

Atividade de Pesquisa Sísmica Marítima 3D, nos Blocos S-M-1037, S-M-1101, S-M-1102, S-M-1165 e S-M-1166 Bacia de Santos

4.1 - MEIO FÍSICO

A área da Atividade de Pesquisa Sísmica Marítima 3D, nos Blocos S-M-1037, S-M-1101, S-M-1102, S-M-1165 e S-M-1166 – Bacia de Santos, está situada na porção sudoeste da Bacia Sedimentar de Campos, na divisa com a Bacia de Santos.

A Bacia de Santos está localizada na porção sudeste da margem continental brasileira, em frente ao litoral sul Rio de Janeiro, São Paulo, Paraná e norte de Santa Catarina. Apresenta orientação geral SW–NE e geometria côncava. Geologicamente trata-se de uma depressão limitada a norte pelo alto de Cabo Frio e a sul pela Plataforma ou Alto de Florianópolis (Plataforma de Florianópolis). A bacia recobre a área de cerca de 350.000 Km², dos quais 200.000 Km² encontram-se em lâminas d'água até 400 metros e 150.000 Km² entre as isóbatas de 400 e 3.000 metros. (Figura 4.1).

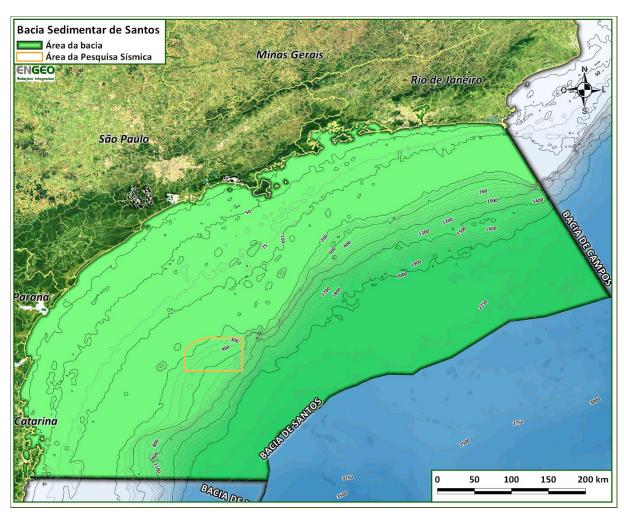


Figura 4.1 - Localização da Bacia Sedimentar de Santos e da área de pesquisa sísmica em relação à mesma.

Nesse item do Estudo Ambiental de Sísmica serão apresentadas de forma resumida as principais características ambientais, geomorfológicas e oceanográficas, da área de estudo da atividade de pesquisa sísmica marítima 3D da PGS a ser realizada na Bacia de Santos.

Pág. 1 / 12

Atividade de Pesquisa Sísmica Marítima 3D, nos Blocos S-M-1037, S-M-1101, S-M-1102, S-M-1165 e S-M-1166 Bacia de Santos

4.1.1 Geologia e Geomorfologia

A área de atividade de pesquisa sísmica da PGS, está posicionada na margem continental brasileira, parte sobre a plataforma continental (e quebra da plataforma) e parte sobre o talude continental.

Margem continental brasileira

A margem continental brasileira é do tipo Atlântica, ou seja, margem do tipo passiva, onde a mesma não coincide com nenhuma placa tectônica e está distante de qualquer tectonismo pronunciado (Cadeia Mesoceânica, margem construtiva entre América e África). Compreende uma área total de 5.003.397 km², equivalente a 59% do território brasileiro emerso (Figura 4.1.1a).

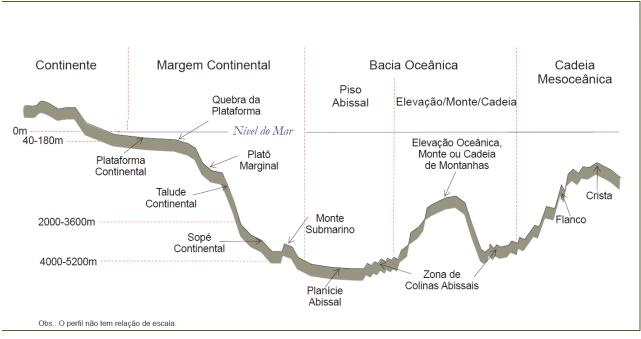


Figura 4.1.1a - Perfil Fisiográfico Esquemático de uma Margem Tipo "Atlântica" (Modificado de COUTINHO, 2000).

