

Tetra Tech Brasil Rua Fidalga, 711 Vila Madalena – São Paulo –SP CEP 05432-070 http://www.tetratech.com

Chevron Brasil Petróleo Ltda. Av. República do Chile, 230, andar 18 Rio de Janeiro - RJ CEP 20.031.170 www.chevron.com.br/

Modelagem de Derrames de Óleo para o Plano de Emergência Individual (PEI) no Campo de Frade – FPSO Frade

Responsáveis Técnicos: TETRA TECH

ANDRÉ PAIM FERRAZ RODRIGUES CAROLINA ROCHA DE OLIVEIRA EDUARDO AYRES YASSUDA GABRIEL CLAUZET MARCO ANTONIO CORREA MARIANA LINO GOUVÊA VIVIAN MARTINHO (Nº IBAMA: 0618096) (Nº IBAMA: 4380640) (Nº IBAMA: 0094066) (Nº IBAMA: 1031373) (Nº IBAMA: 0434236) (Nº IBAMA: 5489811) (Nº IBAMA: 5057041)

Revisão 00 Janeiro / 2013

A TETRA TECH é responsável pelo conteúdo do presente relatório incluindo: tecnologias, metodologias, especificações técnicas, desenhos, figuras, cópias, diagramas, fórmulas, modelos, amostras, e fluxogramas.

A utilização deste material deverá ser compatível com o escopo do projeto/trabalho contratado, fazendo-se expressa menção ao nome da TETRA TECH como autora do estudo. Da mesma forma, quando a equipe técnica da TETRA TECH for incorporada na equipe técnica da empresa contratante, esta deverá ser mencionada, e referenciada, como: "consultores da TETRA TECH". Qualquer dúvida ou alteração desta conduta deverá ser discutida entre o cliente e a TETRA TECH.

Tt (Tetra Tech), 2013. Modelagem de Derrames de Óleo para o Plano de Emergência Individual (PEI) no Campo de Frade – FPSO Frade. Relatório Técnico, Revisão 00 (22 de janeiro de 2013). 111pp+Anexos.

CONTROLE DE REVISÕES

REV.	DESCRIÇÃO	DATA
00	Documento Original	22/01/2013

Pág. 1/2

ÍNDICE GERAL

RE	SUM	0					1
Ι	INT	RODUÇ	ÃO				I-1
	I.1	ÁREA	DE ESTUDO.				I-3
		I.1.1	CARACTERÍ	STICAS OCE	ANOGRÁFIC	AS DA REGIÃO	I-3
		I.1.2	DADOS WOO	E			I-7
		I.1.3	ACM-12 BM/3	333			I-7
		I.1.4	ACM-12 BM/3	334			I-11
	I.2	DERIV	ADORES MO	NDO			I-15
		I.2.1	CARACTERÍ	STICAS MET	EOROLÓGIC	AS	I-17
П	MOI	DELAG	EM HIDRODIN	ÂMICA			II-1
	II.1	COMP	PARATIVO	ENTRE	DADOS	MODELADOS	Е
		OBSE	RVACIONAIS.				II-5
		II.1.1	COMPARAÇA	ÃO COM DAE	OOS WOCE		II-5
		II.1.2	COMPARAÇA	ÃO COM DEF	RIVADORES	MONDO	II-9
III	MOI	DELAG	EM DE DERRA	ME DE ÓLEO	D		III-1
	III.1	DADO	S DE ENTRAD	DA			III-1
		III.1.1	CAMPOS DE	CORRENTE			III-2
		III.1.2	CAMPOS DE	VENTO			III-2
		III.1.3	PONTOS DE	RISCO E VO	LUMES DE C	ERRAME	III-2
		III.1.4	CARACTERÍ	STICAS DO F	RODUTO UT	ILIZADO	III-3
	III.2	CRITÉ	RIOS DE PAR	ADA ADOTA	DOS NAS SIN	//ULAÇÕES	III-3
	III.3	RESU	MO DOS CEN	ÁRIOS SIMUI	_ADOS		111-4
IV	RES	ULTAD	OS DA MODE	LAGEM DE D	ERRAME DE	ÓLEO	IV-1
	IV.1	SIMUL	.AÇÕES PROE	BABILÍSTICAS	S		IV-1
		IV.1.1	SIMULAÇÕE	S PROBABIL	ÍSTICAS – VO	DLUME PEQUENC)IV-3
		IV.1.2	SIMULAÇÕE	S PROBABIL	ÍSTICAS – VO	DLUME MÉDIO	IV-12
		IV.1.3	SIMULAÇÕE	S PROBABIL	ÍSTICAS – VO	DLUME PIOR CAS	SOIV-26
	IV.2	SIMUL	AÇÕES DETE	RMINÍSTICA	S CRÍTICAS .		IV-40
		IV.2.1	CONDIÇÕES	METEORO	LÓGICAS E	OCEANOGRÁFI	CAS -
			SIMULAÇÕE	S DETERMIN	IÍSTICAS CRÍ	TICAS	IV-45

	IV.3	SIN	IUL/	ĄÇÕES	DETERMINÍ	STICAS	PA	RA	AS	CONDI	ÇÕES				
		ME	TEC	ROLÓGIC	AS E OCEA	NOGRÁFI	CAS	MAIS	FREQ	UENTES	SIV-47				
		IV.3	3.1	CONDIÇÕ	ES METEO	ROLÓGIC	AS	E OC	EANO	GRÁFIC	AS -				
				SIMULAÇ	ÕES DETER	RMINÍSTIC	CAS	PARA	AS	CONDI	ÇÕES				
	MAIS FREQUENTES IV-51														
V	CON	ISID	ERA	AÇÕES FIN	IAIS						V-1				
VI	BIBL	IOG	RAF	FIA							VI-1				
AN	NEXO A - DESCRIÇÃO DO SISTEMA DE MODELOS OILMAP A-1														
AN	EXO	В	—	ANÁLISE	METEORC	LÓGICA	Е	OCEA	NOGF	RÁFICA	DAS				
	CON	IDIÇ	ÕΕ	S MAIS FR	EQUENTES						B-1				

Pág. 2/2

Índice Geral

LISTA DE TABELAS

- **Tabela 1 –** Coordenadas, profundidades de coleta e de lâmina d'água e datas das coletas dos dados de corrente do WOCE para a região sul da Bacia de Santos..... I-7
- Tabela 2 Diagrama de ocorrência conjunta de intensidade (cm/s) e direção (°) da corrente em BM/333 (experimento ACM12 do WOCE) no período de 1° de janeiro de 1992 a 31 de março de 1992.
- Tabela 3 Diagrama de ocorrência conjunta de intensidade (cm/s) e direção (º) da corrente em BM333 (WOCE/ACM12) no período de 1º de junho de 1992 a 31 de agosto de 1992.
- Tabela 4 Diagrama de ocorrência conjunta de intensidade (cm/s) e direção (°) da corrente em BM334 (experimento ACM12 do WOCE) no período de 1° de janeiro de 1992 a 31 de março de 1992.
- Tabela 5 Diagrama de ocorrência conjunta de intensidade (cm/s) e direção (°) da corrente em BM334 (experimento ACM12 do WOCE) no período de 1° de junho de 1992 a 31 de agosto de 1992.
- Tabela 6 Diagrama de ocorrência conjunta de intensidade (m/s) e direção (º) do vento para o período de verão de 2010, a partir de dados do conjunto de reanálises CFSR analisados no ponto de grade representativo dos campos de Frade e Roncador.. I-20
- Tabela 8 Coordenadas (WGS-84) dos pontos de risco.
 III-2
- Tabela 9 Características do óleo cru tipo Frade.
 III-3
- Tabela 10 Cenários considerados nas simulações probabilísticas. III-4
- Tabela 11 Extensão da costa com probabilidade de toque.....IV-1
- Tabela 12 Resumo dos resultados da modelagem probabilística.....IV-2
- **Tabela 13** Lista de municípios com probabilidade de toque para os cenários de derrame de óleo com volume pequeno (8,0 m³), durante os períodos de verão e inverno. IV-11
- **Tabela 14** Lista de municípios com probabilidade de toque para os cenários de derrame de óleo com volume médio (200,0 m³), durante os períodos de verão e inverno. IV-21
- Tabela 15 Lista de municípios com probabilidade de toque para os cenários de derrame de óleo com volume de pior caso (258.304,99 m³), durante os períodos de verão e inverno.

