

Figura 8.1.2-12. Acidentes ordenados pelo custo

Observando-se estes gráficos, nota-se claramente que acidentes como o de *Piper Alpha* são, estatisticamente, um evento atípico, tanto sob o ponto de vista monetário quanto sob o ponto de vista de perdas de vidas humanas. Entretanto, a sua ocorrência gera conseqüências de tal magnitude que devem ser tomadas todas as medidas possíveis para evitá-lo.

O Quadro 8.1.2-6 ordena os acidentes mais severos em termos monetários relacionados com hidrocarbonetos, incluindo aqueles não citados simultaneamente nos dois artigos. A representação deste Quadro, através do gráfico de barras da Figura 8.1.2-13 demonstra claramente a excessiva predominância de *Piper Alpha* sobre os demais, especialmente se considerarmos exclusivamente plataformas *offshore*. É interessante notar que Enchova surge em terceiro lugar em termos *offshore*, representando cerca de 12 % do custo total de *Piper*. Outro fato significativo é que os maiores acidentes com plataforma, excluindo *Piper*, situam-se na faixa de 86 a 325 milhões de dólares.

Analogamente à anterior, o Quadro 8.1.2-7 e a Figura 8.1.2-14 ordenam os 20 acidentes mais severos, porém sob a ótica do número de fatalidades. Neste caso tem-se que a maioria dos acidentes é representada por plataformas, sendo naufrágio a causa mais comum. Excluindo-se *Piper Alpha* e o Flotel *Alexander Kielland*, pode-se dividir a Figura 8.1-15 em três grupos distintos:

- O primeiro, com número de fatalidades entre 70 e 91 ocorrências, onde a causa predominante é o mau tempo;
- O segundo, entre 38-40, onde a plataforma central de Enchova é citada, devido a problemas com embarcações;
- O terceiro, indo de 10 a 22 mortes, onde explosão e incêndio (incluindo blowout) aparecem em frequências elevadas como agentes causadores.

Ao serem analisados todos os acidentes, pode-se construir os gráficos de pizza das Figuras 8.1.2-15 e 8.1.2-16. Na primeira, contemplando o aspecto monetário, podem-se grupar todos os casos de incêndio e explosões, obtendo 21 % do total, contra 25% de blowout. No segundo tem-se novamente 21 % para incêndios e explosões contra 13 % de blowout.

Finalmente, nas Figuras 8.1.2-17 e 8.1.2-18 tem-se os acidentes por tipo de plataforma, onde se percebe que as plataformas semi-submersíveis, semelhantes à P-52, contribuíram entre 6 e 10% do total, incluindo barcaças e helicópteros nestas análises. Cabe destacar que nem todas as semi-submersíveis citadas são de produção, podendo exercer ainda atividades de hotelaria e perfuração (o maior grupo), não sendo possível precisar sua natureza nestes artigos.

Quadro 8.1.2-6. Ordenação dos acidentes mais severos em termos monetários.

		"Examples of fatal accidents"	Offshore Operations post Piper Alpha: accidents 1964 - 1990 associated with offshore installations and mobile drilling units & Noble Denton: "Maior Oil and Energy Technology Losses from 1972 to 1990"	ons and mobile drilling units 72 to 1990"		
		`	G			
20 maior	20 maiores acidentes conforme critério monetár	ne critério monetário - Relat	io - Relatório "Noble Denton"			
Data	Unidade / Estrutura	Tipo	Incidente / acidente	Local	No. de mortes	\$SN
98/Inj	Piper Alpha	plataforma	explosáo/incêndio	Mar do Norte	***	\$ 2.610.000.000
mar/89	Exxon Valdez	petroleiro	encalhe e vazamento de óleo	Alasca	***	\$ 2.000.000.000
68,4no	Houston Chem. Complex	(planta terrestre)	explosão/incêndio	Texas - USA	444	\$ 1.325.000.000
mai/88	Shell Oil Co.	(refinaria - terrestre)	explosão/incêndio	Louisiania - USA	***	\$ 400.000.000
dez/88	Pulsar Field		"SALM and FSU broke drift"	Mar do Norte	****	\$ 392.010.400
78/von	Compl. Prod. Pampa	(planta - terrestre)	ogsoldxe	Texas - USA	***	\$ 350.000.000
abr/88	PLat. Central Enchova 1	plataforma	blowout/incêndio	Brasil	****	\$ 325.000.000
mar/89	South Pass 60 B + E	plataforma	explosão/incêndio	Golfo do México	***	\$ 300.000.000
dez/89	Sidki 382	plataforma	colisão c/ "Panay Sampaguita"	Golfo de Suez	***	\$ 251.200.000
nov/87	Bourbon Field Poço 2-17	plataforma de produção	blowout	Golfo do México	***	\$ 250.000.000
jan/89	Treasure Saga		problemas de controle do poço	Mar do Norte	****	\$ 214.265.400
abr/89	Refinaria de Richmond	(planta terrestre)	explosão/incêndio	California - USA	****	\$ 175.000.000
dez/87	Steelhead	plataforma de produção	blowout/incêndio	Baía de Cook - Alasca	* * *	\$ 125.000.000
set/89	Refinaria St. Croix	(planta terrestre)	danos causados por furacão	Ilhas Virgens - USA	****	\$ 120.000.000
dez/89	Vários		danos por congelamento	USA	****	\$ 120.000.000
set/83	Hurton	plataforma	soldas c/ def. conect. peças de tam. errado	North Sea	***	\$ 116.000.000
set/84	Poço West Venture B-91		blowout	Canadá (Offshore)	**	\$ 108.000.000
mai/88	Pacific Eng. & Prod. Co.	(planta de combust. p/ foguetes)	explosão/incêndio	Nevada - USA	***	\$ 100.000.000
dez/88	Rowan Gorilla I		capotagem e naufrágio	Atlântico Norte	**	\$ 90.000.000
fev/82	Ocean Ranger	semi-submersível	perda total	Terra Nova / Canadá	**	\$ 86.500.000

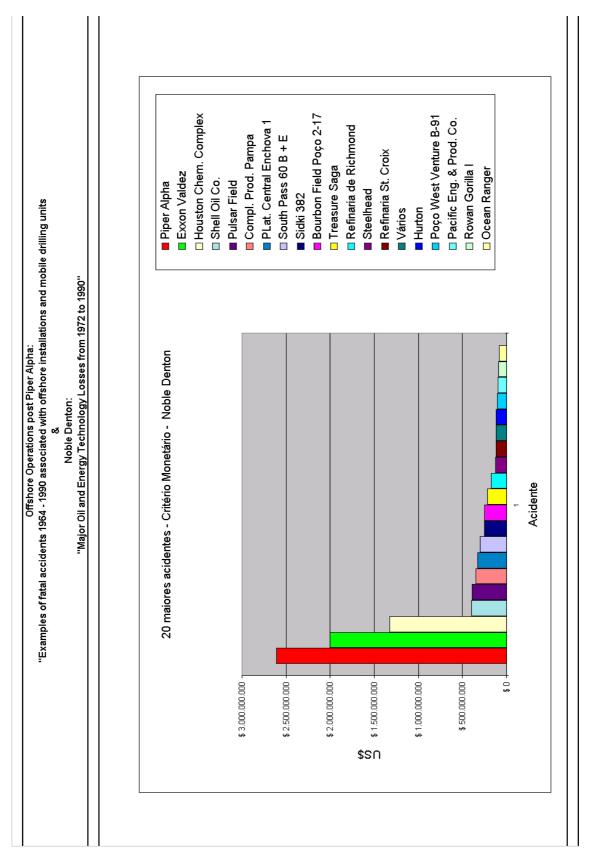


Figura 8.1.2-13. ordenação dos acidentes mais severos em termos monetários

Quadro 8.1.2-7. Ordenação dos 20 acidentes mais severos sob a ótica do número de fatalidades

"Examples of fatal accidents 1964 - 1990 associated with offshore installations and mobile drilling units Offshore Operations post Piper Alpha:

Noble Denton:

"Major Oil and Energy Technology Losses from 1972 to 1990"

Alpha)	
Piper	
s post	
eration	
ore Op	
(Offsh	
atalidades	
por F	
graves	
mais	
acidentes	
20	

Data	Unidade / Estrutura	Tipo	Incidente / acidente	Local	No. de mortes
88/Ini	Piper Alpha	plataforma fixa	explosão/incêndio	Mar do Norte	167
mar/80	Alexander L. Kielland	semi-submersível	capotagem durante uso c/ unid. acomodação	Mar do Norte	123
nov/89	Seacrest	navio sonda de perfuração	capotagem devido tufão	Golfo da Tailândia	91
few/82	Ocean Ranger	semi-submersível	naufrágio durante tempestade	Terra Nova - Canadá	84
out/83	Glomar Java Sea	navio sonda de perfuração	naufrágio durante tufão	Mar da China (Sul)	81
02//ou	Bohai 2	jack-up	capotagem durante reboque devido tufão	China (Offshore)	70
ago/84	Plat. Central Enchova 1	plataforma fixa	blowout	Brasil	40
dez/85	Huichol	supply boat	naufrágio	Baía Campeche - México	38
jun/64	C.P. Baker	barcaça de perfuração	capotagem durante blowout	Eugene Island - G. do México	22
ont/80	Ron Tappmeyer	jack-up	blowout	Arábia Saudita	19
out/74	Gemini	jack-up	capotagem durante posicionamento	Golfo de Suez	14
out/85	Trintoc Atlas	barcaça bate-estacas	explosão durante reparo de tubulação de óleo	Golfo de Paria - Trinidad	14
xx/65	Sedco 135B	semi-submersível	naufrágio durante reboque Japáo/Bornéo	Mar da China (Sul)	13
dez/65	Sea Gem	jack-up	colapso durante preparação p/ movimentação	Mar do Norte	13
abr/76	Ocean Express	jack-up	capotagem durante reboque	Golfo do México	13
jul/81	Artic Explorer	"Seismic vessel"	naufrágio	Cape Bauld - Canadá	13
mar/83	Mibale	plataforma fixa	explosão/incêndio	Costa do Marfim (Offshore)	13
mai/85	Tonkawa	barcaça de perfuração	capotagem durante reboque	Louisiana - USA	11
out/89	linha NGPCA	gasoduto	explosão por colisão c/ barco de pesca	Golfo do México	11
fev/79	não determinada	plataforma fixa	explosão	Lago Maracaibo - Venezuela	10

