Modelagem do Descarte de Fluido de Preenchimento dos Testes Hidrostáticos dos Gasodutos: Extremo Sul, Lula Norte, Lula Sul e Sapinhoá Norte

Revisão 00 Agosto/2013

Modelagem do Descarte de Fluido de Preenchimento dos Testes Hidrostáticos dos Gasodutos: Extremo Sul, Lula Norte, Lula Sul e Sapinhoá Norte

Revisão 00 Agosto / 2013

TETRA TECH é responsável pelo conteúdo do presente relatório incluindo: tecnologias, metodologias, especificações técnicas, desenhos, figuras, cópias, diagramas, fórmulas, modelos, amostras, e fluxogramas.

A utilização deste material deverá ser compatível com o escopo do projeto/trabalho contratado, fazendo-se expressa menção ao nome da TETRA TECH como autora do estudo. Da mesma forma, quando a equipe técnica da TETRA TECH for incorporada na equipe técnica da empresa contratante, esta deverá ser mencionada, e referenciada, como: "consultores da TETRA TECH". Qualquer dúvida ou alteração desta conduta deverá ser discutida entre o cliente e a TETRA TECH.

Tt (Tetra Tech), 2013. Modelagem do Descarte de Fluido de Preenchimento dos Testes Hidrostáticos dos Gasodutos: Extremo Sul, Lula Norte, Lula Sul e Sapinhoá Norte. Relatório Técnico, Revisão 00 (23 de agosto de 2013). 85pp+Apêndices/Anexos.

CONTROLE DE REVISÕES

REV.	DESCRIÇÃO	DATA
00	Documento Original	23/08/2013

	Original	Rev. 01	Rev. 02	Rev. 03	Rev. 04	Rev. 05	Rev. 06	Rev. 07	Rev. 08
Data	23/08/13								
Elaboração									
Verificação									
Aprovação									

ÍNDICE GERAL

RE	SUN	//O				1
I	IN	FRODUÇÃO				I-1
	I.1	ÁREA DE ESTUD	D			I-2
П	CA	RACTERÍSTICAS [OO LANG	ÇAMENTO DE FLUC	ORENE F	R2 II-1
	MC	DELAGEM DA DIL	UIÇÃO E	E DISPERSÃO DE E	FLUEN	「ES III-1
	III.1	MODELAGEM DA	DILUIÇÂ	ÃO NO CAMPO PRO	ÓXIMO	III-2
	III.2	DADOS AMBIENT	AIS			III-3
		III.2.1 CAMPOS D	E VENT	D		111-4
		III.2.2 CAMPOS D	E CORR	ENTES		111-4
		III.2.3 DADOS DE	TEMPE	RATURA E SALINIC	ADE	III-5
	III.3	CENÁRIOS SIMUL	ADOS.			III-10
	.4	RESULTADOS DE EFLUENTES	DA	MODELAGEM	DE	LANÇAMENTO III-15
		III.4.1 EXTREMO	SUL			III-15
		III.4.2 LULA NORT	Έ			III-24
		III.4.3 LULA SUL				III-33
		III.4.4 SAPINHOÁ	NORTE.			III-42
IV	CC	NSIDERAÇÕES FI	NAIS			IV-1
V	BIE	BLIOGRAFIA				V-1
VI	EQ	UIPE TÉCNICA				VI-1

LISTA DE TABELAS

TABELA PÁG.
Tabela I-1 - Coordenadas e lâmina d'água (m) dos pontos de lançamento. I-3
Tabela II-1 - Parâmetros utilizados para a modelagem das plumas de lançamento de Fluorene R2 a partir dos Gasodutos: Extremo Sul, Lula Norte, Lula Sul e Sapinhoá NorteII-2
Tabela II-2 - Resultados dos testes de toxicidade com o equinodermo Lytechinusvariegatus realizados com amostras de Fluorene R2.II-3
Tabela III-1 - Densidade do efluente calculada em função da concentração de Fluorene R2 (i.e. 40 mg/L) e da densidade ambiente, para cada um dos pontos simulados.III-3
Tabela III-2 - Valores de densidade obtidos dos dados do NODC (superfície e fundo) nas coordenadas dos pontos de descarte do Gasoduto Extremo Sul.
Tabela III-3 - Valores de densidade obtidos dos dados do NODC (superfície e fundo) nas coordenadas dos pontos de descarte do Gasoduto Lula Norte. III-9
Tabela III-4 - Valores de densidade obtidos dos dados do NODC (superfície e fundo) nas coordenadas dos pontos de descarte do Gasoduto Lula SulIII-9
Tabela III-5 - Valores de densidade obtidos dos dados do WOCE (superfície e fundo) nas coordenadas do ponto de descarte do Gasoduto Sapinhoá Norte.III-10
Tabela III-6 - Dados de entrada adotados no campo próximo para o Gasoduto Extremo Sul no ponto PLET -LUL-010III-11
Tabela III-7 - Dados de entrada adotados no campo próximo para o Gasoduto Extremo Sul no ponto PLET -LUL-011III-11
Tabela III-8 - Dados de entrada adotados no campo próximo para o Gasoduto Lula Norte no ponto PLET -LUL-006III-12
Tabela III-9 - Dados de entrada adotados no campo próximo para o Gasoduto Lula Norte no ponto PLET -LUL-007III-12
Tabela III-10 - Dados de entrada adotados no campo próximo para o Gasoduto Lula Sul no ponto PLET -LUL-012.
Tabela III-11 - Dados de entrada adotados no campo próximo para o Gasoduto Lula Sul no ponto PLET -LUL-013.

Tt 11-050 (Sol. 16 e 20)

LISTA DE FIGURAS

 Figura I-1 - Localização dos pontos de lançamento do efluente proveniente do desalagamento dos Gasodutos: Extremo Sul, Lula Norte, Lula Sul e Sapinhoá Norte, após teste hidrostático de integridade estrutural dos dutos. Fonte: NASA Landsat Program Landsat 5 TM	FIGURA PÁG.
 Figura III-1 - Localização do conjunto de dados do WOCE utilizados na obtenção das informações de densidade para as simulações de diluição e dispersão de efluentes descartados a partir de Sapinhoá Norte	Figura I-1 - Localização dos pontos de lançamento do efluente proveniente do desalagamento dos Gasodutos: Extremo Sul, Lula Norte, Lula Sul e Sapinhoá Norte, após teste hidrostático de integridade estrutural dos dutos. Fonte: NASA Landsat Program Landsat 5 TM.
 Figura III-2 - Diluição em relação à distância do ponto de lançamento de Fluorene R2 a partir do desalagamento do Gasoduto Extremo Sul, ponto PLET-LUL-010, nos períodos de verão e inverno	Figura III-1 - Localização do conjunto de dados do WOCE utilizados na obtenção das informações de densidade para as simulações de diluição e dispersão de efluentes descartados a partir de Sapinhoá NorteIII-7
 Figura III-3 - Diluição em relação à distância do ponto de lançamento de Fluorene R2 a partir do desalagamento do Gasoduto Extremo Sul, ponto PLET-LUL-011, nos períodos de verão e inverno	Figura III-2 - Diluição em relação à distância do ponto de lançamento de Fluorene R2 a partir do desalagamento do Gasoduto Extremo Sul, ponto PLET-LUL-010, nos períodos de verão e inverno
 Figura III-4 - Profundidades em relação à distância do ponto de lançamento de Fluorene R2 a partir do desalagamento do Gasoduto Extremo Sul, ponto PLET-LUL-010, nos períodos de verão e inverno	Figura III-3 - Diluição em relação à distância do ponto de lançamento de Fluorene R2 a partir do desalagamento do Gasoduto Extremo Sul, ponto PLET-LUL-011, nos períodos de verão e inverno
 Figura III-5 - Profundidades em relação à distância do ponto de lançamento de Fluorene R2 a partir do desalagamento do Gasoduto Extremo Sul, ponto PLET-LUL-011, nos períodos de verão e inverno	Figura III-4 - Profundidades em relação à distância do ponto de lançamento de Fluorene R2 a partir do desalagamento do Gasoduto Extremo Sul, ponto PLET-LUL-010, nos períodos de verão e inverno
 Figura III-6 - Trajetória horizontal (vista em planta) da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Extremo Sul, ponto PLET-LUL-010, nos períodos de verão e inverno	Figura III-5 - Profundidades em relação à distância do ponto de lançamento de Fluorene R2 a partir do desalagamento do Gasoduto Extremo Sul, ponto PLET-LUL-011, nos períodos de verão e inverno
 Figura III-7 - Trajetória horizontal (vista em planta) da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Extremo Sul, ponto PLET-LUL-011, nos períodos de verão e invernoIII-21 Figura III-8 - Visualização tridimensional do campo próximo da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Extremo Sul, ponto PLET-LUL-010, no período de verãoIII-22 	Figura III-6 - Trajetória horizontal (vista em planta) da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Extremo Sul, ponto PLET-LUL-010, nos períodos de verão e invernoIII-20
Figura III-8 - Visualização tridimensional do campo próximo da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Extremo Sul, ponto PLET-LUL-010, no período de verãoIII-22	Figura III-7 - Trajetória horizontal (vista em planta) da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Extremo Sul, ponto PLET-LUL-011, nos períodos de verão e invernoIII-21
	Figura III-8 - Visualização tridimensional do campo próximo da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Extremo Sul, ponto PLET-LUL-010, no período de verãoIII-22
Figura III-9 - Visualização tridimensional do campo próximo da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Extremo Sul, ponto PLET-LUL-010, no período de inverno	Figura III-9 - Visualização tridimensional do campo próximo da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Extremo Sul, ponto PLET-LUL-010, no período de inverno
Figura III-10 - Visualização tridimensional do campo próximo da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Extremo Sul, ponto PLET-LUL-011, no período de verãoIII-23	Figura III-10 - Visualização tridimensional do campo próximo da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Extremo Sul, ponto PLET-LUL-011, no período de verãoIII-23

FIGURA PÁG.
Figura III-11 - Visualização tridimensional do campo próximo da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Extremo Sul, ponto PLET-LUL-011, no período de invernoIII-23
Figura III-12 - Diluição em relação à distância do ponto de lançamento de Fluorene R2 a partir do desalagamento do Gasoduto Lula Norte, ponto PLET- LUL-006, nos períodos de verão e invernoIII-25
Figura III-13 - Diluição em relação à distância do ponto de lançamento de Fluorene R2 a partir do desalagamento do Gasoduto Lula Norte, ponto PLET- LUL-007, nos períodos de verão e invernoIII-26
Figura III-14 - Profundidades em relação à distância do ponto de lançamento de Fluorene R2 a partir do desalagamento do Gasoduto Lula Norte, ponto PLET- LUL-006, nos períodos de verão e invernoIII-27
Figura III-15 - Profundidades em relação à distância do ponto de lançamento de Fluorene R2 a partir do desalagamento do Gasoduto Lula Norte, ponto PLET- LUL-007, nos períodos de verão e invernoIII-28
Figura III-16 - Trajetória horizontal (vista em planta) da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Lula Norte, ponto PLET-LUL-006, nos períodos de verão e invernoIII-29
Figura III-17 - Trajetória horizontal (vista em planta) da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Lula Norte, ponto PLET-LUL-007, nos períodos de verão e invernoIII-30
Figura III-18 - Visualização tridimensional do campo próximo da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Lula Norte, ponto PLET- LUL-006, no período de verãoIII-31
Figura III-19 - Visualização tridimensional do campo próximo da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Lula Norte, ponto PLET- LUL-006, no período de invernoIII-31
Figura III-20 - Visualização tridimensional do campo próximo da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Lula Norte, ponto PLET- LUL-007, no período de verãoIII-32
Figura III-21 - Visualização tridimensional do campo próximo da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Lula Norte, ponto PLET-LUL-007, no período de inverno
Figura III-22 - Diluição em relação à distância do ponto de lançamento de Fluorene R2 a partir do desalagamento do Gasoduto Lula Sul, ponto PLET- LUL-012, nos períodos de verão e inverno

FIGURA PÁG.
Figura III-23 - Diluição em relação à distância do ponto de lançamento de Fluorene R2 a partir do desalagamento do Gasoduto Lula Sul, ponto PLET- LUL-013, nos períodos de verão e invernoIII-35
Figura III-24 - Profundidades em relação à distância do ponto de lançamento de Fluorene R2 a partir do desalagamento do Gasoduto Lula Sul, ponto PLET- LUL-012, nos períodos de verão e invernoIII-36
Figura III-25 - Profundidades em relação à distância do ponto de lançamento de Fluorene R2 a partir do desalagamento do Gasoduto Lula Sul, ponto PLET- LUL-013, nos períodos de verão e invernoIII-37
Figura III-26 - Trajetória horizontal (vista em planta) da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Lula Sul, ponto PLET-LUL-012, nos períodos de verão e invernoIII-38
Figura III-27 - Trajetória horizontal (vista em planta) da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Lula Sul, ponto PLET -LUL-013, nos períodos de verão e inverno
Figura III-28 - Visualização tridimensional do campo próximo da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Lula Sul, ponto PLET- LUL-012, no período de verãoIII-40
Figura III-29 - Visualização tridimensional do campo próximo da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Lula Sul, ponto PLET- LUL-012, no período de inverno
Figura III-30 - Visualização tridimensional do campo próximo da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Lula Sul, ponto PLET- LUL-013, no período de verãoIII-41
Figura III-31 - Visualização tridimensional do campo próximo da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Lula Sul, ponto PLET- LUL-013, no período de inverno
Figura III-32 - Diluição em relação à distância do ponto de lançamento de Fluorene R2 a partir do desalagamento do DP Sapinhoá Norte (PLET-SPH- 003), nos períodos de verão e inverno
Figura III-33 - Profundidades em relação à distância do ponto de lançamento de Fluorene R2 a partir do desalagamento do DP Sapinhoá Norte (PLET-SPH- 003), nos períodos de verão e invernoIII-44
Figura III-34 - Trajetória horizontal (vista em planta) da pluma de Fluorene R2 a partir do desalagamento do DP Sapinhoá Norte (PLET-SPH-003), nos períodos de verão e inverno

Tt 11-050 (Sol. 16 e 20)

