

LISTA DE FIGURAS

	Página
Figura II.2.1-1 - Cronograma para implantação do Projeto no Campo de	
Camarupim	02/123
Figura II.2.2-1 - Esquema mostrando a concepção do sistema de	
produção do Campo de Camarupim	09/123
Figuras II.2.4-1 - Tipos de poços e configuração típica de poço horizontal.	17/123
Figuras II.2.4-2 - Tipos de poços e configuração típica de poço horizontal.	17/123
Figura II.2.4-3a - Coletor dos poços de óleo - Manifold	18/123
Figura II.2.4-3b - Coletor dos poços de gás - Manifold	18/123
Figura II.2.4-4 - Fluxograma da planta de tratamento de óleo	20/123
Figura II.2.4-5 - Fluxograma da planta de compressão de gás	22/123
Figura II.2.4-6 - Fluxograma do sistema de flare	24/123
Figura II.2.4-7 - Fluxograma de tratamento de água produzida	25/123
Figura II.2.4-8 - Fluxograma do processo de gás combustível	26/123
Figura II.2.4-9 - Fluxograma da planta de água de injeção	27/123
Figura II.2.4-10 - Vista aérea da operação de offloading de um FPSO	
para um navio aliviador	35/123
Figura II.2.4-11 - Sistema típico de offloading	36/123
Figura II.2.4-12 - Área de Localização do estudo geológico indicando o	
Campo de Camarupim (retângulo azul)(Petrobras, 2006)	38/123
Figura II.2.4-13 - Modelo de ROV a ser utilizado no Campo de	
Camarupim	43/123
Figura II.2.4-14 - Estaca do tipo torpedo a ser utilizada na ancoragem do	
FPSO Cidade de São Mateus	56/123
Figura II.2.4-15 - Desenho ilustrando o método de lançamento S-Lay.	61/123
Figura II.2.4-16 - Procedimento de abandono do duto lançado.	62/123
Figura II.2.4-17.a - Vista frontal do enterramento do gasoduto.	65/123
Figura II.2.4-17.b - Vista frontal do enterramento do gasoduto.	65/123
Figura II.2.4-17.c - Vista frontal do enterramento do gasoduto.	65/123
Figura II.2.4-18 - Vista lateral do enterramento do gasoduto.	66/123
Figura II.2.4-19 - Curva de produção de gás	71/123
Figura II.2.4-20 - Curva de produção de óleo (condensado)	72/123
Figuras II.2.4-21 - Curva de Produção de água	73/123
Figura II.2.4-22 - Fluxograma de tratamento de água produzida	79/123
Figura II.2.4-23 - Ilustração de um barco de apoio junto a um FPSO	115/123
Figura II.2.4-24 - Em primeiro plano, vista aérea do Terminal da CPVV	115/123
Figura II.2.4-25 - Píer para rebocadores da CPVV	116/123
Figura II.2.4-26 - Contêiner para coleta de resíduos no interior da CPVV	120/123
Figura II.2.4-27 - Vista aérea da empresa Vitória Ambiental	120/123
Figura II.4-1 - Contorno de probabilidade de óleo para um acidente	-
ocorrendo no Campo de Camarupim durante os meses	
de inverno (junho a agosto) com derrame de 111.291 m³	05/06

Pág. ii/ xviii

(durante 24 horas) após 31 dias.

(unance 24 nords) apos or alds.	
Figura II.4-2 - Contorno de probabilidade de toque na costa para um	
acidente ocorrendo no Campo de Camarupim, durante os	
meses de inverno (junho a agosto), com derrame de	
111.291 m³. após 31 dias.	05/06
Figura II.5.1-1 - Principais centros de acão das latitudes baixas e altas	
que influenciam a região sudeste do Brasil Fonte:	
Adantado de Nimer (1980)	03/876
Adaptado de Miller (1909).	03/070
Figura 11.3.1-2 - Vento e pressao em supernole no Atlantico Sul para	
janeiro (verao) e juino (inverno). Fonte: Adaptado de	04/070
	04/876
Figura II.5.1-3 - Direção e intensidade de ventos na superficie no Oceano	
Atiantico para os meses de janeiro (verao) e juino	
(inverno). Fonte: Adaptado de Riehl (1979).	05/876
Figura II.5.1-4 - Sistemas de circulação atmosférica perturbada na área	
de interesse. Fonte: Adaptado de Nimer (1989).	05/876
Figura II.5.1-5 - Carta sinótica hipotética mostrando diversos sistemas	
atmosféricos como Instabilidade Tropical (IT), Frente Fria	
(FF) e Frente Quente (FQ). Fonte: Adaptado de Nimer	
(1989).	06/876
Figura II.5.1-6 - Temperatura média mensal do ar (climatológica)	
calculada com dados obtidos entre 1961 a 1990.	08/876
Figura II.5.1-7 - Climatologia de temperatura média do ar no período de	
1979 a 1992.	10/876
Figura II.5.1-8 - Precipitação média mensal (climatológica) para a cidade	
de Vitória (ES).	11/876
Figura II.5.12-9 - Climatologia de precipitação média mensal no período	
de 1979 a 1992. Fonte: NCEP/NCAR.	13/876
Figura II.5.1-10 - Evaporação média mensal (climatológica) para a cidade	
de Vitória (ES).	14/876
Figura II.5.1-11 - Climatologia de vento médio mensal no período de 1979	
a 1992.	15/876
Figura II.5.1-12 - Carta de temperatura da superfície do mar de	
26/03/2001.	18/876
Figura II.5.1-13 - Carta de temperatura da superfície do mar de	
09/09/2001.	19/876
Figura II.5.1-14 - Variação da fregüência mensal de ressurgência em	
Vitória	20/876
Figura II.5.1-15 - Variação mensal da temperatura mínima de	20,010
ressurgência em Vitória Acima média dos valores	
mínimos dos eventos do mês Abaixo a menor	
temperatura de cada mês	21/876
Figura II 5 1-16 - Perfis de temperatura e salinidade na região costeira da	21/070
rigura n.g. 1-10 - Fernis de lerriperatura e sammudue na regido costella da	00/07 <u>6</u>
σατία μο ερμπιο δάπιο επι τένετεπο, άρπι ε πάιο.	22/010

