondicionamento temporário e envio ao destino final;
- Auxiliar Administrativo para tratar do relacionamento com terceiros (envio de material para destino final e a respectiva rastreabilidade).
Ações de monitoramento e controle

É de grande importância também que as quantidades de resíduos geradas e destinadas sejam atualizadas e mantidas mensalmente, e que estes dados sejam analisados comparativamente, com o auxílio de gráficos e somatórias por categorias de resíduos e por geração mensal e anual, subsidiando um inventário de resíduos de maior precisão. Ao mesmo tempo, tais dados devem estar conectados com documentos de registro de manifestos, notas fiscais, comprovantes de destinação e licenças dos prestadores de serviços desta cadeia logística de gerenciamento de resíduos, gerando um sistema centralizado de controle e seu efetivo monitoramento.

A produção de procedimentos para cada resíduo identificado no sistema de Operações da empresa será imprescindível para que se estabeleça uniformidade nas tratativas no manejo de todas as atividades ligadas ao gerenciamento, que contemplarão como mínimo: A finalidade do procedimento, a sua abrangência, definições aplicadas no documento, instruções operacionais específicas para cada fase do manejo, considerações gerais e atribuições de responsabilidades.

Outra forma, senão uma das mais importante, será a aplicação de auditorias físicas nos prestadores de serviços ambientais de recepção, tratamento/descontaminação, destruição e/ou depósito final dos resíduos, para que possamos completar a rastreabilidade dos resíduos e proporcionais a verificação do atendimento das condicionantes específicas das instalações, licenças diversas, práticas ambientais, etc.

Cronograma

O cronograma para este projeto considera todas as atividades como sendo de revisão, haja vista a implantação já ter ocorrido em outra oportunidade. Salientamos que o “produto final” será um manual de Gestão Ambiental.
<table>
<thead>
<tr>
<th>Ação</th>
<th>Mês 01</th>
<th>Mês 02</th>
<th>Mês 03</th>
<th>Mês 04</th>
<th>Mês 05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fase Implantação</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caracterização da empresa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contratação da empresas parceiras</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tipificação e caracterização das cargas movimentadas</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identificação de legislações pertinentes</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnóstico Situacional</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Definição das áreas de armazenamento temporário</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Levantamento quantitativo dos resíduos – histórico</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Fase Operação</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formatação dos procedimentos operacionais de gerenciamento de resíduos.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Formatação de programas de conscientização e treinamento</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Alocação dos recipientes para Coleta Seletiva de Resíduos.</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Especificação do meio de transporte e freqüência das coletas.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Detalhamento das áreas de armazenamento temporário</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Mecanismos de controle e avaliação.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Instrumentos de análise, controle ambiental e avaliação periódica.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Desempenho esperado

Espera-se que os resíduos sejam devidamente destinados, e que mantenha-se atualizado o inventários dos mesmos através de um sistema capaz de fornecer...
rapidamente dados acerca do transporte e destinação de determinada quantidade de resíduos, vinculados aos documentos comprobatórios gerados no processo, os quais devem ser armazenados de forma a permitir rápida rastreabilidade.

Espera-se a efetiva integração de três elementos considerados básicos para o sucesso do programa: 1- Os recursos físicos (estrutura, equipamentos); 2- Os procedimentos escritos que serão proporcionados e, 3- Os recursos humanos que receberão treinamento específico para operar eficazmente as fases que lhe couberem.

Aguarda-se o reconhecimento da importância por parte de todos os colaboradores envolvidos direta e indiretamente, bem como, da necessidade de gerenciamento dos resíduos da empresa;

Aguarda-se participação de todos os envolvidos direta e indiretamente no processo de gerenciamento de resíduos.

Responsabilidades

Terminal de Contêineres de Paranaguá, através da sua gerência de meio ambiente

Equipe técnica responsável pela elaboração do programa

- Luiz Carlos Narok (Administrador de Empresas com especialização em Meio Ambiente e Gestão de Pessoas);

- Cinthia Rosa de Oliveira (Administradora de Empresas com especialização em Meio Ambiente)
7.3.2.5 Programa de gerenciamento de efluentes

Impactos relacionados

Contaminação do solo e subsolo, recursos hídricos e lençol freático.

Objetivos

O programa tem caráter de prevenção, controle e monitoramento dos possíveis efluentes líquidos a serem gerados. O objetivo principal seria desenvolver sistema de manejo de águas pluviais e efluentes com a finalidade de atenuar ou evitar impactos negativos sobre o escoamento tanto no aspecto quantitativo quanto qualitativo.

- **prevenção**, com foco na minimização do consumo de água e da incorporação de poluentes pelas águas pluviais e pelas águas servidas ao empreendimento;
- **contingência**, buscando uma estrutura capaz de minimizar os impactos ambientais negativos decorrentes de situações de risco;
- **controle**, permitindo ações de manutenção e correção sobre os pontos de potencial poluidor, de forma a manter qualquer tipo de lançamento de águas e efluentes em pleno atendimento aos requisitos legais aplicáveis;
- **monitoramento**, com a finalidade de gerar conhecimento quanto às características quali e quantitativas das águas e efluentes com potencial poluidor, assim como quanto ao desempenho do empreendimento relativo aos princípios de prevenção, controle e contingência.

Inter-relação com outros programas

A inter-relação deste programa com os demais é apresentada na tabela a seguir:
Programas	Inter-relação
Auditoria Ambiental	Aplicação contínua de procedimentos de monitoramento, avaliação e revisão.
Comunicação Social	Divulgar aos colaboradores diretos e indiretos, bem como a comunidade do entorno sobre os cuidados relacionados a correta destinação dos efluentes do terminal.
Educação Ambiental	Treinamento dos colaboradores;
Conscientização e educação ambiental dos colaboradores.	

Abrangência

Terminal de Contêineres de Paranaguá

Metodologia

Este programa servirá como elemento para a prevenção da contaminação do solo, subsolo, águas superficiais e subterrâneas.

Terá o caráter de prevenção, controle e monitoramento dos possíveis efluentes líquidos a serem gerados na fase das obras de ampliação do cais leste, de forma a evitar que estas sejam lançadas nas águas costeiras.

As principais fontes de geração de efluentes líquidos durante a implantação são:

- Águas pluviais: serão direcionadas para sistemas de drenagem provisórios e poderão sofrer contaminação por: Efluentes contendo óleo e graxas, derivado das atividades de manutenção dos caminhões e equipamentos estacionários ou móveis, que serão utilizados na obra. Inclui vazamentos e limpeza (lavação); neste item específico, a lavação dos caminhões e equipamentos acontecerá em área reservada para este fim, contendo bacia separadora de
água/óleo compatível em volume e monitorada quanto ao lançamento no corpo d'água.

- **Esgotos sanitários** – Deverão ser implantados sistemas de tratamento tipo fossa séptica para atendimento aos sanitários do canteiro de obras. Às frentes de obra, serão instalados banheiros químicos adequados e dimensionados em quantidade suficiente, administrado por empresa especializada e licenciada para este fim e monitorado pela empreiteira da obra.

Materiais e equipe

Materiais:
- Canaletas, decantadores e bacias de contenção de efluentes líquidos.
- Tambores / bambonas para acondicionamento temporário
- Área de contenção de produtos perigosos com vazamentos.

Equipe:
- Coordenador de Gestão Ambiental;
- Assistente de Gestão Ambiental;
- Coordenadores Operacionais de áreas específicas de Operação;
- Técnicos de Segurança do Trabalho;
- Técnico de Segurança da empreiteira contratada
- Engenheiro responsável pela obra
- Terceiros que atuam dentro do perímetro do TCP;
- Auxiliares de Serviços gerais responsáveis pelo trânsito interno, acondicionamento temporário e envio ao destino final;
- Auxiliar Administrativo para tratar do relacionamento com terceiros (envio de material para destino final e a respectiva rastreabilidade).
Ações de monitoramento e controle

- Implantação do separador de água e óleo associado ao sistema de drenagem;
- Implantação de decantador de sólidos;
- Limpeza dos dispositivos de separação de sólidos e óleo;
- Vistoria das canaletas de drenagem e dos dispositivos de retenção de sólidos e sedimentos, com registro e recomendação de ações cabíveis, como esvaziamento e limpeza;
- Verificar as possíveis ocorrências de vazamentos de óleos, combustíveis e graxas de equipamentos do terminal no solo;
- Monitoramento da qualidade das águas pluviais, através de coletas e análises físicas e químicas com o intuito de atender as condições e padrões de lançamentos de efluentes (parâmetros inorgânicos e orgânicos);
- Estabelecer diretrizes para a realização das análises de qualidade dos efluentes oriundos de lavagem de contêineres;
- A atividade de lavagem de contêineres realizada pela empresa terceirizada que efetua reparos em contêineres deverá cumprir os mesmos critérios de utilização de produtos químicos ambientalmente corretos e solúveis em água. Deverão manter registros de compra dos produtos químicos utilizados no processo de lavagem dos contêineres;
- Os efluentes gerados nos banheiros químicos serão administrados por uma empresa especializada e licenciada para este fim e será monitorada e controlada pela empreiteira da obra;
- O controle dos efluentes líquidos também pode ser realizado através da redução da geração de efluentes (como por exemplo: manutenção preventiva dos equipamentos), controle da eficiência do sistema de tratamento para a

separação do óleo, limpeza periódica do sistema de decantação. As fontes poluentes podem ser eliminadas ou minimizadas através de:

- Identificação das fontes geradoras do terminal e pontos de lançamentos de efluentes
- redução da geração de efluentes
- reaproveitamento de efluentes: por exemplo, água pluvial dos telhados.

Cronograma

<table>
<thead>
<tr>
<th>Ação</th>
<th>Mês 01</th>
<th>Mês 02</th>
<th>Mês 03</th>
<th>Mês 04</th>
<th>Mês 05</th>
<th>Mês 06</th>
<th>Mês 07</th>
<th>Mês 08</th>
<th>Mês 09</th>
<th>Mês 10</th>
<th>Mês 11</th>
<th>Mês 12</th>
<th>Mês 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fase implantação</td>
<td>-</td>
</tr>
<tr>
<td>Levantamento dos Aspectos Ambientais das atividades que geram efluentes líquidos</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Medidas de Controle e Monitoramento</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Treinamento e Conscientização</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Controle de Efluentes Líquidos</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ação</th>
<th>Mensal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fase operação</td>
<td>-</td>
</tr>
<tr>
<td>Monitoramento das manutenções preventivas dos Equipamentos de Operação do Terminal</td>
<td>Mensal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ação</th>
<th>Mensal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fase operação</td>
<td>-</td>
</tr>
<tr>
<td>Limpeza do separador água e óleo.</td>
<td>Semestral</td>
</tr>
</tbody>
</table>
Ação

<table>
<thead>
<tr>
<th>Ação</th>
<th>Mês</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limpeza dos resíduos dos decantadores (água e lodo) por empresa licenciada com rastreabilidade documental</td>
<td></td>
</tr>
<tr>
<td>Coleta e análise do efluente líquido</td>
<td></td>
</tr>
<tr>
<td>Auditorias Ambientais para verificar o atendimento a legislação.</td>
<td></td>
</tr>
<tr>
<td>Fase operação</td>
<td></td>
</tr>
<tr>
<td>Monitoramento das manutenções preventivas dos Equipamentos de Operação do Terminal</td>
<td></td>
</tr>
</tbody>
</table>

Semestral

Trimestral

Mensal

Desempenho esperado

Os programas e monitoramentos de gestão ambiental estão fundamentados em preceitos legais que assegurem as medidas mitigadoras dos possíveis impactos ambientais que surjam.

Assim o Terminal buscará adotar todos os procedimentos, normas e regulamentos para gerenciamento de efluentes, além de capacitar pessoal de operação para reduzir, tanto quanto possível, os riscos de vazamento.

Responsabilidades

Terminal de Contêineres de Paranaguá
Equipe técnica responsável pela elaboração do programa

- Luiz Carlos Narok (Administrador de Empresas com especialização em Meio Ambiente e Gestão de Pessoas);

- Cinthia Rosa de Oliveira (Administradora de Empresas com especialização em Meio Ambiente)
7.3.2.6 Programa de gerenciamento das emissões atmosféricas

Impactos relacionados

Alteração na qualidade do ar.

Objetivos

Estabelecer ações para minimizar a ocorrência de emissões atmosféricas nas obras e operações do Terminal, evitando assim as emissões atmosféricas fora de padrão tanto na fase de construção do cais leste quanto operação do terminal.

Inter-relação com outros programas

A inter-relação deste programa com os demais é apresentada na tabela a seguir:

<table>
<thead>
<tr>
<th>Programas</th>
<th>Inter-relação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plano Ambiental de Construção</td>
<td>Garantir o controle e monitoramento das emissões atmosféricas na fase de construção; treinamento dos colaboradores envolvidos diretamente na obra para o correto uso dos equipamentos.</td>
</tr>
<tr>
<td>Auditoria Ambiental</td>
<td>Avaliar o atendimento aos parâmetros legais</td>
</tr>
<tr>
<td>Comunicação Social</td>
<td>Manter um canal de comunicação entre a empresa e os diversos segmentos envolvidos incluindo a população em geral das ações efetuadas pelo terminal relacionadas ao controle das emissões atmosféricas.</td>
</tr>
<tr>
<td>Educação Ambiental</td>
<td>Socializar informações relevantes aos colaboradores diretos e partes interessadas, sobre os procedimentos, divulgando nossas práticas ambientais neste tema, bem como divulgando resultados alcançados.</td>
</tr>
</tbody>
</table>
Abrangência

Terminal de Contêineres de Paranaguá – TCP, incluindo as partes interessadas que interagem com suas operações e dentro do seu perímetro físico.

Metodologia

As atividades portuárias e obras realizadas em um Terminal de Contêineres geram ou podem gerar emissões atmosféricas através da movimentação de equipamentos e veículos vinculados.

Caminhões e equipamentos movidos a diesel geram emissões atmosféricas, tais como materiais particulados suspensos das vias de circulação e gases (monóxido e dióxido de carbono e oxido de nitrogênio) provenientes da combustão dos motores.

A auto-fiscalização de emissões de veículos e equipamentos a diesel é, portanto, uma medida que consiste na implantação do conceito de gestão ambiental na fiscalização de veículos e equipamentos. Suas metas e prioridades são:

- Controle da emissão de fumaça preta dos veículos em circulação e equipamentos para atendimento à legislação ambiental em vigor;
- Redução do consumo de combustível;
- Educação ambiental e treinamento dos colaboradores tanto em nível administrativo quanto operacional (relacionado à administração, operação, suprimentos e manutenção).

Materiais e equipe

Materiais:

- Escala de Ringelmann: Escala impressa constituída de seis campos de densidade colorimétrica de 0; 20; 40; 60; 80 e 100% sobre fundo branco e que devem ser
observados a uma distância que permita a visualização das tonalidades de modo uniforme.

Equipe:
- Coordenador de gestão ambiental;
- Assistente de gestão ambiental;
- Coordenadores operacionais de áreas específicas de operação;
- Apontadores de Pátio responsáveis pelas medições do grau de enegrecimento em veículos de terceiros;
- Funcionários da manutenção responsáveis pelas medições do grau de enegrecimento em veículos e equipamentos do Terminal;
- Técnico de segurança da obra- encarregados da obra.

Ações de monitoramento e controle

A obra de ampliação do cais leste demandará atividades que gerarão emissões atmosféricas, proporcionados pela movimentação de veículos e equipamentos, limpeza e preparação dos terrenos (na obra e no canteiro), recebimento de materiais, preparação do concreto, etc. Terá como objetivo estabelecer ações para minimizar a ocorrência de emissões atmosféricas, conforto aos trabalhadores e manutenção da qualidade do ar. A seguir expomos as ações que garantirão a qualidade do ar durante a fase de construção e operação:

- Umectação das vias não pavimentadas. É a medida mais eficaz e com grande utilização. O borrifo de água propicia o imediato controle das emissões de particulados;
- Definição de velocidade de veículos nas vias de tráfego. A emissão de particulados esta vinculada diretamente com a velocidade dos veículos; quanto maior a velocidade, maior o potencial de arraste dos particulados, portanto a definição de velocidades auxiliará no controle das emissões;
Manutenção dos equipamentos movidos a óleo diesel. A perfeita manutenção tais como: a regulagem dos motores atendendo as especificações do fabricante, regulagem da bomba injetora, bicos injetores, troca do filtro de ar e de óleo, utilização de óleo diesel filtrado, são ações que propiciam um eficaz controle das emissões de gases e partículas (fumaça preta).

Inspeção da emissão da fumaça preta. A inspeção da emissão da fumaça preta proporcionada pelos veículos e motores a combustão estacionários, será efetuada utilizando a Escala de Ringelmann, orientando as manutenções corretivas, aqueles que apresentem emissões acima do grau 2 da escala.

Durante a fase de operação deverão ser seguidos os seguintes monitoramentos:

- Equipamentos de operação do TCP (RTG’s e CT’s) e veículos da Frota de Apoio que deverão ser monitorados mensalmente e se observado alguma anormalidade será encaminhado para a manutenção corretiva.
- Veículos de terceiros que circulem nas dependências do Terminal serão monitorados pelo Auxiliar de Pátio que se constatado a emissão além dos padrões estabelecidos da medição da Escala de Ringelmann – padrão 2 será executado um plano de ação para eliminar e evitar novas ocorrências de desvio.

Cronograma

O cronograma deverá ser realizado monitorando as emissões e exigindo documentação que controle a emissão durante toda a fase de construção e operação.
Desempenho esperado

Manter os resultados das emissões dentro dos padrões pré-estabelecidos em legislação, sendo que, a busca por novas tecnologias menos poluentes e a política de antecipação à legislação é o que se espera de uma companhia pró-ativa e ambientalmente comprometida.

Responsabilidades

Terminal de Contêineres de Paranaguá
Equipe técnica responsável pela elaboração do programa

- Luiz Carlos Narok (Administrador de Empresas com especialização em Meio Ambiente e Gestão de Pessoas);

- Cinthia Rosa de Oliveira (Administradora de Empresas com especialização em Meio Ambiente)
7.3.2.7 Programa de monitoramento de ruídos e vibrações

Impactos relacionados

Poluição sonora ocasionada pelas obras e operação do Terminal.

Objetivos

O programa destina-se a avaliar os níveis de ruído proveniente das operações de implantação do cais e operação do Terminal mostrando sua interação com as NBR’s 10151/00 e 10152/00 e apresentando medidas de controle. Será também verificado se a implantação do terminal irá gerar emissão de vibrações nas áreas de entorno.

Inter-relação com outros programas

A inter-relação deste programa com os demais é apresentada na tabela a seguir:

<table>
<thead>
<tr>
<th>Programas</th>
<th>Inter-relação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plano Ambiental de Construção</td>
<td>Monitorar as atividades de construção civil de ampliação do cais leste, em todo o seu perímetro, visando o atendimento das NBR’s 10151/00 e 10152/00</td>
</tr>
<tr>
<td>Comunicação Social</td>
<td>Verificar se o Programa reúne evidências que tenham proporcionado a geração de de repasse de conhecimento aos colaboradores diretos e indiretos sobre nossas operações portuárias e os níveis de ruídos estabelecidos.</td>
</tr>
<tr>
<td>Educação Ambiental</td>
<td>Constatar a aplicação de atividades de educação ambiental aos colaboradores diretos e indiretos e partes interessadas, informando sobre os níveis de ruídos proporcionados pelas operações portuárias.</td>
</tr>
</tbody>
</table>
Verificar, semestralmente, através das auditorias internas e externas, se as operações portuárias do Terminal e as obras de ampliação do cais leste estão atendendo a legislação aplicável a emissão de ruídos bem como se os planos de mitigação ambiental propostos estão sendo aplicados e os resultados sendo eficazes.

Abrangência

Serão avaliados pontos distribuídos em todo o perímetro do Terminal abrangendo todas as atividades portuárias desenvolvidas. Por ocasião do início das obras de ampliação do cais leste, serão acrescentados novos locais e representativos das frentes de trabalho, preferencialmente junto a pontos receptores sensíveis, que serão agrupados ao Plano desenvolvido.

Metodologia

Com a utilização do software de predição acústica Cadna-A, será simulado o mapeamento acústico do local durante a obra e após a entrada em operação da ampliação do terminal.

Materiais e equipe

Materiais:
- Analisador Solo SLM, (classe 1);
- Calibrador Acústico B&K 4231;
- software de predição acústica Cadna-A
Equipe:
Engenheiros de empresa de consultoria contratada para conduzir o projeto;
- Luiz Carlos Narok – Administrador e Gestor Ambiental do Terminal que irá interagir com as atividades do projeto.
- Cinthia Rosa de Oliveira – Administradora e Gestora Ambiental do Terminal que irá interagir com as atividades do projeto.
- Djalma Llupi – Engenheiro da empreiteira responsável pela obra de ampliação.

Ações de monitoramento e controle

As medições de ruído deverão ser realizadas conforme o procedimento descrito nas NBR´s 10151/00 e 10152/00, sendo que o tempo de amostragem deverá ser o suficiente para, em cada ponto, avaliar o ruído e classificá-lo segundo as NBR´s. As fases das ações a serem implementadas neste programa serão:

- Levantamento das características do Terminal;
- Verificação de possíveis fontes geradoras de vibração;
- Realização de medições dos níveis de pressão sonora equivalente – Leq, em dB(A);
- Medição dos níveis sonoros por bandas de frequência – informação importante para se conhecer o comportamento do ruído presente no local e para se especificar as medidas de controle. Na figura a seguir pode-se visualizar como será feita a apresentação dos resultados desta avaliação;
- Localização dos pontos críticos;
- Estimação da potência sonora das fontes de ruído;
- Projeto de controle do ruído – uma vez levantados os dados nas etapas anteriores, será executado o programa de controle do ruído onde serão definidas as medidas a serem sugeridas para a adequação dos níveis sonoros.
- Simulação computacional – Com a utilização do software de predição acústica Cadna-A, será realizado o mapeamento acústico das situações avaliadas. O mapeamento nos dá uma visão global e precisa do problema de emissões sonoras,
ao contrário de medições pontuais, as quais são válidas para o ponto medido, e não para todo o entorno avaliado, perdendo-se com isto abrangência e profundidade.