FIGURA PÁG.
Figura III-35 - Visualização tridimensional do campo próximo da pluma de Fluorene R2 a partir do desalagamento do DP Sapinhoá Norte (PLET-SPH- 003), no período de verãoIII-46
Figura III-36 - Visualização tridimensional do campo próximo da pluma de Fluorene R2 a partir do desalagamento do DP Sapinhoá Norte (PLET-SPH- 003), no período de invernoIII-46
Figura III-37 - Diluição em relação à distância do ponto de lançamento de Fluorene R2 a partir do desalagamento do RHAS Sapinhoá Norte, nos períodos de verão e invernoIII-48
Figura III-38 - Profundidades em relação à distância do ponto de lançamento de Fluorene R2 a partir do desalagamento do RHAS Sapinhoá Norte, nos períodos de verão e invernoIII-49
Figura III-39 - Trajetória horizontal (vista em planta) da pluma de Fluorene R2 a partir do desalagamento do RHAS Sapinhoá Norte, nos períodos de verão e invernoIII-50
Figura III-40 - Visualização tridimensional do campo próximo da pluma de Fluorene R2 a partir do desalagamento do RHAS Sapinhoá Norte, no período de verãoIII-51
Figura III-41 - Visualização tridimensional do campo próximo da pluma de Fluorene R2 a partir do desalagamento do RHAS Sapinhoá Norte, no período de invernoIII-51

LISTA DE APÊNDICES/ANEXOS

APÊNDICE / ANEXO	PÁG.
APÊNDICE I - RESUMO DOS DADOS DE ENTRADA UTILIZADOS	S NAS
SIMULAÇÕES	Al-1
ANEXO A - DESCRIÇÃO DO SISTEMA DE MODELOS CORMIX	A-1
ANEXO B - DESCRIÇÃO DO NCEP/NCAR	B-1

RESUMO

Este relatório apresenta os resultados do estudo de modelagem numérica do processo da diluição e dispersão de plumas de fluido de preenchimento para a Bacia de Santos. O lançamento do fluido de preenchimento (solução de fluoresceína 20%, comercializada com o nome de Fluorene R2) ocorre devido ao desalagamento dos Gasodutos: Extremo Sul, Lula Norte, Lula Sul e Sapinhoá Norte, que fazem parte do Projeto Etapa 2, após testes hidrostáticos de integridade estrutural dos dutos.

Para a determinação da área de influência do lançamento do efluente contendo Fluorene R2 foram conduzidas simulações considerando a variação sazonal das forçantes meteorológicas e oceanográficas (períodos de verão e inverno), além das diferentes vazões para os diferentes pontos de descarte. Estas simulações foram conduzidas com o CORMIX, desenvolvido na *Cornell University*, que simula o comportamento da pluma de efluentes no campo próximo. Os padrões de circulação característicos da região foram estimados a partir de um modelo numérico de mesoescala, baseado no *Princeton Ocean Model* (POM), enquanto o campo de ventos foi proveniente de dados de reanálise de modelos meteorológicos.

Como critério ambiental foi adotada a comparação do efluente no corpo receptor com a Concentração de Efeito Não Observado (CENO), estabelecida na Resolução do CONAMA nº 430/11. Ressalta-se que, no ponto de desalagamento, a concentração de Fluorene R2 no efluente (*i.e.* 40 mg/L) já é inferior à CENO de 200 mg/L obtida em testes de laboratório. Dessa forma, não foi possível aplicar o conceito de zona de mistura relativa à toxicidade crônica a este efluente.

No estudo realizado para o Gasoduto Extremo Sul os resultados apresentaram diluições ao final do campo próximo entre 297 e 485 vezes para o ponto PLET-LUL-010, e diluições entre 304 e 482 vezes para o ponto PLET-LUL-011, com uma distância máxima de 58 m.

No estudo realizado para o Gasoduto Lula Norte os resultados apresentaram diluições ao final do campo próximo entre 317 e 335 vezes para o ponto PLET-LUL-006, e diluições entre 301 e 304 vezes para o ponto PLET-LUL-007, com uma distância máxima de 55 m.

BR

PETROBRAS

No estudo realizado para o Gasoduto Lula Sul os resultados apresentaram diluições ao final do campo próximo entre 374 e 419 vezes para o ponto PLET-LUL-012, e diluições entre 358 e 409 vezes para o ponto PLET-LUL-013, com uma distância máxima de 50 m.

No estudo realizado para o Gasoduto Sapinhoá Norte os resultados apresentaram diluições ao final do campo próximo entre 169 e 182 vezes para o ponto DP PLET-SPH-003, e diluições entre 152 e 173 vezes para o RHAS Sapinhoá Norte, com uma distância máxima de 38 m.

PETROBRAS

I INTRODUÇÃO

Neste relatório é apresentada a modelagem computacional da diluição e dispersão do efluente proveniente dos testes hidrostáticos de integridade estrutural dos Gasodutos: Extremo Sul, Lula Norte, Lula Sul e Sapinhoá Norte, que fazem parte do Projeto Etapa 2, localizados na Bacia de Santos. O efluente em questão é composto de uma mistura de água do mar filtrada com uma solução de fluoresceína 20% (comercializada com o nome de Fluorene R2), e descartado no ambiente devido ao desalagamento destes dutos. Os resultados do estudo realizado estão de acordo com as diretrizes definidas no Termo de Referência do CGPEG/DILIC/IBAMA nº 001/2011.

Para estudos de modelagem, como o realizado neste trabalho, são necessários: (a) um conhecimento detalhado das características geomorfológicas do local (morfologia da linha de costa e fundo oceânico), (b) padrões de circulação local e em larga escala, (c) séries temporais de vento de longa duração, e (d) características físico-químicas dos constituintes presentes no efluente simulado.

O campo de correntes característico dos padrões de circulação na região foi obtido a partir de um modelo numérico de mesoescala, baseado no *Princeton Ocean Model* (POM), adaptado e implementado para reproduzir as correntes oceânicas de plataforma e talude, presentes na costa sul-sudeste do Brasil (ASA, 2010a,b). Também foi considerado um campo de ventos, baseado em dados de Reanálise dos modelos meteorológicos do NCEP/NCAR.¹

Para o estudo do comportamento da pluma de efluente, foi utilizado o modelo CORMIX, desenvolvido na *Cornell University*, que simula os processos no campo próximo (zona de diluição inicial, onde prevalecem os efeitos oriundos da velocidade inicial de ejeção e a diferença de densidade entre o efluente e o meio).

¹ National Centers for Environmental Prediction (NCEP) e National Center for Atmospheric Research (NCAR), disponibilizados pelo Climate Diagnostics Center (CDC) da National Oceanic and Atmospheric Administration (NOAA). Obtido em http://www.esrl.noaa.gov/psd. Último acesso em 05 de janeiro de 2009.

Dessa forma o Capítulo I, além de apresentar os objetivos desse estudo, fornece informações sobre a área em questão. O Capítulo II, a seguir, apresenta as características dos lançamentos de efluente. O Capítulo III apresenta a modelagem do fator de diluição no campo próximo e seus resultados. Por fim, no Capítulo IV são discutidos os resultados obtidos neste estudo.

O Apêndice I apresenta um resumo dos dados de entrada utilizados nas modelagens de dispersão das plumas de efluentes (de acordo com o Termo de Referência do CGPEC/DILIC/IBAMA nº 001/2011). O Anexo A apresenta a descrição do modelo CORMIX. Por fim, o Anexo B apresenta informações referentes ao campo de ventos do NCEP/NCAR analisados neste estudo.

I.1 ÁREA DE ESTUDO

Introdução

As simulações da diluição e dispersão do efluente foram realizadas a partir de um total de oito pontos de lançamento, localizados na Bacia de Santos, conforme mostra a Figura I-1. Foram dois pontos para cada um dos Gasodutos: Extremo Sul, Lula Norte, Lula Sul e Sapinhoá Norte. As coordenadas dos pontos de lançamento foram especificadas pela PETROBRAS e são apresentadas na Tabela I-1.

PETROBRAS

BR

Pág. I-2/4

PONTO DE LANÇAMENTO	SISTEMA DE REFERÊNCIA / PROJEÇÃO	LATITUDE	LONGITUDE	LÂMINA D'ÁGUA (m)
Extremo Sul PLET-LUL-010		25°34'41,50"S	42°51'52,80"W	2.167,00
Extremo Sul PLET-LUL-011		25°34'44,12"S	42°53'41,82"W	2.127,00
<i>Lula Norte</i> PLET-LUL-006		25°19'44,12"S	42°41'47,93"W	2.127,00
<i>Lula Norte</i> PLET-LUL-007	Sistema de Coordenadas	25°16'09,58"S	42°48'23,65"W	2.197,00
<i>Lula Sul</i> PLET-LUL-012	Geográficas (SIRGAS 2000)	25°34'42,36"S	42°53'41,31"W	2.157,00
<i>Lula Sul</i> PLET-LUL-013		25°32'05,78"S	42°52'57,02"W	2.131,00
DP Sapinhoá Norte PLET-SPH-003		25°40'20,88"S	43°12'34,75"W	2.132,00
RHAS Sapinhoá Norte		25°40'20,55"S	43°12'33,83"W	2.140,00

Tabela I-1 - Coordenadas e lâmina d'água (m) dos pontos de lançamento.

Fonte: PETROBRAS.

Pág.

I-4/4

Introdução

Т

Figura I-1 - Localização dos pontos de lançamento do efluente proveniente do desalagamento dos Gasodutos: Extremo Sul, Lula Norte, Lula Sul e Sapinhoá Norte, após teste hidrostático de integridade estrutural dos dutos. Fonte: NASA Landsat Program Landsat 5 TM².

² Cortesia do Global Land Cover Facility (www.landcover.org): NASA (National Aeronautics and Space Administration). Landsat Program, 2009, Landsat TM; L1T, USGS, Sioux Falls. 1988-2007. Disponível em: <http://glcf.umiacs.umd.edu/data/landsat/>. Acesso em 20/01/2011.

Pág.

II-1/3

II CARACTERÍSTICAS DO LANÇAMENTO DE FLUORENE R2

Na Tabela II-1 são apresentadas as características do lançamento de efluente constituído de uma solução de Fluorene R2 com água do mar filtrada, devido ao desalagamento dos Gasodutos: Extremo Sul, Lula Norte, Lula Sul e Sapinhoá Norte, após os testes hidrostáticos de integridade estrutural dos dutos. O efluente será continuamente descartado em dois diferentes pontos para cada duto.

No Gasoduto Extremo Sul o efluente será continuamente descartado com vazão de 448,9 m³/h, em locais com lâmina d'água de 2.157 m (PLET-LUL-012) e de 2.131 m (PLET-LUL-013). No Gasoduto Lula Norte o efluente será continuamente descartado com vazão de 566,58 m³/h em locais com lâmina d'água de 2.127 m (PLET-LUL-006) e de 2.197 m (PLET-LUL-007). No Gasoduto Lula Sul o efluente será continuamente descartado com vazão de 226,0 m³/h em locais com lâmina d'água de 2.167 m (PLET-LUL-010) e 2.127 m (PLET-LUL-011). Em todos os casos o descarte é realizado através de um orifício de 3" de diâmetro, com orientação vertical (para cima) e posicionado a três metros acima do fundo.

No DP Sapinhoá Norte (PLET-SPH-003) a vazão é de 226 m³/h, descartada por 9 horas, através de um orifício com 3" de diâmetro e orientação vertical (para cima), posicionado a três metros acima do fundo, em local com lâmina d'água de 2.132 m. No RHAS Sapinhoá Norte a vazão é de 27 m³/h, descartada por 9,5 horas, através de um orifício com 3" de diâmetro e orientação vertical (para baixo), posicionado na superfície, em local com lâmina d'água de 2.140 m.

A temperatura de lançamento do efluente é de 3,15 °C, e a concentração inicial de Fluorene R2 no efluente é de 40 ppm (40 mg/L).

Tabela II-1 - Parâmetros utilizados para a modelagem das plumas de lançamento deFluorene R2 a partir dos Gasodutos: Extremo Sul, Lula Norte, Lula Sul eSapinhoá Norte.

PONTO DE LANÇAMENTO	DIÂMETRO TUBULAÇÃO	ORIENTAÇÃO DA TUBULAÇÃO	LÂMINA D'ÁGUA	PROF. / ALTURA DE LANÇAMENTO	VAZÃO DO EFLUENTE	
<i>Extremo Sul</i> PLET-LUL-010			2.167 m		$448.0 \text{ m}^{3}/\text{b}$	
Extremo Sul PLET-LUL-011	- 3"		2.127 m		446,9 11 /11	
<i>Lula Norte</i> PLET-LUL-006		M. C. L.	2.127 m		566 58 m ³ /b	
<i>Lula Norte</i> PLET-LUL-007		3"	cima	2.197 m	3 m a partir do fundo	500,50 m /m
<i>Lula Sul</i> PLET-LUL-012				2.157 m		
<i>Lula Sul</i> PLET-LUL-013			2.131 m		226,0 m ³ /h	
DP Sapinhoá Norte PLET-SPH-003				2.132 m		
RHAS Sapinhoá Norte		Vertical para baixo	2.140 m	Superfície	27,0 m ³ /h	

Fonte: PETROBRAS.

Características do

Lançamento de Fluorene R2

Ш

Pág.

II-2/3

Como a empresa que comercializa o Fluorene R2 (Nicho Tecnologia) não dispõe de todas as propriedades físico-químicas necessárias para a modelagem, nas simulações foram utilizadas as propriedades conhecidas do produto, fornecidas pela PETROBRAS, acrescidas das propriedades da fluoresceína.

De acordo com a Resolução do CONAMA³ nº 430/11 (BRASIL, 2011), como critério ambiental, foi realizada a comparação das concentrações do efluente contendo Fluorene R2 no corpo receptor com a Concentração de Efeito Não Observado (CENO), referente ao efluente e obtida nos testes de toxicidade com o equinodermo *Lytechinus variegatus* (LABTOX, 2002). A Tabela II-2 apresenta o valor da CENO para o Fluorene R2.

³ Conselho Nacional do Meio Ambiente.

Pág.

II-3/3

Tabela II-2 - Resultados dos testes de toxicidade com o equinodermo Lytechinus variegatus realizados com amostras de Fluorene R2.

EFLUENTE	CENO*
Fluorene R2	200 mg/L

* Concentração de Efeito Não Observado.

