# **ANEXO 9**

REVISÃO FLORÍSTICA, FITOSSOCIOLOGIA E FITOFISIONOMIA DOS REMANESCENTES ARBÓREOS DA ÁREA DE AMPLIAÇÃO RETROPORTUÁRIA DO PORTO ITAPOÁ, SC

Respostas ao Parecer Técnico Nº 02001.001915/2015-42-COPAH/IBAMA

REVISÃO FLORÍSTICA, FITOSSOCIOLOGIA E FITOFISIONOMIA DOS REMANESCENTES ARBÓREOS DA ÁREA DE AMPLIAÇÃO RETROPORTUÁRIA DO PORTO ITAPOÁ, SC.

## - PARECER TÉCNICO -

**Requerentes:** Itapoá Terminais Portuários S/A.

Acquaplan Tecnologia e Consultoria Ambiental Ltda.

**Elaboração:** Biól. Jonatha Alexandre Andrade Alves

MSc. Biologia Vegetal. CRBio 43850-03D CTF IBAMA: 4166304

Florianópolis, Julho de 2015

Revisão Flora - 2 -

# 1. APRESENTAÇÃO

O presente trabalho objetiva revisar, avaliar e caracterizar a composição florística e fitossociológica da vegetação arbórea remanescente da área de ampliação retroportuária do Porto Itapoá, visando determinar a fitofisionomia florestal predominante, conforme especificações contidas no **Parecer Técnico Nº 02001.001915/2015-42 COPAH/IBAMA**. A caracterização fitofisionômica servirá como subsídios para o enquadramento adequado da legislação ambiental brasileira.

Além disso, conforme requerido no parecer supracitado, é apresentada uma avaliação comparativa do enquadramento dos estágios sucessionais da floresta em estudo, sob a luz das diferentes Resoluções do CONAMA incidentes sobre o domínio da Mata Atlântica para o Estado de Santa Catarina.

## 2. INTRODUÇÃO

O Estado de Santa Catarina pode ser dividido em seis regiões fitogeográficas: Vegetação Litorânea (que abrangem a vegetação de mangue e restinga), Floresta Tropical Atlântica, Floresta Nebular, Floresta de Araucária ou dos Pinhas, Campos do Planalto e a Floresta Subtropical da Bacia do Rio Uruguai (KLEIN, 1978; 1981; FATMA, 2001). Destas, somente as vegetações de Restinga, Mangue e da Floresta Tropical Atlântica (Floresta Ombrófila Densa) acompanham o Oceano Atlântico (FALKENBERG, 1999).

Na literatura, a palavra restinga tem diversas definições (ASSIS *et al.*, 2011). Sob o aspecto da geomorfologia, as restingas seriam parte da planície costeira, formada por sedimentos depositados pelo mar como resultado das transgressões e regressões ocorridas nos oceanos nos últimos milhares de ano (ARAÚJO & LACERDA, 1987). Na acepção botânica, pode ser utilizado o seguinte conceito apresentado pela Resolução N° CONAMA 261/99:

"Entende-se por restinga um conjunto de ecossistemas que compreende comunidades vegetais florísticas e fisionomicamente distintas, situadas em terrenos predominantemente arenosos, de origens marinhas, fluvial, lagunar, eólica ou combinações desta, de idade quaternária, em geral com solos pouco desenvolvidos. Estas comunidades vegetais formam um complexo vegetacional edáfico e pioneiro, que depende mais da natureza do solo que do clima, encontrando-se em praias, cordões arenosos, dunas e depressões associadas, planícies e terraços."

Revisão Flora - 3 -

No Complexo da Restinga, algumas de suas formações são florestais, recebendo por vezes a denominação de "florestas de restinga" (CÉSAR & MONTEIRO, 1995).

Falkenberg (1999) em seu estudo que subsidiou a Resolução Nº CONAMA 261/99 afirma que, assim como a restinga, a Floresta Ombrófila Densa eventualmente se aproxima do oceano, ocupando as planícies arenosas.

A Floresta Ombrófila Densa que ocorre sobre sedimentos da planície costeira de origem quaternária é denominada como Floresta Ombrófila Densa de Terras Baixas (KLEIN, 1984; SANTA CATARINA, 1986; VELOSO *et al.*, 1991; IBGE, 1992; IBAMA, 2001), sendo também reconhecida como Floresta Tropical da Planície Quaternária (KLEIN, 1978) ou Mata Pluvial na Planície Quaternária (VELOSO & KLEIN, 1961; KLEIN, 1981).

A Floresta Ombrófila Densa de Terras Baixas é uma das cinco formações distintas da Floresta Ombrófila Densa reconhecidas por Veloso *et al.* (1991) e pelo Manual Técnico da Vegetação Brasileira (IBGE, 1992). Essa formação geralmente está situada pouco acima do nível do mar nas planícies formadas pelo assoreamento, devido à erosão existente nas serras costeiras e nas enseadas marítimas (IBGE, 1992; SILVA, 2007).

A restinga e o manguezal fazem parte da Formação Pioneira, por se tratarem de uma vegetação da primeira ocupação de terrenos rejuvenescidos, sendo a primeira de influência marinha, e a segunda, de influência fluviomarinha (VELOSO *et al.*, 1991; IBAMA, 2001; IBGE, 1992; 2004a; 2004b; 2008).

A restinga no Estado de Santa Catarina é encontrada em praias, cordões arenosos, dunas e depressões associadas, planícies e terraços (CONAMA 261/99; FALKENBERG, 1999). Já a Floresta Ombrófila Densa de Terras Baixas encontra-se na Planície Costeira Interna (TEIXEIRA *et al.*, 1986; BRACK, 2006) em altitudes entre o nível do mar até aproximadamente 30 m (SANTA CATARINA, 1986; REIS *et al.*, 2000).

No que diz respeito à caracterização da Floresta Ombrófila Densa de Terras Baixas, esta é reconhecida pela *ochloespecie* (isto é, espécie de ampla distribuição exibindo ao longo de sua área de ocorrência uniformidade morfológica<sup>1</sup>) *Tapirira guianensis* (cupiúva), assim como *Callophyllum brasiliensis* (guanandi, olandi) e *Ficus organensis* (figueira-defolha-miúda) na Região Sul e Sudeste do Brasil (FLEIG, 1989; VELOSO *et al.,* 1991; IBGE, 1992).

Revisão Flora - 4 -

-

<sup>&</sup>lt;sup>1</sup> Conceituação complementar extraída de Veloso et al. (1991) e IBGE (1992).

A Floresta Ombrófila Densa de Terras Baixas catarinense apresenta uma grande uniformidade na sua composição e fisionomia, devido à abundância de um pequeno grupo de árvores seletivas e exclusivas, geralmente esparsas no ambiente, muitas vezes ocorrendo em planícies úmidas que condicionam uma floresta de estratos pouco desenvolvidos e um tapete concentrado de bromélias terrícolas (VELOSO & KLEIN, 1961; KLEIN, 1978; 1984; NEGRELLE, 2006).

Em relação à fisionomia arbórea da restinga catarinense, esta possui estratos arbustivos e herbáceo/subarbustivo geralmente bem desenvolvido, apresentando a maior riqueza de espécies vasculares do Brasil (FALKENBERG, 1999) composta por uma densa aglomeração de plantas, principalmente da família das Myrtaceae (BRESOLIN, 1979), conferindo à nomenclatura de "Mata das Myrtáceas" por alguns botânicos (PEREIRA, 1990; ASSIS, 1999), além de uma expressiva diversidade de epífitas (WAECHTER, 1992 apud FALKENBERG, 1999) e trepadeiras (KIM, 1996 apud FALKENBERG, 1999).

Pode-se ressaltar outra diferença essencial entre a Floresta Ombrófila Densa de Terras Baixas e a Floresta de Restinga, que reside na origem de ambas as formações vegetais. A restinga compreende vegetações de ocupação pioneira e de procedência mais recente, ao passo que nas planícies mais antigas, principalmente de sedimentos pleistocênicos, desenvolve a Floresta Ombrófila Densa de Terras Baixas, uma tipologia vegetacional mais evoluída e homogênea do que as Formações Pioneiras (JASTER, 1995).

Reitz (1961), o maior expoente da botânica catarinense, definiu a vegetação da zona marítima de Santa Catarina, descrevendo as etapas da sucessão vegetal até o surgimento de uma comunidade clímax, retratada principalmente pelas condições edáficas e climáticas que podem determinar a formação. Segundo este autor, na parte que diz respeito à helossera, ou seja, sucessão ecológica em ambientes de baixa salinidade, este descreve o início da sucessão como etapa submersa, sendo sucedida pela etapa flutuante e, sucessivamente pela etapa da ciperáceas, das trufeiras, paludosa, brejosa e, enfim, o que chamou de etapas subsequentes. A descrição desta etapa segue abaixo:

"Aos poucos o terreno torna-se menos úmido e vai aparecendo uma vegetação mais robusta que é a transição natural para a formação hidrófila da mata pluvial. Os elementos desta formação como Tabebuia umbellata, Ficus organensis, Arecastrum romanzoffianum, Euterpe edulis, vão aos poucos extendendo sua dominância sobre os outros. Espécies como Rheedia gardneriana, Calophyllum brasiliense, Alchornea triplinervia, diversas Mirtáceas entremeadas nuns lugares de Ananas fritz-mülleri e

Revisão Flora - 5 -

noutros de Bromelia antiacantha e outras Bromeliáceas são o que há de mais típico nestas associações. Muitas vezes estas comunidades pertencem à categoria de matas ciliares que em estreitas faixas de vegetação acompanham as margens de sangradouros, rios ou lagoas." (Grifo nosso).

Tratando-se de uma helossera, a sucessão levaria à formação de uma mata pluvial, ou seja, uma Floresta Ombrófila. Este tipo de ambiente é caracterizado pelo lençol freático superficial que torna o solo extremamente úmido e seletivo para a vegetação. Esta condição tende a se alterar ao longo do desenvolvimento sucessional do ambiente, acumulando com o tempo cada vez mais sedimentos, aumentando a distância entre a superfície do solo e o lençol freático e reduzindo gradualmente a umidade do solo. Esta fitofisionomia possui estrutura muito característica e, de acordo com Veloso & Klein (1961), diferem do restante da vegetação costeira do Estado de Santa Catarina.

A sucessão de ambientes de restinga é descrita na obra supracitada de Reitz (1961) como xerossera arenosa. O autor explica a origem desta vegetação:

"Tão pronto que as rochas beira mar ou as areias da praia não estejam mais sob o influxo das águas oceânicas se origina uma vegetação xerófita: naquelas, líquenes e nestas, fanerógamos que, após as diversas etapas de sua evolução, como a hidrossera, terminam em uma comunidade mesofítica semelhante." (grifo nosso).

Esta xerossera arenosa compreende o que se entende por vegetação de restinga no meio acadêmico/científico. No entanto, o autor coloca que ao final da evolução sucessional ambas as formações tendem a formar comunidades climáxicas semelhantes, o que dificulta que as diferenças sejam estabelecidas apenas pela análise da composição florística destas formações. Ou seja, após milhares de anos de sucessão na helossera, espera-se encontrar um ambiente seco e arenoso semelhante ao clímax da xerossera arenosa, com deposição de sedimento arenoso eólico, embora etapas anteriores entre ambas apresentem composição florística diferente.

Estas duas florestas possuem relação muito próxima, uma vez que ambas se desenvolvem sobre solos arenosos de origem quaternária, permitindo, em alguns casos, que muitas de suas espécies ocorreram em ambas as formações. Silva (1999) em seu trabalho intitulado "Diagnóstico das Restingas do Brasil" reconhece a dificuldade da distinção florística e estrutural entre a Floresta Ombrófila Densa de Terras Baixas e a Restinga Arbórea.

Revisão Flora - 6 -

Semelhança na composição florística catarinense pode ser reconhecida entre a Resolução CONAMA Nº 04/94, que dispõe sobre os estágios sucessionais da vegetação da Mata Atlântica, e a Resolução CONAMA Nº 261/99, que dispõe sobre os estágios sucessionais da vegetação de restinga. Dentre as espécies descritas para os diferentes estágios sucessionais da Floresta Ombrófila Densa (CONAMA 04/94) e Restinga Arbórea (CONAMA 261/99), são citados 10 (dez) táxons co-ocorrentes entre estas fitofisionomias, conforme segue quadro abaixo (Tabela 1).

Tabela 1. Comparação entre a composição florística da Floresta Ombrófila Densa e a Restinga

Arbórea, citadas nas Resoluções do CONAMA 04/94 e 261/99.

| CONAMA 04/94                                      |          | CONAMA 261/99             |                     |
|---------------------------------------------------|----------|---------------------------|---------------------|
| Floresta Ombrófila Densa                          | Estágio  | Restinga Arbórea          | Estágio             |
| Pteridium aquilium                                | inicial  | Pteridium aquilium        | inicial             |
| Melinis minutifora                                | inicial  | Melinis minutifora        | inicial             |
| Andropogon bicornis                               | inicial  | Andropogon bicornis       | inicial             |
| Bidens pilosa                                     | inicial  | Bidens pilosa             | inicial             |
| Baccharis dracunculifolia                         | inicial  | Baccharis dracunculifolia | inicial e<br>médio  |
| Dodonea viscosa                                   | médio    | Dodonea viscosa           | inicial             |
| Rapanea ferruginea (sinônima de Myrsine coriacea) | médio    | Myrsine coriacea          | médio               |
| Psychotria longipes                               | avançado | <i>Psychotria</i> spp.    | médio e<br>avançado |
| Cecropia adenopus (sinônima de Cecropia glazioui) | avançado | Cecropia glazioui         | médio               |
| Alchornea triplinervia                            | avançado | Alchornea triplinervia    | avançado            |

Contudo, a fitofisionomia (formação) predominante deverá ser dada pelas espécies dominantes e pelos agrupamentos formadas entre as mesmas. Para isso, estudos florísticos que considerem as associações entre as comunidades vegetacionais, juntamente com abordagens fitossociológicas fornecerão informações para esse reconhecimento. Em uma comparação entre florestas tropicais, indicadores da estrutura da comunidades arbóreas podem contribuir para uma caracterização mais abrangente da vegetação (ASSIS et al., 2011).

Historicamente, diversos pesquisadores e taxonomistas botânicos têm reconhecido diferenças nas características ecológicas das espécies que definem os ambientes onde estas podem ou não ocorrer (REITZ, 1965-2006). A fitofisionomia é uma expressão dos fatores físico-químicos (além de biológicos intrínsecos ao ecossistema) que servem como condicionantes à ocorrência das espécies em determinados ambientes.

Revisão Flora - 7 -

Portanto, partindo do acima considerado, apresenta-se o presente trabalho, que visa revisar, avaliar e caracterizar a composição florística e fitossociológica da vegetação arbórea remanescente da Área de Ampliação Retroportuária do Porto Itapoá, objetivando determinar a fitofisionomia florestal predominante e subsidiar o enquadramento adequado da legislação ambiental, conforme solicitação do **Parecer Técnico Nº 02001.001915/2015-42 COPAH/IBAMA**. Além disso, é apresentada uma avaliação comparativa do enquadramento dos estágios sucessionais da floresta em estudo, nas diferentes Resoluções do CONAMA incidentes sobre o domínio da Mata Atlântica para o Estado de Santa Catarina.

#### 3. METODOLOGIA

A área de estudo deste parecer está localizada na Bacia Hidrográfica do Córrego de Jaguaruna, Município de Itapoá, Santa Catarina, apresentando uma área terrestre total de 308.897,20 m², abrangendo a vegetação arbórea remanescente da área de ampliação retroportuária do Porto Itapoá (PORTO ITAPOÁ & ACQUAPLAN, 2013; Figura 1).

Revisão Flora - 8 -

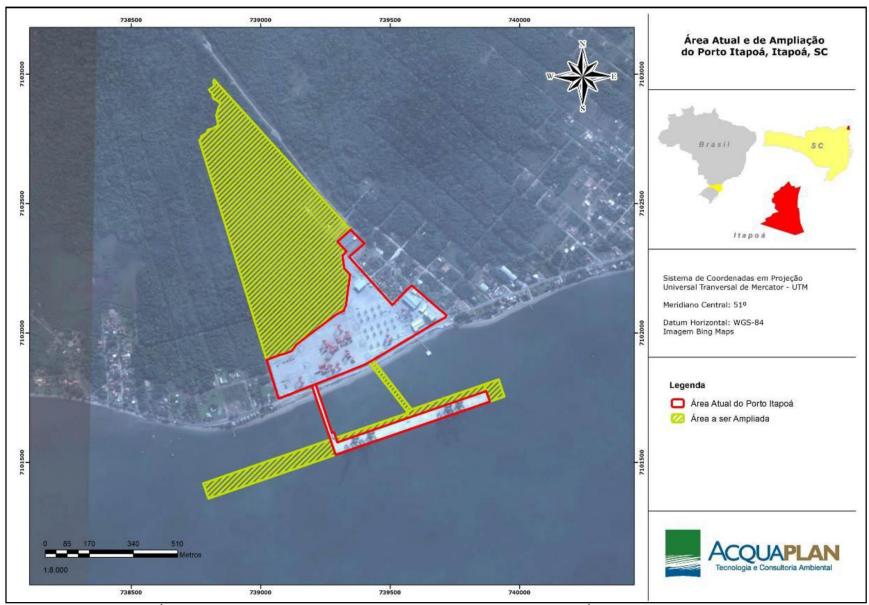



Figura 1. Localização da Área Atual e da Ampliação do Porto Itapoá. Extraído de: PORTO ITAPOÁ & ACQUAPLAN (2013).