Serão então apresentadas através de mapas sonoros como o modelo a seguir as simulações para subsidiar as possíveis medidas mitigadoras.
Cronograma

<table>
<thead>
<tr>
<th>Ação</th>
<th>Mês 01</th>
<th>Mês 02</th>
<th>Mês 03</th>
<th>Mês 04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levantamento das características do Terminal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Realização de medições dos níveis de pressão sonora equivalente – leq, em dB(A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medicação dos níveis sonoros por bandas de frequência.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avaliação de possíveis fontes emissoras de vibração</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Localização dos pontos críticos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimação da potência sonora das fontes de ruído</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Projeto de controle do ruído e vibrações</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Desempenho esperado

- Que os ruídos e vibrações das operações do Terminal e das obras de ampliação do cais leste estejam dentro dos parâmetros estabelecidos pela legislação;
- Que ao se determinar os pontos mais críticos seja possível estabelecer um conjunto de medidas para mitigar o impacto ambiental.

Responsabilidades

Terminal de Contêineres de Paranaguá
Equipe técnica responsável pela elaboração do programa

- Luiz Carlos Narok (Administrador de Empresas com especialização em Meio Ambiente e Gestão de Pessoas);
- Cinthia Rosa de Oliveira (Administradora de Empresas com especialização em Meio Ambiente)
- José Augusto C. Ferreira – Engenheiro da empresa de consultoria contratada para conduzir o projeto;
- Marcelo Maran Coletti – Engenheiro da empresa de consultoria contratada para conduzir o projeto;
- Djalma Llupi – Engenheiro da empreiteira responsável pela obra de ampliação do cais leste.
7.3.2.8 Programa de monitoramento da qualidade das águas estuarinas

Impactos relacionados
Alteração da qualidade da água e danos para a biota aquática decorrentes das obras de ampliação do cais do TCP, dragagem para execução da obra e operação.

Objetivos
Monitorar a qualidade da água nas áreas de influência direta (AID) e na área diretamente afetada (ADA) para detectar eventuais mudanças na qualidade da água decorrentes da ampliação do cais leste. Destaca-se na ADA o acompanhamento da qualidade da água, além do entorno do cais a ser ampliado, na proximidade do ducto de saída de água do local de confinamento do material dragado.

Inter-relação com outros programas
A inter-relação deste programa com os demais é apresentada na tabela a seguir:

<table>
<thead>
<tr>
<th>Programas</th>
<th>Inter-relação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gerenciamento de Resíduos Sólidos</td>
<td>Eventuais despejos de resíduos afetam a qualidade da água e poderão ser detectados no monitoramento da qualidade da água estuarina.</td>
</tr>
<tr>
<td>Gerenciamento de Efluentes Líquidos</td>
<td>Eventuais despejos de efluentes afetam a qualidade da água e poderão ser detectados no monitoramento da qualidade da água estuarina.</td>
</tr>
<tr>
<td>Monitoramento hidrodinâmico e morfo-sedimentar</td>
<td>A distribuição dos elementos e compostos presentes na coluna d'água é diretamente afetada pela hidrodinâmica local.</td>
</tr>
</tbody>
</table>
Abrangência
O programa de monitoramento das águas estuarinas tem dois componentes. O primeiro, de caráter integrado e regional, deverá ser executado em uma escala espacial mais ampla, compreendendo o eixo leste-este do sistema estuarino de Paranaguá, na medida em que eventuais impactos do TCP virão se somar aos impactos de estruturas portuárias já implantadas no sistema estuarino.

Metodologia
Subprograma de monitoramento da qualidade da água no Complexo Estuarino de Paranaguá (CEP)
Este programa tem como principal objetivo avaliar o impacto de todas as atividades portuárias desenvolvidas na área de influência indireta (AII) e área de influência direta (AID), sobre a qualidade da água e sedimentos e seus efeitos no metabolismo natural do sistema, sendo responsabilidade do TCP na área de abrangência de suas operações e ADA.

Para a implementação deste programa, recomenda-se que sejam estabelecidos protocolos e procedimentos para um monitoramento interdisciplinar envolvendo água, sedimentos e biota do CEP. Dessa maneira, serão conduzidos estudos de laboratório de pequena e média escala sobre os impactos ambientais gerados. Antes de realizar o monitoramento é necessário efetuar uma avaliação preliminar da qualidade da água e dos sedimentos. Assim o trabalho deverá ser efetuado em duas etapas, descritas a seguir.

Etapa 1:
Com base nas informações disponíveis, pretende-se basicamente definir em termos quantitativos os níveis naturais (e/ou antropogênicos já existentes) dos elementos e compostos identificados como poluentes potenciais para o ecossistema estuarino da Baía de Paranaguá. Os resultados obtidos nesta etapa servirão de base para o monitoramento.
EIA – Ampliação do Cais

Etapa 2:
O monitoramento será efetuado em pelo menos 10 pontos, distribuídos aleatoriamente ao longo dos setores interno, mediano e externo da baía, bem como em três áreas referenciais (livres dos impactos diretos das atividades portuárias) localizadas na Baía de Laranjeiras, em datas selecionadas aleatoriamente cobrindo três meses do período seco e três do chuvoso por um período de 01 (um) ano após a instalação do empreendimento (depois, avalia-se a necessidade de continuidade), nos seguintes compartimentos do sistema:

a) Coluna d’água - Em cada ponto, amostras de água de superfície e de fundo serão tomadas, em condições de vazante na maré de sizigia, para medições das variáveis ambientais definidas anteriormente.

Os elementos traços que tenham sido considerados importantes na etapa 1 serão analisados nas frações dissolvidas e particuladas das amostras de água tomadas para análises das variáveis físico-químicas.

Subprograma de avaliação do impacto das atividades do TCP na qualidade das águas da ADA

Este programa pretende avaliar o impacto das atividades desenvolvidas pelo TCP na qualidade da água e seus efeitos no metabolismo natural do sistema estuarino na área diretamente afetada.

Em virtude da dificuldade de se distinguir o impacto ambiental causado pelo objeto investigado das variações naturais e/ou derivadas de outros processos antrópicos, recomenda-se um programa de avaliação e monitoramento de impactos ambientais baseado no desenho do tipo BACI (Before-After X Control-Impact). Neste procedimento, o monitoramento é efetuado antes e após a atividade em questão, em uma ou mais áreas controles ou referenciais (Downes *et al.*, 2002). A hipótese de que a ampliação do cais e incremento na operação do TCP causará impacto significativo sobre a saúde dos compartimentos investigados será testada através de análises univariadas ou multivariadas. Além da avaliação efetuada antes e após a implantação, propõe-se ainda o acompanhamento das atividades de dragagem.
Com base nas informações disponíveis até o momento, podem ser definidos os compartimentos e parâmetros a serem investigados, com o planejamento amostral descrito a seguir.

Antes e depois da ampliação do TCP, deverão ser efetuadas três campanhas de amostragem e análises na área impactada e em área controle, cobrindo 10 estações de coletas, em cada uma das áreas. A área impactada terá sua rede amostral disposta da seguinte forma: três transectos radiais com três pontos cada partindo do cais do TCP, de forma a compor um gradiente do ponto zero até 500 m de distância do empreendimento. Além destes, a rede amostral da área impactada inclui um ponto na saída do Rio Sabiá, um na desembocadura do Rio Anhaia e outro na desembocadura do rio Maciel. A rede amostral da área controle será composta por três transectos radiais com três pontos cada, em gradiente, partindo da Vila das Peças, um ponto na desembocadura do rio da Onça (Grotta), outro entre o rio da Onça/Guapicum e mais um em frente à vila Guapicum.

Desta mesma forma será conduzido o monitoramento da água de saída do ducto presente no local de contenção do material dragado. Porém, ainda não é possível uma determinação da malha amostral, pois é necessária a observação da obra construída e determinação do local de instalação do ducto.

Monitoramento da qualidade da água

Em cada ponto pré-estabelecido, amostras de água de superfície e de fundo serão tomadas com auxílio de uma garrafa Niskin, para medições dos seguintes parâmetros: salinidade, temperatura, pH, transparência (ou a turbidez), alcalinidade, oxigênio dissolvido, clorofila-a, material particulado em suspensão, carbono orgânico total, nitrogênio e fósforo totais e nutrientes inorgânicos dissolvidos (nitrato, nitrito, amônio, fosfato e silicato), de acordo com as metodologias padrões de qualidade reconhecida. Em adição, deverão ser investigadas as variáveis contempladas na Resolução CONAMA 357/05 para as águas salobras – classe 2, que infringiram os limites estabelecidos na ADA, como os polifosfatos, surfactantes, cloro residual,
cianeto e etilbenzeno, além de outros eventualmente recomendados pelos órgãos ambientais.

Materiais e Equipe

Materiais
De uma forma simplificada inclui:

a) Equipamentos e Materiais de Coleta: barco (e combustível) com capacidade para pelo menos 3 pesquisadores e espaço para amostras, GPS, garrafas coletoras de água, cabos, multi-sonda para medições in situ do pH, temperatura, salinidade, oxigênio dissolvido, frascaria para coleta de amostras de água, caixas térmicas, etc.

b) Material de Consumo: reagentes químicos, filtros de fibra de vidro, vidraria de laboratório, pipetas automáticas, máscaras para segurança de analistas, etc.

c) equipamentos de laboratório: espectrofotômetro visível, ICP-OES (análises de elementos trâço), CG-MS (análises de contaminantes orgânicos), tituladores, estufa, balança analítica, mufla, purificadores de água (Milli-Q e destilador), capela de exaustão de gases, autoclave, mesa-agitadora, computadores.

Equipe
A equipe deverá contar com dois pesquisadores (Oceanógrafos Químicos) e um técnico de laboratório.

Ações de Monitoramento e Controle
O monitoramento e controle do programa poderá ser efetuado através da apresentação de relatórios parciais e final por parte da equipe envolvida, de forma a comprovar a realização de todas as atividades pré-estabelecidas e permitir a verificação de eventuais mudanças na qualidade ambiental associadas ao empreendimento.

Cronograma
Deverão ser realizadas coletas trimetrais durante a implantação e semestrais no primeiro e segundo ano de operação. Serão emitidos relatórios semestrais de acompanhamento.

<table>
<thead>
<tr>
<th>Atividades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementação da logística de campo e infraestrutura de laboratório</td>
</tr>
<tr>
<td>Levantamento de dados pretéritos</td>
</tr>
<tr>
<td>Revisão Bibliográfica</td>
</tr>
<tr>
<td>Realização de Coletas</td>
</tr>
<tr>
<td>Realização das análises de laboratório</td>
</tr>
<tr>
<td>Processamento dos resultados e tratamento estatístico</td>
</tr>
<tr>
<td>Elaboração de relatórios semestrais</td>
</tr>
<tr>
<td>Elaboração de relatório final</td>
</tr>
</tbody>
</table>

Desempenho Esperado

Subprograma de monitoramento da qualidade da água no Complexo Estuarino de Paranaguá (CEP)

Esta atividade terá como resultado um conhecimento mais profundo sobre o sistema como um todo, visto de maneira holística em sua integração com atividades antrópicas. Dessa maneira poder-se-á estudar e direcionar, para cada caso, técnicas específicas de remediação e recuperação considerando os diferentes compartimentos dos ecossistemas costeiros. Esta investigação terá como conseqüência o estabelecimento de um banco integrado de dados com atualização periódica. Considerando que o entendimento dos impactos causados por contaminantes associados às atividades de dragagem e recuperação ou resiliência de ecossistemas ainda é precário, e com as informações obtidas a partir do programa proposto, poderão ser gerados modelos capazes de trazer um maior entendimento e de predizer os impactos, em longo prazo, dos diversos contaminantes que venham a atingir os ecossistemas. Estes modelos, por sua vez
poderão servir de base para futuras tomadas de decisões, bem como para a avaliação de possíveis prejuízos ambientais e criação de um plano de restauração ambiental. Deverá ocorrer a participação além do TCP, da autoridade portuária para a execução deste programa uma vez que trata-se de uma análise que diz respeito ao porto como um todo e não somente da região do terminal.

Subprograma de avaliação do impacto das atividades do TCP na qualidade das águas da ADA

Espera-se que este programa possa detectar eventuais alterações na qualidade da água na área diretamente afetada pela ampliação e operação do TCP e subsidiar medidas que se tornem necessárias para a proteção do ecossistema em questão.

Responsabilidades

Subprograma de monitoramento da qualidade da água no Complexo Estuarino de Paranaguá (CEP)

Subprograma de avaliação do impacto das atividades do TCPP na qualidade das águas da ADA

Equipe Técnica Responsável pela elaboração do programa

Dr. Fabian Sá (Oceanógrafo, Mestrado em Geologia Ambiental e Doutorado em Geociência)

e Dra Eunice da Costa Machado (Oceanógrafo, Mestrado em Geociência e Doutorado em Oceanografia Química)
Impactos relacionados

Alteração da hidrodinâmica e dos padrões morfosedimentares nas áreas de influência do empreendimento.

Objetivos

No caso particular das componentes abióticas o monitoramento deve ser centrado nas principais forçantes que podem provocar ou “espalhar” os efeitos de um potencial dano ambiental, na medida em que esses são dados fundamentais no caso de necessidade de medidas de contingência perante um dado acidente ambiental.

O monitoramento hidrodinâmico deve, por tanto, se concentrar nas forçantes que modificam os processos de mistura, circulação e estratificação do complexo estuarino. Estes processos são governados basicamente por três forçantes: a descarga de água doce, as correntes de maré e a transferência de momentum pelo cisalhamento do vento na superfície livre da água; aos quais somam-se as influências exercidas pela geometria do corpo estuarino e pela salinidade e padrões de circulação da região adjacente ao empreendimento.

Cada uma dessas três forçantes governa um tipo particular de circulação da água:

a) a descarga de água doce induz a circulação gravitacional;

b) as correntes de maré governam a circulação residual;

c) e a fricção do vento causa a circulação induzida pelo vento.
A principal característica do ambiente costeiro é sua intensa dinâmica, motivada principalmente pela ação das correntes de maré e ondas que agem sobre a superfície de fundo e linhas de costa ao longo de estuários, praias e planícies costeiras. Os processos costeiros de transporte podem ser modificados de forma irreversível mesmo por pequenas intervenções que influenciam de forma decisiva períodos deposicionais e/ou erosivos.

Desta forma, monitorar e avaliar os efeitos de uma determinada obra costeira sobre os ambientes deposicionais adjacentes, representa uma forma importante para a avaliação de possíveis impactos ambientais, bem como para a validação de modelos teóricos e o gerenciamento de áreas costeiras.

Inter-relação com outros programas

<table>
<thead>
<tr>
<th>Programas</th>
<th>Inter-relação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monitoramento da qualidade das águas estuarinas</td>
<td>A hidrodinâmica é responsável pela dispersão das propriedades químicas da coluna d’ água.</td>
</tr>
<tr>
<td>Programa de monitoramento da comunidade bêntica</td>
<td>Modificações nos padrões de circulação e morfosedimentar podem inferir em alterações das comunidades bênticas.</td>
</tr>
</tbody>
</table>

Abrangência

AID e ADA, com metodologias e intensidades específicas.

Metodologia

Sugere-se um plano de monitoramento que inclua, para a hidrodinâmica:

AID e ADA:
Instalação de uma estação meteo-oceanográfica automática no local do TCP, realizando observações contínuas de velocidade e direção dos ventos, precipitação, umidade, salinidade, turbidez, temperatura do ar e pressão atmosférica, assim como maré (instalação de um marégrafo digital) e correntes (instalação de dois correntímetros ADP com visada horizontal). Estes equipamentos podem acompanhar outros que monitorem a qualidade da água, como o existente na Ponta do Poço em operação pelo CEM/UFPR.

Assim, este plano tem por principal objetivo verificar os efeitos causados pelo prolongamento do Terminal de Contêineres de Paranaguá, tanto sobre a linha de costa adjacente quanto à superfície de fundo (batimetria e sedimentos de fundo) dentro dos limites, estipulados pelo respectivo EIA.

AID E ADA:

Perante as características geológicas e geomorfológicas do local, avalia-se que a mensuração de possíveis modificações ambientais causadas pelo empreendimento poderão ser detectadas com campanhas de amostragem focando as características dos sedimentos de fundo, batimetria e morfodinâmica praial da AID.

Os procedimentos de campo consistirão na coleta de amostras de sedimentos de fundo da área, de forma a detectar mudanças nos padrões de distribuição sedimentar. A malha de amostragem será desenhada de forma a contemplar diferentes ambientes deposicionais. Posteriormente os sedimentos passarão pelos processos laboratoriais de peneiramento e pipetagem para a determinação das frações granulométricas. Neste processo ainda serão determinadas as porcentagens de sedimentos grossos (areias), finos (siltas e argilas), matéria orgânica e carbonato de cálcio, contidos nos sedimentos da área. Estas informações são de suma importância para a caracterização ambiental, já que influenciam diretamente sobre a biodiversidade e a possibilidade de agregação de contaminantes químicos.
As características batimétricas serão avaliadas pela análise de levantamentos seqüenciais, executados com intervalos de 6 meses, de forma a avaliar a evolução dos processos deposicionais e/ou erosivos da AID. O processo consistirá na integração destes dados em ambiente computacional SIG, de forma a gerar produtos cartográficos que identifiquem pontos principais de mudança nas profundidades. As mesmas análises possibilitarão a quantificação de volumes erodidos e/ou depositados de forma a determinar taxas para estes processos.

A morfodinâmica praial será determinada pela execução de levantamentos topográficos seqüenciais nas praias estuarinas na AID. O processo demandará a instalação de marcos de referência geoespacializados por meio de um equipamento GPS com características geodésicas. Os trabalhos serão desenvolvidos com a utilização de nível de precisão, mira e trena, com a coleta de amostras de sedimentos ao longo de cada um dos perfis. O processamento granulométrico das amostras será executado pelo mesmo método aplicado às amostras de sedimentos de fundo. Os dados de topografia serão integrados aos dados batimétricos em um SIG de forma a gerar produtos de geoprocessamento. Ainda serão efetuados caminhamentos com GPS ao longo da linha de costa, de forma a verificar possíveis mudanças em sua configuração e posição.

O período deste monitoramento deverá ocorrer no período de implantação e no primeiro ano de operação (após resultados avalia-se a continuidade) de forma a cobrir amostragens semestrais no caso das batimetrias e sedimentos de fundo, e bimestrais no caso do acompanhamento da variação de posição da linha de costa e morfodinâmica praial.

Os dados obtidos neste período de monitoramento serão uma importante ferramenta para o entendimento das possíveis modificações ambientais geradas a partir da implantação do empreendimento. Ademais, serão de suma relevância na alimentação de modelos matemáticos de circulação de correntes na área, as quais regem muitos dos processos de deposição e/ou erosão.
costeiros. Outro ponto importante a ser abordado é a construção de um banco de dados ambiental inédito e sua contribuição para o entendimento dos processos ecológicos, químicos e físicos vigentes.

Materiais e equipe

Materiais:
- Estação meteorológica automática
- Marégrafo e ondógrafo não direcional digital
- Dois correntômetros tipo ADP de visada horizontal
- CTD com turbidímetro
- GPS com características geodésicas
- Ecobatímetro compatível com a precisão exigida pela Marinha do Brasil
- Draga busca-fundo Petite Ponar
- Quatro computadores de potência compatível com o gerenciamento do banco de dados
- Sistema de transmissão de dados sem fio (VHF, WiFi, etc.)

Equipe:
- 2 Oceanógrafos Físicos
- 1 Meteorólogo
- 1 Geólogo
- 6 graduados em oceanografia/geologia

Ações de monitoramento e controle

Além das ações acima, como haverá movimentação de sedimentos no empreendimento, é importante fazer uma divisão sobre os tipos de movimentação de sedimentos realizados em dragagens, despejos e
a terramentos de um modo bem genérico. Há locais onde trabalhos deste tipo vem sendo realizados rotineiramente muito antes que as preocupações ambientais e as normas legais exigissem estudos de avaliação de impacto. Nestes casos, alguns com mais de um século de funcionamento, o próprio ambiente já foi modificado. Em locais que nunca foram dragados, o tipo de estudos e os cuidados ambientais devem ser distintos destas situações de intervenções contínuas no tempo.

A retirada de sedimentos do fundo em regiões costeiras é um tipo de empreendimento que submete o meio ambiente a vários estressores de tipos diferentes, que podem ser divididos como segue:

1- Modificações devido à retirada direta de sedimentos, água e seus componentes orgânicos e inorgânicos na operação da draga.

2- Modificações devido à conseqüente disponibilização de material em suspensão durante as dragagens (pluma).

3- Modificações devido ao uso e disposição do material dragado.

Desta forma, o monitoramento da área exige estudos tanto na área a ser dragada quanto na área de deposição dos sedimentos, com ênfase especial nas comunidades bentônicas, planctônicas e no nécton, no sistema de circulação das águas e nos usos sócio-econômico das mesmas.

Por ser mais simples de gerenciar e aplicável aos três cenários acima, os parâmetros abióticos a serem considerados, correntes, marés, transparência da água e meteorologia, devem ser elementos relativamente bem conhecidos e monitorados ao longo do tempo. É importante lembrar que a possibilidade de disponibilizar no ambiente elementos tóxicos, seja na coluna d’água durante as dragagens e na posterior deposição, tanto em regiões submersas quanto ao ar livre, é um primeiro impacto potencial que deve ser descartado antes do início dos trabalhos. Caso a pluma possa atingir áreas críticas (áreas de cultivo,
áreas de criadouros naturais de espécies de importância comercial, etc.), modelagens de dispersão da pluma devem ser apresentados.