Figura II.5.1-17 - Perfis de temperatura e salinidade na região oceânica	
da Bacia do Espírito Santo em janeiro, fevereiro, março,	
abril, maio, julho, agosto e dezembro.	24/876
Figura II.5.1-18 - Mapas climatológicos de temperatura (esquerda) e	
salinidade (direita) na superficie (acima), 50 m (meio) e	
200 m (abaixo) para o mês de março. Fonte: WOA01.	26/876
Figura II.5.1-19 - Mapas climatológicos de temperatura (esquerda) e	
salinidade (direita) na superfície (acima), 50 m (meio) e	
200 m (abaixo) para o mês de setembro. Fonte: WOA01.	27/876
Figura II.5.1-20 - Diagrama T-S indicando as massas d'água da região	
costeira da Bacia do Espírito Santo (dados de outono).	29/876
Figura II.5.1-21 - Diagramas T-S indicando as massas d'água da região	
oceânica da Bacia do Espírito Santo para as estações de	
inverno (esquerda) e verão (direita)	30/876
Figura II 5 1-22 - Localização dos porfis utilizados para a elaboração das	30/070
Figura II.5. 1-22 - Localização dos perios utilizados para a elaboração das	24/070
seções verticais de massas d'aguas.	31/8/6
Figura II.5.1-23 - Seções verticais de massas d'agua na região da Bacia	
do Espírito Santo, em fevereiro de 1991 (acima), abril de	
1995 (meio) e julho de 1988 (embaixo).	32/876
Figura II.5.1-24 - Perfis de temperatura (°C) registrados ao longo da	
coluna d'água na locação do FPSO Seillean	
(Petrobras/Cepemar, 2006).	34/876
Figura II.5.1-25 - Perfis de temperatura (°C) registrados ao longo da	
coluna d'água na locação do FPSO Capixaba	
(Petrobras/Cepemar 2006)	35/876
Figura II 5 1-26 - Perfis de salinidade registrados ao longo da coluna	00,010
d'áque ne locação do EPSO Soilloon	
(Detrobrog/Conomer 2006)	27/070
(Felfobras/Cepernar, 2000).	31/8/6

BR

PETROBRAS

Relatório PT-3.5.8.018-RT-MA-003

Pág. v/ xviii

Eigura II 5 1 12 Sárias temporais de alevação em Conscisão da	
Figura II.5. 1-42 - Series temporais de elevação em Conceição da	E0/076
Eigure II E 1 42 Médie de três dies (sentredes em 20/05/1000) de alture	0/0/0
Figura II.5. 1-43 - Media de tres días (centrados em 30/05/1999) de altura	
Significativa de onda para a região da Bácia do Espírito	CO/07C
Santo.	60/876
Figura II.5.1-44 - Representação da distribuição das estações de coleta	
de agua encontradas no BNDO na Bacia do Espírito	00/070
Santo com dados sobre parametros físico-químicos.	63/876
Figura 11.5.1-45 - Perilis de oxigenilo dissolvido (ITILL) registrados ao	
longo da coluna d'agua na locação do FPSO Selliean	05/070
(Petrobras/Cepernar, 2006).	07870
Figura 11.5.1-46 - Perilis de Oxigenilo dissolvido (ITILL) registrados ao	
longo da coluna d'agua na locação do FPSO Capixaba	00/070
(Petrobras/Cepemar, 2006).	66/876
Figura II.5.1-47 - Periis de pri registrados ao longo da coluna d'agua na	00/070
locação do FPSO Selliean (Petrobras/Cepemar, 2006).	68/876
Figura II.5.1-48 - Periis de pri registrados ao longo da coluna d agua na	00/070
locação do FPSO Capixaba (Petrobras/Cepemar, 2006).	69/876
Figura 11.5.1-49 - Perilis de oriolositato (µM) registrados ao longo da	
Coluna d'agua na locação do FPSO Selliean	75/070
(Petrobras/Cepernar, 2006).	15/8/6
Figura 11.5.1.3-50 - Perilis de Oliciosialo (µM) registrados ao longo da	
(Potrobros/Conomor 2006)	76/076
Figura II.5.1.51 - Porfis do fósforo total (UM) registrados ao longo do	10/070
Figura 11.5.1-51 - Ferris de losiolo lotal (µM) registrados ao lorigo da	
(Petrobras/Conomar 2006)	70/076
Figura II.5.1-52 - Perfis de fósforo total (UM) registrados ao longo da	10/070
coluna d'áqua na locação do EPSO Capivaba	
(Petrobras/Cenemar 2006)	79/876
Figura II 5 1-53 - Perfis de nitrito (uM) registrados ao longo da coluna	13/010
d'áqua na locação do EPSO Seillean	
(Petrobras/Cenemar 2006)	81/876
Figura II 5 1-54 - Perfis de nitrito (uM) registrados ao longo da coluna	01/01/0
d'áqua na locação do FPSO Capixaba	
(Petrobras/Cenemar 2006)	82/876
Figura II.5.1-55 - Perfis de nitrato (UM) registrados ao longo da coluna	02,010
d'áqua na locação do FPSO Seillean	
(Petrobras/Cepemar 2006)	84/876
Figura II.5.1-56 - Perfis de nitrato (uM) registrados ao longo da coluna	5 ., 61 0
d'áqua na locacão do FPSO Canixaba	
(Petrobras/Cepemar. 2006).	85/876
(23, 0, 0