Revisão Flora

Para análise da vegetação remanescente da Área de Ampliação Retroportuária do Porto Itapoá, foram utilizados 4 (quatro) conjuntos de dados gerados para área de estudo, citados abaixo:

- ALVES, J. A. A.; BOURSCHEID, K.; WIESBAUER, M. B. 2009. Diagnóstico do Meio Biótico Ecossistema Terrestre: Flora. Subsídio para o Estudo de Impacto Ambiental para Ampliação da Área Retroportuária da TECON Santa Catarina (Porto Itapoá), Município de Itapoá. Relatório Técnico. Florianópolis, 20 de dez. de 2009. 60p. (este documento compôs o EIA/Rima da Ampliação do Porto Itapoá, submetido ao IBAMA no ano de 2009).
- PORTO ITAPOÁ Itapoá Terminais Portuários S/A; ACQUAPLAN Acquaplan Tecnologia e Consultoria Ambiental Ltda. 2013. Inventário Florestal e Fitossociológico In: PORTO ITAPOÁ & AQUAPLAN. 2013. Estudo de Impacto Ambiental EIA. Ampliação da Retroárea e do Píer do Porto Itapoá, Município de Itapoá, SC. Out. 2013. p.919-1004.
- PORTO ITAPOÁ Itapoá Terminais Portuários S/A; ACQUAPLAN Acquaplan Tecnologia e Consultoria Ambiental Ltda. 2015. Anexo 10 Resultados do Inventário Florestal. In: PORTO ITAPOÁ & AQUAPLAN. 2015. Resposta à Nota Técnica nº 2001.002094/2014-81 COPAH/IBAMA. Processo nº 02001.003033/2009-73. Análise do EIA do empreendimento denominado Ampliação do Porto Itapoá, localizado no Município de Itapoá, SC. janeiro de 2015. 66p.
- Levantamento florístico complementar da área Retroportuária do Porto de Itapoá, realizado nos dias 22 e 23 de julho de 2015.

O primeiro documento, doravante denominado de Alves *et al.* (2009), diagnosticou a área de estudo no ano de 2009, conforme citação bibliográfica, sendo que os dados gerados foram consolidados no diagnóstico da vegetação do EIA da Ampliação da Retroárea do Porto Itapoá, protocolado no IBAMA em 2009. De acordo com Alves *et al.* (2009), para amostragem dos estudos quantitativos da estrutura da comunidade, foram utilizados os métodos combinados do ponto quadrante, excluindo somente a medição da distância ponto-árvore, juntamente com método de parcelas, com a estimativa da densidade absoluta da comunidade sem a necessidade de identificação dos indivíduos (ver DURIGAN, 2003; CATHARINO *et al.*, 2004).

A análise da estrutura horizontal e vertical da comunidade arbórea foi dada pelo ponto quadrante (ver COTTAM & CURTIS, 1956), realizado de forma sistemática em cinco

Revisão Flora - 10 -

conjuntos amostras (Figura 2), sendo que em cada conjunto foi montado um transecto com registro de pontos a cada 10 m de caminhamento, identificando as espécies mais próximas ao ponto pertencente a cada quadrante de 90º, sendo consideradas somente espécies que possuíam diâmetro a altura do peito (DAP) superior a 5 cm. Ainda segundo Alves et al. (2009), os parâmetros foram aqueles estimados correntemente em estudos fitossociológicos no Brasil, citados por diversos autores (MARTINS, 1993; JARENKOW, 1994; DURIGAN, 2003; Tabela 2), sendo a análise da suficiência amostral avaliada através da curva-coletor, almejando o ponto onde a curva atinja a assíntota (CULLEN JR et al., 2003). A curva de rarefação não foi elaborada devido a falta dos dados brutos dos pontos quadrantes. Para a análise dendrométrica da comunidade arbórea foram utilizadas 15 parcelas de 200m² (Figura 2). Dentro das parcelas foram etiquetadas todas as árvores com diâmetro a altura do peito (1,30m - DAP) superior a 5 cm, para coleta dos valores de DAP e altura total. Além dos dados quantitativos, em cada parcela foram coletados dados qualitativos para auxiliar na caracterização do estágio sucessional. Na avaliação do diâmetro médio, altura e área basal, foi considerada a inclusão de indivíduos com diâmetro mínimo de inclusão de 10 cm para a Resolução CONAMA Nº 04/1994 e com diâmetro mínimo de inclusão de 5 cm (limite de inclusão dos dados originais de Alves et al., 2009) para a Resolução CONAMA Nº 417/2009. Na avaliação da suficiência amostral dos dados dendrométricos foi considerada a fórmula apresentada na Tabela 3.

Revisão Flora - 11 -

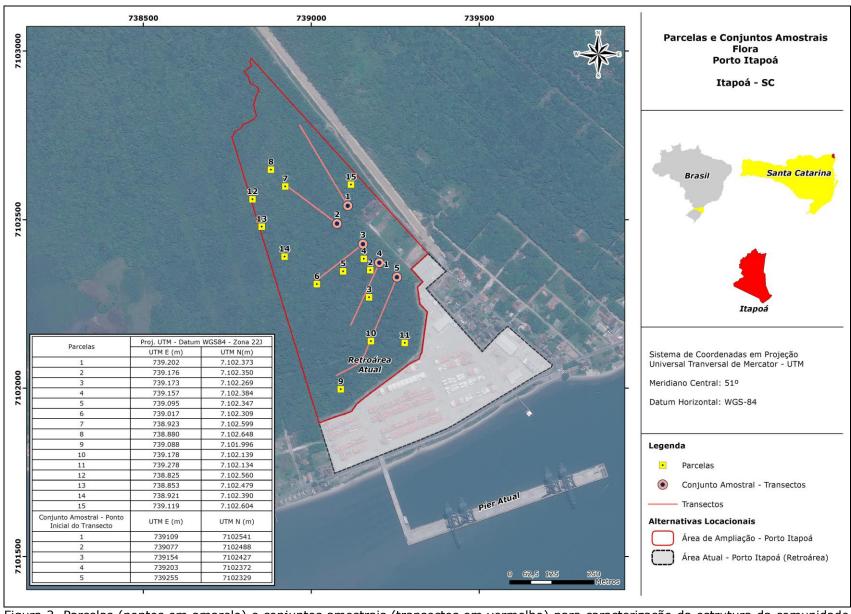



Figura 2. Parcelas (pontos em amarelo) e conjuntos amostrais (transectos em vermelho) para caracterização da estrutura da comunidade florestal. Obs.: *Datum* SAD69 e sistema de projeção de coordenadas UTM. Modificado de: Alves *et al.* (2009).

Revisão Flora - 12 -

Conforme mencionado anteriormente, nos documentos PORTO ITAPOÁ & ACQUAPLAN (2013; 2015) também foram retirados os dados brutos do inventário florestal para compor a presente análise, considerando as informações que foram registradas nas 16 parcelas (200 m² cada) de amostragem da vegetação do EIA (Figura 3), com a avaliação do diâmetro médio, a partir do diâmetro mínimo de inclusão de 10 cm para a Resolução CONAMA Nº 04/1994 e com diâmetro mínimo de inclusão de 4 cm para a Resolução CONAMA Nº 417/2009. Os parâmetros fitossociológicos foram aqueles estimados correntemente utilizados no Brasil, sendo apresentados na Tabela 2. Para estimar o nível de precisão a riqueza de comunidade florestal, foi utilizado o estimador não-paramétricos de riqueza de Jackknife 1ª e 2ª ordem. Para a suficiência amostral nas áreas analisadas, foi aplicada a análise estatística de "Curva de Rarefação Individual", descrita por Krebs (1989). Este método utiliza uma matriz de presença e ausência das espécies registradas nas amostragens quantitativas. O número de espécies registradas é influenciado pelo número de indivíduos encontrados e número de amostras realizadas. De acordo com Goetelli & Colwell (2001), para minimizar este problema, é interessante ilustrar o aumento do número de espécies através de uma Curva de Rarefação. De forma simplificada, a Curva de Rarefação é produzida por repetidas reamostragens ao acaso. Na rotina da análise de dados foi utilizado o programa PAST versão 2.14 (HAMMER et al., 2001). Na avaliação da suficiência amostral dos dados dendrométricos e o erro da amostragem, foram consideradas as fórmulas de Souza et al. (2009) (Tabela 3).

Revisão Flora - 13 -

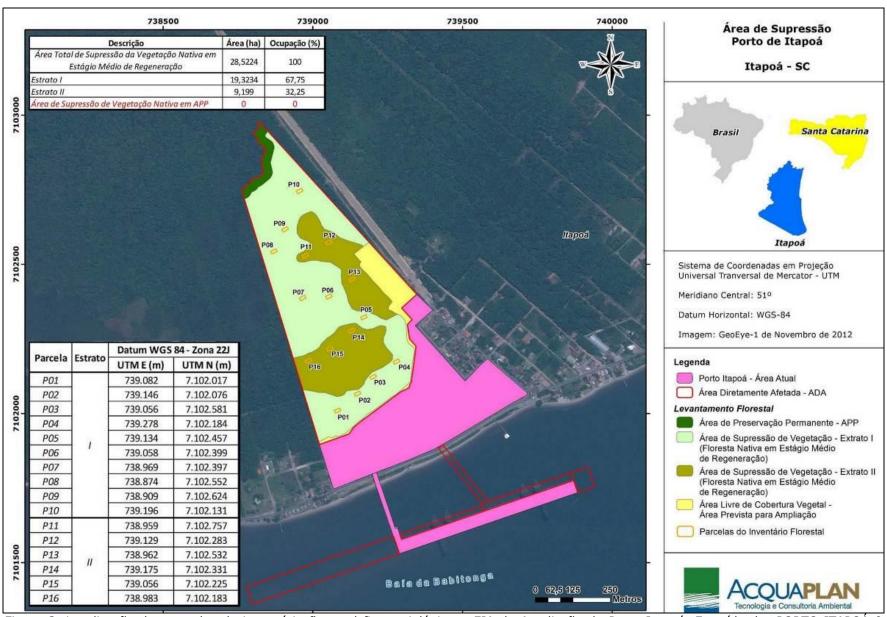



Figura 3. Localização das parcelas do inventário florestal fitossociológico - EIA da Ampliação do Porto Itapoá. Extraído de: PORTO ITAPOÁ & ACQUAPLAN (2013).

Revisão Flora - 14 -

Tabela 2. Parâmetros e índices utilizados para análise fitossociológica.

| PARÂMETROS E ÍNDI           | CES  | MÉTODO DE CÁLCULO       |
|-----------------------------|------|-------------------------|
| Frequência absoluta         | FA   | FA = Nfi * 100 / Np     |
| Densidade absoluta          | D    | Di = ni * U/A           |
| Dominância absoluta         | Do   | Doi = ABi * U/A         |
| Frequência relativa         | FRi  | FRi = Fi * 100 / FT     |
| Densidade relativa          | DRi  | DRi = ni*100 / N        |
| Dominância relativa         | DoRi | DoRi = Doi * 100 / DoT  |
| Índice Valor de Cobertura   | IVC  | VI i = DRi + DoRi       |
| Índice Valor de importância | IVI  | VI i = FRi + DRi + DoRi |

Nfi = número de pontos em que ocorreram indivíduos da espécie i; Np = número total de pontos na amostragem; ni = número de indivíduos da espécie i; ABi = área basal da espécie i; FT = somatório das frequências absolutas de todas as espécies; N = número total de indivíduos; DoT = somatório das dominâncias absolutas de todas as espécies.

Tabela 3. Fórmula para avaliação da suficiência amostral e erro da amostragem dos dados dendrométricos.

| Cálculo de suficiência<br>amostral e erro da<br>amostragem                                   | Parâmetros                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $n = \frac{N \times t^2 \times S^2}{N\left(E \times \overline{X}\right)^2 + t^2 \times S^2}$ | $n=$ número de unidades de amostras a serem levantadas; $N=$ número total de amostras possíveis na área; $t_{\alpha(GL)}=$ valor de $t$ , com "n-1" graus de liberdade (GL), ao nível de significância $\alpha$ ; $S^2=$ variância do parâmetro $X$ ; |
| $E\% = \pm \frac{S\overline{X} \times t}{\overline{X}^2} \times 100$                         | $\overline{X}$ = média do parâmetro $X$ ; $E$ = erro admissível; $E\%$ = erro da amostragem $S_{\overline{X}}$ = erro padrão da média $S\overline{X}$                                                                                                 |

Nota: Número total de amostras possíveis de 200m² para a área total de 285.224 m², deverá ser de ≈1.426 parcelas. Como referência foi utilizado o erro admissível máximo de 20% a 95% de probabilidade (a = 0,05), conforme as especificações para o Estado de Santa Catarina (IN 24 FATMA).

Adicionalmente, foi realizada uma expedição durante os dias 22 e 23 de junho de 2015, objetivando à complementação dos estudos florísticos. Na ocasião, foram percorridos caminhos no interior da mata guiados pelo Eng. Florestal Heiko Budag, responsável técnico do inventário florestal da área, realizado em 2013. Os caminhos foram percorridos de forma a passar nas proximidades do maior número possível de parcelas contidas no documento PORTO ITAPOÁ & ACQUAPLAN (2013), onde foram realizadas caracterizações qualitativas da vegetação, além do registro das espécies ocorrentes,

Revisão Flora - 15 -

utilizando-se método do caminhamento (FILGUEIRA *et al.*, 1994). No total, foram percorridos 2.582 metros com levantamentos da vegetação até 5 metros de cada lado do caminho, totalizando uma área de amostragem de 25.820m² (Figura 4).

Revisão Flora - 16 -

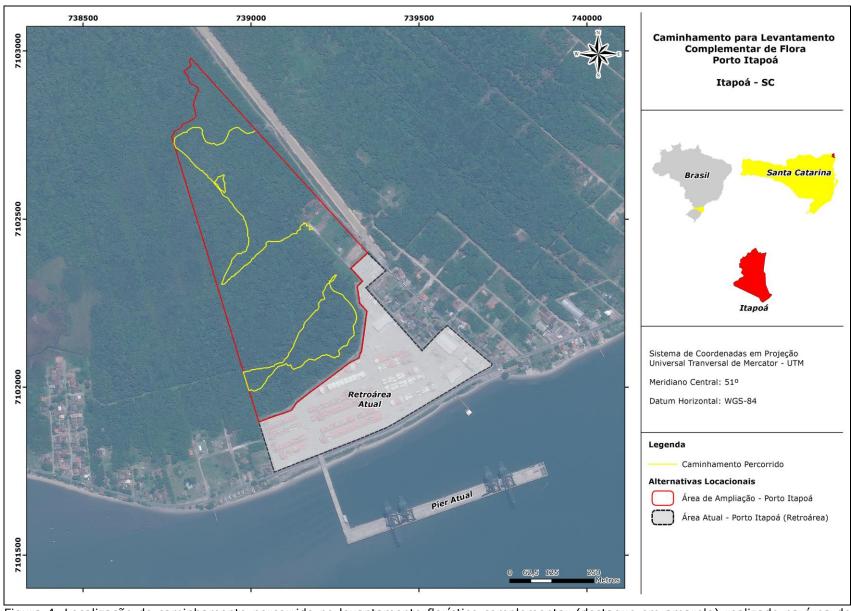



Figura 4. Localização do caminhamento percorrido no levantamento florístico complementar (destaque em amarelo) realizado na área de ampliação do Porto de Itapoá, SC. Obs.: Arquivo *shapefile* gerado, será encaminhado em anexo.

Revisão Flora

#### 4. RESULTADOS

# 4.1. Resultados de Alves et al. (2009)

De acordo com Alves *et al.* (2009), na área de ampliação retroportuária do Porto Itapoá, foram realizados 89 pontos quadrantes, registrando 356 indivíduos através de 5 transectos. Segundo os autores, a análise da curva-coletor evidencia uma tendência ao ponto de assíntota, podendo ser observado entre as amostras 56 a 63, e posteriormente, entre 85 a 89. Entretanto, conforme se prossegue com o esforço amostral, novas espécies são adicionadas ao inventário (Figura 5).

A heterogeneidade da composição dos remanescentes da Mata Atlântica, possivelmente é um dos fatores que explicam a adição de novas espécies, sendo frequente o aparecimento de táxons raros na estrutura florestal. A exemplo como ocorre na amostragem, uma vez que das 60 espécies reconhecidas, 22 ocorrem com apenas 1 (um) indivíduo. Além disso, em florestas tropicais, a definição dos limites das comunidades torna-se particularmente difícil e, devido à alta riqueza de espécies, a curva não apresenta estabilização mesmo com grandes tamanhos de amostra (SHILLING & BATISTA, 2008).