Cronograma

Cronograma de execução (trimestral/3 anos)

<table>
<thead>
<tr>
<th>Atividades</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Implementação da logística de campo e infraestrutura de laboratório</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levantamento de dados pretéritos</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Revisão Bibliográfica</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Realização de Coletas</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Realização das análises de laboratório</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Processamento dos resultados e tratamento estatístico</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Elaboração de relatórios semestrais</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Elaboração de relatório final</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Desempenho esperado

No caso que nos toca, poderia ser seguido um Plano de Monitoramento com base nas informações colhidas na etapa anterior que devem incluir, pelo menos:

i. Acompanhamento da pluma de sedimentos durante as obras, as dragagens e o despejo (monitoramento dinâmico);

ii. Integração dos resultados com as análises químicas da coluna d’água em número suficiente de pontos para garantir a
representatividade (antes, durante e após os trabalhos de instalação e operação);

iii. Comparação da diversidade e/ou saúde das espécies indicadoras, identificadas na etapa de caracterização, no período anterior, durante, e após as dragagens e despejo, nas respectivas áreas;

Monitoramento de potenciais efeitos nas atividades econômicas/sociais identificadas na etapa anterior (pesca, turismo, transporte, aquicultura, etc.).

Desta forma serão oferecidas as garantias necessárias para estabelecer potenciais relações de causa/efeito introduzidas, ou não, pelo empreendimento no meio ambiente, seja nas hidrodinâmica e padrões morfosedimentares ou durante e após a movimentação de sedimentos.

Responsabilidades

APPA

Equipe técnica responsável pela elaboração do programa

Dr. Eduardo Marone (físico, doutor em oceanografia física)

Dr. Marcelo Renato Lamour (geólogo, mestre e doutor em geologia ambiental)

Dr. Maurício Noernberg (oceanógrafo, doutor em oceanografia física)

Dr. Marcelo Dourado (meteorologista, doutor em meteorologia)
7.3.2.10 Programa de verificação do gerenciamento da água de lastro dos navios

7.3.2.10.1 Sub-programa de monitoramento e educação ambiental relativo à troca oceânica de água de lastro dos navios para prevenir a bioinvasão de espécies exóticas

Impactos relacionados

Invasão de espécies exóticas pelo deslastramento dos navios durante as operações portuárias.

Objetivos

- Realizar os monitoramentos documentais (NORMAM20) nos navios que atraem nos terminais do TCP, para verificar se é realizada a troca oceânica, medida preventiva contra a invasão de espécies exóticas via água de lastro, segundo as exigências da Conferência Internacional de Água de Lastro e da Norma da Autoridade Marítima do Brasil, NORMAM 20;

- Desenvolver um banco de dados com os resultados obtidos nos monitoramentos, indicando os navios considerados de risco, ou seja, aqueles oriundos de regiões que contenham espécies exóticas e/ou nocivas que já tenham causado impacto ambiental em algum ecossistema. A Autoridade Marítima e o IBAMA podem vir a dispor de tais dados por meio da internet.

- Desenvolver um programa de comunicação e educação ambiental sobre o problema da invasão de espécies exóticas via água de lastro no mundo, no Brasil e no Paraná, informando as medidas preventivas sugeridas pela Convenção Internacional de Água de Lastro (IMO) e pela NORMAM 20. Este programa deve ser direcionado aos comandantes de navios e tem por objetivo orientá-los sobre a importância da troca oceânica como medida preventiva contra a bioinvasão de espécies exóticas por água de lastro.
Inter-relação com outros programas

A inter-relação deste programa com os demais é apresentada na tabela a seguir:

<table>
<thead>
<tr>
<th>Programas</th>
<th>Inter-relação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biota Aquática</td>
<td>Os dados obtidos com os monitoramentos dos organismos aquáticos devem subsidiar um banco de dados que possa contribuir com o monitoramento dos impactos causados por espécies invasoras oriundas da água de lastro.</td>
</tr>
<tr>
<td>Sub-programa de monitoramento de espécies invasoras por água de lastro no complexo estuarino de paranaguá e educação ambiental</td>
<td>Por meio da Educação Ambiental com pescadores artesanais e pescadores esportivos, o programa deve orientar os pescadores do litoral norte do Complexo Estuarino de Paranaguá a identificarem espécies invasoras macroscópicas, cujas larvas, ovos ou juvenis possam ter sido introduzidos via água de lastro. Além disso, o programa visa desenvolver procedimentos de troca de informações (ex. disque denúncia), entre os pescadores e a coordenação do Programa de Educação Ambiental para o Gerenciamento de Água de Lastro. Este projeto pode ser direcionado também para a comunidade em geral e desenvolvido em parceria com escolas e universidades do litoral.</td>
</tr>
</tbody>
</table>
Abrangência

Navios que atraçam no Terminal de Contêineres de Paranaguá – TCP.

Metodologia

A metodologia deste programa visa a análise dos formulários sobre a água de lastro dos navios, conforme NORMAM 20. Tais documentos informam os locais de tomada e deslastramento das águas contidas nos tanques de lastros. Desta forma é possível verificar o cumprimento das medidas preventivas exigidas pela NORMAM 20 e pela Convenção Internacional de Água de Lastro.

Além disso, o Programa visa realizar um processo educativo voltado para comandantes de navios, responsáveis pelas tomadas de decisão no navio, inclusive nas questões relacionadas ao lastro. Este processo tem o objetivo de orientá-los sobre a importância da troca oceânica como medida preventiva contra a invasão de espécies exóticas, contribuindo para a preservação do Complexo Estuarino de Paranaguá.

O Banco de dados visa oferecer ao IBAMA e a Autoridade Marítima o acesso imediato às informações e os permite acompanhar o gerenciamento da troca oceânica nos navios que atraçam no Terminal de Contêineres de Paranaguá, além de identificar os navios considerados de risco em relação à bioinvasão.

Portanto, este Programa será desenvolvido diretamente às operações do TCP e coordenado pelo setor do meio ambiente da empresa. Assim, se caracteriza como medida preventiva, ou seja, todas as atividades diretamente relacionadas com os navios e tripulação, a saber: análise documental dos formulários sobre água de lastro, atualização do banco de dados deste monitoramento e educação ambiental voltada para os comandantes de navios e agências marítimas.
Materiais e equipe

Materiais da etapa dos monitoramentos com navios:

Folders e materiais educativos voltados para os comandantes de navios e banco de dados para ser atualizado.

Equipe da etapa dos monitoramentos com navios

A equipe do setor de meio ambiente do TCP irá solicitar os formulários da NORMAM 20, devendo, também, atualizar estes dados periodicamente no banco de dados. Além disso, a equipe do TCP deverá entregar os folders educativos aos comandantes de navios e agências marítimas.

Ações de monitoramento e controle

A verificação da troca oceânica será realizado por meio da avaliação documental do navio (formulário NORMAM 20). Estes dados, quando inseridos no banco de dados, poderão auxiliar no controle dos navios que atracam no TCP, contribuindo para identificar aqueles considerados de risco. A educação ambiental consistirá de uma etapa de preventiva.
Cronograma de Execução

<table>
<thead>
<tr>
<th>Ação</th>
<th>Mês 1</th>
<th>Mês 2</th>
<th>Mês 3</th>
<th>Mês 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fase implantação:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planejamento, elaboração do banco de dados e confecção do material didático.</td>
<td>x</td>
<td>x</td>
<td>X</td>
<td>x</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ação</th>
<th>Mês 5</th>
<th>Mês 6</th>
<th>Mês 7</th>
<th>Mês 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fase implantação e Operação:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treinamento da equipe de meio ambiente e da operação do TCP; compra do salinômetro, implantação do Projeto e acompanhamento.</td>
<td>x</td>
<td>x</td>
<td>X</td>
<td>x</td>
</tr>
</tbody>
</table>

Desempenho esperado

- Espera-se que se possam obter dados sobre as trocas oceânicas dos navios que atracam nos Terminal de Contêineres de Paranaguá mediante entrega dos respectivos formulários;

- Que os comandantes dos navios que atracam no TCP recebam o material didático para a prevenção da bioinvasão por água de lastro no Complexo Estuarino de Paranaguá, assim como as agências marítimas;

- Que o banco de dados dos monitoramentos dos navios seja regularmente atualizado pela equipe do TCP;
Responsabilidades

Terminal de Contêineres de Paranaguá.

Equipe técnica responsável pela elaboração do programa

- Eliane Beê Boldrini (Psicóloga, Especialista em Gestão Sócio-Ambiental Portuária, Mestre em Educação e Doutora em Educação);

7.3.2.10.2 Sub-programa de monitoramento de espécies invasoras por água de lastro no Complexo Estuarino de Paranaguá e educação ambiental

Impactos relacionados

Invasão de espécies exóticas pelo deslastramento dos navios durante as operações portuárias.

Objetivos

- Desenvolver um programa de comunicação e educação ambiental para os pescadores artesanais e esportivos sobre o problema da invasão de espécies exóticas via água de lastro no mundo, no Brasil, com ênfase naquelas ocorridas no Paraná informando as medidas preventivas sugeridas pela Convenção Internacional de Água de Lastro (IMO) e pela NORMAM 20.

Inter-relação com outros programas

Inter-relação do programa gerenciamento de água de lastro nos navios com os demais.

<table>
<thead>
<tr>
<th>Programas</th>
<th>Inter-relação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biota Aquática</td>
<td>Os dados obtidos com os monitoramentos dos organismos aquáticos devem subsidiar um banco de dados que possa contribuir com o monitoramento dos impactos causados por espécies invasoras oriundas da água de lastro.</td>
</tr>
<tr>
<td>Sub-programa de gerenciamento de água de lastro nos navios para a prevenir a bioinvasão de espécies exóticas.</td>
<td>Os dados referentes às espécies invasoras identificadas pelos pescadores e agentes multiplicadores do “Programa de Educação Ambiental e Monitoramento da bioinvasão de espécies Exóticas” podem vir a ser cruzados</td>
</tr>
<tr>
<td>Programas</td>
<td>Inter-relação</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
</tr>
<tr>
<td></td>
<td>com os dados do monitoramento da troca oceânica. Isso permitirá identificar as possíveis relações com fenômenos de bioinvasão.</td>
</tr>
</tbody>
</table>

Abrangência

Comunidades Pesqueiras do Complexo Estuarino de Paranaguá, escolas e universidades do litoral.

Metodologia

O programa visa realizar um processo educativo voltado para os pescadores artesanais, pescadores esportivos e escolas públicas e privadas, a ser desenvolvido por meio de agentes multiplicadores (estagiários e acadêmicos de cursos técnicos e faculdades do litoral paranaense). O objetivo consiste em orientá-los sobre as espécies invasoras no mundo e no Brasil, enfatizando aquelas espécies macroscópicas ocorridas no Paraná, tais como peixes, siris, moluscos, entre outros, para que possam ser identificadas pelos pescadores artesanais e esportivos quando estes se depararem com estas espécies durante as pescarias. O programa também visa conscientizá-los dos riscos, sobretudo, que a pesca esportiva pode causar em termos de bioinvasão de espécies exóticas no ambiente.

Neste programa também será elaborado um banco de dados que será atualizado frequentemente e incluirá os dados obtidos com os monitoramentos da biota aquática. Além disso, se caracteriza como um programa de educação ambiental e monitoramento da bioinvasão por água de lastro.

O Banco de dados visa oferecer ao IBAMA e a Autoridade Marítima o acesso imediato às informações e os permite acompanhar o desenvolvimento do Programa.
Este sistema subsidiará as autoridades nas tomadas de decisões quanto aos riscos para a saúde pública e as ações preventivas em relação à água de lastro.

Materiais e equipe

Materiais: Folders, assim como ao banco de dados, que será atualizado periodicamente em parceria com os monitoramentos da biota aquática. Será necessário também notebook, data show, tela e recursos de deslocamento e diárias, além dos serviços técnicos. Ainda, serão necessários recursos de deslocamentos e diárias de estagiários e acadêmicos que serão treinados para o trabalho de educação ambiental nas escolas e com os pescadores (agentes multiplicadores).

Equipe: contará com uma equipe multidisciplinar nas seguintes áreas: informática (banco de dados), multimídia (vídeo), educação e biologia (especialistas que construirão o conteúdo do material didático e que treinarão os agentes multiplicadores) e auxiliar de informática (alimentar o banco de dados).

Ações de monitoramento e controle

A educação ambiental irá auxiliar os atores envolvidos (pescadores artesanais, esportivos, escolas e agentes multiplicadores (estagiários) e comunidade em geral) a reconhecerem as espécies invasoras macroscópicas e consequentes impactos ambientais. O controle da bioinvasão será feito pelo monitoramento dos dados levantados. Neste banco de dados serão incluídos os resultados obtidos com os monitoramentos da biota aquática, podendo ser acessado online pelo IBAMA.
Cronograma

<table>
<thead>
<tr>
<th>Ação</th>
<th>Mês 1</th>
<th>Mês 2</th>
<th>Mês 3</th>
<th>Mês 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planejamento, confecção do material didático, construção do banco de dados e dos equipamentos.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ação</td>
<td>Mês 5</td>
<td>Mês 6</td>
<td>Mês 7</td>
<td>Mês 8</td>
</tr>
<tr>
<td>Construir a rede de parcerias e treinar agentes multiplicadores.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Ação</td>
<td>Mês 9</td>
<td>Mês 10</td>
<td>Mês 11</td>
<td>Mês ...</td>
</tr>
<tr>
<td>Educação Ambiental no CEP, litoral norte, por um período de 12 meses e após resultados avalia-se a continuidade do programa.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Desempenho esperado

- Espera-se que a comunidade de pescadores artesanais e esportivos do Complexo Estuarino de Paranaguá, litoral norte, saiba identificar espécies invasoras macroscópicas e colaborem para a atualização do banco de dados;

- Que desperte o interesse em alunos de graduação, sobretudo do litoral (cursos de Biologia, Gestão Ambiental, entre outros). Além disso, espera-se que a maioria das escolas do litoral norte paranaense receba os agentes multiplicadores de educação ambiental, no processo de orientação dos alunos e professores sobre os mecanismos de prevenção e monitoramento das espécies invasoras por água de lastro no Complexo Estuarino de Paranaguá;

- Que as Colônias de Pescadores e Associações de Pescadores e pescadores esportivos do litoral norte no CEP tenham orientação e material didático para monitorar a bioinvasão por água de lastro.

Responsabilidades

Terminal de Contêineres de Paranaguá
Equipe técnica responsável pela elaboração do programa

- Eliane Beê Boldrini (Psicóloga, Mestre em Educação e Doutora em Educação);

7.3.2.11 Programa de monitoramento da pesca

Impactos relacionados

Possível obliteração ou dificuldade do trânsito através do Canal da Cotinga durante a fase de implantação e mudança nas características hidrodinâmicas da região, sobretudo no canal da Cotinga durante a fase de operação. Transtornos aos pescadores que utilizem o canal da Cotinga como via de acesso aos locais de pesca ou como local de pesca.

Objetivos

Monitorar a atividade pesqueira das comunidades que usam o Canal da Cotinga como principal meio de deslocamento para atingir os locais de pesca, quanto aos aspectos socioeconômicos e dinâmicas de pescarias, permitindo projeções futuras, para definições de ações conjuntamente com os pescadores artesanais, a fim de capacitar estas comunidades para que tenham alternativas aos impactos projetados.

Quantificar a produção pesqueira destas comunidades, observando alterações na quantidade e sazonalidade da captura de organismos utilizados como recursos pesqueiros.

Como o impacto é localizado, de pequena magnitude, atingindo somente o Canal da Cotinga, faz-se necessário o monitoramento das comunidades pesqueiras que utilizam este canal como principal meio de deslocamento.
Inter-relação com outros programas

A inter-relação deste programa com os demais é apresentada na tabela a seguir:

<table>
<thead>
<tr>
<th>Programas</th>
<th>Inter-relação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programa de monitoramento hidrodinâmico e morfo-sedimentar da área adjacente ao Terminal de Contêiners de Pranaguá - TCP</td>
<td>O monitoramento batimétrico do Canal da Cotinga irá permitir a identificação do assoreamento ou erosão do mesmo.</td>
</tr>
<tr>
<td>Monitoramento da Ictiofauna</td>
<td>Os dados obtidos com os monitoramentos dos organismos aquáticos, analisando aqueles utilizados como recursos pesqueiros, devem subsidiar um banco de dados que possa contribuir com o monitoramento dos impactos causados à pesca.</td>
</tr>
</tbody>
</table>

Abrangência

Comunidades de pescadores que utilizam o Canal de Cotinga como principal canal de deslocamento.

Metodologia

Será efetuada aplicação de questionários de caráter socioeconômico e com aspectos de capturas nas comunidades de pescadores artesanais que utilizam o Canal da Cotinga como principal canal de deslocamento (AID).

A freqüência das análises consistirá em uma coleta antes do início das obras, uma coleta semestral durante todo o período de implantação do empreendimento e coletas semestrais durante o primeiro ano de operação. Após este levantamento será possível fazer uma avaliação dos resultados obtidos.

A avaliação será feita de forma conjunta com as comunidades entrevistadas e estas informações deverão ser disponibilizadas tanto para as mesmas, quanto ao poder...
publico, a fim de subsidiá-los na elaboração e proposição de políticas publicas específicas.

Materiais e equipe

Equipe
Profissional da área de pesca
Profissional da área de educação
Técnico em Meio Ambiente

Materiais
Computador
Impressora
Folhas de papel sulfite
Cartuchos de tinta para impressora
Diárias de deslocamento
Locação de equipamento para apresentação dos resultados as comunidades pesqueiras.

Ações de monitoramento e controle

Ação 1: Coleta de Dados, pesquisa bibliográfica e aplicação de questionários, e análise dos dados obtidos

Ação 2: Avaliação dos resultados

Ação 3: Apresentação dos resultados para as comunidades de pescadores inseridas no monitoramento.

Serão apresentados ao IBAMA relatório semestrais das ações e resultados.
Cronograma

Fase de Instalação

Implantação do Sistema de Coleta de Informações

<table>
<thead>
<tr>
<th>Mês 1</th>
<th>Mês 2</th>
<th>Mês 3</th>
<th>Mês 4</th>
<th>Mês 5</th>
<th>Mês 6</th>
<th>Mês 7</th>
<th>Mês 8</th>
<th>Mês 9</th>
<th>Mês 10</th>
<th>Mês 11</th>
<th>Mês 12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Avaliação do sistema de coleta de informações

<table>
<thead>
<tr>
<th>Mês 1</th>
<th>Mês 2</th>
<th>Mês 3</th>
<th>Mês 4</th>
<th>Mês 5</th>
<th>Mês 6</th>
<th>Mês 7</th>
<th>Mês 8</th>
<th>Mês 9</th>
<th>Mês 10</th>
<th>Mês 11</th>
<th>Mês 12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Coleta de dados

<table>
<thead>
<tr>
<th>Mês 1</th>
<th>Mês 2</th>
<th>Mês 3</th>
<th>Mês 4</th>
<th>Mês 5</th>
<th>Mês 6</th>
<th>Mês 7</th>
<th>Mês 8</th>
<th>Mês 9</th>
<th>Mês 10</th>
<th>Mês 11</th>
<th>Mês 12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Apresentação dos dados para as comunidades entrevistadas e elaboração de relatório

<table>
<thead>
<tr>
<th>Mês 1</th>
<th>Mês 2</th>
<th>Mês 3</th>
<th>Mês 4</th>
<th>Mês 5</th>
<th>Mês 6</th>
<th>Mês 7</th>
<th>Mês 8</th>
<th>Mês 9</th>
<th>Mês 10</th>
<th>Mês 11</th>
<th>Mês 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

Primeiro ano após a instalação

Coleta de dados

<table>
<thead>
<tr>
<th>Mês 1</th>
<th>Mês 2</th>
<th>Mês 3</th>
<th>Mês 4</th>
<th>Mês 5</th>
<th>Mês 6</th>
<th>Mês 7</th>
<th>Mês 8</th>
<th>Mês 9</th>
<th>Mês 10</th>
<th>Mês 11</th>
<th>Mês 12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Apresentação dos dados para as comunidades entrevistadas e elaboração de relatório.
Desempenho esperado

Espera-se com o monitoramento da pesca, quantificar a produção pesqueira das comunidades que utilizam o Canal da Cotinga como principal canal de deslocamento, observando se não haverá nenhuma alteração significativa na quantidade, qualidade e sazonalidade na captura de organismos utilizados como recursos pesqueiros.

Criação de um banco de dados da pesca artesanal das comunidades da Ilha dos Valadares e Cotinga.

Responsabilidades

Terminal de Contêinners de Paranaguá

Equipe técnica responsável pela elaboração do programa

Nicole Pistelli Machado (Engenheira de Aquicultura, CREA/PR-104115/D).
7.3.2.12 Programa de Auditoria Ambiental

Impactos relacionados

O Plano de Auditoria Ambiental do TCP a ser conduzido por ocasião da implantação e operação da expansão do cais leste e do terminal com um todo, definirá o processo gerencial a ser adotado para verificar o atendimento da execução dos diversos sub-sistemas de gerenciamento ambiental implementados.

Objetivos

O Programa de Auditoria Ambiental tem como objetivos a verificação do cumprimento de aspectos tais como:

- Legislação ambiental aplicável ao Terminal de Contêineres;
- Avaliação do desempenho do sistema de gestão ambiental em elementos tais como:
 - Definição de aspectos/impactos;
 - Implementação de procedimentos para eliminação/mitigação dos impactos significativos;
 - Treinamento de colaboradores diretos e indiretos envolvidos com as operações de expansão do cais e operação do terminal como um todo;
 - Definição, instalação e condução de planos de ações corretivas para não-conformidades verificadas.

É aplicável ao TCP auditoria ambiental bianual, criada pela lei federal nº 9.966/00, e regulamentada por resoluções do CONAMA e portarias do Ministério do Meio Ambiente.