A plataforma continental brasileira constitui a faixa de terras submersas compreendida entre a linha da costa e o contorno batimétrico de 200 metros (FONSECA, 1969). Na porção em frente ao Estado de São Paulo é registrada a maior largura da plataforma continental para a margem sudeste brasileira (um máximo de 250 km no embaiamento que vai de São Sebastião – SP ao Cabo de Santa Marta – SC _ FIGUEIREDO JR. 2005).

Na Bacia Sedimentar de Santos as principais províncias fisiográficas são a plataforma continental, o talude, o platô de São Paulo e o Platô de Santa Catarina (Figura 4.1.1b).

Atividade de Pesquisa Sísmica Marítima 3D, nos Blocos S-M-1037, S-M-1101, S-M-1102, S-M-1165 e S-M-1166 Bacia de Santos

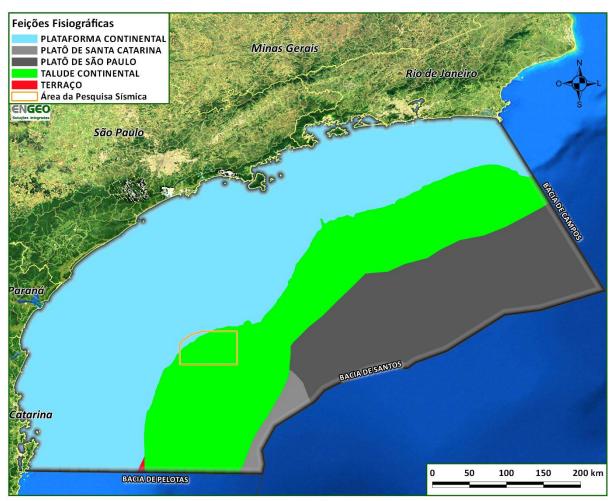


Figura 4.1.1b – Unidades fisiográficas na área da atividade de pesquisa sísmica (CPRM, 2009).

Cobertura sedimentar na área de estudo da atividade

A distribuição dos tipos de sedimento de fundo em plataformas continentais é resultado de fatores diversos, incluindo as fontes de sedimento, a energia das correntes, marés e ondas, a produtividade biológica e a variação do nível do mar ao longo dos anos. Em função de todos estes fatores agindo de forma diferenciada, de um local para outro, a distribuição dos tipos de sedimento de fundo obedece a uma organização discreta. O domínio lamoso tem a maior expressão de continuidade lateral ao longo das isóbatas e também cruzando as isóbatas. O domínio carbonático apresenta-se mais restrito e em formato mais alongado e geralmente na borda da plataforma. O domínio arenoso está relacionado às desembocaduras atuais e pretéritas dos grandes rios (CPRM, 2009).

Na porção da margem continental brasileira, onde está inserida a área de pesquisa sísmica, se observa predomínio das fácies sedimentares identificadas areia lamosa, lama, cascalho lamoso e areia média (Figura 4.1.1c).

Atividade de Pesquisa Sísmica Marítima 3D, nos Blocos S-M-1037, S-M-1101, S-M-1102, S-M-1165 e S-M-1166 Bacia de Santos

