BR PETRÓLEO BRASILERIO S.A PETRODRAS	PEI FPSO P-54 Anexo 03	Resultados das modelagens Seção 1 de 41
---	------------------------------	--

ESTUDO DE DERIVA DE MANCHAS DE ÓLEO PARA ELABORAÇÃO DO PEI DA P-54 NO CAMPO DE RONCADOR, BACIA DE CAMPOS

- 1 INTRODUÇÃO
- 2 FORMULAÇÃO DO MODELO E DADOS DE ENTRADA
 - 2.1 LOCAL DO ESTUDO
 - 2.2 PADRÕES DE CIRCULAÇÃO NA REGIÃO
 - 2.3 DADOS DE VENTO
- 3 CARACTERIZAÇÃO DO ÓLEO
- 4 DESCRIÇÃO DOS CENÁRIOS
- 5 RESULTADOS DAS SIMULAÇÕES
 - 5.1 SIMULAÇÕES PROBABILÍSTICAS
 - 5.2 CENÁRIOS DETERMINÍSTICOS CRÍTICOS

REFERÊNCIAS BIBLIOGRÁFICAS

ANEXO A ANEXO B ANEXO C

O sistema de modelos **OILMAP** da **Applied Science Associates (ASA)** foi utilizado para estudar a trajetória e transformações biogeoquímicas de um potencial acidente com petróleo no FPSO P-54, na Bacia de Campos.

A caracterização dos padrões de circulação na região foi obtida a partir de resultados do modelo POCM (WOCE Parallel Ocean Climate Model) ajustado para modelar as correntes oceânicas da costa sudeste do Brasil. Dados de vento foram fornecidos pela PETROBRAS através de seu Centro de Pesquisas (CENPES).

Foram conduzidas simulações probabilísticas para determinar contornos de probabilidade da mancha atingir a área de estudo, a partir de 3 (três) classes de derramamento: pequeno, com 8 m³; médio, com 200 m³ e pior caso, com 335.208 m³, correspondente ao afundamento do FPSO (tanques de carga e de armazenamento de óleo diesel e óleo lubrificante).

Neste relatório são apresentadas duas probabilidades de toque na costa. A primeira se refere à probabilidade da mancha tocar pontos específicos do litoral. A segunda se refere à relação entre o número de cenários em que o óleo chega à costa e o total de cenários simulados, sendo matematicamente inexistente em condições de verão e igual a 7,3% em condições de inverno.

Os resultados da modelagem revelaram uma forte correlação entre a trajetória e destino de uma mancha simulada e o padrão de circulação na região. As condições meteoceanográficas da região onde se localiza o FPSO P-54 são caracterizadas, principalmente, pela dinâmica associada à Corrente do Brasil nesta área da plataforma continental.

Os resultados das simulações também mostraram que no atual estado da arte da modelagem de deriva de manchas de petróleo, não é recomendável definir a duração das simulações probabilísticas em função do tempo para que a pseudoconcentração da mancha alcance o limite de 20 mg/L ou a espessura de 0,05 mm. No Anexo B deste Relatório é apresentada uma

BR PETRÓLEO BRASILEIRO S.A. PETROBRAS	PEI FPSO P-54 Anexo 03	Resultados das modelagens Seção 2 de 41
--	------------------------------	--

sugestão oferecida pelo Dr. Merv Fingas da Agência Canadense de Meio Ambiente – Environment Canada.

BR PETRÓLEO BRASILEIRO S.A. PETRÓBIAS	PEI FPSO P-54 Anexo 03	Resultados das modelagens Seção 3 de 41
	AUGX0 03	

Introdução

Com o objetivo de dar suporte a PETROBRAS no desenvolvimento de Estudos Ambientais para suas atividades na Bacia de Campos, apresentamos este trabalho de modelagem computacional para elaboração de Cenários de Deriva em caso de acidentes com petróleo para a área de estudo.

O objetivo principal deste trabalho é a modelagem da trajetória e transformações biogeoquímicas de um potencial derramamento de óleo neste local. Esta avaliação foi conduzida através da utilização de um sistema de modelos computacionais conhecido como *OILMAP*, desenvolvido pela *Applied Science Associates (ASA)* dos EUA. A *ASA* tem mais de 20 anos de experiência com estudos de impacto ambiental causados por acidentes com petróleo.

Para estudos de modelagem, como o realizado neste trabalho, são necessários: (a) um conhecimento detalhado das características geomorfológicas do local (morfologia da linha de costa e fundo oceânico), (b) padrões de circulação local e em larga escala, (c) séries temporais de vento de longa duração (preferencialmente de bóias offshore e/ou estação meteorológica costeira). Para este estudo, foram utilizados dados de vento obtidos da bóia oceanográfica da PETROBRAS localizada no campo de Albacora. A caracterização dos padrões de circulação na região foi obtida a partir de resultados do modelo POCM (WOCE Parallel Ocean Climate Model) ajustado para modelar as correntes oceânicas da costa sudeste do Brasil.

Os cenários simulados, bem como os dados de entrada e hipóteses simplificadoras assumidas durante as simulações são apresentados na Seção 2; as características químicas do óleo utilizado nas simulações são apresentadas na Seção 3; a descrição dos cenários simulados é apresentada na Seção 4 e os resultados das simulações com as prováveis trajetórias de um acidente no local de estudo são apresentados na Seção 5. Uma descrição abreviada do modelo OILMAP é apresentada no Anexo A deste relatório. No Anexo B é apresentada uma sugestão oferecida pelo Dr. Merv Fingas da Agência Canadense de Meio Ambiente – Environment Canadá.

Formulação do modelo e dados de entrada

O sistema OILMAP, representando o estado-da-arte em sistemas de modelos para simulação de derramamento de óleo, foi utilizado neste estudo para previsão da trajetória e transformações biogeoquímicas de potenciais acidentes com petróleo na Bacia de Campos.

Primeiramente foi definida a área de estudo para o ponto de derramamento. Nesta área, foi definido um conjunto de duas grades computacionais, ou malhas, com uma certa quantidade de blocos menores, sobrepostas ao mapa digital da área de estudo. Uma das grades define quais células ou blocos correspondem à área de terra e quais à área de água, com a interface definindo a linha de costa. A linha de costa é representada por uma série de blocos que limita a extensão na qual a mancha de óleo pode se movimentar. A outra grade, compreendendo apenas a região de água, define o campo de circulação.