Fonte: LABTOX (2002) fornecido pela PETROBRAS.

Ressalta-se que, no ponto de desalagamento, a concentração de Fluorene R2 no efluente já é inferior ao critério ambiental adotado (CENO).

III MODELAGEM DA DILUIÇÃO E DISPERSÃO DE EFLUENTES

A modelagem do transporte de plumas de efluentes compreende a modelagem de dois domínios conhecidos como campo próximo e campo afastado. O campo próximo corresponde à zona de diluição inicial onde prevalecem os efeitos oriundos da fonte ativa (sistema de disposição oceânica, composto por um ou vários orifícios, por exemplo), caracterizados pela velocidade inicial de ejeção (quantidade de movimento inicial do jato) e a diferença de densidade entre o efluente e o meio (empuxo inicial do jato). Esta zona possui uma escala espacial com ordens de grandeza de metros a dezenas de metros, e escala temporal da ordem de segundos a centenas de segundos.

O campo afastado compreende a região onde passam a predominar os efeitos da dinâmica passiva na diluição da pluma, *i.e.* não influenciada pela fonte ativa, mas apenas por fatores ambientais. À medida que o efluente se afasta do ponto de descarte, os efeitos associados à velocidade inicial de ejeção diminuem, passando a predominar os efeitos associados à velocidade do ambiente. A região onde ocorre a transição entre estes dois efeitos define os limites entre estes domínios. A escala espacial do campo afastado possui ordens de grandeza de centenas de metros a quilômetros, e escala temporal da ordem de horas a dias.

De acordo com as características do lançamento, o efluente é lançado com uma concentração inferior a do critério ambiental utilizado neste estudo. Dessa forma, é apresentada a seguir, apenas a modelagem do fator de diluição obtido no campo próximo.

TE TETRA TECH

III.1 MODELAGEM DA DILUIÇÃO NO CAMPO PRÓXIMO

Modelagem da Diluição e

Dispersão de Efluentes

Ш

Pág.

III-2/52

O modelo CORMIX⁴, desenvolvido na *Cornell University* sob contrato e aprovação da EPA⁵ dos EUA, foi utilizado para simular o campo próximo do lançamento do efluente a partir dos Gasodutos: Extremo Sul, Lula Norte, Lula Sul e Sapinhoá Norte. A descrição deste modelo encontra-se no Anexo A.

Este modelo requer três tipos de parâmetros de entrada:

- As características ambientais, as quais descrevem as condições meteorológicas e oceanográficas esperadas para o local. Estas podem ser obtidas a partir de dados históricos ou a partir de resultados de modelagem (apresentadas em detalhes no Item III.2);
- As características do lançamento, descrevendo a geometria do sistema através do qual é realizado o lançamento;
- As características do efluente, os quais descrevem os parâmetros como a vazão e a densidade do efluente descartado.

As características ambientais incluem as informações de densidade (salinidade e temperatura), corrente e vento no local de lançamento do efluente. O modelo CORMIX não adota explicitamente a salinidade e a temperatura como parâmetros de caracterização da coluna d'água, mas sim a densidade. Porém, como este é um parâmetro que pode ser determinado a partir da salinidade e da temperatura, foram utilizados os dados apresentados no Item III.2 para o cálculo da densidade, através da a equação de estado da água do mar, desenvolvida por Fofonoff & Milard (1983). A descrição dos dados de corrente e vento também são abordados com mais detalhes no Item III.2, a seguir.

Conforme descrito no Capítulo II, esse efluente é uma solução de Fluorene R2 e água do mar filtrada. A densidade do efluente foi calculada em função da concentração de Fluorene R2 no efluente (*i.e.* 40 mg/L) e da densidade ambiente, para cada um dos pontos simulados nos períodos de verão e de inverno. Dessa forma, a densidade do efluente foi definida conforme apresentado na Tabela III-1.

⁴ Cornell Mixing Zone Expert System (www.cormix.info)

⁵ Environmental Protection Agency

Tabela III-1 - Densidade do efluente calculada em função da concentração de Fluorene R2 (i.e. 40 mg/L) e da densidade ambiente, para cada um dos pontos simulados.

PONTO DE LANÇAMENTO	PONTO DE LANÇAMENTO DENSIDADE DO EFLUENTE PARA O PERÍODO DE VERÃO (kg/m³) DENSIDADE DO EFLUEN PARA O PERÍODO DE INVE (kg/m³)	
<i>Extremo Sul</i> PLET-LUL-010	1.035,48	1.035,46
<i>Extremo Sul</i> PLET-LUL-011	1.035,48	1.035,46
<i>Lula Norte</i> PLET-LUL-006	1.035,47	1.035,44
<i>Lula Norte</i> PLET-LUL-007	1.035,49	1.035,44
<i>Lula Sul</i> PLET-LUL-012	1.035,48	1.035,46
<i>Lula Sul</i> PLET-LUL-013	1.035,47	1.035,44
DP Sapinhoá Norte PLET-SPH-003	1036,74	1036,61
RHAS Sapinhoá Norte	1.024,18	1.025,56

As características do lançamento também foram apresentadas no Capítulo II e consideraram que o desalagamento será realizado nos pontos apresentados na Figura I-1.

III.2 DADOS AMBIENTAIS

Para modelagem no campo próximo são utilizados dados ambientais como salinidade, temperatura, campo de ventos e correntes. Estes dados são analisados com o objetivo de caracterizar a região de lançamento do efluente nos diferentes períodos sazonais (verão e inverno), e fornecer os valores de entrada no modelo que caracterizam cada cenário.

III.2.1 Campos de Vento

Modelagem da Diluição e

Dispersão de Efluentes

Ш

Pág.

III-4/52

Para caracterização do regime de ventos na região de estudo foi utilizado um conjunto de dados variável no tempo e no espaço, proveniente de reanálise do NCEP/NCAR. Vale ressaltar que estes dados são resultados de simulações numéricas que utilizam as técnicas mais modernas em assimilação de dados em conjunto com a mais extensa base de dados disponível. Esta base de dados tem sido aprimorada e beneficiada pela inclusão de observações (coleta de dados) realizadas em diversos países. Maiores detalhes sobre os dados NCEP/NCAR são apresentados no Anexo B.

Os dados de reanálise do NCEP/NCAR têm originalmente uma resolução espacial de 2,5° e temporal de 6 horas. Para o presente trabalho estes dados foram linearmente interpolados, resultando numa grade com resolução de 24 km, em intervalos horários.

Os dados utilizados são referentes ao período de 1º de janeiro a 31 de dezembro de 1992. Em ASA (2010a,b) são apresentadas análises dos ventos NCEP/NCAR realizadas pontualmente na região do estudo, a partir de uma série temporal extraída na região da Bacia de Santos.

III.2.2 Campos de Correntes

Os campos de correntes utilizados na caracterização ambiental para a modelagem de descarte do efluente foram gerados a partir da modelagem hidrodinâmica apresentada em ASA (2010a,b; 2011), e utilizados em outros estudos do descarte de efluentes nas Bacias de Campos e Santos (ASA, 2010a; 2011). Este modelo, que foi implementado com sucesso para a costa sul-sudeste do Brasil, possui uma resolução espacial de 100x300 elementos na horizontal por 20 camadas na vertical, em intervalos horários.

Para avaliar a sazonalidade das forçantes ambientais nos padrões de circulação e transporte, foram definidos dois campos hidrodinâmicos representativos dos períodos típicos de verão (janeiro a março) e inverno (junho a

agosto) de 1992. A justificativa para a escolha deste ano também é apresentada em ASA (2011).

Considerando a simplificação quanto às correntes assumida pelo CORMIX (*i.e.* intensidade e direção de correntes constante) e a complexidade e importância do regime de fluxo neste domínio, optou-se por uma abordagem mais conservativa na determinação do fator de diluição do campo próximo.

Especificamente, utilizou-se um valor constante de intensidade de corrente correspondente ao percentil de 10% dos valores observados no modelo hidrodinâmico utilizado. Ou seja, 90% dos valores de intensidade da corrente observados no modelo hidrodinâmico são superiores (mais intensos) do que o valor utilizado nas simulações de campo próximo. Este valor foi utilizado com base nas exigências para avaliação de plumas de efluentes da EPA (BRANDSMA, 2004), de forma a fornecer a mínima diluição inicial, uma vez que a diluição do efluente tende a ser maior com o aumento da intensidade da corrente ambiente, que propicia um maior entranhamento do efluente na coluna d'água.

III.2.3 Dados de Temperatura e Salinidade

Dados de temperatura e salinidade, obtidos a partir do NODC⁶, um dos centros de dados da NOAA⁷ (CONKRIGHT *et al.*, 2002), e a partir do Atlas Eletrônico de dados do WOCE⁸, foram utilizados na modelagem para gerar os perfis de densidade.

Os conjuntos de dados do NODC (utilizados para caracterizar a região dos Gasodutos: Extremo Sul, Lula Norte e Lula Sul) são gerados a partir de interpolações de informações de temperatura e salinidade, coletadas por diferentes projetos fazendo uso de garrafas, CTDs, batitermógrafos, bóias fundeadas e de deriva e perfiladores. O conjunto de dados NODC-01 é composto pelo WOA01⁹ (2001) o qual foi criado a partir da interpolação de diversos dados

⁶ National Oceanographic Data Center

⁷ National Oceanic and Atmospheric Administration

⁸ *World Ocean Circulation Experiment.* Cópias destes dados são distribuídas em DVD a partir do *WOCE Global Dataset* (versão 3.0) do *National Oceanographic Data Center* (NODC) dos Estados Unidos, ou disponíveis em: ">http://woce.nodc.noaa.gov/woce_v3/wocedata_1/>.

⁹ World Ocean Atlas

coletados em diferentes cruzeiros. Para este trabalho foi utilizado o "*High resolution (1/4 degree) Temperature and Salinity Analyses of the World's Oceans. Version 2* (NOAA-NODC)".¹⁰

Esta versão apresenta modificações no método de alisamento, utilizando o método Shuman (SHUMAN, 1957) e o método de Rabiner (RABINER *et al.*, 1975), utilizando sempre as informações presentes no ponto de grade em questão e nos pontos adjacentes (o primeiro ponto a leste, a oeste, a norte e a sul), conforme descrito em WOA01 (2001).

O Atlas Eletrônico de dados do WOCE (utilizado para caracterizar a região dos Gasodutos: Sapinhoá Norte) constitui-se em um experimento que fez parte do *World Climate Research Programme* (WRCP), um programa realizado por um conjunto de mais de 30 países, em um esforço sem precedentes para coleta e observação dos oceanos, durante a década de 1990¹¹.

Os dados de hidrografia provenientes do *WOCE Hydrographic Program*¹² (via CTD e amostras de água) são complementados com informações de temperatura de superfície obtidas via satélite (NOAA-n AVHRR). A partir destes dados coletados em diferentes estações pelo programa WOCE (Figura III-1), foi gerado um campo de temperatura e salinidade para a área de estudo e, então, extraídos os valores de superfície e de fundo para as coordenadas do ponto de descarte.

¹⁰ NOAA-NODC High resolution (1/4 degree) Temperature and Salinity Analyses of the World's Oceans. *Version 2.* Disponível em: http://www.nodc.noaa.gov/OC5/WOA01/qd_ts01.html. Acesso em 09 de outubro de 2012.

¹¹ O conjunto completo de todas as referências do WOCE está disponível em: http://woce.nodc.noaa.gov/woce_v3/wocedata_1/wocedocs/bibliography/index.htm.

¹² WOCE Hydrographic Program Office. Scripps Institution of Oceanography. University of California, San Diego. La Jolla, CA 92093 - S. Diggs, J. Kappa, D. Kinkade, and J. Swift, September 2002.

Figura III-1 - Localização do conjunto de dados do WOCE utilizados na obtenção das informações de densidade para as simulações de diluição e dispersão de efluentes descartados a partir de Sapinhoá Norte.

Os procedimentos de análise, filtragem e interpolação, realizados nesses dados, foram realizados em quatro etapas:

- Para selecionar a região e período de interesse, foi utilizado o software ODV¹³, resultando em vários arquivos ASCII (contendo as informações de longitude, latitude, dado e *flag*), de temperatura e salinidade mensais, um para cada nível vertical escolhido;
- Antes de serem interpolados, os dados foram filtrados, utilizando a opção de exclusão das estações ruins, no ODV. A *flag* presente em cada um representa a qualidade do dado coletado conforme avaliação realizada pelo órgão que o disponibiliza. O ODV reconhece estas *flags* de classificação do dado como, por exemplo, "aceitável", "ruim",

¹³ Ocean Data View. Disponível em: <http://odv.awi.de/en/software/download/>.

Modelagem da Diluição e

Dispersão de Efluentes

Ш

BR

PETROBRAS

"questionável", "não calibrada", dentre outras opções. Maiores informações podem ser obtidas em seu manual de instrução¹⁴.

- Após a interpolação, foi realizada ainda, a exclusão dos dados que estivessem fora do intervalo de confiança (*i.e.* o valor da média mais quatro desvios padrão). Este intervalo foi estabelecido com base em um conjunto de dados climatológicos interpolados segundo a metodologia de Levitus & Boyer (1994). Estes dados climatológicos se baseiam no *World Ocean Atlas* 1994 (descrito em Levitus & Boyer, 1994).
- No software SURFER foi realizada a análise prévia de variância (variograma) e a posterior interpolação, realizada com o método de krigagem;
- Os arquivos no formato ASCII foram compostos em arquivos sazonais de temperatura e salinidade e convertidos para o formato netCDF através do *software* FERRET.¹⁵

O modelo CORMIX não adota explicitamente a salinidade e a temperatura como parâmetros de caracterização da coluna d'água, mas sim a densidade. Porém, como este é um parâmetro que pode ser determinado a partir da salinidade e da temperatura, estes dados foram utilizados para o cálculo da densidade através da equação de estado da água do mar desenvolvida por Fofonoff & Milard (1983) e são apresentados nas tabelas a seguir.

¹⁴ Ocean Data View User's Guide. Disponível em: <http://odv.awi.de/fileadmin/user_upload/odv/ misc/odv4Guide.pdf>.