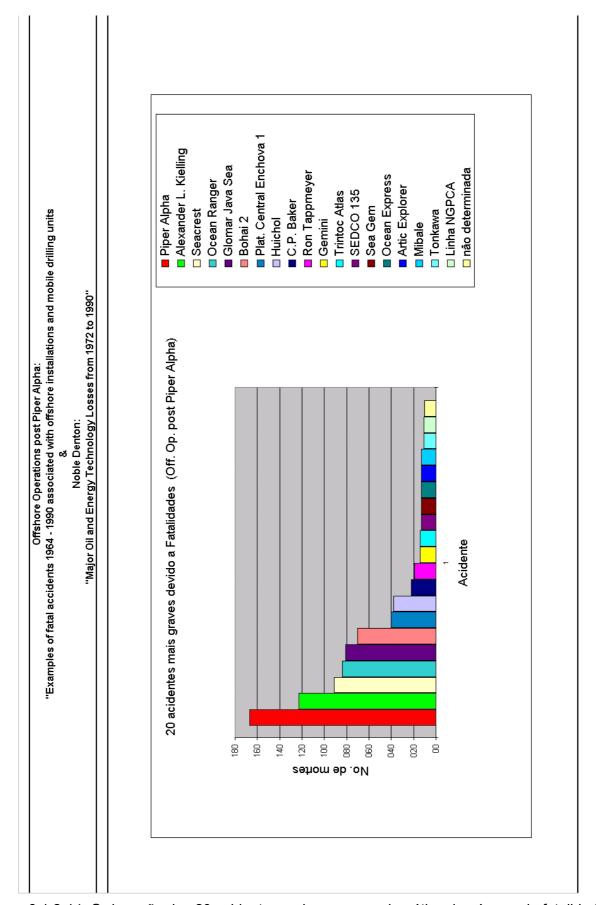


Figura 8.1.2-14. Ordenação dos 20 acidentes mais severos sob a ótica do número de fatalidades

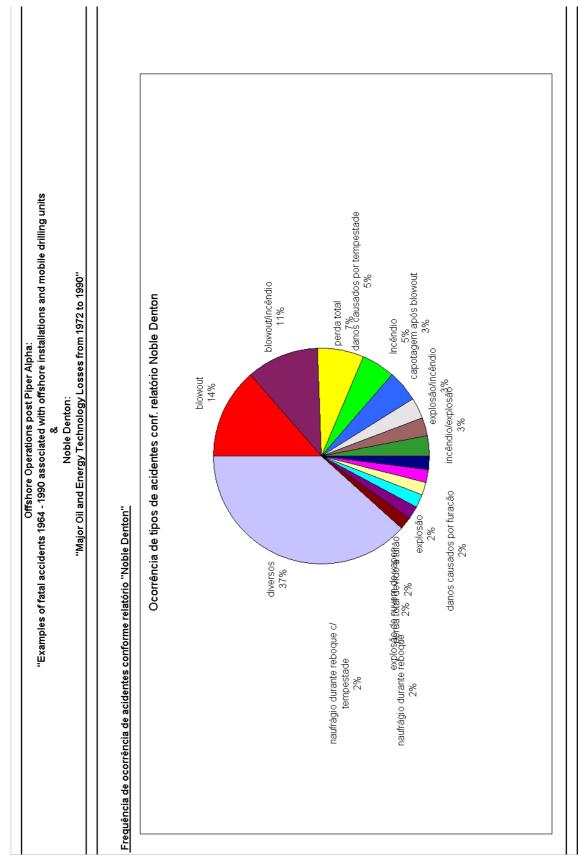


Figura 8.1.2-15. Análise dos acidentes sob a ótica monetária

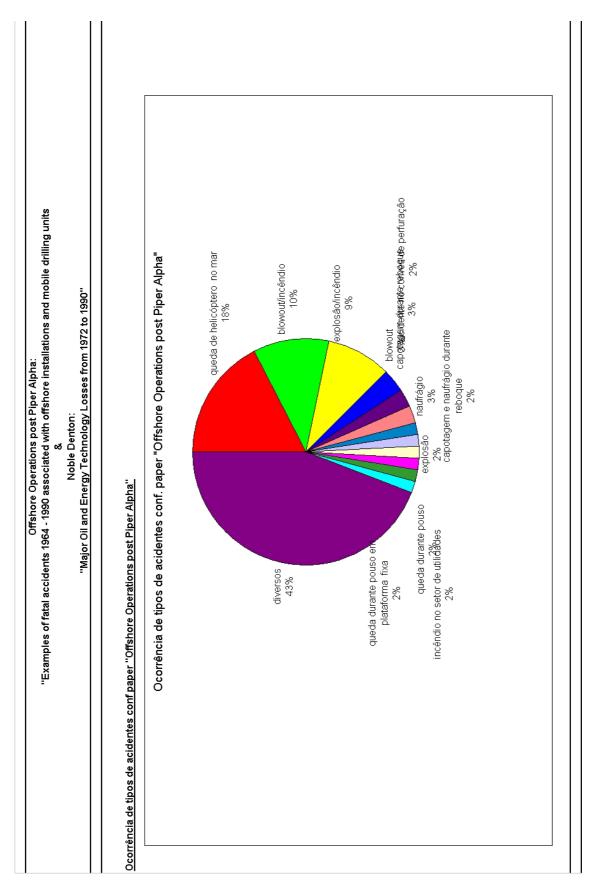


Figura 8.1.2-16. Análise dos acidentes

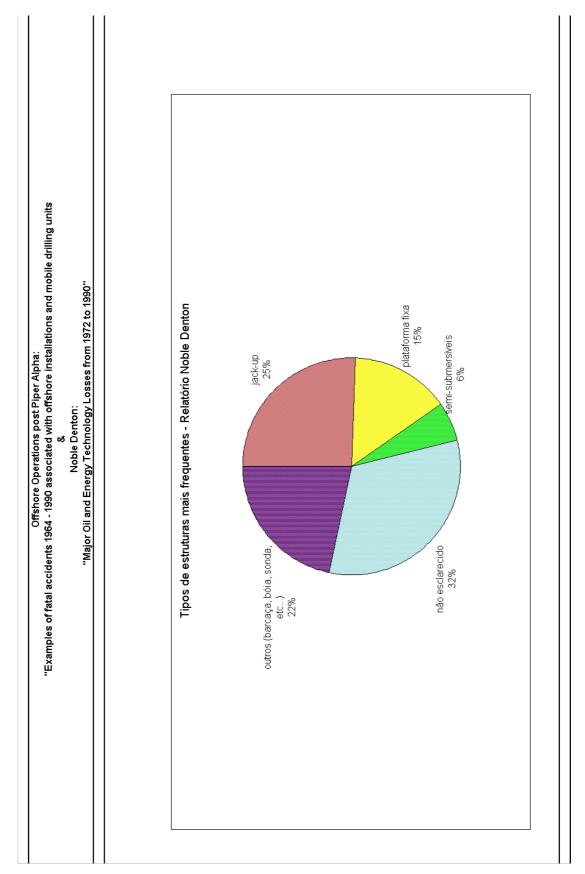


Figura 8.1.2-17. Acidentes por tipo de estrutura

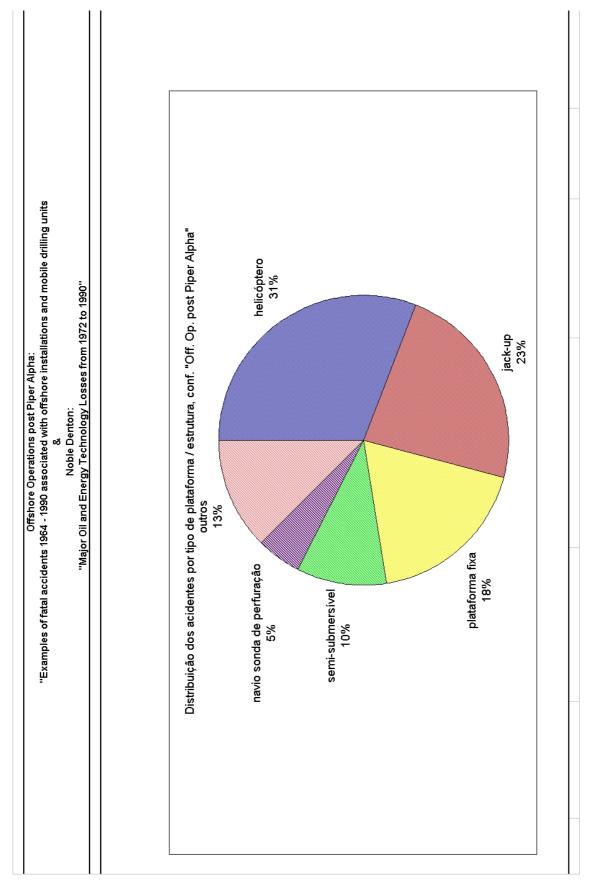


Figura 8.1.2-18. Acidentes por tipo de plataforma

<u>Loss Control Newsletter (Sedgwick Energy Ltd)</u>

Estas informações foram obtidas diretamente de publicações da própria Sedgwick, abrangendo o período de jan/92 a ago/95, de forma a complementar os dados do artigo anterior. O levantamento dos acidentes com plataformas *offshore* estão relacionados aos periódicos trimestrais e incluem eventos ocorridos em qualquer parte do Mundo.

Os resultados obtidos são apresentados no Quadro 8.1.2-8, contendo data, tipo de instalação, tipo de acidente, local e, em alguns casos, número de mortos, feridos e custo do sinistro.

Analisando-se estes resultados, apresentados de forma resumida na Figura 8.1.2-19, pode-se observar o seguinte:

- a) Estes resultados correspondem às mais atualizadas informações disponíveis, sendo apresentados propositadamente em separado dos demais. Através deles é possível observar a situação atual das plataformas, sem sofrer influência de problemas já corrigidos no passado;
- b) Lamentavelmente não é possível obter informações exclusivamente dos projetos novos, que seria de utilidade na análise do projeto da P-52. Desta forma, os resultados apresentados mesclam problemas de plataformas novas com antigas. Entretanto, as novas plataformas incorporam modificações e tecnologias decorrentes inclusive do aprendizado do acidente de *Piper Alpha*, representando, dentro de certos limites, com o que há de mais atual em matéria de segurança, meio ambiente e saúde;
- c) A predominância das ocorrências de incêndios, com 33% do total de acidentes, supera, em grande parte, os outros tipos de acidente. Seguem-se colisões, vazamentos, explosões e *blowouts*, o que representa sensível alteração em relação à ordem citada no MMS e PLATFORM. Este comportamento pode refletir alterações nos procedimentos / equipamentos associados às operações de intervenção nos poços;
- d) Analisando as informações tabeladas, percebem-se falhas em compressores, trocadores de calor, flare, bombas, turbinas e vasos. Podem-se associar vazamentos de gás com 16 % dos casos totais relatados.