- Tabela 16 Resumo dos cenários determinísticos críticos simulados que apresentaram toque na costa.
 IV-41
- Tabela 17 Resumo dos cenários determinísticos das condições mais frequentes sem probabilidade de toque na costa.
 IV-47

LISTA DE FIGURAS

- Figura 1 Localização do ponto de risco considerado no estudo e dos campos de Frade e Roncador, na Bacia de Campos......I-1
- Figura 2 Representação da circulação no Oceano Atlântico Sul, indicando as seguintes correntes oceânicas: Corrente Circumpolar (CC), Corrente do Atlântico Sul (CAS), Corrente de Benguela (BE), Corrente de Angola (CA), Corrente Sul Equatorial (CSE), Corrente do Brasil (CB) e Corrente das Malvinas (CM). Fonte: Adaptado de Tomczak & Godfrey (1994).
- Figura 3 Média mensal climática de janeiro da circulação próxima à superfície, oriunda da decomposição, na resolução espacial de 1 grau, dos dados de observação da circulação próxima à superfície, registrada através de uma rede de bóias de deriva rastreadas por satélite (LUMPKIN & GARRAFFO, 2005). Fonte: Tetra Tech Brasil.I-4
- Figura 4 Média mensal climática de julho da circulação próxima à superfície, oriunda da decomposição, na resolução espacial de 1 grau, dos dados de observação da circulação próxima à superfície, registrada através de uma rede de bóias de deriva rastreadas por satélite (LUMPKIN & GARRAFFO, 2005). Fonte: Tetra Tech Brasil. I-5
- Figura 6 Séries temporais de intensidade e direção de corrente medidos em 3 profundidades (230, 475 e 680 m), em 1992, no fundeio BM/333 do experimento ACM12 do WOCE, reamostrados a cada 6h. Fonte: Tetra Tech Brasil......I-8
- Figura 8 Séries temporais de intensidade e direção da correntes medidas em 5 profundidades (208, 470, 870, 1.370 e 2.140 m), em 1992, no fundeio BM/334 do experimento ACM12 do WOCE, reamostrados a cada 6h. Fonte: Tetra Tech Brasil.
- Figura 10 Traçado dos Derivadores MONDO liberados ao longo do ano de 2011. Fonte: Tetra Tech Brasil......I-16

- Figura 11 Campos médios de direção e intensidade do vento (m/s) para os períodos de verão (a) e inverno (b) do ano de 2010, a partir de dados do conjunto de reanálises CFSR. Assinalada a localização dos campos de Frade e Roncador......I-18
- Figura 13 Grade computacional do modelo hidrodinâmico...... II-2
- Figura 14 Batimetria associada à grade numérica. A barra de cores lateral apresenta a profundidade local (em metros) para cada elemento de grade. II-3
- Figura 15 Resultado para salinidade na superfície. A barra de cores lateral apresenta a salinidade para cada elemento de grade......II-4

- Figura 18 Regiões delimitadas para a comparação entre as medições realizadas pelos derivadores MONDO e os dados de corrente do modelo HYCOM. Fonte: Tetra Tech Brasil......II-10
- Figura 19 Histogramas direcionais dos vetores de corrente comparativos entre os dados do modelo HYCOM e as séries de dados gerados a partir dos derivadores MONDO na Região 1 (a) e Região 2 (b). Fonte: Tetra Tech Brasil. II-11
- Figura 21 Grade definindo os contornos de terra (grade *land-water*) para a modelagem de deriva de óleo. III-1
- Figura 22 Cenário FRADE_8_VER_30D. Contornos de probabilidade de óleo cru na água, para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de verão (janeiro a março), com derrame de 8,0 m³ (instantâneo), após 30 dias de simulação.IV-3
- Figura 23 Cenário FRADE_8_VER_30D. Contornos do tempo de deslocamento do óleo cru na água para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de verão (janeiro a março), com derrame de 8,0 m³ (instantâneo), após 30 dias de simulação......IV-4

- - Figura 25 Cenário FRADE_8_VER_30D. Volume máximo de óleo cru na costa para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de verão (janeiro a março), com derrame de 8,0 m³ (instantâneo), após 30 dias de simulação......IV-6
 - Figura 26 Cenário FRADE_8_INV_30D. Contornos de probabilidade de óleo cru na água, para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de inverno (junho a agosto), com derrame de 8,0 m³ (instantâneo), após 30 dias de simulação......IV-7
 - Figura 27 Cenário FRADE_8_INV_30D. Contornos do tempo de deslocamento do óleo cru na água para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de inverno (junho a agosto), com derrame de 8,0 m³ (instantâneo), após 30 dias de simulação......IV-8
 - Figura 28 Cenário FRADE_8_INV_30D. Probabilidade de toque de óleo cru na costa para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de inverno (junho a agosto), com derrame de 8,0 m³ (instantâneo), após 30 dias de simulação.....IV-9
 - Figura 29 Cenário FRADE_8_INV_30D. Volume máximo de óleo cru na costa para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de inverno (junho a agosto), com derrame de 8,0 m³ (instantâneo), após 30 dias de simulação......IV-10
 - Figura 30 Cenário FRADE_200_VER_30D. Contornos de probabilidade de óleo cru na água, para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de verão (janeiro a março), com derrame de 200 m³ (instantâneo), após 30 dias de simulação......IV-13
 - Figura 31 Cenário FRADE_200_VER_30D. Contornos do tempo de deslocamento do óleo cru na água para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de verão (janeiro a março), com derrame de 200 m³ (instantâneo), após 30 dias de simulação......IV-14
 - Figura 32 Cenário FRADE_200_VER_30D. Probabilidade de toque de óleo cru na costa para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de verão (janeiro a março), com derrame de 200 m³ (instantâneo), após 30 dias de simulação......IV-15
 - Figura 33 Cenário FRADE_200_VER_30D. Volume máximo de óleo cru na costa para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de verão (janeiro a março), com derrame de 200 m³ (instantâneo), após 30 dias de simulação......IV-16

- Figura 34 Cenário FRADE_200_INV_30D. Contornos de probabilidade de óleo cru na água, para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de inverno (junho a agosto), com derrame de 200 m³ (instantâneo), após 30 dias de simulação......IV-17
- Figura 35 Cenário FRADE_200_INV_30D. Contornos do tempo de deslocamento do óleo cru na água para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de inverno (junho a agosto), com derrame de 200 m³ (instantâneo), após 30 dias de simulação......IV-18
- Figura 36 Cenário FRADE_200_INV_30D. Probabilidade de toque de óleo cru na costa para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de inverno (junho a agosto), com derrame de 200 m³ (instantâneo), após 30 dias de simulação......IV-19
- Figura 37 Cenário FRADE_200_INV_30D. Volume máximo de óleo cru na costa para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de inverno (junho a agosto), com derrame de 200 m³ (instantâneo), após 30 dias de simulação.....IV-20
- Figura 38 Cenário FRADE_PC_VER_31D. Contornos de probabilidade de óleo cru na água, para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de verão (janeiro a março), com derrame de 258.304,99 m³ (24 horas), após 31 dias de simulação......IV-27
- Figura 39 Cenário FRADE_PC_VER_31D. Contornos do tempo de deslocamento do óleo cru na água para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de verão (janeiro a março), com derrame de 258.304,99 m³ (24 horas), após 31 dias de simulação......IV-28
- Figura 41 Cenário FRADE_PC_VER_31D. Volume máximo de óleo cru na costa para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de verão (janeiro a março), com derrame de 258.304,99 m³ (24 horas), após 31 dias de simulação......IV-30
- Figura 43 Cenário FRADE_PC_INV_31D. Contornos do tempo de deslocamento do óleo cru na água para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de inverno (junho a agosto), com derrame de 258.304,99 m³ (24 horas), após 31 dias de simulação......IV-32

- Figura 44 Cenário FRADE_PC_INV_31D. Probabilidade de toque de óleo cru na costa para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de inverno (junho a agosto), com derrame de 258.304,99 m³ (24 horas), após 31 dias de simulação......IV-33
- Figura 45 Cenário FRADE_PC_INV_30D. Volume máximo de óleo cru na costa para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de inverno (junho a agosto), com derrame de 258.304,99 m³ (24 horas), após 31 dias de simulação.....IV-34
- Figura 46 Cenário DET_FRADE_PC_VER_31D. Cenário determinístico mais frequente para um derrame de 258.304,99 m³ (ao longo de 24 horas, simulado por 31 dias) ocorrido durante o verão......IV-42
- Figura 47 Balanço de massa do cenário DET_FRADE_PC_VER_31D.IV-43
- Figura 48 Cenário DET_FRADE_PC_INV_31D. Cenário determinístico mais frequente para um derrame de 258.304,99 m³ (ao longo de 24 horas, simulado por 31 dias) ocorrido durante o verão......IV-44
- Figura 49 Balanço de massa do cenário DET_FRADE_PC_INV_31D.....IV-45
- Figura 51 Condições meteorológicas e oceanográficas e espessuras da mancha de óleo cru, no instante de toque na costa da simulação determinística crítica, no verão: Corrente para SW; Vento de SE......IV-46
- Figura 53 Balanço de massa do cenário DET_MF_FRADE_PC_VER_31D.IV-49
- Figura 55 Balanço de massa do cenário DET_MF_FRADE_PC_INV_31D.....IV-51

RESUMO

Este relatório apresenta os resultados da modelagem numérica, de dispersão de óleo cru, com o objetivo de dar suporte à CHEVRON Brasil na elaboração do Plano de Emergência Individual (PEI) no Campo de Frade.