¹⁵ Disponível em: <http://ferret.pmel.noaa.gov/Ferret/home>.

nas coordenadas dos pontos de descarte do Gasoduto Extremo Sul.			
ΡΟΝΤΟ	PROFUNDIDADE (m)	DENSIDADE (kg/m ³)	
		VERÃO	INVERNO
PLET-LUL-010	0,0	1.024,31	1.025,45
	1.500,0	1.034,33	1.034,26
	~ 2.000,0	1.036,65	1.036,68
PLET-LUL-011	0,0	1.024,31	1.025,45
	1.500,0	1.034,33	1.034,26
	~ 2.000,0	1.036,65	1.036,68

Tabela III-2 -	Valores de densidade	obtidos dos dados	do NODC (su	perfície e f	undo)
	nas coordenadas dos	pontos de descarte	e do Gasoduto	Extremo S	Sul.

Tabela III-3 - Valores de den	sidade obtidos dos dado	s do NODC (superfície e fundo) r	าลร
coordenadas do	os pontos de descarte do	Gasoduto Lula Norte.	

ΡΟΝΤΟ	PROFUNDIDADE (m)	DENSIDADE (kg/m ³)	
		VERÃO	INVERNO
PLET-LUL-006	0,0	1.024,31	1.025,42
	1.500,0	1.034,32	1.034,24
	~ 2.000,0	1.036,65	1.036,67
PLET-LUL-007	0,0	1.024,31	1.025,39
	1.500,0	1.034,32	1.034,23
	~ 2.000,0	1.036,68	1.036,67

 Tabela III-4 - Valores de densidade obtidos dos dados do NODC (superfície e fundo) nas coordenadas dos pontos de descarte do Gasoduto Lula Sul.

ΡΟΝΤΟ	PROFUNDIDADE (m)	DENSIDADE (kg/m ³)	
		VERÃO	INVERNO
PLET-LUL-012	0,0	1.024,31	1.025,45
	1.500,0	1.034,33	1.034,26
	~ 2.000,0	1.036,65	1.036,68
PLET-LUL-013	0,0	1.024,31	1.025,42
	1.500,0	1.034,32	1.034,24
	~ 2.000,0	1.036,65	1.036,67

EL PETROBRAS

PONTO DE LANÇAMENTO	PROFUNDIDADE (m)	DENSIDADE (kg/m ³)	
		VERÃO	INVERNO
DP Sapinhoá Norte (PLET-SPH-003)	0,0	1.024,26	1.025,34
	1.500,0	1.034,48	1.034,37
	~ 2.000,0	1.036,74	1.036,61
RHAS Sapinhoá Norte	0,0	1.024,26	1.025,34
	1.000,0	1.031,87	1.032,16
	~ 2.000,0	1.036,74	1.036,61

 Tabela III-5 - Valores de densidade obtidos dos dados do WOCE (superfície e fundo) nas coordenadas do ponto de descarte do Gasoduto Sapinhoá Norte.

III.3 CENÁRIOS SIMULADOS

Modelagem da Diluição e

Dispersão de Efluentes

Ш

Pág.

III-10/52

As simulações para a determinação da diluição e dispersão do efluente descartado a partir dos Gasodutos: Extremo Sul, Lula Norte, Lula Sul e Sapinhoá Norte, consideraram os períodos sazonais de verão e de inverno. A seguir são apresentados os dados de entrada adotados nas simulações com o modelo CORMIX. As Tabelas III-6 e III-7 apresentam as informações adotadas para os Extremo Sul PLET-CMB-010 e Gasoduto PLET-CMB-011, pontos do respectivamente. As Tabelas III-8 e III-9 apresentam as informações adotadas para os pontos do Gasoduto Lula Norte PLET-LUL-006 e PLET-LUL-007, respectivamente. As Tabelas III-10 e III-11 apresentam as informações adotadas para os pontos do Gasoduto Lula Sul PLET-LUL-012 e PLET-LUL-013, respectivamente. As Tabelas III-12 e III-13 apresentam as informações adotadas para o DP Sapinhoá Norte (PLET-SPH-003) e para o RHAS Sapinhoá Norte, respectivamente.

Como o CORMIX possui uma limitação no tamanho da coluna d'água considerada, *i.e.* a maior coluna d'água permitida é de 1.000 m, optou-se por selecionar apenas a camada na qual o efluente efetivamente se encontra, sendo determinada após testes preliminares de sensibilidade do modelo.

Para o caso específico do RHAS Sapinhoá Norte foi selecionada a camada de até 1.000 m de profundidade, e seus respectivos parâmetros, para as

simulações. Para os demais casos foi selecionada uma camada de 500 m acima do fundo oceânico, e seus respectivos parâmetros, para as simulações.

 Tabela III-6 - Dados de entrada adotados no campo próximo para o Gasoduto Extremo

 Sul no ponto PLET -LUL-010.

DADÂMETDOS		DADOS DE	ENTRADA
	PARAMETRUS	VERÃO	INVERNO
	Profundidade média (m)	500,0	500,0
	Profundidade no ponto de descarte (m)	500,0	500,0
	Velocidade ambiente (m/s)	0,0521	0,0680
Ambiente	Coeficiente de Manning	0,01	0,01
	Velocidade do vento (m/s) ¹⁶	7,47	6,84
	Densidade ambiente a 1.500,0 m (kg/m ³)	1.034,33	1.034,26
	Densidade ambiente na prof. de lançamento (kg/m ³)	1.036,65	1.036,68
	Vazão do efluente (m ³ /s)	0,1247	0,1247
Efluente	Densidade do efluente "non-fresh" (kg/m ³)	1.035,48	1.035,46
	Tipo de poluente	conservativo	conservativo
	Diâmetro da porta (m)	0,0762	0,0762
Descarte	Altura da porta (m)	3,0	3,0
	Ângulo vertical THETA	-90°	-90°
Zona de	Região de interesse (m)	10.000,0	10.000,0
Zona de Mistura	Número de intervalos para apresentação de resultados	20,0	20,0

 Tabela III-7 - Dados de entrada adotados no campo próximo para o Gasoduto Extremo

 Sul no ponto PLET -LUL-011.

DADÂMETDOS		DADOS DE	ENTRADA
	PARAMETRUS	VERÃO	INVERNO
	Profundidade média (m)	500,0	500,0
	Profundidade no ponto de descarte (m)	500,0	500,0
	Velocidade ambiente (m/s)	0,0532	0,0671
Ambiente	Coeficiente de Manning	0,01	0,01
	Velocidade do vento (m/s) ¹⁶	7,47	6,84
	Densidade ambiente a 1.500,0 m (kg/m ³)	1.034,33	1.034,26
	Densidade ambiente na prof. de lançamento (kg/m ³)	1.036,65	1.036,68
	Vazão do efluente (m ³ /s)	0,1247	0,1247
Efluente	Densidade do efluente " <i>non-fresh</i> " (kg/m ³)	1.035,48	1.035,46
	Tipo de poluente	conservativo	conservativo
	Diâmetro da porta (m)	0,0762	0,0762
Descarte	Altura da porta (m)	3,0	3,0
	Ângulo vertical THETA	-90°	-90°
Zona do	Região de interesse (m)	10.000,0	10.000,0
Zona de Mistura	Número de intervalos para apresentação de resultados	20,0	20,0

¹⁶ Dado de entrada necessário para o correto funcionamento do modelo, mas desconsiderado na modelagem do campo próximo.

Tabela III-8 -	Dados de	entrada	adotados no	o campo	próximo	para o	Gasoduto	Lula Norte
	no ponto F	PLET -LU	JL-006.					

	DADÂMETDOS		ENTRADA
	PARAMETRUS	VERÃO	INVERNO
	Profundidade média (m)	500,0	500,0
	Profundidade no ponto de descarte (m)	500,0	500,0
	Velocidade ambiente (m/s)	0,0530	0,0612
Ambiente	Coeficiente de Manning	0,01	0,01
	Velocidade do vento (m/s) ¹⁶	7,47	6,84
	Densidade ambiente a 1.500,0 m (kg/m ³)	1.034,32	1.034,24
	Densidade ambiente na prof. de lançamento (kg/m ³)	1.036,65	1.036,67
	Vazão do efluente (m ³ /s)	0,1574	0,1574
Efluente	Densidade do efluente " <i>non-fresh</i> " (kg/m ³)	1.035,47	1.035,44
	Tipo de poluente	conservativo	conservativo
	Diâmetro da porta (m)	0,0762	0,0762
Descarte	Altura da porta (m)	3,0	3,0
	Ângulo vertical THETA	-90°	-90°
Zona do	Região de interesse (m)	10.000,0	10.000,0
Zona de Mistura	Número de intervalos para apresentação de resultados	20,0	20,0

 Tabela III-9 - Dados de entrada adotados no campo próximo para o Gasoduto Lula Norte no ponto PLET -LUL-007.

DADÂMETDOS		DADOS DE	ENTRADA
	PARAMETRUS	VERÃO	INVERNO
	Profundidade média (m)	500,0	500,0
	Profundidade no ponto de descarte (m)	500,0	500,0
	Velocidade ambiente (m/s)	0,0489	0,0497
Ambiente	Coeficiente de Manning	0,01	0,01
	Velocidade do vento (m/s) ¹⁶	7,47	6,84
	Densidade ambiente a 1.500,0 m (kg/m ³)	1.034,32	1.034,23
	Densidade ambiente na prof. de lançamento (kg/m ³)	1.036,68	1.036,67
	Vazão do efluente (m ³ /s)	0,1574	0,1574
Efluente	Densidade do efluente "non-fresh" (kg/m ³)	1.035,49	1.035,44
	Tipo de poluente	conservativo	conservativo
	Diâmetro da porta (m)	0,0762	0,0762
Descarte	Altura da porta (m)	3,0	3,0
	Ângulo vertical THETA	-90°	-90°
Zona do	Região de interesse (m)	10.000,0	10.000,0
Zona de Mistura	Número de intervalos para apresentação de resultados	20,0	20,0

Tabela III-10 - Dados de entrada adotados no campo próximo para o Gasoduto Lula Sul no ponto PLET -LUL-012.

DADÂMETDOS		DADOS DE	ENTRADA
	PARAMETRUS	VERÃO	INVERNO
	Profundidade média (m)	500,0	500,0
	Profundidade no ponto de descarte (m)	500,0	500,0
	Velocidade ambiente (m/s)	0,0532	0,0671
Ambiente	Coeficiente de Manning	0,01	0,01
	Velocidade do vento (m/s) ¹⁶	7,47	6,84
	Densidade ambiente a 1.500,0 m (kg/m ³)	1.034,33	1.034,26
	Densidade ambiente na prof. de lançamento (kg/m ³)	1.036,65	1.036,68
	Vazão do efluente (m ³ /s)	0,0628	0,0628
Efluente	Densidade do efluente "non-fresh" (kg/m ³)	1.035,48	1.035,46
	Tipo de poluente	conservativo	conservativo
	Diâmetro da porta (m)	0,0762	0,0762
Descarte	Altura da porta (m)	3,0	3,0
	Ângulo vertical THETA	-90°	-90°
Zona do	Região de interesse (m)	10.000,0	10.000,0
Zona de Mistura	Número de intervalos para apresentação de resultados	20,0	20,0

Tabela III-11 - Dados de entrada	adotados no	campo	próximo	para o	Gasoduto	Lula	Sul
no ponto PLET -LUL	013 .						

DADÂMETDOS		DADOS DE	ENTRADA
	PARAMETRUS	VERÃO	INVERNO
	Profundidade média (m)	500,0	500,0
	Profundidade no ponto de descarte (m)	500,0	500,0
	Velocidade ambiente (m/s)	0,0479	0,0617
Ambiente	Coeficiente de Manning	0,01	0,01
	Velocidade do vento (m/s) ¹⁶	7,47	6,84
	Densidade ambiente a 1.500,0 m (kg/m ³)	1.034,32	1.034,24
	Densidade ambiente na prof. de lançamento (kg/m ³)	1.036,65	1.036,67
	Vazão do efluente (m ³ /s)	0,0628	0,0628
Efluente	Densidade do efluente " <i>non-fresh</i> " (kg/m ³)	1.035,47	1.035,44
	Tipo de poluente	conservativo	conservativo
	Diâmetro da porta (m)	0,0762	0,0762
Descarte	Altura da porta (m)	3,0	3,0
	Ângulo vertical THETA	-90°	-90°
Zona do	Região de interesse (m)	10.000,0	10.000,0
Mistura	Número de intervalos para apresentação de resultados	20,0	20,0

Efluente

Descarte

Zona de

Mistura

0,0628

1036,61

conservativo

esquerda

2.000,0

0,0762

3

90°

50.000,0

30,0

0,0628

1036,74

conservativo

esquerda

2.000,0

0,0762

3

90°

50.000,0

30,0

	Norte (PLET-SPH-003).			
PARÂMETROS		DADOS DE ENTRADA		
		VERÃO	INVERNO	
	Profundidade média (m)	500	500	
Ambiente	Profundidade no ponto de descarte (m)	500	500	
	Velocidade ambiente (m/s)	0,0274	0,0221	
	Coeficiente de Manning	0,01	0,01	
	Velocidade do vento (m/s) ¹⁶	7,5	7,0	
	Densidade ambiente a 1.500 m (kg/m ³)	1.034,48	1.034,37	
	Densidade ambiente no fundo (kg/m ³)	1.036,74	1.036,61	

Vazão do efluente (m³/s)

Densidade do efluente "non-fresh" (kg/m³)

Tipo de poluente

A margem mais próxima está a

Distância até a margem mais próxima (m)

Diâmetro da porta (m)

Altura da porta(m)

Ângulo vertical THETA

Região de interesse (m)

Número de intervalos para apresentação de resultados

 Tabela III-12 - Dados de entrada adotados no campo próximo para o DP Sapinhoá

 Norte (PLET-SPH-003).

Tabela III-13 - Dados de entrada	adotados no campo próximo para o RHAS Sapinhoá
Norte.	