Os conjuntos de dados de entrada e parâmetros do modelo que definem um cenário são: ponto de derramamento, tipo de óleo, data, horário e duração do derramamento, campo de correntes, arquivo de dados meteorológicos, opções de saída e parâmetros de simulação. Os resultados de cada simulação correspondem, então, a um único cenário, definido pelo arquivo de entrada de dados e parâmetros.

BR PETRÓLEO BRASILERRO S.A. PETROBRAS	PEI FPSO P-54 Anexo 03	Resultados das modelagens Seção 4 de 41
--	------------------------------	--

O modelo de trajetória e transformações biogeoquímicas simula o transporte e a degradação do óleo a partir de derramamentos instantâneos ou contínuos. O modelo apresenta os resultados das simulações através da localização da mancha, concentração do óleo de superfície e subsuperfície versus tempo. O sistema também calcula e apresenta graficamente o balanço de massa do óleo derramado, em termos da porcentagem de óleo na superfície, na coluna d´água, evaporado, na linha de costa e fora da área de estudo.

A simulação é iniciada no momento especificado pelo arquivo de entrada e quando a liberação do óleo começa; o modelo calcula a trajetória da mancha e transformações biogeoquímicas para cada ponto da grade. Estas transformações (por exemplo: evaporação, espalhamento) que o modelo simula, resultam em uma distribuição de massa sobre quanto deste óleo se move para os pontos de grades circundantes, o quanto adentra na coluna d'água e o quanto evapora. O modelo calcula a quantidade de óleo em cada bloco e quais as propriedades resultantes após as moléculas mais leves terem sido evaporadas e as mais pesadas terem adentrado na coluna d'água. Estes cálculos se repetem para todos os pontos da grade, em cada passo de tempo simulado. Os processos biogeoquímicos do óleo que eventualmente entra em contato com a linha de costa são calculados em função de quanto se prende à costa e quanto se ressuspende caso as condições meteorológicos e oceanográficas se alterem.

No modo probabilístico, como utilizado neste trabalho, o modelo pode ser aplicado para determinar as trajetórias mais prováveis para os derramamentos, em bases mensais, sazonais ou anuais. Os resultados deste tipo de simulação incluem mapas mostrando as probabilidades de contato com óleo em cada ponto da grade computacional, na linha de costa e o tempo de deslocamento da mancha.

2.1. LOCAL DO ESTUDO

As simulações para um potencial acidente com petróleo na Bacia de Campos foram realizadas a partir do FPSO P-54, cujas coordenadas foram especificadas pela PETROBRAS:

UTM – Datum Aratu	Geodésica – Datum SAD69
Norte: 7.571.229	21° 57' 40,5" S
Leste: 413.846	39° 50' 3,8" W

2.2. PADRÕES DE CIRCULAÇÃO NA REGIÃO

Para caracterização dos padrões de circulação foram utilizados campos de velocidades gerados pelo modelo POCM (WOCE Parallel Ocean Climate Model) ajustado para modelar as correntes oceânicas da costa sudeste do Brasil, acoplado a um modelo implementado no mesmo domínio (*ASA SOUTH AMERICA*), visando à introdução de respostas da plataforma as forçantes locais. Os campos de velocidade de baixa freqüência foram fornecidos pelo Centro de Pesquisas da Petrobras (CENPES) para o ano de 1992 com resultados a cada 3 dias, cobrindo a região oceânica compreendida entre as latitudes 13° e 30°S e as longitudes 30° e 50°W. O campo hidrodinâmico resultante da combinação destes modelos e utilizado como base para o modelo de óleo, apresenta resultados a cada 3 horas para o ano de 1992. Salienta-se que esta implementação encontra-se em contínuo desenvolvimento devido à extensão e complexidade da área.

BR PETRÓLEO BRASILEIRO S.A. PETRODRAS	PEI FPSO P-54 Anexo 03	Resultados das modelagens Seção 5 de 41
--	------------------------------	--

A circulação oceânica nesta área da plataforma é alvo de um interesse científico particular devido às feições batimétricas. Parte significativa do fluxo da Corrente do Brasil (CB) passa através dos canais dos bancos de Abrolhos e divide-se em dois ramos. Um deles flui afastado da costa, além da isóbata de 3000 m (Stramma *et al.*, 1990 *apud* Lima, 1997), enquanto o outro flui seguindo a linha da quebra da plataforma, onde se estende até o fundo, com uma significativa parte fluindo sobre a plataforma externa, que algumas vezes localiza-se aquém da isóbata de 100 metros (Signorini, 1978).

A circulação na camada superficial sobre a quebra da plataforma e no talude é caracterizada pelo fluxo da Corrente do Brasil para sul. Esta corrente representa o limite ocidental do giro subtropical do Atlântico Sul. Poucas medições de correntes foram feitas na CB. As primeiras medições diretas foram feitas por Evans e Signorini em 1985, nas latitudes de 20° 30'S e 23°S, as quais apresentaram um fluxo confinado aos primeiros 400 m de profundidade, com uma contra-corrente no sentido norte abaixo destes 400 m iniciais. Na parte norte da área, acima do Cabo de São Tomé, a direção da corrente é para 180°, variando para 220° na região de Cabo Frio. Isto está altamente coerente com a variação da linha de costa (e das isóbatas). Esta mudança afeta significativamente a Corrente do Brasil, induzindo a formação de vórtices e meandros.

A componente que se desloca para sul cobre os primeiros 400 metros da coluna d'água, englobando a Água Tropical e grande parte da Água Central do Atlântico Sul (ACAS). O volume estimado transportado pela Corrente do Brasil na região da quebra da plataforma e do talude na latitude de 22° S é de 5,5 \pm 2,6 Sv (Lima, 1997).

Imagens AVHRR, usadas por Garfield (1990), parecem indicar um padrão de meandramento regular entre o Cabo de São Tomé e Cabo Frio, com a separação ocasional de vórtices ciclônicos (Lima, 1997).

Próximo ao Cabo de São Tomé (22°S), a CB parece ocupar a maior parte da plataforma durante o verão. Medidas diretas de corrente feitas por Harari *et al.*, em 1993, mostram que a circulação sobre a plataforma interna próxima ao Cabo de São Tomé se dá predominantemente em direção ao sul no verão, alternando entre sudoeste e nordeste durante o inverno, com a magnitude média de 30 a 50 cm/s. Nos primeiros 100 metros da coluna d'água, a velocidade da corrente pode chegar a 1 m/s (Castro e Miranda, 1998).

A água que flui para sudoeste durante o verão é reforçada pelos ventos predominantes, que sopram principalmente de nordeste nesta estação, devido à influência da Alta Subtropical do Atlântico Sul. No inverno, entretanto, a alta incidência de sistemas frontais induz a ocorrência de correntes com direção nordeste nas porções interna e média da plataforma (Castro e Miranda, 1998).