Quadro 8.1.2-8. Relatório de Acidentes (Loss Control Newsletter)

	\$SO	1001	##	tion	*****	#	1100	tto:	tion	******	****	1100	\$ 10.000.000.000,00	tio:	****	***	***	****	******	****	***	***	Adde	#	*****	\$ 100.000.000,00	#	Tip.	#	****	##	#
	No de Feridos	028	ŧ	Ħ	Ħ	ŧ	Ħ	Ħ	ŧ	Ħ	ŧ	Ħ	Ħ	ŧ	###	001	***	Ħ	003	Ħ	***	Ħ	800	ħ	Ħ	##	ŧ	ŧ	ŧ	Ħ	ŧ	ħ
de Acidentes segundo Sedgwick Energy Ltd - 1992 a 1995	No de Mortes	***************************************	#	#	011	#	###	#	#	#	ŧ	##	#	#	###	101	***	#	#	ŧ	###	#	++++	ŧ	###	011	#	ŧ	#	#	#	Ħ
wck Energy Ltd -	Local	Marseille	Mar de Java	Alaska	Mar do Norte	Golfo do México	Venezuela	Noruega	Mar do Norte	Reino Unido	Texas	Mar do Norte	Golfo do México	Golfo do México	Noruega	Golfo do México	Mar do Norte	Mar do Norte	Noruega	Mar do Norte	Mar do Norte	Mar do Norte	Peru	Mar do Norte	Vietnam	Venezuela	USA	Reino Unido	Angola	Mar do Norte	Mar do Norte	Mor do Norto
	Incidente/Acidente	Incêndio e Explosão	Incêndio	Colisão	Colisão	Colisão	Naufrágio	Incêndio e Explosão	Vazamento e Poluição	Colisão	Vazamento e Poluição	Incêndio	Furacão Andrew	Incêndio	Incêndio	Explosão, Inêndio e Poluição	Incêndio	Incêndio	Incêndio	Incêndio	Vazamento	Colapso	Explosão	Vazamento	Blow-out	Explosão	Incêndio	Incêndio	Blow-out	Vazamento e Poluição	Vazamento e Poluição	- Special
	Equipamento	plataforma	tubulação	Plataforma	Plataforma	Plataforma	Barcaça	plataforma	Plataforma	Tubulação	Navio-Tanque	Plataforma	Estruturas	Plataforma	Plataforma	Cabeça de Poço	Suporte de perna	Plataforma	compressor	motor	Tubulação	Torre de Refrigeração	at the state of th	#	Plataforma de Perfuração	Trocador	#	Turbo-gerador	Plataforma de Perfuração	Tubulação	Silo	Diotoforms do Dorfuroscão
	Unidade	Perfuração	Produção	Produção	Produção	Produção	Perfuração	Produção	Carregamento	Tubulação	Carregamento	Produção	Plataformas	Produção	Perfuração	Produção	Plataforma	Produção de Gás	Plataforma	Perfuração	Produção	Perfuração	Plataforma	Plataforma	Perfuração	Plataforma	Produção	Produção	Plataforma	Plataforma	Plataforma	- T- T- I-
	Data	an/92	fev/92	fev/92	mar/92	mar/92	abr/92	mai/92	jul/92	Jul/92	Jul/92	ago/92	ago/92		out/92	out/92		nov/92	nov/92	an/93	jan/93	jan/93	jan/93	fev/93	fev/93	mar/93	abr/93	jul/93	nov/93	nov/93	nov/93	Г

Quadro 8.1.2-8. Relatório de Acidentes (Loss Control Newsletter) (Cont) Parte 1

		Relação o	ção de Acidentes segundo Sedgwick Energy Ltd 1992 a 1995	rick Energy Ltd 19	192 a 1995		
Data	Unidade	Equipamento	Incidente/Acidente	Local	No de Mortes	No de Feridos	\$SN
nov/93	Tubulação	Tubo	Impacto/Vazamento/Poluição	Bahrain	#	#	#
nov/93	Plataforma	Cabo de Atracação	Vendaval	Mar do Norte	ŧ	ŧ	##
dez/93	Plataforma	****	Colisão de helicóptero	Mar Cáspio	001	900	##
dez/93	Produção	Flare	Incêndio	Mar do Norte	ŧ	ŧ	##
jan/94	Plataforma	Bomba	incêndio	Venezuela	004	Ħ	\$ 10.500.000,00
fev/94	Plataforma	***	Vazamento	Mar do Norte	ŧ	Ħ	#
mar/94	Plataforma	*****	Incêndio	Reino Unido	#	#	*****
mar/94	Plataforma	Vaso	Vazamento	Reino Unido	ŧ	Ħ	#
abr/94	Plataforma	******	Colisão seguida de Incêndio	Egito	#	#	***************************************
abr/94	Produção	Poço	Falha mecânica	Reino Unido	ŧ	ŧ	#
mai/94	Plataforma	tubulação de produção	Vazamento de gás e Explosão	Mar do Norte	ŧ	Ħ	***
jun/94	Produção	Tubulação	Vazamento	Reino Unido	ŧ	Ħ	***
nov/94	Tubulação de gás	(Riser)	Colisão	Vietnam	ŧ	Ħ	\$ 3.000.000,00
nov/94	Plataforma	Turbina a gás	Incêndio	Reino Unido	Ħ	Ħ	***
nov/94	Tubulação	Tubo	(anchor Drag)	USA	#	ŧ	****
nov/94	Plataforma	Sistema de ventilação	Incêndio	Noruega	#	Ħ	***
nov/94	Produção	Sump	Explosão	New Orleans - USA	001	003	***
dez/94	Plataforma	tubulação	Explosão	Golfo do México - USA	001	200	***
dez/94	Produção	tubulação	Vendaval seguido de Incêndio	Mar do Norte	##	###	***
jan/95	Produção	Plataforma	Incêndio	Ubit - Nigéria	010	019	***
jan/95	Produção	Válvula	Vazamento	USA	###	###	***
mar/95	Plataforma	Subestação	Incêndio	Reino Unido	***	001	***
abr/95	Plataforma	Plataforma	Incêndio	Indonésia	***	****	***
mai/95	Plataforma	Trocador de Calor	Incêndio	Reino Unido	****	001	***
360/05e		Tanque de Estocagem	Falha de Equipamento	Indonésia	##	Ħ	###

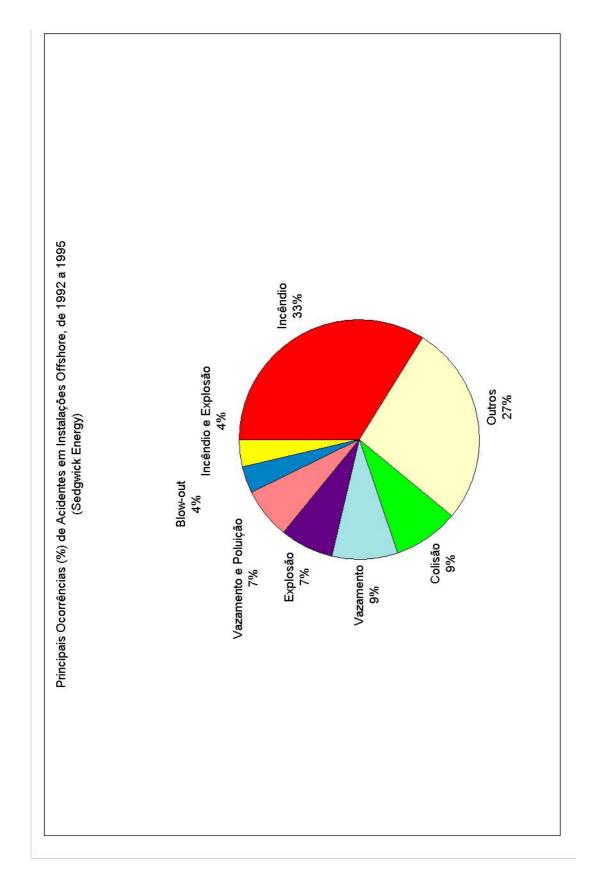
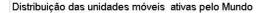


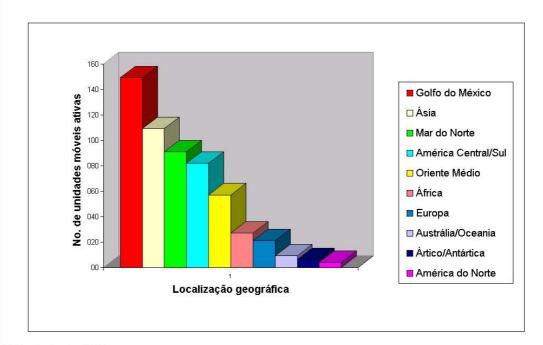
Figura 8.1.2-19. Resumo do Relatório de Acidentes (Loss Control Newsletter)

Worldwide Offshore Accident Databank (WOAD)

O WOAD é um banco de dados estatístico, publicado pela DNV Technica, relacionando acidentes em unidades offshore envolvidas com atividades de óleo e gás, e tradicionalmente utilizado em análises de plataformas. A versão utilizada neste trabalho, publicada em 1994, abrange o período de 1970-93.

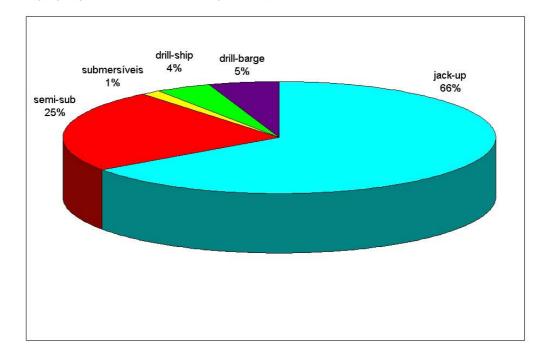
As Figuras 8.1.2-20 e 8.1.2-21 apresentam a distribuição e os tipos das unidades móveis pelo mundo, incluindo unidades semi-submersíveis, barcaças entre outras. Percebe que o Golfo do México exibe a maior concentração de unidades móveis. A região das Américas Central e do Sul estão em 4ª posição, após Ásia e Mar do Norte. Dentre o número de unidades móveis, as plataformas semi-submersíveis representam 25% do total. Se analisada apenas a situação das Américas Central e do Sul (Figura 8.1.2-22) vê-se que as plataformas semi-submersíveis são 32% do total de unidades móveis utilizadas.


O Quadro 8.1.2-9 resume o número de ocorrências por plataformas móveis, que são apresentados na Figura 8.1.2-23, sem associá-los com a severidade. A Figura 8.1.2-24 apresenta os acidentes ocorridos exclusivamente com as semi-submersíveis, no período de 1980-93, onde nota-se a ligeira predominância de *blowouts* sobre incêndios.