O sistema de modelos OILMAP foi utilizado para definir a área potencialmente ameaçada por derramamentos de óleo cru.

Foram conduzidas simulações probabilísticas para duas condições sazonais (verão e inverno), visando determinar os intervalos de probabilidade de manchas atingirem a área de estudo a partir de três classes de derrame, como definido na Resolução CONAMA nº 398/08: pequeno (8,0 m³), médio (200,0 m³) e pior caso (258.304,99 m³). A hipótese acidental de pior caso corresponde a um acidente entre embarcações, gerando fissura no casco do FPSO de Frade. O critério de parada adotado nas simulações foi o tempo de 30 dias após o final do vazamento.

A partir dos resultados dessas simulações probabilísticas foram selecionados os cenários determinísticos críticos para as condições de verão e inverno, utilizando como critério a maior extensão de toque na linha de costa.

Os resultados das simulações probabilísticas demonstraram que a condição sazonal de verão apresenta maior probabilidade de toque do óleo na costa. O menor tempo de toque na costa foi de 115 horas no verão e 172 horas no inverno, resultantes dos cenários de pior caso. Os gráficos de balanço de massa dos cenários determinísticos indicam que a evaporação é o principal processo na redução de óleo da água.

I INTRODUÇÃO

Este relatório tem a finalidade de subsidiar CHEVRON Brasil na elaboração do Plano de Emergência Individual (PEI) no Campo de Frade. Assim, apresentam-se os resultados dos estudos referentes às simulações numéricas para a dispersão de óleo, a partir de potenciais derrames acidentais com geração de fissura no casco e no tanque de combustível.

A Figura 1, a seguir, apresenta a localização do FPSO Frade, ponto de risco considerado nas simulações de um potencial acidente com derramamento de óleo na Bacia de Campos.

Figura 1 - Localização do ponto de risco considerado no estudo e dos campos de Frade e Roncador, na Bacia de Campos.

A modelagem de óleo foi conduzida através da utilização de um sistema de modelos conhecido como OILMAP.

Para estudos de modelagem, como o realizado neste trabalho, são necessários: (a) um conhecimento detalhado das características geomorfológicas do local (morfologia da linha de costa e fundo oceânico), (b) padrões de circulação local, (c) campos de vento de longa duração e (d) caracterização físico-química do óleo.

Para a modelagem de transporte do óleo foi considerando um campo de ventos variável no tempo e no espaço, baseado em dados de Reanálise dos modelos meteorológicos do NCEP/NCAR¹.

O campo de correntes característico dos padrões de circulação na região foi obtido a partir de um modelo numérico de mesoescala, baseado no *HYbrid Coordinate Ocean Model* (HYCOM).

A partir dos resultados das simulações probabilísticas, foram selecionados os cenários determinísticos críticos para os cenários de pior caso, utilizando como critério o menor tempo de toque na costa. Adicionalmente, foram realizadas simulações determinísticas referentes às condições meteorológicas e oceanográficas mais frequentes.

A seguir, ainda no Capítulo I é apresentada uma caracterização da área de estudo, o Capítulo II descreve o modelo hidrodinâmico utilizado e caracteriza os padrões para a área de interesse. Os cenários considerados para as simulações de modelagem de óleo são apresentados no Capítulo III. Por fim, o Capítulo IV apresenta os resultados da modelagem de derrame de óleo e o Capítulo V apresenta as considerações finais para o presente estudo. Em complementação, no Anexo A apresenta-se a descrição do modelo OILMAP e no Anexo B, a análise meteorológica e oceanográfica das condições mais frequentes.

Pág.

1-2/20

Introdução

¹ National Centers for Environmental Prediction (NCEP) e National Center for Atmospheric Research (NCAR), disponibilizados pelo Climate Diagnostics Center (CDC) da National Oceanic and Atmospheric Administration (NOAA). Obtido em /time">http://www.esrl.noaa.gov/psd>/time. Último acesso em 018 de junho de 2012.

I.1 ÁREA DE ESTUDO

I.1.1 Características Oceanográficas da Região

A Figura 2 ilustra o Giro Subtropical do Atlântico Sul, que faz parte da circulação oceânica de larga escala que ocorre na região do Atlântico Sul. Este giro possui uma corrente de contorno de oeste para sul, a Corrente do Brasil (CB), a qual se separa da costa na região da confluência com a Corrente das Malvinas (CM). A partir deste ponto, a Corrente do Brasil composta com a Corrente das Malvinas se afasta da costa e flui para leste como Corrente do Atlântico Sul (CAS). O giro no Atlântico é complementado pela Corrente de Benguela (BE), Corrente Sul Equatorial (CSE), fechando o circuito com a Corrente do Brasil para sul e a Corrente Norte do Brasil (CNB).

Figura 2 – Representação da circulação no Oceano Atlântico Sul, indicando as seguintes correntes oceânicas: Corrente Circumpolar (CC), Corrente do Atlântico Sul (CAS), Corrente de Benguela (BE), Corrente de Angola (CA), Corrente Sul Equatorial (CSE), Corrente do Brasil (CB) e Corrente das Malvinas (CM). Fonte: Adaptado de Tomczak & Godfrey (1994).

Na Figura 3 e na Figura 4 são apresentados os campos de correntes próximos à superfície, com resolução espacial de 1 grau, oriundos da decomposição dos dados de observação da circulação, registrada através de uma rede de boias de deriva rastreadas por satélite (LUMPKIN & GARRAFFO, 2005). Os campos apresentados são relativos às médias mensais no período de 1990 a 2004, para os meses de janeiro e julho, representativos de verão e inverno, respectivamente.

Com base nestas figuras observa-se a bifurcação da CSE ocorrendo entre 10 º e 15º S, originado a CNB e a CB. Na região costeira da Bacia de Santos há uma tendência de circulação em direção a sudoeste, no verão, e a nordeste, no inverno. Na região oceânica adjacente, prevalece o fluxo para sudoeste, associado à CB.

Figura 3 – Média mensal climática de janeiro da circulação próxima à superfície, oriunda da decomposição, na resolução espacial de 1 grau, dos dados de observação da circulação próxima à superfície, registrada através de uma rede de boias de deriva rastreadas por satélite (LUMPKIN & GARRAFFO, 2005). Fonte: Tetra Tech Brasil.

Figura 4 – Média mensal climática de julho da circulação próxima à superfície, oriunda da decomposição, na resolução espacial de 1 grau, dos dados de observação da circulação próxima à superfície, registrada através de uma rede de boias de deriva rastreadas por satélite (LUMPKIN & GARRAFFO, 2005). Fonte: Tetra Tech Brasil.

As primeiras medições diretas da CB foram feitas por Evans & Signorini (1985), nas latitudes de 20°30' S e 23° S, as quais apresentaram um fluxo confinado aos primeiros 400 m de profundidade, com uma contracorrente no sentido norte, abaixo destes 400 m iniciais. Segundo Godoi (2005), observações e experimentos numéricos revelam que a CB, fluindo ao largo do Sudeste Brasileiro, transporta AT e ACAS entre a superfície e níveis picnoclínicos. Subjacente a CB, a Corrente de Contorno Intermediária (CCI) transporta, em níveis subpicnoclínicos da coluna de água, dominantemente AIA. Neste contexto, nota-se, portanto, uma relação entre as referidas correntes de contorno oeste e correspondente estratificação de massas de água: o Sistema CB está associado com a estrutura das massas de água AT/ACAS-AIA. A Figura 5 apresenta o Sistema Corrente do Brasil.