Outra conseqüência do predomínio dos ventos de NE é a ressurgência, fenômeno no qual a ACAS penetra sobre a plataforma, levando águas frias em direção à costa. Estes eventos são muito comuns na região de Cabo Frio. Ventos fortes de sudoeste podem impedir a ocorrência do fenômeno nesta área, deslocando a massa fria ressurgida para as proximidades do Cabo de São Tomé, mais ao norte.

A velocidade da corrente relativa à contribuição da maré é baixa, de cerca de 5 cm/s e, quase em sua totalidade, no eixo perpendicular à plataforma.

A ação forçante residual de ondas aprisionadas na costa, com sentido de propagação norte (para o Equador) é um possível mecanismo para explicar algumas anomalias no campo de correntes. Maiores estudos para esclarecimento deste fator ainda estão sendo desenvolvidos (Lima, 1997).

BR PETRÓLEO BRASILEIRO S.A. PETROBRAS	PEI FPSO P-54 Anexo 03	Resultados das modelagens Seção 6 de 41
--	------------------------------	--

Na Figura 1 (a e b) são apresentados campos de velocidades típicos observados nos resultados do modelo para verão e inverno, respectivamente, onde se destaca a definição da Corrente do Brasil. Na Figura 1.c observamos a grade utilizada no modelo hidrodinâmico.

(b)

Figura 1 – Exemplos ilustrativos de campos de velocidades obtidos com os modelos hidrodinâmicos para verão (a) e inverno (b), no ano de 1992 e grade utilizada no modelo (c).

2.3. DADOS DE VENTO

Para este estudo, foram utilizados dados de vento medidos em uma bóia oceanográfica localizada no campo de Albacora (Bacia de Campos). Estes dados foram fornecidos pelo Centro de Pesquisas da PETROBRAS (CENPES), para o ano de 1992, com intervalo de amostragem de 3 horas. A Figura 2 apresenta o diagrama de dispersão para a série temporal fornecida, onde foi adotada a convenção meteorológica, isto é, a direção do vento corresponde à direção de onde este sopra.

BR PETRÓLEO BRASILEIRO S.A. PETROBRAS	PEI FPSO P-54 Apeyo 03	Resultados das modelagens Seção 8 de 41
	Anexo 03	

Diagrama de dispersão dos vetores de vento (m/s) (convenção meteorológica)

Percentual de ventos neste setor (%): 11.0096

Figura 2 – Diagrama de dispersão do vento para o ano de 1992, na Bacia de Campos.

A Tabela 1 apresenta a distribuição de ocorrência conjunta de intensidades e direções do vento obtida para os dados fornecidos. Esta tabela demonstra que os ventos mais freqüentes são de NE (17,4%) e NNE (16,9%). Os ventos com velocidades médias máximas (9,8 m/s) sopraram de NNE; e os ventos mais fortes registrados vieram de SSE (22,3 m/s) e N (19,3m/s). Observandose a freqüência conjunta, o vento mais comum soprou de NE com velocidades variando entre 8 e 9 m/s.

PETRÓLEO BRASILEIRO S.A	PEI	Resultados das modelagens
-In PETROBRAS	FPSO P-54	Sooão 0 do 41
	Anexo 03	Seção 9 de 41

Tabela 1 – Diagrama de ocorrência conjunta de intensidade e direção do vento para o ano de 1992 na Bacia de Campos.

	N	NNE	NE	ENE	E	ESE	SE	SSE	S	550	so	050	0	ONO	NO	NNO	Total	Porc	Dir med
0 0-1 0	9	13	7	9	11	15	21	13	14	17	10	8	8	1.0	9	3	177	2 0	156
1 0- 2 0	10	24	15	1.8	20	25	8	10	20	29	17	19	15	13	10	12	262	3.0	153
2 0- 3 0	18	17	15	24	28	39	24	18	28	45	26	15	16	11	17	27	368	4 2	147
3 0- 4 0	24	27	39	55	66	36	43	90	73	42	16	18	10	12	20	28	599	6.8	126
4.0- 5.0	27	49	113	91	46	53	78	65	47	49	19	25	- 0	12	19	30	732	8.4	95
5.0- 6.0	30	4.5	105	129	49	107	108	53	64	40	2.4	13	6	4	2.6	2.0	823	9.4	97
6.0-7.0	75	113	102	1.5.4	87	76	54	61	48	43	22	17	10	2	14	2.8	906	10.3	74
7.0- 8.0	61	124	123	154	104	28	43	44	51	32	27	12	15	6	10	24	858	9.8	65
8.0- 9.0	93	210	382	225	52	38	38	33	47	59	13	19	6	3	10	36	1264	14.4	51
9.0-10.0	105	135	146	142	26	49	19	17	46	17	2	7	11	2	4	28	756	8.6	48
0.0-11.0	94	150	167	90	17	25	11	5	30	14	0	4	6	0	0	30	643	7.3	38
1.0-12.0	85	149	100	66	11	6	17	11	7	6	1	0	2	0	0	14	475	5.4	36
2.0-13.0	57	147	78	26	11	5	12	7	5	3	0	2	2	0	0	11	366	4.2	32
3.0-14.0	26	101	60	15	12	0	0	5	0	4	0	2	0	0	0	9	234	2.7	32
4.0-15.0	14	83	34	2	6	0	0	1	0	1	0	0	0	0	0	0	141	1.6	30
5.0-16.0	7	65	21	0	1	0	0	0	0	0	0	0	0	0	0	0	94	1.1	26
6.0-17.0	2	17	8	0	0	0	1	0	0	0	0	0	0	0	0	0	28	0.3	29
7.0-18.0	3	8	7	0	0	0	0	1	0	0	0	0	0	0	0	0	19	0.2	28
8.0-19.0	4	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	5	0.1	9
9.0-20.0	2	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	3	0.0	21
20.0-21.0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0.0	162
21.0-22.0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0.0	163
22.0-23.0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0.0	163
otal	746	1477	1522	1200	547	502	477	436	480	401	177	161	116	75	139	300	8756		
Porc.	8.5	16.9	17.4	13.7	6.2	5.7	5.4	5.0	5.5	4.6	2.0	1.8	1.3	0.9	1.6	3.4			
/el.med.	9.0	9.8	8.6	7.5	6.4	5.9	5.9	5.9	6.0	5.6	4.8	5.2	5.3	3.6	4.6	6.9			
/el.max.	19.3	18.0	17.6	14.8	15.3	12.6	16.3	22.3	13.0	14.1	11.4	13.1	12.4	9.9	9.7	13.8			
'ercts(0,9)	12.0	14.0	12.0	10.0	10.0	9.0	9.0	9.0	9.0	9.0	7.0	8.0	9.0	7.0	7.6	11.0			