	DADÂMETROS	DADOS DE	ENTRADA
	PARAMETRUS	VERÃO	INVERNO
	Profundidade média (m)	1000	1000
	Profundidade no ponto de descarte (m)	1000	1000
	Velocidade ambiente (m/s)	0,0439	0,0478
Ambiente	Coeficiente de Manning	0,01	0,01
	Velocidade do vento (m/s) ¹⁶	7,5	7,0
	Densidade ambiente na superfície (kg/m ³)	1.024,26	1.025,34
	Densidade ambiente a 1.000 m (kg/m ³)	1.031,87	1.032,16
	Vazão do efluente (m ³ /s)	0,0075	0,0075
Efluente	Densidade do efluente " <i>non-fresh</i> " (kg/m ³)	1.024,18	1.025,56
	Tipo de poluente	conservativo	conservativo
	A margem mais próxima está a	esquerda	esquerda
	Distância até a margem mais próxima (m)	2.000,0	2.000,0
Descarte	Diâmetro da porta (m)	0,0762	0,0762
	Profundidade do descarte (m)	0,5	0,5
	Ângulo vertical THETA	-90°	-90°
Zona de	Região de interesse (m)	50.000,0	50.000,0
Mistura	Número de intervalos para apresentação de resultados	30,0	30,0

III.4 RESULTADOS DA MODELAGEM DE LANÇAMENTO DE EFLUENTES

A seguir são apresentados os resultados da modelagem de lançamento de efluentes para cada um dos Gasodutos: Extremo Sul, Lula Norte, Lula Sul e Sapinhoá Norte.

III.4.1 Extremo Sul

A Tabela III-14 apresenta os resultados das simulações no campo próximo para o descarte de Fluorene R2, proveniente do desalagamento do Gasoduto Extremo Sul. Observa-se que para todos os pontos a diluição é maior no período de inverno.

PARÂMETROS	PLET-L	UL-010	PLET-LUL-011		
	VERÃO	INVERNO	VERÃO	INVERNO	
Diluição	297,0	485,4	303,7	481,5	
Concentração de Fluorene R2 (mg/L)	0,1347	0,0824	0,1317	0,0831	
Espessura final da pluma (m)	9,7	21,1	9,6	21,2	
Comprimento do campo próximo (m)	49,2	58,1	50,2	57,6	
Profundidade terminal da pluma (m)	2.134,2	2.134,8	2.094,2	2.094,8	

Tabela III-14 - Resultados das simulações do campo próximo do lançamento deFluorene R2 a partir do Gasoduto Extremo Sul.

A menor profundidade que a pluma atingiu (2.094 m) ocorreu durante o verão no ponto PLET-LUL-011, a cerca de 50 m de distância do ponto de lançamento. Já as maiores diluições ocorreram durante o inverno, sendo a maior diluição encontrada no ponto PLET-LUL-010. Neste ponto também se encontra a maior espessura final da pluma, com cerca de 21 m.

A Figura III-2 e a Figura III-3 apresentam as diluições da pluma do efluente em relação à distância do ponto de lançamento, baseadas nos resultados do

BR

PETROBRAS

Modelagem da Diluição e

Dispersão de Efluentes

Ш

Pág.

III-16/52

campo próximo calculados nos períodos de verão e inverno. Observa-se que a diluição aumenta à medida que a pluma/jato se afasta do ponto de lançamento.

Da Figura III-4 à Figura III-7 são apresentadas as trajetórias verticais e horizontais, em relação à distância do ponto de lançamento, para os mesmos cenários.

Figura III-2 - Diluição em relação à distância do ponto de lançamento de Fluorene R2 a partir do desalagamento do Gasoduto Extremo Sul, ponto PLET-LUL-010, nos períodos de verão e inverno.

Figura III-3 - Diluição em relação à distância do ponto de lançamento de Fluorene R2 a partir do desalagamento do Gasoduto Extremo Sul, ponto PLET-LUL-011, nos períodos de verão e inverno.

Figura III-4 - Profundidades em relação à distância do ponto de lançamento de Fluorene R2 a partir do desalagamento do Gasoduto Extremo Sul, ponto PLET-LUL-010, nos períodos de verão e inverno.

Figura III-5 - Profundidades em relação à distância do ponto de lançamento de Fluorene R2 a partir do desalagamento do Gasoduto Extremo Sul, ponto PLET-LUL-011, nos períodos de verão e inverno.

Figura III-6 - Trajetória horizontal (vista em planta) da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Extremo Sul, ponto PLET-LUL-010, nos períodos de verão e inverno.

Figura III-7 - Trajetória horizontal (vista em planta) da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Extremo Sul, ponto PLET-LUL-011, nos períodos de verão e inverno.

Da Figura III-8 até a Figura III-11 são apresentadas as visualizações tridimensionais da pluma de efluente para o período de verão e de inverno. Nestas figuras, a razão de aspecto da escala vertical foi alterada para permitir uma melhor visualização.

Pág.

III-22/52

TE TETRA TECH

Figura III-8 - Visualização tridimensional do campo próximo da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Extremo Sul, ponto PLET-LUL-010, no período de verão.

Figura III-9 - Visualização tridimensional do campo próximo da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Extremo Sul, ponto PLET-LUL-010, no período de inverno.

-2000 -2020

-2040 -2060 У

> -2080 -2100

> -2120 40

Modelagem do Descarte de Fluido de Preenchimento dos Testes Hidrostáticos dos Gasodutos: Extremo Sul, Lula Norte, Lula Sul e Sapinhoá Norte

Modelagem da Diluição e Dispersão de Efluentes Ш

Figura III-10 - Visualização tridimensional do campo próximo da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Extremo Sul, ponto PLET-LUL-011, no período de verão.

Figura III-11 - Visualização tridimensional do campo próximo da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Extremo Sul, ponto PLET-LUL-011, no período de inverno.

Através da análise dos resultados observa-se que o efluente mantém-se próximo ao fundo da coluna d'água, apresentando no campo próximo um jato que atinge profundidades entre 2.094 m e 2.135 m e extensão entre, aproximadamente, 49 m e 58 m.

Ressalta-se que nos pontos de desalagamento a concentração inicial de Fluorene R2 no efluente (*i.e.* 40 mg/L) já é inferior à CENO de 200 mg/L, obtida em testes de laboratório. Dessa forma, não foi possível aplicar o conceito de zona de mistura relativa à toxicidade crônica a este efluente.

III.4.2 Lula Norte

A Tabela III-15 apresenta os resultados das simulações no campo próximo para o descarte de Fluorene R2, proveniente do desalagamento do Gasoduto Lula Norte. Observa-se que para ambos os pontos a diluição é maior no período de inverno.

PARÂMETROS	PLET-LUL-006		PLET-LUL-007	
	VERÃO	INVERNO	VERÃO	INVERNO
Diluição	317,1	334,9	300,5	303,9
Concentração de Fluorene R2 (mg/L)	0,1261	0,1194	0,1331	0,1316
Espessura final da pluma (m)	9,8	10,9	9,3	8,9
Comprimento do campo próximo (m)	55,1	55,1	54,2	55,4
Profundidade terminal da pluma (m)	2.091,0	2.091,2	2.161,3	2.161,5

 Tabela III-15 - Resultados das simulações do campo próximo do lançamento de Fluorene R2 a partir do Gasoduto Lula Norte.

A menor profundidade que a pluma atingiu (2.091 m) ocorreu durante o verão no ponto PLET-LUL-006, a cerca de 55 m de distância do ponto de lançamento. Já as maiores diluições ocorreram durante o inverno, sendo a maior diluição encontrada no ponto PLET-LUL-006. Neste ponto também se encontram as maiores espessuras finais da pluma, com cerca de 11 m.

R PETROBRAS

A Figura III-12 e a Figura III-13 apresentam as diluições da pluma do efluente em relação à distância do ponto de lançamento, baseadas nos resultados do campo próximo calculados nos períodos de verão e inverno. Observa-se que a diluição aumenta à medida que a pluma/jato se afasta do ponto de lançamento.

Da Figura III-14 à Figura III-17 são apresentadas as trajetórias verticais e horizontais, em relação à distância do ponto de lançamento, para os mesmos cenários.

Figura III-12 - Diluição em relação à distância do ponto de lançamento de Fluorene R2 a partir do desalagamento do Gasoduto Lula Norte, ponto PLET-LUL-006, nos períodos de verão e inverno.

TE TETRA TECH

Figura III-13 - Diluição em relação à distância do ponto de lançamento de Fluorene R2 a partir do desalagamento do Gasoduto Lula Norte, ponto PLET-LUL-007, nos períodos de verão e inverno.

Figura III-14 - Profundidades em relação à distância do ponto de lançamento de Fluorene R2 a partir do desalagamento do Gasoduto Lula Norte, ponto PLET-LUL-006, nos períodos de verão e inverno.

Figura III-15 - Profundidades em relação à distância do ponto de lançamento de Fluorene R2 a partir do desalagamento do Gasoduto Lula Norte, ponto PLET-LUL-007, nos períodos de verão e inverno.

Figura III-16 - Trajetória horizontal (vista em planta) da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Lula Norte, ponto PLET-LUL-006, nos períodos de verão e inverno.

Figura III-17 - Trajetória horizontal (vista em planta) da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Lula Norte, ponto PLET-LUL-007, nos períodos de verão e inverno.

Da Figura III-18 até a Figura III-21 são apresentadas as visualizações tridimensionais da pluma de efluente para o período de verão e de inverno. Nestas figuras, a razão de aspecto da escala vertical foi alterada para permitir uma melhor visualização.

Modelagem do Descarte de Fluido de Preenchimento dos Testes Hidrostáticos dos Gasodutos: Extremo Sul, Lula Norte, Lula Sul e Sapinhoá Norte Modelagem da Diluição e Dispersão de Efluentes III

Figura III-18 - Visualização tridimensional do campo próximo da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Lula Norte, ponto PLET-LUL-006, no período de verão.

Figura III-19 - Visualização tridimensional do campo próximo da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Lula Norte, ponto PLET-LUL-006, no período de inverno.

Modelagem da Diluição e Dispersão de Efluentes III-32/52 Ш

Pág.

Figura III-20 - Visualização tridimensional do campo próximo da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Lula Norte, ponto PLET-LUL-007, no período de verão.

Figura III-21 - Visualização tridimensional do campo próximo da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Lula Norte, ponto PLET-LUL-007, no período de inverno.

TE TETRA TECH

PETROBRAS

Através da análise dos resultados observa-se que o efluente mantém-se próximo ao fundo da coluna d'água, apresentando no campo próximo um jato que atinge profundidades entre 2.091 m e 2.162 m e extensão entre, aproximadamente, 54 m e 55 m.

Ressalta-se que nos pontos de desalagamento a concentração inicial de Fluorene R2 no efluente (*i.e.* 40 mg/L) já é inferior à CENO de 200 mg/L, obtida em testes de laboratório. Dessa forma, não foi possível aplicar o conceito de zona de mistura relativa à toxicidade crônica a este efluente.

III.4.3 Lula Sul

A Tabela III-16 apresenta os resultados das simulações no campo próximo para o descarte de Fluorene R2, proveniente do desalagamento do Gasoduto Lula Sul. Observa-se que para todos os pontos a diluição é maior no período de inverno.

PARÂMETROS	PLET-LUL-012		PLET-LUL-013	
	VERÃO	INVERNO	VERÃO	INVERNO
Diluição	373,6	418,5	357,9	409,0
Concentração de Fluorene R2 (mg/L)	0,1071	0,0956	0,1118	0,0978
Espessura final da pluma (m)	15,0	14,1	15,3	14,4
Comprimento do campo próximo (m)	43,5	50,2	42,4	49,3
Profundidade terminal da pluma (m)	2.132,5	2.133,7	2.106,2	2.107,3

Tabela III-16 - Resultados das simulações do campo próximo do lançamento deFluorene R2 a partir do Gasoduto Lula Sul.

A menor profundidade que a pluma atingiu (2.106 m) ocorreu durante o verão no ponto PLET-LUL-013, a cerca de 42 m de distância do ponto de lançamento. Já as maiores diluições ocorreram durante o inverno, sendo a maior diluição encontrada no ponto PLET-LUL-012. No ponto PLET-LUL-013 se encontra a maior espessura final da pluma, com cerca de 15 m.

BR

PETROBRAS

Modelagem da Diluição e

Dispersão de Efluentes

Ш

Pág.

III-34/52

A Figura III-22 e a Figura III-23 apresentam as diluições da pluma do efluente em relação à distância do ponto de lançamento, baseadas nos resultados do campo próximo calculados nos períodos de verão e inverno. Observa-se que a diluição aumenta à medida que a pluma/jato se afasta do ponto de lançamento.

Da Figura III-24 à Figura III-27 são apresentadas as trajetórias verticais e horizontais, em relação à distância do ponto de lançamento, para os mesmos cenários.

Figura III-22 - Diluição em relação à distância do ponto de lançamento de Fluorene R2 a partir do desalagamento do Gasoduto Lula Sul, ponto PLET-LUL-012, nos períodos de verão e inverno.

Modelagem do Descarte de Fluido de Preenchimento dos Testes Hidrostáticos dos Gasodutos: Extremo Sul, Lula Norte, Lula Sul e Sapinhoá Norte Modelagem da Diluição e Dispersão de Efluentes III

Figura III-23 - Diluição em relação à distância do ponto de lançamento de Fluorene R2 a partir do desalagamento do Gasoduto Lula Sul, ponto PLET-LUL-013, nos períodos de verão e inverno.

Pág. III-36/52

Figura III-24 - Profundidades em relação à distância do ponto de lançamento de Fluorene R2 a partir do desalagamento do Gasoduto Lula Sul, ponto PLET-LUL-012, nos períodos de verão e inverno.

Figura III-25 - Profundidades em relação à distância do ponto de lançamento de Fluorene R2 a partir do desalagamento do Gasoduto Lula Sul, ponto PLET-LUL-013, nos períodos de verão e inverno.

Figura III-26 - Trajetória horizontal (vista em planta) da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Lula Sul, ponto PLET-LUL-012, nos períodos de verão e inverno.

Figura III-27 - Trajetória horizontal (vista em planta) da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Lula Sul, ponto PLET -LUL-013, nos períodos de verão e inverno.

Da Figura III-28 até a Figura III-31 são apresentadas as visualizações tridimensionais da pluma de efluente para o período de verão e de inverno. Nestas figuras, a razão de aspecto da escala vertical foi alterada para permitir uma melhor visualização.

Pág. III-40/52

Figura III-28 - Visualização tridimensional do campo próximo da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Lula Sul, ponto PLET-LUL-012, no período de verão.

