

APÊNDICE 8.8

APÊNDICE 8.8

Estudos com assembleias de peixes da plataforma continental brasileira, desenvolvidos por diversos autores, no período de 1991 a 2001 e o presente trabalho.

Trabalho analisado	UFS / PETROBRAS (1992)	UFS / PETROBRAS (1997)	UFS / PETROBRAS (1998)	UFS / PETROBRAS (2000)	UFS / PETROBRAS (2004)	Fagundes Netto e Gaelzer (1991)	Rocha e Rossi- Wongtschowski (1998)	Haimovici et al. (1996)	PETROBRAS (2006)	PETROBRAS /CENPES/ RT AMA (2007)	Este estudo
Objetivos	Caracterizar a assembleia dos peixes na área, formando base de referência para futuros monitoramen- tos	Caracterizar a assembléia dos peixes na área, buscar evidências de efeitos tóxicos dos efluentes sobre a assembleia dos peixes	Caracterizar a assembléia dos peixes na área, detectar possíveis impactos sobre a ictiofauna	Caracterizar a assembléia dos peixes na área	Caracterizar a assembléia dos peixes na área	Analisar variações sazonais; estabelecer associações de espécies demersais; relacionar associações e ressurgên- cia	Variação sazonal na abundância e composição dos peixes demersais até 50 metros de profundidade	Avaliar a distribuição e abundância de peixes teleósteos demersais	Caracteriza- ção da ictiofauna	Caracterizar a ictiofauna na área de influência de plataformas petrolíferas da Bacia Sedimentar do Ceará	Caracterizar a ictiofauna
Área de platafor- ma continen- tal analisada	Sergipe: entre foz do rio Sergipe e do Japaratuba, extensão 17 km	Sergipe: 81 km de extensão, do litoral norte até foz do rio Vaza- Barris	Sergipe: entre foz do rio Sergipe e a foz do Vaza-Barris	Sergipe: Área abaixo do rio S. Francisco até abaixo da foz do rio Vaza-Barris	Sergipe: Área entre sul de Alagoas e a foz do rio Vaza-Barris	Ao largo da praia de Moçambaba , Cabo Frio (RJ)	Ubatuba (SP)	Plataforma continental Sul do Brasil: 30°43' S – 33°45' S	RN: ao largo dos municípios de Galinhos e Porto do Mangue, litoral norte	CE: entre a foz dos rios Ceará e Mundaú, Campos: Atum, Xaréu, Curimã e Espada	Sul de Alagoas ao extremo sul de Sergipe
Isóbata	7 - 8 m	5, 10 e 15 m	9, 12 e 15 m	10, 20, 30 m	10, 20, 30 m	30, 45, 60 m	15, 30, 50 m	10 - 120m	2 – 160 m	10 – 40 m	10, 25, 50 m
Nº de estações de coleta	5	13	8	18	18	3	9	6 estratos de profundidade , em 7 a 10 transectos/ca mpanha; 34- 50 arrastos/ campanha (total: 250 arrastos)	jul/02=19; mai/03=43, nov/03=43, mai- jun/04=58 (total: 163 arrastos)	Total = 11 4 (10-16 m); 4 (21-25 m); 3 (27-37 m)	24 (1 excluída)

Caracterização Biológica e Geoquímica Sedimentar da Plataforma Continental de Sergipe e Sul de Alagoas

(continuação - Apêndice 8.8)