Caracterização do Óleo

Com base nas informações fornecidas pela PETROBRAS, o óleo tipo PETRÓLEO 7-ABL-11H-RJS foi utilizado em todas as simulações. As características definidas para este óleo cru são as seguintes:

- API 17,4
- Viscosidade Dinâmica: 1080,557 cP a 25 °C

descrição dos cenários

Utilizando-se o OILMAP em modo probabilístico é possível levar em consideração a variabilidade das forçantes ambientais. No modo probabilístico as simulações de derramamento foram realizadas através da variação aleatória do início do derramamento dentro do período para o qual se dispunha de dados de vento (1º de janeiro a 31 de dezembro de 1992). Uma vez identificado o instante de início do derrame, o campo de velocidades associado ao mesmo (mesmo dia e mês) é também identificado e utilizado ao longo do período de simulação. As múltiplas trajetórias foram então utilizadas para a produção de curvas de contorno, demonstrando a probabilidade da presença de óleo em cada ponto da grade computacional (área de estudo). Os resultados em forma gráfica são apresentados como contornos de probabilidade da presença de óleo na água e na costa. Nos estudos de avaliação de impacto ambiental e análise de risco, estas probabilidades de presença de óleo e tempo de

BR PETRÓLEO BRASILEIRO S.A PETRODRAS	PEI FPSO P-54 Anexo 03	Resultados das modelagens Seção 10 de 41
---	------------------------------	---

deslocamento da mancha podem ser correlacionadas a recursos naturais armazenados no banco de dados (GIS), de forma a auxiliar na avaliação de impactos ambientais em termos da probabilidade da presença de óleo em regiões importantes.

Para que se pudesse incorporar a variabilidade das forçantes meteoceanográficas, em cada cenário probabilístico foi realizada uma série de 300 simulações com o modelo OILMAP. Os cenários probabilísticos são resumidos na Tabela 2.

Cenário	Produto (petróleo)	Volume (m ³)	Estação do ano	Тетро
P54_VER_8_20PPM	7-ABL-11H-RJS-TFR 01	8 (a)	Verão	Até atingir 20 mg/L
P54_INV_8_20PPM	7-ABL-11H-RJS-TFR 01	8 (a)	Inverno	Até atingir 20 mg/L
P54_VER_200_6HORAS	7-ABL-11H-RJS-TFR 01	200 (b)	Verão	6 horas
P54_INV_200_6HORAS	7-ABL-11H-RJS-TFR 01	200 (b)	Inverno	6 horas
P54_VER_200_9HORAS	7-ABL-11H-RJS-TFR 01	200 (b)	Verão	9 horas
P54_INV_200_9HORAS	7-ABL-11H-RJS-TFR 01	200 (b)	Inverno	9 horas
P54_VER_PIORCASO_6HORAS	7-ABL-11H-RJS-TFR 01	pior caso (c)	Verão	6 horas
P54_INV_PIORCASO_6HORAS	7-ABL-11H-RJS-TFR 01	pior caso (c)	Inverno	6 horas
P54_VER_PIORCASO_9HORAS	7-ABL-11H-RJS-TFR 01	pior caso (c)	Verão	9 horas
P54_INV_PIORCASO_9HORAS	7-ABL-11H-RJS-TFR 01	pior caso (c)	Inverno	9 horas
P54_VER_PIORCASO_12HORAS	7-ABL-11H-RJS-TFR 01	pior caso (c)	Verão	12 horas
P54_INV_PIORCASO_12HORAS	7-ABL-11H-RJS-TFR 01	pior caso (c)	Inverno	12 horas
P54_VER_PIORCASO_36HORAS	7-ABL-11H-RJS-TFR 01	pior caso (c)	Verão	36 horas
P54_INV_PIORCASO_36HORAS	7-ABL-11H-RJS-TFR 01	pior caso (c)	Inverno	36 horas
P54_VER_PIORCASO_60HORAS	7-ABL-11H-RJS-TFR 01	pior caso (c)	Verão	60 horas
P54_INV_PIORCASO_60HORAS	7-ABL-11H-RJS-TFR 01	pior caso (c)	Inverno	60 horas
P54_VER_PIORCASO_30DIAS	7-ABL-11H-RJS-TFR 01	pior caso (c)	Verão	30 dias
P54_INV_PIORCASO_30DIAS	7-ABL-11H-RJS-TFR 01	pior caso (c)	Inverno	30 dias

Tabela 2. Cenários considerados nas simulações probabilísticas de derrames de óleo.

Para um derrame de 200 m³ foi observado que a mancha atinge a concentração calculada de 20 mg/L em menos de 6h.

Definição dos volumes, segundo CONAMA 293

- a. Pequeno: 8 m³
- b. Médio: 200 m³
- c. Pior caso: 335.208,0 m³

BR PETRÓLEO BRASILEIRO S.A. PETROBRAS	PEI FPSO P-54 Anexo 03	Resultados das modelagens Seção 11 de 41
--	------------------------------	---

Resultados das Simulações para um Potencial Acidente no Local de Estudo

5.1. SIMULAÇÕES PROBABILÍSTICAS

O modelo OILMAP foi utilizado para simular os cenários descritos na seção anterior e produzir as curvas de contorno, demonstrando a probabilidade da presença de óleo em cada ponto da área de estudo. Nestas simulações foram consideradas como forçantes hidrodinâmicas os campos de correntes obtidos através da modelagem (conforme descrito na Seção 2.2, representativos das Correntes do Brasil e das correntes Costeiras) e os dados de vento medidos na Bacia de Campos (descritos na Seção 2.3) para o ano de 1992.

As Figuras 3 a 20 mostram os contornos de probabilidade da presença de óleo para os cenários de acidentes na P-54 ocorrendo durante os meses de verão (Janeiro a Março) e inverno (Junho a Agosto). Praticamente em todas as simulações, a mancha se deslocou para sudoeste seguindo a orientação da Corrente do Brasil.