"Art 9º As entidades exploradoras de portos organizados e instalações portuárias e os proprietários ou operadores de plataformas e suas instalações de apoio deverão auditorias
ambientais bienais, independentes, com o objetivo de avaliar os sistemas de gestão e controle ambiental em suas unidades.”

Possuirá como produtos o relatório de auditoria ambiental e o plano de ação, os quais devem ser apresentados ao órgão ambiental competente

Inter-relação com outros programas

A inter-relação deste programa com os demais é apresentada na tabela a seguir:

<table>
<thead>
<tr>
<th>Programas</th>
<th>Inter-relação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plano Ambiental de Construção</td>
<td>Proporcionará a verificação de elementos típicos e derivados do Levantamento de todos os Aspectos Ambientais Significativos; Examinará a eficácia da gestão de resíduos na fase de instalação da obra de expansão do cais leste e operação do Terminal como um todo; o monitoramento dos efluentes líquidos; o controle das atividades de treinamento dos colaboradores envolvidos diretamente e indiretamente na obra e; verificará as o cumprimento das atividades de desmobilização da obra (envolvendo a estrutura física e resíduos remanescentes).</td>
</tr>
<tr>
<td>Monitoramento da Biota Aquática e bioindicadores.</td>
<td>Proporcionará o acompanhamento dos trabalhos de análise qualidade da água e dos organismos marinhos na baía de Paranaguá, contribuindo na identificação de alterações provenientes das atividades portuárias.</td>
</tr>
<tr>
<td>Gerenciamento de Resíduos Sólidos – PGRS na fase de operação.</td>
<td>Contribuirá na gestão de resíduos sólidos por meio da verificação da efetividade do cumprimento das diversas fases da cadeia logística até a fase de destruição final e/ou depósito/reaproveitamento dos resíduos.</td>
</tr>
<tr>
<td>Programas Inter-relação</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td></td>
</tr>
<tr>
<td>Gerenciamento de Efluentes na fase de Operação.</td>
<td>Proporcionará a condição de verificação de atendimento da Resolução CONAMA No. 357 na atividade em que a empresa gera efluentes oriundos de lavação e contêineres.</td>
</tr>
<tr>
<td>Gerenciamento de Emissões Atmosféricas.</td>
<td>Auxiliará na determinação da eficácia do sistema de manutenção de motores a combustão da frota de equipamentos conforme procedimentos internos do terminal.</td>
</tr>
<tr>
<td>Gerenciamento da Emissão de Ruídos.</td>
<td>Avaliar o atendimento das NBR’s 10151/00 e, 10152/00.</td>
</tr>
<tr>
<td>Monitoramento da Qualidade das Águas, conforme Resolução CONAMA No. 357</td>
<td>Permitirá a verificação do monitoramento da qualidade das águas da Baía de Paranaguá na área direta de influência da empresa, investigando a adequação aos parâmetros estabelecidos pela Resolução CONAMA No. 357.</td>
</tr>
<tr>
<td>Verificação do Gerenciamento da Água de Lastro dos Navios.</td>
<td>Observar o atendimento do Programa no que diz respeito ao repasse às embarcações de orientações sobre o conteúdo da NORMAM No. 20 e verificar a forma de interação com os embarcados quanto a atividade de lastro que são executadas.</td>
</tr>
<tr>
<td>Gerenciamento de Riscos</td>
<td>Verificar se os cenários estabelecidos no Programa foram convertidos em procedimentos que propiciem ações de mitigação em situações emergenciais do Terminal.</td>
</tr>
<tr>
<td>Comunicação Social</td>
<td>Verificar se o Programa reúne evidências que tenham proporcionado a geração de conhecimento aos colaboradores diretos e indiretos sobre nossas operações portuárias e seus aspectos/impactos ambientais.</td>
</tr>
<tr>
<td>Programas</td>
<td>Inter-relação</td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>Educação Ambiental</td>
<td>Constatará a aplicação de atividades de educação ambiental aos colaboradores diretos e indiretos e entre partes interessadas, sobre temas ambientais de destaque e específicos a cada população.</td>
</tr>
</tbody>
</table>

Abrangência

A implantação e operação do Cais Leste e todo o Terminal de Contêineres de Paranaguá – TCP, incluindo as partes interessadas que interagem com suas operações.

Metodologia

As auditorias ambientais deverão ser realizadas segundo os seguintes instrumentos:

- Resolução CONAMA No. 306 de 05 de julho de 2002, que estabelece os requisitos mínimos e o termo de referência para a realização de auditorias ambientais;

- A NBR ISO 14001:2004 que visa prover a empresa de elementos de um sistema de gestão ambiental eficaz e a alcançar seus objetivos ambientais. Esta norma especifica os requisitos para a elaboração e implantação do sistema de gestão ambiental e seus objetivos que levem em consideração requisitos legais e informações sobre aspectos ambientais significativos, totalmente compatível com a Resolução CONAMA nº. 306 em seus elementos.
Materiais e equipe

Materiais:
- Não se aplica.

Equipe:
- Coordenador de Gestão Ambiental do TCP;
- Assistente de Gestão Ambiental do TCP;
- Auditor Líder da empresa contratada para conduzir a auditoria ambiental;
- Auditor da empresa contratada para conduzir a auditoria ambiental.

Ações de monitoramento e controle

O Programa mostra as diretrizes para a realização de auditorias ambientais durante as fases de Instalação e Operação da ampliação do cais leste, bem como o terminal como um todo, onde consistirá na verificação da implementação de sistemáticas já adotadas na empresa através da implantação e manutenção do SGA segundo a NBR ISO 14001:2004, sob a ótica da Resolução CONAMA nº. 306.

As auditorias serão promovidas de acordo com a metodologia da NBR ISO 14001, através dos diversos procedimentos operacionais implementados no terminal, que refletem o Anexo II da Resolução CONAMA nº. 306.

As ações de auditoria deverão envolver uma análise das evidências objetivas que permitam determinar se o Terminal de Contêineres de Paranaguá atende aos requisitos estabelecidos na Resolução CONAMA No. 306, uma vez que o Programa de Auditoria será orientado e conduzido pela Norma NBR ISO 14001:2004. As constatações de não conformidade devem ser documentadas de forma absoluta e acompanhadas de evidências objetivas de auditoria e deverão ser objeto de um plano de ação corretiva.
Quanto ao cumprimento da legislação ambiental aplicável, a auditoria envolverá, entre outros:

- Identificação da legislação ambiental federal, estadual e municipal, bem como das ordens de serviços ambientais vigentes aplicáveis na APPA-Administração dos Portos de Paranaguá e Antonina – Autoridade Portuária;
- Verificação da conformidade das instalações do terminal com as leis e normas ambientais vigentes;
- Identificação da existência e validade das licenças ambientais;
- Verificação do cumprimento das condições estabelecidas nas licenças ambientais;
- Identificação da existência dos acordos e compromissos, tais como termos de compromisso ambiental e/ou termos de ajustamento de conduta ambiental e eventuais planos de ação definidos na Resolução CONAMA No. 306;
- Verificação do cumprimento das obrigações assumidas no que se refere ao item anterior.

Com relação a avaliação do desempenho da gestão ambiental, a auditoria envolverá, entre outros:

- Verificação da existência de uma política ambiental documentada, implementada, mantida e difundida a todas as pessoas que estejam trabalhando no Terminal de Contêineres de Paranaguá, incluindo funcionários de empresas terceirizadas;
- Verificação da adequabilidade da política ambiental com relação à natureza, escala e impactos ambientais do terminal, e quanto ao comprometimento da mesma com a prevenção da poluição, com a melhoria contínua e com o atendimento da legislação ambiental aplicável;
- Verificação da existência e implementação de procedimento que propiciem a identificação e o acesso à legislação ambiental e outros requisitos aplicáveis;
- Identificação e atendimento dos objetivos e metas ambientais das instalações e a verificação se os mesmos levam em conta a legislação ambiental e o princípio da prevenção da poluição, quando aplicável;
• Verificação da existência e implementação de procedimentos para identificar os aspectos ambientais significativos das atividades, produtos e serviços, bem como a adequação dos mesmos;
• Verificação da existência e implementação de procedimentos e registros da operação e manutenção das atividades/equipamentos relacionados com os aspectos ambientais significativos;
• Identificação e implementação de planos de inspeções técnicas para avaliação das condições de operação e manutenção das instalações e equipamentos relacionados com os aspectos ambientais significativos;
• Identificação e implementação dos procedimentos para comunicação interna e externa com as partes interessadas;
• Verificação dos registros de monitoramento e medições das fontes de emissões para o meio ambiente ou para os sistemas de coleta e tratamento de efluentes sólidos, líquido e gasoso;
• Existência de planos de gerenciamento de riscos;
• Existência de plano de emergência individual e registro dos treinamentos e simulações por ele previstos;
 o Verificação dos registros de ocorrência de acidentes;
 o Verificação da existência e implementação de mecanismos e registros para a análise crítica periódica do desempenho ambiental e sistema de auditorias internas;
 o Verificação da existência de definição de responsabilidades relativas aos aspectos ambientais significativos;
 o Existência de registros da capacitação do pessoal cujas tarefas possam resultar em impacto significativo sobre o meio ambiente;
 o Existência de mecanismos de controle de documentos;
 o Existência de procedimentos e registros na ocorrência de não-conformidades ambientais;
 o Verificação das condições de manipulação, estocagem e transporte de produtos que possam causar danos ao meio ambiente.

O Plano de Auditoria deverá conter:
Escopo: para descrever a extensão e os limites de localização física e de atividades do Terminal de Contêineres de Paranaguá S/A.

Preparação da auditoria, considerando:
- Definição e análise da documentação;
- Prévia das instalações do terminal a serem auditadas;
- Formação da equipe de auditores;
- Definição das atribuições dos auditores

Execução da auditoria, considerando:
- Entrevistas com os gestores e os responsáveis pelas atividades e funções da instalação;
- Inspeções e vistorias nas instalações;
- Análise de informações e documentos;
- Análise das observações e constatações;
- Definição das conclusões da auditoria;
- Consulta prévia aos órgãos ambientais competentes a fim de verificar o histórico de incidentes ambientais, inclusive de seus desdobramentos jurídico-administrativos, e dos cadastros ambientais;
- Elaboração do relatório final.

O relatório de Auditoria deverá conter, no mínimo:
- Composição da equipe auditora e respectivas atribuições;
- Identificação do terminal e das instalações auditadas;
- Descrição das atividades das instalações;
- Objetivos, escopo e plano de auditoria estabelecida;
- Período coberto pela auditoria;
- Sumário e metodologia do processo de auditoria;
- Lista de documentos legais, normas e regulamentos de referência;
- Lista de documentos analisados e unidades auditadas;
- Lista de pessoas contatadas durante a auditoria e respectivas atribuições;
- Constatações da auditoria;
Conclusões da auditoria, incluindo as constatações de conformidades e não-conformidades em relação aos critérios estabelecidos e avaliação da capacidade do terminal em assegurar a contínua adequação aos critérios estabelecidos.

O Plano de Ação deverá conter no mínimo:

- Ações corretivas e preventivas associadas às não-conformidades e deficiências identificadas na auditoria ambiental;
- Prazos estabelecidos para implementação das ações previstas;
- Indicação da área do terminal responsável pelo cumprimento dos prazos estabelecidos;
- Prazos estabelecidos para as avaliações do cumprimento das ações do plano e seus respectivos relatórios;

Cronograma

A auditoria CONAMA 306 será realizada no mínimo a cada dois anos, em tempo hábil para que os respectivos relatórios de auditoria e planos de ação sejam apresentados ao órgão ambiental competente e incluídos no processo de licenciamento ambiental.

Desempenho esperado

Com a implementação do Programa de Auditoria Ambiental será possível:

- Identificar e registrar conformidades; não-conformidades; oportunidades de melhoria; Observações diversas; correções das não-conformidades;
- Fornecer subsídios sobre a performance da condução dos diversos programas ambientais em andamento e implementados, bem como efetivar ações de melhoria verificados;
- Acompanhar a eficácia dos diversos procedimentos que visam a minimização dos impactos resultados das nossas operações.
Responsabilidades

Terminal de Contêineres de Paranaguá.

Equipe técnica responsável pela elaboração do programa

- Luiz Carlos Narok (Administrador de Empresas com especialização em Meio Ambiente e Gestão de Pessoas);
- Cinthia Rosa de Oliveira (Administradora de Empresas com especialização em Meio Ambiente)
- Equipe de auditores externos da empresa terceirizada escolhida para a condução das auditorias.
7.3.2.13 Programa de Gerenciamento de Riscos

Impactos relacionados

O estabelecimento de um programa de gerenciamento de riscos tem como premissa básica a identificação, análise e avaliação dos potenciais riscos ao meio ambiente, segurança de mão-de-obra, patrimônio e, a imagem do Terminal de Contêineres de Paranaguá, derivados das atividades desenvolvidas pela empreiteira durante as obras de ampliação do cais leste, concomitantemente as operações portuárias típicas do Terminal.

A partir da análise dos riscos, serão definidos os cenários acidentais e suas conseqüências, visando a formação do gerenciamento dos riscos, que por sua vez consistirá na aplicação sistemática de políticas, procedimentos e práticas voltadas para a redução, controle e monitoramento dos riscos das atividades de ampliação do cais leste.

A redução dos riscos se dá pela adoção de medidas preventivas que visam a diminuição da freqüência dos riscos identificados e, também, pelas medidas corretivas que visam a mitigação das conseqüências e a preparação de respostas ao acidente. Desta forma, os impactos dos mais variados aspectos ambientais relatados serão diminuídos em caso de ocorrências.

Objetivos

A formação do programa de gerenciamento de riscos compreende o canteiro de obras, instalações de apoio da empreiteira da fase de ampliação do cais leste, bem como as operações portuárias do Terminal, que irão interagir durante as obras e operação. Competirá ao Terminal o efetivo cumprimento dos requisitos propostos no programa, através da gestão dos seus recursos e da empreiteira que conduzirá as obras, desta forma, podemos agrupar os objetivos principais:

1. Identificar, analisar e avaliar os potenciais riscos ao meio ambiente, segurança dos colaboradores, segurança ao patrimônio e a imagem do
Terminal, decorrentes das atividades portuárias e das obras de ampliação do cais leste, que acontecerão concomitantemente;

2. Minimizar os impactos ambientais e também evitar e/ou minimizar eventuais danos ao patrimônio, oriundos das situações emergenciais ocorridas durante as operações do Terminal e no canteiro de obras de ampliação do cais leste;

3. Preservar a integridade física dos colaboradores da empreiteira e colaboradores ligados diretamente com as operações portuárias;

4. Proporcionar atividades de treinamento e simulações específicas, a partir da identificação de cenários emergenciais; e

5. Efetivar a integração da empreiteira que irá atuar na ampliação do cais leste, quanto a gestão de riscos e procedimentos emergenciais para que impactos ao meio ambiente sejam diminuídos.

Inter-relação com outros programas

A inter-relação deste programa com os demais é apresentada na tabela a seguir:

<table>
<thead>
<tr>
<th>Programas</th>
<th>Inter-relação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plano Ambiental de Construção</td>
<td>Todos os aspectos ambientais significativos levantados relativos as obras, subsidiarão a análise dos cenários emergenciais possíveis, proporcionando assim a mensuração de materiais e treinamentos necessários para efetivar o programa de gerenciamento de riscos.</td>
</tr>
<tr>
<td>Gerenciamento de Resíduos Sólidos</td>
<td>A partir dos cenários de situações emergenciais, será possível a determinação de resíduos sólidos e líquidos resultantes, garantindo a mensuração de coletores, acondicionamento provisório, contratação de terceiros para destino final, etc. Também proporcionando a gestão destes resíduos através da determinação dos meios mais adequados de manejo durante as fases dos trabalhos.</td>
</tr>
<tr>
<td>Programas</td>
<td>Inter-relação</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Gerenciamento de Efluentes na fase de</td>
<td>A partir dos cenários de situações emergenciais, será possível a determinação dos efluentes resultantes, garantindo a mensuração de seu manejo, acondicionamento provisório quando aplicado, contratação de terceiros para destino final, treinamento de todos os colaboradores que estarão envolvidos com este programa.</td>
</tr>
<tr>
<td>operação</td>
<td></td>
</tr>
<tr>
<td>Gerenciamento de Emissões Atmosféricas</td>
<td>O envolvimento deste programa será no âmbito de controlar eficazmente o lançamento na atmosfera de particulados, derivados da utilização de motores a combusão, bem como os particulados provenientes de poeira proporcionada pelo tráfego de caminhões em vias não pavimentadas.</td>
</tr>
<tr>
<td>Monitoramento da qualidade das águas</td>
<td>Garantirá que a qualidade das águas da baía de Paranaguá, a partir do cenário de utilização de máquinas, equipamentos e veículos, operem normalmente e as respectivas manutenções utilizem sempre áreas de contenção e bacias separadoras de água/óleo, garantindo os parâmetros da Resolução.</td>
</tr>
<tr>
<td>conforme Resolução CONAMA No. 357</td>
<td></td>
</tr>
<tr>
<td>Auditoria Ambiental</td>
<td>Garantirá semestralmente que a empresa esteja incluindo o programa de gerenciamento de riscos em seu escopo, verificando a eficácia dos treinamentos simulados aplicados nas situações emergenciais verificadas, registros de treinamentos, eficácia das intervenções sofridas e derivadas de situações emergenciais nas operações portuárias e nas obras de ampliação do cais leste.</td>
</tr>
<tr>
<td>Comunicação Social</td>
<td>Proporcionará a geração de conhecimento aos colaboradores diretos e indiretos do Terminal e da obra de ampliação do cais leste, bem como a comunidade em geral, para que tenham informações relevantes sobre nossas operações e sobre nossos aspectos/impactos.</td>
</tr>
</tbody>
</table>
EIA – Ampliação do Cais

<table>
<thead>
<tr>
<th>Programas</th>
<th>Inter-relação</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ambientais significativos e as formas de mitigação ambiental.</td>
</tr>
<tr>
<td>Educação Ambiental</td>
<td>Socializará informações relevantes aos colaboradores envolvidos direta e indiretamente com as atividades do Terminal e da obra de ampliação do cais leste, em temas ambientais ligados diretamente a questões de gerenciamento de riscos, cenários emergenciais possíveis, treinamentos realizados para qualificar os colaboradores a saberem atuar com situações de emergências.</td>
</tr>
</tbody>
</table>

Abrangência

O Terminal contratará uma empresa de consultoria especializada para conduzir os trabalhos técnicos propostos no programa de gerenciamento de riscos.

A formação do programa de gerenciamento de riscos abrange todas as operações portuárias do Terminal, bem como as obras de ampliação do cais leste, a serem conduzidas por empreiteira contratada.

Será responsabilidade do Terminal o efetivo cumprimento dos requisitos propostos no programa, através de sua coordenação de gestão ambiental e uma administração conjunta com a equipe de engenharia e segurança do trabalho da empreiteira das obras de ampliação do cais leste.

Entretanto, uma das atividades/cenário não será objeto deste programa – derramamento de óleo ao mar – uma vez que esta atividade está sendo desenvolvida pela APPA – Administração dos Portos de Paranaguá e Antonina, e compreenderá o envolvimento de toda a comunidade portuária que atua na zona primária do porto (cais de atracação). Atualmente há disponibilizado pelo setor especializado de gestão ambiental da APPA um grupo denominado CEDA – Centro em Excelência em Defesa Ambiental que oferece a 1ª resposta em situações de vazamento com equipe e materiais disponibilizados pela APPA. O CEDA é
administrado por empresa privada, especializada em respostas ambientais e mitigação de impactos ambientais marinhos.

Metodologia

O desenvolvimento do programa de gerenciamento de riscos utilizará algumas técnicas específicas para sua formação que atenderá efetivamente a ampliação do cais leste do Terminal, e garantindo a identificação, análise e avaliação dos potenciais riscos operacionais envolvidos que possam causar danos ao meio ambiente e aos indivíduos ligados direta e indiretamente com os processos.

A NBR ISO 14.001:2004 interpretada e aplicada pelo Terminal proporcionará também elementos importantes ao atingimento dos objetivos propostos, pois possui em seu escopo, orientações e metodologias seguidas e já implementadas, tais como o atendimento a situações de emergenciais; assim sendo, os diversos cenários, materiais para mitigações ambientais já adquiridos/desenvolvidos, programa de treinamentos simulados implementados para que os colaboradores envolvidos com as atividades saibam como oferecer as respostas perante situações emergenciais.

A empresa especializada que for contratada para conduzir o programa de gerenciamento de riscos ficará subordinada a Coordenação de Gestão Ambiental do Terminal, para que este passe a fazer parte integrante do SGA.

As obras de ampliação do cais leste que serão conduzidas por empreiteira contratada, terá que, necessariamente, interagir de forma plena com este programa de gerenciamento, o que será proposto em contrato de prestação de serviços. O envolvimento será a participação plena da administração e a engenharia da empreiteira, em todos os conceitos e metodologias propostas neste programa, através da proposição das suas ações de operacionalização.

As ações que serão implementadas podem ser agrupadas em três grandes áreas, a seguir definidas:

1- Estudo de análise de riscos;
2- Plano de emergência individual – montagem de manual de procedimentos internos;
3- Plano de controle de emergências, para acidentes envolvendo produtos químicos entre outras situações.