- CONCREMAT

BR

PETROBRAS

Figura II.5.1-67	- Relação entre o carbono orgânico e o nitrogênio total	
	em todos os pontos de amostragem no entorno do Poço	
	ESS-132, na área do FPSO Seillean	
	(Petrobras/Cepemar, 2006).	101/876
Figura II.5.1-68	P - Perfis de clorofila a ($\mu g.L^{-1}$) registrados ao longo da	
0	coluna d'áqua na locação do FPSO Seillean	
	(Petrobras/Cepemar, 2006).	105/876
Figura II.5.1-69) - Perfis de clorofila a (ug I^{-1}) registrados ao longo da	
	coluna d'áqua na locação do EPSO Capixaba	
	(Petrobras/Cenemar 2006)	106/876
Figura II 5 1-70) - Distribuição de n-alcanos MCRN e hidrocarbonetos	100,010
ngunu n.o. i io	totais para amostras de água coletadas em várias	
	profundidades na Bacia do Espírito Santo Fonte:	
	(Analytical Solutions & Petroleum and Environmental	
	Coosonico 2001a: b: c: d: a: f: a)	110/976
	Geoservice, 200 ra, b, c, u, e, r, y)	110/070
riguia 11.5.1=7	Concentraçãos medianas para diversas emestros	
	concentrações medianas para unersas amostras	
	Solutions & Detroloum and Environmental Cooperation	
	Solutions & Petroleum and Environmental Geoservice,	440/070
	2001a, D, C, d, e, T, g).	112/8/0
Figura 11.5.1-7.	z - reores medios de cascalno, arela, silte e arglia (%)	
	para cada estação nos estratos de A) U a 2 cm, B) 2 a 5	
	cm e C) 5 a 10 cm coletados na campanha de julho de	
	2005. Fonte: (Monitoramento Ambiental FPSO Capixaba	
	e Seillean, PETROBRAS/CEPEMAR, 2006ab)	115/876
Figura 11.5.1-73	- Variação da concentração de metais pesados em	
	sedimentos no entorno de plataformas de	
	exploração/produção na Bacia do Espírito Santo. Fonte:	
	(Analytical Solutions & Petroleum and Environmental	
	Geoservice, 2001a; b; c; d; e; f; g). Obs: Fe em % e os	
	demais em ppm.	117/876
Figura II.5.1-74	- Faixas de concentração para o somatório dos 16 HPAs	
	prioritários medidos em sedimentos da Bacia do Espírito	
	Santo. Fonte: (Analytical Solutions & Petroleum and	
	Environmental Geoservice, 2001a; b; c; d; e; f; g).	123/876
Figura II.5.1-75	- Mapa batimétrico com a localização do Campo de	
	Camarupim (Petrobras, 2006).	141/876
Figura II.5.1-76	- Batimetria em perspectiva com amplitude sobreposta.	
	As cores quentes (amarela e vermelha) estão associadas	
	à presença de sedimentos grossos (areias). As areias	
	ocorrem dentro e fora das ravinas, entre as isóbatas de	
	100 e 850m (PETROBRAS, 2006).	142/876

- CONCREMAT

BR

PETROBRAS

PETROBRAS

Figura II.5.1-97 - Superposição do perfil levantado com perfis simulados
sob diferentes condições de onda: A) comparação do
perfil levantado com perfis simulados para ondas de 1,0
m e 1,5 m, mostrando erosão do pós-praia, seguida de
desenvolvimento de barras na antepraia superior; B)
comparação do perfil levantado com perfis simulados
para ondas de 1,5 m e 2,0 m, mostrando o
desenvolvimento e migração das barras para as porções
mais distantes da linha de costa.