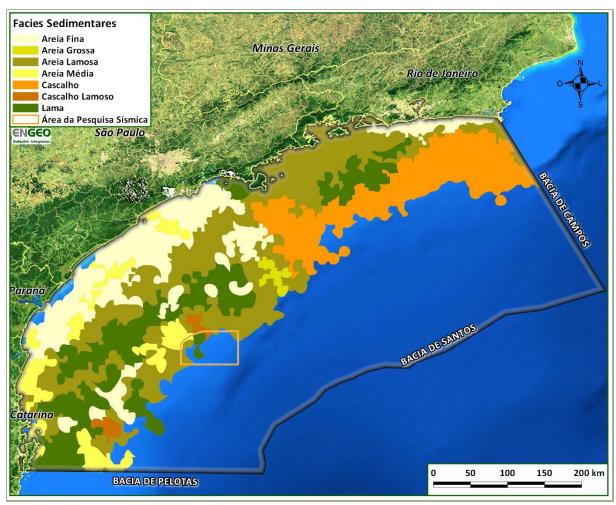


Figura 4.1.1c - Distribuição das fácies sedimentares na área da atividade de pesquisa sísmica (CPRM, 2009).

4.1.2 Oceanografia

Parte dos dados oceanográficos apresentados nesse estudo contemplam informações georreferenciadas obtidas através do AVISO (*Archiving, Validation and Interpretation of Satellite Oceanographic data*) e demais trabalhos publicados que descrevem as características oceanográficas para a Bacia de Santos ou região próxima.

Massas de água

A Corrente do Brasil (CB) se origina da Corrente Sul Equatorial (CSE) e se desloca através do Atlântico de leste a oeste e forma três ramos nas proximidades da costa brasileira entre 7 e 17°S. A CB se desloca na direção sul até próximo ao Banco de Abrolhos onde se encontra com as águas subantárticas da Corrente das Malvinas e desvia para sudoeste, aproximando-se da plataforma em Vitória (ES). A corrente alcança 200 metros de profundidade, carregando a massa de água denominada Água Tropical (AT) (Figuras 4.1.2a e 4.1.2b).

Atividade de Pesquisa Sísmica Marítima 3D, nos Blocos S-M-1037, S-M-1101, S-M-1102, S-M-1165 e S-M-1166 Bacia de Santos

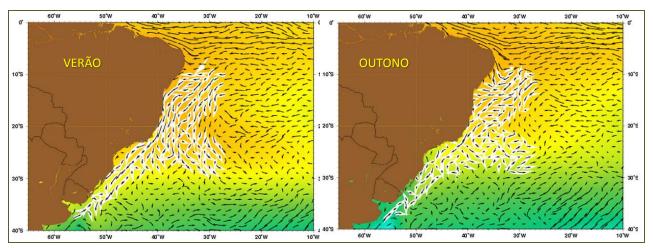


Figura 4.1.2a - Comportamento da Corrente do Brasil nos meses de Verão e Outono (Modificado de: BISCHOF et al, 2004)

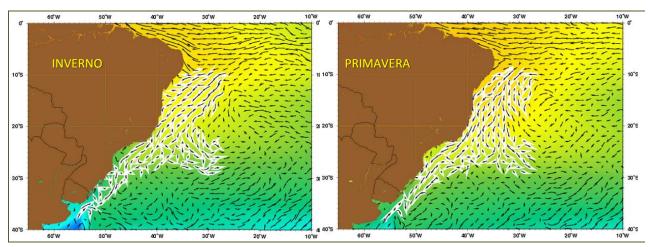
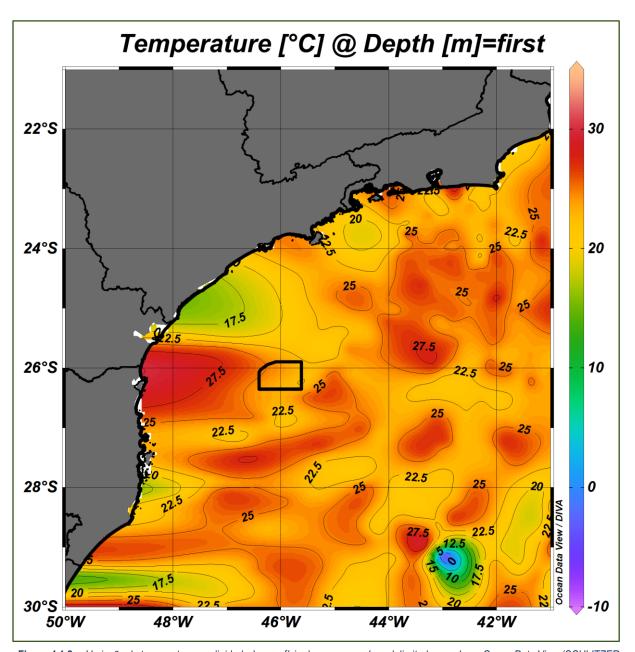