Materiais e equipe

Materiais:

Para todos os cenários possíveis de desenvolvimento, utilizando como parâmetros os planos de emergência do Terminal e o seu plano de controle de emergências, são os seguintes materiais/instalações necessários à condução do plano:

- Área de 56.000 litros de capacidade (tanque estacionário) para contenção de líquidos provenientes de vazamentos de contêineres;
- Contêiner de 40” adaptado para receber até 40.000 litros de líquidos provenientes de vazamentos de contêineres (tanque móvel);
- Área de aproximadamente 4000 litros, localizada no armazém do Terminal, para recebimento de líquidos derivados de vazamentos;
- Área para estocagem de até 2000 litros de óleo derivado de vazamentos ou situações emergenciais (resíduos);
- Dois contêineres de 40” adaptados e exclusivos para recebimento/estocagem provisório de resíduos contaminados, provenientes de mitigações ambientais derivadas de situações emergenciais a partir das operações do Terminal e das obras de ampliação do cais leste;
- Área apropriada para estoques de mantas e materiais absorventes para utilização em situações dos atendimentos emergenciais;
- Kits de emergência, em número e configuração adequados (em essência manta e material absorvente) dispostos em locais previamente determinados e próximos das operações/desenvolvimento das obras de ampliação do cais leste;
Kits de EPI’s (equipamentos de proteção individual) montados e dispostos nos locais de operação/desenvolvimento das operações portuárias e obras de ampliação do cais leste.

Equipe:

- Coordenador do SGA do Terminal, responsável pela condução do Plano de Controle de emergências e pelo Plano de Emergência Individual;
- Assistente de Gestão Ambiental do Terminal;
- Engenheiro civil da empreiteira contratada para a ampliação do cais leste;
- Engenheiro de segurança do trabalho do Terminal;
- Técnicos de segurança do Trabalho do Terminal;
- Técnicos de segurança da empreiteira contratada para as obras de ampliação do cais leste;
- Grupos de colaboradores do Terminal treinados em situações específicas definidas nos planos para: 1- Atuação direta, 2- Socorro médico, 3- Controle Ambiental, 4- Comunicação, 5- Apoio.

Ações de monitoramento e controle

Estudo de Análise de Riscos

É necessário que os riscos nas diferentes operações do Terminal e nas diferentes fases da obra sejam identificados, analisados e gerenciados. Os diversos cenários podem implicar em diversas possibilidades de acidentes decorrentes das operações, tráfego de veículos, armazenamentos, etc.

A identificação dos cenários acidentais, causas e conseqüências são obtidas pelo Estudo de Análise de Riscos, cujos resultados propiciam as condições para o estabelecimento das ações preventivas e mitigadoras constantes no PCE e PEI – Plano de Controle de Emergências e Plano de Emergência individual.
Elegemos como técnica para a identificação dos perigos, avaliação e classificação dos riscos associados às operações do Terminal e das obras de ampliação do cais leste a Análise Preliminar de Perigos – APP.

Ela é centrada nos eventos perigosos cujas falhas tem origem nas operações do Terminal e nas obras de ampliação do cais leste, contemplando tanto as falhas ligadas diretamente em equipamentos, dispositivos, materiais, como em erros humanos.

A Análise Preliminar de Perigos (APP) será desenvolvida por uma equipe multidisciplinar dos responsáveis técnicos envolvidos nas operações do Terminal, nas obras de ampliação do cais leste e por especialistas da empresa de consultoria a ser contratada envolvendo assim:

- Engenheiro e Técnicos de segurança do Terminal;
- Engenheiro das obras de ampliação do cais leste;
- Engenheiros/Técnicos especialistas de empresa de consultoria a ser contratada para essa finalidade.

Serão consideradas as hipóteses de acidentes que possam implicar em eventos que tenham potencial para:

- Causar danos a integridade física dos colaboradores diretos ou indiretos;
- Gerar impactos ambientais – situações acidentais que causem poluição das águas, do ar e/ou do solo;
- Paralisar, mesmo que momentâneo, as operações do Terminal e das obras de ampliação do cais leste;
- Causar avarias aos equipamentos ou nas instalações.

Serão consideradas todas as atividades que possam desencadear situações indesejadas, tais como:
Após a identificação dos riscos, será desenvolvida uma avaliação qualitativa da probabilidade de ocorrência associada às causas e severidade de suas conseqüências.

A APP será estimada com a utilização de uma planilha contendo os seguintes campos para preenchimento: sequencial, hipótese acidental ou perigo, causas, efeitos (impactos), frequência (probabilidade de ocorrer o evento), severidade, risco, observações diversas.

Será estabelecido um critério para definir a frequência e severidade aos perigos identificados da seguinte forma:

Freqüência:
- A - Comum
- B - Provável
- C - Improvável
- D - Difícil de ocorrer
- E - Extremamente difícil de ocorrer

Severidade:
- I - Não relevante
II- Relevância baixa
III- Relevância média
IV- Relevância alta

Após o mapeamento dos riscos e a determinação de seus graus de freqüência e severidade, serão proposta ações para obter redução das freqüências e suas conseqüências dos eventuais acidentes, que farão parte integrante do PGR.

Será proposto a produção de um relatório para caracterizar os trabalhos de estudos de riscos, contendo o seguinte:

- Introdução e premissas;
- Objetivos;
- Detalhamento das operações e da obra;
- Identificação dos perigos;
- Conclusões;
- Composição da equipe técnica;
- Anexos: Planilhas de APP, plano de ações das recomendações, plantas, figuras, etc.

Plano de Emergência Individual - PEI

A sua formação tem as seguintes finalidades:

- Criar os procedimentos de resposta aos cenários acidentais observados e considerados no estudo de análise de riscos;
- Mitigar as situações derivadas aos acidentes e suas conseqüências;
- Manter os impactos restritos e confinados em uma área;
Dimensionar os recursos envolvidos (materiais e humanos) necessários para as ações de combate.

A elaboração do PEI será realizada por consultoria especializada a ser contratada pelo Terminal em conformidade com as práticas e técnicas atualmente utilizadas em nosso país, que atenderá a Leis e Normas pertinentes.

Terá o envolvimento de profissionais com experiência na gestão e operação de ações de resposta a emergências, bem como em gerenciamento de riscos.

Os itens e os conteúdos resumidos do PEI serão:

Introdução

Descreverá a importância do estudo de análises visando a preparação para a atuação nas emergências, destacando a mitigação dos eventuais impactos ao meio ambiente.

Objetivos

Descreverá os objetivos almejados pelo PEI que irão garantir um planejamento adequado das ações a serem desenvolvidas em situações emergenciais.

Definições

Todas as definições utilizadas no Terminal, bem como siglas aplicadas as situações operacionais serão incorporadas em um capítulo específico, para evitar dúvidas e desencadear ações incorretas.

Abrangência
Será definida a área de influência das hipóteses e cenários acidentais a partir da elaboração da análise de riscos, abrangendo tanto as instalações e os equipamentos que o compõem, como as áreas externas adjacentes que possam ser atingidas por potenciais acidentes.

Caracterização

Conterá dados tais como: identificação, operações, equipamentos e instalações.

Hipóteses e Cenários

Serão consideradas as situações possíveis de acidentes, aquelas levantadas na análise preliminar de perigos – APP.

Organograma funcional das respostas

Será apresentado um organograma contendo as áreas, setores e ocupações de atuações previstas no PEI. Para cada ocupação será indicada as atribuições no PEI.
Acionamento e Comunicação

Irão ser apresentadas as ações de acionamento do plano e comunicação no formato de um fluxograma. Será previsto um procedimento específico para a comunicação com a imprensa, comunidades, autoridades e a empresa propriamente dita.

Procedimentos de Resposta

Serão descritos os procedimentos previstos para cada um dos cenários acidentais identificados no estudo de análise de riscos. Os itens considerados serão os seguintes:

1- Comunicação;
2- Avaliação inicial de um cenário acidental;
3- Sinalização, isolamento e evacuação de áreas;
4- Socorro às vítimas;
5- Aproximação com a comunidade;
6- Contenção de vazamentos de produtos perigosos;
7- Ações de segurança como: eliminação de fontes de ignição, utilização de EPI’s, etc.;
8- Avaliação de áreas atingidas;
9- Encerramento e desmobilização;
10- Ações de rescaldo;
11- Disposição temporária dos resíduos;
12- Integração com o PGRS do Terminal.

Manutenção do Plano

Será descrito a forma de manutenção do PEI, contendo:

Formação de equipes – garantindo a qualificação técnica dos envolvidos, através de treinamento;
Integração com partes interessadas no Terminal – será previsto a realização de simulações de modo a conhecer as competências durante as emergências (envolverá: APPA, OGMO, Capitania dos Portos, Sindicatos ligados as operações, Corpo de bombeiros);

Integração – será prevista a integração com Planos de Auxílio mútuo do Porto para eventuais acidentes ampliados;

Revisão do plano – será periodicamente revisado e reavaliado através da realização de reuniões periódicas e a discussão de casos reais.

Plano de Controle de emergências (envolvendo acidentes com produtos químicos entre outras situações)

Serão formuladas e identificadas as medidas e os procedimentos para prevenir, reduzir e controlar os riscos, garantindo a continuidade das operações do Terminal seguindo padrões de segurança adequados, sem conseqüência aos indivíduos, máquinas ou equipamentos.

Com o estudo de análise de riscos proporcionado, para que as melhorias apontadas para a redução dos riscos efetivamente administrados, serão necessários mecanismos para manter as operações portuárias e as obras de ampliação do cais. Essa situação será possível através da elaboração e implantação de um plano de controle de emergências, onde envolverá acidentes com produtos químicos entre outras situações.

O seu propósito é garantir com que a probabilidade de um evento ocorrer seja o menor possível e, caso este venha ocorrer, as conseqüências atreladas sejam minimizadas ao máximo. O gerenciamento de riscos deve ter como premissa básica o mapeamento dos riscos das atividades portuárias do Terminal, proporcionando assim a sua administração.
Mapeando-se os riscos será possível definir medidas mitigadoras para os mesmos, bem como elementos necessários, tais como materiais equipamentos e mão-de-obra para as atividades de intervenção em situações emergenciais para que os impactos ambientais sejam minimizados.

O conteúdo do plano de emergências deverá abranger:

- Contemplar a existência de informações, manuais e documentos atualizados e detalhados sobre os produtos perigosos;
- Contínua revisão dos riscos levantados inicialmente;
- As alterações de operações devem ser levadas em consideração para evitar improvisações e comprometer a segurança das pessoas, das instalações e do meio ambiente;
- As atividades do Terminal que traduzem em situações de risco para as pessoas, as instalações e ao meio ambiente, devem ser descritas em procedimentos operacionais, possibilitando o gerenciamento;
- Todos os envolvidos, direta e indiretamente devem possuir capacitação técnica na sua função e ou no equipamento utilizado no desenvolvimento das atividades.

Cronograma

<table>
<thead>
<tr>
<th>Ação</th>
<th>Mês 01</th>
<th>Mês 02</th>
<th>Mês 03</th>
<th>Mês 04</th>
<th>Mês 05</th>
<th>Mês 06</th>
<th>Mês 07</th>
<th>Mês 08</th>
<th>Mês 09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fase implantação</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Histórico do Terminal</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discussão com responsáveis pelas Obras de ampliação</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caracterização das instalações e da obra de ampliação</td>
<td>✔</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1690
<table>
<thead>
<tr>
<th>Ação</th>
<th>Mês 01</th>
<th>Mês 02</th>
<th>Mês 03</th>
<th>Mês 04</th>
<th>Mês 05</th>
<th>Mês 06</th>
<th>Mês 07</th>
<th>Mês 08</th>
<th>Mês 09</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elaboração do Plano de Trabalho</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encontros preliminares</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Levantamento da documentação pertinente</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resgate de trabalhos similares do Terminal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reunião de todos os dados</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fase operação</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identificação dos cenários acidentais</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Análise Preliminar de Perigos – APP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avaliação qualitativa da probabilidade de ocorrência.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Associação da probabilidade: freqüência, severidade e riscos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proposição de ações para obter redução das freqüências,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>com produção de um relatório</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Montagem do Plano de Emergência Individual - PEI,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>contendo as hipóteses e cenários e demais itens derivados.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Criação dos procedimentos de resposta aos cenários</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensionar os recursos envolvidos</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Montagem do Plano de Controle de Emergências –</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>identificando as medidas e os procedimentos para prevenir,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>reduzir e controlar os riscos.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treinamento dos colaboradores envolvidos com os planos.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Desempenho esperado

- Que seja efetivo os trabalhos de identificação dos perigos existentes nas atividades portuárias do Terminal e da ampliação do cais leste;
- Que a avaliação do nível de risco das atividades identificadas seja efetivamente adotado o nível de freqüência, severidade e risco às tarefas;
- Que seja possível avaliar a necessidade de implantação de medidas para a redução e controle dos riscos;
Que o seu estabelecimento garanta ao Terminal a condução normal das operações portuárias, ampliação do cais leste, garantindo assim o equilíbrio do meio ambiente, segurança das pessoas envolvidas e máquinas e equipamentos utilizados;

Que seja efetivo o uso dos procedimentos criados a partir do estabelecimento do PEI e do PCE;

Que o estabelecimento dos planos (PEI e PCE) orientem as ações de resposta emergencial durante as operações do Terminal e durante as obras de ampliação do cais leste.

Responsabilidades

Terminal de Contêineres de Paranaguá

Equipe técnica responsável pela elaboração do programa

Luiz Carlos Narok - (Administrador de Empresas com especialização em Meio Ambiente e Gestão de Pessoas, gestor ambiental do Terminal de Contêineres de Paranaguá);

Cinthia Rosa de Oliveira - (Administradora de Empresas com especialização em Meio Ambiente, Assistente de Gestão Ambiental do Terminal de Contêineres de Paranaguá);

Djalma Llupi - (Engenheiro civil responsável pela obra de ampliação do cais leste, contratado pela empreiteira);

Técnicos da consultoria especializada na formatação e condução das atividades, que será contratada.

Fernando Henrique Lopes e Marcos Aurélio Jacinto - (Técnicos de Segurança do Trabalho do Terminal de Contêineres de Paranaguá).
7.3.2.14 Programa de comunicação social

Impactos relacionados

Gerar expectativas com o projeto de expansão do TCP na comunidade de Paranaguá.

Objetivos

- Esclarecer a população de Paranaguá por meio das organizações sociais, organizações de classe, escolas, meios de comunicação, autoridades portuárias e ambientais sobre o projeto de expansão do Terminal de Contêineres de Paranaguá;

- Abrir um canal permanente de comunicação entre o Terminal e a Comunidade de Paranaguá;

- Divulgar os programas sócio-ambientais do projeto de expansão do TCP

Inter-relação com outros programas

A inter-relação deste programa com os demais é apresentada na tabela a seguir:

<table>
<thead>
<tr>
<th>Programas</th>
<th>Inter-relação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Todos os Programas</td>
<td>O Programa de Comunicação apresentará a Comunidade de Paranaguá uma síntese do EIA do projeto de expansão do TCP</td>
</tr>
</tbody>
</table>

Abrangência

Sociedade organizada de Paranaguá.
Metodologia

Este Programa será dividido em três fases, a saber:

Fase de Planejamento:
- Elaborar o material de divulgação contendo informações sobre o projeto de expansão e programas ambientais;
- Planejar os encontros de esclarecimentos sobre o projeto de expansão identificando as organizações sociais e governamentais que serão o público alvo;
- Elaborar um cronograma de encontros;
- Realizar os encontros.

Fase de Instalação
- Criar um canal de comunicação entre o público e o empreendimento de forma permanente, a fim de receber visitas no Terminal e prestar esclarecimentos à população;
- Planejar a divulgação do projeto de expansão do TCP por meio de rádios e jornais locais;

Fase de Operação
- Garantir a continuidade do canal de comunicação entre o terminal e a comunidade ao longo das operações;
- Planejar ao menos um encontro anual entre o TCP e a comunidade (organizações sociais, autoridades, organizações ambientais, entre outras instituições). Por ocasião da Feira Ambiental da cidade de Paranguá o TCP poderá expor seus projetos ambientais no seu “stand”.

Materiais e equipe

Materiais: Folder sobre o projeto de expansão do TCP e multimídia para as apresentações na comunidade de Paranguá, cujos locais serão planejados conforme cada público. Estrutura administrativa no setor de RH do TCP para agendamento de visitas e esclarecimentos permanentes.

Equipe: Na fase de planejamento integrar os consultores ambientais que participaram na elaboração do EIA/RIMA do empreendimento para apresentar o projeto de expansão do TCP; Na fase de Instalação e Operação a equipe será formada por colaboradores do setor de Meio Ambiente e RH do TCP.

Ações de monitoramento e controle

A fim de ter controle das expectativas da comunidade de Paranguá quanto ao projeto de expansão do TCP, informações a seu respeito e resultados dos diversos programas e monitoramentos realizados serão apresentados durante a Feira Ambiental que se realiza periodicamente e que é patrocinada pela Prefeitura Municipal e pelo IBAMA.
Cronograma

<table>
<thead>
<tr>
<th>Fase de Planejamento</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produzir material de informação (folder) sobre o projeto de expansão do TCP</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Planejar os encontros comunitários</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Realizar os encontros</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fase de Instalação</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planejar com a equipe de RH do TCP e realizar treinamento para agendar as visitas e informar a comunidade sobre o projeto de expansão do TCP</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Divulgar o projeto de expansão do TCP em rádios e jornais de Paranaguá</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fase de Operação - Permanente</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Apresentar dados e informações sobre o empreendimento na Feira Ambiental</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Desempenho esperado

Espera-se controle dos conflitos que possam vir a ocorrer entre o projeto de expansão do TCP e as expectativas da comunidade de Paranaguá.

Responsabilidades

Terminal de Contêineres de Paranaguá

Equipe técnica responsável pela elaboração do programa

Eliane Beê Boldrini (Graduada em Psicologia, especialista em Gestão Sócio-ambiental Portuária, Mestre e Doutora em Educação).
7.3.2.15 Programa de Educação Ambiental para os colaboradores

Impactos relacionados

Impactos no meio físico, biolótico e social do Complexo Estuarino de Paranaguá (CEP), listados no EIA do projeto de expansão do TCP.

Objetivos

- Desenvolver um programa de educação ambiental com os trabalhadores diretos, indiretos e terceirizados do TCP para conscientizá-los sobre a importância e fragilidade dos ecossistemas do Complexo Estuarino de Paranaguá;

- Conscientizar os trabalhadores e terceirizados sobre as ações portuárias que podem vir a impactar os ecossistemas do CEP e as ações preventivas, os monitoramentos ambientais e as ações que podem mitigar estes impactos, conforme o diagnóstico ambiental realizado para o EIA do TCP, a fim de que cada trabalhador incorpore em suas ações específicas procedimentos preventivos.

Inter-relação com outros programas

<table>
<thead>
<tr>
<th>Programas</th>
<th>Inter-relação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Todos os programas</td>
<td>As informações relativas as ações e resultados dos demais programas serão foco do trabalho de educação ambiental junto aos colaboradores</td>
</tr>
</tbody>
</table>

Abrangência

Trabalhadores diretos, indiretos e terceirizados do TCP.
Metodologia

O programa visa realizar um processo educativo com os trabalhadores diretos, indiretos e terceirizados do TCP, a fim de conscientizá-los sobre a importância dos ecossistemas do Complexo Estuarino de Paranaguá e a inter-relação deste ambiente com as atividades portuárias, em particular as atividades do TCP, conforme o diagnóstico realizado no EIA de seu projeto de expansão.

Para realizar este objetivo será produzido um material didático informativo sobre os ecossistemas do CEP e a inter-relação com as atividades portuárias, enfatizando os principais impactos na instalação e nas operações do Terminal. Este material poderá ser usado também no Programa de Comunicação.

O material será distribuído para os trabalhadores diretos, indiretos e terceirizados pelo setor de RH e Gerência de Meio Ambiente do TCP, de forma integrada com apresentações sobre a Instalação e Operação do Terminal ao longo dos treinamentos que a empresa faz com os trabalhadores, por meio do Programa de Treinamento de Integração, já implantado e que tem por objetivo integrar os trabalhadores indiretos e terceirizados nos procedimentos globais da empresa e o Programa de Treinamentos para cada área, relacionando os aspectos e impactos ambientais ligados às atividades de cada trabalhador em suas áreas específicas, conforme os procedimentos da ISO 14001, na qual a empresa é certificada.

Materiais e equipe

Materiais: o material didático para facilitar a compreensão dos temas abordados.

Equipe: Setor do RH do TCP
Ações de monitoramento e controle

A educação ambiental com os trabalhadores do TCP potencializará os programas de controle e monitoramento ambiental prevenindo a poluição em função das atividades portuárias.

Cronograma

<table>
<thead>
<tr>
<th>Ação</th>
<th>Mês 1</th>
<th>Mês 2</th>
<th>Mês 3</th>
<th>Mês 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fase implantação: Planejamento, confecção do material didático e treinamento da equipe do setor de RH do TCP.</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ação permanente</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fase Operação: Treinamento com os trabalhadores do TCP pela equipe do setor de RH.</td>
<td></td>
</tr>
</tbody>
</table>

Desempenho esperado

- Espera-se que os trabalhadores e terceirizados do TCP desenvolvam noções básicas sobre os ecossistemas do CEP e sua importância sócio-ambiental;

- Espera-se que cada trabalhador em suas atividades específicas colaborem para prevenir e ou mitigar os impactos nestes ecossistemas.

Responsabilidades

Terminais de Contêineres de Paranaguá.
Equipe técnica responsável pela elaboração do programa

- Eliane Beê Boldrini (Psicóloga, Mestre em Educação e Doutora em Educação/ADEMADAN);

- Fabian Sá (Oceanógrafo, Mestre em Geologia Ambiental e Doutor em Geociências).
7.3.2.16 Plano de colocação de mão de obra

Impactos relacionados

Geração de emprego e renda diretos

Objetivo

Maximizar a colocação de mão de obra local com o intuito de beneficiar de forma mais ampla a população de Paranaguá.

É muito comum que novos empreendimentos ligados à construção civil de grande porte gerem movimentos migratórios de trabalhadores em direção ao município em que se realizam. Nestes termos, a contratação de mão de obra não necessariamente beneficiará de forma mais relevante a população local, justamente aquela que poderá sofrer mais fortemente os impactos da operação do empreendimento. Sendo assim, propõe-se que seja priorizada a contratação de trabalhadores que tenham como local de moradia/origem, o próprio município, internalizando ao máximo os benefícios que podem advir da implantação do empreendimento.