Figura III-29 - Visualização tridimensional do campo próximo da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Lula Sul, ponto PLET-LUL-012, no período de inverno.

Modelagem do Descarte de Fluido de Preenchimento dos Testes Hidrostáticos dos Gasodutos: Extremo Sul, Lula Norte, Lula Sul e Sapinhoá Norte Modelagem da Diluição e Dispersão de Efluentes III

Figura III-30 - Visualização tridimensional do campo próximo da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Lula Sul, ponto PLET-LUL-013, no período de verão.

Figura III-31 - Visualização tridimensional do campo próximo da pluma de Fluorene R2 a partir do desalagamento do Gasoduto Lula Sul, ponto PLET-LUL-013, no período de inverno.

Através da análise dos resultados observa-se que o efluente mantém-se próximo ao fundo da coluna d'água, apresentando no campo próximo um jato que atinge profundidades entre 2.107 m e 2.134 m e extensão entre, aproximadamente, 44 m e 50 m.

Ressalta-se que nos pontos de desalagamento a concentração inicial de Fluorene R2 no efluente (*i.e.* 40 mg/L) já é inferior à CENO de 200 mg/L, obtida em testes de laboratório. Dessa forma, não foi possível aplicar o conceito de zona de mistura relativa à toxicidade crônica a este efluente.

III.4.4 Sapinhoá Norte

A Tabela III-17 apresenta os resultados das simulações no campo próximo para o descarte de Fluorene R2, proveniente do desalagamento do DP Sapinhoá Norte (PLET-SPH-003) e do RHAS Sapinhoá Norte. Observa-se que a diluição é maior no período de inverno para o RHAS, e maior no período de verão para o DP (PLET-SPH-003).

			i.	
PARÂMETROS	DP - PLET-SPH-003		RHAS	
	VERÃO	INVERNO	VERÃO	INVERNO
Diluição	182,1	168,6	152,2	173,3
Concentração de Fluorene R2 (mg/L)	0,22	0,24	0,26	0,23
Espessura final da pluma (m)	5,2	4,6	3,6	3,7
Comprimento do campo próximo (m)	35,9	38,4	21,3	25,4
Profundidade terminal da pluma (m)	2.109,2	2.109,7	5,1	5,7

Tabela III-17 - Resultados das simulações do campo próximo do lançamento deFluorene R2 a partir do DP Sapinhoá Norte (PLET-SPH-003) e do RHASSapinhoá Norte.

Para o descarte a partir do DP Sapinhoá Norte (PLET-SPH-003), a menor profundidade atingida pela pluma, durante o período de inverno, é de 2.098 m, a uma distância de aproximadamente 5,9 m do ponto de lançamento. Para o período de verão, a menor profundidade atingida pela pluma é de 2.098,5 m, a cerca de 7,6 m do ponto de lançamento.

A Figura III-32 apresenta as diluições da pluma do efluente em relação à distância do ponto de lançamento, baseado nos resultados do campo próximo calculados nos períodos de verão e inverno. Observa-se que a diluição aumenta à medida que a pluma/jato se afasta do ponto de lançamento.

A Figura III-33 e a Figura III-34 apresentam as trajetórias verticais e horizontais, em relação à distância do ponto de lançamento, para os mesmos cenários.

Figura III-32 - Diluição em relação à distância do ponto de lançamento de Fluorene R2 a partir do desalagamento do DP Sapinhoá Norte (PLET-SPH-003), nos períodos de verão e inverno.

Figura III-33 - Profundidades em relação à distância do ponto de lançamento de Fluorene R2 a partir do desalagamento do DP Sapinhoá Norte (PLET-SPH-003), nos períodos de verão e inverno.

Figura III-34 - Trajetória horizontal (vista em planta) da pluma de Fluorene R2 a partir do desalagamento do DP Sapinhoá Norte (PLET-SPH-003), nos períodos de verão e inverno.

A Figura III-35 apresenta uma visualização tridimensional da pluma de efluente para o período de verão, e a Figura III-36 para o período de inverno. Nestas figuras, a razão de aspecto da escala vertical foi alterada para permitir uma melhor visualização.

Pág. Model III-46/52 Dispe Modelagem do Descarte de Fluido de Preenchimento dos Testes Hidrostáticos dos Gasodutos: Extremo Sul, Lula Norte, Lula Sul e Sapinhoá Norte

Figura III-35 - Visualização tridimensional do campo próximo da pluma de Fluorene R2 a partir do desalagamento do DP Sapinhoá Norte (PLET-SPH-003), no período de verão.

Figura III-36 - Visualização tridimensional do campo próximo da pluma de Fluorene R2 a partir do desalagamento do DP Sapinhoá Norte (PLET-SPH-003), no período de inverno.

Através da análise dos resultados observa-se que o efluente mantém-se próximo ao fundo da coluna d'água, apresentando no campo próximo um jato que atinge profundidades próximas a 2.098 metros e extensão de, aproximadamente, 35,9 m no verão e 38,4 m no inverno.

Para o descarte a partir do RHAS Sapinhoá Norte, a maior profundidade atingida pela pluma, durante o período de inverno, é de 6,9 m, a uma distância de aproximadamente 11 m do ponto de lançamento. Para o período de verão, a menor profundidade atingida pela pluma é de 6,6 m, a cerca de 8 m do ponto de lançamento.

A Figura III-37 apresenta as diluições da pluma do efluente em relação à distância do ponto de lançamento, baseadas nos resultados do campo próximo calculados nos períodos de verão e inverno. Observa-se que a diluição aumenta à medida que a pluma/jato se afasta do ponto de lançamento.

A Figura III-38 a Figura III-39 apresentam as trajetórias verticais e horizontais, em relação à distância do ponto de lançamento, para os mesmos cenários.

Figura III-37 - Diluição em relação à distância do ponto de lançamento de Fluorene R2 a partir do desalagamento do RHAS Sapinhoá Norte, nos períodos de verão e inverno.

Figura III-38 - Profundidades em relação à distância do ponto de lançamento de Fluorene R2 a partir do desalagamento do RHAS Sapinhoá Norte, nos períodos de verão e inverno.

Pág. III-50/52

Figura III-39 - Trajetória horizontal (vista em planta) da pluma de Fluorene R2 a partir do desalagamento do RHAS Sapinhoá Norte, nos períodos de verão e inverno.

A Figura III-40 apresenta uma visualização tridimensional da pluma de efluente para o período de verão, e a Figura III-41 para o período de inverno. Nestas figuras, a razão de aspecto da escala vertical foi alterada para permitir uma melhor visualização.

Técnico Responsável

Modelagem do Descarte de Fluido de Preenchimento dos Testes Hidrostáticos dos Gasodutos: Extremo Sul, Lula Norte, Lula Sul e Sapinhoá Norte Modelagem da Diluição e Dispersão de Efluentes III

Figura III-40 - Visualização tridimensional do campo próximo da pluma de Fluorene R2 a partir do desalagamento do RHAS Sapinhoá Norte, no período de verão.

Figura III-41 - Visualização tridimensional do campo próximo da pluma de Fluorene R2 a partir do desalagamento do RHAS Sapinhoá Norte, no período de inverno.

TETRA TECH

Técnico Responsável

Através da análise dos resultados observa-se que o efluente mantém-se próximo à superfície da coluna d'água, apresentando no campo próximo um jato que atinge profundidades próximas a 7 metros e extensão de, aproximadamente, 22 m no verão e 26 m no inverno.

Ressalta-se que em ambos os pontos de desalagamento a concentração inicial de Fluorene R2 no efluente (*i.e.* 40 mg/L) já é inferior à CENO de 200 mg/L, obtida em testes de laboratório. Dessa forma, não foi possível aplicar o conceito de zona de mistura relativa à toxicidade crônica a este efluente.

IV CONSIDERAÇÕES FINAIS

Neste relatório é apresentado o estudo realizado para a determinação da diluição e dispersão do efluente proveniente dos testes hidrostáticos de integridade estrutural dos Gasodutos: Extremo Sul, Lula Norte, Lula Sul e Sapinhoá Norte, localizados na Bacia de Santos. O efluente em questão é composto de uma mistura de água do mar filtrada com uma solução de fluoresceína 20% (comercializada com o nome de Fluorene R2), e descartado no ambiente devido ao desalagamento destes dutos. Os resultados do estudo realizado estão de acordo com as diretrizes definidas no Termo de Referência do CGPEG/DILIC/IBAMA nº 001/2011.

Dessa forma, foram realizadas simulações de campo próximo, que fornecem a diluição inicial do efluente, considerando cenários de desalagamento para os períodos de verão e inverno. Estas simulações foram conduzidas com o CORMIX, desenvolvido na Cornell University, que simula o comportamento da pluma de efluentes no campo próximo.

Para a determinação da área de influência do lançamento foram conduzidas simulações considerando a variação sazonal das forçantes meteorológicas e oceanográficas, sendo selecionados para isso os períodos de verão e inverno.

Os padrões de circulação característicos da região foram estimados a partir de um modelo numérico de mesoescala, baseado no Princeton Ocean Model (POM). Enquanto o campo de ventos foi proveniente de dados de reanálise de modelos meteorológicos do NCEP/NCAR.

No Gasoduto Extremo Sul o efluente será continuamente descartado com vazão de 448,9 m³/h, em locais com lâmina d'água de 2.157 m (PLET-LUL-012) e de 2.131 m (PLET-LUL-013). No Gasoduto Lula Norte o efluente será continuamente descartado com vazão de 566,58 m³/h em locais com lâmina d'água de 2.127 m (PLET-LUL-006) e de 2.197 m (PLET-LUL-007). No Gasoduto Lula Sul o efluente será continuamente descartado com vazão de 226,0 m³/h em locais com lâmina d'água de 2.167 m (PLET-LUL-010) e 2.127 m (PLET-LUL-011). Nestes casos o descarte é realizado através de um orifício de 3" de diâmetro, com orientação vertical (para cima) e posicionado a três metros acima do fundo. No DP Sapinhoá Norte (PLET-SPH-003) a vazão é de 226 m³/h,

Tt 11-050

descartada por 9 horas, através de um orifício com 3" de diâmetro e orientação vertical (para cima), posicionado a três metros acima do fundo, em local com lâmina d'água de 2.132 m. No RHAS Sapinhoá Norte a vazão é de 27 m³/h, descartada por 9,5 horas, através de um orifício com 3" de diâmetro e orientação vertical (para baixo), posicionado na superfície, em local com lâmina d'água de 2.140 m.

Como critério ambiental foi utilizada a comparação do efluente no corpo receptor com a Concentração de Efeito Não Observado (CENO), para o Fluorene R2, estabelecida na Resolução do CONAMA nº 430/11. Ressalta-se que no ponto de desalagamento a concentração inicial de Fluorene R2 no efluente (*i.e.* 40 mg/L) já é inferior à CENO de 200 mg/L obtida em testes de laboratório realizados com o equinodermo *Lytechinus variegatus*. Dessa forma, não foi possível aplicar o conceito de zona de mistura relativa à toxicidade crônica a este efluente.

No estudo realizado para o Gasoduto Extremo Sul, os resultados das simulações de campo próximo, para o ponto PLET-LUL-010, apresentaram diluições de 297 vezes para o período de verão e de 485 vezes para o de inverno, com profundidade terminal das plumas de cerca de 2.134 m. O comprimento do campo próximo é de 49 m para o verão e 58 m para o inverno. Para o ponto PLET-LUL-011, os resultados das simulações de campo próximo apresentam diluições de 304 vezes para o período de verão e de 482 vezes para o de inverno, com profundidade terminal das plumas da ordem de 2.094 m. O comprimento do campo próximo é de 50 m para o período de verão e de 58 m para o de inverno. No inverno, portanto, observaram-se maiores diluições e distâncias atingidas a partir do ponto de lançamento, para ambos os pontos analisados.

No estudo realizado para o Gasoduto Lula Norte, os resultados das simulações de campo próximo, para o ponto PLET-LUL-006, apresentaram diluições de 317 vezes para o período de verão e de 335 vezes para o de inverno, com profundidade terminal das plumas de cerca de 2.091 m. O comprimento do campo próximo é de cerca de 55 m para ambos os períodos. Para o ponto PLET-LUL-007, os resultados das simulações de campo próximo apresentam diluições de 301 vezes para o período de verão e de 304 vezes para o de inverno, com profundidade terminal das plumas da ordem de 2.161 m. O comprimento do

campo próximo é de 54 m para o período de verão e de 55 m para o de inverno. No inverno, portanto, observaram-se maiores diluições e distâncias atingidas a partir do ponto de lançamento, para ambos os pontos analisados.No estudo realizado para o Gasoduto Lula Sul, o ponto PLET-LUL-012 apresentou diluição de 374 vezes para o período de verão e de 419 vezes para o de inverno, com comprimento do campo próximo e profundidade terminal das plumas de 2.133 m e 44 m respectivamente para o verão e 2.134 m e 50 m respectivamente para o inverno. Para o ponto PLET-LUL-013, os resultados das simulações de campo próximo apresentam diluições de 358 vezes para o período de verão e de 409 vezes para o de inverno, com profundidade terminal das plumas de 2.106 m e 2.107 m para verão e inverno, respectivamente. O comprimento do campo próximo é de 42 m para o período de verão e de 49 m para o de inverno. No inverno, portanto, observaram-se maiores diluições e distâncias atingidas a partir do ponto de lançamento, para ambos os pontos analisados.

No estudo realizado para o Gasoduto Sapinhoá Norte, os resultados das simulações de campo próximo para o DP (PLET-SPH-003) apresentaram diluições de 182 vezes para o período de verão e de 169 vezes para o de inverno, com profundidade terminal das plumas de aproximadamente 2.109 m. O comprimento do campo próximo é da ordem de 36 m para o período de verão e de 39 m para o de inverno. Para o RHAS Sapinhoá Norte as simulações apresentaram diluições de 152 vezes para o período de verão e de 173 vezes para o de inverno, com profundidade terminal das plumas de aproximadamente 6 m. O comprimento do campo próximo é da ordem de 21 m para o período de verão e de 25 m para o de inverno.

TE TETRA TECH

V BIBLIOGRAFIA

ASA (Applied Science Associates South America), 2010a. Modelagem do Transporte e Dispersão de Óleo no Mar para a Área Geográfica Bacia de Santos. **Relatório Técnico**, Revisão 03 (15 de julho de 2010). 266pp+Anexos.