Figura 4.1.2b - Comportamento da Corrente do Brasil nos meses de Inverno e Primavera (Modificado de: BISCHOF et al, 2004)

A massa de água que circula na superfície na margem continental oriental brasileira foi descrita como sendo um corpo d'água quente e salino com máximo de temperatura e salinidade acima de 25°C e 36,5 ups (Unidades Práticas de Salinidade ou *Practical Salinity Units*), respectivamente, devido à intensa radiação e excesso de evaporação em relação à precipitação. Esta água quando se mistura com águas costeiras de menores temperaturas e salinidade forma a Água Tropical (AT), com temperaturas maiores que 20°C e salinidade maior que 36 ups. Abaixo da AT estaria a Água Central do Atlântico Sul (ACAS), com temperaturas entre 6°C e 18°C e salinidade entre 34,5 e 36 ups, e seria formada na região da Convergência Subtropical. Há consenso na literatura que a ACAS flui para sul abaixo da latitude de 20° s, ao largo da costa sudeste brasileira. Teria uma espessura de aproximadamente 450 metros, e abaixo dela estaria a Água Intermediária Antártica (AIA), com temperaturas entre 3°C e 6°C e valores de salinidade entre 34,2 e 34,6 ups, apresentando um mínimo de salinidade no diagrama T-S. A massa de água subjacente à AIA é a Água Profunda do Atlântico Norte (APAN), com valores de temperatura entre 3 e 4°C e valores de salinidade entre 34,6 e 35 ups, encontrada de 1000m a aproximadamente 3500m de profundidade. E a mais profunda massa d'água é Água Antártica de Fundo, com temperaturas menores que 0°C e valores de salinidade menores que 34,7 ups (DECCO, 2004).



Atividade de Pesquisa Sísmica Marítima 3D, nos Blocos S-M-1037, S-M-1101, S-M-1102, S-M-1165 e S-M-1166 Bacia de Santos

Temperatura e Salinidade

As temperaturas na margem continental brasileira, mas especificamente na porção sul-sudeste, decrescem do norte para o sul e apresentam variações sazonais, diminuindo do verão para o inverno principalmente nas camadas até 50 metros. A distribuição dos campos de temperatura à superfície e a 50 metros de profundidade são similares.

Figura 4.1.2c - Variação da temperatura e salinidade à superfície do oceano na área delimitada gerada no Ocean Data View (SCHLITZER, 2013) amostras do eWOCE.

Atividade de Pesquisa Sísmica Marítima 3D, nos Blocos S-M-1037, S-M-1101, S-M-1102, S-M-1165 e S-M-1166 Bacia de Santos

Os dados do *World Ocean Circulation Experiment* (*eWOCE*), foram lançados no programa *Ocean Data View* (ODV - SCHLITZER, 2013) onde foi possível visualizar a variação da temperatura média da superfície do oceano ao longo de 10 anos (1990 a 2000) para a área de estudo da atividade de pesquisa sísmica na Bacia de Santos. Na figura 4.1.2c é possível observar a representação da variação da temperatura superficial obtidas a partir dos dados *eWOCE* geradas no ODV.

Nessa análise foi possível constatar que a variação das temperaturas médias à superfície do oceano, registrada na área da atividade de pesquisa sísmica, ficou entre 20° e 29°C.

A salinidade na Bacia de Santos varia de acordo com a profundidade, indo usualmente de 37 ups na superfície até 33 ups em profundidades superiores a 2000 metros (MINERAL-PETROBRAS, 2013).