Trabalho analisado		UFS / PETROBRAS (1992)	UFS / PETROBRAS (1997)	UFS / PETROBRAS (1998)	UFS / PETROBRAS (2000)	UFS / PETROBRAS (2004)	Fagundes Netto e Gaelzer (1991)	Rocha e Rossi- Wongtschowski (1998)	Haimovici et al. (1996)	PETROBRAS (2006)	PETROBRAS / CENPES / RT AMA (2007)	Este estudo
Período		abr/1992 (sizígia)	mai/1997 (sizígia)	jan e out/1998 (sizígia)	mai/99, ago/99, dez/99, mar/00	dez/01 e /02, período seco; jun/02 e /03, período chuvoso	Ago/85- jul/86; Nov/86- out/87: 2 ciclos anuais	out/1985- jul/1987 (trimestral)	abr/81- nov/83 6 campanhas sazonais	jul/02 - mai- jun/04	dez/03	Jan/fev e mai/jun 2011
Outros compo- nentes ambien- tais analisa- dos		Físico- química da água, fitoplâncton, megabentos, macrofauna bêntica, granulometria do sedimento.	Físico-química da água, incluido metais- traço na água; zooplâncton; megabentos; macroinfauna bêntica; granulometria do sedimento.	Físico-química da água; zooplâncton; megabentos; macroinfauna bêntica; granulometria do sedimento.	Físico- química da água, zooplâncton, megabentos, macrofauna bêntica, granulometria do sedimento.	Físico- química + metais-traço da água; fito, zooplâncton; macro, megafauna bêntica; granulometria do sedimento.	Temperatur a, salinidade, OD da água de fundo	Projeto Integrado – incluiu outros componentes da Oceanogr. Biológica além de Oceanogr. Química, Física e Geológica	Temperatu- ra, salinidade da água	Projeto Integrado – incluiu outros componentes da Oceanogr. Biológica além de Oceanogr. Química, Física e Geológica	Projeto Integrado – incluiu outros componen- tes da Oceanogr. Biológica além de Oceanogr. Química, Física e Geológica	Megaben- tos; ma- croinfauna bêntica; granulome- tria, geoquímica , metais- traço e hidrocarbo- netos do sedimento
Amostra- gem	Rede de arrasto de portas	19 m comprimento; largura: tralha de bóia, 16 m; tralha de chumbo, 18 m; malha 16 mm no sacador;	Idem	Idem	19 m comprimento; largura: tralha de bóia, 16 m; tralha de chumbo, 18 m; malha 16 mm no sacador.	12,5 m comp.; largura: tralha de bóia, 11,4 m; tralha de chumbo, 12 m. malha 25 mm no sacador, 12 mm no sobressaco	10 m comprimen- to; largura: tralha de bóia, 8 m; tralha de chumbo, 10 m. malha 20 mm no sacador	Abertura da boca: 6 m; malha com abertura de 40 mm no corpo e mangas, 25 mm no saco.	Duas redes. Largura: tralha bóia, 31 e 39,7 m; tralha de chumbo, 52,9 e 49,3 m. Abertura de malha no sacador: 40 a 50 mm	Comp. total: 14 m; tralha superior: 6 - 13,8 m; malha sacador: 20 - 30 mm entre nós (adjacentes ou opostos?)	Comp. total: 14 m; tralha superior: 16,5 m; tralha inferior: 22,0 m; malha sacador: 15 mm entre nós (adjacentes ou opostos?)	Duas redes. Largura tralha de bóia: 8,9 m (ambas); abertura de malha: 20 e 30 mm no sacador; 12 e 16 mm no sobressaco

(continuação - Apêndice 8.8)

Trabalho analisado		UFS / PETROBRAS (1992)	UFS / PETROBRAS (1997)	UFS / PETROBRAS (1998)	UFS / PETROBRAS (2000)	UFS / PETROBRAS (2004)	Fagundes Netto e Gaelzer (1991)	Rocha e Rossi- Wongtschowski (1998)	Haimovici et al. (1996)	PETROBRAS (2006)	PETROBRAS /CENPES/ RT AMA (2007)	Este estudo
	Nº de arrastos/ estação	3	3	2	2 (arrasto duplo)	2 (arrasto duplo)	1	1, área varrida = 22,236 m²	1	1	1 arrastos	1
Amostra- gem	Tempo de arrasto	15 min	15 min	15 min	15 min	15 min	20 min	1 hora	1 hora Área varrida = 0,1189 (rede 1) e 0,1264 km².h (rede 2)	30 min	30 min	30 min
Ictiofauna analisada		Pelágica + demersal	Pelágica + demersal	Pelágica + demersal	Pelágica + demersal	Demersal	Pelágica + demersal	Demersal	Pelágica + demersal	Pelágica + demersal	Pelágica + demersal	Pelágica + demersal
	Nº total de espécies	45	62 (52 espécies na isóbata de 10 m)	64	135	141	79	111	94	156	65	182
	Nº espécies pelágicas	18	16	18	21	22	9		25	15	3	25
	Nº espécies demersais/be ntônicas	27	46	46	114	119	70	111	69	141	62	157
Resulta-	Nº de espécies: raias	3	1	3	3	3	6	12 raias, 1 Squatina	0	6	1	6
dos: Capturas Totais	Nº de espécies: tubarões	0.	0	0	1	0	-	5	0	1	0	1
	Nº de espécies: teleósteos	42	61	61	131	138	73	98	94	149	62	175
	Nº de famílias	19	22	27	50	51	38	43	50	58	35	62
	Nº indivíduos	2.876	9.194	12.723	34.491	11.406	-	48.420		20.895; 128,19 ± 147,58 ind/arr (média geral)	3065	28.975; 629,9 ind/arr (média geral)