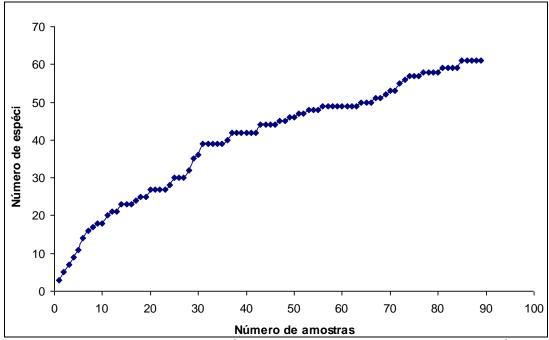



Figura 5. Curva-Coletor com as espécies amostradas por ponto quadrante na área de ampliação Retroportuária. Extraído de: Alves *et al.* (2009). Nota: A curva de rarefação não foi elaborada devido a falta dos dados brutos dos pontos quadrantes.

Revisão Flora - 18 -

No levantamento fitossociológico de Alves et al. (2009) foram reconhecidas 60 espécies, distribuídas em 54 gêneros. Na Tabela 4 são apresentados os parâmetros fitossociológicos com as espécies listadas em ordem decrescente do valor de importância (IVI).

Tabela 4. Resultado da caracterização fitossociológica da vegetação arbórea remanescente na área de ampliação do Porto Itapoá a partir dos dados originais de Alves *et al.* (2009).

| de ampliação do Porto Itapoá a partir dos dados originais de Alves <i>et al.</i> (2009). |    |     |       |        |        |        |        |        |        |  |  |
|------------------------------------------------------------------------------------------|----|-----|-------|--------|--------|--------|--------|--------|--------|--|--|
| Espécie/                                                                                 | Ni | UAi | AB    | DRi    | FAi    | FRi    | DoRi   | IVC    | IVI    |  |  |
| Morfo-espécie                                                                            |    |     |       |        |        |        |        |        |        |  |  |
| Tapirira<br>guianensis                                                                   | 65 | 49  | 5.588 | 18.258 | 55.056 | 15.506 | 39.534 | 57.793 | 73.299 |  |  |
| Pera glabrata                                                                            | 20 | 20  | 0.879 | 5.618  | 22.472 | 6.329  | 6.220  | 11.838 | 18.167 |  |  |
| Ocotea pulchella                                                                         | 15 | 12  | 1.261 | 4.213  | 13.483 | 3.797  | 8.919  | 13.132 | 16.930 |  |  |
| Andira fraxinifolia                                                                      | 19 | 18  | 0.585 | 5.337  | 20.225 | 5.696  | 4.138  | 9.475  | 15.172 |  |  |
| Syagrus<br>romanzoffiana                                                                 | 17 | 15  | 0.702 | 4.775  | 16.854 | 4.747  | 4.966  | 9.741  | 14.488 |  |  |
| Guarea<br>macrophylla                                                                    | 20 | 17  | 0.116 | 5.618  | 19.101 | 5.380  | 0.819  | 6.437  | 11.816 |  |  |
| Amaioua<br>intermedia                                                                    | 17 | 14  | 0.338 | 4.775  | 15.730 | 4.430  | 2.390  | 7.166  | 11.596 |  |  |
| Calophyllum<br>brasiliensis                                                              | 6  | 6   | 1.043 | 1.685  | 6.742  | 1.899  | 7.381  | 9.066  | 10.965 |  |  |
| Indivíduo-morto                                                                          | 14 | 14  | 0.207 | 3.933  | 15.730 | 4.430  | 1.467  | 5.400  | 9.830  |  |  |
| Jacaranda<br>puberula                                                                    | 16 | 11  | 0.152 | 4.494  | 12.360 | 3.481  | 1.076  | 5.570  | 9.051  |  |  |
| Inga vera                                                                                | 13 | 11  | 0.147 | 3.652  | 12.360 | 3.481  | 1.043  | 4.695  | 8.176  |  |  |
| Sloanea<br>guianensis                                                                    | 8  | 7   | 0.449 | 2.247  | 7.865  | 2.215  | 3.176  | 5.424  | 7.639  |  |  |
| Garcinia<br>gardneriana                                                                  | 13 | 11  | 0.066 | 3.652  | 12.360 | 3.481  | 0.464  | 4.115  | 7.596  |  |  |
| Aniba firmula                                                                            | 8  | 8   | 0.286 | 2.247  | 8.989  | 2.532  | 2.025  | 4.272  | 6.804  |  |  |
| Myrcia spectabilis                                                                       | 9  | 9   | 0.119 | 2.528  | 10.112 | 2.848  | 0.839  | 3.367  | 6.215  |  |  |
| Ocotea aciphylla                                                                         | 6  | 6   | 0.327 | 1.685  | 6.742  | 1.899  | 2.312  | 3.997  | 5.896  |  |  |
| Guatteria dusenii                                                                        | 7  | 7   | 0.032 | 1.966  | 7.865  | 2.215  | 0.223  | 2.190  | 4.405  |  |  |
| Nectandra<br>oppositifolia                                                               | 4  | 4   | 0.238 | 1.124  | 4.494  | 1.266  | 1.682  | 2.805  | 4.071  |  |  |
| Calyptranthes<br>lucida                                                                  | 6  | 5   | 0.029 | 1.685  | 5.618  | 1.582  | 0.203  | 1.889  | 3.471  |  |  |
| Cecropia glaziovii                                                                       | 4  | 4   | 0.134 | 1.124  | 4.494  | 1.266  | 0.949  | 2.072  | 3.338  |  |  |
| Handroanthus<br>umbellatu<br>s                                                           | 5  | 5   | 0.046 | 1.404  | 5.618  | 1.582  | 0.324  | 1.728  | 3.310  |  |  |
| Xylopia<br>brasiliensis                                                                  | 1  | 1   | 0.294 | 0.281  | 1.124  | 0.316  | 2.078  | 2.358  | 2.675  |  |  |
| Endlicheria<br>paniculata                                                                | 3  | 3   | 0.104 | 0.843  | 3.371  | 0.949  | 0.735  | 1.578  | 2.527  |  |  |
| Ilex theezans                                                                            | 3  | 3   | 0.093 | 0.843  | 3.371  | 0.949  | 0.658  | 1.501  | 2.450  |  |  |
| Marlierea sylvatica                                                                      | 4  | 3   | 0.035 | 1.124  | 3.371  | 0.949  | 0.250  | 1.373  | 2.323  |  |  |
| Abarema<br>langsdorffi                                                                   | 2  | 2   | 0.151 | 0.562  | 2.247  | 0.633  | 1.069  | 1.631  | 2.263  |  |  |

Revisão Flora - 19 -

| Espécie/<br>Morfo-espécie  | Ni                                     | UAi | АВ    | DRi   | FAi   | FRi   | DoRi  | IVC   | IVI   |
|----------------------------|----------------------------------------|-----|-------|-------|-------|-------|-------|-------|-------|
| Myrsine sp.                | 3                                      | 3   | 0.033 | 0.843 | 3.371 | 0.949 | 0.231 | 1.074 | 2.023 |
| Hedyosmum<br>brasiliensis  | 3                                      | 3   | 0.010 | 0.843 | 3.371 | 0.949 | 0.074 | 0.917 | 1.866 |
| Schefflera<br>angustissima | 2                                      | 2   | 0.092 | 0.562 | 2.247 | 0.633 | 0.647 | 1.209 | 1.842 |
| Matayba<br>guianensis      | 2                                      | 2   | 0.055 | 0.562 | 2.247 | 0.633 | 0.391 | 0.953 | 1.586 |
| Clusia criuva              | 2                                      | 2   | 0.043 | 0.562 | 2.247 | 0.633 | 0.301 | 0.863 | 1.496 |
| Hieronima<br>alchorneoides | 2                                      | 2   | 0.028 | 0.562 | 2.247 | 0.633 | 0.199 | 0.761 | 1.394 |
| Nectandra<br>megapotamica  | 1                                      | 1   | 0.109 | 0.281 | 1.124 | 0.316 | 0.771 | 1.052 | 1.369 |
| Marlierea<br>tomentosa     | 2                                      | 2   | 0.018 | 0.562 | 2.247 | 0.633 | 0.125 | 0.687 | 1.320 |
| Pouteria venosa            | 2                                      | 2   | 0.016 | 0.562 | 2.247 | 0.633 | 0.114 | 0.676 | 1.309 |
| Posoqueria<br>latifolia    | 2                                      | 2   | 0.014 | 0.562 | 2.247 | 0.633 | 0.099 | 0.661 | 1.294 |
| Alchornea<br>triplinervia  | 2                                      | 2   | 0.012 | 0.562 | 2.247 | 0.633 | 0.088 | 0.649 | 1.282 |
| Mollinedia sp.             | 2                                      | 2   | 0.008 | 0.562 | 2.247 | 0.633 | 0.054 | 0.616 | 1.249 |
| Ocotea teleiandra          | 2                                      | 2   | 0.006 | 0.562 | 2.247 | 0.633 | 0.041 | 0.603 | 1.236 |
| Aiouea saligna             | 2                                      | 2   | 0.005 | 0.562 | 2.247 | 0.633 | 0.039 | 0.601 | 1.234 |
| Miconia<br>cinerascens     | 2                                      | 2   | 0.005 | 0.562 | 2.247 | 0.633 | 0.035 | 0.597 | 1.230 |
| Ficus citrifolia           | 1                                      | 1   | 0.067 | 0.281 | 1.124 | 0.316 | 0.477 | 0.758 | 1.074 |
| Cinnamomum sp.             | 1                                      | 1   | 0.052 | 0.281 | 1.124 | 0.316 | 0.370 | 0.651 | 0.967 |
| Myrtaceae sp. 01           | 1                                      | 1   | 0.031 | 0.281 | 1.124 | 0.316 | 0.217 | 0.498 | 0.814 |
| Myrtaceae sp. 02           | 1                                      | 1   | 0.021 | 0.281 | 1.124 | 0.316 | 0.147 | 0.427 | 0.744 |
| Myrcia<br>dichrophylla     | 1                                      | 1   | 0.016 | 0.281 | 1.124 | 0.316 | 0.112 | 0.393 | 0.710 |
| Myrcia<br>schaueriana      | 1                                      | 1   | 0.011 | 0.281 | 1.124 | 0.316 | 0.077 | 0.358 | 0.675 |
| Anona cacans               | 1                                      | 1   | 0.008 | 0.281 | 1.124 | 0.316 | 0.054 | 0.335 | 0.652 |
| Euphorbiaceae 01           | 1                                      | 1   | 0.008 | 0.281 | 1.124 | 0.316 | 0.054 | 0.335 | 0.652 |
| Croton<br>macrobothrys     | 1                                      | 1   | 0.007 | 0.281 | 1.124 | 0.316 | 0.047 | 0.328 | 0.645 |
| Huberia<br>semiserrata     | 1                                      | 1   | 0.007 | 0.281 | 1.124 | 0.316 | 0.047 | 0.328 | 0.645 |
| Ignotae 01                 | 1                                      | 1   | 0.006 | 0.281 | 1.124 | 0.316 | 0.041 | 0.322 | 0.638 |
| Myrtaceae sp. 03           | 1                                      | 1   | 0.006 | 0.281 | 1.124 | 0.316 | 0.041 | 0.322 | 0.638 |
| Nectandra<br>membranaceae  | 1                                      | 1   | 0.005 | 0.281 | 1.124 | 0.316 | 0.032 | 0.313 | 0.630 |
| Guappira opposita          | 1                                      | 1   | 0.004 | 0.281 | 1.124 | 0.316 | 0.025 | 0.306 | 0.622 |
| Solanum<br>pseudoquina     | 1                                      | 1   | 0.004 | 0.281 | 1.124 | 0.316 | 0.025 | 0.306 | 0.622 |
| Ignotae 02                 | e 02 1 1 0.003 0.281 1.124 0.316 0.018 |     | 0.299 | 0.616 |       |       |       |       |       |
| Ocotea urbaniana           | 1                                      | 1   | 0.003 | 0.281 | 1.124 | 0.316 | 0.018 | 0.299 | 0.616 |
| Chrysophyllun<br>viride    | 1                                      | 1   | 0.002 | 0.281 | 1.124 | 0.316 | 0.016 | 0.297 | 0.614 |

Revisão Flora - 20 -

| Espécie/<br>Morfo-espécie | Ni  | UAi | АВ     | DRi   | FAi     | FRi   | DoRi  | IVC   | IVI   |
|---------------------------|-----|-----|--------|-------|---------|-------|-------|-------|-------|
| Geonoma<br>schottiana     | 1   | 1   | 0.002  | 0.281 | 1.124   | 0.316 | 0.016 | 0.297 | 0.614 |
| Faramea<br>montevidensis  | 1   | 1   | 0.002  | 0.281 | 1.124   | 0.316 | 0.014 | 0.295 | 0.612 |
| TOTAL                     | 356 | 89  | 14.135 | 100   | 355.056 | 100   | 100   | 200   | 300   |

Nota: N= número de indivíduos; UA= unidades amostrais; AB= área basal; DR= densidade relativa; FA= frequência absoluta; FR= frequência relativa; DoR= dominância relativa; IVI= índice valor de importância; e IVC= índice valor de cobertura.

As espécies arbóreas com maiores valores de importância foram *Tapirira guianense* (cupiúva), *Pera glabrata* (seca-ligeiro), *Ocotea pulchella* (canela-do-brejo), *Andira fraxinifolia* (pau-angelim), *Syagrus romanzoffiana* (jerivá), *Guarea macrophylla* (catiguámorcego), *Amaioua intermedia* (carvoeiro), *Calophyllum brasiliense* (guanandi), Indivíduo-morto e *Jacaranda puberula* (carobinha).

Destas, a primeira espécie ocorreu em mais da metade das amostras (FAi=55%), superando as demais, sobretudo em função de seu alto valor de cobertura. A *T. guianense* (cupiúva) igualmente apresentou a maior área basal (5,59), densidade (18,26), dominância (39,53), frequência (15,51) e cobertura (57,79) ao longo do estudo.

Com relação à estrutura vertical da área estuda, foi obtida a média de 10,65 m (SD  $\pm$  5,6) para a altura. A estratificação da posição vertical dos indivíduos inventariados na comunidade demonstra o predomínio de alturas entre 3,1 e 15 m na classe das Mesofanerófitas com 244 indivíduos (68,5%). As macrofanerófitas (>15 m) ocorrem com 26,31%, enquanto as nanofaneróticas (<3 m) apresentam menos de 3% dos indivíduos.

Entre as espécies que apresentam alturas superiores a 15m, destacam-se: *Tapirira guianensis* (cupiúva), *Calophyllum brasiliense* (olandi), *Ocotea aciphylla* (canela-amarela), *Nectandra oppositifolia* (canale-guaruva), *Pera glabrata* (seca-ligeiro), *Ocotea pulchella* (canela-do-brejo), *Syagrus romanzoffiana* (jerivá) e *Schefflera angustissima* (caixeta), as quais atingem o dossel da Floresta com alturas superiores a 20 metros.

Na caracterização da estrutura diamétrica a partir dos dados de Alves *et al.* (2009) podese verificar que a comunidade florestal apresenta uma estrutura etária distinta entre os dois critérios de inclusão de indivíduos, com destaque principalmente para DAP, altura e densidade de indivíduos por hectare (Tabela 5).

No que diz respeito aos critérios dendrométricos para definição dos estágio de sucessionais da vegetação no Domínio da Mata Atlântica, as parcelas números 02, 06,

Revisão Flora - 21 -

07, 12 e 13 amostradas por Alves *et al.* (2009), para o critério de inclusão de indivíduos com DAP mínimo de 5 (cinco) cm, se enquadram como estágio médio de regeneração para Transição Floresta de Restinga – Floresta Ombrófila Densa (Resolução CONAMA Nº 417/2009), por apresentarem árvores com DAP médio de até 15 (quinze) cm e Alturas inferiores a 10 (dez) metros na média da comunidade florestal. Ressalva-se que, caso o critério de inclusão de indivíduos arbóreos obtivesse registro de DAP a partir de 4 (quatro) cm, resultaria em valores médios mais baixos para a comunidade florestal. Ao passo que, todas as parcelas amostradas por Alves *et al.* (2009) se enquadram como estágio avançado de regeneração Floresta Ombrófila Densa (CONAMA Nº 04/1994), no critério de inclusão de indivíduos com DAP mínimo de 10 (dez) cm, sendo registradas somente as parcelas 06 e 12 com médias de alturas inferiores à 12 (doze) metros, porém, com DAP médio superior à média estabelecida (15 cm) para florestas em estágio médio de regeneração.