Na parte norte, acima do Cabo de São Tomé, a direção da corrente é para 180°, variando para 220° na região de Cabo Frio. Esta mudança afeta significativamente a CB, induzindo à formação de vórtices e meandros, como indicado na Figura 5. Este meandramento da CB foi capturado por Signorini (1978), em sua análise de topografia dinâmica, e por Miranda & Castro (1979) em suas observações hidrográficas na região adjacente à Cabo Frio (23° S), ao longo de duas secções meridionais. Esta figura apresenta ainda, além da representação da circulação oceânica na região, as massas d'água a ela associadas.

Figura 5 – Esquema da circulação oceânica na costa brasileira. As cores diferenciam as massas d'água existentes na região: Água Tropical (AT), Água Central do Atlântico Sul (ACAS), Água Intermediária Antártica (AIA) e Água Profunda do Atlântico Norte (APAN)2. Fonte: Godoi (2005).

Gonçalves (2000) apresentou uma sequência de estudos com o objetivo de caracterizar a circulação da CB. Segundo este autor, o nível de movimento nulo para a região investigada foi de 700 m. Considerando este nível, o transporte de volume para a CB foi, em média, 5,5 Sv em 24º S e 16,0 Sv em 27º S.

² Adaptado de http://www.smast.umassd.edu/modeling

I.1.2 Dados WOCE

O WOCE³ foi parte do WRCP⁴. Este programa foi realizado por um conjunto de mais de 30 países em um esforço sem precedentes para coleta e observação (via satélite) dos oceanos durante a década de 90 (de 1990 a 1998), assim como para observar importantes processos físicos até então pouco entendidos.

As informações de correntes apresentadas a seguir, foram obtidas junto ao Banco de Dados do WOCE e se referem a cruzeiros realizados na região sul da Bacia de Santos. A localização dos pontos de coleta são apresentados na Tabela 1.

Tabela 1 – Coordenadas, profundidades de coleta e de lâmina d'água das coletas dos
dados de corrente do WOCE para a região sul da Bacia de Santos.

CRUZEIRO	LATITUDE (S)	LONGITUDE (W)	PROFUNDIDADES	LÃMINA D'ÁGUA
WOCE ACM-12 BM/333	27,9020°	46,7040°	230, 475 e 680 m	1.179 m
WOCE ACM-12 BM/334	27,9850°	46,3380°	208, 470, 870, 1370 e 2140 m	2.187 m

I.1.3 ACM-12 BM/333

A Figura 6 apresenta as séries temporais de intensidade e direção das correntes medidas em 1992 no fundeio BM/333 do experimento ACM12 do WOCE. Observa-se uma tendência de movimentação do fluxo para SW em todas as profundidades amostradas, com a intensidade diminuindo em direção ao fundo.

A Figura 7 apresenta os histogramas direcionais de corrente para os períodos de verão (janeiro a março de 1992) e inverno (junho a agosto de 1992) com base nos dados de corrente do fundeio BM/333 – WOCE, medidos a 230 m de profundidade. A direção apresentada refere-se ao norte geográfico. A intensidade é apresentada em (m/s) e a escala de cores representa a porcentagem de observações.

⁴ World Climate Research Programme.

³ World Ocean Circulation Experiment.

Verifica-se a predominância de correntes dos quadrantes SW e S em ambos os períodos, com maiores intensidades no verão. A velocidade média foi igual a 0,4 m/s no verão e a 0,3 m/s no inverno.

A Tabela 2 e a Tabela 6 apresentam os diagramas de ocorrência conjunta de intensidade (m/s) e direção (°) da corrente em BM/333 (WOCE/ACM12) nos períodos de verão (janeiro a março de 1992) e inverno (junho a agosto de 1992), respectivamente.

Figura 6 – Séries temporais de intensidade e direção de corrente medidos em 3 profundidades (230, 475 e 680 m), em 1992, no fundeio BM/333 do experimento ACM12 do WOCE, reamostrados a cada 6h. Fonte: Tetra Tech Brasil.

- (b)
- Figura 7 Histograma direcional dos vetores de corrente no fundeio BM/333 do experimento ACM12 do WOCE, medidos a 230 m de profundidade para janeiro a março de 1992 (a) e junho a agosto de 1992 (b). Fonte: Tetra Tech Brasil.

A Tabela 2 apresenta a distribuição de ocorrência conjunta de intensidades e direções da corrente medida no fundeio BM/333 (experimento ACM12 do WOCE WOCE) para o período de verão. Com base nesta observa-se que as correntes mais frequentes são nas direções SSW (37%) e SW (24%). As correntes com velocidades médias máximas dirigiram-se para S (50,8 cm/s) e SSW (42,4 cm/s) e as correntes mais intensas registradas também fluíram em direção a S e SSW (89,7 cm/s). Do total de registros das correntes, 90% têm intensidades iguais ou inferiores a 70,0 cm/s, como indicam os percentis apresentados na tabela.

Tabela 2 – Diagrama de ocorrência conjunta de intensidade (cm/s) e direção (°) da corrente em BM/333 (experimento ACM12 do WOCE) no período de 1º de janeiro de 1992 a 31 de março de 1992.

0bs.: a direç	ção é i	medi da	em gr	aus a	parti r	do No	rte ge	ográfi	со, со	nvençã	io veto	ori al .							
	Ν	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	Total	Porc.	Dir. méd.
0, 0- 5, 0	0	0	0	0	0	0	0	0	2	0	6	4	3	2	0	0	17	0, 8	242
5, 0-10, 0	0	0	0	0	0	0	0	0	1	5	15	5	8	3	0	0	37	1,7	240
10, 0-15, 0	0	0	0	0	0	0	0	0	0	5	30	40	8	10	0	0	93	4, 3	244
15, 0-20, 0	0	0	0	0	0	0	0	0	3	20	79	50	15	4	0	0	171	7, 9	233
20, 0-25, 0	0	0	0	0	0	0	0	1	8	49	84	63	17	2	0	0	224	10, 4	229
25, 0-30, 0	0	0	0	0	0	0	0	1	24	100	46	43	3	0	0	0	217	10, 0	214
30, 0-35, 0	0	0	0	0	0	0	0	5	27	97	40	25	0	0	0	0	194	9, 0	208
35, 0-40, 0	0	0	0	0	0	0	0	3	34	106	34	11	0	0	0	0	188	8, 7	205
40, 0-45, 0	0	0	0	0	0	0	0	5	72	140	60	1	0	0	0	0	278	12, 9	202
45, 0- 50, 0	0	0	0	0	0	0	0	2	75	85	35	2	0	0	0	0	199	9, 2	198
50, 0- 55, 0	0	0	0	0	0	0	0	0	53	55	20	3	0	0	0	0	131	6, 1	199
55, 0-60, 0	0	0	0	0	0	0	0	0	46	36	12	4	0	0	0	0	98	4, 5	198
60, 0-65, 0	0	0	0	0	0	0	0	0	44	17	29	1	0	0	0	0	91	4, 2	200
65, 0- 70, 0	0	0	0	0	0	0	0	0	41	13	20	4	0	0	0	0	78	3, 6	200
70, 0- 75, 0	0	0	0	0	0	0	0	0	21	23	6	14	0	0	0	0	64	3, 0	208
75, 0- 80, 0	0	0	0	0	0	0	0	0	16	14	1	1	0	0	0	0	32	1, 5	196
80, 0-85, 0	0	0	0	0	0	0	0	0	6	11	1	0	0	0	0	0	18	0, 8	195
<u>85, 0- 90, 0</u>	0	0	0	0	0	0	0	0	8	24	1	0	0	0	0	0	33	1, 5	196
Total	0	0	0	0	0	0	0	17	481	800	519	271	54	21	0	0	2163		
Porc.	0, 0	0, 0	0, 0	0, 0	0, 0	0, 0	0, 0	0, 8	22, 2	37, 0	24, 0	12, 5	2, 5	1, 0	0, 0	0, 0			
Vel. méd.								37,6	50, 8	42, 4	33, 3	26, 4	16, 8	12, 7					
Vel. máx.	0, 0	0, 0	0, 0	0, 0	0, 0	0, 0	0, 0	49,6	89, 7	89, 7	85, 9	75, 8	26, 2	21, 2	0, 0	0, 0			
Percts. (0, 9)	0, 0	0, 0	0, 0	0, 0	0, 0	0, 0	0, 0	44, 0	70, 0	65, 0	60, 0	47, 0	20, 0	17, 0					

Fonte: Tetra Tech Brasil.