- Figura II.5.1-98 Superposição do perfil levantado com perfis simulados sob diferentes condições de onda: A) com a comparação dos perfis simulados para ondas de 2,0 m e 2,5 m, se verifica o início da migração das barras da antepraia intermediária para a antepraia superior; B) os perfis simulados para as ondas de 2,5 m e 3,0 m continuam a apresentar a migração das barras em direção à antepraia superior, indicando uma variação do tipo morfodinâmico entre os estados intermediários.
- *Figura II.5.1-99 -* Superposição do perfil levantado com perfis simulados sob condições de ondas decenárias: A) perfil simulado para onda decenária de 4,4 m, mostrando que sob condições extremas de energia ocorre uma erosão significativa da antepraia intermediária seguida de formação de barras mais distantes da linha de costa; B) perfil simulado para ondas de 5,0 m de altura, onde se observa a mobilização do fundo à profundidades de cerca de 7,0 m e a migração da barra em direção a antepraia inferior, indicando erosão do litoral.
- Figura II.5.2-1 Unidades de Conservação na Área de Estudo-Figura II.5.2-2 Praia de Maimbá com as falésias. Anchieta-ES217/876Figura II.5.2-3 Praias com declividade moderada e presença de
arrecifes. Bicanga. Serra-ES.217/876Figura II.5.2-4 Exemplo de litoral exposto costão rochoso e Praia da
Areia Preta, Guarapari. Guarapari-ES.218/876
- Figura II.5.2-5 Região estuarina do rio Jucu. Vila Velha-ES.
- Figura II.5.2-6 Divisão do Litoral Capixaba
- Figura II.5.2-7 Vista das áreas de manguezal dentro da baía de Vitória.Ao fundo vê-se a cidade de Vitória- ES.219/876
- Figura II.5.2-8 Praia cuja vegetação de restinga foi completamente destruída pela ocupação humana - Praia Graçaí. Guarapari-ES 222/876
- Figura II.5.2-9 Praias do litoral sul capixaba
- *Figura II.5.2-10 Molhes construídos na Praia de Marataízes/ES.* 223/876

- - CONCREMAT

179/876

181/876

218/876

178/876

Figura II.5.2-11	- Manguezais na foz do Rio Itapemirim Marataízes/ES.	225/876
Figura II.5.2-12	- Praias do litoral central capixaba.	-
Figura II.5.2-13	- Manguezal localizado na foz do Rio Iconha, Piúma.	227/876
Figura II.5.2-14	- Vista da Praia de Piúma. Piúma-ES.	228/876
Figura II.5.2-15	- Manguezal da Baía de Guarapari. Guarapari-ES	230/876
Figura II.5.2-16	- Vista de um trecho do Parque Estadual Paulo César	
	Vinha, onde pode-se observar partes de praia arenosa e	
	de costão rochoso, além de uma lagoa costeira e da faixa	
	de restinga paralela a praia.	232/876
Figura II.5.2-17	- Praia do Morro. Guarapari-ES.	235/876
Figura II.5.2-18	- Praia da Costa. Vila-Velha-ES.	236/876
Figura II.5.2-19	- Vista da Reserva Ecológica Municipal restinga da praia	
	de Camburi na baía do Espírito Santo.	237/876
Figura II.5.2-20	- Vista da região de Vitória e Vila Velha-ES, com as baías	
	do Espírito Santo e Vitória em destaque. Fonte: Fóton em	
	www.baiadevitoria.ufes.br	238/876
Figura II.5.2-21	- Costão abrigado do Morro Jaburuna, Vila Velha-ES.	241/876
Figura II.5.2-22	- Praias do litoral norte capixaba	-
Figura II.5.2-23	- Vista da Praia Mole. Serra-ES.	254/876
Figura II.5.2-24	- Foz do Rio Reis Magos e ao fundo a Praia Grande.	
	Fundão-ES.	259/876
Figura II.5.2-25	5 - Vista da planície do Rio Riacho próximo a sua foz.	
	Aracruz-ES.	260/876
Figura II.5.2-20	6 - Estuário do rio Piraquê-açu e seus manguezais.	
	Aracruz-ES.	260/876
Figura II.5.2-27	- Trecho da Praia de Comboios. Linhares-ES.	269/876
Figura II.5.2-28	- Trecho da Praia de Regência. Linhares-ES.	269/876
Figura II.5.2-29	I - Trecho do litoral pertencente a Reserva Biológica de	
	Comboios. Linhares-ES.	270/876
Figura II.5.2-30	 Vista de cordão litorâneo arenoso com área alagada. 	270/876
Figura II.5.2-31	- Praia de Cacimbas mostrando o ponto onde chegará o	
	gasoduto.	275/876
Figura II.5.2-32	- Composição totalmente arenosa dos cordões litorâneos	
	e a vegetação de restinga da praia de Cacimbas.	276/876
Figura II.5.2-33	- Região de Barra Seca. Linhares-ES.	276/876
Figura II.5.2-34	- Áreas Prioritárias ES - parte I	-
Figura II.5.2-35	- Áreas Prioritárias ES - parte II	-
Figura II.5.2-36	- Áreas Prioritárias ES - parte III	-
Figura II.5.2-37	- Área de influência do Vórtice de Vitória	-
Figura II.5.2-38	- Perfil Vertical do número de taxa do microfitoplâncton e	
	riqueza de Margalef por estação de coleta e média das	
	profundidades (X) no entorno do poço ESS-132.	
	*Profundidade Média da Termoclina Fonte:	
	(PETROBRAS/CEPEMAR, 2006).	295/876