Tabela 5. Parâmetros dendrométricos gerados a partir do dados originais de Alves et al. (2009).

|         |    | 5 cm de  | DAP mi | ínimo para<br>nº 417/20 |             |    | 0 cm de     | DAP m    | nínimo para<br>N nº 04/19 | a inclusão     |
|---------|----|----------|--------|-------------------------|-------------|----|-------------|----------|---------------------------|----------------|
| Parcela |    | DAP (cm) | H (m)  | AB<br>(m²/ha)           | DA (Ind/ha) | N  | DAP<br>(cm) | H<br>(m) | AB<br>(m²/ha)             | DA<br>(Ind/ha) |
| 01      | 20 | 16,0     | 8,65   | 35,9                    | 1000        | 8  | 29,11       | 13,25    | 33,22                     | 400            |
| 02      | 22 | 14,4     | 9,73   | 28,6                    | 1100        | 11 | 22,05       | 12,92    | 26,46                     | 550            |
| 03      | 20 | 16,1     | 10,90  | 44,2                    | 1000        | 9  | 26,95       | 15,78    | 41,36                     | 450            |
| 04      | 26 | 16,7     | 10,87  | 53,0                    | 1300        | 14 | 24,96       | 15,36    | 50,62                     | 700            |
| 05      | 32 | 14,4     | 11,30  | 58,7                    | 1600        | 12 | 27,28       | 18,83    | 54,80                     | 600            |
| 06      | 35 | 11,9     | 8,80   | 25,3                    | 1750        | 16 | 17,63       | 11,12    | 21,32                     | 800            |
| 07      | 47 | 12,5     | 8,11   | 48,5                    | 2350        | 15 | 22,72       | 12,47    | 40,09                     | 750            |
| 08      | 60 | 13,6     | 10,26  | 64,6                    | 3000        | 30 | 19,78       | 13,83    | 57,23                     | 1500           |
| 09      | 18 | 17,8     | 10,92  | 32,3                    | 900         | 13 | 20,15       | 12,15    | 25,35                     | 650            |
| 10      | 31 | 16,3     | 11,08  | 47,3                    | 1550        | 18 | 22,71       | 14,83    | 44,50                     | 900            |
| 11      | 22 | 17,3     | 11,07  | 35,7                    | 1100        | 12 | 24,38       | 15,46    | 32,44                     | 600            |
| 12      | 22 | 10,8     | 8,38   | 24,6                    | 1100        | 13 | 18,14       | 11,04    | 20,45                     | 650            |
| 13      | 40 | 11,7     | 9,18   | 30,9                    | 2000        | 13 | 20,18       | 13,08    | 24,40                     | 650            |
| 14      | 33 | 15,4     | 9,89   | 48,1                    | 1650        | 16 | 23,78       | 13,87    | 43,78                     | 800            |
| 15      | 36 | 16,4     | 10,93  | 59,8                    | 1800        | 18 | 25,39       | 14,50    | 55,52                     | 900            |

N: número de indivíduos por parcela; DAP: diâmetro à altura do peito (1,30 m) médio; H: altura média; AB: área basal por hectare; DA: densidade absoluta por hectare.

Revisão Flora - 22 -

Os cálculos da suficiência amostral para os dados dendrométricos de Alves *et al.* (2009) indicam que o número de parcelas amostrada para o estudo foi satisfatório para caracterizar o DAP, altura e área basal, com índice de significância de 0,5% e erros amostrais inferiores a 18% e 20%, para os critérios de inclusão de DAP mínimo de 5 (cinco) cm e 10 (dez) cm, respectivamente (Tabela 6).

Tabela 6. Resultados dos cálculos de suficiência amostral para as variáveis DAP, altura, área basal

gerados a partir do dados originais de Alves et al. (2009).

| Estimativas                        |             | inclusão | nimo para<br>o<br>.7/2009) | 10 cm de DAP mínimo para<br>inclusão<br>(CONAMA nº 04/1994) |        |               |  |
|------------------------------------|-------------|----------|----------------------------|-------------------------------------------------------------|--------|---------------|--|
|                                    | DAP<br>(cm) | H (m)    | AB<br>(m²/ha)              | DAP<br>(cm)                                                 | H (m)  | AB<br>(m²/ha) |  |
| Média                              | 14,693      | 10,003   | 42,126                     | 23,015                                                      | 13,899 | 38,103        |  |
| Variância (S²)                     | 4,489       | 1,255    | 181,411                    | 11,659                                                      | 4,053  | 166,267       |  |
| Desvio Padrão (S)                  | 2,119       | 1,120    | 13,469                     | 3,145                                                       | 2,013  | 12,894        |  |
| Suficiência Amostral<br>(Parcelas) | 2,39        | 1,44     | 11,66                      | 2,53                                                        | 2,41   | 13,05         |  |
| Erro Encontrado (%)                | 7,94        | 6,17     | 17,61                      | 8,17                                                        | 7,98   | 18,64         |  |

DAP: diâmetro à altura do peito (1,30 m) médio; H: altura média; AB: área basal por hectare.

# 4.2. Resultados de PORTO ITAPOÁ & ACQUAPLAN (2013; 2015)

A partir dos dados brutos do inventário florestal e fitossociológico realizado por PORTO ITAPOÁ & ACQUAPLAN (2013; 2015) (EIA da Ampliação do Porto Itapoá e documento de resposta ao Parecer Técnico, (2013; 2015); foram reconhecidas 40 espécies, sendo listadas em ordem decrescente do valor de importância (IVI), seguida pelos demais parâmetros fitossociológicos (Tabela 7).

As espécies arbóreas com maiores valores de importância foram *Tapirira guianense* (cupiúva), *Jacaranda micantha* (caroba), Indivíduo-morto, *Myrcia pubipetala* (guamirim-branco), *Marlierea sylvatica* (guamirim-da-água), *Pera glabrata* (seca-ligeiro), *Calophyllum brasiliense* (guanandi), *Syagrus romanzoffiana* (coqueiro-jerivá), *Guarea macrophylla* (catiguá-morcego) e *Inga sessilis* (ingá-macaco).

Novamente destaca-se a presença imponente da *T. guianensis* com ocorrência em quase toda a amostras (FAi=93,75%), apresentando os maiores valores fitossociológicos, em especial no seu índice de cobertura e importância.

Revisão Flora - 23 -

Merece destaque também o alto valor de importância atribuído aos indivíduos-mortos, sendo registrado com grande frequência na amostra (FAi=87,5%).

Com relação à estrutura vertical da área estuda, foi obtida a média de 9,62 m (SD  $\pm$  1,9) para a altura. A estratificação da posição vertical dos indivíduos inventariados por PORTO ITAPOÁ & ACQUAPLAN (2013; 2015) demonstra a maior ocorrência de alturas entre 3,1 e 15 m na classe das Mesofanerófitas com 67,1% indivíduos. As macrofanerófitas (>15 m) ocorrem com 20,97%, enquanto as nanofaneróticas (<3 m) apresentam menos de 12,02% dos indivíduos.

Dentre as espécies que apresentam alturas superiores a 15m, destacam-se: *Tapirira guianensis* (cupiúva), *Pera glabrata* (seca-ligeiro), *Ocotea aciphylla* (canelinha-amarela), *Nectandra oppositifolia* (canale-guaruva), *Calophyllum brasiliense* (olandi), entre outras, chegando até 25 m.

Tabela 7. Resultado da caracterização fitossociológica da vegetação arbórea remanescente na área de ampliação do Porto Itapoá a partir dos dados originais de PORTO ITAPOÁ & ACQUAPLAN (2013; 2015).

| Espécie/ Morfo-<br>espécie | Ni | UAi | AB     | $DR_i$ | FAi   | $FR_i$ | DoRi  | IVC   | IVI   |
|----------------------------|----|-----|--------|--------|-------|--------|-------|-------|-------|
| Tapirira guianensis        | 86 | 15  | 3,6497 | 12,61  | 93,75 | 6,64   | 37,22 | 49,83 | 56,46 |
| Jacaranda micrantha        | 75 | 10  | 0,4088 | 11,00  | 62,50 | 4,42   | 4,17  | 15,17 | 19,59 |
| Indivíduo-morto            | 23 | 14  | 0,5320 | 3,37   | 87,50 | 6,19   | 5,43  | 8,80  | 14,99 |
| Myrcia pubipetala          | 45 | 14  | 0,2014 | 6,60   | 87,50 | 6,19   | 2,05  | 8,65  | 14,85 |
| Marlierea sylvatica        | 69 | 5   | 0,1564 | 10,12  | 31,25 | 2,21   | 1,59  | 11,71 | 13,92 |
| Pera glabrata              | 21 | 7   | 0,7316 | 3,08   | 43,75 | 3,10   | 7,46  | 10,54 | 13,64 |
| Calophyllum<br>brasiliense | 20 | 10  | 0,5653 | 2,93   | 62,50 | 4,42   | 5,76  | 8,70  | 13,12 |
| Syagrus<br>romanzoffiana   | 18 | 8   | 0,6784 | 2,64   | 50,00 | 3,54   | 6,92  | 9,56  | 13,10 |
| Guarea macrophylla         | 36 | 14  | 0,0795 | 5,28   | 87,50 | 6,19   | 0,81  | 6,09  | 12,28 |
| Inga sessilis              | 29 | 11  | 0,3000 | 4,25   | 68,75 | 4,87   | 3,06  | 7,31  | 12,18 |
| Eugenia sp.                | 21 | 8   | 0,1294 | 3,08   | 50,00 | 3,54   | 1,32  | 4,40  | 7,94  |
| Ocotea pulchella           | 22 | 6   | 0,1788 | 3,23   | 37,50 | 2,65   | 1,82  | 5,05  | 7,70  |
| Rudgea jasminoides         | 21 | 5   | 0,2231 | 3,08   | 31,25 | 2,21   | 2,27  | 5,35  | 7,57  |
| Ilex dumosa                | 17 | 6   | 0,2216 | 2,49   | 37,50 | 2,65   | 2,26  | 4,75  | 7,41  |
| Handroanthus<br>umbellatus | 19 | 7   | 0,1278 | 2,79   | 43,75 | 3,10   | 1,30  | 4,09  | 7,19  |
| Psidium cattleianum        | 21 | 6   | 0,1098 | 3,08   | 37,50 | 2,65   | 1,12  | 4,20  | 6,85  |
| Alchornea triplinervia     | 11 | 7   | 0,1691 | 1,61   | 43,75 | 3,10   | 1,72  | 3,34  | 6,43  |
| Nectandra<br>oppositifolia | 7  | 5   | 0,2505 | 1,03   | 31,25 | 2,21   | 2,55  | 3,58  | 5,79  |
| Laplacea fruticosa         | 11 | 6   | 0,0848 | 1,61   | 37,50 | 2,65   | 0,87  | 2,48  | 5,13  |
| Andira fraxinifolia        | 9  | 6   | 0,0417 | 1,32   | 37,50 | 2,65   | 0,43  | 1,75  | 4,40  |
| Hieronyma<br>alchorneoides | 12 | 4   | 0,0380 | 1,76   | 25,00 | 1,77   | 0,39  | 2,15  | 3,92  |

Revisão Flora - 24 -

| Espécie/ Morfo-<br>espécie   | Ni  | UAi | АВ     | $DR_i$ | FAi    | FRi  | DoRi | IVC  | IVI  |
|------------------------------|-----|-----|--------|--------|--------|------|------|------|------|
| Cyathea phalerata            | 7   | 5   | 0,0636 | 1,03   | 31,25  | 2,21 | 0,65 | 1,67 | 3,89 |
| Garcinia gardneriana         | 9   | 5   | 0,0224 | 1,32   | 31,25  | 2,21 | 0,23 | 1,55 | 3,76 |
| Ocotea aciphylla             | 5   | 2   | 0,1936 | 0,73   | 12,50  | 0,88 | 1,97 | 2,71 | 3,59 |
| Posoqueria latifolia         | 9   | 4   | 0,0436 | 1,32   | 25,00  | 1,77 | 0,44 | 1,76 | 3,53 |
| Dahlstedtia<br>pentaphylla   | 3   | 3   | 0,1689 | 0,44   | 18,75  | 1,33 | 1,72 | 2,16 | 3,49 |
| Matayba guianensis           | 4   | 3   | 0,0990 | 0,59   | 18,75  | 1,33 | 1,01 | 1,60 | 2,92 |
| Solanum concinnum            | 6   | 4   | 0,0201 | 0,88   | 25,00  | 1,77 | 0,20 | 1,08 | 2,85 |
| Annona neosericea            | 6   | 3   | 0,0569 | 0,88   | 18,75  | 1,33 | 0,58 | 1,46 | 2,79 |
| Mollinedia schottiana        | 8   | 3   | 0,0221 | 1,17   | 18,75  | 1,33 | 0,22 | 1,40 | 2,73 |
| Hedyosmum<br>brasiliense     | 4   | 4   | 0,0097 | 0,59   | 25,00  | 1,77 | 0,10 | 0,69 | 2,46 |
| Myrsine umbellata            | 4   | 3   | 0,0436 | 0,59   | 18,75  | 1,33 | 0,44 | 1,03 | 2,36 |
| Clusia criuva                | 3   | 2   | 0,0436 | 0,44   | 12,50  | 0,88 | 0,45 | 0,88 | 1,77 |
| Geonoma schottiana           | 8   | 1   | 0,0106 | 1,17   | 6,25   | 0,44 | 0,11 | 1,28 | 1,72 |
| Pseudobombax<br>grandiflorum | 2   | 2   | 0,0405 | 0,29   | 12,50  | 0,88 | 0,41 | 0,71 | 1,59 |
| Sloanea guianensis           | 3   | 2   | 0,0120 | 0,44   | 12,50  | 0,88 | 0,12 | 0,56 | 1,45 |
| Sapium glandulosum           | 3   | 1   | 0,0333 | 0,44   | 6,25   | 0,44 | 0,34 | 0,78 | 1,22 |
| Miconia sp.                  | 2   | 2   | 0,0034 | 0,29   | 12,50  | 0,88 | 0,03 | 0,33 | 1,21 |
| Cecropia glaziovii           | 1   | 1   | 0,0390 | 0,15   | 6,25   | 0,44 | 0,40 | 0,54 | 0,99 |
| Scheffera morototoni         | 1   | 1   | 0,0018 | 0,15   | 6,25   | 0,44 | 0,02 | 0,16 | 0,61 |
| Euterpe edulis               | 1   | 1   | 0,0011 | 0,15   | 6,25   | 0,44 | 0,01 | 0,16 | 0,60 |
| TOTAL                        | 682 | 16  | 9,8065 | 100    | 1412,5 | 100  | 100  | 200  | 300  |

Nota: N= número de indivíduos; UA= unidades amostrais; AB= área basal; DR= densidade relativa; FA= frequência absoluta; FR= frequência relativa; DoR= dominância relativa; IVI= índice valor de importância; e IVC= índice valor de cobertura.

Para os estimadores não paramétricos *Jackknife* 1ª e 2ª ordem, foram utilizados os dados cumulativos de todas as parcelas amostradas para o estudo, gerando um riqueza de espécie superestimada em relação ao valor observado (Tabela 8). Contudo, os valores de *Jackknife de* 1ª e 2ª e o valor observado ao final das amostras, foram muito próximos, podendo afirmar que uma amostragem pequena da área é capaz de descrever grande parte da riqueza da comunidade florestal. A curva de rarefação gerada corrobora com esta afirmação, demonstrado que a amostragem permanece em ascensão, com a possibilidades da presença de outras espécies na área, porém, muito próximo da estabilização (Figura 6).

Revisão Flora - 25 -

Tabela 8. Riqueza de *Jackknife* de 1ª e 2ª Ordem e Riqueza Observada nas parcelas da área de ampliação do Porto Itapoá a partir dos dados originais de

PORTO ITAPOÁ & ACQUAPLAN (2013; 2015).

| TORTO TIAFOA G | ACQUAPLAN (2013              | , 2013).                     |                   |  |  |
|----------------|------------------------------|------------------------------|-------------------|--|--|
| Parcelas       | Jacknife 1 <sup>a</sup> ord. | Jacknife 2 <sup>a</sup> ord. | Riqueza Observada |  |  |
| 1              | 14,2                         | 13                           | 10                |  |  |
| 2              | 25,7                         | 25,6                         | 16                |  |  |
| 3              | 31,93                        | 35,23                        | 20                |  |  |
| 4              | 37,15                        | 39,68                        | 23                |  |  |
| 5              | 39,92                        | 42,31                        | 25                |  |  |
| 6              | 40,97                        | 44,41                        | 30                |  |  |
| 7              | 42,17                        | 46,8                         | 31                |  |  |
| 8              | 42,55                        | 47,01                        | 34                |  |  |
| 9              | 42,93                        | 43,03                        | 34                |  |  |
| 10             | 42,3                         | 42,79                        | 35                |  |  |
| 11             | 41,67                        | 42,07                        | 36                |  |  |
| 12             | 42,72                        | 43,3                         | 36                |  |  |
| 13             | 43,74                        | 44,5                         | 37                |  |  |
| 14             | 45,33                        | 44,41                        | 39                |  |  |
| 15             | 44,64                        | 46,74                        | 39                |  |  |
| 16             | 44,69                        | 44,98                        | 40                |  |  |

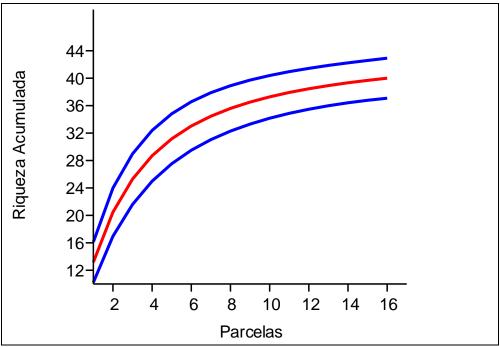



Figura 6. Curva de Rarefação de Espécies. Linha vermelha= curva, linhas azuis= intervalo de confiança de 95%.nas parcelas da área de ampliação do Porto Itapoá a partir dos dados originais de PORTO ITAPOÁ & ACQUAPLA. (2013; 2015).