Inter-relação com outros programas

<table>
<thead>
<tr>
<th>Programas</th>
<th>Inter-relação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programas de educação ambiental e comunicação social</td>
<td>As informações relativas ao empreendimento bem como os impactos advindos serão divulgados aos interessados através destes programas.</td>
</tr>
</tbody>
</table>

Abrangência

Trabalhadores locais do município de Paranaguá
Metodologia

O presente plano foi concebido visando potencializar o empreendimento quanto a sua capacidade de geração de emprego e absorção de mão de obra local. Parte-se do princípio que para a absorção da mão de obra local é importante uma ação proativa do empreendedor no sentido de priorizar os moradores de Paranaguá. A transparência do processo é fundamental e para isso propõe-se a interveniência do SINE, participando do processo de seleção e colocação de mão de obra. Muitos grandes empreendimentos no país têm utilizado a parceria com o SINE como forma de garantir a maximização dos benefícios do empreendimento à população local.

Materiais e equipe

Setor de RH do terminal e possível parceria com instituições relacionadas a seleção de pessoal (SINE)

Ações de monitoramento e controle

Instrumentos de medição: Percentual de trabalhadores contratados nas fases de instalação e de operação por local de origem/moradia.
Cronograma

<table>
<thead>
<tr>
<th>Atividades</th>
<th>-2</th>
<th>-1</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definição do perfil dos trabalhadores a serem contratados</td>
<td></td>
</tr>
<tr>
<td>Interação institucional com Prefeitura Municipal</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Interação institucional com SINE</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Estabelecimento de procedimentos operacionais com SINE</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Início contratação</td>
<td></td>
</tr>
<tr>
<td>Acompanhamento contratação</td>
<td></td>
</tr>
<tr>
<td>Relatório de atividades</td>
<td></td>
</tr>
</tbody>
</table>

Desempenho esperado

Empregar maior número de trabalhadores do município.

Responsabilidades

Terminais de Contêineres de Paranaguá, empreiteira e acompanhamento pela Prefeitura Municipal do Paranaguá.

Equipe técnica responsável pela elaboração do programa

Rossana Ciminelli (economista)
7.3.2.17 Plano de reestruturação viária do acesso ao TCP

Impactos relacionados

Possível ocorrência de acidentes no entorno do empreendimento decorrente do aumento do fluxo de veículos e pessoas.

Objetivo

Garantir uma movimentação mais adequada dos caminhões nas imediações do TCP, permitindo convívio mais seguro com os demais veículos e pedestres.

Inter-relação com outros programas

<table>
<thead>
<tr>
<th>Programas</th>
<th>Inter-relação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programas de educação ambiental e comunicação social</td>
<td>As informações relativas ao empreendimento bem como os impactos advindos serão divulgados aos interessados através destes programas.</td>
</tr>
</tbody>
</table>

Abrangência

Entorno do empreendimento.

Metodologia

A definição de uma nova estruturação viária para acesso ao TCP deverá ser realizada por empresa especializada, que definirá parâmetros e metodologia com empreendedor, devendo considerar:

- Aumento do fluxo de veículos;
- Conflitos atualmente existentes com a comunidade do entorno;

- Evitar a formação de filas muito extensas que comprometam o tráfego local;

- Interação com a comunidade do entorno visando incorporar as suas principais reivindicações quanto à alteração de tráfego em função da expansão do TCP;

- Interagir com a Prefeitura Municipal de forma a adequar o Plano às normatizações introduzidas pelo Plano Diretor.

Ações de monitoramento e controle

Como instrumentos de medição, pode-se utilizar as ocorrências do Corpo de Bombeiros/SIATE para atendimento de acidentes de trânsito. Além disso, deverá ser feito acompanhamento de caráter qualitativo junto à população que transita no local, principalmente os caminhoneiros que constituem o maior fluxo.

Cronograma

O Plano deverá ser colocado em execução durante a fase de implantação e deverá estar em funcionamento para o início das atividades de operação do novo cais.

<table>
<thead>
<tr>
<th>Atividades</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contratação de empresa especializada</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Interação institucional com Prefeitura Municipal</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Realização de diagnóstico da infraestrutura viária local e principais pontos de estrangulamento</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elaboração e discussão com o empreendedor do projeto de reestruturação viária</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Discussão do projeto com moradores e empreendimentos do entorno</td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Implantação e monitoramento da eficácia do projeto</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Relatório de atividades</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>
Desempenho esperado

Melhorar a infraestrutura de acesso e sinalização ao TCP e assim diminuir o número de acidentes na região.

Responsabilidades

Terminais de Contêineres de Paranaguá em parceria com a APPA e Prefeitura Municipal do Paranaguá.

Equipe técnica responsável pela elaboração do programa

Rossana Ciminelli (economista)
7.3.3 Alternativas tecnológicas para redução do impacto na saúde do trabalhador e no meio ambiente

Em atendimento à resolução conjunta MMA/IBAMA nº 259, de 07/08/2009 que dispõe sobre o/a empreendedor/a a incluir no Estudo de Impacto Ambiental e respectivo Relatório de Impacto Ambiental (EIA/RIMA) capítulo específico sobre as alternativas de tecnologias mais limpas para reduzir os impactos na saúde do/a trabalhador/a e no meio ambiente, incluindo poluição térmica, sonora e emissões nocivas ao sistema respiratório, apresentam-se a seguir as alternativas propostas de acordo com o diagnóstico realizado e apresentado no item 6.3.2.2.

Diante das inúmeras modificações que o homem causa ao meio ambiente faz-se necessária a utilização de novas tecnologias buscando a neutralização ou minimização dos impactos causados pelas atividades humanas. A construção de empreendimentos sustentáveis é, portanto, um grande desafio. Neste contexto, a busca pela sustentabilidade das edificações deve ultrapassar a fase de obra, buscando também soluções para os impactos não imediatos, incluindo os aspectos sociais, econômicos, culturais e políticos envolvidos. É necessário utilizar instrumentos como a educação ambiental e o desenvolvimento de projetos piloto, procurando aproximar o conhecimento disponível sobre sustentabilidade e as práticas aplicadas a edificações (MENEGAT; ALMEIDA, 2004).

Nota-se, portanto, que a busca por um empreendimento menos poluente deve acontecer antes da concepção do projeto. Segundo MENEGAT e ALMEIDA (2004), a edificação sustentável não pode se limitar à fase da construção, mas também do período de utilização, desconstrução e disposição final. Deve integrar os elementos naturais a seu favor evitando, por exemplo, equipamentos de aquecimento e refrigeração desnecessários ou ainda dispositivos elétricos para iluminação diurna. O elemento mais importante das edificações sustentáveis são as pessoas. Os projetistas, construtores, proprietários e usuários devem sempre estar atentos para a questão da edificação sustentável, todos devem ter a consciência de que aquela estrutura está preparada para interagir de forma sustentável com o meio ambiente.
Quanto às tecnologias mais limpas a serem implantadas pelo TCP estão descritas a seguir as instruções mais relevantes, separadas em fase de instalação e de operação.

Fase de instalação

Minimização de resíduos da construção civil

Segundo MATOSINHO e PINÓRIO é perceptível que o modo de produção adotado atualmente pelas empresas afasta-as cada vez mais do que se denomina desenvolvimento sustentável – progresso social e crescimento econômico aliados ao respeito ao meio ambiente. A incapacidade do meio ambiente de absorver as decorrências do desenvolvimento começa a transparecer.

A atividade da construção civil gera a parcela predominante da massa total dos resíduos sólidos urbanos produzidos nas cidades. Estudos realizados em diversas cidades têm apontado os seguintes números:

<table>
<thead>
<tr>
<th>Município</th>
<th>Fonte</th>
<th>Geração Diária em ton.</th>
<th>Participação</th>
</tr>
</thead>
<tbody>
<tr>
<td>São Paulo</td>
<td>I&T - 2003</td>
<td>17.240</td>
<td>55%</td>
</tr>
<tr>
<td>Guarulhos</td>
<td>I&T - 2001</td>
<td>1.308</td>
<td>50%</td>
</tr>
<tr>
<td>Diadema</td>
<td>I&T - 2001</td>
<td>458</td>
<td>57%</td>
</tr>
<tr>
<td>Campinas</td>
<td>PMC - 1996</td>
<td>1.800</td>
<td>64%</td>
</tr>
<tr>
<td>Piracicaba</td>
<td>I&T - 2001</td>
<td>620</td>
<td>67%</td>
</tr>
<tr>
<td>São José dos Campos</td>
<td>I&T - 1995</td>
<td>733</td>
<td>67%</td>
</tr>
</tbody>
</table>
Participação dos resíduos da construção civil em relação aos resíduos sólidos urbanos

<table>
<thead>
<tr>
<th>Município</th>
<th>Fonte</th>
<th>Geração Diária em ton.</th>
<th>Participação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ribeirão Preto</td>
<td>I&T - 1995</td>
<td>1.043</td>
<td>70%</td>
</tr>
<tr>
<td>Jundiaí</td>
<td>I&T - 1997</td>
<td>712</td>
<td>62%</td>
</tr>
<tr>
<td>São José do Rio Preto</td>
<td>I&T - 1997</td>
<td>687</td>
<td>58%</td>
</tr>
<tr>
<td>Santo André</td>
<td>I&T - 1997</td>
<td>1.013</td>
<td>54%</td>
</tr>
</tbody>
</table>

Fonte: SINDUSCON, 2010. (Tabela alterada pelo autor)

Estes números demonstram a necessidade de redução imediata de descarte de resíduos da construção civil em aterros sanitários, pois seu volume é significativo, afetando a vida útil destes empreendimentos.

A indústria da construção civil ocupa posição de destaque na economia nacional, sendo responsável por uma parcela significativa do Produto Interno Bruto (PIB) do país. Dados recentes indicam que o macro complexo da construção civil responde por 15% do PIB nacional. Além desta participação direta no PIB, destaca-se também o grande contingente de mão-de-obra diretamente empregada, que corresponde a 3,92 milhões de empregos, sendo o maior setor empregador da economia nacional (CONSTRUBUSINESS, 2006 apud MATOSINHO; PINÓRIO 2009).

Todavia, o desperdício é uma das características marcantes do setor e um dos indicadores dos custos de não-qualidade dentro das empresas. Segundo Souza (1995, apud MATOSINHO; PINÓRIO 2009), o desperdício se manifesta na empresa construtora da seguinte forma:

- devido a falhas ao longo do processo de produção, como a perda de materiais que podem sair da obra na forma de entulho ou ficar agregados a ela sem nenhuma função (o entulho que fica); o retrabalho feito para corrigir serviços em não conformidade com o especificado; tempos ociosos de mão-de-obra e equipamentos
por deficiência de planejamento de obras e ausência de uma política de manutenção de equipamentos;

- através de falhas nos processos gerenciais e administrativos da empresa: compras feitas apenas na base do menor preço; deficiências nos sistemas de informação e comunicação da empresa; programas de seleção, contratação e treinamento inadequado; perdas financeiras por deficiência de contratos e atrasos de obra; retrabalho administrativo nas diversas áreas da empresa;

- em função de falhas na fase de pós-ocupaçao das obras, caracterizadas por patologias construtivas com necessidade de recuperação e altos custos de manutenção e operação, com prejuízo da imagem da empresa junto ao mercado.

Considerando essa discussão, é fundamental que na fase de execução de obras seja desenvolvido um programa conjuntamente ao Programa de Gerenciamento de Resíduos Sólidos, para tratar especificamente de resíduos da construção civil. A Resolução CONAMA nº 307, de 5 de julho de 2002 estabelece diretrizes, critérios e procedimentos para a gestão dos resíduos da construção civil. Este programa deverá adotar como objetivo prioritário a não geração dos resíduos e, secundariamente, a redução, reutilização, reciclagem e destinação final. Deverá também implantar um sistema de gerenciamento que permita a compra de insumos de qualidade evitando a demolição e reconstrução pela curta vida útil da obra. Programar as compras para que não se perca material na obra durante a construção. Um sistema de fiscalização constante evitando o retrabalho dentro do próprio empreendimento além de buscar uma solução de reuso de materiais internamente à fase de obras. Como estes resíduos serão gerados por uma empreiteira contratada, esta deve participar da elaboração do programa para que haja comprometimento da mesma na adesão a este plano.
O Programa de Condições e Meio Ambiente de Trabalho na indústria da Construção (PCMAT) é uma ferramenta de segurança do trabalho e deve ser implantado em estabelecimentos com 20 (vinte) trabalhadores ou mais por exigência da Portaria nº 3.214 de 8 de junho de 1978 em sua NR-18.3. Este é o principal documento de levantamento de riscos existentes durante a fase de construção e deve ser divulgado aos trabalhadores para que tenham plena consciência dos riscos aos quais estão expostos e as respectivas medidas preventivas que devem ser adotadas para neutralizar os riscos.

Deve constar no PCMAT um memorial sobre as condições e meio ambiente de trabalho nas atividades e operações, levando-se em consideração os riscos de acidentes e de doenças do trabalho, bem como suas medidas preventivas, além de outros itens contidos na referida portaria.

Fase de operação

Utilização de biodiesel na frota interna do TCP

Uma forma de reduzir os impactos ambientais causados pela queima de combustíveis fósseis é sua substituição por combustíveis de origem vegetal, conhecidos também como biodiesel, quando possível. Estes combustíveis podem ser produzidos a partir dos mais diversos óleos vegetais, desde óleos extraídos de girassol até o óleo de cozinha queimado.

Um exemplo de utilização bem sucedida do biodiesel está em Curitiba, capital do estado do Paraná, onde, segundo notícia publicada pela URBS (Urbanização de Curitiba S/A), ônibus especiais circulam desde o segundo semestre de 2008, com motores fabricados para uso de combustível ecológico, e são abastecidos com biodiesel de origem 100% vegetal. Desde 2006 há ônibus do transporte coletivo de Curitiba que rodam com uma mistura de 5% de biodiesel com 95% de diesel.

Segundo PENTEADO (et al.), a utilização de biodiesel puro (B100 – 100% biodiesel) em motores diesel convencional deve ser acompanhada de trocas de óleo com uma
freqüência maior. Quanto às questões de desempenho, é possível atingir potência e torque similares aos do diesel comum utilizando o B100, sendo necessário porém alguns ajustes. Com o biodiesel, há redução da emissão de CO, fuligem e de hidrocarbonetos, porém há aumento na emissão de Nox.

A Cummins, fabricante de motores a diesel publicou artigo permitindo o uso de combustível B20 (mistura 20% de biodiesel) em motores fabricados por ela. Os motores que utilizam B100 foram desenvolvidos especialmente para estes fins.

Iluminação

A iluminação de grandes áreas sempre causa um consumo excessivo de energia. As novas tecnologias com luminárias utilizando LED (light diode emissor), ao invés de lâmpadas, permitem uma redução no consumo de energia, pois possuem uma melhor eficiência energética.

Utilizando informações de fabricantes de lâmpadas comuns e de sistemas de iluminação a LED foi montada a tabela comparativa abaixo. O critério utilizado para verificar a similaridade das lâmpadas foi o valor do fluxo luminoso.

<table>
<thead>
<tr>
<th>Tabela 246– Comparativo: Iluminação a LED x Lâmpadas comuns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Descrição</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>Potência Máxima (Watt)</td>
</tr>
<tr>
<td>Fluxo Luminoso (Lumens)</td>
</tr>
<tr>
<td>Lumens/Watt consumido</td>
</tr>
<tr>
<td>Durabilidade (horas)</td>
</tr>
<tr>
<td>Necessita reator</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>Modelo</td>
</tr>
<tr>
<td>Fabricante</td>
</tr>
</tbody>
</table>

Fonte: Catálogos dos fabricantes OSRAM e Sun Lab Power.

É preciso lembrar, entretanto, que existem modelos de lâmpadas de vapor metálico que possuem um fluxo luminoso muito superior ao utilizado no comparativo, podendo chegar a 200.000 lumens. As lâmpadas de vapor metálico mais eficientes geram em torno de 150 lumens por watt consumido. Estas lâmpadas possuem ainda o inconveniente de conterem materiais nocivos ao meio ambiente, sendo necessária a previsão de descarte especial ou devolução das lâmpadas inutilizadas aos fabricantes. Os principais metais utilizados nestas lâmpadas são o sódio e o mercúrio, metais pesados altamente nocivos.

O fabricante de iluminação com LED apresentado no comparativo não possui nenhum sistema com iluminação com fluxo luminoso superior ao apresentado. Este sistema alternativo de iluminação é indicado para ser instalado a até dez metros de altura com relação ao solo. Para sistemas de iluminação em torres mais altas é necessário recorrer a lâmpadas de vapor metálico. Em complemento à utilização de sistemas de iluminação com LED, é possível instalar sistemas autônomos de energia, alimentados através de painéis solares individuais para cada poste de iluminação, eliminando a necessidade de longas instalações elétricas. A principal aplicação para este tipo de iluminação é para vias de acesso ou vias públicas.

Segundo publicação da Agência de Notícias do Estado do Paraná, a própria COPEL estaria testando esta nova tecnologia. A empresa adquiriu três luminárias com a tecnologia LED, através de licitação, na qual participaram oito empresas entre fabricantes e importadores. A notícia publicada diz que as luminárias estão instaladas nas vias internas no pólo Km3 da BR-277, onde a COPEL fará testes de durabilidade e perda de luminosidade durante dois anos.
Cálculo de compensação ambiental conforme Decreto nº 6.848, de 14 de maio de 2009, que altera e acrescenta dispositivos ao Decreto nº 4.340, de 22 de agosto de 2002

O cálculo ora apresentado constitui estimativa do empreendedor, composta a partir das informações e levantamentos realizados pela equipe técnica, de modo que subjetividade de alguns critérios influencia o resultado final. Não obstante, segundo o art. 31 do Decreto 6.848, “(...) o Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis - IBAMA estabelecerá o grau de impacto a partir de estudo prévio de impacto ambiental e respectivo relatório - EIA/RIMA (...)”.

<table>
<thead>
<tr>
<th>CA</th>
<th>R$ 81.428,57</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA = VR*GI</td>
<td></td>
</tr>
<tr>
<td>CA = Valor da compensação ambiental</td>
<td></td>
</tr>
</tbody>
</table>

| VR = somatório dos investimentos necessários para implantação do empreendimento, não incluídos os investimentos referentes aos planos, projetos e programas exigidos no procedimento de licenciamento ambiental para mitigação de impactos causados pelo empreendimento, bem como os encargos e custos incidentes sobre o financiamento do empreendimento, inclusive os relativos às garantias, e os custos com apólices e prêmios de seguros pessoais e reais |

<table>
<thead>
<tr>
<th>GI</th>
<th>0,14</th>
</tr>
</thead>
<tbody>
<tr>
<td>GI = ISB + CAP + IUC</td>
<td></td>
</tr>
<tr>
<td>ISB = Impacto sobre a Biodiversidade;</td>
<td></td>
</tr>
<tr>
<td>CAP = Comprometimento de Área Prioritária; e</td>
<td></td>
</tr>
<tr>
<td>IUC = Influência em Unidades de Conservação.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ISB</th>
<th>0,06</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISB = (IMIB(IA+IT))/140</td>
<td></td>
</tr>
</tbody>
</table>
O ISB tem como objetivo contabilizar os impactos do empreendimento diretamente sobre a biodiversidade na sua área de influência direta e indireta. Os impactos diretos sobre a biodiversidade que não se propagarem para além da área de influência direta e indireta não serão contabilizados para as áreas prioritárias.

\[
CAP = \frac{(IM \times ICAP \times IT)}{70}
\]

O CAP terá seu valor variando entre 0 e 0,25%.

O IUC varia de 0 a 0,15%, avaliando a influência do empreendimento sobre as unidades de conservação ou suas zonas de amortecimento, sendo que os valores podem ser considerados cumulativamente até o valor máximo de 0,15%. Este IUC será diferente de 0 quando for constatada a incidência de impactos em unidades de conservação ou suas zonas de amortecimento, de acordo com os valores abaixo:

- G1: parque (nacional, estadual e municipal), reserva biológica, estação ecológica, refúgio de vida silvestre e monumento natural = 0,15%;
- G2: florestas (nacionais e estaduais) e reserva de fauna = 0,10%;
- G3: reserva extrativista e reserva de desenvolvimento sustentável = 0,10%.
G4: área de proteção ambiental, área de relevante interesse ecológico e reservas particulares do patrimônio natural = 0,10%; e
G5: zonas de amortecimento de unidades de conservação = 0,05%.

IM

<table>
<thead>
<tr>
<th>Valor</th>
<th>Atributo</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ausência de impacto ambiental significativo negativo</td>
</tr>
<tr>
<td>1</td>
<td>pequena magnitude do impacto ambiental negativo em relação ao comprometimento dos recursos ambientais</td>
</tr>
<tr>
<td>2</td>
<td>média magnitude do impacto ambiental negativo em relação ao comprometimento dos recursos ambientais</td>
</tr>
<tr>
<td>3</td>
<td>alta magnitude do impacto ambiental negativo</td>
</tr>
</tbody>
</table>

O IM varia de 0 a 3, avaliando a existência e a relevância dos impactos ambientais concomitantemente significativos negativos sobre os diversos aspectos ambientais associados ao empreendimento, analisados de forma integrada.

IB

<table>
<thead>
<tr>
<th>Valor</th>
<th>Atributo</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>biodiversidade se encontra muito comprometida</td>
</tr>
<tr>
<td>1</td>
<td>biodiversidade se encontra medianamente comprometida</td>
</tr>
<tr>
<td>2</td>
<td>biodiversidade se encontra pouco comprometida</td>
</tr>
<tr>
<td>3</td>
<td>área de trânsito ou reprodução de espécies consideradas endêmicas ou ameaçadas de extinção</td>
</tr>
</tbody>
</table>

O IB varia de 0 a 3, avaliando o estado da biodiversidade previamente à implantação do empreendimento.