O Quadro 8.1.2-10 fornece a frequência de ocorrência de acidentes para cada tipo, contadas por 1.000 unidades-ano. O Quadro 8.1.2-11 apresenta a severidade dos danos impingidos às unidades móveis quando da ocorrência de acidentes. A classificação dos acidentes obedecem aos seguintes critérios:

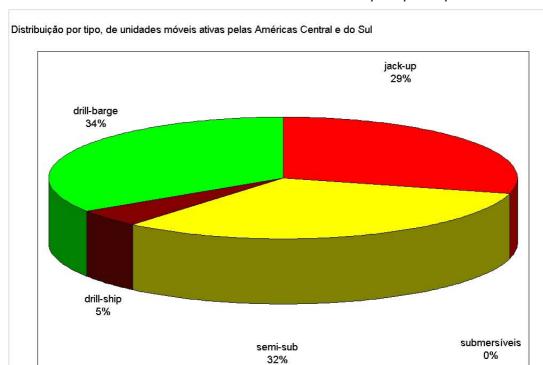
- Perda Total perda total da unidade, inclusive do ponto de vista de seguro. Entretanto, a plataforma pode ser reparada e retornar à operação;
- Danos Severos danos severos a um ou mais módulos da unidade;
 - danos grandes/médios a estruturas que suportam cargas;
 - danos grandes a equipamentos essenciais;
- Danos Significativos danos significativos/sérios a módulos e área local da unidade;
 - danos a equipamentos mais essenciais;
 - danos significativos a equipamentos essenciais únicos;
 - danos menores a estruturas que suportam cargas;
- Danos Menores danos a equipamentos não tão essenciais;
 - danos menores a equipamentos essenciais únicos;
 - danos a estruturas que não suportam cargas;
- Danos insignificantes danos insignificantes ou nenhum dano;
 - danos a peças de equipamentos essenciais;
 - danos a cabos de reboque, propulsores, geradores e acionadores.

Capítulo 8 Rev 01 54/110



Nota: dados de 1993.

Distribuição por tipo de unidades móveis ativas pelo Mundo



Nota: dados de 1993.

Figuras 8.1.2-20. Distribuição das unidades móveis Figura 8.1.2-21. Tipos das unidades móveis

Quadro 8.1.2-9. Número de ocorrência de acidentes por tipo X tipo de unidade

Nota: dados de 1993.

Número de ocorrências de acidentes por tipo x tipo de unidade

* Dados de todo o Mundo, para unidades móveis, do período 1980 / 1993.

Tipo		1	Γipo de Uni	dade Móv	el	
de	jack-up	semi-	submer-	drill-	drill-	TOTAL
Acidente		sub	sível	ship	barge	48
Falha de ancoragem	10	58	3	4	0	75
Blowout	50	32	2	6	6	96
Capotagem	51	3	1	5	4	64
Colisão	8	8	1	2	3	22
Contato	54	31	2	10	4	101
Acidente com guindaste	9	15	1	0	0	25
Explosão	6	8	2	1	2	19
Queda de carga	17	21	0	1	0	39
Incêndio	31	27	4	8	9	79
Naufágio	36	3	1	4	4	48
Encalhe	11	13	1	1	1	27
Acidente c/ helicóptero	3	2	0	0	0	5
Alagamento / inundação	12	14	1	2	2	31
Adernamento	39	10	1	4	1	55
Falha de motores	3	3	0	7	1	14
Desposicionamento	46	52	1	5	2	106
Liberação de fluido/gás	14	19	2	2	3	40
Dano estrutural	120	16	2	9	4	151
Acid. rebocamento	26	25	0	1	1	53
Problemas de poço	47	38	1	7	4	97
Outros	8	11	0	1	0	20
TOTAL	601	409	26	80	51	1167

Figura 8.1.2-22. Distribuição por tipo de unidades móveis ativas na Américas Central e do Sul

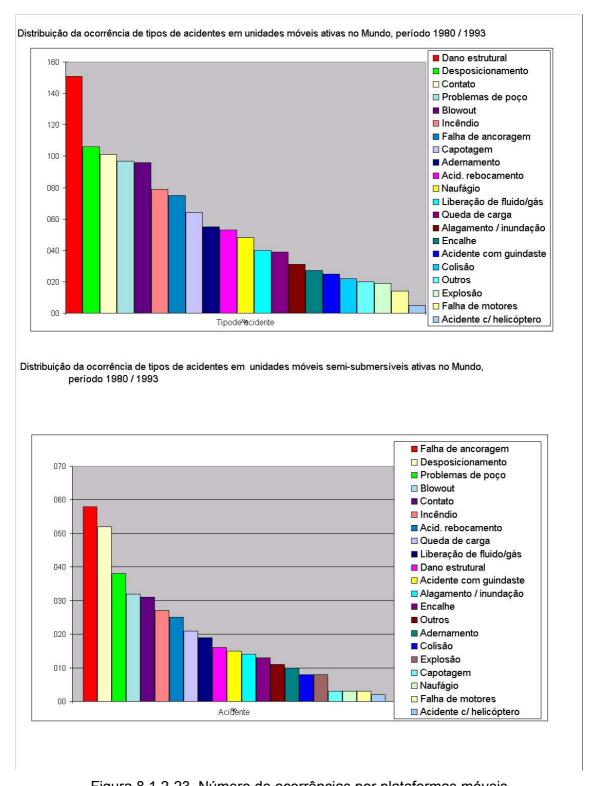
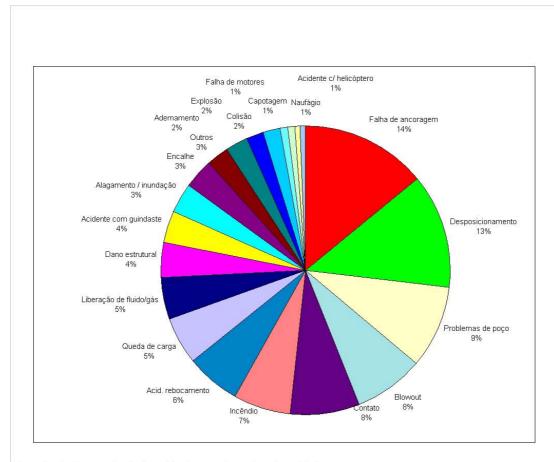



Figura 8.1.2-23. Número de ocorrências por plataformas móveis Figura 8.1.2-24. Acidentes ocorridos exclusivamente com as semi-submersíveis

Quadro 8.1.2-10. Freqüência de ocorrência de acidentes para cada tipo de unidade

Frequência da ocorrência de acidentes por tipo x tipo de unidade

(No. de ocorrências / 1000 unidades-ano - período 1980 / 1993 - dados de todo o Mundo)

Tipo		I	ipo de Uni	dade Móve	el		Unidade
de	jack-up	semi-	submer-	drill-	drill-	TOTAL	Fixa
Acidente		sub	sível	ship	barge	-	Plat. fixa
Falha de ancoragem	2,13	30,05	15,31	7,95	0	9,74	0
Blowout	10,65	16,58	10,20	11,93	16,00	12,47	1,08
Capotagem	10,87	1,55	5,10	9,94	10,67	8,31	0,60
Colisão	1,70	4,15	5,10	3,98	8,00	2,86	0,51
Contato	11,51	16,06	10,20	19,88	10,67	13,12	0,55
Acidente com guindaste	1,92	7,77	5,10	0	0	3,25	0,40
Explosão	1,28	4,15	10,20	1,99	5,33	2,47	0,94
Queda de carga	3,62	10,88	0	1,99	0	5,07	0,60
Incêndio	6,61	13,99	20,41	15,90	24,00	10,26	3,41
Naufágio	7,67	1,55	5,10	7,95	10,67	6,24	0,21
Encalhe	2,34	6,74	5,10	1,99	2,67	3,51	0
Acidente c/ helicóptero	0,64	1,04	0	0	0	0,65	0,11
Alagamento / inundação	2,56	7,25	5,10	3,98	5,33	4,03	0,05
Adernamento	8,31	5,18	5,10	7,95	2,67	7,15	0,10
Falha de motores	0,64	1,55	0	13,92	2,67	1,82	0
Desposicionamento	9,80	26,94	5,10	9,94	5,33	13,77	0
Liberação de fluido/gás	2,98	9,84	10,20	3,98	8,00	5,20	5,74
Dano estrutural	25,57	8,29	10,20	17,89	10,67	19,62	0,68
Acid. rebocamento	5,54	12,95	0	1,99	2,67	6,89	0
Problemas de poço	10,01	19,69	5,10	13,92	10,67	12,60	0,96
Outros	1,70	5,70	0	1,99	0	2,60	0,34

Figura 8.1.2-25. Freqüência de ocorrência de acidentes para cada tipo de unidade

Quadro 8.1.2-11. Severidade dos danos impingidos às unidades móveis

Frequência da ocorrência de acidentes x severidade dos danos

(No. de ocorrências - período 1980 / 1993 - dados de todo o Mundo para unidades móveis)

Tipo		S	everidade	dos dano	s	
de	perda	danos	danos	danos	danos	TOTAL
Acidente	total	severos	signific.	pequenos	insignif.	
Falha de ancoragem	001	800	027	030	009	075
Blowout	019	012	013	009	043	096
Capotagem	043	020	001	00	00	064
Colisão	001	005	006	007	003	022
Contato	002	006	049	038	006	101
Acidente com guindaste	00	00	009	007	009	025
Explosão	003	005	007	001	003	019
Queda de carga	003	003	012	007	014	039
Incêndio	016	017	017	018	011	079
Naufágio	032	012	003	001	00	048
Encalhe	001	800	011	006	001	027
Acidente c/ helicóptero	00	00	00	005	00	005
Alagamento / inundação	007	005	009	008	002	031
Adernamento	015	013	017	006	004	055
Falha de motores	003	00	00	006	005	014
Desposicionamento	010	012	023	018	043	106
Liberação de fluido/gás	004	006	009	005	016	040
Dano estrutural	023	024	089	013	002	151
Acid. rebocamento	007	005	006	003	032	053
Problemas de poço	015	800	012	009	053	097
Outros	00	001	004	007	800	020
TOTAL	205	170	324	204	264	1167

Ocorrência de perda total X tipo de acidente - dados Mundiais p/ unidades móveis - período 1980 / 1993

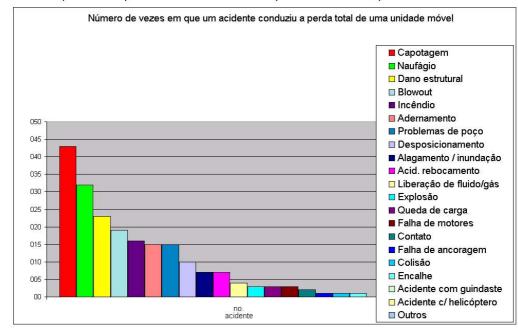
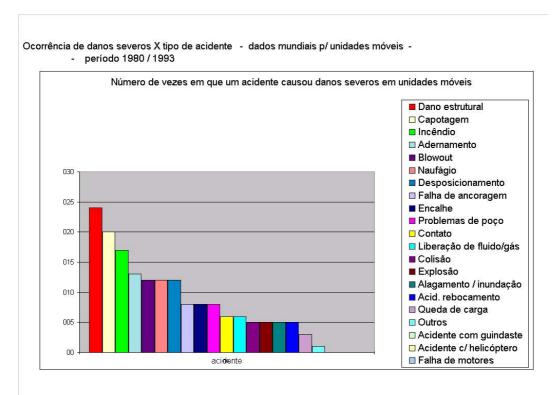


Figura 8.1.2-26. Severidade dos danos impingidos às unidades móveis

Capítulo 8 Rev 01 59/110 Volume I/II

Neste quadro nota-se que há acidentes que caracteristicamente impingem danos severos às unidades móveis, podendo chegar até à perda total (ex.: capotagem e naufrágio). Entretanto, há tipos de acidentes que tanto podem causar danos severos como insignificantes (ex.: *blowout*). Isto porque a severidade dos danos sofridos por uma unidade móvel é função da intensidade do acidente ocorrido e da eficácia das medidas preventivas adotadas.