Revisão Flora - 26 -

Na caracterização da estrutura diamétrica dos dados de PORTO ITAPOÁ & ACQUAPLAN (2013; 2015) para o critério de inclusão de indivíduos com DAP mínimo de 4 (quatro) cm, demonstra que as parcelas 01, 14, 15 e 16 apresentam alturas médias superiores a 10 m, definindo estágio avançado de regeneração para Transição Floresta de Restinga – Floresta Ombrófila Densa (CONAMA Nº 417/2009), porém, com DAP médios inferiores a 15 cm (Tabela 9). No entanto, as demais parcelas (02 à 13) apresentam alturas e DAP médios dentro do limite de inclusão do estágio médio de regeneração para Transição Floresta de Restinga – Floresta Ombrófila Densa. Por outro lado, a partir do critério de inclusão de indivíduos com DAP mínimo de 10 (dez) cm, todas as parcelas apresentam pelo menos dois dos três parâmetros dendrométricos reconhecidos como estágio avançado de regeneração para a Floresta Ombrófila Densa (Resolução CONAMA Nº 04/1994).

Tabela 9. Parâmetros dendrométricos gerados a partir do dados originais de PORTO ITAPOÁ &

ACQUAPLAN (2013; 2015).

| ACQUAI  |    | 1 (2013; 20 |        |               |                           |    |             |        |               |                |
|---------|----|-------------|--------|---------------|---------------------------|----|-------------|--------|---------------|----------------|
|         |    | 4 cm de l   | DAP mí | nimo para     | inclusão                  | 1  | 0 cm de     | DAP m  | ínimo para    | inclusão       |
| Parcela |    | (CO         | NAMA   | nº 417/20     | 2009) (CONAMA nº 04/1994) |    |             |        |               |                |
| Parceia |    | DAP (cm)    | H (m)  | AB<br>(m²/ha) | DA (Ind/ha)               | N  | DAP<br>(cm) | H (m)  | AB<br>(m²/ha) | DA<br>(Ind/ha) |
| 1       | 22 | 11,14       | 11,88  | 16,350        | 1100                      | 11 | 16,899      | 17,727 | 13,369        | 550            |
| 2       | 19 | 12,12       | 9,98   | 27,281        | 950                       | 9  | 19,588      | 13,269 | 24,429        | 450            |
| 3       | 22 | 14,77       | 9,81   | 31,604        | 1100                      | 15 | 19,240      | 12,944 | 30,310        | 750            |
| 4       | 19 | 13,01       | 9,83   | 27,825        | 950                       | 9  | 20,287      | 14,800 | 26,249        | 450            |
| 5       | 27 | 13,66       | 9,89   | 33,471        | 1350                      | 12 | 22,229      | 13,667 | 30,592        | 600            |
| 6       | 44 | 9,24        | 8,43   | 23,477        | 2200                      | 11 | 19,214      | 13,455 | 17,887        | 550            |
| 7       | 32 | 10,98       | 8,59   | 22,987        | 1600                      | 12 | 18,170      | 12,458 | 18,778        | 600            |
| 8       | 53 | 7,80        | 6,01   | 31,771        | 2650                      | 15 | 17,109      | 10,000 | 23,380        | 750            |
| 9       | 53 | 8,81        | 7,81   | 28,596        | 2650                      | 18 | 16,694      | 11,889 | 22,339        | 900            |
| 10      | 53 | 8,91        | 8,79   | 30,453        | 2650                      | 17 | 14,725      | 13,848 | 23,224        | 850            |
| 11      | 35 | 11,30       | 9,52   | 39,929        | 1750                      | 13 | 21,420      | 16,941 | 33,105        | 650            |
| 12      | 30 | 12,56       | 8,80   | 41,043        | 1500                      | 15 | 23,258      | 16,000 | 37,085        | 750            |
| 13      | 32 | 9,59        | 7,39   | 28,235        | 1600                      | 8  | 22,250      | 16,800 | 25,238        | 400            |
| 14      | 20 | 14,90       | 11,15  | 31,104        | 1000                      | 10 | 24,382      | 17,600 | 29,889        | 500            |
| 15      | 38 | 11,73       | 13,09  | 37,429        | 1900                      | 16 | 19,350      | 19,368 | 32,782        | 800            |
| 16      | 42 | 11,34       | 12,99  | 38,771        | 2100                      | 17 | 19,383      | 19,158 | 33,449        | 850            |

N: número de indivíduos por parcela; DAP: diâmetro à altura do peito (1,30 m) médio; H: altura média; AB: área basal por hectare; DA: densidade absoluta por hectare.

Os cálculos da suficiência amostral para os dados dendrométricos de PORTO ITAPOÁ & ACQUAPLAN (2013; 2015) indicam que o número de parcelas amostrada para o estudo foi satisfatório para caracterizar o DAP, altura e área basal, com índice de significância de 0,5% e erros amostrais inferiores a 12% e 14%, para os critérios de inclusão de DAP mínimo de 4 (quatro) cm e 10 (dez) cm, respectivamente (Tabela 10).

Revisão Flora - 27 -

Tabela 10. Resultados dos cálculos de suficiência amostral para as variáveis DAP, altura, área basal

gerados a partir do dados originais de PORTO ITAPOÁ & ACQUAPLAN (2013; 2015).

| Estimativas                       |             | 4 cm de DAP mínimo para<br>inclusão<br>(CONAMA nº 417/2009) |               |             | 10 cm de DAP mínimo para<br>inclusão<br>(CONAMA nº 04/1994) |               |  |
|-----------------------------------|-------------|-------------------------------------------------------------|---------------|-------------|-------------------------------------------------------------|---------------|--|
|                                   | DAP<br>(cm) | H (m)                                                       | AB<br>(m²/ha) | DAP<br>(cm) | H (m)                                                       | AB<br>(m²/ha) |  |
| Média                             | 11,367      | 9,624                                                       | 30,645        | 19,637      | 14,995                                                      | 26,382        |  |
| Variância (S²)                    | 4,4830      | 3,7465                                                      | 44,0278       | 6,8058      | 7,4980                                                      | 42,3931       |  |
| Desvio Padrão (S)                 | 2,1173      | 1,9356                                                      | 6,6353        | 2,6088      | 2,7383                                                      | 6,5110        |  |
| Suficiência Amostra<br>(parcelas) | al 3,94     | 4,59                                                        | 5,32          | 2,00        | 3,78                                                        | 6,90          |  |
| Erro Encontrado (%)               | 9,90        | 10,69                                                       | 11,51         | 7,06        | 9,71                                                        | 13,12         |  |

DAP: diâmetro à altura do peito (1,30 m) médio; H: altura média; AB: área basal por hectare.

### 4.3. Resultados do Levantamento Complementar

O levantamento florístico realizado através do método do caminhamento com extensão total de 2.582 metros, registrou 194 morfoespécies reunidas em 62 famílias botânicas, tendo sido identificadas 169 no nível de espécie, 21 no nível de gênero e quatro (04) no nível de família. Entre as identificadas no nível de espécie, 12 não tinham todos os caracteres morfológicos presentes para um diagnóstico definitivo, sendo identificadas através de caracteres vegetativos e ecológicos. Em relação ao hábito, 22 morfoespécies apresentam hábito herbáceo (11,34%), 23 apresentam hábito lianoso (11, 85%), seis apresentam hábito hemiepifítico (3,09%), 32 hábito epifítico (16,49%), 39 hábito arbustivo (20,10%) e 72 hábito arbóreo (37,11%) (Tabela 11).

Tabela 11. Listagem das morfoespécies encontradas no levantamento florístico da área de ampliação retroportuária do Porto Itapoá e seus respectivos hábitos e graus de conservação, Município de Itapoá, SC. NE = não existente no cadastro de espécies ameaçadas; LC = pouco preocupante; VU = vulnerável; RE = ameaçada segundo Resolução CONAMA 261/1999; NT = guase ameacada segundo CFC Flora.

| Família                                 | Espécie                      | Hábito | Status |
|-----------------------------------------|------------------------------|--------|--------|
| Acanthaceae                             | Justicia sp.                 | Erva   |        |
| Anacardiaceae                           | Tapirira guianensis Aublet   | Árvore | NE     |
| Annonaceae                              | Annona cacans Warm.          | Árvore | LC     |
| Annonaceae                              | Annona neosericea H.Rainer   | Árvore | NE     |
| Annonaceae Guatteria australis A.StHil. |                              | Árvore | NE     |
| Annonaceae                              | Xylopia brasiliensis Spreng. | Árvore | NE     |
| Apocynaceae                             | Aspidosperma sp. 01          | Árvore |        |
| Apocynaceae                             | Aspidosperma sp. 02          | Árvore |        |
| Aquifoliaceae                           | Ilex dumosa Reissek          | Árvore | NE     |
| Aquifoliaceae                           | Ilex theezans Mart.          | Árvore | NE     |

Revisão Flora - 28 -

| Família          | Hábito                                            | Status      |    |
|------------------|---------------------------------------------------|-------------|----|
| Araceae          | Anthurium pentaphyllum (Aubl.) G.Don              | Hemiepífita | NE |
| Araceae          | Anthurium scandens (Aubl.) Engl.                  | Hemiepífita | NE |
| Araceae          | Monstera adansonii Schott                         | Hemiepífita | NE |
| Araceae          | Philodendron bipinnatifidum Schott                | Hemiepífita | NE |
| Araceae          | Philodendron corcovadense Kunth                   | Hemiepífita | NE |
| Araceae          | Philodendron crassivervium Lindl.                 | Hemiepífita | NE |
| Araliaceae       | Dendropanax australis Fiaschi & Jung-Mend.        | Árvore      | NE |
| Araliaceae       | Schefflera angustissima (Marchal) Frodin          | Árvore      | NE |
| Arecaceae        | Attalea dubia (Mart.) Burret                      | Árvore      | NE |
| Arecaceae        | Bactris setosa Mart.                              | Arbusto     | NE |
| Arecaceae        | Euterpe edulis M.                                 | Árvore      | VU |
| Arecaceae        | Geonoma gamiova Barb. Rodr.                       | Arbusto     | NE |
| Arecaceae        | Geonoma schottiana Mart.                          | Arbusto     | NE |
| Arecaceae        | Syagrus romanzoffiana (Cham.) Glassman            | Árvore      | NE |
| Aristolochiaceae | Aristolochia sp.                                  | Liana       |    |
| Asteraceae       | Mikania cordifolia (L.F.) Willd.                  | Liana       | NE |
| Asteraceae       | Mikania sp.                                       | Liana       |    |
| Asteraceae       | Mikania vitifolia DC.                             | Liana       | NE |
| Asteraceae       | Vernonanthura tweedieana (Baker) H. Rob.          | Erva        | NE |
| Bignoniaceae     | Arrabidea sp.                                     | Liana       |    |
| Bignoniaceae     | oniaceae Handroanthus heptaphyllus (Mart.) Mattos |             | NE |
| Bignoniaceae     | pniaceae Handroanthus umbellatus (Sond.) Sandwith |             | NE |
| Bignoniaceae     | aceae Jacaranda puberula Cham.                    |             | NE |
| Blechnaceae      | chnaceae Blechnum serrulatum Rich.                |             | NE |
| Boraginaceae     | Cordia silvestris Fresen.                         | Árvore      | NE |
| Bromeliaceae     | Aechmea caudata Lindm.                            | Epífita     | NE |
| Bromeliaceae     | Aechmea nudicaulis (L.) Griseb.                   | Epífita     | NE |
| Bromeliaceae     | Aechmea pectinata Baker                           | Epífita     | RE |
| Bromeliaceae     | Edmundoa lindenii (Regel) Leme                    | Epífita     | NE |
| Bromeliaceae     | Neoregelia laevis (Mez) L.B. Sm.                  | Epífita     | NE |
| Bromeliaceae     | Nidularium innocentii Lem.                        | Erva        | NE |
| Bromeliaceae     | Nidularium procerum Lindm.                        | Epífita     | NE |
| Bromeliaceae     | Tillandsia stricta Sol.                           | Epífita     | NE |
| Bromeliaceae     | Vriesea carinata Wawra                            | Epífita     | NE |
| Bromeliaceae     | Vriesea flammea L. B. Sm.                         | Epífita     | NE |
| Bromeliaceae     | Vriesea gigantea Mart. ex Schult. f.              | Epífita     | NE |
| Bromeliaceae     | Vriesea incurvata Gaudich.                        | Epífita     | NE |
| Bromeliaceae     | Vriesea philippocoburgi Wawra                     | Epífita     | NE |
| Bromeliaceae     | Vriesea platynema Gaudich.                        | Epífita     | NE |
| Bromeliaceae     | Vriesea rodigasiana E.Morren                      | Epífita     | NE |

Revisão Flora - 29 -

| Família         | Hábito                                            | Status  |    |
|-----------------|---------------------------------------------------|---------|----|
| Bromeliaceae    | Vriesea vagans (L. B. Sm.) L. B. Sm.              |         | NE |
| Bromeliaceae    | Wittrockia cf. cyathiformis (Vell.) Leme          | Epífita | NE |
| Cactaceae       | Rhipsalis pachyptera Pfeiff.                      | Epífita | NE |
| Celastraceae    | Maytenus cassineiformis Reissek                   | Arbusto | NE |
| Chloranthaceae  | Hedyosmum brasiliensis Miq.                       | Arbusto | NE |
| Clethraceae     | Clethra scabra Pers.                              | Árvore  | NE |
| Clusiaceae      | Calophyllum brasiliense Cambess.                  | Árvore  | NE |
| Clusiaceae      | Clusia criuva Cambess.                            | Árvore  | NE |
| Clusiaceae      | Garcinia gardneriana (Planch. & Triana) Zappi     | Arbusto | NE |
| Combretaceae    | Buchenavia kleinii Exell                          | Árvore  | NE |
| Commelinaceae   | Dichorisandra hexandra (Aubl.) Standl.            | Erva    | NE |
| Costaceae       | Costus spiralis (Jacq.) Roscoe                    | Erva    | NE |
| Cyatheaceae     | Cyathea phalerata Mart.                           | Árvore  | NE |
| Cyperaceae      | Cyperaceae sp.                                    | Erva    |    |
| Cyperaceae      | Rhynchospora sp.                                  | Erva    |    |
| Cyperaceae      | Scleria secans (L.) Urb.                          | Liana   | NE |
| Dilleniaceae    | Davilla rugosa Poir.                              | Liana   | NE |
| Dilleniaceae    | Doliocarpus cf. glomeratus Eichl.                 | Liana   | NE |
| Dilleniaceae    | Tetracera sp.                                     | Liana   |    |
| Dioscoreaceae   | Dioscorea sp. 01                                  | Liana   |    |
| Dioscoreaceae   | Dioscorea sp. 02                                  | Liana   |    |
| Elaeocarpaceae  | Sloanea guianensis (Aubl.) Benth.                 |         | NE |
| Erythroxylaceae | ceae Erythroxylum argentinum O.E.Schulz           |         | NE |
| Euphorbiaceae   | aceae Alchornea triplinervia (Spreng.) Müll. Arg. |         | NE |
| Euphorbiaceae   | Croton macrobothrys Baill.                        | Árvore  | NE |
| Euphorbiaceae   | Sapium glandulosum (L.) Morong                    | Árvore  | NE |
| Fabaceae        | Andira fraxinifolia Benth.                        | Árvore  | NE |
| Fabaceae        | Dioclea violacea Mart. ex Benth.                  | Liana   | NE |
| Fabaceae        | Inga edulis Mart.                                 | Árvore  | NE |
| Fabaceae        | Ormosia arborea (Vell.) Harms                     | Árvore  | NE |
| Fabaceae        | Platymiscium floribundum Vogel                    | Árvore  | NE |
| Fabaceae        | Senegalia bonariensis (Gillies ex Hook. & Arn.)   | Liana   | NE |
|                 | Seigler & Ebinger                                 |         |    |
| Gesneriaceae    | Codonanthe devosiana Lem.                         | Epífita | NE |
| Gleicheniaceae  | Gleichenella pectinata (Willd.) Ching             | Erva    | NE |
| Lauraceae       | Aiouea saligna Meisn.                             | Árvore  | NE |
| Lauraceae       | Aniba firmula (Nees & Mart. ex Nees) Mez          | Árvore  | NE |
| Lauraceae       | Endlicheria paniculata (Spreng.) J. F. Macbr.     | Árvore  | NE |
| Lauraceae       | Nectandra membranacea (Sw.) Griseb.               | Árvore  | NE |
| Lauraceae       | Nectandra oppositifolia Nees & Mart.              | Árvore  | NE |