Correntes

A Corrente do Brasil se divide em vários braços. O braço principal flui na região central da plataforma continental, aproximadamente a 140 km da costa, em direção sudeste a uma velocidade máxima da ordem de 0,7 m/s (1,36 nós) até Cabo Frio/RJ. Após, a CB perde velocidade devido aos meandros e vórtices originados pela topografia do fundo.

Ondas

O sentido da linha de costa praticamente condiciona a orientação das ondas, principalmente as associadas às frentes frias que são as de maior altura e períodos mais longos. As ondas propagam-se paralelamente à costa, mas sofrem refração ao encontrarem águas rasas incidindo em ângulo reto sobre a linha de costa.

Na área de estudo os dados de regime de ondas segue um padrão interanual e sazonal, como quase em toda a costa brasileira, sofrendo anomalias apenas em eventos de passagem de sistemas frontais. Esses tipos de anomalias são comuns em toda a costa sul-sudeste da margem continental brasileira.

Com os dados do sistema AVISO (*Archiving, Validation and Interpretation of Satellite Oceanographic data*), interpolados e georreferenciados através do programa Quantum GIS 2.14, foi possível apresentar e comparar as variações mensais da altura média de ondas significativas no entorno da área pretendida para a atividade de pesquisa sísmica. Após interpolados os dados de altura média de onda foram geradas linhas de mesma altura de onda, identificadas como "isolinhas" nas figuras (Figura 4.1.2d e Figura 4.1.2e).

No mês de julho de 2016, houve o registro de maior altura média de onda significativa, com 4,22 m, possivelmente associada à passagem de um sistema frontal. No mês de fevereiro de 2016 houve o registro da menor média de altura de onda significativa, 1,16 m. Nas duas ocasiões (fevereiro e julho de 2016) a informação registrada pelo sistema AVISO foi prevista no ATLASUL, sistema de previsão de ondas e monitoramento costeiro (UFRJ / INPE / FAPESP / PROOCEANO), para a região sul-sudeste, como pode ser observado na Figura 4.1.2f.

Pág. 7 / 12

Atividade de Pesquisa Sísmica Marítima 3D, nos Blocos S-M-1037, S-M-1101, S-M-1102, S-M-1165 e S-M-1166 Bacia de Santos

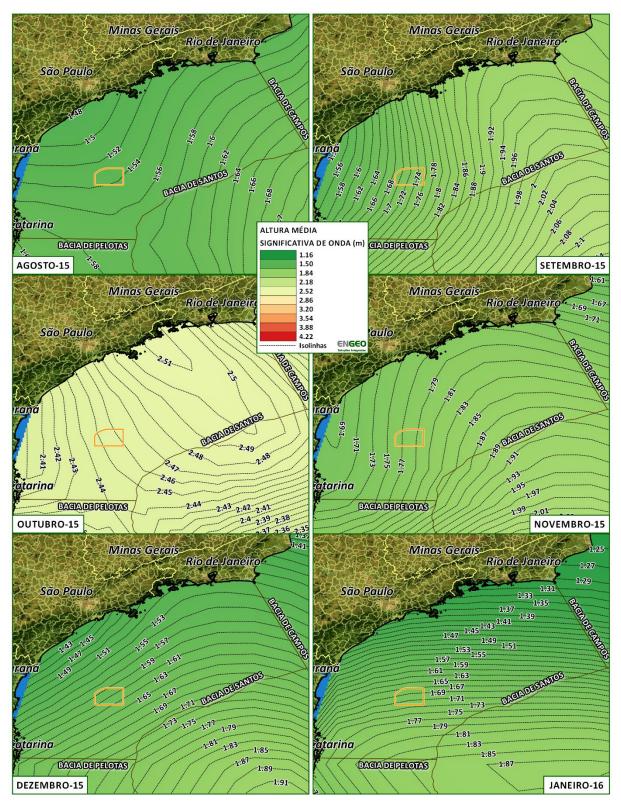


Figura 4.1.2d - Variação da altura média de onda significativa, apresentada mensalmente (AGO-15 a JAN-16), interpolado de dados originados em grade 1x1 graus de coordenada (Modificado de: AVISO, 2016).