A Tabela 6 apresenta a distribuição de ocorrência conjunta de intensidades e direções da corrente medida no fundeio BM/333 (experimento ACM12 do WOCE) para o período de inverno. Observa-se que as correntes mais frequentes são nas direções SW (32,9%) e SSW (32,4%). As correntes com velocidades médias máximas foram em direção a W (38,6 cm/s) e S (34,4 cm/s) e as correntes mais intensas registradas fluíram para S (69,9 cm/s) e SSE (67,4 cm/s). Do total de registros das correntes, 90% têm intensidades iguais ou inferiores a 60,0 cm/s, como indicam os percentis apresentados na tabela.

Tabela 3 – Diagrama de ocorrência conjunta de intensidade (cm/s) e direção (º) da corrente em BM333 (WOCE/ACM12) no período de 1º de junho de 1992 a 31 de agosto de 1992.

0bs.	: a di	reção	ém	edi da	em gra	aus a	parti r	do No	rte ge	ográfi	co, co	nvençã	o veto	ri al .							
			N	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	w	WNW	NW	NNW	Total	Porc.	Dir. méd.
0.0	- 5.0		0	0	0	0	0	4	2	4	4	6	6	0	1	1	0	0	28	1.3	185
5.0	- 10. 0		0	0	0	0	0	0	0	3	5	14	20	1	4	0	0	0	47	2.1	215
10.0	- 15. 0		0	0	0	0	0	0	0	2	15	36	41	15	3	0	0	0	112	5.1	216
15.0	- 20. 0		0	0	0	0	0	0	0	3	32	62	96	27	4	0	0	0	224	10.1	215
20.0	- 25. 0		0	0	0	0	0	0	0	2	50	142	187	43	6	0	0	0	430	19.5	216
25.0	- 30. 0		0	0	0	0	0	0	0	2	68	131	154	27	4	0	0	0	386	17.5	211
30.0	- 35. 0		0	0	0	0	0	0	0	2	46	126	107	27	8	0	0	0	316	14.3	211
35.0	- 40. 0		0	0	0	0	0	0	0	0	50	87	62	12	5	0	0	0	216	9.8	206
40.0	- 45. 0		0	0	0	0	0	0	0	13	50	40	34	17	2	0	0	0	156	7.1	203
45.0	- 50. 0		0	0	0	0	0	0	0	14	45	61	16	26	15	0	0	0	177	8.0	207
50.0	- 55. 0		0	0	0	0	0	0	0	0	24	9	1	8	11	0	0	0	53	2.4	210
55.0	- 60. 0		0	0	0	0	0	0	0	0	15	0	2	1	13	0	0	0	31	1.4	221
60.0	- 65. 0		0	0	0	0	0	0	0	6	12	0	1	2	0	0	0	0	21	1.0	180
65.0	- 70. 0		0	0	0	0	0	0	0	3	4	0	0	3	0	0	0	0	10	0.5	189
Tota	1		0	0	0	0	0	4	2	54	420	714	727	209	76	1	0	0	2207		
Porc		0.	0	0.0	0.0	0.0	0.0	0.2	0.1	2.4	19.0	32.4	32.9	9.5	3.4	0.0	0.0	0.0			
Vel.	méd.							3.0	3.1	38. 3	34.4	29.0	26.2	30.8	38.6	2.6					
Vel.	máx.	0.	0	0.0	0.0	0.0	0.0	4.0	4.3	67.4	69. 9	52.2	61.4	65.6	58.1	2.6	0.0	0.0			
Perc	ts. (0,	9) 0.	0	0.0	0.0	0.0	0.0	0.0	0.0	60.0	50.0	40.0	35.0	45.0	55.0	0.0					
_	-	-	_		-																

Fonte: Tetra Tech Brasil.

I.1.4 ACM-12 BM/334

A Figura 8 apresenta as séries temporais de intensidade e direção das correntes medidas em 1992 no fundeio BM/334 do experimento ACM12 do WOCE. Observa-se uma tendência de movimentação para SSW nas camadas superficiais e intermediárias. Próximo ao fundo (2.140 m), aumenta a tendência de movimento em direção à NNE.

WOCE - ACM12/BM334

Figura 8 – Séries temporais de intensidade e direção da correntes medidas em 5 profundidades (208, 470, 870, 1.370 e 2.140 m), em 1992, no fundeio BM/334 do experimento ACM12 do WOCE, reamostrados a cada 6h. Fonte: Tetra Tech Brasil.

A Figura 9 apresenta os histogramas direcionais para os períodos de verão (janeiro a março de 1992) e inverno (junho a agosto de 1992) com base nos dados de corrente do fundeio BM/334 (WOCE). A direção apresentada refere-se ao norte geográfico. A intensidade é apresentada em (m/s) e a escala de cores representa a porcentagem de observações.

Verifica-se a predominância de correntes nos quadrantes SW e S, para ambos os períodos. A velocidade média foi igual a 0,12 m/s no verão e a 0,13 m/s no inverno.

A Tabela 4 apresenta a distribuição de ocorrência conjunta de intensidades e direções da corrente no fundeio BM334 (WOCE) para o período de verão. Observa-se que as correntes mais frequentes são nas direções SW (17,4%) e SSW (15,4%). As correntes com velocidades médias máximas dirigiram-se para S (17,6 cm/s) e SSE (17,1 cm/s) e as correntes mais intensas registradas também foram em direção a SSE (33,7 cm/s) e S (33,4 cm/s). Do total de registros das correntes, 90% têm intensidades iguais ou inferiores a 30,4 cm/s, como indicam os percentis apresentados na tabela.

A Tabela 5 apresenta a distribuição de ocorrência conjunta de intensidades e direções da corrente no fundeio BM334 (WOCE) para o período de inverno. Observa-se que as correntes mais frequentes são nas direções SW (25,4%) e SSW (23,0%). As correntes com velocidades médias máximas fluíram para S (18,9 cm/s) e SSE (15,5 cm/s); e as correntes mais intensas registradas também foram em direção a SSE (41,2 cm/s) e S (40,9 cm/s). Do total de registros das correntes, 90% têm intensidades iguais ou inferiores a 34 cm/s, como indicam os percentis apresentados na tabela.

Figura 9 – Histograma direcional dos vetores de corrente no fundeio BM/334 do experimento ACM12 do WOCE, medidos a 208 m de profundidade para janeiro a março de 1992 (a) e junho a agosto de 1992 (b). Fonte: Tetra Tech Brasil.

10-048

Pág. I-15/20

Tabela 4 – Diagrama de ocorrência conjunta de intensidade (cm/s) e direção (°) da corrente em BM334 (experimento ACM12 do WOCE) no período de 1º de janeiro de 1992 a 31 de março de 1992.