Revisão Flora - 30 -

| Família         | Hábito                                         | Status  |    |
|-----------------|------------------------------------------------|---------|----|
| Lauraceae       | Ocotea aciphylla (Nees) Mez                    | Árvore  | NE |
| Lauraceae       | Ocotea dispersa (Nees & Mart.) Mez             | Árvore  | NE |
| Lauraceae       | Ocotea indecora (Shott) Mez                    | Árvore  | NE |
| Lauraceae       | Ocotea lanata (Nees & Mart.) Mez               | Árvore  | NE |
| Lauraceae       | Ocotea puberula (Rich.) Nees                   | Árvore  | NE |
| Lauraceae       | Ocotea pulchela (Nees) Mez                     | Árvore  | NE |
| Lauraceae       | Ocotea teleiandra (Meisn.) Mez                 | Árvore  | NE |
| Malpighiaceae   | Bryrsonima ligustrifolia A.Juss.               | Arbusto | NE |
| Malpighiaceae   | Heteropterys sp.                               | Liana   |    |
| Malpighiaceae   | Niedenzuella sp.                               | Liana   |    |
| Malvaceae       | Pseudobombax grandiflorum (Cav.) A. Robyns     | Árvore  | NE |
| Marantaceae     | Calathea monophylla (Vell.) Koernicke          | Erva    | NE |
| Marantaceae     | Ctenanthe muelleri Petersen                    | Erva    | NE |
| Marantaceae     | Maranta arundinacea L.                         | Erva    | NE |
| Melastomataceae | Huberia semiserrata DC.                        | Árvore  | NE |
| Melastomataceae | Miconia cabucu Hoehne                          | Árvore  | NE |
| Melastomataceae | Miconia cinerascens Miq.                       | Arbusto | NE |
| Melastomataceae | Miconia pussiliflora (DC.) Naudin              | Arbusto | NE |
| Melastomataceae | eae Ossaea cf. amygdaloides (DC.) Triana       |         | NE |
| Melastomataceae | Pleiochiton blepharodes (DC.) Reginato et al.  |         | LC |
| Melastomataceae | ae Tibouchina pulchra Cogn.                    |         | NE |
| Melastomataceae | Tibouchina sp.                                 | Arbusto |    |
| Meliaceae       | iaceae Cabralea canjerana (Vell.) Mart.        |         | NE |
| Meliaceae       | Meliaceae Guarea macrophylla Vahl.             |         | NE |
| Menispermaceae  | Hyperbaena domingensis (DC.) Benth.            | Liana   | NE |
| Monimiaceae     | Mollinedia schottiana (Spreng.) Perkins        | Arbusto | NE |
| Monimiaceae     | Mollinedia triflora (Spreng.) Tul.             | Arbusto | NE |
| Moraceae        | Ficus cestrifolia Schott                       | Árvore  | NE |
| Moraceae        | Ficus gomelleira Kunth & C.D. Bouché           | Árvore  | NE |
| Moraceae        | Ficus luschnatiana (Miq.) Miq.                 | Árvore  | NE |
| Myrtaceae       | Calyptranthes grandifolia O.Berg               | Árvore  | NE |
| Myrtaceae       | Calyptranthes lucida Mart. ex DC.              | Árvore  | NE |
| Myrtaceae       | Eugenia umbelliflora O.Berg.                   | Árvore  | NE |
| Myrtaceae       | Marlierea eugeniopsoides (D. Legrand & Kausel) | Árvore  | NE |
|                 | D. Legrand                                     |         |    |
| Myrtaceae       | Marlierea reitzii D.Legrand                    | Arbusto | RE |
| Myrtaceae       | Marlierea tomentosa Cambess.                   | Arbusto | NE |
| Myrtaceae       | Myrcia brasiliensis Kiaersk.                   | Arbusto | NE |
| Myrtaceae       | Myrcia multiflora (Lam.) DC.                   | Arbusto | NE |
| Myrtaceae       | Myrcia pubipetala Miq.                         | Arbusto | NE |

Revisão Flora - 31 -

| Família        | amília Espécie                                 |         |    |  |
|----------------|------------------------------------------------|---------|----|--|
| Myrtaceae      | Myrcia racemosa (O.Berg) Kiaersk.              | Arbusto | NE |  |
| Myrtaceae      | Myrcia spectabilis DC.                         | Arbusto | NE |  |
| Myrtaceae      | Myrcia tijucensis Kiaersk.                     | Arbusto | NE |  |
| Myrtaceae      | Neomitranthes cordifolia (D.Legrand) D.Legrand | Árvore  | VU |  |
| Myrtaceae      | Psidium cattleyanum Sabine                     | Árvore  | NE |  |
| NI             | Pteridófita 01                                 | Erva    |    |  |
| NI             | Pteridófita 02                                 | Erva    |    |  |
| Nyctaginaceae  | Guapira opposita (Vell.) Reitz                 | Arbusto | NE |  |
| Ochnaceae      | Ouratea parviflora (DC.) Baill.                | Arbusto | NE |  |
| Orchidaceae    | Catasetum cf. atratum Lindl.                   | Epífita | NT |  |
| Orchidaceae    | Epidendrum cf. rigidum Jacq.                   | Epífita | NE |  |
| Orchidaceae    | Eurystiles cotiledon Wawra                     | Epífita | NE |  |
| Orchidaceae    | Gomesa flexuosa (Sims) M.W.Chase &             | Epífita | NE |  |
|                | N.H.Williams                                   |         |    |  |
| Orchidaceae    | Isochillus linearis (Jacq.) R.Br.              | Epífita | NE |  |
| Orchidaceae    | Notylia sp.                                    | Epífita |    |  |
| Orchidaceae    | Octomeria crassifolia Lindl.                   | Epífita | NE |  |
| Orchidaceae    | Ornithocephalus myrticola Lindl.               | Epífita | LC |  |
| Orchidaceae    | Phymatidium delicatulum Lindl.                 | Epífita | NE |  |
| Orchidaceae    | Pleurothallis sp.                              | Epífita |    |  |
| Orchidaceae    | Polystachya concreta (Jacq.) Garay & H.R.Sweet | Epífita | NE |  |
| Orchidaceae    | Prosthechea fausta (Rchb.f. ex Cogn.)          | Epífita | NE |  |
|                | W.E.Higgins                                    |         |    |  |
| Orchidaceae    | Prosthechea fragrans (Sw.) W.E.Higgins         | Epífita | NE |  |
| Peraceae       | Pera glabrata (Schott) Poepp. ex Baill.        | Árvore  | NE |  |
| Phyllanthaceae | Hieronyma alchorneoides Allemão                | Arbusto | NE |  |
| Piperaceae     | Peperomia sp.                                  | Epífita |    |  |
| Piperaceae     | Piper aduncum L.                               | Erva    | NE |  |
| Piperaceae     | Piper cernuum Vell.                            | Erva    | NE |  |
| Piperaceae     | Piper gaudichaudianum Kunth                    | Erva    | NE |  |
| Piperaceae     | Piper umbellatum L.                            | Erva    | NE |  |
| Poaceae        | Merostachys cf. ternata Nees                   | Erva    | NE |  |
| Polypodiaceae  | Microgramma squamulosa (Kaulf.) de la Sota     | Liana   | NE |  |
| Polypodiaceae  | Microgramma vacciniifolia (Langsd. & Fisch.)   | Liana   | NE |  |
|                | Copel.                                         |         |    |  |
| Polypodiaceae  | Polypodium sp.                                 | Erva    |    |  |
| Primulaceae    | Myrsine coriacea (Sw.) R.Br.                   | Árvore  | NE |  |
| Primulaceae    | Myrsine hermogenesii (Jung-Mendaçolli &        | Árvore  | NE |  |
|                | Bernacci) Freitas & Kinoshita                  |         |    |  |
| Primulaceae    | Myrsine venosa A.DC.                           | Árvore  | NE |  |

Revisão Flora - 32 -

| Família      | Espécie                                                  | Hábito  | Status |
|--------------|----------------------------------------------------------|---------|--------|
| Pteridaceae  | Pteridium arachnoideum (Kaulf.) Maxon                    | Erva    | NE     |
| Rubiaceae    | Amaioua intermedia Mart.                                 | Arbusto | NE     |
| Rubiaceae    | Faramea montevidensis (Cham. & Schltdl.) DC.             | Arbusto | NE     |
| Rubiaceae    | Posoqueria latifolia (Rudge) Roem. & Schult.             | Árvore  | LC     |
| Rubiaceae    | Psychotria hastisepala Müll. Arg.                        | Arbusto | NE     |
| Rubiaceae    | Psychotria leiocarpa Cham. & Schltdl.                    | Arbusto | NE     |
| Rubiaceae    | Rudgea cf. coriacea (Spreng.) K.Schum.                   | Arbusto | NE     |
| Rubiaceae    | Rudgea parkioides (Cham.) Müll.Arg.                      | Arbusto | NE     |
| Salicaceae   | Casearia sylvestris Sw.                                  | Árvore  | NE     |
| Salicaceae   | Xylosma prockia (Turcz.) Turcz.                          | Árvore  | NE     |
| Sapindaceae  | Cupania cf. oblongifolia Mart.                           | Árvore  | NE     |
| Sapindaceae  | Matayba guianensis Aubl.                                 | Árvore  | NE     |
| Sapindaceae  | Serjania cf. gracilis Radlk.                             | Liana   | NE     |
| Sapindaceae  | aceae Serjania cf. laruotteana Cambess                   |         | NE     |
| Sapotaceae   | Chrysophyllum sp.                                        | Árvore  |        |
| Sapotaceae   | Sapotaceae Chrysophyllum viride Mart. & Eichler          |         | NT     |
| Sapotaceae   | Sapotaceae Pouteria beaurepairei (Glaz. & Raunk.) Baehni |         | LC     |
| Smilacaceae  | Smilax quinquenervia Vell.                               | Liana   | NE     |
| Smilacaceae  | Smilax sp.                                               | Liana   |        |
| Solanaceae   | Brunfelsia pauciflora (Chamisso & Schlechtendal)         | Arbusto | NE     |
|              | Bentham                                                  |         |        |
| Solanaceae   | Cestrum cf. amictum Schlechtendal                        | Arbusto | NE     |
| Solanaceae   | Cestrum sp.                                              | Arbusto |        |
| Solanaceae   | Solanum pseudoquina A. StHill.                           | Árvore  | LC     |
| Solanaceae   | Solanum sp. 01                                           | Árvore  |        |
| Solanaceae   | Solanum sp. 02                                           | Arbusto |        |
| Symplocaceae | Symplocos trachycarpa Brand                              | Arbusto | NE     |
| Symplocaceae | Symplocos uniflora (Pohl) Benth.                         | Arbusto | NE     |
| Theaceae     | Laplacea fruticosa (Schrad.) Kobuski                     | Arbusto | LC     |
| Urticaceae   | Cecropia glaziovii Snethl.                               | Árvore  | NE     |
| Urticaceae   | Coussapoa microcarpa (Schott) Rizinni                    | Árvore  | NE     |

Em relação ao grau de conservação das espécies registradas no caminhamento, foram encontradas quatro espécies ameaçadas de extinção (*Aechmea pectinata, Euterpe edulis, Neomitranthes cordifolia, Marlierea reitziiI*). O detalhamento do *status* de conservação de cada espécie é citado a seguir:

 Aechmea pectinata: é espécie abundante em sua ampla área de distribuição e tem em Santa Catarina seu limite austral. Por este motivo, foi considerada "Rara" por

Revisão Flora - 33 -

- Klein (1990) em relação à flora do estado e é considerada ameaçada pela Resolução CONAMA Nº 261/1999. De acordo com dados do CNC FLORA (2015), é considerada como "Menos Preocupante" (LC), por ocorrer em áreas protegidas e pela ampla distribuição da espécie.
- Marlierea reitzii: é espécie de ampla distribuição e, assim como a anterior, tem em Santa Catarina seu limite austral. Foi considerada "Rara" por Klein (1990) em relação à flora do estado e é considerada ameaçada pela Resolução CONAMA 261/1999. De acordo com dados do CNC FLORA (2015), é considerada como "Menos Preocupante" (LC).
- Neomitranthes cordifolia: é espécie de distribuição limitada às restingas e florestas de terras baixas, locais de intensa ocupação antrópica. Consta como ameaçada de extinção "Em perigo" em Klein (1990) e é tida como "Vulnerável" pelo CNC FLORA (2015) devido à perda de habitat. A espécie consta, inclusive, em MMA (2014), listagem recente de espécies ameaçadas de extinção baseadas em Martinelli & Moraes (2013).
- Euterpe edulis: é espécie de ampla distribuição e muito abundante onde ocorre.
  Contudo, tem sido intensamente explorada comercialmente e tem suas populações bastante reduzidas. É considerada como "Vulnerável" pelo CNC FLORA (2015) e consta como ameaçada em MMA (2008). Só é encontrado na área em solos mais enxutos (Figura 7).



Figura 7. Agrupamento de palmito na Coordenada 22J 0739294 / 7102249 da área de ampliação retroportuária do Porto Itapoá, SC.

Revisão Flora - 34 -

Outras espécies ameaçadas de extinção, de ocorrência na região, podem ocorrer na área do empreendimento, no entanto, elas não foram registradas na amostragem. Entre elas, estão *Heliconia farinosa* Raddi e *Ocotea odorifera* (Vell.) Rohwer, ambas espécies ameaçadas de extinção que constam em MMA (2008). Contudo, a primeira é classificada como "Pouco preocupante" pelo CNC FLORA (2015), enquanto a segunda é apresentada como "Em perigo" (EN). *Heliconia farinosa* pode ser confundida com outras espécies de caetés quando estéril. Durante a coleta de dados os caetés estavam estéreis mas algumas infrutescências em decomposição foram encontradas indicando que parte dos caetés tratavam-se na realidade de *Calathea monophylla* (Figura 8). No entanto, isto não significa que a espécie não ocorra na área ou que não esteja entre o restante dos caetés, apenas não apresentava caracteres diagnósticos suficientes.





Figura 8. Estrato herbáceo dominado por caetés (esquerda) e detalhe de *Calathea monophylla* com a infrutescência em decomposição (direita) na área de ampliação retroportuária do Porto Itapoá, SC.

Ao longo do caminhamento foram observadas as características qualitativas das parcelas instaladas para o inventário florestal de forma a complementar as informações apresentadas no documento. As parcelas não apresentavam delimitações claras, sendo a localização feita através de coordenadas. Localmente havia apenas marcações com fita zebrada em dois dos vértices, o que dificultou a delimitação no campo.

A vegetação no interior da mata, tanto na sua fitofisionomia, quanto na sua florística, apresenta bastante uniformidade, variando em alguns locais em função do histórico da área e do grau de saturação de umidade do solo, fatores relacionados devido à presença de um canal de drenagem que corta a área transversalmente. Contudo, recentemente, diversas clareiras foram abertas no interior da mata, provavelmente efeito de ventos fortes ocorridos na região, uma vez que muitas árvores emergentes encontravam-se caídas arrancadas pelas raízes (Figura 9).

Revisão Flora - 35 -





Figura 9. Raízes de *Calophylum brasiliense* (guanandi) suspensas após queda da árvore deixando solo lodoso exposto (esquerda) e clareira aberta pela queda da árvore (direita) na área de ampliação retroportuária do Porto Itapoá, SC.

Em relação às parcelas, todas apresentavam predomínio do estrato arbóreo e demais estratos bastante distintos, podendo-se dividir toda a área em estrato herbáceo, arbustivo e arbóreo, com árvores emergentes em alguns locais. A Tabela 12 apresenta um resumo das características qualitativas.

No que diz respeito às lianas da formação florestal estudada, grande parte dessa forma biológica são herbáceas, sendo registrado com alta diversidade e abundância na maioria das áreas, exceto para região das parcelas 09 e 11. Já as epífitas foram abundantes e diversas nas parcelas 04, 05, 06, 07 e 13. Para a serapilheira, de maneira geral, a região onde os solos se encontravam saturados pela água, a estrutura da serapilheira é mais fina devido à alta decomposição (parcelas 01, 02, 09, 11 e 13). Ao passo que, em solos mais secos, a serapilheira encontra-se mais espessa (parcelas 04, 05, 06 e 07).