Originalmente a PETROBRAS solicitou que, para os cenários de "pior caso", fossem realizadas simulações probabilísticas com duração definida em função do tempo para que a pseudoconcentração da mancha alcançasse o limite de 20 mg/L. A pseudo-concentração da mancha é calculada a partir do volume de óleo na superfície e coluna d'água multiplicado pela área da mancha e por 1,5 da altura de onda significativa (Hs = 1,3 metros, informação fornecida pelo CENPES). Entretanto, para o volume de 335.208,0 m³, considerando apenas os processos de evaporação, espalhamento e entranhamento, esta condição nunca foi atingida, como mostra a Figura 23. Desta forma, as simulações dos cenários de "pior caso" foram definidas para 30 dias.

Cabe ressaltar que todas as simulações realizadas não levam em conta as ações provenientes de Planos de Contingência e Planos de Ações Emergenciais.

Figura 3 – <u>Cenário P54 VER 8 20PPM</u>. Contorno de probabilidades para um acidente ocorrendo no FPSO P-54 durante os meses de verão (Janeiro a Março) com derrame de 8m³ após 1 hora atingindo 20ppm.

Figura 4 – <u>Cenário P54 INV 8 20PPM</u>. Contorno de probabilidades para um acidente ocorrendo no FPSO P-54 durante os meses de inverno (Junho a Agosto) com derrame de 8m³ após 1 hora atingindo 20ppm.

Figura 5 – <u>Cenário P54_VER_200_6HORAS</u>. Contorno de probabilidades para um acidente ocorrendo no FPSO P-54 durante os meses de verão (Janeiro a Março) com derrame de 200m³ após 6 horas.

Figura 6 – <u>Cenário P54 INV 200 6HORAS</u>. Contorno de probabilidades para um acidente ocorrendo no FPSO P-54 durante os meses de inverno (Junho a Agosto) com derrame de 200m³ após 6 horas.

Figura 7 – <u>Cenário P54_VER_200_9HORAS</u>. Contorno de probabilidades para um acidente ocorrendo no FPSO P-54 durante os meses de verão (Janeiro a março) com derrame de 200m³ após 9 horas.

Figura 8 – <u>Cenário P54 INV 200 9HORAS</u>. Contorno de probabilidades para um acidente ocorrendo no FPSO P-54 durante os meses de inverno (Junho a Agosto) com derrame de 200m³ após 9 horas.

Figura 9 – <u>Cenário P54 VER PIORCASO 6HORAS</u>. Contorno de probabilidades para um acidente ocorrendo no FPSO P-54 durante os meses de verão (Janeiro a março) com derrame de 335.208m³ após 6 horas.

Figura 10 – <u>Cenário P54_INV_PIORCASO_6HORAS</u>. Contorno de probabilidades para um acidente ocorrendo no FPSO P-54 durante os meses de inverno (Junho a Agosto) com derrame de 335.208m³ após 6 horas.

Figura 11 – <u>Cenário P54 VER PIORCASO 9HORAS</u>. Contorno de probabilidades para um acidente ocorrendo no FPSO P-54 durante os meses de verão (Janeiro a março) com derrame de 335.208m³ após 9 horas.

Figura 12 – <u>Cenário P54 INV PIORCASO 9HORAS</u>. Contorno de probabilidades para um acidente ocorrendo no FPSO P-54 durante os meses de inverno (Junho a Agosto) com derrame de 335.208m³ após 9 horas.

Figura 13 – <u>Cenário P54 VER PIORCASO 12HORAS</u>. Contorno de probabilidades para um acidente ocorrendo no FPSO P-54 durante os meses de verão (Janeiro a março) com derrame de 335.208m³ após 12 horas.

Figura 14 – <u>Cenário P54 INV PIORCASO 12HORAS</u>. Contorno de probabilidades para um acidente ocorrendo no FPSO P-54 durante os meses de inverno (Junho a Agosto) com derrame de 335.208m³ após 12 horas.

Figura 15 – <u>Cenário P54 VER PIORCASO 36HORAS</u>. Contorno de probabilidades para um acidente ocorrendo no FPSO P-54 durante os meses de verão (Janeiro a março) com derrame de 335.208m³ após 36 horas.

Figura 16 – <u>Cenário P54 INV PIORCASO 36HORAS</u>. Contorno de probabilidades para um acidente ocorrendo no FPSO P-54 durante os meses de inverno (Junho a Agosto) com derrame de 335.208m³ após 36 horas.

Figura 17 – <u>Cenário P54 VER PIORCASO 60HORAS</u>. Contorno de probabilidades para um acidente ocorrendo no FPSO P-54 durante os meses de verão (Janeiro a março) com derrame de 335.208m³ após 60 horas.

Figura 18 – <u>Cenário P54 INV PIORCASO 60HORAS</u>. Contorno de probabilidades para um acidente ocorrendo no FPSO P-54 durante os meses de inverno (Junho a Agosto) com derrame de 335.208m³ após 60 horas.

Figura 19 – <u>Cenário P54 VER PIORCASO 30DIAS</u>. Contorno de probabilidades para um acidente ocorrendo no FPSO P-54 durante os meses de verão (Janeiro a março) com derrame de 335.208m³ após 30 dias.

Figura 20 – <u>Cenário P54 INV PIORCASO 30DIAS</u>. Contorno de probabilidades para um acidente ocorrendo no FPSO P-54 durante os meses de inverno (Junho a Agosto) com derrame de 335.208m³ após 30 dias.

A Figura 21 mostra os contornos de probabilidade de toque na linha de costa e a Figura 22 a área atingida para o cenário de derrame de pior caso no inverno para o FPSO P-54. Conforme pode ser observado na Figura 21, mesmo para o cenário catastrófico de derrames de 335.208,0m³ em condições de inverno, a probabilidade de a mancha atingir áreas específicas do litoral do Rio de Janeiro é de no máximo 10% em Arraial do Cabo (RJ) e 5% entre este e o Cabo de Búzios (RJ).

Figura 21 – <u>Cenário P54 INV PIORCASO 30DIAS</u>. Contornos de probabilidade de toque na linha de costa para um acidente ocorrendo durante os meses de inverno (Junho a Agosto).

Figura 22 – Cenário P54 INV_PIORCASO_30DIAS. Área total (b) de toque na linha de costa para um acidente ocorrendo durante os meses de inverno (Junho a Agosto).

BR PETRÓLEO BRASILEIRO S.A PETRODRAS	PEI FPSO P-54 Anexo 03	Resultados das modelagens Seção 32 de 41

A Figura 23 mostra a evolução temporal da pseudo-concentração da mancha para o cenário de inverno (pior caso). Conforme mostra a figura, a condição de 20ppm nunca é atingida, considerando-se apenas os processos de evaporação, espalhamento e entranhamento.

Pseudo-Concentração P-54

Figura 23 – Evolução temporal da pseudo-concentração da mancha para o cenário <u>P54 INV</u> <u>PIORCASO 30DIAS</u>.