0bs.: a dire	Obs.: a direção é medida em graus a partir do Norte geográfico, convenção vetorial.																		
	Ν	NNE	NE	ENE	Е	ESE	SE	SSE	s	SSW	SW	WSW	W	WNW	NW	NNW	Total	Porc.	Dir. méd.
0, 0- 2, 0	8	10	6	15	20	15	4	10	13	17	11	4	4	8	24	18	187	8,6	46
2, 0-4, 0	7	3	7	6	11	1	6	0	6	6	6	9	3	6	10	10	97	4, 4	329
4, 0-6, 0	6	7	10	5	4	3	6	1	5	7	15	6	7	13	8	12	115	5, 3	301
6, 0- 8, 0	6	9	8	9	10	7	6	0	8	22	16	19	15	5	6	15	161	7,4	247
8, 0-10, 0	6	7	1	7	13	13	4	4	7	22	31	25	20	15	17	9	201	9, 2	244
10, 0-12, 0	10	12	5	7	8	16	5	2	12	35	51	27	20	23	8	17	258	11, 8	244
12, 0-14, 0	15	4	1	4	3	2	4	6	16	58	76	27	21	27	21	12	297	13, 6	240
14, 0-16, 0	5	1	2	5	4	2	3	7	19	40	63	35	18	28	25	5	262	12, 0	240
16, 0-18, 0	6	1	3	1	0	0	0	4	29	26	40	17	25	15	10	16	193	8, 8	242
18, 0-20, 0	3	1	0	0	0	0	0	3	20	25	29	11	9	10	7	8	126	5, 8	231
20, 0-22, 0	2	0	0	0	0	0	0	4	34	28	9	6	1	3	3	6	96	4,4	205
22, 0-24, 0	1	0	0	0	0	0	0	4	21	15	9	4	0	0 0	3	4	61	2, 8	205
24, 0-26, 0	1	0 0	0 0	0 0	0 0	0 0	0 0	4	22	16	ş	0 0	0	0 0	1	1	53	2,4	193
26, 0-28, 0	U U	0	0	0	0	0	0	4	10	10	10	0	0	0	0	0	28	1, 3	190
28, 0-30, 0	U U	0	0	0	0	0	0	1		10	10	0	0	0	0	0	28	1, 3	203
30, 0-32, 0	0	0	U N	0	U N	0	0	3	8	0	0	0	0	0	0	0	10	0, 5	1/2
32, 0-34, 0 Totol	76	55	42	50	72	50	20	62	941	226	270	100	142	152	142	122	2194	0, 3	100
Boro	2 5	25	20	29	22	29	1 7	20	11 0	15 4	17 4	190	143	7 0	143	6 1	۵104		
Vol mód	10 2	2, 3	£, 0	£, /	5,5	7 3	7 3	17 1	17 8	14 6	12.8	12 1	11 0	11 6	10.3	10 3			
Vol máx	24 1	10 7	17 1	16 5	14 5	15 6	1/ 8	99 7	49 A	20 6	20 6	22 8	20 3	20 0	24 1	24 6			
Percts $(0, 9)$	16 0	12 0	14 0	13 2	10 4	10 0	12 0	30 4	26 0	24 0	20,0	18 0	16 0	16 0	16 4	18 0			
101003. (0, 3)	10, 0	12,0	14, 0	10, 2	10, 4	10, 0	12,0	50, 4	20, 0	<i>ы</i> ч, 0	20,0	10, 0	10, 0	10, 0	10, 4	10, 0			

Fonte: Tetra Tech Brasil.

Tabela 5 – Diagrama de ocorrência conjunta de intensidade (cm/s) e direção (°) da corrente em BM334 (experimento ACM12 do WOCE) no período de 1º de junho de 1992 a 31 de agosto de 1992.

0bs.: a dire	çãoé	medi da	em gra	aus a j	parti r	do No	rte ge	ográfi	co, co	nvençã	o veto	ri al .							
	Ν	NNE	NE	ENE	Е	ESE	SE	SSE	S	SSW	SW	WSW	w	WNW	NW	NNW	Total	Porc.	Dir. méd.
0.0-2.0	9	1	3	2	6	4	4	11	15	29	23	30	20	10	9	5	181	8.2	231
2, 0-4, 0	6	2	3	3	0	2	4	11	10	24	41	27	12	6	6	4	161	7, 3	230
4, 0-6, 0	3	2	1	3	7	3	4	5	12	32	47	24	17	7	10	4	181	8, 2	227
6, 0-8, 0	11	5	0	5	0	5	11	7	17	39	42	25	26	10	4	9	216	9, 8	228
8, 0-10, 0	3	2	5	6	2	7	5	18	23	47	61	31	22	5	7	6	250	11, 3	218
10, 0-12, 0	4	0	0	0	0	0	4	14	18	56	66	37	19	9	4	1	232	10, 5	223
12, 0-14, 0	0	0	0	0	0	0	5	12	28	66	58	56	20	7	3	0	255	11, 5	221
14, 0-16, 0	2	0	0	0	0	0	1	7	21	48	58	34	14	6	2	1	194	8, 8	223
16, 0-18, 0	0	0	0	0	0	0	0	1	7	31	35	19	6	1	0	0	100	4, 5	221
18, 0-20, 0	0	0	0	0	0	0	0	0	1	19	19	8	2	0	0	0	49	2, 2	222
20, 0-22, 0	0	0	0	0	0	0	0	1	6	11	24	6	0	0	0	0	48	2, 2	216
22, 0-24, 0	0	0	0	0	0	0	0	0	9	11	20	5	0	0	0	0	45	2, 0	213
24, 0-26, 0	0	0	0	0	0	0	0	1	7	16	10	1	0	0	0	0	35	1,6	205
26, 0-28, 0	0	0	0	0	0	0	0	2	4	12	6	0	0	0	0	0	24	1, 1	198
28, 0-30, 0	0	0	0	0	0	0	0	1	9	13	16	0	0	0	0	0	39	1, 8	203
30, 0-32, 0	0	0	0	0	0	0	0	3	10	16	14	0	0	0	0	0	43	1, 9	201
32, 0-34, 0	0	0 0	0	0	0 0	0	0	11	20	16	12	0	0	0	0 0	0	59	2,7	191
34, 0-36, 0	0	0	0	0	0	0	0	11	31	9	0	0	0	0	0	0	51	2, 3	181
36, 0-38, 0	0	0	0	0	0	0	0	1	8	8	6	0	0	0	0	0	23	1, 0	195
38, 0-40, 0	0 0	0 0	0 0	0	0 0	0	0 0	1	6	4	3	U U	0	0	0 0	0	14	0,6	194
40, 0-42, 0	0	10	10	10	15	0	0	101	4	700	501	0	170	01	45	0	8	0, 4	176
lotal	38	12	12	19	15	1 0	38	121	200	508	05 4	303	158	61	45	30	2208		
Vol mód	1, /	0, 5	0, 5	0,9	4 1	1,0	1, /	5,5 15 5	12,0	14 6	12 2	10, 1	1, Z	2,8	2,0	1,4 6 1			
Vel. méu.	14 0	0,0	3,0	0, 2	4,1	0,0	15 0	10,0	10, 9	14,0	20.9	24 4	10 2	16 5	14 9	15 6			
Poroto (0, 0)	14,0	9, 9	9,0	9,0	9, 9	9,0	12,9	24 0	24 0	20 0	35,0	16 0	10, 3	14 0	19.0	13,0			
reicts. (0, 9)	10, 0	o , U	0 , U	o , U	o, U	o , U	12,0	54, 0	54, 0	30, 0	20, 0	10, 0	14, 0	14, 0	12, 0	8 , 0			

Fonte: Tetra Tech Brasil.

I.2 DERIVADORES MONDO

O Projeto MONDO⁵ é uma iniciativa da ENI Oil do Brasil e da PROOCEANO. A aquisição de dados foi feita através de derivadores que foram lançados durante

⁵ Monitoramento por Derivadores Oceânicos.

a operação de perfuração dos Poços Sagatiba e Belmonte 2 totalizando 44 derivadores. Os derivadores lançados são do tipo "*holey-sock*", obedecendo aos critérios propostos por Sybrandy & Niiler (1991).

As campanhas tiveram objetivo de medir as correntes médias dos primeiros 20 m da coluna d'água. A localização do derivador foi dada por GPS⁶ e as informações de velocidade foram calculadas a partir do deslocamento registrado pelo GPS. A posição GPS foi medida a cada 3 horas, com resolução nominal de 7 m. A transmissão dos dados é feita pelo sistema IRIDIUM a cada hora. A Figura 10 abaixo apresenta o traçado de cada um dos derivadores dentro do conjunto de dados utilizado.

Derivadores MONDO

Revisão 00 01/2013

10-048

Figura 10 – Traçado dos Derivadores MONDO liberados ao longo do ano de 2011. Fonte: Tetra Tech Brasil.

⁶ Global Positioning System.

I.2.1 Características Meteorológicas

A seguir são descritos os padrões do vento nos períodos de verão e inverno do ano de 2010. Como base de dados é utilizado o conjunto de reanálises CFSR⁷, produzido e disponibilizado pelos centros norte-americanos NCEP/NOAA⁸, com resolução espacial de 0,3° e temporal horária. Trata-se da mesma base de dados utilizada para geração das forçantes de vento utilizadas nas simulações de dispersão de óleo.

Na Figura 11 são apresentados os campos médios de direção e intensidade do vento para os períodos de verão e inverno de 2010, onde é possível analisar os padrões de circulação em grande escala. No período de verão observa-se ventos de quadrante E em torno da latitude 16° S e um padrão predominante de ventos de NE/NNE sobre o Atlântico Sul e costa do Sudeste brasileiro. Já no período de inverno são observados sobre o oceano em latitudes abaixo de 20° S ventos de maior intensidade de quadrante ESE, com o aumento da latitude observa-se a deflexão do vento para os quadrantes E e NE. Este padrão sazonal acompanha o deslocamento da Zona de Convergência Intertropical (ZCIT) e também da Alta Semipermanente do Atlântico Sul (ASAS) para sul durante o verão e para norte durante o inverno do Hemisfério Sul.