Atividade de Pesquisa Sísmica Marítima 3D, nos Blocos S-M-1037, S-M-1101, S-M-1102, S-M-1165 e S-M-1166 Bacia de Santos

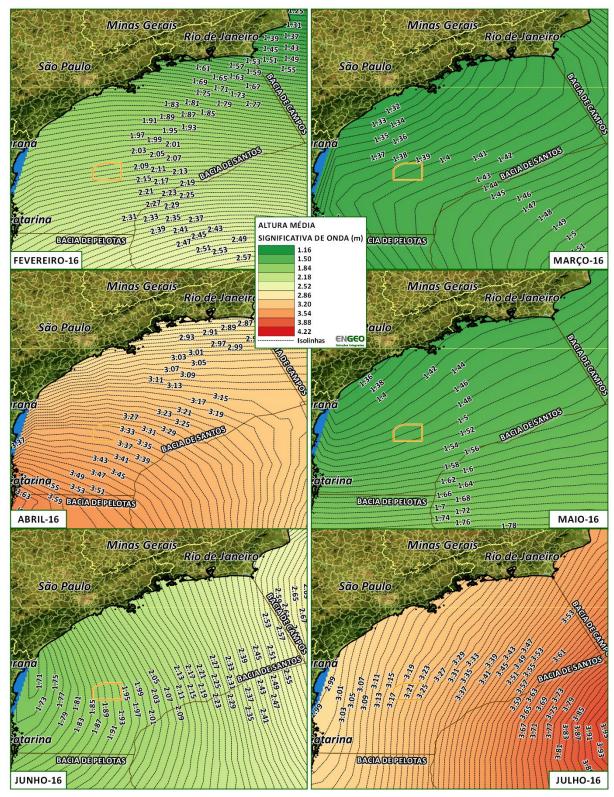
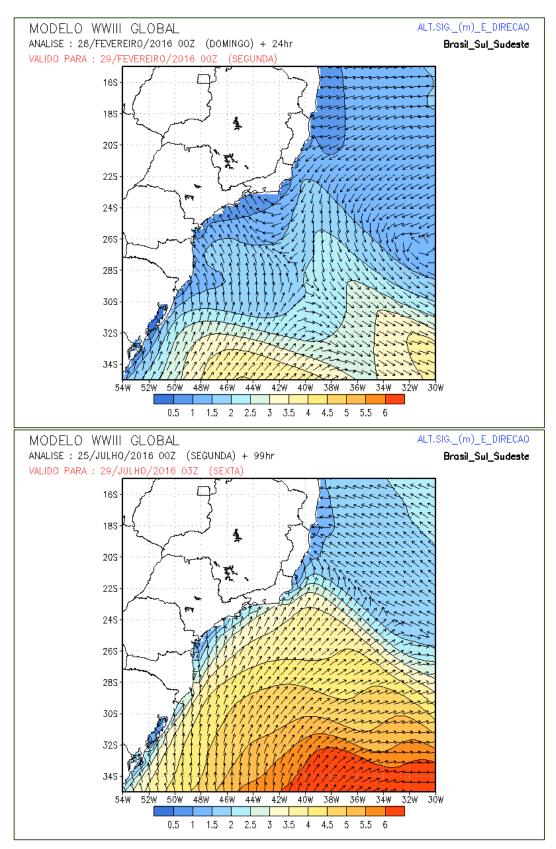



Figura 4.1.2e - Variação da altura média de onda significativa, apresentada mensalmente (FEV-16 a JUL-16), interpolado de dados originados em grade 1x1 graus de coordenada (Modificado de: AVISO, 2016).

Atividade de Pesquisa Sísmica Marítima 3D, nos Blocos S-M-1037, S-M-1101, S-M-1102, S-M-1165 e S-M-1166 Bacia de Santos

Figura 4.1.2f - Previsão de altura significativa e direção média de onda para a região SSE, em fevereiro e julho de 2016 (Fonte: ATLASUL, 2016).