Caracterização Biológica e Geoquímica Sedimentar da Plataforma Continental de Sergipe e Sul de Alagoas

(continuação - Apêndice 8.8)

Trabalho analisado		UFS / PETROBRAS (1992)	UFS / PETROBRAS (1997)	UFS / PETROBRAS (1998)	UFS / PETROBRAS (2000)	UFS / PETROBRAS (2004)	Fagundes Netto e Gaelzer (1991)	Rocha e Rossi- Wongtschowski (1998)	Haimovici et al. (1996)	PETROBRAS (2006)	PETROBRAS / CENPES / RT AMA (2007)	Este estudo
Resulta- dos: Capturas Totais	Peso total (g)	19.538,70 g	85.398,20 g	63.574,80 g	350.149,80 g	166.314,60 g	-	2.292.000 g = 2.292 kg		440,41 ± 670,96 kg/km² (média geral)	107.767,0	586.899,9 g; 12.758,7 g/arr (média geral); Densidade: 2,67 g.m ⁻²
	Riqueza (nº) de espécies	14 - 35	18 - 42	15 - 32	0 - 43	0 – 39 0,00 (30 m, dez/02) – 7,92 (10m, jun/02) (média)	10,1 (30 m) - 15,6 (45 m) espécies/arr asto (média)	55 - 75	·	11,40 – 15,90 spp/arrasto (média) (só áreas rasas)	7 - 26	11,7 (25-30 m, seco) – 35,5 (9-15 m, chuv) (média)
Resulta-	Nº ind/arrasto	37,0 - 740,7	59,33 - 898,33	66, 0 - 2242,0	0 - 1574,0	10,67 (30m, dez/01) – 160,08 (10 m, jun/03) (média)	69 (30 m) – 186 (60 m) (média)	-	-	1.607- 9.186; 52,20-178,57 ind/arr (média) (só áreas rasas)	14 – 995 ind/arrasto	175,6 (40- 55 m, chuv) - 1437,6 (9- 15 m, chuv) (média)
dos: Variação espacial (mínimo – máximo)	Peso g/arrasto	235,6 - 3.894,1	746,10 - 8.333,87	367,6-10.260,9	0 - 8.873,5	205,14 (30m, dez/01) – 2174,9 (10 m, jun/02) (média)	5.500(30 m) -10.700 (60m) (média)	-	-	187,6 a 356,7 kg/km² (média) (só áreas rasas)	1.610- 16.084 g/arrasto	4947,4 (25- 30 m, seco) - 24.543,3 (9-15 m, chuv) (média)
	H' (Shannon) - Log e	1,40 - 2,49	2,12 - 2,66	1,77 - 2,66	1,24 (30 m, out)– 3,16 (20 m, out)	1,40 (30 m, dez/01, dez/02) - 2,19 (20 m, jun/02) (média)	0,86 - 3,92 (45 m)	-	-	1,50 – 1,80 (média) (só áreas rasas)	1,36 – 2,42	2,61 (40-55 m, chuv) – 3,0 (9-15 m, chuv) (média)
	J (Pielou) - Log e	0,39 - 0,81	0,57 - 0,83	0,52 - 0,87	0,24 (10 m, verão) – 0,78 (30 m, verão)	0,63 (30 m, dez/01) - 0,85 (30 m, jun/02) (média)	-	-	-	0,65 - 0,73 (média) (só áreas rasas)	0,47 - 0,93	0,60 (40-55 m, chuv) – 0,70 (9-15 m, chuv) (média)