Para uma avaliação mais detalhada foram analisadas individualmente as séries de vento extraídas sobre o ponto de grade englobando os campos de Frade e Roncador para os períodos de verão e inverno de 2010. Na Figura 12 são apresentadas as rosas dos ventos para cada estação, enquanto a Tabela 6 e Tabela 7 mostram os diagramas de ocorrência conjunta de direção e intensidade do vento para os mesmos períodos, a fim de verificar o padrão de circulação local e a sazonalidade do vento em 2010.

No período de verão os ventos de quadrante NNE são predominantes, concentrando 36,7% dos dados, enquanto os quadrantes N e NE somam outros 33% do total de dados. No período de inverno observa-se uma maior dispersão no espectro de direções do vento. Apesar da predominância de ventos de NNE,

⁸ National Centers for Environmental Prediction/National Oceanographic and Atmospheric Administration.

⁷ Climate Forecast System Reanalysis.

com 20,2% dos dados, nota-se ocorrências mais significativas de ventos de quadrante E e S. Nota-se neste período também a maior frequência de ocorrência de ventos com intensidade acima de 12 m/s.

Figura 11 - Campos médios de direção e intensidade do vento (m/s) para os períodos de verão (a) e inverno (b) do ano de 2010, a partir de dados do conjunto de reanálises CFSR. Assinalada a localização dos campos de Frade e Roncador.

Revisão 00 01/2013

10-048

Figura 12 – Rosa dos ventos para os períodos de verão (a) e inverno (b) do ano de 2010, a partir de dados do conjunto de reanálises CFSR analisados no ponto de grade representativo dos campos de Frade e Roncador.

Tabela 6 – Diagrama de ocorrência conjunta de intensidade (m/s) e direção (º) do vento para o período de verão de 2010, a partir de dados do conjunto de reanálises CFSR analisados no ponto de grade representativo dos campos de Frade e Roncador.

								1) T D	EC 1	0								
Voloo (m/c)	N	NNE	NE	ENE	Б	ECE	CE	CCE	JIK	EUP	SW SW	WCW	W	WANTA	NW	NNW	Tot	Dono	Din Méd
veroc. (m/s)	N N	NNE	NE	ENE	E	ESE	SE	SOL	3	224	200	WOW	W	WINW	INW	ININW	100.	reic.	DIT. Meu
0.0-1.0	0	1	0	0	2	0	1	1	0	0	0	0	1	2	1	0	9	0.4	176
1.0-2.0	3	3	0	1	6	5	1	2	0	2	0	0	2	2	4	4	35	1.6	41
2.0-3.0	5	3	8	12	3	6	5	5	2	2	3	3	1	3	1	7	69	3.2	69
3.0-4.0	6	11	15	20	7	10	4	6	2	2	3	2	1	5	3	12	109	5.0	49
4.0-5.0	13	30	28	35	11	14	8	4	4	3	4	2	1	2	6	6	171	7.9	52
5.0-6.0	38	74	55	47	10	11	11	12	2	1	0	0	0	5	1	5	272	12.6	44
6.0-7.0	33	145	90	31	9	17	16	11	4	0	0	0	0	0	0	1	357	16.5	42
7.0-8.0	32	109	124	31	5	16	18	1	0	0	0	0	0	0	0	1	337	15.6	42
8.0-9.0	30	130	43	13	0	3	23	4	5	0	0	0	1	1	0	2	255	11.8	34
9.0-10.0	52	124	21	0	0	4	9	3	5	0	1	2	1	1	0	0	223	10.3	24
10.0-11.0	66	113	3	0	0	0	7	8	2	2	4	0	0	0	0	0	205	9.5	20
11.0-12.0	42	38	0	0	0	0	2	4	3	1	3	0	0	0	0	0	93	4.3	16
12.0-13.0	3	8	0	0	0	0	1	0	1	4	0	0	0	0	0	0	17	0.8	19
13.0-14.0	2	3	0	0	0	1	1	0	0	0	0	0	0	0	0	0	7	0.3	37
Total	325	792	387	190	53	87	107	61	30	17	18	9	8	21	16	38	2159		
Porc.	15.1	36.7	17.9	8.8	2.5	4.0	5.0	2.8	1.4	0.8	0.8	0.4	0.4	1.0	0.7	1.8			
Vel. méd.	8.4	8.0	6.7	5.6	4.5	5.5	7.1	6.4	7.4	6.8	6.6	4.6	4.1	3.8	3.2	3.9			
Vel. máx.	13.6	13.2	10.7	8.9	7.3	13.6	13.0	11.7	12.1	12.6	11.6	9.9	9.4	9.0	5.6	9.0			
Perct. (0.9)	11.0	10.0	8.0	7.0	6.2	7.0	9.8	10.0	11.0	12.0	11.0	9.0	8.7	6.2	4.0	5.7			

Tabela 7 – Diagrama de ocorrência conjunta de intensidade (m/s) e direção (º) do vento para o período de inverno de 2010, a partir de dados do conjunto de reanálises CFSR analisados no ponto de grade representativo dos campos de Frade e Roncador.

								I) I R	ΕÇÂ	(O									
Veloc. (m/s)	N	NNE	NE	ENE	Ε	ESE	SE	SSE	S	SŚW	SW	WSW	W	WNW	NW	NNW	Tot.	Perc.	Dir.Méd	
0.0-1.0	3	3	3	0	2	0	0	0	0	0	0	1	0	1	4	4	21	1.0	3	
1.0-2.0	4	2	7	2	2	8	4	6	3	0	1	2	3	1	0	2	47	2.1	101	
2.0-3.0	4	11	15	12	4	3	3	5	20	6	2	4	3	1	0	5	98	4.4	93	
3.0-4.0	13	13	16	16	11	10	8	11	9	4	6	9	6	2	4	2	140	6.3	81	
4.0-5.0	8	27	29	16	45	10	6	19	11	3	4	8	1	3	0	9	199	9.0	76	
5.0-6.0	14	35	31	30	41	29	5	6	23	4	5	3	0	2	3	4	235	10.6	73	
6.0-7.0	9	40	61	28	53	40	14	4	16	4	1	3	1	1	2	8	285	12.9	71	
7.0-8.0	23	57	84	43	52	25	13	19	23	4	3	5	1	0	0	6	358	16.2	67	
8.0-9.0	22	63	37	36	21	12	14	11	22	10	1	8	0	0	0	2	259	11.7	61	
9.0-10.0	20	38	35	3	1	1	11	16	19	15	6	11	0	0	0	6	182	8.2	57	
10. 0- 11. 0	29	69	6	0	0	3	4	5	14	15	6	4	0	1	0	1	157	7.1	22	
11.0-12.0	40	51	0	0	0	3	0	0	3	13	13	0	0	0	0	0	123	5.6	7	
12.0-13.0	14	31	0	0	0	0	0	3	7	5	12	0	0	0	0	0	72	3.3	7	
13. 0-14. 0	4	5	0	0	0	0	0	0	1	3	9	0	0	0	0	0	22	1.0	257	
14.0-15.0	4	0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	7	0.3	320	
Total	211	445	324	186	232	144	82	105	171	87	70	59	15	12	13	49	2205			
Porc.	9.6	20.2	14.7	8.4	10.5	6.5	3.7	4.8	7.8	3.9	3.2	2.7	0.7	0.5	0.6	2.2				
Vel. méd.	8.7	8.3	6.6	6.2	6.0	6.2	6.7	6.5	6.9	8.9	9.4	6.5	3.4	4.3	3.5	5.5				
Vel. máx.	14.8	13.8	10.7	9.7	9.1	11.9	10.2	12.7	13.1	14.3	14.4	14.3	7.5	10.9	6.9	10.4				
Perct. (0.9)	12.0	11.0	9.0	8.0	7.0	8.0	9.0	9.0	10.0	11.8	13.0	9.0	6.0	7.2	6.0	9.0				

II MODELAGEM HIDRODINÂMICA

Durante o último ano a Tetra Tech Brasil iniciou o desenvolvimento de uma base numérica a partir do modelo hidrodinâmico HYCOM (*HYbrids Coordinates Ocean Model;* BLECK & BOUDRA, 1981; BLECK, 2002; HALLIWELL, 2004). Este modelo tem sido amplamente utilizado nos últimos anos pela comunidade científica e recentemente foi adotado pela PETROBRAS através da iniciativa REMO (Rede de Modelagem e Observação Oceanográfica) como o modelo a ser utilizado em estudos ambientais envolvendo modelagem de espalhamento de óleo. Esta base tem sido elaborada ao longo dos últimos quatro anos e recentemente foi submetida para aprovação pelo IBAMA.