A Tabela 3 mostra para o cenário de pior caso em condições de inverno (Junho a Agosto), o percentual de simulações que impactaram a linha de costa, o menor período de tempo para atingir a costa e o tempo médio para o óleo atingir a costa.

Tabela 3. Resumo do resultado da modelagem probabilística de pior caso ocorrendo durante os meses de inverno (Junho a Agosto). (300 simulações)

Cenário	Tempo mínimo para atingir a costa (horas)	Tempo médio para atingir a costa (horas)	Percentagem de simulações com toque na costa
P54_INV_PIORCASO_30DIAS	615	646	7,3

5.2. CENÁRIOS DETERMINÍSTICOS CRÍTICOS

A análise dos resultados das simulações probabilísticas permitiu identificar os cenários determinísticos críticos de verão e inverno. Para as simulações de inverno, foi considerado como mais crítico o cenário que levou o maior volume de óleo a costa. Para as simulações de verão, foi considerado como mais crítico o cenário no qual a mancha mais se aproxima da costa. Em ambos cenários foi considerado um vazamento de 335.208,0 m³.

A Tabela 4, a seguir, apresenta um resumo dos cenários críticos de verão e inverno para um caso de vazamento de petróleo a partir do FPSO P-54.

BR PETRÓLEO BRASILEIRO S.A. PETROBRAS	PEI FPSO P-54 Anexo 03	Resultados das modelagens Seção 33 de 41
--	------------------------------	---

Tabela 4. Resumo dos cenários determinísticos críticos de verão e inverno para o FPSO P-54.

CENÁRIO	DATA DE INÍCIO	VOLUME QUE CHEGA À COSTA (M ³)	TEMPO PARA CHEGAR À COSTA (H)
VERÃO	01/03/1992 12:00	-	-
INVERNO	30/07/1992 04:00	20.112	615

A Figura 24 apresenta o resultado da simulação determinística do pior caso para inverno no FPSO P-54. Este cenário foi simulado por 30 dias, com a trajetória por onde percorreu a mancha demarcada pela cor verde. A figura também mostra, em vermelho, os pontos na costa atingidos pelo acidente, o contorno de espessura da mancha ao final de 30 dias e um gráfico na parte inferior direita, mostrando o balanço de massa (óleo na superfície, na costa, evaporado e na coluna d'água).

A Figura 25 mostra a posição da mancha no instante do primeiro toque na costa, após 25 dias e 15 horas. A área total da mancha neste instante é de aproximadamente 5.475 km² e, como mostra o gráfico de balanço de massa, aproximadamente 264.814 m³ (79%) de óleo se encontram na superfície e 67.042 m³ (20%) evaporaram.

Figura 24 – Cenário de pior caso de vazamento no inverno para o FPSO P-54

Figura 25 – Instante do primeiro toque na costa para o cenário de pior caso de vazamento no inverno para o FPSO P-54.

De forma semelhante, a Figura 26 apresenta o resultado da simulação determinística para o pior caso de vazamento, para verão, no FPSO P-54. A menor distância que a mancha alcança da costa é de aproximadamente 86 km a partir da Ilha de Cabo Frio, em 10 dias e 8 horas.

Figura 26 – Cenário de pior caso de vazamento no verão para o FPSO P-54

BR PETRÓLEO BRASILEMO S.A	PEI	Resultados das modelagens
PETROBRAS	FPSO P-54	Secão 37 de 41
	Anexo 03	

Referências Bibliográficas

- AEA Technology plc, 2000 Environmental Behaviour and Dispersibility of Kashagan Crude, December, 2000.
- Applied Science Associates, Inc. (ASA), 2000. Internal comparison study of NOAA/NCEP atmospheric model predictions with Trinidad airport wind record.

Applied Science Associates, Inc.(ASA), 1998. Final report for ASA 97-136.

- Applied Science Associates, Inc.(ASA), 1997. OILMAP users manual Applied Science Associates, Inc., Narragansett, RI..
- Applied Science Associates, Inc. (ASA), 1996. Technical Manual for Spill Impact Modeling (SIMAP), Version W1.0, Applied Science Associates, Inc., Narragansett, RI.
- Castro Filho, B.M.C.& Miranda, L. B., 1998. Physical Oceanography of the Western Atlantic Continental Shelf located between 4o N and 34o S. The Sea. John Wiley & Sons, Inc. 11:209-251.
- Delvigne, G.A.L., and L.J.M. Hulsen, 1994. Simplified laboratory measurement of oil dispersion coefficient – Application in computations of natural oil dispersion. Proceedings of the Seventeenth Arctic and Marine Oil Spill Program, Technical Seminar, June 8-10, 1994, Vancouver, BC Canada, pp. 173-187.
- Delvigne, G.A.L., and C.E. Sweeney. 1988. Natural dispersion of oil. Oil & Chemical Pollution 4 (1988) 281-310.
- Evans, D. L and Signorini, S. R. 1985. Vertical structure of the Brazil Current. Nature, 315, pp. 48-50.
- Fingas, M. F., 1995. A literature review of the physics and predictive modeling of oil spill evaporation. Journal of Hazardous Materials, 42, pp 157-175.
- Fingas, M. F., 1998. The chemistry and physics of oil behavior at sea: weathering and incorporation into spill models. Australian U.N. Workshop.
- Fingas, M. F., 2001a. The evaporation of oil spills: development and implementation of new prediction methodology. In Oil Spill Modelling Process, WIT Press, Boston, pp 109-138.
- Fingas, M. F., 2001b. The basics of oil spill cleanup. Edited by Jennifer Charles, 2nd edition. Lewis Publishers.
- Fingas, M. F., Fieldhouse, B. Lambert, P. et al., 2002. Water-in-oil emulsions formed at sea, in test tanks, and the laboratory.Report Series No. EE-170. Environmental Technology Advancement Directorate, Environmental Protection Service, Emergencies Science and Technology Division, Environmental Technology Center.
- French, D. E. Howlett, and D. Mendelsohn, 1994. Oil and Chemical impact model system description and application, 17th Arctic and Marine Oil Spill Program,

BR PETRÓLEO BRASILEIRO S.A PETROBRAS	PEI FPSO P-54 Anexo 03	Resultados das modelagens Seção 38 de 41
---	------------------------------	---

Technical Seminar, June 8-10, 1994, Vancouver, British Columbia, Canada, pp 767-784.