A Figuras 8.1.2-27 a 8.1.2-30 apresentam a ordenação dos acidentes para cada classe de dano, onde nota-se que *blowouts* e incêndios estão entre os principais problemas operacionais que causam danos significativos a perda total. É interessante notar a concordância destas informações com as anteriores, além da pequena contribuição de explosões no total.


O Quadro 8.1.2-12 relaciona os acidentes com o número de fatalidades produzidas, considerando ainda as classes de danos da Figura 8.1.2-29. Nota-se que alguns acidentes classificados como insignificantes resultam em fatalidades. Tem-se ainda que explosões contribuíram com 4 mortes, incêndios com 27 e *blowout* com 20. A Figura 8.1.2-30 resume o número de mortes por acidente, exclusivamente para plataformas semi-submersíveis. Nota-se o elevado peso de acidentes como capotagem, especialmente das plataformas *Alexander L. Kielland, Ocean Ranger, Glomar Java Sea e Seacrest.*

Outra informação extraída do WOAD é o tipo de operação em unidades móveis que está mais sujeita a acidentes graves sob o ponto de vista de perdas de vidas humanas, conforme apresentado na Figura 8.1.2-30 e no Quadro 8.1.2-13. Nota-se que não há registro de mortes nas plataformas semi-submersíveis de produção, e mais uma vez deve-se considerar o peso de grandes acidentes como o da plataforma *Alexander L. Kielland*, ocorrido quando essa unidade era utilizada como alojamento, ou seja, atividade característica de suporte (ou apoio). O peso deste acidente faz com que a atividade de suporte apareça como a segunda colocada nas atividades mais sujeitas a acidentes graves sob o ponto de vista de perdas de vidas humanas, após a atividade de perfuração.

Finalmente, o Quadro 8.1.2-14 apresenta a seqüência em que ocorreram os acidentes mais graves nas plataformas semi-submersíveis. Em 16 acidentes relacionados, 05 começaram com problemas de poço e 03 por problemas estruturais da plataforma. Em 07 acidentes, independentemente da ordem dos eventos, ocorreram incêndios, sendo que em 05 destes, associado à explosão (independente da ordem dos eventos).

Ocorrência de danos significativos X tipo de acidente - dados mundiais p/ unidades móveis período 1980 / 1993

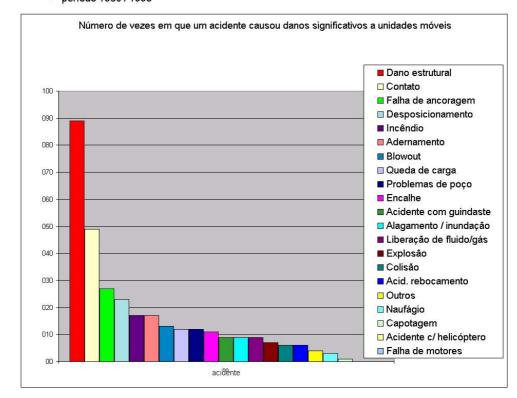


Figura 8.1.2-27. Ordenação dos acidentes para cada classe de dano Figura 8.1.2-28. Ordenação dos acidentes para cada classe de dano

Quadro 8.1.2-12. Acidentes com o número de fatalidades

Frequência da ocorrência de acidentes com mortes x severidade dos danos

(No. de ocorrências - período 1980 / 1993 - dados de todo o Mundo para unidades móveis)

Tipo		s	everidade	dos dano	S	,
de	perda	danos	danos	danos	danos	TOTAL
Acidente	total	severos	signific.	pequenos	insignif.	
Falha de ancoragem	00	00	00	00	001	001
Blowout	00	00	001	019	00	020
Capotagem	306 (1)	117(2)	001	00	00	424
Colisão	00	00	00	00	007	007
Contato	00	00	00	00	00	00
Acidente com guindaste	00	00	00	00	00	00
Explosão	00	00	002	001	001	004
Queda de carga	00	00	00	007	010	017
Incêndio	001	020	001	005	00	027
Naufágio	002	00	00	00	00	002
Encalhe	00	00	00	00	00	00
Acidente c/ helicóptero	00	00	00	024	00	024
Alagamento / inundação	00	001	00	00	00	001
Adernamento	00	00	004	00	00	004
Falha de motores	00	00	00	00	00	00
Desposicionamento	00	00	00	00	00	00
Liberação de fluido/gás	00	00	00	00	00	00
Dano estrutural	00	00	00	00	00	00
Acid. rebocamento	00	00	00	00	001	001
Problemas de poço	00	00	00	00	00	00
Outros	00	00	00	00	012	012
TOTAL	309	138	009	056	032	544

(1) - Alexander L. Kielland - 123 mortes
 Ocean Ranger - 84 mortes
 Glomar Java Sea - 81 mortes

(2) Seacrest - 91 mortes

Ocorrência de mortes X tipo de acidente - dados mundiais p/ unidades móveis - período 1980 / 1993

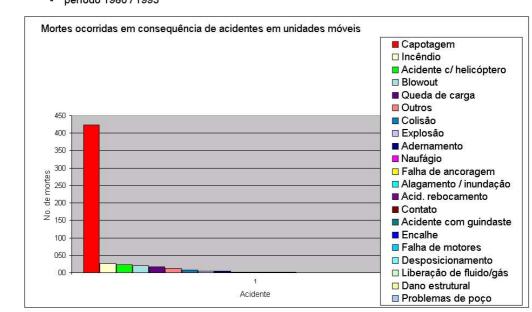


Figura 8.1.2-29. Ordenação dos acidentes para cada classe de dano

Quadro 8.1.2-13. Resumo do número de mortes por acidente

Frequência da ocorrência de acidentes com mortes x modo de operação

(No. de ocorrências - período 1980 / 1993 - dados de todo o Mundo para unidades móveis)

Tipo				MODO I	DE OPER	AÇÃO			
de	Perfu-	Ocio-	Opera-	Produ-	Cons-	Suporte	Trans-	Outros	TOTAL
Acidente	ração	sidade	ção	ção	trução		ferência		•10
Falha de ancoragem	00	00	001	00	00	00	00	00	001
Blowout	019	00	001	00	00	00	00	00	020
Capotagem	271	003	001	00	00	128	021	00	424
Colisão	00	00	00	00	00	00	007	00	007
Contato	00	00	00	00	00	00	00	00	00
Acidente com guindaste	00	00	00	00	00	00	00	00	00
Explosão	002	00	00	00	001	001	00	00	004
Queda de carga	009	003	003	00	00	002	00	00	017
Incêndio	019	00	001	00	005	00	00	002	027
Naufágio	002	00	00	00	00	00	00	00	002
Encalhe	00	00	00	00	00	00	00	00	00
Acidente c/ helicóptero	009	015	00	00	00	00	00	00	024
Alagamento / inundação	001	00	00	00	00	00	00	00	001
Adernamento	002	00	002	00	00	00	00	00	004
Falha de motores	00	00	00	00	00	00	00	00	00
Desposicionamento	00	00	00	00	00	00	00	00	00
Liberação de fluido/gás	00	00	00	00	00	00	00	00	00
Dano estrutural	00	00	00	00	00	00	00	00	00
Acid. rebocamento	00	00	00	00	00	00	001	00	001
Problemas de poço	00	00	00	00	00	00	00	00	00
Outros	009	00	00	00	00	00	003	00	012
TOTAL	343	021	009	00	006	131	032	002	544

Ocorrência de mortes X modo de operação - dados mundiais p/ unidades móveis -

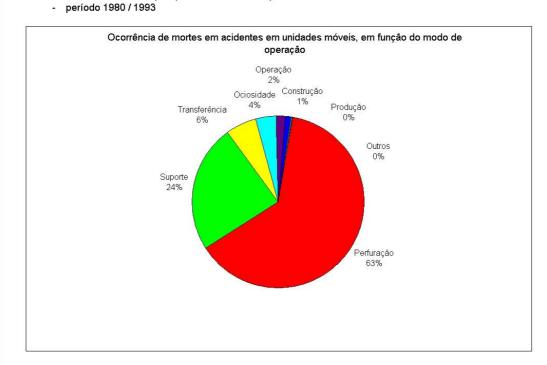


Figura 8.1.2-30. Resumo do número de mortes por acidente

Quadro 8.1.2-14. Acidentes mais graves em plataformas semi-submersíveis

Sequência dos eventos que ocorreram nos piores acidentes em unidades semi-submersíveis

(Período 1970 / 1993 - dados de todo o Mundo)

Nome da Unidade	Área	Sequência do acidente	No. de	Data
			mortes	
Transocean 3	Mar do Norte	ST CA FO	00	jan/74
Deep Sea Driller	Mar do Norte	PO GR LE FO	006	mar/76
SEDCO 135 A	Golfo do México	WP BL FI	00	jun/79
SEDCO 135 C	Costa Oeste África	WP BL FI	00	jan/80
Ocean Ranger	Costa Leste Am. N.	STLELICA	084	fev/82
Ocean Odissey	Mar do Norte	WP LG BL EX FI	001	set/88
SEDCO J	África do Sul	CA FO	00	abr/89
Alexander L. Kielland	Mar do Norte	STLICA	123	mar/80
Zapata Lexington	Golfo do México	WP LG FI EX LI	004	set/84
Santa Fe Mariner I	Mar do Caribe	WP BL EX FI	003	dez/73
Borgsten Dolphin	Mar do Norte	CR FA	002	mar/85
Glomar Artic 2	Mar do Norte	EXFI	002	jan/85
PENROD 74	Índia	LG EX FI	002	set/74
Byford Dolphin	Mar do Norte	OT	005	nov/83
Haakon Magnus	Índia	HE	004	jan/76
Zapata Concord	Golfo do México	OT	002	abr/80

ST - dano estrutural

WP - problema acidental com poço

EX - explosão

CA - capotagem FO - naufrágio PO - desposicionamento BL - blowout CR - acider
FI - incêndio FA - queda
LI - adernamento OT - outros

CR - acidente com guindaste FA - queda de carga

GR - encalhe

LG - vazamento de fluido ou gás

HE - acidente com helicóptero

LE - inundação

Acidente com a Plataforma Petrobras 36 – Relatório da PETROBRAS

No dia 14 de Março de 2001, a plataforma semi-submersível Petrobras 36 sofreu três explosões que resultaram no abandono da instalação e, posteriormente, em perda total da embarcação. Este acidente foi objeto de exaustiva investigação por parte da própria Petrobras, que resultou no documento *Relatório de Investigação das Causas do Acidente da P-36*, divulgado para o público externo.