Eigure II 5 2 20 Derfil Vertical de primere de taxe de mierefitenlênsten e	
rigura 11.5.2-39 - Perilli Venical do numero de taxa do micromoplancion e	
nqueza de margaler por estação de coleta e media das	
protundidades (X) no entorno FPSO Capixaba.	000/070
*Profundidade Media da Termoclina	296/876
Figura II.5.2-40 - Perfil vertical do índice de diversidade de Shannon-	
Wiener (bits.cel-1) por estação de coleta e média das	
profundidades (X) no entorno do Poço ESS-132.	
*Profundidade Média da Termoclina	
.(PETROBRAS/CEPEMAR, 2006).	298/876
Figura II.5.2-41 - Perfil vertical do índice de diversidade de Shannon-	
Wiener (bits.cel-1) por estação de coleta e média das	
produndidades (X). *Profundidade Média da Termoclina	
(PETROBRAS/CEPEMAR. 2006).	299/876
Figura II.5.2-42 - Densidade zooplanctônica (ind.m-3) das sete estações	
de coleta realizadas na campanha de maio de 2005 do	
EPSO Seillean (PETROBRAS/CEPEMAR 2006)	301/876
Figura II 5 2-43 - Abundância relativa dos grupos zooplanctônicos da	001/010
campanha de maio de 2005 do EPSO Seillean	
	202/976
(FEIROBRAS/CEFEMAR, 2000).	302/070
rigura 11.5.2-44 - Densidade Zooplancionica (Ind.in) das sele estações	
coletadas na campanna de maio de 2005 do FPSO	000/070
Capixaba (PETROBRAS/CEPEMAR, 2006).	303/876
Figura II.5.2-45 - Abundância relativa dos grupos zooplanctónicos	
coletados na campanha de maio de 2005 do FPSO	
Capixaba (PETROBRAS/CEPEMAR, 2006).	303/876
Figura II.5.2-46 - Densidade de ovos de peixes (ovos/100m ⁻³) da	
campanha de maio de 2005 na Unidade FPSO Seillean	
(PETROBRAS/CEPEMAR, 2006).	305/876
Figura II.5.2-47 - Densidade de larvas de peixes (ovos/100m ⁻³) da	
campanha de maio de 2005 na Unidade FPSO Seillean	
(PETROBRAS/CEPEMAR, 2006).	305/876
Figura II.5.2-48 - Densidade de ovos de peixes (ovos.100m ³) da	
campanha de maio de 2005 na Unidade FPSO Capixaba	
(PETROBRAS/CEPEMAR, 2006).	306/876
Figura II.5.2-49 - Densidade de larvas de peixes (larvas 100m ⁻³) da	
campanha de maio de 2005 na Unidade FPSO Capixaba	
(PETROBRAS/CEPEMAR 2006)	307/876
Figura II 5 2-50 - Percentual das famílias de peixes de hábitos pelágico	001/010
meso-batinelágico e demersal coletadas na campanha de	
meso-balipelagico e demensar coletadas na campanna de	200/976
Figure II 5 2 51 Derentuel des femilies de neives de hébites relégies	309/070
rigura II.3.2-31 - recentuar das tarifilias de peixes de flabitos pelagico,	
meso-palipelagico e demersal coletadas na campanha de	
maio de 2005 na Unidade FPSO Capixaba	000/07-
(PETROBRAS/CEPEMAR, 2006).	309/876

- CONCREMAT

Figura	II.5.2-52	? - Tipo de sedimento encontrado na área de estudo -	311/876
Figura	11 5 2-53	3 - Tino de sedimento encontrado na área de estudo -	011/01/0
riguru		Areia	312/876
Figura	II.5.2-54	4 - Tipo de substrato encontrado na área de estudo -	0.2,01.0
gu.u		Cascalho	312/876
Figura	II.5.2-55	- Densidade total (ind.m ⁻²) dos estratos por estação na	0.2,0.0
		campanha de julho de 2005 da Unidade FPSO Seillean	
		(PETROBRAS/CEPEMAR, 2006).	316/876
Figura	II.5.2-56	- Densidade total (ind.m-2) dos estratos por estação na	
U		campanha de julho de 2005 da Unidade FPSO Capixaba	
		(PETROBRAS/CEPEMAR, 2006).	316/876
Figura	II.5.2-5	7 - Número total de organismos dos filos Nematoda,	
U		Mollusca, Annelida-Polychaeta e Crustacea nos três	
		estratos investigados, na Unidade do FPSO Seillean.	
		Dados plotados em escala logarítmica	
		(PETROBRAS/CEPEMAR, 2006).	317/876
Figura	II.5.2-58	3 - Número total de organismos dos filos Nematoda,	
		Mollusca, Annelida-Polychaeta e Crustacea nos três	
		estratos investigados, na Unidade do FPSO Capixaba.	
		Dados plotados em escala logarítmica	
		(PETROBRAS/CEPEMAR, 2006).	318/876
Figura	11.5.2-59	🧿 - Tipo de substrato encontrado na área de estudo -	
		Rodolitos.	320/876
Figura	II.5.2-60) - Barcos de pesca de camarão arrastando próximo a	
		praia - Pr. dos Cavaleiros - Macaé - RJ.	322/876
Figura	11.5.2-61	- Exemplo de praia dissipativa - Praia do Peró, município	
		de Búzios.	323/876
Figura	II.5.2-62	- Exemplo de praia intermediária - banco e calha -Praia	
		do Morobá, Presidente Kenedy - ES.	324/876
Figura l	11.5.2-63	- Exemplo de praia refletiva - Rio das Ostras.	325/876
Figura I	11.5.2-64	- Exemplo de manguezal - río Perocao - Guarapari - ES.	326/876
Figura	11.5.2-65	- Exemplo de lagoa com comunicação permanente com o	000/070
		mar - Canal de Itajuru, Lagoa de Araruama, Cabo Frio.	328/876
Figura	11.5.2-00	de Tiririne Mareteízee	220/076
Elaura	11 5 2 67	ua minica, maralaizes. 2. Exemple costão lico. Cosimiro do Abrou	320/070
Figura	11.5.2-07 11 5 2 69	- Exemplo costao liso - Casimilo de Abreu.	222/076
Figura	11.5.2-00 11 5 2_60	- Costão lico margeado por blocos de rochas -Praia do	332/070
riguia	11.J.2-09		332/876
Figure	11 5 2-74	η στο, Βαζιος. Ο - Costão com pocas de maré - Ponta da Aldeia -	552/010
, iguia		Guaranari - ES	333/876
Figura	11 5 2-71	- Exemplo de costão fragmentado - município de Rio das	555/070
. iguia i		Ostras	333/876
			555,010