- Jayko, K. And E. Howlett, 1992. OILMAP an interactive oil spill model, OCEANS 92, October 22-26, 1992, Newport, RI.
- Kirstein, B., J. R. Clayton, C. Clary, J. R. Payne, D. McNabb, G. Fauna, and R. Redding, 1985. Integration of suspended particulate matter and oil transportation study, Mineral Management Service, Anchorage, Alaska.
- Kolluru, V., M. L. Spaulding, and E. Anderson, 1994. A three dimensional subsurface oil dispersion model using a particle based technique, 17th Arctic and Marine Oil Spill Program, Technical Seminar, June 8-10, 1994, Vancouver, British Columbia, Canada, pp. 767-784.
- Lima, J. A. M., 1997. Oceanic Circulation on the Brazilian Shelf Break and Continental Slope at 22°S. Tese de doutorado. University of New South Wales, Austrália.
- Mackay, D., S. Paterson, and K. Trudel, 1980. A mathematical model of oil spill behavior, Department of Chemical Engineering, University of Toronto, Canada, 39 pp.
- Mackay, D., W. Shui, K, Houssain, W. Stiver, D. McCurdy, and S. Paterson, 1982. Development and calibration of an oil spill behavior model, Report No. CG-D027-83, US Coast Guard Research and Development Center, Groton, CT.
- Reed, M., E. Gundlach, and T. Kana, 1989. A coastal zone oil spill model: development and sensitivity studies, Oil and Chemical Pollution, Vol. 5, p. 411-449.
- Signorini, S. S., 1978. On the Circulation and volume transport of the Brazil Current between Cape of São Tomé and Guanabara Bay. Deep Sea Res., 25, 481-490.
- Spaulding, M. L., E. Howlett, E. Anderson, and K. Jayko, 1992a. OILMAP a global approach to spill modeling. 15th Arctic and Marine Oil Spill Program, Technical Seminar, June 9-11, 1992, Edmonton, Alberta, Canada, p. 15-21.
- Spaulding M. L., E. Holwett, E. Anderson, and K. Jayko, 1992b. Oil spill software with a shell approach. Sea Technology, April 1992. P. 33-40.
- Spaulding, M.L., E.L. Anderson, T. Isaji and E. Howlett, 1993. Simulation of the oil trajectory and fate in the Arabian Gulf from the Mina Al Ahmadi Spill, Marine Environmental Research, Vol. 36, No. 2, p. 79-115.
- Spaulding, M. L., V. S. Kolluru, E. Anderson, and E, Howlett, 1994. Application of three dimensional oil spill model (WOSM/OILMAP) to hindcast the Braer spill, Spill Science and Technology Bulletin, Vol. 1, No. 1, 23-35.
- Spaulding, M. L., T Opishinski, E. Anderson, E. Howlett, and D. Mendelsohn, 1996a. Application of OILMAP and SIMAP to predict the transport and fate of the North Cape spill, Narragansett, RI. 19th Arctic and Marine Oil Spill Program, Technical Seminar, June 12-14, 1996, Calgary, Alberta, Canada, p. 745-776.
- Spaulding, M. L., T. Opishinski, and S, Haynes, 1996b. COASTMAP: An integrated monitoring and modeling system to support oil spill response, Spill Science and Technology Bulletin, Vol. 3, No. 3, pp. 149-169.

BR PETRÓLEO BRASILEIRO S.A. PETROBRAS	PEI FPSO P-54 Anexo 03	Resultados das modelagens Seção 39 de 41
--	------------------------------	---

Anexo A

O modelo OILMAP, desenvolvido pela Applied Science Associates, Inc. (*ASA*), representa o estado da arte em modelagem computacional para acompanhamento e previsão do deslocamento e transformações químicas ("trajectory and fates") de qualquer tipo de óleo derramado em acidentes com petróleo. OILMAP é um sistema de modelos, baseados em plataforma PC, que pode ser utilizado em Planos de Contingência, Planos de Emergência com acompanhamento em tempo real, Relatório de Controle Ambiental (RCA) e ou Estudos de Impacto Ambiental (EIA/RIMA) em qualquer região do mundo (Jayko and Howlett, 1992; Spaulding *et al* 1992a,b).

O OILMAP foi projetado em uma configuração modular, de forma que diferentes tipos de modelos de derramamento, bem como um conjunto de ferramentas sofisticadas de dados ambientais possam ser acoplados, dependendo do problema e situação em estudo. Como o sistema utiliza uma interface gráfica desenvolvida para ambiente Windows, as diferentes configurações são acopladas em menus visuais, que são acionados a partir de simples toques do mouse.

O sistema OILMAP inclui os seguintes modelos: um modelo de trajetória e transformações ("trajectory and fates") para óleo de superfície e sub-superfície, um modelo de resposta a derramamento de óleo, modelos probabilísticos e um modelo receptor que através do método inverso localiza a origem do derramamento a partir de informações da posição da mancha.

O modelo de trajetória e transformações prevê o transporte e a degradação do óleo a partir de derramamentos instantâneos e contínuos. As estimativas demonstram a localização e concentração do óleo de superfície e sub-superfície versus tempo. O modelo estima a variação temporal da cobertura de área, espessura da mancha, e viscosidade do óleo. O modelo também estima o balanço da massa de óleo ou a quantidade de óleo sobre a superfície do mar, na coluna de água, evaporado, na costa, e fora da área de estudo, versus tempo. Os processos de transformações biogeoquímicas no modelo incluem dispersão, evaporação, entranhamento ou arrastamento, dispersão natural ou por suspensão e emulsificação. Em versão opcional, o OILMAP pode também calcular as interações do óleo com a camada de sedimentos e, no balanço de massa, a sedimentação associada a este processo. Uma descrição detalhada dos processos biogeoquímicos representados no modelo, bem como suas formulações matemáticas, são apresentadas em *ASA* (1997).

A dispersão e o espalhamento da mancha são representados no modelo pela formulação espesso-fino de Mackay¹ *et al.'s* (1980, 1982), utilizando-se a abordagem de mancha espessa (Mackay² *et al.'s*, 1980, 1982).

O processo de evaporação baseia-se na formulação analítica parametrizada em termos de exposição à evaporação (Mackay *et al.,* 1980, 1982). Os processos de entranhamento e arrastamento são modelados utilizando-se a formulação de Delvigne and Sweeney's² (1988)

Mackay, D., W. Shui, K, Houssain, W. Stiver, D. McCurdy, and S. Paterson, 1982. Desenvolvimento e Calibragem de um modelo de comportamento de derramamento de óleo (*Development and calibration of an oil spill behavior model*), Relatório No. CG-D027-83, Centro de Pesquisa e Desenvolvimento da Guarda Costeira dos EUA (US Coast Guard Research and Development Center), Groton, CT.