À semelhança da P-52, a P-36 destinava-se apenas às atividades de produção, não havendo operações de perfuração ou completação. Ambas as unidades são semi-submersíveis e destinam-se a operação em águas profundas, com casco construído de 4 colunas. Entretanto, na P-36 havia armazenamento de material inflamável no interior de elementos estruturais fechados (Coluna na P-36), o que não ocorre na P-52.

A P-36 era uma plataforma de produção semi-submersível, com 4 colunas, operando no Campo de Roncador, na Bacia de Campos, com capacidade de produção de 180.000 barris/dia de óleo. Foi convertida a partir da plataforma *Spiritus of Columbus*, no Estaleiro Canadense *David United*, de 1997 a 1999; originalmente destinada as operações de perfuração, completação e produção, das quais após a conversão, a P-36 manteve apenas a última.

Como premissa básica para o entendimento do processo de desenvolvimento do acidente, torna-se necessária a introdução de algumas características da P-36:

- A planta de processo localizava-se no Convés Principal, em lugar aberto, sem confinamento;
- No interior das Colunas de Ré havia originalmente dois Tanques de recebimento de Lama. No projeto de conversão estes tanques foram destinados a receber o óleo dos Separadores, em condição de emergência. A idéia básica, inédita em projetos anteriores, era destinar o óleo para um local seguro, afastado da planta de processo, em caso de uma condição de emergência neste local;
- Para tanto, estes tanques foram renomeados para Tanques de Drenagem de Emergência (TDE - Bombordo e Boreste) e conectados ao sistema de Vent atmosférico. Receberam 01 bomba de transferência cada um e foram interligados entre si e nos separadores de produção, que operam pressurizados a cerca de 10 bar. A Figura 8.1.2-31 apresenta as interligações destes tanques com a planta de processo;
- Os TDEs foram originalmente projetados para trabalhar à pressão atmosférica, sendo incapaz de suportar pressões acima de 10 bar;
- As bombas de transferências, que removem o produto dos TDEs, foram especificadas com pressão de descarga de 19 bar, de forma a permitir o retorno do óleo ao separador, quando da normalização da emergência.

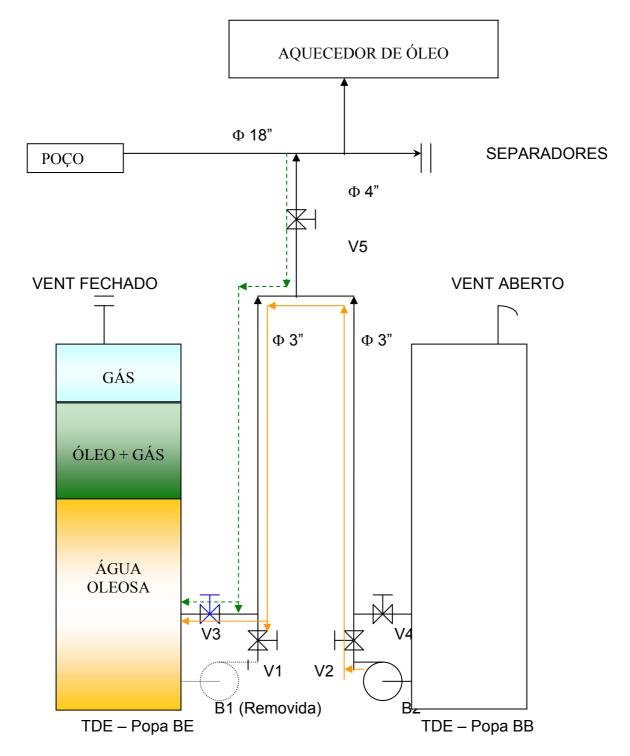


Figura 8.1.2-31. Fluxograma de Interligação dos Tanques de Drenagem de Emergência

No processo de investigação do acidente, observou-se as seguintes etapas:

- i) A bomba do TDE de boreste (TDE-BE) foi removida para manutenção. Os flanges de sucção e descarga da bomba foram isolados através de raquete, assim como o flange da tubulação para o *vent* atmosférico deste TDE. A terceira linha que chegava ao tanque, a de *by-pass* da bomba, não foi raqueteada, pois considerouse que o fechamento da válvula esfera da linha isolaria o TDE-BE;
- ii) Portanto, o TDE-BE apresentava uma linha de entrada e a linha de saída para o vent isoladas através de raquetes, e a outra linha de entrada, que se comunicava com o separador de produção, bloqueada através de 01 válvula esfera;
- iii) No dia 13/03/2001, ambos TDE's estavam parcialmente cheios, com água e carepa provenientes de serviços de pintura, que estavam sendo realizados na P-36. Os operadores da P-36 optaram por drená-los para os TDEs, especialmente o de BB, uma vez que o de BE estava isolado e sem a bomba;
- iv) Ao atingir determinado nível de fluido no TDE-BB, optou-se por esvaziá-lo, injetando o produto no separador de produção. Abriu-se a válvula que isolava as linhas dos 2 TDEs e tentou-se dar partida à bomba do TDE-BB;
- v) Durante cerca de 50 minutos os operadores tentaram partir esta bomba, remotamente da sala de controle. Neste intervalo, toda a linha comunicando o separador de produção aos TDEs foi pressurizada @ 10 bar, com petróleo contendo alto teor de gás dissolvido;
- vi) Após este tempo, conseguiu-se dar partida à bomba, revertendo o sentido do fluxo e pressurizando a linha @ 19 bar, agora com água com carepa, proveniente do TDE-BB;
- vii) Poucos minutos após a partida da bomba ocorreu a primeira explosão, no interior da coluna de BE. Cerca de 17 minutos, ocorreu a segunda explosão, de maior intensidade, que vitimou 12 componentes da brigada de incêndio e provocou a evacuação da P-36;
- viii) Posteriormente, houve alguns relatos de outras pequenas explosões, de baixa intensidade, porém que não alteraram significativamente o quadro final;
- ix) As operações de recuperação da estabilidade da plataforma não obtiveram sucesso, ocasionando o naufrágio da P-36 em 5 dias após a primeira explosão.

O Relatório de Investigação do Acidente é composto por vários documentos, abrangendo diversas hipóteses, todas avaliadas à luz das informações disponíveis do sistema de segurança, que puderam ser recuperadas. As principais conclusões deste documento foram resumidas nos itens a seguir:

- a) A tentativa de partida da bomba do TDE-BB permitiu a pressurização da linha de entrada do TDE-BE. A válvula esfera da única linha de comunicação do tanque com o exterior estava mal fechada ou com problemas de estanqueidade;
- b) O petróleo, proveniente do separador de produção, adentrou no TDE-BE durante os 50 minutos em que se tentou partir a bomba do TDE-BB. O bloqueio da linha de *vent* impediu a remoção do gás dissolvido, aumentando a pressão interna do TDE-BE;
- c) Ao término dos 50 minutos, estima-se que havia no TDE-BE o equivalente a 320 m³ de água, 80 m³ de óleo e 50 m³ de gás, @ 10 bar. O óleo contém gás na razão de 10 m³ de gás para cada 1 m³ de óleo, tornando possível a liberação de até 1.300 m³ de gás;
- d) A partida da bomba do TDE-BB provocou a elevação da pressão da linha, para 19 bar, que é transmitida ao interior do TDE-BE, resultando em ruptura do seu costado, causado por elevação da pressão interna acima do limite de resistência do vaso;
- e) Esta ruptura, interpretada pelos tripulantes como a primeira explosão, resultou em derrame da água, óleo e gás contido em seu interior para a sala do 4º nível da coluna de BE, além de provocar rompimento das linhas de captação de água, do suspiro dos tanques de lastro e de conexão entre o TDE-BE e os separadores. Estas linhas apoiavam-se no costado do TDE-BE, sendo rompidas pela deformação causada pelo aumento da pressão interna;
- f) A ruptura das linhas de captação provocou alarme de pressão baixa no anel de incêndio, interpretado como sinal de Incêndio e que provoca a entrada em operação das bombas de captação. Uma vez que a linha está rompida, a água de captação é injetada no interior da sala do 4º nível de BE, na vazão de 3.000 m³/h, que começa a ser inundada;
- g) Após o derrame da água contida no TDE-BE, ocorre o vazamento de óleo, que libera o gás dissolvido. Este gás inicialmente ocupa o interior da sala e começa a dispersar-se para outros locais da coluna, através dos dutos de ventilação;
- h) Ao término do vazamento de óleo ocorre a liberação do gás, intensificando o processo de dispersão através de outros níveis da coluna;
- i) A água injetada alcança os dutos de ventilação e começa a escoar para dentro dos pontoons, cujos compartimentos estanques não estavam isolados. O processo de inundação continua, provocando o adernamento da embarcação;
- j) Após 17 min 32 s da ruptura ocorre a explosão da massa de gás dispersa no interior da coluna de BE, descrita como a segunda explosão, de grande intensidade e que vitimou os componentes da brigada de incêndio;
- k) A continuação do processo de alagamento, agravado pela impossibilidade de fechamento das válvulas das linhas de captação, resultou no afundamento da P-36.

 Capítulo 8
 68/110
 Rev 01

 Novembro/05
 Volume I/II

Acidentes durante Transferência de Óleo Diesel e Produtos Líquidos

Os bancos de dados consultados não mencionam explicitamente ou não possuem dados específicos sobre liberações durante operações de transferência de óleo diesel para plataformas ou FPSO's. O WOAD (World Offshore Accident Database) apresenta dados genéricos sobre liberações, onde determinados tipos de produtos são relacionados com o tamanho das liberações, conforme Quadro 8.1.2-15 a seguir.