IA

<table>
<thead>
<tr>
<th>Valor</th>
<th>Atributo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>__</td>
</tr>
<tr>
<td>2</td>
<td>__</td>
</tr>
</tbody>
</table>

O IA varia de 1 a 4, avaliando a extensão espacial de impactos negativos sobre os recursos ambientais. Em casos de empreendimentos lineares, o IA será avaliado em cada microbacia separadamente, ainda que o trecho submetido ao processo de licenciamento ultrapasse os limites de cada microbacia.

Nota: para empreendimentos lineares deverão ser considerados compartimentos homogêneos da paisagem para que os impactos sejam mensurados adequadamente em termos de abrangência, não devendo ser considerados de forma cumulativa. O resultado final da abrangência será considerado de forma proporcional ao tamanho deste compartimento em relação ao total de compartimentos.
Atributos para empreendimentos terrestres, fluviais e lacustres

<table>
<thead>
<tr>
<th>Valor</th>
<th>Atributos</th>
<th>Atributos para empreendimentos marítimos ou localizados concomitantemente nas faixas terrestre e marítima da Zona Costeira</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>impactos limitados à área de uma microbacia</td>
<td>impactos limitados a um raio de 5km</td>
</tr>
<tr>
<td>2</td>
<td>impactos que ultrapassem a área de uma microbacia limitados à área de uma bacia de 3ª ordem</td>
<td>impactos limitados a um raio de 10km</td>
</tr>
<tr>
<td>3</td>
<td>impactos que ultrapassem a área de uma bacia de 3ª ordem e limitados à área de uma bacia de 1ª ordem</td>
<td>impactos limitados a um raio de 50km</td>
</tr>
<tr>
<td>4</td>
<td>impactos que ultrapassem a área de uma bacia de 1ª ordem</td>
<td>impactos que ultrapassem o raio de 50km</td>
</tr>
</tbody>
</table>

IT

O IT varia de 1 a 4 e se refere à resiliência do ambiente ou bioma em que se insere o empreendimento. Avalia a persistência dos impactos negativos do empreendimento.

<table>
<thead>
<tr>
<th>Valor</th>
<th>Atributo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>imediata: até 5 anos após a instalação do empreendimento;</td>
</tr>
<tr>
<td>2</td>
<td>curta: superior a 5 e até 15 anos após a instalação do empreendimento;</td>
</tr>
<tr>
<td>3</td>
<td>média: superior a 15 e até 30 anos após a instalação do empreendimento;</td>
</tr>
<tr>
<td>4</td>
<td>longa: superior a 30 anos após a instalação do empreendimento.</td>
</tr>
</tbody>
</table>

ICAP

O ICAP varia de 0 a 3, avaliando o comprometimento sobre a integridade de fração significativa da área prioritária impactada pela implantação do empreendimento, conforme mapeamento oficial de áreas prioritárias aprovado mediante ato do Ministro de Estado do Meio Ambiente.

Nota: para empreendimentos lineares deverão ser considerados compartimentos homogêneos da paisagem para que os impactos sejam mensurados adequadamente em termos de comprometimento de área prioritária, não devendo ser considerados de forma cumulativa. O resultado final do ICAP será considerado de forma proporcional ao tamanho deste compartimento em relação ao total de compartimentos. Impactos em Unidades de Conservação serão computados exclusivamente no IUC.

<table>
<thead>
<tr>
<th>Valor</th>
<th>Atributo</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>inexistência de impactos sobre áreas prioritárias ou impactos em áreas prioritárias totalmente sobrepostas a unidades de conservação.</td>
</tr>
<tr>
<td>1</td>
<td>impactos que afetem áreas de importância biológica alta</td>
</tr>
<tr>
<td>2</td>
<td>impactos que afetem áreas de importância biológica muito alta</td>
</tr>
<tr>
<td>3</td>
<td>impactos que afetem áreas de importância biológica extremamente alta ou classificadas como insuficientemente conhecidas</td>
</tr>
</tbody>
</table>
Embora o intenso processo de assoreamento já existente na baía de Paranaguá não comprometa a obra de expansão do cais TCP, por outro lado, constitui aspecto limitante à operação deste terminal, já que as dragagens de aprofundamento do berço de atracação e canal de acesso, bem como as dragagens de manutenção, deverão ocorrer periodicamente. Estas dragagens relativas ao canal de acesso, como já referido anteriormente, são de responsabilidade da autoridade portuária, no caso, a APPA.

Como ação compensatória sugere-se ao a seleção da bacia hidrográfi ca do rio Marumbi com o objetivo de diagnosticar as áreas prioritárias na Bacia Hidrográfica do Rio Marumbi para mitigar o assoreamento na Baía de Paranaguá, monitorar o assoreamento naquela bacia hidrográfica e desenvolver a conscientização dos proprietários rurais sobre o problema da erosão tendo e vista que ações desenvolvidas nas bacias hidrográficas que estão inseridas em áreas prioritárias para conservação e que drenam para a baía de Paranaguá, denotam significativa importância à operação do TCP e o porto como um todo.
CONCLUSÕES

Diante de tudo quanto restou exposto e analisado no presente estudo, é possível concluir que é possível a compatibilização, de modo sustentável, entre os benefícios econômicos que a expansão do cais do TCP acarretará e os impactos ambientais dele decorrentes.

Considerando que a área do empreendimento já se constitui em região de intensa ação antrópica, a expansão do cais resultará, de um modo global, impactos ambientais que podem ser considerados aceitáveis frente à oportunidade de serem potencializados os efeitos positivos, que já se fazem presentes, tais como: geração de emprego e renda, tanto diretos quanto indiretos, aumento da receita cambial, aumento do movimento comercial no município e da arrecadação, pois o incremento das arrecadações permite maiores investimentos públicos que poderão significar melhora na qualidade de vida e serviços ofertados à população.

Sendo assim, adequadamente implantado e operado, cumprindo as normas ambientais e implantando todas as medidas e programas ambientais propostos neste estudo, visando minimizar os impactos ambientais negativos, a equipe técnica que elaborou este EIA/RIMA conclui que a ampliação do cais do TCP é ambientalmente viável para o local de referencia, podendo ser executada e se constituirá num forte instrumento de desenvolvimento do município, trazendo benefícios à economia nacional como um todo, incrementando a competitividade comercial do Porto de Paranaguá, atraindo mais cargas e conseqüentemente gerando mais divisas e mão de obra.
10 BIBLIOGRAFIA

ALBAREDA, D.; ALVAREZ, K; IGLESIAS, M; PROSDOCIMI, L e CARMAN, V. G. 2007. No te comas
mi basura!!! Evidencia de ingestión de desechos antropicos en tortugas verdes (Chelonia mydas) del
estuario del Rio de La Plata y la bahía de Samborombón, Provincia de Buenos Aires, Argentina. Em:
III Jornada de Conservación e investigación de tortugas marinas en El Atlántico Sur Occidental, Libro
de resumenes, pág. 39-40. Piriápolis, Uruguay.

ALMEIDA, Claudia Choma Bettega. Situação alimentar, nutricional e de vida das crianças menores de

ALMEIDA, M. V. O.; CONTI, L. M. P.; COUTO, E. C. G.; FREITAS, C. A. F.; LOPES, M. J. S.; SILVA,
M. H. C. Estudo biológico integrado da foz da Gamboa do Maciel (Paranaguá, PR) durante dois ciclos
de maré. 1989. Monografia de especializacao, Centro de Biologia Marinha, Universidade Federal do
Paraná, 227p.

Biol. Tecnol.35(2): 221-238.

ALMEIDA, M.V.O.; CONTI, L.M.P.; COUTO, E.C.G.; FREITAS, C.A.F.; LOPES, M.J.S. & SILVA,

ALVES, P. R. P. Efeitos da vegetação e da predação sobre as associações macrobênticas de uma
planície de maré da Baía de Paranaguá (Paraná, Brasil). 1997. Dissertação (Dissertação em
Zoologia), Setor de Ciências Biológicas, Universidade Federal do Paraná.

e DIOP, H. S. (Ed.) Mangrove ecosystem studies in Latin America and Africa.

ANDERLE, P. N. Fitoplâncton na Baía de Paranaguá, Paraná: variação anual e recorrência interanual
de espécies abundantes. Curitiba, 2004, 50p. Monografia (Bacharelado em Ciências Biológicas) –
Setor de Ciências Biológicas, Universidade Federal do Paraná.

Concentrações de mercúrio total em tecidos de tartaruga-verde, Chelonia mydas (Reptilia,
Cheloniidae), da costa do estado do Rio de Janeiro, Brasil. Em: III Jornada de Conservación e
investigación de tortugas marinas en El Atlántico Sur Occidental, Libro de resumenes, pág. 24-25.
Piriápolis, Uruguay.

ANDRIGUETTO FILHO, J. M. 1999. Sistemas técnicos de pesca e suas dinâmicas de transformação
no litoral do Paraná, Brasil. Tese de Doutorado em Meio ambiente e Desenvolvimento, Universidade
Federal do Paraná - Université Paris 7 - Université Bordeaux 2, Curitiba. 242p.

BRANDINI F.P. Seasonal succession of the phytoplankton in the bay of Paranaguá (Paraná state - Brazil). Revista Brasileira de Biologia 45: 687—694, 1985a.

CAREY, C.; Alexander; M. A. 2003. Climate change and amphibian declines: is there a link? Diversity and Distributions v. 9, p. 111-121.

CORREIA, M. G. O fandango que acompanha o barreado. Curitiba: Maxi Gráfica/Siemens, s.d..

DOMIT, C. dados não publicados*. Ecologia comportamental do boto-cinza em regiões do Sudeste e Sul do Brasil. Tese de doutorado. Universidade Federal do Paraná, Curitiba, PR.

FILLA, G. F. 2004. Estimativa da densidade populacional e estrutura de agrupamento do boto-cinza Sotalia guianensis (Cetacea: Delphinidae) na Baía de Guaratuba e na porção norte do Complexo...
Estuarino da Baía de Paranaguá, PR. Dissertação de Mestrado. Universidade Federal do Paraná, Curitiba, PR, Brasil.

MINISTÉRIO DA DEFESA/DIRETORIA DE PORTOS E COSTAS/STA-SEGURANÇA DO TRÁFEGO AQUAVIÁRIO. Empresas de Mergulho Cadastradas. Disponível em:

NOERNBERG, M. A. Índice de sensibilidade ambiental na Baía de Paranaguá a partir de dados de sensoriamento remoto e SIG. Relatório Técnico. 2000.

PARANÁ. Agência de Notícias do Estado do Paraná. Copel testa iluminação pública com uso de Leds. 19 jan. 2010. Disponível em: <

______. e GOTTARDI NETO, A. Inventário de sambaquis do litoral do Paraná. Boletim Paranaense de Geociências UFPR, Curitiba, n.42, 1994

PENTEADO, R. A. N. (1); *SILVA, E. L.; *KRUGER, E. A.; *REMPER, D.; WILHELM, H. M ; *CUNHA, R. B. C.; *DAEMME, L.C.; BÓRIO, H.F.; **LAURINDO, J.C; ***COQUETO, J.R. (2)llaurindo@tecpar.br

______. Relação de projetos na área educacional. 2008. s. d.

RAMBELLI, Gilson. O abandono do Patrimônio Arqueológico para a Arqueologia Brasileira. Disponível em

REZENDE, F. 2000. Bioacústica e alterações acústico comportamentais de Sotalia fluviatilis guianensis (Cetacea, Delphinidae) frente a atividade de embarcações na Baía de Trapandé, Cananéia, SP. Dissertação de Mestrado. Universidade Federal de São Carlos. São Carlos, SP, Brasil.

1763

SASAKI, G. 2006. Interações entre embarcações e Boto-cinza Sotalia guianensis (Cetacea, Delphinidae) na região da Ilha das Peças, Complexo Estuarino da Baía de Paranaguá, Estado do Paraná. Monografia de Graduação. Universidade Federal do Paraná, Curitiba, PR.

SORDO, L. N. 2008. Alterações na estrutura e funcionamento de um banco de Halodule wrightti (Cymodoceaceae) durante um florescimento massivo de epífitas na Baía de Paranaguá (Paraná, Brasil). Dissertação de Mestrado. Universidade Federal do Paraná, Pontal do Paraná, PR, Brasil.

11 GLOSSÁRIO

A

ADUANEIRO

De, ou relativo à aduana ou alfândega. Diz-se do imposto devido pela importação de mercadorias. É o chamado imposto aduaneiro ou alfandegário.

ALFÂNDEGA

Repartição federal instalada nos portos de entrada no país, onde se depositam mercadorias importadas e se examinam as bagagens de passageiros que estão em trânsito para o exterior ou chegam ao país.

AFRETADOR

Diz-se daquele que tem a posse de uma embarcação a frete, no sentido de aluguel, no todo ou em parte, com a finalidade de transportar mercadorias, pessoas ou coisas. Não se deve confundir com fretador, que é a pessoa que dá a embarcação a frete. Na maioria das vezes, o fretador é o próprio proprietário.

ÁGUA DE LASTRO

Recurso usado pelas embarcações, que por meio de tanques específicos armazenam água para manter a estabilidade de seus navios, adequando estes à disposição das cargas.
ANTAQ

Agência Nacional de Transportes Aquaviários. Foi criada pela Lei nº 10.233, de 5 de junho de 2001. É uma agência reguladora, vinculada ao Ministério dos Transportes. Tem por finalidade regular, supervisionar e fiscalizar as atividades de prestação de serviços de transporte aquaviário e de exploração da infraestrutura portuária e aquaviária, harmonizando os interesses do usuário com os das empresas prestadoras de serviço, preservando o interesse público.

APPA

Administração dos Portos de Paranaguá e Antonina. Autarquia da Secretaria de Estado dos Transportes que administra os dois portos e tem sede em Paranaguá.

ARMADOR

Denomina-se aquele que física ou juridicamente, com recursos próprios, equipa, mantém e explora comercialmente as embarcações mercantis. É a empresa proprietária do navio que tem como objetivo transportar mercadorias.

ARRASTÃO DE PRAIA

Prática de pesca que consiste em estender uma rede ao longo da praia, e a alguma distância desta, e recolhê-la puxando-a manualmente para a praia por cabos atados às suas extremidades. A extensão dessas redes pode ser de centenas de metros, e sua altura é suficiente para que se estenda do fundo à superfície.
ARRASTEIROS

Embarcações que realizam pesca de arrasto.

ARRASTO

Prática de pesca que consiste em arrastar, com auxílio de uma embarcação a motor, uma rede em forma de funil ou saco.

ARRASTO DE FUNDO

Arrasto em que a rede toca o fundo do corpo d’água. A borda inferior da rede frequentemente penetra alguns centímetros no sedimento de fundo. Opõe-se ao arrasto de meia-água em que se faz a rede flutuar à profundidade desejada.

ARRASTO DE PORTAS

Forma particular de arrasto em que a entrada da rede é mantida aberta por pranchas de madeira ou metal. As “portas” são desenhadas e instaladas de forma tal que o fluxo d’água durante o arrasto as empurra para os lados, provocando a abertura da rede.

ARRENDAMENTO

É uma forma de privatização da atividade portuária. A Lei 8630 define o que a autoridade vai poder explorar.
ARRUMAÇÃO

Modo de arrumar de maneira metódica a carga que vai ser transportada em um navio, o qual obedece a normas especiais contidas na lei comercial. A arrumação é de grande importância para a estabilidade da embarcação e para evitar a ocorrência de avarias.

ARRUMADOR

Profissional que trabalha fora do navio. Faz a lingada (engate da mercadoria a ser içada pelo guindaste) e também traz os automóveis (que serão embarcados) até o navio.

ATRACÇÃO

Ato ou efeito de um navio atracar num porto ou terminal privativo, a fim de realizar a operação de carregamento e descarregamento de mercadoria.

ATRAVESSADOR

Intermediário entre produtor e o consumidor. O termo é utilizado principalmente na comercialização de produtos agrícolas e também da pesca.

AUTÓCTONE

Nativo, originário de determinado local ou região.
AUTARQUIA

O serviço autônomo, criado por lei, com personalidade jurídica, patrimônio e receita próprios para executar as atividades típicas da Administração Pública, que requeiram, para seu melhor funcionamento, gestão administrativa e financeira descentralizada.

AUTORIDADE PORTUÁRIA

É a administração de um porto exercida diretamente pela União ou pela entidade concessionária do porto organizado. De acordo com a Lei 8630/93, compete à Administração do Porto, dentro dos limites da área do porto, entre outros: pré-qualificar os operadores portuários; fixar os valores e arrecadar a tarifa portuária; fiscalizar a execução ou executar as obras de construção, reforma, ampliação, melhoramento e conservação das instalações portuárias, e estabelecer o horário de funcionamento no porto, bem como as jornadas de trabalho no cais de uso público.

B

BACIA DE EVOLUÇÃO

Área fronteiriça às instalações de acostagem, reservada para as evoluções necessárias às operações de atracação e desatracação dos navios no porto.

BAÍA

Acidente geográfico ou qualquer lugar côncavo do litoral onde se possa aportar. É de grande significação na organização e instalação de um porto.
BALANÇA COMERCIAL

Resultado das exportações e importações realizadas por um país. Quando as exportações são maiores que as importações registra-se um superávit na balança. O contrário significa déficit.

BALSA

Embarcação utilizada em rios e canais para o transporte de veículos e pessoas.

BARCAÇAS

Embarcação, geralmente de madeira, podendo possuir ou não cobertura dotada de velas e empregada para o transporte de cargas que se destinam aos navios ancorados no porto ou ainda a regiões costeiras; pode ser movida a vela ou a vapor. O mesmo que alvarenga, batelão e chata.

BARCO

Embarcação com quilha, popa chata, podendo ultrapassar os 18 metros de comprimento. Sempre a motor, com potência superior à dos demais tipos de embarcações de pesca. Sempre dotada de porão, convés e casario à ré (instalações para a tripulação no convés – cabine, cozinha, quartos). Geralmente, na pesca de arrasto opera com dias redes. Única embarcação no litoral do Paraná que pesca por vários dias consecutivos sem retorno ao porto.

BATIMETRIA
Determinação do relevo do fundo de uma área oceânica e a representação gráfica deste relevo.

BERÇO

Ponto de atracação das embarcações no cais.

BENTOS

Conjunto de organismos que habitam o fundo de um ambiente aquático, ou seja, os sedimentos.

BIOGÊNICO

Produzido por atividade biológica.

BIOTA

Conjunto de organismos vegetais e animais de um determinado ecossistema.

BÓIA

Caixa oca e flutuante, presa ao fundo do mar, cujo interior geralmente é em compartimentos estanques, oferecendo ao conjunto a necessária rigidez e garantia de flutuabilidade. De acordo com a sua função, diz-se bóia de balizamento ou bóia de amarração.
BOTE

Embarcação a motor, com quilha, popa chata, com até 12 metros de comprimento, sem porão (entrada aberta). Quando dotado de casario, este se encontra avante. Pode trabalhar com uma ou duas redes na pesca de arrasto. Usualmente, retorna ao porto todo o dia.

BREAK BULK

Expressão do transporte marítimo que significa o transporte de carga solta ou fracionadas.

C

CABEÇO

Coluna de ferro de altura reduzida encravada à beira do cais ou junto à borda de uma embarcação para nela se amarrar as cordas que mantêm o navio atracado, junto ao cais.

CABOTAGEM

Navegação doméstica (pela costa do país).

CACEIO

Modalidade de pesca em que uma rede retangular é deixada à deriva, deslocando-se com as correntes.
CADEIA ALIMENTAR

Relação trófica presente entre os organismos que compõem um ecossistema, mediante a qual há transferência de energia de um organismo a outro.

CAIS

Parte do porto onde atracam as embarcações.

CALADO

Profundidade em que cada navio está submerso na água. Tecnicamente é a distância da lâmina de água até a quilha do navio.

CANAL DE ACESSO

Canal que liga o alto-mar com as instalações portuárias, podendo ser natural ou artificial. No caso dos portos paranaenses, há o Canal da Galheta.

CANAL DA GALHETA

Barra de entrada aos portos do Paraná, definido nas Cartas Náuticas de Marinha nºs 1.821 e 1.822, com 150/200 metros de largura, 20 milhas de extensão e 11,30 metros de profundidade.

CANOA

Embarcação a remo ou motor com seção transversal em U, sempre feita a partir de um único tronco de árvore entalhado. Normalmente, o comprimento não passa de oito metros.
CARGA FRIGORIFICADA

É a carga que necessita ser refrigerada para conservar as qualidades essenciais do produto durante o transporte, tais como frutas frescas e carnes.

CARGA GERAL

É a carga embarcada e transportada com acondicionamento (embalagem de transporte ou unitização), com marca de identificação e contagem de unidades. Pode ser solta (sacarias, fardos, caixas de papelão e madeira, engrada-dos, tambores, etc) ou unitizada (agrupamento de vários itens, distintos ou não, em unidades de transporte).

CARGA À GRANEL

Também denominada de granéis, é aquela que não é acondicionada em qualquer tipo de embalagem. Os granéis são cargas que necessitam ser individualizadas, subdividindo-se em granéis sólidos e graneis líquidos. São graneis sólidos: os minérios de ferro, manganês, bauxita, carvão, sal, trigo, soja, fertilizantes, etc. São granéis líquidos: o petróleo e seus subprodutos, óleos vegetais, etc.

CAP

Conselho de Autoridade Portuária. Atua, juntamente com as Autoridades Portuárias, nas questões de desenvolvimento da atividade, promoção da competição, proteção do meio ambiente e de formação dos preços dos serviços portuários e seu desempenho. Essa função reguladora dos CAPs passou a ser exercida com a Lei nº 8.630/93.
CAPATAZIA

É o serviço utilizado geralmente em portos e estações/terminais ferroviários, onde profissionais autônomos, ligados a sindicatos ou de empresas particulares, executam o trabalho de carregamento/descarregamento, movimentação e armazenagem de cargas.