² Delvigne, G.A.L., and L.J.M. Hulsen, 1994. Medição de laboratório simplificada de coeficiente de dispersão de óleo (Simplified laboratory measurement of oil dispersion coefficient) – Aplicação em

¹ Mackay, D., S. Paterson, and K. Trudel, 1980. Um modelo matemático de comportamento de derramamento de óleo do Departamento de Engenharia Química da Universidade de Toronto, Canadá, 39 pp (*A mathematical model of oil spill Behavior, Department of Chemical Engineering*).

BR PETRÓLEO BRASILEIRO S.A PETRODRAS	PEI FPSO P-54 Anexo 03	Resultados das modelagens Seção 40 de 41
---	------------------------------	---

que, explicitamente, representa índices de injeção de óleo para dentro da coluna de água por gotículas de óleo. O coeficiente de entranhamento ou arrastamento, como uma função da viscosidade do óleo, baseia-se em Delvigne and Hulsen (1994). O processo de emulsificação do óleo, em função de perdas de evaporação e alterações na porcentagem de água na mistura, baseia-se em Mackay *et al.* (1980, 1982). A interação do óleo com o litoral e linha de costa é modelada com base em uma versão simplificada de Reed³ *et al.* (1989) que formula o problema em termos de uma capacidade de retenção dependendo do tipo da costa e de um índice de remoção exponencial.

Em sua configuração básica, o OILMAP também inclui uma variedade de ferramentas computacionais gráficas que permitem ao usuário a especificação dos cenários, animação das trajetórias, correntes e vento, importar e exportar dados ambientais, a definição da grade computacional para qualquer área dentro do domínio, gerar correntes médias ou de maré, incluir ou editar as características dos óleos registrados no banco de dados, apresentar dados contidos em objetos georeferenciados (GIS) e determinar o impacto ambiental em recursos naturais. As funções do GIS permitem ao usuário a entrada, manipulação, e exibição de objetos na tela através de pontos, linhas, e polígonos georeferenciados ao domínio definido pelo cenário. A cada objeto pode ser atribuído dados em formato de texto, valores numéricos, ou arquivos através de link externos.

Utilizando-se o OILMAP em modo estatístico, é possível levar em consideração a variabilidade das forçantes ambientais. No modo estatístico, as simulações de derramamento são realizadas através da variação aleatória do início do derramamento dentro do período para o qual se têm dados meteorológicos e oceanográficos. Tanto os ventos quanto as correntes, ou ambos, podem variar estocasticamente. As múltiplas trajetórias são então utilizadas para a produção de curvas de contorno, demonstrando a probabilidade da presença de óleo em cada ponto da grade computacional (área de estudo). Os resultados em forma gráfica podem ser apresentados como contornos de probabilidade da presença de óleo na água, na costa, ou tempo de deslocamento da mancha decorrido após o início do derramamento. Estas probabilidades de presença de óleo e tempo de deslocamento da mancha podem ser correlacionadas a recursos naturais armazenados no banco de dados (GIS), de forma a auxiliar na avaliação de impactos ambientais em termos da probabilidade da presença de óleo em recursos importantes.

cálculos de dispersão natural de óleo (*Application in computations of natural oil dispersion*). Procedimentos do Décimo Sétimo Programa de Derramamento de Óleo Marítimo e Ártico (*Seventeenth Arctic and Marine Oil Spill Program*), Seminário Técnico, 8 a 10 de junho de 1994, Vancouver, BC Canada, pp. 173-187.

³ Reed, M., E. Gundlach, and T. Kana, 1989. Um modelo de derramamento de óleo na zona costeira: estudos de desenvolvimento e suscetibilidade a Poluição de Óleo e Produtos Químicos (*A coastal zone oil spill model: development and sensitivity studies, Oil and Chemical Pollution*), Vol. 5, p. 411-449.

BR PETRÓLEO BRASILEIRO S.A. PETROBRAS	PEI FPSO P-54 Anexo 03	Resultados das modelagens Seção 41 de 41
--	------------------------------	---

Anexo B

CRITÉRIO PARA DEFINIÇÃO DA DURAÇÃO DAS SIMULAÇÕES PROBABILÍSTICAS

Seguindo orientação da PETROBRAS, as simulações probabilísticas de "pior caso" deveriam prosseguir até que a mancha atingisse uma pseudo-concentração de 20 mg/L. Entretanto, como mostra a Figura 23, para um acidente com o vazamento de 335.208,0 m³ esta condição nunca seria atingida. Por esta razão, as simulações dos cenários de "pior caso" foram definidas para 30 dias.

Em reunião com o Dr. Merv Fingas da Agência Canadense "Environment Canada", foram discutidas algumas alternativas para atender as legislações ambientais e definir a duração das simulações probabilísticas. O Dr. Fingas trabalha na agência ambiental do governo canadense desde 1974, ocupando, atualmente, o cargo de "Chief of the Emergencies Science Division". No período 1987-1991 ele foi o chairman do "NATO-CCMS Committee on Spill Studies" e é considerado uma das autoridades mundiais no conhecimento e estudo da dinâmica de acidentes com petróleo, com diversos trabalhos publicados sobre o assunto (e.g. Fingas, 2002, 2001a, 2001b, 1998, 1995).

Segundo o Dr. Fingas, a utilização do critério de espessura ou pseudo-concentração não possui base científica "defensável", uma vez que os modelos não representam adequadamente valores de espessuras tão pequenos. Além do mais, no atual estado da arte de conhecimento do comportamento do óleo, no mundo real, não é possível implementar esses processos nos modelos de forma confiável e segura. Outro aspecto refere-se à variação do filme de óleo que corresponde ao "rainbow sheen", o qual não tem os limites bem definidos e pode variar de 0,4 micrometros a 3 micrometros. Há outro fenômeno, não representado no modelo, responsável pela alternância entre espalhamento e contração do filme, causando o "aparecimento" e "desaparecimento" desse filme sobre a água.

O Dr. Fingas sugeriu determinar o tempo de simulação com base na evaporação do produto simulado, estimando-se por meio de equações aceitas pela comunidade científica, o tempo necessário para evaporar um determinado percentual do total "evaporável" para aquele volume a ser simulado. A justificativa para adoção deste critério, além daquele exposto anteriormente, baseia-se no fato de que a partir desse ponto, começam a atuar processos que ainda não são bem conhecidos e ainda não estão incorporados nos modelos: emulsificação, biodegradação e foto-oxidação.