Quadro 8.1.2-15. Tipo de Produto Liberado versus Volume Liberado - Unidades Móveis (1980 a 1993)

TIPO DE			٧	OLUME LIB	ERADO		
PRODUTO	PEQUENO	MENOR	SIGNIF.	GRANDE	MUITO GRANDE	DESCONHECIDO	TOTAL
Óleo crú	1	-	2	-	-	3	6
Óleo + gás	1	1	2	2	5	13	23
Gás	23	-	3	1	1	58	86
Óleo leve	6	1	3	-	-	4	14
Produtos Químicos	1	-	-	-	-	1	2
Outros	1	-	-	-	-	-	1
Total	33	1	10	3	6	79	132

Legenda:

Produtos:

Óleo crú Petróleo e óleo lubrificante

Óleo + gás Óleo e gás associados para a atmosfera

Gás Gases em geral, incluindo hidrocarbonetos e gás sulfídrico (H₂S)

Óleo leve Óleo combustível, condensados, diesel, metanol, glicol ou lama com base oleosa

Produtos Químicos Produtos químicos em geral, lama com base aquosa.

Outros Água salgada, água doce, etc.

Volumes

Pequeno 0 a 9 toneladas Menor 10 a 100 toneladas Signif. 101 a 1000 toneladas Grande 1001 a 10.000 toneladas Muito Grande Maior que 10.001 toneladas

Desconhecido Não precisado

Observa-se então que há 14 acidentes associados à liberação de óleo combustível/diesel em instalações flutuantes, dos quais 3 classificados como liberações envolvendo volumes significativos, ou seja, cujos volumes situam-se entre 101 e 1000 toneladas, ou seja, entre 120 e 1250 m³.

Os dados fornecidos não permitem relacionar os vazamentos com óleo diesel ou combustível associados especificamente ao transbordo. Portanto, são apresentados para possibilitar uma visão geral dos tipos de acidentes e grandezas envolvidas.

Entretanto, a análise de risco relativa ao Campo de Girassol, na África, cuja produção utiliza um FPSO, relaciona os seguintes valores históricos, obtidos com base na experiência:

Quadro 8.1.2-16. Valores históricos – Campo de Girassol.

CAUSA	TIPO DE LIBERAÇÃO	FREQÜÊNCIA (EVENTOS ANO/UNIDADE)	TAMANHO PROVÁVEL DA LIBERAÇÃO	
 Derrame durante a transferência entre o barco de apoio e a plataforma Vazamento ou ruptura do mangote flexível 	Óleo diesel ou lubrificante	0,66	0,25 m ³ (Tier 1)	

Fonte: Dados estatísticos da TotalFinaElf- Projeto Girassol, Angola

Verifica-se na análise destes dados históricos que os potenciais volumes de diesel a serem liberados tendem a ser de pequeno porte, limitados a TIER 1.

Dados da PETROBRAS

Com relação a dados históricos da Petrobras, há alguns registros esparsos de vazamento de diesel durante o transbordo, porém sem permitir o cálculo da fregüência de vazamento. Portanto, sua validade limita-se ao aspecto qualitativos, de forma a proporcionar uma visualização das causas e do desenvolvimento do processo de prevenção.

Na Bacia de Campos há registros de acidentes nas seguintes condições:

- Por falhas operacionais, de equipamento ou humanas, levando à perda de posição da embarcação, com dano ao mangote;
- Por falha de manobra, quando o piloto atinge acidentalmente o mangote com a hélice da embarcação, levando a furos ou mesmo à ruptura desta;
- Em condições de mar ou atmosféricas extremas, onde houve tensionamento excessivo do cabo e do mangote de diesel, levando à ruptura deste.
- Por defeitos observados na conexão ou no próprio mangote, que levaram a vazamentos no mar.

Como forma de minimização das causas destes acidentes, foram adotadas as seguintes medidas, já implementadas:

- i) Utilização de mangote com armadura metálica, o que aumenta a resistência mecânica ao tracionamento e dificulta o corte pela hélice da embarcação;
- ii) Acompanhamento por rádio da operação, com aviso ao piloto em caso de risco de dano ao mangote;
- iii) Utilização preferencial de embarcações com posicionamento dinâmico, limitando as amplitudes dos movimentos relativos entre o barco e a unidade e, por conseqüência, os esforços sobre os mangotes e os riscos de falha humana.

8.1.3. Identificação dos Eventos Perigosos

Metodologia de Análise

A identificação dos eventos iniciadores de acidentes de forma organizada e sistemática foi efetuada através de planilhas usualmente empregadas na Análise de Perigos, conforme apresentadas no Anexo 8-I deste relatório.

A partir destas planilhas, foram identificados, para cada subsistema, as hipóteses acidentais (HA), suas causas e efeitos. Neste trabalho, cada hipótese acidental (conforme numerado nas planilhas) é definida como um conjunto formado pelo perigo identificado, por suas causas, e todos os efeitos físicos possíveis respectivamente decorrentes. Os efeitos físicos foram listados de maneira aglutinada, sem atribuição de probabilidades específicas de ocorrência a cada um deles.

Nesta análise não foram consideradas apenas aquelas HA's que causassem uma emissão direta para o meio-ambiente, dado que a maioria dos acidentes resultam de uma seqüência de eventos, cuja causa inicial pode ser insignificante para o meio ambiente, porém seu processo de desdobramento pode levar a outros danos mais sérios.

Foram então considerados os pequenos e grandes vazamentos, que possam resultar em evolução do acidente, num escalonamento, estando os efeitos resumidos no Quadro 8.1.3-1. Os efeitos foram estimados em função das dimensões do acidente e do ambiente onde ocorrem, com base em análise de instalações similares e na experiência dos componentes do grupo de trabalho.

Quadro 8.1.3-1. Avaliação da Possibilidade de Evolução de Acidentes.

INTENSIDADE DO VAZAMENTO	ÁREA	POSSÍVEIS EFEITOS	
Pequeno	Aberta	Nenhum	
Pequeno	Fechada	Efeitos físicos (ex. incêndios, explosões, etc.) com possibilidade de propagação.	
Grande	Aberta ou fechada	Efeitos físicos com possibilidade de propagação.	

Para a avaliação dos efeitos físicos foi considerada a existência de possíveis fontes de ignição e, para uma possível propagação dos efeitos para outros locais da unidade/embarcação, foi considerada a existência ou não de um inventário significativo de material inflamável nas proximidades dos pontos de vazamento.

Ou seja, existindo possíveis fontes de ignição, supõe-se que haverá ignição do material liberado, que dependendo do ambiente ser fechado ou não e de haver uma quantidade significativa de material inflamável ou não, implicará em determinada severidade de consequências.

Foi considerado neste estudo que todos os grandes vazamentos poderão sofrer ignição, dada a presença de diversas fontes de ignição em embarcações deste tipo, podendo levar a máxima severidade de efeitos físicos. Porém, para os pequenos vazamentos, apenas aqueles que ocorram em áreas fechadas ou parcialmente confinadas estarão sujeitos a propagarem-se em outros focos.

Para fins de avaliação das freqüências de ocorrências dos eventos iniciadores identificados, foram utilizadas diversas fontes de dados, como pôr exemplo: OREDA, AIChE, E&P Forum, Technica, WOAD, conforme mostrado no Quadro 8.1.3-2 abaixo. Outras freqüências de ocorrências foram estimadas qualitativamente.

Quadro 8.1.3-2. Freqüências anuais de falhas

COMPONENTE	PEQUENO VAZAMENTO	GRANDE VAZAMENTO
Estrutura/embarcação		3,2E-03
-		(ruptura devido à colisão)
Estrutura/tubulações/equipam		5,0E-03
entos		(ruptura devido à queda de carga)
Riser	9,0E-06/m	6,0E-07/m
Tubulação	2,8E-07 L/C	2,2E-08 L/C
Juntas de expansão	3,0E-02	5,0E-04
Filtro	1,0E-02	-
Flange/Conexões	8,80E-05	-
Válvula esfera	1,0E-02	3,0E-05
Válvula globo/agulha	3,0E-03	3,0E-05
Válvula de retenção	5,0E-04	2,0E-05
Válvula de alívio	3,0E-02	2,0E-04
Tomada de instrumento	5,0E-04	2,0E-05
Trocador de calor	3,0E-03	2,0E-05
Vasos	1,0E-04	1,0E-05
Bombas (selo)	5,0E-03	2,0E-05

Volume I/II

Para fins de avaliação das freqüências da ocorrência de determinados cenários e de classificação e ordenação quanto à criticidade destes, onde foram considerados possíveis desdobramentos e propagação dos efeitos iniciais, adotou-se as probabilidades de ignição e desdobramentos relacionadas no Quadro 8.1.3-3.

Quadro 8.1.3-3. Possibilidade de desdobramento de vazamentos

VAZAMENTO	POSSIBILIDADE DE DESDOBRAMENTO		
Pequeno	0,01		
Grande	0,1		

Ou seja, dada a ocorrência de pequenos (em áreas confinadas ou semi-confinadas) ou grandes vazamentos, na presença de fontes de ignição, e de um inventário significativo de substância inflamável nas proximidades, considerou-se que, para os grandes vazamentos, a probabilidade de ignição e de escalonamento, resultando em determinados efeitos físicos seria de 10%. Para pequenos vazamentos esta seria de 1%.

Tais fatores foram baseados em alguns valores retirados da literatura concernente à área, tais como *HSE* e *E&P Forum*, e, embora imprecisos, visam a hierarquização ao nível qualitativo, dos vários cenários identificados no estudo.

Categorias de Frequência e de Severidade

A classificação de uma dada hipótese acidental é função de dois parâmetros básicos: freqüência e severidade. Estes dois parâmetros são combinados através da Matriz de Risco, seguindo os critérios apresentados a seguir.

Categorias de Frequência

As hipóteses acidentais são classificados em categorias de freqüência, as quais fornecem uma indicação qualitativa, da freqüência esperada de ocorrência, para cada uma das HA's identificadas, conforme mostrado no Quadro 8.1.3-4 abaixo:

Quadro 8.1.3-4. Categoria de Frequências

CATEGORIA	DENOMINAÇÃO	FAIXA (OC./ANO)	DESCRIÇÃO		
А	Extremamente Remota	F < 10 ⁻⁵	Não deverá ocorrer durante a vida útil da instalação, sem registro anterior de ocorrência		
В	Remota	$10^{-5} \le F < 10^{-3}$	Não esperado ocorrer durante a vida útil da instalação		
С	Improvável	$10^{-3} \le F < 10^{-2}$	Improvável de ocorrer durante a vida útil		
D	Provável	$10^{-2} \le F \le 10^{-1}$	Provável de ocorrer durante a vida útil da instalação		
E	Frequente	F > 10 ⁻¹	Esperado ocorrer pelo menos uma vez durante a vida útil da instalação		

Categorias de Severidade

A severidade representa uma mensuração do impacto esperado associado a um determinado cenário. É o resultado da combinação de diversos elementos, tais como o produto envolvido, o inventário (ou capacidade da fonte) disponível para liberação, a possibilidade de propagação, confinamento, e outros. São consideradas 04 (quatro) categorias de severidade, conforme representadas no Quadro 8.1.3-5.