(continuação - Apêndice 8.8)

Trabalho analisado		UFS / PETROBRAS (1992)	UFS / PETROBRAS (1997)	UFS / PETROBRAS (1998)	UFS / PETROBRAS (2000)	UFS / PETROBRAS (2004)	Fagundes Netto e Gaelzer (1991)	Rocha e Rossi- Wongtschowski (1998)	Haimovici et al. (1996)	PETROBRAS (2006)	PETROBRAS / CENPES / RT AMA (2007)	Este estudo
	Dc (Berger & Parker)	49,4 - 82,7	0,54 - 0,86	0,54 - 0,86	0,32 (20 m, out) – 0,88 (30 m, out)	0,54 (20 m, jun/02) - 0,82 (10 e 30 m, dez/01) (média)	-	-	-	-	-	0,56 (9-15 m, chuv) – 0,71 (25-30 m, seco) (média)
Resulta- dos: Variação espacial (mínimo – máximo)	Distribuição por profundidade	-	-	-	Profundidade foi o fator com maior contribuição para variações da fauna, seguida pelas características do sedimento de fundo	Riqueza, nº ind. e peso decresceram com a prof. Diferenças significativas nos períodos chuvosos, nº ind. ou peso (10m >30 m)	Profundidad e, época do ano e temperatura da água de fundo foram importantes estruturado- res da ictiofauna	Profundidade, características do sedimento e dinâmica das massas d'água da água determinaram a estruturação da ictiofauna	Composição específica apresentou padrão claro de variação associado à profundidade	Só biomassa variou significativam ente (maior na área mais profunda, > 40m)	A profundidad e aparente- mente não influenciou a composição da ictiofauna	Além de características faciológicas do fundo, profundidade explicou entre 11,5 e 62,6 % as variações de riqueza, densidade e biomassa
Resulta- dos: Variação temporal (mínimo –	Riqueza (nº) de espécies	-	-	55 (verão) – 50 (primav)	73 (Verão,Inv) - 104 (Outono)	61 (dez/01) – 89 (jun/03). Chuvoso>sec o, p<0,0001	2 (ago) – 23 (jun, ago) espécies/arr asto	55 e 60 (verão) a 75 e 71 (outono) – 2 anos	-	53 espécies, média = 9,8 sp/arrasto em jul/02; 123 espécies, média = 15,6 em mai/jun/04	-	133 espécies, média = 18,9 em jan/fev- seco; 152 espécies, média = 27,2 (jun/jul- chuv)
máximo)	Nº ind/arrasto	-	-	22,0 (verão) – 747,3 (primav) (média)	130,8 (Verão) - 411,3 (outono)	20,6 (dez/01) - 91,4 (jun/03). Chuvoso>sec o, p<0,0003	112 (jun/87) - 1036 (jun/86) ind/hora (média)	3692 e 2883 (prim) a 11258 e 6075 (out) – 2 anos	-	84,58 (jul/02) - 158,38 (mai/jun/04) ind/arr (media)	-	586,1 – 673,7

Caracterização Biológica e Geoquímica Sedimentar da Plataforma Continental de Sergipe e Sul de Alagoas

(continuação - Apêndice 8.8)