Figura II.5.2-72 - Aspecto geral de litoral rochoso vesiculado característico da Formação Barreira que ocorre na região entre moréo e portir de parte de Estado do Die de Janeiro	
entre-mares à partir do none do Estado do Rio de Janeiro	224/070
- Ponta Buena, Município de Bonn Jesus de Itabapoana. Figura II 5 2-73 - Formação Barreiras - Praia Grande, Vila Velba - ES	335/876
Figura II.5.2-74 - Litoral composto nor blocos de rochas de tamanhos	000/010
variados Praias de Cascalho.	335/876
Figura II.5.2-75 - Exemplo de praias de cascalno - Praia da Taπaruga, Búzios	336/876
Figura II 5 2-76 - Exemplo de litoral insular consolidado - Ilha de Cabo	550/070
Frio. município de Arraial do Cabo.	337/876
Figura II.5.2-77 - Exemplo de litoral insular não consolidado - Praia do	
Farol. Ilha de Cabo Frio. município de Arraial do Cabo.	337/876
<i>Figura II.5.2-78 -</i> Rotas migratórias de baleia-jubarte. Megaptera	
novaeangliae, no Oceano Atlântico Sul Ocidental.	
Adaptado de Slijper & van Utrecht (1959) e Siciliano	
(1997).	342/876
Figura II.5.2-79 - Ocorrência, distribuição e migração de cetáceos na área	
de estudo.	-
Figura II.5.2-80 - Distribuição temporal dos ninhos registrados nas Bases	
do Projeto TAMAR-IBAMA no Espírito Santo, na	
temporada 2004/2005 (Projeto TAMAR, 2005).	347/876
Figura II.5.2-81 - Deslocamentos de um exemplar de tartaruga-marinha	
"Povoação" em águas oceânicas do estado do Espírito	
Santo (Fonte: http://www.tamar.org.br/satelite.htm)	353/876
Figura II.5.2-82 - Deslocamentos de um exemplar de tartaruga-marinha	
"Capixaba" em águas oceânicas do estado do Espírito	
Santo. (Fonte: http://www.tamar.org.br/satelite.htm)	353/876
Figura II.5.2-83 - Exemplar de Prionace glauca (Tubarão-azul) capturado	
com o espinhel de superfície.	363/876
Figura II.5.2-84 - Exemplar de Hirundichthys speculiger capturado com o	
espinhel de superfície e também presente em conteúdo	
estomacal.	364/876
Figura II.5.2-85 - Exemplar de Dactylopterus volitans presente em	
conteúdo estomacal.	364/876
Figura II.5.2-86 - Exemplar de Coryphaena hippurus (Dourado) capturado	
com o espinhel de superfície.	364/876
Figura II.5.2-87 - Exemplar de Tetrapturus albidus capturado com o	
espinhel de superfície.	365/876
Figura II.5.2-88 - Exemplar de Gempylus serpens capturado com o	
espinhel de superfície.	365/876
Figura II.5.2-89 - Exemplar de Scomber japonicus presente em conteúdo	
estomacal.	365/876

Figura II.5.2-90 - Exemplar de Thunnus atlanticus capturado com o	
espinhel de superfície.	366/876
Figura II.5.2-91 - Exemplar de Aluterus monoceros presente em conteúdo	
estomacal.	366/876
Figura II.5.2-92 - Exemplar de Cantherhines pullus presente em conteúdo	
estomacal.	366/876
Figura II.5.2-93 - Exemplar de Acanthostracion polygonius presente em	
conteúdo estomacal.	367/876
Figura II.5.2-94 - Exemplar de Lagocephalus lagocephalus capturado	
com o espinhel de superfície.	367/876
Figura II.5.2-95- Exemplar de Diodon holocanthus presente em conteúdo	
estomacal.	368/876
Figura II.5.3-1 - Vista geral da baía de Vitória.	401/876
Figura II.5.3-2 - Porto de Vitória.	402/876
Figura II.5.3-3 - Porto de Vitória (Retro-área de Vila Velha). Destaque	
para CPVV e Cais de Capuaba.	402/876
Figura II.5.3-4 - Porto de Tubarão.	402/876
Figura II.5.3-5 - Porto de Praia Mole.	403/876
Figura II.5.3-6- Vista do Portocel em Aracruz/ES.	406/876
Figura II.5.3-7 - Porto de Ubu, Município de Anchieta.	412/876
Figura II.5.3-8 - Salinas entre Cabo Frio e Arraial do Cabo.	415/876
Figura II. 5.3-9 - Salinas entre Cabo Frio e Arraial do Cabo.	415/876
Figura II.5.32-10 - Porto de Imbetiba - Macaé.	420/876
Figura II.5.3-11 - Canaviais entre Quissamã e Carapebus.	423/876
Figura II.5.3-12 - Usina de Quissamã.	423/876
Figura II.5.3-13 - Usina de Carapebus.	423/876
Figura II.5.3-14 - Usina de açúcar de Barcelos, em São João da Barra.	427/876
Figura II.5.3-15 - Migração Total (% da população residente).	481/876
Figura II. 5.3-16 - Migração-Composição.	481/876
<i>Figura II.5.3-17 -</i> Vista da Ilha de Vitória.	599/876
Figura II.5.3-18 - Vista aérea de Vila Velha (Praia da Costa e Praia de	
Itapuã).	603/876
Figura II.5.3-19 - Igreja dos Reis Magos, Nova Almeida, município da	
Serra.	606/876
Figura II.5.3-20 - Lagoa Juparanã.	616/876
Figura II.5.3-21 - Ilha do Imperador.	616/876
Figura II.5.3-22 - Vista do rio Doce.	618/876
Figura II.5.3-23 - Vista aérea do centro de Guarapari e suas praias.	624/876
Figura II.5.3-24 - Praia de Parati, Município de Anchieta.	625/876
Figura II.5.3-25 - Foz e manguezais do rio Benevente, município de	
Anchieta.	626/876
Figura II.5.3-26 - Praia de Siri, município de Marataízes.	628/876
Figura II.5.3-27 - Capela de São Pedro, sede de Piúma.	630/876