Quadro 8.1.3-5. Categoria de Severidade

CATEGORIA	DESCRIÇÃO
1	Nenhum impacto à plataforma ou ao meio ambiente.
2	Impacto restrito à plataforma: eventos cujos efeitos se restrinjam ao módulo/compartimento em que ocorrem, ou se restrinjam aos limites da plataforma após a ocorrência de escalonamento devido à presença de pequeno inventário de substância inflamável em suas proximidades.
3	Impacto ao meio ambiente devido a emissões diretas até 8 m³ de óleo ao mar.
4	Impacto ao meio ambiente devido a emissões diretas acima de 8 até 200 m³ de óleo ao mar.
5	Impacto ao meio ambiente: aqueles eventos cujos efeitos resultem em emissão diretas ao mar (maiores de que 200 m³) ou decorram do escalonamento de eventos devido à presença de grandes inventários de substância inflamável em suas proximidades.

Categorias de Risco

Combinando-se as categorias de freqüências com as de severidade, obtêm-se uma indicação qualitativa do nível de risco de cada um dos cenários identificados. A matriz de risco (Quadro 8.1.3-6) apresentada a seguir, classifica os cenários de Risco Crítico (RC), Risco Moderado (RM) e Risco Não-crítico (RNC).

Após as planilhas com os perigos identificados para cada um dos sistemas analisados, são apresentadas matrizes onde os números dos cenários são classificados de acordo com as respectivas categorias de riscos.

Quadro 8.1.3-6. Categoria de Risco

		SEVERIDADE				
		1	2	3	4	5
_	E	RNC	RNC	RC	RC	RC
FREQÜÊNCIA	D	RNC	RNC	RM	RC	RC
	С	RNC	RNC	RM	RM	RC
	В	RNC	RNC	RM	RM	RC
	Α	RNC	RNC	RNC	RM	RM
Frequência:		Severidade: Risco:				
A = Extremamente Remota		1 = Nenhum impacto ao meio ambiente			RC = Risco Crítico	
B = Remota 2 = Impacto restrito a		ito à plataforma.		RM = Risco Moderado		
C = Improvável		3 = Vazamento de óleo de até 8 m		3	RNC = Risco Não-Crítico	
D = Provável		4 = Vazamento de óleo entre 8 m³ e 200 m³				
E = Frequente		5 = Vazamento de óleo maior que 200 m ³				

Subsistemas Considerados

Com o objetivo de facilitar o estudo, cada subsistema foi dividido em trechos distintos e estudados separadamente, que estão analisados nas planilhas em anexo, conforme relacionado a seguir. No Anexo 8-I encontram-se indicados os sistemas e trechos citados.

Desta forma, especificamente para as atividades previstas para a plataforma semisubmersível P-52, serão utilizados os seguintes onze (11) subsistemas, cuja função básica encontra-se descrita ao lado:

Subsistema 1 – Linhas Submarinas - compreende todas as linhas de escoamento de fluido relacionadas com a produção, incluindo as linhas de produção de óleo, linhas de injeção de gás lift e água e umbilicais;

Subsistema 2 - Chegada e Saída dos Risers - compreende a região de chegada dos risers na embarcação, incluindo a suportação no *Pontoon*. Inclui a conexão entre os risers e os trechos de linha rígida desde esta conexão até os manifolds de produção e injeção, localizados no spider deck.

Subsistema 3 – Sistema de Separação e Processamento de Óleo – compreende todos os equipamentos associados ao processamento e separação de óleo, gás e água, até o envio do óleo para exportação, através do Oleoduto.

Subsistema 4 - Compressão e Tratamento de Gás - compreende todos os equipamentos associados à compressão e secagem do gás produzido, até o encaminhamento para o header de exportação, gás lift e gás combustível.

Subsistema 5 – Sistema de Flare – compreende todos os equipamentos associados ao envio e queima de gás no Flare.

Subsistema 6 – Utilidades– compreende todos os equipamentos associados a geração de energia, estocagem de óleo diesel e de produtos químicos.

Subsistema 7 – Tratamento de Água Produzida e Drenagem Fechada – compreende todos os equipamentos associados ao recebimento e tratamento de água produzida e coletada no sistema de drenagem fechada.

Subsistema 8 – Tratamento de Água de Drenagem Aberta– compreende todos os equipamentos associados ao recebimento e tratamento de produtos coletados no sistema de drenagem aberta.

Subsistema 9 – Movimentação de Cargas – compreende os equipamentos associados à movimentação de carga na plataforma, incluindo os guindastes e as áreas de transferência e depósito de cargas.

Subsistema 10 – Linhas de Importação e Exportação de Gás, Óleo e Outros – compreende todos as linhas associadas ao envio e recebimento de produtos na P-52.

Subsistema 11 – Agentes Externos – contempla outros tipos de acidentes que não estão diretamente relacionados ao processo em si, incluindo fatores climáticos, movimentos excessivos da plataforma, tais como emborcamento e adernamento, queda de aeronaves, colisões com embarcações e vazamentos no barco de apoio, no porto, em trânsito ou durante transbordo para a P-52.

Subsistema 01 – Linhas Submarinas – Produção / Injeção / Umbilicais)

- Trecho 1.1 Linhas de produção, da Árvore de Natal Molhada (ANM) até os conectores dos risers, localizados no pontoon;
- Trecho 1.2 Linhas de injeção de gás lift, dos conectores do riser, localizados no pontoon até a Árvore de Natal Molhada (ANM) e o manifold submarino de gás lift (MSGL-RO-3);
- Trecho 1.3 Linhas umbilicais

Subsistema 02 – Chegada e Saída dos Risers

- Trecho 2.1 Linha de produção, dos conectores dos risers localizados no pontoon à SDV no spider deck;
- Trecho 2.2 Linha de produção, das SDVs no spider deck ao manifold de produção, neste mesmo convés;
- Trecho 2.3 Linha de gás *lift*, do manifold de gás lift localizado no spider deck aos conectores de gás lift, localizados no *pontoon*, passando pelas SDV's;

Subsistema 03 – Sistema de Separação e Processamento de Óleo

 Trecho 3.1 – Linha de óleo produzido, do conector de saída do manifold ao separador de 1o estágio / teste (SG-122301 A/B, SG-121201)

 Capítulo 8
 76/110
 Rev 01

 Novembro/05
 Volume I/II

- Trecho 3.2 Linha de óleo produzido, do separador de 1o estágio/teste ao tratador de óleo (TO-122301 A/B)
- Trecho 3.3 Linha de óleo produzido, do tratador de óleo ao separador atmosférico (SG-122302 A/B)
- Trecho 3.4 Linha de óleo produzido, do separador atmosférico às bombas de transferência e exportação de óleo

Subsistema 04 – Compressão e Tratamento de Gás

- Trecho 4.1. Do separador de 1o estágio ao compressor principal (UC-122301 A/B/C)
- Trecho 4.2. Do separador atmosférico ao compressor principal, passando pelo compressor booster (UC-122302)
- Trecho 4.3. Do compressor principal ao header de exportação de gás, passando pelo sistema de desidratação
- Trecho 4.4. Glicol em circuito fechado, da torre de glicol ao sistema de regeneração de glicol, retornando à torre de glicol
- Trecho 4.5. Linha de gás lift, do header de exportação de gás até o manifold de gás lift,
- Trecho 4.6. Linha de exportação de gás, do header de exportação de gás até o conector de exportação,
- Trecho 4.7. Linha de gás combustível, do compressor principal até os consumidores

Subsistema 05 – Sistema do Flare

- Trecho 5.1. Dos vasos de processo aos queimadores de alta pressão
- Trecho 5.2. Dos vasos de processo aos queimadores de baixa pressão

Subsistema 06 – Utilidades (Geração de Energia, Diesel, Produtos Químicos)

- Trecho 6.1 Armazenamento e injeção de produtos guímicos
- Trecho 6.2 Armazenamento e injeção de óleo diesel

Subsistema 07 – Tratamento de Água Produzida e Drenagem Fechada

- Trecho 7.1. Linha de água oleosa, dos separadores de 1o estágio e tratadores de óleo aos hidrociclones
- Trecho 7.2. Linha de óleo, dos hidrociclones ao vaso de slop
- Trecho 7.3. Linha de água oleosa, dos hidrociclones ao mar, passando pelo flotador

Capítulo 8 Rev 01 77/110 Volume I/II

- Trecho 7.4. Linha de água fora de especificação, do flotador ao tubo de despejo de área classificada (TD-533601)
- Trecho 7.5. Linha de óleo do flotador ao separador de produção.

Subsistema 08 – Tratamento de Água de Drenagem Aberta

- Trecho 8.1. Linha de água oleosa, dos drenos abertos ao tubo de despejo de área não-classificada (TD-533602)
- Trecho 8.2. Linha de água oleosa, do TD-533602 ao flotador

<u>Subsistema 09 – Movimentação de Cargas</u>

- Trecho 9.1. Guindastes
- Trecho 9.2. Áreas de Transferência e Depósito de Cargas

Subsistema 10 – Importação e Exportação de Gás, Óleo e Outros

- Trecho 10.1. Linha de óleo, das bombas de Transferência à SDV do oleoduto, localizado no spider deck, passando pelo sistema de medição;
- Trecho 10.2. Linha rígida de óleo, da SDV ao conector do RHAS, localizado no Pontoon;
- Trecho 10.3. Linha de oleoduto do conector do RHAS, localizado no Pontoon até 1ARO-18-PLEM BP;
- Trecho 10.4. Linha de exportação de gás, do conector de exportação no pontoon até a chegada no 2RO-PLEM Y e PLEMY RO-01;
- Trecho 10.5. Mangote flexível para carga de diesel

Subsistema 11 – Agentes Externos – Fatores Climáticos e Barcos de Apoio

- 11.1 Adernamento Excessivo
- 11.2 Emborcamento
- 11.3 Afundamento
- 11.4. Perda de ancoragem
- 11.5 Colisão com helicópteros
- 11.6 Colisão com barcos de apoio
- 11.7 Colisão com navios em trânsito
- 11.8. Vazamento no barco de apoio no transbordo para P-52
- 11.9. *Blowout*