Atividade de Pesquisa Sísmica Marítima 3D, nos Blocos S-M-1037, S-M-1101, S-M-1102, S-M-1165 e S-M-1166 Bacia de Santos

Na Tabela 4.1.2 são apresentados os valores de altura mínima e máxima registrada para cada mês analisado com os dados do sistema AVISO.

Tabela 4.1.2 - Variação mensal dos dados de altura média de onda no entorno da área pretendida para a atividade de pesquisa sísmica, obtidos do sistema AVISO (*Archiving, Validation and Interpretation of Satellite Oceanographic data*)

	ago/15	set/15	out/15	nov/15	dez/15	jan/16	fev/16	mar/16	abr/16	mai/16	jun/16	jul/16
Altura mínima (m)	1,47	1,49	2,18	1,52	1,28	1,18	1,16	1,28	2,37	1,33	1,63	2,90
Altura máxima (m)	2,01	2,28	2,61	2,10	1,94	1,88	2,65	1,83	3,70	1,82	3,25	4,22

4.1.3 Bibliografia

ATLASUL. **Sistema de Previsão de Ondas e Monitoramento Costeiro**. UFRJ / INPE / FAPESP / PROOCEANO. Disponível em: http://www.lamma.ufrj.br/sites/spo. 2016.

AVISO. **Near-real time significant wave height** "The altimeter products were produced and distributed by Aviso (http://www.aviso.oceanobs.com/), as part of the Ssalto ground processing segment". 2016.

BISCHOF, B., ROWE, E., MARIANO, A. J., RYAN, E. H. "The Brazil Current." Ocean Surface Currents. (2004). http://oceancurrents.rsmas.miami.edu/atlantic/brazil.html.

CPRM - Serviço Geológico do Brasil. Geologia da Plataforma Continental Jurídica Brasileira e Áreas Oceânicas Adjacentes – Dados organizados em Sistema de Informação Geográfica. 1 DVD. Brasília: CPRM – Serviço Geológico do Brasil, 2009.

COUTINHO, P. N. Oceanografia geológica. In: Coutinho, P.N. (ed.). **Levantamento do Estado da Arte da Pesquisa dos Recursos Vivos Marinhos do Brasil.** Brasília, Ministério do Meio Ambiente dos Recursos Hídricos e da Amazônia Legal - MMA, Secretaria de Coordenação dos Assuntos do Meio Ambiente - SMA, 75 p. (Programa REVIZEE). 2000.

DECCO, H.T. Simulação das Correntes Superficiais Oceânicas da Costa Leste / Sudeste Brasileira Durante a Passagem de Uma Frente Fria. Universidade do Estado do Rio de Janeiro - UERJ. Instituto de Geociências, Departamento de Oceanografia e Hidrologia. 2004

FIGUEIREDO JR, A. G., MADUREIRA, L. S. P. Topografia, composição, refletividade do substrato marinho e identificação de províncias sedimentares na região Sudeste-Sul do Brasil / **Série documentos Revizee: Score Sul / responsável Carmen Lúcia Del Bianco Rossi-Wongtschowski.** Instituto Oceanográfico - USP, São Paulo. 64p. 2004.

FONSECA, J.I. Plataforma continental brasileira – perspectivas petrolíferas, trabalhos realizados e programados. Boletim Técnico da Petrobrás, Rio de Janeiro, v.12, n.1, p. 15-20, jan./mar. 1969.

MINERAL — PETROBRAS. Estudo Ambiental da Atividade de Produção e Escoamento de Petróleo e Gás Natural do Polo Pré-Sal da Bacia de Santos - Etapa 2. **Diagnóstico Ambiental — II.5.1 MEIO FÍSICO.** Revisão 00 — Outubro de 2013.

Atividade de Pesquisa Sísmica Marítima 3D, nos Blocos S-M-1037, S-M-1101, S-M-1102, S-M-1165 e S-M-1166 Bacia de Santos

SCHLITZER, R., Electronic Atlas of WOCE (**World Ocean Circulation Experiment**) Hydrographic and Tracer Data Now Available, Eos Trans. AGU, 81(5), 45, 2000.

SCHLITZER, R., Ocean Data View, http://odv.awi.de, 2016.