ASA (Applied Science Associates South America), 2010b. Modelagem de Vazamentos de Condensado a partir do Sistema de Produção e Escoamento do Campo de Mexilhão, Bacia de Santos. Relatório Técnico, Revisão 00 (12 de novembro de 2010). 179pp+Anexos.

ASA (Applied Science Associates South America), 2011. Modelagem Hidrodinâmica para a Costa Sudeste Brasileira, Bacias de Campos e Santos. Relatório Técnico, Revisão 00 (16 de fevereiro de 2011). 103pp+Anexos.

BRANDSMA, M.G., 2004. Modeling of Cooling Water, ORV Cold-Water and Cavern Leaching Brine Plumes from Main Pass Energy Hub. Technical Report. Ecology and Environmental, Inc; 23 February 2004. 83pp.

CONKRIGHT, M.E.; ANTONOV, J.I.; BARANOVA, O.; BOYER, T.P.; GARCIA, H.E.; GELFELD, R.; JOHNSON, D.; LOCARNINI, R.A.; MURPHY, P.P.; O'BRIEN, T.D.; SMOLYAR, I. & STEPHENS, C., 2002. World Ocean Database 2001, Volume 1: Introduction. Ed: Sydney Levitus, NOAA Atlas NESDIS 42, U.S. Office. Wash., D.C., 167 Government Printing pp. Disponível em http://www.nodc.noaa.gov/

FOFONOFF, P. & MILLARD, R.C.J., 1983. Algorithms for computation of fundamental properties of seawater. UNESCO Tech. Pap. Mar. Sci. 44:1-53.

LABTOX (LABTOX - Tecnologia Ambiental), 2002. Teste de toxicidade com o Fluorene R2 (Código LET 2364) com o ouriço do mar Lytechinus variegatus (Echinodermata - Echinoidea). Teste nº 527. Laudo Técnico. 9pp.

LEVITUS, S. & BOYER, T.P., 1994. World Ocean Atlas 1994. Technical Report Vol. 4, National Oceanographic Data Center, Ocean Climate Laboratory. 117pp.

Tt 11-050

BR

PETROBRAS

RABINER, L. R.; SAMBUR, M.R. & SCHMIDT, C.E., 1975. Applications of a nonlinear smoothing algorithm to speech processing. IEEE Trans. on Acoustics, Speech and Signal Processing. Vo. Assp-23, 552-557.

SHUMAN, F.G., 1957. Numerical methods in weather prediction: II. Smoothing and filtering, Mon. Weather Rev.85, 357-361.

WOA01 (World Ocean Atlas), 2001. Methods. Disponível em. <ftp://ftp.nodc.noaa. gov/pub/data.nodc/woa/PUBLICATIONS/qdegmethod.pdf> Acesso em 09 de outubro de 2012.

VI EQUIPE TÉCNICA

Equipe da Empresa Consultora Tetra Tech Consultoria Ltda.

Profissional	Aline Hayashi Suzuki		
Empresa	Tetra Tech Consultoria Ltda.		
Registro no Conselho de Classe	506.321.819-9 (CREA)		
Cadastro Técnico Federal de Atividades	5489280		
e Instrumentos de Defesa Ambiental			
Responsável pelo(s) Capítulo(s)	TODOS		
Assinatura			

Profissional	Ana Carolina da Rocha Lammardo		
Empresa	Tetra Tech Consultoria Ltda.		
Registro no Conselho de Classe	1.689 (AOCEANO)		
Cadastro Técnico Federal de Atividades	325047		
e Instrumentos de Defesa Ambiental			
Responsável pelo(s) Capítulo(s)	TODOS		
Assinatura			

Profissional	Eduardo Yassuda		
Empresa	Tetra Tech Consultoria Ltda.		
Registro no Conselho de Classe	060.184.738.5 (CREA)		
Cadastro Técnico Federal de Atividades	94066		
e Instrumentos de Defesa Ambiental			
Responsável pela(s) Capítulo(s)	TODOS		
Assinatura			

Profissional	Gabriel Clauzet		
Empresa	Tetra Tech Consultoria Ltda.		
Registro no Conselho de Classe	000.000.000-0		
Cadastro Técnico Federal de Atividades	1031373		
e Instrumentos de Defesa Ambiental			
Responsável pela(s) Capítulo (s)	TODOS		
Assinatura			

Profissional	Marco Antonio Corrêa		
Empresa	Tetra Tech Consultoria Ltda.		
Registro no Conselho de Classe	000.000.000-0		
Cadastro Técnico Federal de Atividades	434236		
e Instrumentos de Defesa Ambiental			
Responsável pelo(s) Capítulo(s)	TODOS		
Assinatura			

Profissional	Mariana Coppedê Cussioli		
Empresa	Tetra Tech Consultoria Ltda.		
Registro no Conselho de Classe	000.000.000-0		
Cadastro Técnico Federal de Atividades	5141104		
e Instrumentos de Defesa Ambiental			
Responsável pelo(s) Capítulo(s)	TODOS		
Assinatura			

Profissional	Maurício Person Lammardo		
Empresa	Tetra Tech Consultoria Ltda.		
Registro no Conselho de Classe	1.065 (AOCEANO)		
Cadastro Técnico Federal de Atividades	272165		
e Instrumentos de Defesa Ambiental			
Responsável pelo(s) Capítulo(s)	TODOS		
Assinatura			

Pág. Al-1/8

APÊNDICE I RESUMO DOS DADOS DE ENTRADA UTILIZADOS NAS SIMULAÇÕES

A Tabela AI-1, a seguir, apresenta um resumo dos dados de entrada utilizados nas modelagens de dispersão das plumas de solução de fluoresceína 20% descartadas a partir do Gasoduto Extremo Sul, de acordo com o TR nº 001/2011 - CGPEC/DILIC/IBAMA.

Tabela AI-1 - Resumo dos dados de entrada utilizados nas modelagens de dispersão das plumas provenientes do descarte solução de fluoresceína 20% a partir do Gasoduto Extremo Sul.

	DADOS PLET-LUL-010	DADOS PLET-LUL-011	JUSTIFICATIVA	
DESCRIÇÃO				
	25°34'41,50" S e	25°34'44,12" S e		
Local descarte (coordenadas geodésicas)	42°51'52,80" W	42°53'41,82" W	Item I.1	
	(SIRGAS 2000)	(SIRGAS 2000)	11	
Protundidade da lamina d'agua local (m)	2.167,0	2.127,0	Item I.1	
	0.740.05	0 740 05	14 11	
	2.743,05	2.743,05		
Fluxo volume descartado (m/s)	-	_	*	
Raio da tubulação de descarga (ft)	0.25	0.25	Item II	
Profundidade descarga (ft)	7.099,74	6.968,50	Item II	
Volume de água descartada (m ³)	-	-	*	
Angulo vertical de descarga (em graus referentes à horizontal positivo para baixo e negativo para cima)	90°	90	Item II	
Azimute de descarga	-	-	-	
Duração de descarga (s)	25.200	25.200	*	
Temperatura do efluente (°C)	3,15	3,15	Item II	
Salinidade do efluente	-	Ι	*	
Densidade efluente (g/cm ³)	1,0355 (verão) e 1,0354 (inverno)	1,0355 (verão) e 1,0354 (inverno)	Item II	
Estrutura da plataforma	-		*	
DADOS DO AMBIENTE				
Campo próximo				
Intensidade da corrente (m/s)	0,0521 – 0,0680	0,0532 – 0,0671	Item III.2.2	
Direção das correntes (°)	-	-	*	
Temperatura da água do mar (°)	3,30 - 3,84	3,30 – 3,84	Item III.2.3	
Salinidade da água do mar	34,54 - 34,87	34,54 – 34,87	Item III.2.3	
Densidade do mar (g/cm ³)	1,0343 – 1,0367	1,0343 – 1,0367	Item III.2.3	
Altura de onda significativa (ft)	-	_	*	
Período de onda significativa (s)	-	_	*	
Velocidade de vento (ft/s)	-	_	*	
Temperatura do ar à superfície do mar (°C)	-	_	*	
Descrição da partícula a modelar	Fluorene R2	Fluorene R2	Item II	

BR

PETROBRAS

Tabela AI-1 - Resumo dos dados de entrada utilizados nas modelagens de dispersão das plumas provenientes do descarte solução de fluoresceína 20% a partir do Gasoduto Extremo Sul (continuação).

	DADOS	DADOS	
	PLET-LUL-010	PLET-LUL-011	JUSTIFICATIVA
DADOS DO AMBIENTE (cont.)			
Campo afastado			
Intensidade da corrente (m/s)	_	_	*
Direção das correntes (°)	_	_	*
Temperatura da água do mar (°)	_	_	*
Salinidade da água do mar	_	_	*
Densidade do mar (g/cm ³)	-	-	*
Altura de onda significativa (ft)	-	-	*
Período de onda significativa (s)	-	_	*
Velocidade de vento (ft/sec)	-	_	*
Temperatura do ar à superfície do mar (°C)	-	-	*
Descrição da partícula a modelar	-	-	*
Duração da simulação (s)	-	-	*
DADOS DO EFLUENTE			
Princípio ativo	-	-	*
Concentração inicial (ppm)	40	40	Item II
CEO (%)	-	-	*
CENO (ppm)	200	200	Item II
VC (%)	-	_	*
DADOS DE SAÍDA DA PLUMA			
Campo próximo			
Espessura (m)	9,7 – 21,1	9,6 – 21,2	Item III.4.1
Comprimento (m)	49,2 – 58,1	50,2 – 57,6	Item III.4.1
Profundidade (m)	2.134,2 – 2.134,8	2.094,2 - 2.094,8	Item III.4.1
Concentração (ppm)	0,0824 – 0,1347	0,0831 – 0,1317	Item III.4.1
Campo afastado			
Espessura (m)	_	_	*
Comprimento (m)	_	_	*
Profundidade (m)	-	-	*
Concentração (ppm)	-	-	*

Pág. Al-3/8

A Tabela AI-2, a seguir, apresenta um resumo dos dados de entrada utilizados nas modelagens de dispersão das plumas de solução de fluoresceína 20% descartadas a partir do Gasoduto Lula Norte, de acordo com o TR nº 001/2011 - CGPEC/DILIC/IBAMA.

Tabela AI-2 - Resumo dos dados de entrada utilizados nas modelagens de dispersão das plumas provenientes do descarte solução de fluoresceína 20% a partir do Gasoduto Lula Norte.

			JUSTIFICATIVA
DESCRIÇÃO	FLET-LUL-000	PLET-LUL-007	
DESCRIÇÃO	25º10'44 12" S A	25º16'09 58" S A	
Local descarte (coordenadas geodésicas)	42°41'47 93" W	42°48'23 65" W	ltem I 1
	(SIRGAS 2000)	(SIRGAS 2000)	
Profundidade da lâmina d'água local (m)	2.127,00	2.197,00	Item I.1
DADOS DO DESCARTE			
Vazão (bbl/h)	3.462,14	3.462,14	Item II
Fluxo volume descartado (m/s)	_	_	*
Raio da tubulação de descarga (ft)	0.25	0.25	Item II
Profundidade descarga (ft)	6.968,5	7.198,2	Item II
Volume de água descartada (m ³)	_	_	*
Ângulo vertical de descarga (em graus			
referentes à horizontal positivo para baixo e	90°	90	Item II
negativo para cima)			
Azimute de descarga	-	-	-
Duração de descarga (s)	28.800	28.800	*
Temperatura do efluente (°C)	3,15	3,15	Item II
Salinidade do efluente	-	-	*
Densidade efluente (g/cm ³)	1,0355 (verão) e 1,0354 (inverno)	1,0355 (verão) e 1,0354 (inverno)	Item II
Estrutura da plataforma	-	-	*
DADOS DO AMBIENTE			
Campo próximo			
Intensidade da corrente (m/s)	0,0530 - 0,0612	0,0489 - 0,0497	Item III.2.2
Direção das correntes (°)	-	-	*
Temperatura da água do mar (°)	3,26 - 3,83	3,27 – 3,82	Item III.2.3
Salinidade da água do mar	34,51 – 34,87	34,50 - 34,90	Item III.2.3
Densidade do mar (g/cm ³)	1,0342 – 1,0367	1,0342 – 1,0367	Item III.2.3
Altura de onda significativa (ft)	-	_	*
Período de onda significativa (s)	_	_	*
Velocidade de vento (ft/s)	_	_	*
Temperatura do ar à superfície do mar (°C)	-	_	*
Descrição da partícula a modelar	Fluorene R2	Fluorene R2	Item II

BR

PETROBRAS

Tabela AI-2 - Resumo dos dados de entrada utilizados nas modelagens de dispersão das
plumas provenientes do descarte solução de fluoresceína 20% a partir do
Gasoduto Lula Norte (continuação).

	DADOS	DADOS	JUSTIFICATIVA
	PLET-LUL-006	PLET-LUL-007	
DADOS DO AMBIENTE (cont.)			
Campo afastado		I	
Intensidade da corrente (m/s)	-	-	*
Direção das correntes (°)	-	-	*
Temperatura da água do mar (°)	_	-	*
Salinidade da água do mar	_	-	*
Densidade do mar (g/cm ³)	_	-	*
Altura de onda significativa (ft)	_		*
Período de onda significativa (s)		-	*
Velocidade de vento (ft/sec)		_	*
Temperatura do ar à superfície do mar (°C)	_	_	*
Descrição da partícula a modelar		_	*
Duração da simulação (s)			*
DADOS DO EFLUENTE			
Princípio ativo			*
Concentração inicial (ppm)	40	40	Item II
CEO (%)			*
CENO (ppm)	200	200	Item II
VC (%)			*
DADOS DE SAÍDA DA PLUMA		·	
Campo próximo			
Espessura (m)	9,8 - 10,9	8,9 - 9,3	Item III.4.2
Comprimento (m)	55,1	54,2 - 55,4	Item III.4.2
Profundidade (m)	2.091,0 - 2.091,2	2.161,3 – 2.161,5	Item III.4.2
Concentração (ppm)	0,1194 – 0,1261	0,1331 – 0,1316	Item III.4.2
Campo afastado			
Espessura (m)	-	-	*
Comprimento (m)	-	-	*
Profundidade (m)	_	-	*
Concentração (ppm)	_	_	*

BR PETROBRAS

Pág. Al-5/8

A Tabela AI-3, a seguir, apresenta um resumo dos dados de entrada utilizados nas modelagens de dispersão das plumas de solução de fluoresceína 20% descartadas a partir do Gasoduto Lula Sul, de acordo com o TR n° 001/2011 - CGPEC/DILIC/IBAMA.