Relatório PT-3.5.8.018-RT-MA-003

Figura II.5.3-28 - Palácio das Águias, município de Itapemirim.	632/876
Figura II.5.3-29 - Trapiche, Município de Itapemirim.	633/876
Figura II.5.3-30 - Praia das Neves, município de Presidente Kennedy.	634/876
Figura II.5.3-31 - Placa informativa de entrada em área indígena, sobre a	
estrada de Caieiras Velha	798/876
Figura II.5.4.3-1 - Esquema de cores para a classificação em ordem	
crescente da sensibilidade ambiental costeira (ARAÚJO	
et al. 2001)	870/876
Figura II.5.4.3-2 - Relação dos ícones utilizados com seus respectivos	
significados	871/876
Figura II.5.4.3-3 - Relação dos ícones utilizados com seus respectivos	
significados	874/876
Figura II.6-1- Distribuição espacial do compilamento de todas as artes de	
pesca.	47/172
Figura II.6-2 - Média das máximas concentrações esperadas (µg/L) para	
a pluma de Fluorene R2, simulada no período de A)	
verão e B) inverno, após 1 hora para o PLEM do Campo	
de Camarupim (Petrobras/ASA, 2007).	57/172
Figura II.6-3 - Desenho ilustrando o método de lançamento S-Lay.	65/172
Figura II.6.4 - Processo de enterramento da tubulação a partir de uma	
visão frontal do sistema.	67/172
Figura II.6-5 - Atividades do equipamento a partir de uma vista lateral,	
onde se observam as correntes de serra.	68/172
Figura II.6-6 - Superposição do perfil levantado com perfis simulados sob	
diferentes condições de onda. Os perfis simulados para	
as ondas de 2,5m e 3,0m mostram uma migração das	
barras em direção à antepraia superior, indicando uma	
variação do tipo morfodinâmico entre os estados	
intermediários.	69/172
Figura II.6-7 - Produção nacional de gás natural no mar 2000-2006 (em	
BEP = Barril Equivalente de Petróleo). Fonte: ANP -	
Boletim Mensal de Produção submetido à ANP. Notas: O	
valor total da produção inclui os volumes de reinjeção,	
queimas e perdas e consumo próprio de gás natural.	89/172
Figura II.6-8 - Produção nacional de gás natural na Bacia do Espírito	
Santo 2000-2006 (em BEP = barril equivalente de	
petróleo). Fonte: ANP - Boletim Mensal de Produção	
submetido à ANP. Notas: O valor total da produção inclui	
os volumes de reinjecão, queimas e perdas e consumo	
próprio de gás natural.	89/172
· · · ·	

Relatório

Pág.

xvi/ xviii

Índice Geral

Figura II.6-9 - Produção nacional de petróleo no mar 2000-2006 (em BEP = Barril Equivalente de Petróleo). Fonte: ANP - Boletim Mensal de Produção submetido à ANP. Notas: Dados retificados em 10/04, em função de alteração dos fatores de conversão. Petróleo: óleo e condensado. Não inclui LGN (GLP e C5+).

Figura II.6-10 - Produção de petróleo na Bacia do Espírito Santo 2000-2006 (em BEP = Barril Equivalente de Petróleo). Fonte: ANP - Boletim Mensal de Produção submetido à ANP. Notas: Dados retificados em 10/04, em função de alteração dos fatores de conversão. Petróleo: óleo e condensado. Não inclui LGN (GLP e C5+).

Figura II.6-11- Diagrama esquemático mostrando os processos físicos básicos envolvidos na liberação de óleo e gás em águas profundas. (Fonte: NRC, 2003)

Figura II.6-12 - Zoom do cenário probabilístico de pior caso ocorrendo no FPSO Capixaba, durante os meses de inverno (junho a agosto), junto ao ponto de risco. Em vermelho está indicada a posição de afloramento do óleo. Fonte: Petrobras/Cepemar, 2005.