Trabalho analisado		UFS / PETROBRAS (1992)	UFS / PETROBRAS (1997)	UFS / PETROBRAS (1998)	UFS / PETROBRAS (2000)	UFS / PETROBRAS (2004)	Fagundes Netto e Gaelzer (1991)	Rocha e Rossi- Wongtschowski (1998)	Haimovici et al. (1996)	PETROBRAS (2006)	PETROBRAS / CENPES / RT AMA (2007)	Este estudo
	Peso g/arrasto	-	-	122,5 (verão) — 3420,3 primav) (média)	1194,3 (verão)- 4153,1 (out) média, g/arrasto	347,0 (dez/01) - 1556,0 (jun/03) média, g/arrasto. Chuvoso>sec o, p<0,001	5.100 (jun/87) - 46.600 (dez/85) (g/hora)	215 (prim) e 122 kg (inv) a 410 e 361 kg (verão) – 2 anos	Biomassa média teleósteos: 2,366 (out) a 5,864 (verão) kg/km², Média geral = 4,4375 g/m². Teleósteos comerciais: maior valor no inverno	Biomassa média: 357,9 (mai/jun/04) a 559,4 (nov/03) kg/km²	-	12.192,6 – 13.324,8 g/arr; Biomassa média: 1,17 – 1,20 g.m ⁻² (seco – chuvoso)
	H' (Shannon) - Log e	-	-	2,90 (verão) – 2,16 (primav)	2,37 (verão) - 3,11 (out)	3,02 (jun/02) - 3,13 (jun/03)	-	-	-	0,65 (jul/02) – 0,72 (mai/03) média) (só áreas rasas)	-	1,95 – 2,23 nits/ind (seco – chuvoso)
	J (Pielou) - Log e	-	-	0,52 (verão) – 0,87 (primav)	0,55 (verão) - 0,67 (out, inv)	0,69 (jun/02) - 0,76 (dez/01)	-	-	-	0,65 (jul/02) – 0,72 (mai/03)	-	0,73 - 0,70 (seco - chuvoso)
	Dc (Berger & Parker)	-	-	0,62 (verão) – 0,62 (primav)	0,33 (out) – 0,64 (verão)	0,15 (dez/02) - 0,39 (dez/01)	-	-	-	-	-	0,31 - 0,54 (seco - chuvoso)

(conclusão - Apêndice 8.8)

Trabalho analisado	UFS / PETROBRAS (1992)	UFS / PETROBRAS (1997)	UFS / PETROBRAS (1998)	UFS / PETROBRAS (2000)	UFS / PETROBRAS (2004)	Fagundes Netto e Gaelzer (1991)	Rocha e Rossi- Wongtschowski (1998)	Haimovici et al. (1996)	PETROBRAS (2006)	PETROBRAS / CENPES / RT AMA (2007)	Este estudo
Resulta- dos: Espécies dominan- tes	Chloroscom- brus chrysurus, Stellifer stellifer, Peprilus paru, Pellona harroweri, Isopisthus parvipinnis	Stellifer rastrifer, S. stellifer, Pellona harroweri, Paralonchurus brasiliensis, Isopisthus parvipinnis	Isopisthus parvipinnis, Pellona harroweri, Stellifer rastrifer, Paralonchurus brasiliensis, Odontognathus mucronatus	Chloroscombr us chrysurus, Pellona harroweri, Chirocentro- don bleekerianus, Odontognat- hus mucronatus, Stellifer rastrifer, Isopisthus parvipinnis, Ctenosciaena gracilicirrhus, Larimus breviceps	Paralonchurus brasiliensis, Cathorops spixii, Stellifer brasiliensis, Larimus breviceps, Polydactylus virginicus	Etropus longimanus, Porichthys porosissimis, Stephanolepi s hispidus, Prionotus punctatus, P. nudigula	Ctenosciaena gracilicirrhus, Paralonchurus brasiliensis, Cynoscion jamaicensis	Cynoscion guatucupa, Umbrina canosai, Micropogoni as furnieri, Trichiurus lepturus	Haemulon aurolineatum, Pomadasys corvinaefor- mis, Bothus ocellatus, Eucinosto- mus argenteus, Syacium micrurum	Bothus ocellatus, Eucinostomus gula, E. argenteus, Pomadasys corvinaeformes, Haemulon aurolineatum, Syacium papillosum, E. lefroyi, Orthopristis ruber	Pellona harroweri, Chirocen- trodon bleekeria- nus, Odontogna- thus mucronatus, Lycengrau- lis grossidens, Stellifer rastrifer, Diapterus rhombeus, Cathorops spixii , S. stellifer