CARTA NÁUTICA

Representação gráfica das principais características de determinado trecho do mar, contendo o desenho do perfil da costa e de seus acidentes.

CAPITANIA DOS PORTOS

Órgão subordinado à Diretoria de Portos e Costas, do Ministério da Marinha do Brasil, competindo-lhe a regulamentação de assuntos referentes à navegação, pesca, praias etc., com base no Regulamento do Tráfego Marítimo e nas convenções internacionais firmadas pelo país.

CAXETAIS

Comunidade arbórea de pequeno porte caracterizada pela presença predominante da caxeta (*Tabebuia cassinoides*), desenvolve-se sobre solos encharcados da planície litorânea.

CERCO
Prática de pesca que consiste em estender uma rede retangular em círculo de modo a cercar um cardume ou área.

CLOROFILA-A

Pigmento fotossintético presente em organismos vegetais caracterizado pela absorbância de luz em comprimento de onda específico (665 nm)

COLUNA D’ÁGUA

Altura de água da superfície até o fundo em um determinado ponto e instante.

CONCESSÃO

Regulamentada pela LEI Nº 8.987, de 13 de fevereiro de 1995, que dispõe sobre o regime de concessão e permissão da prestação de serviços públicos previsto no art. 175 da Constituição Federal. O Poder concedente (União) outorga a exploração econômica do porto ao estado ou município por tempo determinado podendo ser renovável. Toda concessão ou permissão pressupõe a prestação de serviço adequado ao pleno atendimento dos usuários, conforme estabelecido na lei, nas normas pertinentes e no respectivo contrato.

CONFERENTE

Profissional responsável pela verificação de uma conta, de mercadorias, dinheiro e outros valores no navio.

CONGÊNERES
Todas as formas possíveis de uma substância, variando-se o número e a posição do heteroátomo em uma estrutura carbônica.

CONsertador

Profissional responsável pelo conserto da carga avariada dentro ou fora do navio.

Contêiner

Acessório de embalagem, caracterizando-se por ser um contentor, grande caixa ou recipiente metálico no qual uma mercadoria é colocada (estufada ou ovada), após o que o mesmo é fechado sob lacre (lacrado) e transportado no porão e/ou convés de um navio para ser aberto (desovado) no porto ou local de destino. Os tipos mais comuns são: Contêiner comum – carga geral diversificadas (mixed general cargo), saco com café (coffee bags); Contêiner tanque – produtos líquidos; Contêiner teto aberto (open top) – trigo, cimento; Contêiner frigorífico – produtos perecíveis; Contêiner para automóveis – automóveis; Contêiner flexível – Também conhecido como big bag, consiste em um saco resistente utilizado para acondicionamento de granéis sólidos; Contêiner flat rack – tipo de contêiner aberto, possuindo apenas paredes frontais, usado para cargas compridas ou de forma irregular, às quais, de outro modo, teriam de ser transportadas soltas em navios convencionais. São reutilizáveis e possuem quatro tamanhos principais de 30, 25, 20 e 10 toneladas.

Corredor de Exportação

O Corredor de Exportação é composto por um conglomerado de silos horizontais e verticais, correias transportadoras, ship loaders, entre outros, dentro de áreas e retro-áreas do porto, tem capacidade nominal de embarque de 9 mil toneladas/hora. No Corredor de Exportação está o complexo graneleiro da Appa, composto por dois silos com capacidade total para 160 mil toneladas e interligado a outros terminais.
privados e detém 80% do total do volume exportado pelo Porto. No Corredor de Exportação, onde atuam 11 terminais graneleiros, a capacidade de recebimento de cargas é de 11,2 mil.

CUNHA SALINA

Entrada de água salina pelo estuário adentro.

DEFENSA

Estrutura fixa ao cais utilizadas para absorver o impacto do navio.

DEMERSAL

Porção da coluna d’água próxima ao fundo; que habita ou ocorre nesta parte da coluna d’água.

DESEMBARÇO

Ato ou efeito de legalmente retirar as cargas ou fazer sair os passageiros de uma embarcação ou qualquer outro veículo.

DESEMBARQUE (PESQUEIRO)
Quantidade de pescado desembarcado em terra por uma unidade de pesca, usualmente expresso em unidades de peso.

DESPACHANTE

Agente que trata do desembaraço das mercadorias junto aos órgãos alfandegários.

DISCO DE SECCHI

Ferramenta utilizada para medir a quantidade de luz que penetra em um ambiente aquático. Consiste em um disco com diâmetro variando de 15 até 30 cm, pintado na coloração branca ou preto e branco.

DIVERSIDADE

Índice do número de espécies

DOLFIN

Estrutura portuária situada em local de maior profundidade, com dimensões capazes de receber embarcações. Tal estrutura é independente da linha do cais, que pode ser ou não dotada de plataforma de comprimento variável e, em geral, possui equipamentos.

DOSSEL

Região da floresta formada pelas copas das árvores, corresponde ao estrato superior da comunidade florestal.
DUTO

Tubulação que tem por finalidade conduzir vários tipos de granéis sólidos, líquidos ou gasosos: mineroduto - quando transporta minérios; oleoduto - quando transporta óleo; gasoduto - quando transporta gás.

DRAFT SURVEY

Perito naval que calcula, entre outros serviços, a relação entre o peso e o afundamento da embarcação.

DRAGAGEM

Serviço de escavação nos canais de acesso e áreas de atracação dos portos para manutenção (paga com recursos próprios) ou aumento da profundidade (paga com recursos federais).

EDÁFICAS

Do solo ou referentes ao solo.

EFLUENTES

Descarga de despejo industrial ou urbano (o mesmo que doméstico) no ambiente.
EMBARCAÇÃO

Qualquer construção que se destina à navegação marítima, fluvial ou lacustre. A embarcação é um navio, barco ou qualquer flutuante destinado à navegação.

EPÍFITAS

Plantas que se desenvolvem sobra outras plantas utilizando-as somente como apoio físico, não são parasitas; as epífitas mais conhecidas são as orquídeas e bromélias.

EQUITATIVIDADE

Índice da distribuição de exemplares por espécie.

ESCALA

Diz-se da parada temporária de um navio durante uma viagem, a fim de efetuar embarque de passageiros ou operações diversas.

ESTALEIRO

Lugar onde constroem-se ou consertam-se embarcações.

ESPÉCIES PISCÍVORAS

Espécies que comem peixes.
ESPINHEL
Apetrecho de pesca formado por vários anzóis (até centenas) presos a uma linha mestra a intervalos regulares.

ESTIVA
Todo o fundo interno de um navio, da proa à popa; a primeira camada de carga que se coloca em um navio, geralmente, a mais pesada; contrapeso que se põe no navio para equilibrá-lo e não descair para o lado mais carregado. 2. O serviço de movimentação de mercadoria entre o porão do navio e o convés, e vice-versa. Tal serviço é realizado por profissional pertencente ao Sindicato dos Estivadores.

ESTIVADOR
Profissional que trabalha na carga e descarga de navios; o que dirige a carga e a descarga de navios por conta própria ou de casa comercial.

ESTRATIFICAÇÃO
Estado de um fluido constituído de duas ou mais camadas horizontais dispostas de acordo com sua densidade, sendo que a camada menos densa posicionasse acima da camada de maior densidade.

ESTRATO
Referente à camada ou ao componente da comunidade vegetal que constitui o habitat de determinadas espécies; termo geralmente utilizado para descrever a
organização do espaço vertical e a forma de como o mesmo é ocupado pelas plantas da comunidade.

ESTUARINO

Relativo a estuário.

EUHALINO

Região ou massa d’água com características similares às de mar aberto.

FAINA

Designa um tipo específico de movimentação de carga.

FAIXA DO CAIS

Denomina-se o local adequado para receber a atracação de uma embarcação.

FECUNDIDADE

Capacidade de produção de células sexuais.

FEITICEIRA
Rede de emalhe constituída por um “sanduíche” de três panos de rede sobrepostos (não justapostos), sendo que o pano central tem malha menor que os dois laterais.

FITOFISIONOMIA

Fisionomia determinada pelos componentes vegetais de um ambiente.

FLORÍSTICA

Relativo à flora, vegetação no âmbito qualitativo.

FLUVIAL

Dos rios, referente aos rios, condicionado pela ação dos rios.

FLÚVIO-MARINHA

Relativo ao ambiente de desembocaduras onde se encontram as águas marinhas e dos rios, condicionado pela ação combinada dos rios e do mar.

FUNDEIO

Modalidade de pesca em que uma rede retangular é mantida fixa ou imóvel, seja ancorada ao fundo ou amarrada às margens.
GARRAFA DE VON DORN

Amostrados utilizado para coletar a água.

GERIVAL

Apetrecho confeccionado a partir de uma modificação da tarrafa comum de arremesso para servir como rede de arrasto de traessão. Apesar de ser uma rede de arrasto, pode ser operado sem motor, a partir de uma canoa a remo, com a força motriz da maré ou correntes. Também chamado de arrastãozinho, tarrafinha ou cambau, foi inventado na Baía de Paranaguá em 1980 ou 1981.

GRAMÍNEAS

Família botânica a qual pertencem gramas, capins e bambus, entre vários outros.

GRANEL

Carga quase sempre homogênea, não embalada, carregada diretamente nos porões dos navios. Ela é subdividida em granel sólido e granel líquido.

H

HIDROMORFIA

Processo de transformação condicionado pela água, resulta nos solos hidromórficos.
HIDROMÓRFICOS

Com características condicionadas pela água, os solos hidromórficos se formam em presença de água por se situarem na porção mais baixa da paisagem local.

ICTIOFAUNA

Comunidade de peixes.

LARGO

Mar alto. Toda porção de mar que está fora da vista da terra. Diz-se que uma embarcação nessa situação está ao largo.

LASTRO

Qualquer corpo pesado posto no fundo ou no porão do barco para aumentar-lhe a estabilidade. O lastro pode ser de água, areia, cascalho ou ferro. No Nordeste brasileiro, conjunto de paus que forma o corpo das jangadas.

LIANAS
Grupo de plantas com hábitos trepadores, também conhecidas como cipós.

LINGADA

Amarrado de mercadorias correspondentes à porção a ser içada por guindaste ou pau-de-carga.

MACROBENTOS

Organismos de maior tamanho (geralmente retidos por peneira de 0,5 mm) associados aos fundos marinhos.

MARÉ

Movimento periódico de elevação e queda do nível das águas do mar, gerado sobretudo pela atração do sol e, principalmente, da luz (que, por estar mais perto da Terra, exerce mais que o dobro da atração do sol, embora tenha uma massa incomparavelmente menor que a do astro. Durante um dia lunar (24 horas e cinqüenta minutos), há duas marés altas e duas baixas e o horário em que ocorrem varia segundo a passagem da lua pelo meridiano correspondente, o que em geral ocorre cerca de cinqüenta minutos mais tarde a cada dia.

MARINHA

Do mar, referente ao mar, condicionado pela ação do mar.
MATERIAL PARTICULADO EM SUSPENSÃO

Qualquer sólido suspenso na coluna d’água e que, definidos operacionalmente, ficam retidos em filtros com diâmetro de poro previamente estabelecido, por exemplo 0,45 µm.

MEROPLÂNCTON

Conjunto de larvas de animais que vivem no fundo e passam as etapas iniciais da vida na coluna d’água.

MHC

Da sigla em inglês Mobile Harbour Crane. É um guindaste móvel utilizado para a movimentação de contêineres.

MILHA

A milha marítima é a unidade de distância equivalente ao comprimento de um arco de um minuto do meridiano terrestre. Seu valor, com ligeiro arredondamento, foi fixado em 1.852 metros pela Convenção Internacional para a Salvaguarda da Vida Humana no Mar.

MODAIS

São os tipos/meios de transporte existentes. São eles ferroviário (feito por ferrovias), rodoviário (feito por rodovias), hidroviário (feito pela água), dutoviário (feito pelos dutos) e aeroviário (feito de forma aérea).
NAVIOS DE CARGA GERAL

São os navios que transportam vários tipos de cargas, geralmente em pequenos lotes – sacarias, caixas, veículos encaixotados ou sobre rodas, bobinas de papel de imprensa, vergalhões, barris, barricas, etc. Tem aberturas retangulares no convés principal e cobertas de carga chamadas escotilhas de carga, por onde a carga é embarcada para ser estivada nas cobertas e porões. A carga é içada ou arriada do cais para bordo ou vice-versa pelo equipamento do navio (paus de carga e ou guindastes) ou pelo existente no porto.

NAVIOS GASEIROS

São os navios destinados ao transporte de gases liquefeitos. Se caracterizam por apresentarem acima do convés principal tanques típicos de formato arredondado.

NAVIOS GRANELEIROS

São os navios destinados ao transporte de grandes quantidades de carga a granel: milho, trigo, soja, minério de ferro, etc. Se caracterizam por longo convés principal onde o único destaque são os porões.

NAVIOS DE OPERAÇÃO POR ROLAMENTO (ROLL-ON/ ROLL-OFF/ RO-RO)

São os navios em que a carga entra e sai dos porões e cobertas, na horizontal ou quase horizontal, geralmente sobre rodas (automóveis, ônibus, caminhões) ou sobre
veículos (geralmente carretas, trailers, estrados volantes, etc.). Existem vários tipos de RoRos, como os porta- carros, porta-carretas, multi-propósitos, etc., todos se caracterizando pela grande altura do costado e pela rampa na parte de ré da embarcação.

NAVIOS PORTA – CONTÊINERES

São os navios semelhantes aos navios de carga geral mas normalmente não possuem além de um ou dois mastros simples sem paus de carga. As escotilhas de carga abrangem praticamente toda a área do convés e são providas de guias para encaixar os contêiners nos porões. Alguns desses navios apresentam guindastes especiais.

NAVIOS TANQUE

São os navios para transporte de petróleo bruto e produtos refinados (álcool, gasolina, diesel, querosene, etc.). Se caracterizam por sua superestrutura a ré e longo convés principal quase sempre tendo à meia nau uma ponte que vai desde a superestrutura até a proa. Essa ponte é uma precaução para a segurança do pessoal, pois os navios tanques carregados passam a ter uma pequena borda livre, fazendo com que no mar seu convés seja “lavado” com frequência pelas ondas.

OGMO

Órgão Gestor de Mão-de-Obra. Sua instituição em cada porto organizado é obrigatória, de acordo com a Lei 8.630. Responsável por administrar e regular a mão-de-obra portuária, garantindo ao trabalhador acesso regular ao trabalho e remuneração estável, além disso, promove o treinamento multifuncional, a habilitação profissional e a seleção dos trabalhadores. As despesas com a sua manutenção são custeadas pelos operadores portuários, e os recursos arrecadados
devem ser empregados, prioritariamente, na administração e na qualificação da mão-de-obra portuária avulsa.

OMBRÓFILA

Caracterizada por condições climáticas de elevada umidade.

OPERAÇÃO PORTUÁRIA

Movimentação de passageiros, de movimentação de cargas ou armazenagem de mercadorias destinados ou provenientes de transporte aquaviário, realizada no porto organizado por operadores portuários.

OPERADOR PORTUÁRIO

Entidade que se credencia no porto para atender os navios e requisitar os Trabalhadores Portuários Avulsos (TPAs). Pessoa jurídica pré-qualificada para a execução da operação portuária na área do Porto Organizado. O operador portuário é responsável, perante a autoridade aduaneira, pelas mercadorias sujeitas a controle aduaneiro, no período em que essas lhe estejam confiadas ou quando tenha controle ou uso exclusivo de área do porto onde se acham depositadas ou devam transitar.

ORGANOCLORADOS

Compostos orgânicos onde o halogênio presente é o átomo de cloro.
PANAMAX

Nome que se dá ao navio graneleiro ou navio-tanque, cujas dimensões (275 metros de comprimento) permitem seu trânsito no canal do Panamá.

PCC

Pure car carrier. Navios que só carregam carros.

PDZPO

Planos de Desenvolvimento e Zoneamentos dos Portos.

PÉ

Unidade de medida linear anglo-saxônica equivalente a 12 polegadas ou a 30,48 centímetros.

PEDOLÓGICO

Referente ao solo, pedologia é o estudo do solo.

pH

Relação logarítmica negativa da concentração de hidrogênio presente em uma solução. Define o grau de acidez ou basicidade da mesma.
PÍER

Parte do cais que avança sobre o mar em linha reta ou em “L”.

PIONEIRAS

Espécies vegetais que iniciam o processo de sucessão vegetal, são muito rústicas e pouco exigentes quanto às condições ambientais. Termo também usado para designar formações vegetais compostas por tais espécies.

PLÂNCTON

Organismos microscópios que vivem na coluna d’água.

PLANÍCIE DE MARÉ

Faixa de sedimento entre a terra e o mar localizada na zona entremarés.

PLUMA DE SEDIMENTOS

Nuvem de sedimentos suspensos formada durante qualquer processo que envolva o movimento dos mesmos.

POLEGADA

Unidade de medida inglesa equivalente a 25.3995 milímetros ou, por aproximação, a 25,4 milímetros.
POLUIÇÃO

Contaminação ambiental em concentração tal que cause prejuízo ao ambiente e/ou organismos.

PORTAINER

É um guindaste de grande porte utilizado para carregar e descarregar contêineres em navios. Tem uma braçadeira de levantamento especial adaptada para encaixar nos cantos do contêiner.

PORTO ORGANIZADO

É o porto construído e aparelhado para atender às necessidades da navegação e da movimentação e armazenagem de mercadorias, concedido ou explorado pela União, cujo trâfego e operações portuárias estejam sob a jurisdição de uma autoridade portuária. As funções no porto organizado são exercidas, de forma integrada e harmônica, pela Administração do Porto, denominada autoridade portuária, e as autoridades aduaneira, marítima, sanitária, de saúde e de polícia marítima.

PRODUÇÃO PRIMÁRIA

Quantidade de matéria orgânica sintetizada por organismos autótrofos.
RECEITA CAMBIAL

Valor gerado pelas exportações de mercadorias.

REEFER

Contêiner que possui sistema de refrigeração, com câmaras frias para preservar de produtos perecíveis em baixas temperaturas.

RESSUSPENSÃO DOS SEDIMENTOS

Reintrodução na coluna d’água de sedimentos resultante da movimentação dos mesmos.

RESTINGA

Vegetação de porte baixo, variando entre herbácea até arbórea, que se desenvolve sobre substrato recente trazido pela ação do mar. Presente ao longo do litoral brasileiro.

ROTA

Caminho seguido por uma embarcação.

S

SACA
Medida que equivale a 60 kg.

SALINIDADE

É a quantidade total de sais dissolvidos na água.

SECRETARIA ESPECIAL DE PORTOS

Com status de Ministério, cabe à Secretaria as atribuições e competências relativas a portos marítimos e a portos outorgados às companhias docas, estabelecidas em leis gerais ou específicas ao Ministério dos Transportes e ao Departamento Nacional de Infra-Estrutura de Transportes (DNIT).

SILO

Armazém. Podem ser verticais ou horizontais. Os verticais recebem as cargas por meio de elevadores e a expedição acontece exclusivamente por gravidade, sem uso de equipamentos. Nos horizontais as cargas são depositadas no nível do solo e, no momento de expedição, parte é transportada pela gravidade e parte com o uso de equipamentos.

SUB-BOSQUE

É o estrato baixo das florestas, compreende espécies de pequeno porte, sendo arbustos e arvoretas, adaptadas a condições de reduzida luminosidade.

SUBLITORAL
Porção dos fundos marinhos permanentemente imersos, até o limite de penetração da luz.

T

TARIFA PORTUÁRIA

Pauta de preços pela qual a administração do porto cobre os serviços prestados aos usuários. No Paraná, são cobradas três tarifas: Infraport, Infracais e Inframar.

TAXA DE SEDIMENTAÇÃO

Quantidade de material que se deposita no fundo em função de tempo.

TERMINAL

Ponto inicial ou final para embarque e/ou desembarque de cargas e passageiros.

TERRÍGENO

De origem continental; depósito formado por material de destruição, erosão, etc., da superfície e sedimentado tanto no continente com no fundo dos mares.

TEU (Twenty Foot Equivalent Unit)

Tamanho padrão de contêiner intermodal de 20 pés.
TPA

Trabalhadores Portuários Avulsos. Trabalhadores autônomos, filiados ao OGMO, que prestam serviço à atividade portuária em geral. No Paraná, estão divididos em seis categorias: estivadores, conferentes, consertadores, arrumadores, vigias e bloco.

TRANSBORDO OU TRANSHIPMENT

Transferir mercadorias de um para outro meio de transporte ou veículo, no decorrer do percurso da operação de entrega.

TRANSTÊINER

Equipamento utilizado no parque de estocagem, tendo como chassi ou vagões, no caso do mesmo ser assentado em linhas férreas, bem como empilhar os contêineres até uma altura máxima de quatro unidades. No caso de haver insuficiência de área de estocagem, o transtêiner é aconselhável, uma vez que possibilita melhor utilização da área disponível, objetivando o encaminhamento ao descarregamento ou estocagem.

TRAPICHE

Armazém de mercadorias junto ao cais.

TRANSPARÊNCIA DA ÁGUA

Propriedade que a água possui de transmitir luz de diferentes comprimentos de onda. Pode ser medida através do Disco de Secchi.
TURBIDEZ

Relativo à redução da transparência da água.

V

VAZANTE

Movimento descendente do nível do mar, que começa na preamar e culmina com a baixa-mar, durando em média um período de seis horas. 2. Refluxo. 3. Maré descendente.

VEGETACIONAL

De vegetação; relativo à vegetação.

VIGIAS

Trabalhadores pagos pela agência marítima (que é representante do armador) para vigiar o navio.

VOADEIRA

Lancha; embarcação rápida com casco leve, geralmente de alumínio ou fibra de vidro e motor de popa.
Z

ZONA DE MÁXIMA TURBIDEZ

Zona demistura em estuários onde são registrados os maiores valores de turbidez