Tabela 12. Parcelas do inventário florestal averiguadas em função das características qualitativas na área de ampliação retroportuária do Porto Itapoá, SC. P = parcela; Div. Ap. = diversidade de epífitas; Ab. Ep. = abundância de epífitas; Div. Li. = diversidade de lianas; Ab. Li. = abundância de lianas.

| Parcela | Div.<br>Ep. | Ab. Ep. | Div. Li. | Ab. Li. | Serapilheira                     | Característica<br>principal |
|---------|-------------|---------|----------|---------|----------------------------------|-----------------------------|
| 01      | Baixa       | Baixa   | Alta     | Alta    | mais fina – Alta<br>decomposição | Clareira recente            |
| 02      | Média       | Média   | Alta     | Alta    | mais fina – Alta<br>decomposição | Clareira recente            |
| 04      | Alta        | Alta    | Alta     | Alta    | mais espessa –<br>solo enchuto   | Dossel fechado              |
| 05      | Alta        | Alta    | Alta     | Alta    | mais espessa –<br>solo enchuto   | Clareira recente            |
| 06      | Alta        | Alta    | Alta     | Alta    | mais espessa –<br>solo enchuto   | Dossel fechado              |
| 07      | Alta        | Alta    | Alta     | Alta    | mais espessa –<br>solo enchuto   | Dossel fechado              |

Revisão Flora - 36 -

| Parcela | Div.<br>Ep. | Ab. Ep. | Div. Li. | Ab. Li. | Serapilheira                     | Característica<br>principal |
|---------|-------------|---------|----------|---------|----------------------------------|-----------------------------|
| 09      | Baixa       | Baixa   | Baixa    | Baixa   | mais fina – Alta<br>decomposição | Solo encharcado             |
| 11      | Baixa       | Média   | Baixa    | Média   | mais fina – Alta<br>decomposição | Dossel fechado              |
| 13      | Alta        | Alta    | Alta     | Alta    | mais fina – Alta<br>decomposição | Dossel fechado              |

A Parcela 09 merece comentário à parte, uma vez que se localizava em local com camada freática superficial, o que pode ser responsável por uma mudança no perfil da comunidade. Neste local, o estrato arbustivo era dominado por *Marlierea tomentosa* e o estrato herbáceo por uma espécie de *Rhynchospora*, o que a distingue de outras parcelas.

Esta diferença nas características abióticas e da comunidade vegetal foi percebida em outros locais ao longo do levantamento florístico, sempre associada a mudanças no grau de saturação de umidade do solo.

## 5. DISCUSSÃO

Na avaliação fitossociológica da vegetação florestal remanescente da área de ampliação retroportuária do Porto Itapoá, foram reconhecidas a presença imponente da *Tapirira guianensis* (ALVES *et al.*, 2009; PORTO ITAPOÁ & ACQUAPLAN, 2013; 2015), situação confirmada através da reavaliação dos dados brutos. De acordo com Veloso *et al.* (1991) e Fleig, (1989), esta espécie exibe ampla distribuição com ocorrência uniforme na Floresta Ombrófila Densa de Terras Baixas.

Segundo Klein (1978), na vegetação primária ao longo do litoral norte catarinense, localizadas sobre as planícies quaternárias setentrionais, predominava um dos agrupamentos mais importantes desta floresta representados por *Tapirira guianensis*, *Ocotea odorifera*, *O. aciphylla*, *Nectandra oppositifolia*, *Callophyllum brasiliensis*, *Alchornea triplinervia* e *Ficus organensis*. O autor ainda afirma que esta formação vegetacional faz parte de uma das subáreas da Floresta Tropical Atlântica (também denominada Floresta Ombrófila Densa).

O *C. brasiliensis* também foi reconhecido na área com o sétimo e o nono maior valor de importância, para os estudos fitossociológicos de Alves *et al.* (2009) e PORTO ITAPOÁ & (2013; 2015), respectivamente. As espécies *O. aciphylla, N. oppositifolia* e *A. triplinervia*,

Revisão Flora - 37 -

também foram registradas para a área de estudo, porém, com valores de importância, cobertura e frequência menores. *C. brasiliensis* é uma das espécies reconhecidas por Veloso *et al.* (1991) com ampla distribuição e abundância para a Floresta Ombrófila Densa de Terras Baixas na Região Sul, sendo também reconhecida por Falkenberg (1999) como frequente em solos úmidos da Mata de Restinga na metade norte de Santa Catarina.

Na Floresta Ombrófila Densa de Terras Baixas as características do solo e o nível do lençol freático são preponderantes na determinação da fisionomia dessa formação, sendo que em solos de drenagem deficiente há o predomínio de *C. brasiliensis* no dossel da floresta, enquanto que em solos de melhor drenagem, esta espécie encontra-se praticamente ausente (LEITE, 1994; RODERJAN *et al.*, 2002).

Veloso & Klein (1961) descreveram as comunidades e associações vegetais da mata pluvial das Planícies Costeiras, situadas entre o rio Itapocú (Norte de Santa Catarina) e a baía de Paranaguá (PR). De acordo com estes autores, *Ocotea odorifera* (canelasassafrás), *Tapirira guianensis* (cupiúva), *Alchornea triplinervia* (tanheiro), *Matayba guianensis* (camboatá), *Ocotea aciphylla* (canela-amarela) e *Nectandra oppositifolia* (canela-amarela), em ordem decrescente, são as espécies que possuem as maiores densidades e frequências na floresta. Destas, *T. guianensis*, *O. aciphylla*, *O. odorifera*, *A. triplinervia*, são consideradas dominantes nas planícies por formarem a parte principal nos diversos estágios das associações.

Na caracterização da composição florística e fitossociológica de uma Floresta Ombrófila Densa de Planície Quaternária (também denominada Floresta Ombrófila Densa de Terras Baixas) no Município de Itapoá, Negrele (2006) reconheceu as espécies arbóreas *Tapirira guianensis* (cupiúva), *Aparisthmium cordatum* (pau-de-facho) e *Ocotea aciphylla* (canela-amarela) com os maiores valores de importância ecológico-estrutural.

Outra espécie que mereceu destaque no área de ampliação do Porto Itapoá foi *Pera glabrata* com a segundo e o sexto maior valor de importância para os estudos fitossociológicos de Alves *et al.* (2009) e PORTO ITAPOÁ & (2013; 2015), respectivamente. Segundo Jaster (1995), em locais com pouca perturbação na Floresta Ombrófila Densa de Terras Baixas na Ilha do Superagui - PR, são encontradas como as espécies mais importantes *P. glabrata* e *T. guianensis*. Na Restinga Arbórea, *P. glabrata*, juntamente com *Jacaranda puberula*, são reconhecidas com altos valores de importância

Revisão Flora - 38 -

e abundância em estudos fitossociológicos para o Sudeste brasileiro (CESAR & MONTEIRO, 1995; ASSIS, 1999).

No Estudo de Impacto Ambiental (EIA) para implementação da rodovia SC-280, trecho São Francisco do Sul – BR 101, realizado pela PROSUL (2009), foram analisados parâmetros fitossociológicos entre os remanescentes florestais situados nos municípios de São Francisco do Sul, Araquari e Balneário Barra do Sul. De acordo com este estudo, foram reconhecidas como as espécies de maior dominância e valor de importância: *Calophyllum brasiliense*, *Matayba guianensis* e *Guarea macrophyla* para a Floresta Ombrófila Densa de Terras Baixas; e *Ilex theazans*, *Ocotea pulchella*, *Andira fraxinifolia* para a Formação Pioneira de Origem Marinha (Restinga Arbórea).

A fitofisionomia da Floresta Pluvial da Planície Costeira (variação da denominação Floresta Ombrófila Densa de Terras Baixas) é caracterizada por Veloso & Klein (1961) pela existência de árvores entre 15 e 20 metros de altura em baixa densidade, permitindo que a luz do sol penetre o interior da mata, favorecendo o desenvolvimento de bromélias sobre o solo, com destaque para o gênero *Nidularium* formando muitas vezes um sub-bosque denso (Figura 10).





Figura 10. Solo coberto por bromélias terrícolas do gênero *Nidularium* no interior na área de ampliação do Porto Itapoá. Nota: A esquerda, registro fotográfico realizado durante o levantamento florístico complementar em junho de 2015. A direita, registro fotográfico extraído de PORTO ITAPOÁ & ACQUAPLAN (2013).

Cabe destacar que diversas espécies diagnosticadas nos estudos de Alves *et al.* (2009), PORTO ITAPOÁ & ACQUAPLAN (2013; 2015) e no levantamento florístico recentemente complementado, são também reconhecidas para a Floresta de Restinga, de acordo com Falkenberg (1999) e a respectiva Resolução do CONAMA Nº 261/1999: *Syagrus romanzoffianum* (coqueiro-jerivá); *Coussapoa microcarpa* (figueira); *Byrsonima ligustrifolia* (baga-de-pombo), *Ilex theezans, I. spp.* (caúnas), *Pera glabrata* (seca-

Revisão Flora - 39 -

ligeiro), Laplacea fruticosa (santa-rita), Posoqueria latifólia (baga-de-macaco); Sapium (pau-leiteiro), Cecropia glazioui (embaúba), Myrsine glandulosum umbellata (capororoca), Eugenia umbeliflora (baguaçu), Ormosia arbórea (pau-ripa), Handroanthus umbellatus (ipe-amarelo), Myrcia multiflora (guamirim), Huberia semiserrata (jacatirão), Clusia criuva (mangue-formiga), Myrcia spp. (guamirim), Psidium cattleyanum (araça), Alchornea triplinervia (tanheiro), Ocotea pulchella (canelinha-da-praia), Calophyllum brasiliense (olandi), Tapirira guianensis (cupiúva), Guapira opposita (maria-mole), Nectandra oppositifolia (canela-amarela), Nectandra megapotamica (canela-merda), Inga spp. (ingá), Jacaranda puberula (carobinha), Matayba guianensis (camboatá-branco), Geonoma spp. (gamiova); Aechmea spp., Vriesea spp., Nidularium innocentii, Polypodium spp., Blechnum spp. (e outras samambaias terrícolas); Heliconia velloziana (caeté), Faramea spp., Psychotria spp. (grandiúva-d'anta), Rudgea spp.

Dessa forma, pode ser reconhecida uma grande semelhança entre a composição florística entre as duas diferentes fitofisionomias. Contudo, espera-se que a fitofisionomia predominante deverá ser dada pelas espécies dominantes e pelos agrupamentos formadas entre as mesmas. Coutinho (2006) afirma que diferentes fitofisionomias são dependentes do predomínio ou da proporção das diferentes formas de vida que as compões, assim como a sua densidade, entre outras características.

A partir da avaliação dos dados existentes até o momento, fundamentado nos quatro levantamentos realizados, leva-se ao entendimento que a vegetação remanescente da área de ampliação do Porto Itapoá possui estrutura fitossociológica e florística muito semelhante a uma autêntica Floresta Ombrófila Densa de Terras Baixas (VELOSO & KLEIN, 1961; KLEIN, 1978; 1984; FLEIG, 1989; VELOSO *et al.*, 1991; IBGE 1992; LEITE, 1994; JASTER, 1995; RODERJAN *et al.*, 2002; NEGRELLE, 2006; PROSUL, 2009). Por outro lado, a similaridade florística com a Resolução CONAMA Nº 261/1999, demonstra indícios de uma Transição de Floresta Ombrófila Densa de formação Terras Baixas – Restinga Arbórea.

Assis et al. (2011) afirmam que os solos provenientes de processos pedogênicos distintos funcionam como um filtro ambiental, sendo importante para descriminar diferenças entre a composição da Floresta Ombrófila Densa de Terras Baixas e a Restinga Arbórea. Nesse sentido, as informações contidas no estudo pedológico do EIA da Ampliação da Retroárea do Porto Itapoá podem corroborar para o entendimento da fitofisionomia predominante. De acordo com o referido estudo, na maior parte da área de ampliação do Porto ocorrem

Revisão Flora - 40 -

solos essencialmente hidromórficos, como Gleissolos Melânicos e Organossolos Hálico (15,93 e 2,63 hectares, respectivamente), que podem ter sua gênese explicada pela existência de um ambiente estuarino que favoreceu a deposição material argiloso, provavelmente, proveniente da Serra do Mar. Enquanto, solos Espodossolo Humilúvico (11,33 hectares) têm sua origem vinculada à deposição de materiais mais grosseiros, de origem marinha. Dessa forma, Gleissolos e Organossolos estão mais associados a uma Floresta Ombrófila Densa de Terras Baixas, ao passo que, Espodossolos à Restinga.

Em relação à caracterização dos estágios sucessionais a partir dos diferentes cenários realizados, pode-se verificar que a comunidade florestal apresenta uma estrutura etária distinta entre os dois critérios de inclusão de indivíduos, com destaque, principalmente, para DAP, altura e densidade de indivíduos por hectare.

No critério de inclusão de indivíduos com DAP mínimo de 10 (dez) cm, todas as parcelas do PORTO ITAPOÁ & ACQUAPLAN (2013; 2015) apresentam parâmetros dendrométricos reconhecidos como estágio avançado de regeneração para a Floresta Ombrófila Densa (CONAMA Nº 04/1994). Entretanto, é importante ressaltar que, a inclusão de DAP mínimo de 10 (dez) cm para inventários florestais é comumente utilizados em estudos para o Domínio Amazônico (IN 05/2006 MMA; BALLÉ *et al.*, 2014; OLIVEIRA *et al.*, 2014), sendo que para o Domínio Atlântico no Estado de Santa Catarina, o nível de inclusão do DAP deve ser igual ou superior a 4 (quatro) cm (IN 23/2010 FATMA; IN 24/2010 FATMA), uma vez que inventaria indivíduos arbóreas regenerantes.

Na aplicação da Resolução do CONAMA Nº 417/2009 com o critério de inclusão do DAP mínimo de 4 (quatro) cm, indicam que somente as parcelas 01, 14, 15 e 16 do PORTO ITAPOÁ & ACQUAPLAN (2013; 2015) enquadram-se em estágio sucessional avançado de regeneração, considerando os dados de DAP e Altura. Os valores dendrométricos e a localização destas parcelas PORTO ITAPOÁ & ACQUAPLAN (2013; 2015) apresentam semelhança com algumas das parcelas do estudo de Alves *et al.* (2009).

Para os dados qualitativos de regeneração da área, pode-se afirmar que toda a vegetação avaliada, predomina o estrato arbóreo e a fisionomia florestal. Para as epífitas, a diversidade e abundância é alta nas parcelas do inventário PORTO ITAPOÁ & ACQUAPLAN (2013; 2015), com números 04, 05, 06, 07 e 13, ao passo que as lianas foram abundantes e diversas nas parcelas 01, 02, 04, 05, 06 e 13. A serapilheira é abundante e não chega a formar camadas espessas por se apresentar em constante decomposição, provavelmente devido à alta umidade do solo, exceto nas parcelas 04,

Revisão Flora - 41 -

05, 06 e 07 do referido estudo. Do ponto de vista qualitativo, é possível que estas áreas estejam em estágio avançado de regeneração com algumas características de clímax edáfico, uma vez que o fator limitante para o desenvolvimento da comunidade parece ser a frequência de inundação do solo.

## 6. CONCLUSÕES

A Floresta Ombrófila Densa de Terras Baixas, assim como a Restinga, ocorre sobre solos arenosos de origem quaternária. Contudo, a Floresta Ombrófila Densa de Terras Baixas desenvolve-se nas planícies costeira interna e mais antiga, que proporciona uma tipologia vegetacional mais evoluída e homogênea do que as Formações Pioneiras.

Tanto na Fisionomia da Restinga Arbórea como na Floresta Ombrófila Densa de Terras Baixas ocorrem muitas espécies em comum, porém, ambas possuem processos pedogênicos, sucessão vegetal, diversidade, uniformidade, dominância e associações de espécies distintas.

Considerando os dados disponíveis até o presente momento, fundamentado em quatro levantamentos de campo realizados na área de estudo, entende-se que a vegetação remanescente da área de ampliação do Porto Itapoá possui estrutura fitossociológica e florística de uma autêntica Floresta Ombrófila Densa de Terras Baixas. Por outro lado, a similaridade florística com a Restinga Arbórea demonstra indícios de uma fitofisionomia transicional.

A caracterização dos estágios sucessionais a partir dos diferentes cenários remete a uma comunidade florestal com a estrutura etária distinta considerando os dois critérios de inclusão de indivíduos na amostragem.

No critério de inclusão de indivíduos com DAP mínimo de 10 (dez) cm, a área de ampliação do Porto é reconhecida como estágio avançado de regeneração para a Floresta Ombrófila Densa. Contudo, para o Domínio Atlântico no Estado de Santa Catarina, o nível de inclusão comumente utilizado é do DAP maior ou igual a 4, abrangendo indivíduos arbóreas regenerantes.

No critério de inclusão de indivíduos com DAP mínimo de 4 (quatro) cm, a área de ampliação do Porto Itapoá é reconhecido um mosaico sucessional com estágios médio e

Revisão Flora - 42 -

avançado de regeneração para a Transição Floresta Ombrófila Densa Terras Baixas –

Restinga Arbórea.

Para os dados qualitativos de regeneração da vegetação remanescente do Porto Itapoá,

diversas áreas encontram-se em estágio avançado de regeneração com algumas

características de clímax edáfico.