Tabela AI-3 - Resumo dos dados de entrada utilizados nas modelagens de dispersão das plumas provenientes do descarte solução de fluoresceína 20% a partir do Gasoduto Lula Sul.

	DADOS PLET-LUL-012	DADOS PLET-LUL-013	JUSTIFICATIVA
DESCRIÇÃO			
	25°34'42,36" S e	25°32'05,78" S e	
Local descarte (coordenadas geodésicas)	42°53'41,31" W	42°52'57,02" W	Item I.1
	(SIRGAS 2000)	(SIRGAS 2000)	
Profundidade da lâmina d'água local (m)	2.157,0	2.131,0	Item I.1
DADOS DO DESCARTE		1	r
Vazão (bbl/h)	1.381,00	1.381,00	Item II
Fluxo volume descartado (m/s)	-	_	*
Raio da tubulação de descarga (ft)	0.25	0.25	Item II
Profundidade descarga (ft)	7.066,93	6.981,63	Item II
Volume de água descartada (m ³)	_	_	*
Ângulo vertical de descarga (em graus referentes à horizontal positivo para baixo e	90°	90	Item II
negativo para cima)			
Azimute de descarga	-	-	-
Duração de descarga (s)	10.800	10.800	*
Temperatura do efluente (°C)	3,15	3,15	Item II
Salinidade do efluente	- ''	_	*
Densidade efluente (g/cm ³)	1,0355 (verão) e 1,0354 (inverno)	1,0355 (verão) e 1,0354 (inverno)	Item II
Estrutura da plataforma	-	-	*
DADOS DO AMBIENTE			
Campo próximo			
Intensidade da corrente (m/s)	0,0532 - 0,0671	0,0479 - 0,0617	Item III.2.2
Direção das correntes (°)	-	_	*
Temperatura da água do mar (°)	3,30 - 3,84	3,26 - 3,83	Item III.2.3
Salinidade da água do mar	34,54 - 34,87	34,51 - 34,87	Item III.2.3
Densidade do mar (g/cm ³)	1,0343 - 1,0367	1,0342 - 1,0367	Item III.2.3
Altura de onda significativa (ft)	-	_	*
Período de onda significativa (s)	_	_	*
Velocidade de vento (ft/s)	_	_	*
Temperatura do ar à superfície do mar (°C)	_	_	*
Descrição da partícula a modelar	Fluorene R2	Fluorene R2	Item II

BR

PETROBRAS

Tabela AI-3 - Resumo dos dados de entrada utilizados nas modelagens de dispersão das
plumas provenientes do descarte solução de fluoresceína 20% a partir do
Gasoduto Lula Sul (continuação).

	DADOS	DADOS	JUSTIFICATIVA		
	PLET-LUL-012	PLET-LUL-013			
DADOS DO AMBIENTE (cont.)					
Campo afastado					
Intensidade da corrente (m/s)	-	–	*		
Direção das correntes (°)	_	-	*		
Temperatura da água do mar (°)	_	_	*		
Salinidade da água do mar	_	_	*		
Densidade do mar (g/cm ³)	_	_	*		
Altura de onda significativa (ft)	_	_	*		
Período de onda significativa (s)			*		
Velocidade de vento (ft/sec)			*		
Temperatura do ar à superfície do mar (°C)		_	*		
Descrição da partícula a modelar			*		
Duração da simulação (s)			*		
DADOS DO EFLUENTE					
Princípio ativo	_	_	*		
Concentração inicial (ppm)	40	40	Item II		
CEO (%)			*		
CENO (ppm)	200	200	Item II		
VC (%)	_	_	*		
DADOS DE SAÍDA DA PLUMA					
Campo próximo					
Espessura (m)	14,1 – 15,0	14,4 – 15,3	Item III.4.3		
Comprimento (m)	43,5 - 50,2	42,4 - 49,3	Item III.4.3		
Profundidade (m)	2.132,5 - 2.133,7	2.106,2 - 2.107,3	Item III.4.3		
Concentração (ppm)	0,0956 - 0,1071	0,0978 - 0,1118	Item III.4.3		
Campo afastado					
Espessura (m)	_	_	*		
Comprimento (m)	_	_	*		
Profundidade (m)	_	_	*		
Concentração (ppm)	_	_	*		

Pág. Al-7/8

A Tabela AI-4, a seguir, apresenta um resumo dos dados de entrada utilizados nas modelagens de dispersão das plumas de solução de fluoresceína 20% descartadas a partir do Gasoduto Sapinhoá Norte, de acordo com o TR nº 001/2011 - CGPEC/DILIC/IBAMA.

Tabela AI-4 - Resumo dos dados de entrada utilizados nas modelagens de dispersão das plumas provenientes do descarte solução de fluoresceína 20% a partir do Gasoduto Sapinhoá Norte.

	DADOS DP - PLET-SPH-003	DADOS RHAS	JUSTIFICATIVA
DESCRIÇÃO			
Local descarte (coordenadas geodésicas)	25°40'20,88"S 43°12'34,75"W (SIRGAS 2000)	25°40'20,55" e 42°12'33,82"W (SIRGAS 2000)	Item I.1
Profundidade da lâmina d'água local (m)	2.132	2.140	Item I.1
DADOS DO DESCARTE			
Vazão (bbl/h)	1.421,50	169,82	Item II
Fluxo volume descartado (m/s)	_	_	*
Raio da tubulação de descarga (ft)	0,25	0,25	Item II
Profundidade descarga (ft)	6.984,91	superfície	Item II
Volume de água descartada (m ³)	-	-	*
Ângulo vertical de descarga (em graus referentes à horizontal positivo para baixo e negativo para cima)	-90°	90°	Item II
Azimute de descarga	_	_	_
Duração de descarga (s)	_	_	*
Temperatura do efluente (°C)	3,15	3,15	Item II
Salinidade do efluente	_	_	*
Densidade efluente (g/cm ³)	1.036,61 – 1.036,74	1.024,18 – 1.025,56	Item II
Estrutura da plataforma	-	_	*
DADOS DO AMBIENTE			
Campo próximo			
Intensidade da corrente (m/s)	0,0221 – 0,0274	0,0439 - 0,0478	Item III.2.2
Direção das correntes (°)	Ι	—	*
Temperatura da água do mar (°)	2,43 - 4,20	1,42 – 24,96	Item III.2.3
Salinidade da água do mar	34,68 – 34,91	34,42 - 36,84	Item III.2.3
Densidade do mar (g/cm ³)	1,0344 – 1,0367	1,0243 - 1,0322	Item III.2.3
Altura de onda significativa (ft)	-	-	*
Período de onda significativa (s)	-	-	*
Velocidade de vento (ft/s)		_	*
Temperatura do ar à superfície do mar (°C)	_	-	*
Descrição da partícula a modelar	Fluorene R2	Fluorene R2	Item II

Tabela AI-4 - Resumo dos dados de entrada utilizados nas modelagens de dispersão das plumas provenientes do descarte solução de fluoresceína 20% a partir do Gasoduto Sapinhoá Norte (continuação).

		DADOS	JUSTIFICATIVA		
DADOS DO AMBIENTE (cont.)	DF - PLET-SPH-003	КПАЗ			
Campo afastado					
Intensidade da corrente (m/s)	_	_	*		
Direção das correntes (°)	_	_	*		
Temperatura da água do mar (°)	_	_	*		
Salinidade da água do mar	-	_	*		
Densidade do mar (g/cm ³)	-	-	*		
Altura de onda significativa (ft)	_	_	*		
Período de onda significativa (s)	-	_	*		
Velocidade de vento (ft/sec)	_	_	*		
Temperatura do ar à superfície do mar (°C)	_	-	*		
Descrição da partícula a modelar	-	_	*		
Duração da simulação (s)	-	_	*		
DADOS DO EFLUENTE					
Princípio ativo	-	_	*		
Concentração inicial (ppm)	40	40	Item II		
CEO (%)	-	Ι	*		
CENO (ppm)	200	200	Item II		
VC (%)	-	Ι	*		
DADOS DE SAÍDA DA PLUMA					
Campo próximo					
Espessura (m)	4,6 - 5,2	3,6 – 3,7	Item III.4.4		
Comprimento (m)	35,9 - 38,4	21,3 – 25,4	Item III.4.4		
Profundidade (m)	2.109,2 – 2109,7	5,1 – 5,7	Item III.4.4		
Concentração (ppm)	0,22 – 0,24	0,231 - 0,263	Item III.4.4		
Campo afastado					
Espessura (m)	-	-	*		
Comprimento (m)	-	_	*		
Profundidade (m)	-	-	*		
Concentração (ppm)	-	-	*		

Pág. A-1/2

ANEXO A DESCRIÇÃO DO SISTEMA DE MODELOS CORMIX

O CORMIX (*Cornell Mixing Zone Expert System*), desenvolvido na *Cornell University*, é um sistema de modelos computacionais desenvolvido para a análise, previsão e planejamento do descarte de efluentes em diferentes corpos d'água (JIRKA *et al.*, 1996). Este modelo possui aprovação do órgão ambiental dos EUA, e é utilizado em consultorias e órgãos ambientais de vários outros países (entre eles a CETESB de São Paulo).

A ênfase do sistema se dá na previsão da geometria e das características de diluição da zona de mistura inicial, permitindo que valores aceitáveis de qualidade de água sejam calculados e discutidos.

Embora sua metodologia considere condições ambientais estacionárias (descarte contínuo, profundidade, intensidade e direção de correntes constantes), o sistema representa uma ferramenta adequada de previsões qualitativas (*e.g.,* classificação de fluxos) e quantitativas (*e.g.,* taxas de diluição, trajetórias) dos processos de misturas resultantes de diferentes configurações de descartes, e em vários tipos de corpos d'água, incluindo rios, lagos, reservatórios, estuários e águas costeiras.

Estas simplificações dinâmicas se justificam uma vez que os processos do campo próximo possuem durações curtas e ocorrem em curtas distâncias, não exigindo dessa forma, da representação da dinâmica local que ocorre em escalas maiores.

O CORMIX é composto por três subsistemas:

(a) CORMIX1, para a análise de lançamentos pontuais abaixo da superfície (*submerged single port discharges*) e utilizado no presente estudo;

(b) CORMIX2, para a análise de múltiplos lançamentos pontuais (difusores multiorifícios) abaixo da superfície (*submerged multiport diffuser discharges*);

(c) CORMIX3, para a análise de lançamentos superficiais (*surface discharges*) não submersos e com escoamento de superfície livre (*i.e.* canais).

A.1 BIBLIOGRAFIA

JIRKA, G.H.; R.L. DONEKER & S.W. HINTON, 1996. User's manual for CORMIX. A hydrodynamic mixing zone model and decision support system for pollutant discharges into surface waters. U.S. Environmental Protection Agency. 152pp.

Pág. B-1/2

ANEXO B DESCRIÇÃO DO NCEP/NCAR

Os dados atmosféricos de reanálise do NCEP/NCAR são resultados de simulações numéricas que utilizam as ferramentas mais modernas em assimilação de dados em conjunto com a mais extensa base de dados disponível. Esta base de dados tem sido aprimorada e beneficiada pela inclusão de observações (coleta de dados) realizadas em diversos países. Tais simulações são realizadas no NCEP usando um modelo espectral de cobertura global de 28 níveis verticais. Este modelo numérico inclui parametrizações dos maiores processos físicos, a saber, convecção, precipitação de grande escala, convecção superficial, arrasto devido a ondas de gravidade, radiação de ciclo diurno e interação com nuvens, física das camadas limites, interação da hidrologia superficial e processos horizontais e verticais de difusão. Detalhes da dinâmica e da física incorporada ao modelo são descritos em *NMC Development Division* (1988), Kanamitsu (1989), e Kanamitsu *et al.* (1991).

Os dados utilizados nas análises apresentadas no presente estudo foram obtidos via endereço eletrônico (http://www.esrl.noaa.gov/psd). É importante salientar que a Tetra Tech mantém um sistema automatizado de "*download*" de arquivos do NCEP/NCAR (endereço acima) e que, portanto, por ser atualizado diariamente, possibilitando apenas definir a data do último acesso (05 de janeiro de 2009).

O NCEP utiliza como sistema de referência um geóide denominado "Spherical Earth" (comunicação pessoal: ESRL/PSD Data Management <esrl.psd.data@noaa.gov>). Este possui valores diferentes para os parâmetros semieixo maior e achatamento, quando comparado com os do WGS 84:

- Spherical earth: semieixo maior = 6.371.200 m / achatamento = 0;
- WGS 84: semieixo maior = 6.378.137 m / achatamento = 1/298,257223563.

Esta aproximação da forma da Terra a uma esfera (i.e. com semieixos iguais) é geralmente utilizada para a simplificação das transformações de coordenadas.

A diferença entre as temperaturas do ar no litoral durante o dia e a Temperatura da Superfície do Mar (TSM) costeira induz pequenas células de circulação denominadas de brisas marítimas. No caso da reanálise do NCEP/NCAR (resolução espacial de 2,5° x 2,5°), ressalta-se que essas células costeiras não são representadas, como consequência da resolução espacial do modelo.

B.1 BIBLIOGRAFIA

KANAMITSU, M., 1989. Description of the NMC global data assimilation and forecast system. **Weather and Forecasting** 4:335-342.

KANAMITSU, M.; ALPERT, J.C.; CAMPANA, K.A.; CAPLAN, P.M.; DEAVEN, D.G.; IREDELL, M.; KATZ, B.; PAN, H.-L.; SELA, J. & WHITE, G.H., 1991. Recent changes implemented into the global forecast system at NMC. **Weather and Forecasting** 6:425-435.

NMC Development Division, 1988. Documentation of the research version of the NMC Medium-Range Forecasting Model. NMC Development Division, Camp Springs, MD. 504pp.