Figura II.6-13 - Tempo de dispersão de óleo vinculado aos processos físico-químicos. Fonte: Minerals Management Service, USA (In: Modeling Oil and Gas Releases from Deep Water Blowouts; Clarkson University, Potsdam, NY). Fonte: MMS, 2006.

- Figura II.6-14 Dissipação do óleo no mar e os principais processos de intemperização. Fonte: ITOPF, 2006.
- Figura II.6-15 Taxa de remoção do óleo da superfície do mar de acordo com o tipo de óleo. * Densidade do condensado = 0,4558 $g/cm^3 ** e$ Densidade do óleo = 0,817 g/cm^3 que ocorrem no Campo de Camarupim.
- Figura II.6-16 Contorno de probabilidades de óleo na água do mar para um acidente ocorrendo no FPSO Cidade de São Mateus durante os meses de verão (janeiro a março) com derrame de 200 m³ (instantâneo), após 30 dias.
- Figura II.6-17 Contorno de probabilidades de óleo na água do mar para um acidente ocorrendo no FPSO Cidade de São Mateus durante os meses de inverno (junho a agosto) com derrame de 200 m³ (instantâneo), após 30 dias.
- Figura II.6-18 Contorno de probabilidades de óleo na água do mar para um acidente ocorrendo no FPSO Cidade de São Mateus durante os meses de verão (janeiro a março) com derrame de 111.291 m³ (durante 24 horas), após 31 dias

90/172

PETROBRAS

91/172

124/172

125/172

128/172

128/172

129/172

133/172

134/172

135/172

Figura	II.6-19 -	Contorno de probabilidade de óleo na água para um acidente ocorrendo no FPSO Cidade de São Mateus durante os meses de inverno (junho a agosto) com	
Figura	II.6-20 -	derrame de 111.291 m³ (durante 24 horas), após 31 dias · Probabilidades de toque na costa para um acidente ocorrendo no FPSO Cidade de São Mateus, durante os meses de verão (janeiro a março), com derrame de	136/172
Figura	II.6-21 -	111.291 m ³ (durante 24 horas), após 31 dias · Probabilidades de toque na costa para um acidente ocorrendo no FPSO Cidade de São Mateus, durante os meses de inverno (junho a agosto), com derrame de	137/172
Figura	II.6-22 -	111.291 m ³ após 31 días Contornos de probabilidade de condensado na coluna d'água (acima do corte de 9,3 ppb) para um vazamento ocorrendo no gasoduto, durante os meses de verão (janeiro a março), com derrame de 2.421,9 m ³ após 45	138/172
Figura	II.6-23 -	horas. Contornos de probabilidade de condensado na coluna d'água (acima do corte de 9,3 ppb) para um vazamento ocorrendo no gasoduto, durante os meses de inverno (junho a agosto), com derrame de 2.421,9 m ³ após 36	144/172
		horas	145/172
Figura Figura	II.6-24 - [II.6-25 -	Distribuição dos acidentes versus modo de operação. Magnitude dos Vazamentos versus Nº de ocorrências para os vazamentos conhecidos de óleo, óleo/gás e óleo	156/172
Figura	II.6-26 -	leve. Distribuição espacial da utilização do petrecho linha por	157/172
		porto de origem.	165/172
Figura	11.0-27 -	porto de origem.	166/172
Figura	II.6-28 - I	Distribuição espacial da utilização do petrecho balão por porto de origem.	167/172
Figura	II.6-29 - I	Distribuição espacial da utilização do petrecho balão por porto de origem	168/172
Figura	II.6-30 - [Distribuição espacial da utilização do petrecho gancho por porto de origem	169/172
Figura	II.6-31 -	Distribuição espacial do compilameno de todas as artes de pesca.	170/172
Figura	II.7.1-1-	Desenho esquemático da malha amostral de água e plâncton no entorno EPSO Cidade de São Mateus	20/143
Figura	II.7.1-2-	Desenho esquemático do petrecho de captura, espinhel de superfície modelo americano, utilizado durante a	20,140
	i	amostragem biológica, ao longo do estudo.	28/143

CONCREMAT

Figura II.8.1.1-1 - Representação esquemática geral do sistema de extração de fluidos para o FPSO e exportação de gás				
para a UTGC II	09/108			
Figura II.8.1.1-2 - Coletor dos poços de gás - Manifold				
Figura II.8.1.1-3 - Fluxograma do Processamento de Separação e				
Tratamento de fluido com alternativa de armazenamento				
de óleo	16/108			
Figura II.8.1.1-4 - Fluxograma do Processamento de Compressão e				
Tratamento de Gás.	19/108			
Figura II.8.1.1-5 - Fluxograma do sistema de flare de alta e baixa				
pressão.	21/108			
Figura II.8.1.1-6 - Fluxograma do Sistema de Tratamento de Água				
Produzida	23/108			
Figura II.8.1.1-7 - Sistema de Gás Combustível de Alta e Baixa Pressão	24/108			
Figura II.8.1.1-8 - Fluxograma do Sistema de Água de Injeção.	26/108			
Figura II.8.1.1-9 - Sistema de Offloading para o caso de transferência de				
petróleo	34/108			
Figura II.8.1.3.4.1-: Resultados percentuais por classe de risco de				
ambiental - Instalação	86/108			
Figura II.8.1.3.4.2:- Resultados percentuais por classe de risco ambiental				
- Produção	87/108			
	517100			