Com relação às espécies ameaçadas de extinção, Neomitranthes cordifolia (D.Legrand)

D.Legrand consta como ameaçada de extinção em Martinelli & Moraes (2013) e MMA

(2014), sendo considerada como "Vulnerável" pelo CNC FLORA (2015) devido à perda de

habitat. Euterpe edulis M. é considerada como "Vulnerável" pelo CNC FLORA (2015) e

consta como ameaçada em MMA (2008).

É o parecer.

Biól. Jonatha Alexandre Andrade Alves

MSc. Biologia Vegetal CRBio 43850-03D

Revisão Flora - 43 -

## 7. REFERÊNCIAS BIBLIOGRÁFICAS

ALVES, J. A. A.; BOURSCHEID, K.; WIESBAUER, M. B. 2009. Diagnóstico do Meio Biótico – Ecossistema Terrestre: Flora. Subsídio para o Estudo de Impacto Ambiental para Ampliação da Área Retroportuária da TECON Santa Catarina, Município de Itapoá. **Relatório Técnico**. Florianópolis, 20 de dez. de 2009. 60p.

ASSIS, M. A. 1999. Florística e caracterização das comunidades vegetais da planície costeira de Picinguaba, Ubatuba, SP. **Tese** (Doutorado em Biologia Vegetal) – Universidade Estadual de Campinas, Campinas. 250 p.

ASSIS, M.A.; PRATA, E.M.B.; PEDRONI, F.; SANCHEZ, M.; EISENLOHR, P.V.; MARTINS, F. R.; DOS SANTOS, F.A.M; TAMASHIRO, J.Y.; ALVES, L.F.; VIEIRA, S.A.; PICCOLO, M.C.; MARTINS, S.C.; CAMARGO, P.B.; CARMO, J.B.; SIMÕES, E.; MARTINELLI, L.A.; JOLY, C.A. 2011. Florestas de restinga e de terras baixas na planície costeira do sudeste do Brasil: vegetação e heterogeneidade ambiental. **Biota Neotrop**. 11 (2): http://www.biotaneotropica.org.br/v11n2/pt/abstract?article+bn02111022011

BALÉE, W.; SCHAAN, D.P.; WHITAKER, J. A.; HOLANDA, R. 2014. Florestas antrópicas no Acre: Inventário Florestal no Geoglifo Três Vertentes, Acrelândia. **Rev. Antropol**. (Online) 6 (1): p.140-169.

BRESOLIN, A. 1979. Flora da restinga da Ilha de Santa Catarina. Insula 10: 1-54.

CATHARINO, E. L. M.; METZGER, J. P. E ALVES, L. F. (Org.). 2004. Reserva do Morro Grande: Diagnóstico dos Meios Físico e Biótico. **Parecer Técnico**. 2004. 121p.

CÉSAR, O.; MONTEIRO, R. 1995. Florística e fitossociologia de uma floresta de restinga em Picinguaba, Parque Estadual da Serra do Mar, Município de Ubatuba, SP. **Naturalia** 20:89-105.

CNC FLORA – Centro Nacional de Conservação da Flora. 2015. Lista Vermelha. Disponível em: < http://cncflora.jbrj.gov.br/portal/pt-br/listavermelha>. Acessado em 23 de jun. 2015.

CONAMA - CONSELHO NACIONAL DO MEIO AMBIENTE. **Resolução Nº 04 de 4 de maio de 1994**. Define vegetação primária e secundária nos estágios inicial, médio e avançado

Revisão Flora - 44 -

de regeneração da Mata Atlântica, a fim de orientar os procedimentos de licenciamento de atividades florestais no Estado de Santa Catarina. Brasília.

CONAMA - CONSELHO NACIONAL DO MEIO AMBIENTE. **Resolução Nº 261 de 30 de junho de 1999**. Dispõe sobre os estágios sucessionais da restinga para o Estado de Santa Catarina. Brasília.

COTTAN, G. e CURTIS, J.T. 1956. The use of distance measures in phytosociological sampling. **Ecology** 37:451-460.

COUTINHO, L. M. 2006. O conceito de bioma. Acta bot. bras. 20(1): 13-23.

CULLEN Jr., L.; RUDRAN, R. & VALLADARES-PADUA, C (Org.). 2003. **Métodos de estudos em biologia da conservação e manejo da vida silvestre**. UFPR: Curitiba, 661p.

DURIGAN, G. 2003. **Métodos para análise de vegetação arbórea**. *In*. Métodos de estudos em biologia da conservação e manejo da vida silvestre. (L. Cullen Jr., R. Rudran & C. Valladares-Padua, org.). Editora da UFPR, Curitiba, p.455-479.

ENVI – Enviroment for Visualing Images. 2000. **Guia do ENVI em Português**. Sulsoft. Diponível em <www.sulsoft.com.br>. Acesso em 5 dez. 2007.

FATMA – FUNDAÇÃO DO MEIO AMBIENTE. 2001. **Mapa Fitogeográfico do Estado de Santa Catarina**. Diretoria de Estudos Ambientais, Gerências de Estudos e Pesquisas. Laboratório de Geoprocessamento.

FATMA – FUNDAÇÃO DO MEIO AMBIENTE. 2010. **Instrução Normativa 23**. Supressão de vegetação nativa em área rural. Versão abril de 2010.

FATMA – FUNDAÇÃO DO MEIO AMBIENTE. 2010. **Instrução Normativa 24**. Supressão de vegetação nativa em área rural. Versão abril de 2010.

FILGUEIRAS, T.S.; NOGUEIRA, P.E.; BROCHADO, A.L. & GUALA II, G.F. 1994. Caminhamento: um método expedito para levantamentos florísticos qualitativos. **Cadernos de Geociências** 12, p. 39-43.

Revisão Flora - 45 -

FLEIG, M. 1989. Anacardiáceas. In REITZ, R. Flora Ilustrada Catarinense. HBR, Itajaí.

GOTELLI, N & COLWELL, R. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. **Ecology Letters** 4: 379-391.

HAMMER, Ø.; HARPER, D. A. T; RYAN, P. D. 2001. PAST: Paleontological Statistics software package for education and data analysis. **Paleontologia Eletronica**, 4(1): 9pp.

IBGE - DEPARTAMENTO DE RECURSOS NATURAIS E ESTUDOS AMBIENTAIS. 1992. Manual Técnico da Vegetação Brasileira. Série manuais técnicos em geociências, número 1. Rio de Janeiro. 91p.

IBGE – INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. 2004a. **Mapa da Vegetação do Brasil**. Ministério do Planejamento, Orçamento e Gestão. Instituto Brasileiro de Geografia e Estatística. Diretoria de Geociências.

IBGE – INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. 2004b. **Vegetação**. Carta de Joinville. Ministério do Planejamento, Orçamento e Gestão. Instituto Brasileiro de Geografia e Estatística. Diretoria de Geociências.

IBGE – INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. 2008. **Mapa da Área de Aplicação da Lei no 11.428, de 2006**. Decreto nº 6.660, de 21 de novembro de 2008, publicado no Diário Oficial da União de 24 de novembro de 2008. *In press:* Diretoria de Geociências.

IBGE – INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. 2009. Mapa da Área de Aplicação da Lei no 11.428, de 2006. Recursos Naturais e Estudos Ambientais. Disponível em <a href="http://www.ibge.gov.br/home/geociencias/recursosnaturais/mapas\_doc6.sht">http://www.ibge.gov.br/home/geociencias/recursosnaturais/mapas\_doc6.sht</a>. Acesso 31 mar. de 2009.

JARENKOW, J.A. 1994. Estudo fitossociológico comparativo entre duas áreas com mata de encosta no Rio Grande do Sul. Tese doutorado, Universidade Federal de São Carlos, São Carlos.

JASTER, C. B. 1995. Análise Estrutural de Algumas Comunidades Florestais no Litoral do Estado do Paraná, na Área de Domínio da Floresta Ombrófila Densa – Floresta Atlântica.

Revisão Flora - 46 -

**Dissertação de Mestrado** (versão traduzida para a língua portuguesa). Forstwissenschaftlicher Fachbereich, Abt. Tropen-Subtropen. Georg-August-Universität Göttingen. Göttingen, Alemanha. 116 p.

KAC M.; LOGAN, J. 1976. *In:* **Fluctuation Phenomena**. MONTROLL E.W.; LEBOWITZ, J.L. (Coord.) North-Holland, Amsterdam, 1976.

KLEIN, R. M. 1978. Mapa Fitogeográfico do Estado de Santa Catarina. HBR, Itajaí.

KLEIN, R. M. 1981. Fitofisionomia, importância e recursos da vegetação do Parque Estadual da Serra do Tabuleiro. **Sellowia** 33 (33): 5-54.

KLEIN, R. M. 1984. Aspectos dinâmicos da vegetação do Sul do Brasil. **Sellowia** 36: 5-54.

KLEIN, R. M. 1990. Espécies raras ou ameaçadas de extinção do estado de Santa Catarina. IBGE, Diretoria de Geociências. 287 p.

KREBS, C. J. 1989. **Ecological Methodology**. Harper and Row Publishers, New York. 654 pp.

LEITE, P. F. & KLEIN, R. M. 1990. **Vegetação**. *In:* Geografia do Brasil – Região Sul. IBGE, vol. 2. 113-187.

LEITE, P. F. 1994. As diferentes Unidades Fitoecológicas da Região Sul do Brasil - Proposta de Classificação. **Dissertação**. Mestrado em Engenharia Florestal, UFPR.

MANTOVANI, N. 2002. **Disciplina de Comunidades Vegetais**. Curso de Pós-Graduação em Ciências Ambientais Interpretação Ambiental. Universidade Regional do Alto Uruguai e das Missões – URI Campus de Erechim.

MARTINELLI, G; MORAES, M.A. 2015. **Livro Vermelho da Flora do Brasil**. Jardim Botânico do Rio de Janeiro. http://cncflora.jbrj.gov.br (Acesso em: 19/06/2015).

MARTINS, F.R. 1993. **Estrutura de uma floresta mesófila**. Editora da UNICAMP, Campinas. 243p.

Revisão Flora - 47 -

MINISTÉRIO DO MEIO AMBIENTE – MMA. 1994. **Resolução CONAMA Nº 04, de 04 de maio de 1994**. Dispõe sobre a definição dos estágios sucessionais da Mata Atlântica no Estado de Santa Catarina, Brasília, 1994.

MINISTÉRIO DO MEIO AMBIENTE – MMA. 1999. **Resolução CONAMA Nº 261, de 30 de julho de 1999**. Dispõe sobre parâmetros básicos para definição de vegetação primária e dos estágios sucessionais secundários da vegetação de Restinga do Estado de Santa Catarina e dá outras providências, Brasília, 1999.

MINISTÉRIO DO MEIO AMBIENTE – MMA. 2008. **Lista nacional das espécies da flora brasileira ameaçadas de extinção**. Instrução Normativa Nº 06, de 23 de setembro de 2008, Brasília, 2008.

MINISTÉRIO DO MEIO AMBIENTE – MMA. 2009. **Resolução CONAMA Nº 417, de 23 de novembro de 2009**. Dispõe sobre parâmetros básicos para definição de vegetação primária e dos estágios sucessionais secundários da vegetação de Restinga na Mata Atlântica e dá outras providências, Brasília, 2009.

MINISTÉRIO DO MEIO AMBIENTE – MMA. 2014. **Lista nacional das espécies da flora brasileira ameaçadas de extinção**. Portaria MMA N° 443, de 17 de dezembro de 2014, Brasília, 2014.

MMA – Ministério do Meio Ambiente. 2006. **Instrução Normativa nº 5 de 11 de dez. 2006**. Dispõe sobre procedimentos técnicos para elaboração, apresentação, execução e avaliação técnica de Planos de Manejo Florestal Sustentável-PMFSs nas florestas primitivas e suas formas de sucessão na Amazônia Legal, e dá outras providências.

NEGRELE, R. R. B. 2006. Composição florística e estrutura vertical e um trecho de Floresta Ombrófila Densa de Planície Quaternária. **Hoehnea** 33(3): 261-289.

NELSON, E. 1985. Quantum Fluctuations. Princeton University Press, Princeton.

OLIVEIRA, M.M.; HIGUCHI, N.; CELES, C.H.; HIGUCHI, F.G. 2014. Tamanho e formas de parcelas para inventários florestais de espécies arbóreas na Amazônia Central. **Ciência Florestal Santa Maria**. 24 (3) p.645-653.

Revisão Flora - 48 -

PEREIRA, O. J. 1990. Caracterização fitofisionômica da restinga de Setiba-guarapari, Espirito Santo. *In:* Simpósio de ecossistemas da costa Sul e Sudoeste Brasileiro, Águas de Lindódia, SP. **Anais**, ACIESP, v.71, n.3. p. 207-219.

PORTO ITAPOÁ – Itapoá Terminais Portuários S/A; ACQUAPLAN – Acquaplan Tecnologia e Consultoria Ambiental Ltda. 2013. **Estudo de Impacto Ambiental** – EIA. Ampliação da Retroárea e do Píer do Porto Itapoá, Município de Itapoá, SC. Out. 2013. 2050 p.

PORTO ITAPOÁ – Itapoá Terminais Portuários S/A; ACQUAPLAN – Acquaplan Tecnologia e Consultoria Ambiental Ltda. 2013. **Inventário Florestal e Fitossociológico** *In:* PORTO ITAPOÁ & AQUAPLAN. 2013. Estudo de Impacto Ambiental – EIA. Ampliação da Retroárea e do Píer do Porto Itapoá, Município de Itapoá, SC. Out. 2013. p.919-1004.

PORTO ITAPOÁ – Itapoá Terminais Portuários S/A; ACQUAPLAN – Acquaplan Tecnologia e Consultoria Ambiental Ltda. 2015. **Anexo 10 Resultados do Inventário Florestal**. *In:* PORTO ITAPOÁ & AQUAPLAN. 2015. Resposta a Nota Técnica nº 2001.002094/2014-81 COPAH/IBAMA. Processo nº 02001.003033/2009-73. Análise do EIA do empreendimento denominado Ampliação do Porto Itapoá, localizado no Município de Itapoá, SC. janeiro de 2015. 66p.

PROSUL – Prosul Projetos, Supervisão e Planejamento Ltda. 2009. **Estudo de Impacto Ambiental da Rodovia SC 280**. Trecho: São Francisco do Sul – BR 101 (no prelo). Prosul, Florianópolis.

REIS, A.; IZA, O.; ZAREMBA, R. Flora e vegetação do Parque Estadual do Tabuleiro. In: DINÂMICA. **Diagnóstico dos Recursos Naturais do Parque Estadual da Serra do Tabuleiro**: Produto Básico do Zoneamento. Florinópolis: FATMA, 2000. p. 74-118.

REITZ, 1965-2006. Flora Ilustrada Catarinense. HBR, Itajaí. 153 volumes.

REITZ, R. 1961. Vegetação da zona marítima de Santa Catarina. Sellowia 13: 17-115.

REITZ, R.; KLEIN, R. M; REIS, A. 1978. **Projeto Madeira de Santa Catarina**. HBR, Itajaí. 321p.

RODERJAN, C. V.; GALVÃO, F.; KUNYIOSHI, Y. S.; HATSCHBACH, G. G. 2002. As Unidades Fitogeográficas do Estado do Paraná. **Ciência e Ambiente**, v. 24, p.75 – 92.

Revisão Flora - 49 -

SANTA CATARINA. 1984. Atlas de Santa Catarina. GAPLAN, Florianópolis.

SCHILLING, A. C.; BATISTA, J. L. F. 2008. Curva de acumulação de espécies e suficiência amostral em florestas tropicais. **Revista Brasileira de Botância**. 31: 179 – 187.

SILVA, S. M. 1999. **Diagnóstico das restingas do Brasil**. *In*: Fundação Bio Rio (Ed.). Workshop Avaliação e Ações Prioritárias Para a Conservação da Biodiversidade da Zona Costeira, Ilhéus. Disponível em < http://www.anp.gov.br/brasilrounds/round8/guias\_r8/perfuracao\_r8/%C3%81reas\_Priorit%C3%A1rias/Restin gas.pdf>. Acesso 20 de abr. 2009.

SOARES, C. P. B.; PAULA-NETO, F.; SOUZA, A. L. 2009. **Dendrometria e inventário florestal**. Viçosa: Ed. UFV. 276 p.

SONEHARA, J. S. 2005. Aspectos florísticos e fitossociológicos de um trecho de vegetação de restinga no Parque Estadual do Rio da Onça, Matinhos, Paraná. **Dissertação de Mestrado**. Pós Graduação em Botânica. Universidade Federal do Paraná. p.68.

VELOSO, H.P. & KLEIN, R. M. 1961. As comunidades e associações vegetais da mata pluvial do Sul do Brasil: III. As associações das planícies costeiras do quaternário, situadas entre o Rio Itapocu (Estado de Santa Catarina) e a Baía de Paranaguá (Estado do Paraná). **Sellowia** 13: 205-260.

VELOSO, H.P.; RANGEL-FILHO, A.L.R.; LIMA, J.C.A. 1991. Classificação da Vegetação Brasileira, adaptada a um sistema universal. Rio de Janeiro, IBGE. 124p.

Revisão Flora - 50 -