O modelo desenvolvido pela Tetra Tech Brasil utiliza como forçante os campos de velocidades e termohalinos provenientes do modelo global HYCOM mantido pelo HYCOM *consortium*, um esforço multi-institucional, financiado pelo NOPP⁹ e pelo GODAE¹⁰, com o objetivo de desenvolver e avaliar melhor o modelo. O modelo desenvolvido é constituído por duas implementações do modelo HYCOM. A primeira implementação tem por finalidade simular o padrão de circulação em larga escala, abrangendo os oceanos Atlântico e Índico com resolução de 1/4 grau (~25km). A segunda, grade tem objetivo de reproduzir a circulação de mesoescala ao longo do litoral sul/sudeste brasileiro, com resolução de 1/24 graus (~4km).

Mais detalhadamente, o HYCOM é um modelo de circulação oceânica baseado em equações primitivas do movimento: duas equações para os componentes horizontais da velocidade, a equação de conservação de massa e duas equações de conservação para sal e temperatura, totalizando 5 equações prognosticas. Este modelo tem a capacidade de adaptar suas coordenadas verticais de acordo com as necessidades e características locais. De forma geral, são usadas coordenadas isopicnais para o interior do oceano, coordenadas sigma (que representam frações da profundidade local) no talude

¹⁰ U. S. Global Ocean Data Assimilation Experiment.

⁹ National Ocean Partnership Program

e plataforma continental e coordenadas cartesianas na camada de mistura e regiões mais rasas. Assim, temos uma melhor resolução vertical para reproduzir mistura vertical em áreas com forte estratificação, sem perder resolução para fluxos em regiões rasas ou em regiões de pouca estratificação.

Com relação à grade de mesoescala implementada ao longo do litoral sul/sudeste brasileiro, cabe ressaltar que esta representa um compromisso entre a descrição dos processos hidrodinâmicos presentes na região de interesse (escala temporal e espacial), dos recursos computacionais disponíveis no período de execução da simulação e do tempo de processamento necessário. Esta grade numérica tem dimensões de 433x533 pontos (Figura 13). Nessa grade foram utilizadas 24 camadas para a definição da estrutura vertical da região. A resolução espacial dessa grade é de 1/24° (~4km).

Figura 13 – Grade computacional do modelo hidrodinâmico.

10-048

Responsável Técnico

Pág. II-3/11

um espaçamento de 10'.

Os dados de profundidade foram obtidos através da digitalização dos valores batimétricos das cartas náuticas da DHN¹¹, nos 1.300, 1.400, 1.500, 1.600, 1.700, 1.800, 1.900, 2.000, 2.100 e 2.200. Para a representação topográfica na área não coberta pelas cartas náuticas foi utilizada a base de dados batimétricos extraída do ETOPO2 obtido no NGDC¹², reamostradas para

Os resultados finais da projeção da batimetria estão ilustrados na Figura 14.

Figura 14 – Batimetria associada à grade numérica. A barra de cores lateral apresenta a profundidade local (em metros) para cada elemento de grade.

Conforme citado, os campos de temperatura e salinidade, utilizados para inicialização do campo baroclínico, bem como para forçar a grade de mesoescala foram obtidos a partir dos resultados da grade de larga escala. A seguir são ilustrados os campos superficiais de salinidade (Figura 15) e temperatura (Figura 16).

¹¹ Diretoria de Hidrografia e Navegação da Marinha.

¹² National Geophysical Data Center da National Oceanic and Atmospheric Administration (NOAA).

Figura 15 – Resultado para salinidade na superfície.

Figura 16 – Resultado para temperatura na superfície.

II.1 COMPARATIVO ENTRE DADOS MODELADOS E OBSERVACIONAIS

Com objetivo de validar a utilização dos dados de corrente do modelo HYCOM para o ano de 2010 como base hidrodinâmica, serão apresentadas abaixo comparações entre as correntes geradas como resultado das simulações e conjuntos de dados disponíveis. É importante salientar que a falta de bases de dados disponíveis na região dificulta os processos de calibração e validação de modelos hidrodinâmicos.

Devido à ausência de dados medidos para o período da simulação, serão apresentadas comparações entre os resultados do modelo e dados de corrente medidos pelo programa WOCE bem como dados de derivador do projeto MONDO.

II.1.1 Comparação com dados WOCE

Os dados de corrente provenientes do modelo HYCOM para o ano de 2010 foram comparados aos dados observacionais da base de dados WOCE (descrita anteriormente). As bases de dados foram comparadas sobre os pontos de localização dos fundeios BM/333 e BM/334 do experimento ACM12 do WOCE, para os períodos de verão e inverno.

As Figura 16 e Figura 17 apresentam os histogramas direcionais dos vetores de corrente sobre os pontos de localização dos fundeios BM/333 e BM/334 do WOCE, respectivamente. Em cada uma são comparados os dados modelados aos dados observacionais. Nos histogramas a barra de cores representa a frequência de ocorrências (em %) e os círculos concêntricos indicam a intensidade da corrente (em m/s), além disso, o vetor da corrente média é sobreposto a cada conjunto de dados.

Na localidade do fundeio BM/333 (Figura 16) observa-se que o modelo reproduz adequadamente o vetor da corrente média, tanto em intensidade quanto em direção, principalmente para o período de verão. O padrão da corrente mostra-se predominantemente para SW, característico da circulação da Corrente do Brasil (CB). Durante o período de verão neste ponto os dados modelados (com resolução diária) apresentam uma maior concentração de dados com intensidade superior a 0,4 m/s, levemente acima da observada na base WOCE. Já no inverno as intensidades são mais bem representadas, aproximadamente 30% das observações em torno de 0,2 m/s em ambas as bases de dados.

Na localidade do fundeio BM/334 (Figura 17), mais afastado da costa e com maior profundidade, os dados do WOCE mostram ainda o padrão da CB para SW, porém com intensidades inferiores ao ponto BM/333, com maior concentração de ocorrências abaixo de 0,2 m/s. Neste ponto o modelo HYCOM apresenta uma maior dispersão na direção das correntes, mas novamente reproduz o padrão predominante para SW/SSW. Assim como no ponto BM/333, os dados modelados mostram intensidades levemente mais elevadas no período de verão.

Ш

Direção em graus a partir do norte geográfico, intensidade da veloc, média = 0.29 m/s

Figura 17 – Histogramas direcionais dos vetores de corrente comparativos entre os dados do modelo HYCOM e a base de dados WOCE na localização do fundeio BM/333, para os períodos de verão (a) e inverno (b) dos respectivos anos de amostragem. Fonte: Tetra Tech Brasil.

Direção em graus a partir do norte geográfico, intensidade da veloc. média = 0.28 m/s

(b)

Pág.

II-8/11

Figura 18 – Histogramas direcionais dos vetores de corrente comparativos entre os dados do modelo HYCOM e a base de dados WOCE na localização do fundeio BM/334, para os períodos de verão (a) e inverno (b)dos respectivos anos de amostragem. Fonte: Tetra Tech Brasil.

II.1.2 Comparação com derivadores MONDO

Os dados do modelo HYCOM para o ano de 2010 foram comparados aos dados de derivador medidos pelo programa MONDO (descrito anteriormente). Uma vez que esta base de dados não gera séries temporais, foram delimitadas quatro regiões, com aproximadamente um grau cada, ao longo da área varrida pelos derivadores. Uma vez que não estão disponíveis dados para a área dos campos Frade e Roncador, a posição de cada região foi selecionada sobre a quebra da plataforma continental, a partir da posição mais próxima aos campos (Região 1) até a posição mais distante (Região 4).

De cada uma dessas regiões foram extraídos os dados de velocidade de cada derivador que passou pela mesma, gerando uma série de dados. Um histograma direcional foi criado a partir das séries de cada uma das quatro regiões, e será comparado a um histograma equivalente gerado a partir dos resultados do HYCOM. As quatro regiões selecionadas são apresentadas na Figura 18.

As Figura 19 e Figura 20 apresentam as comparações entre os histogramas gerados a partir dos resultados do modelo HYCOM e das séries geradas a partir dos derivadores. A Figura 19 contém os resultados para as regiões 1 e 2 enquanto a Figura 20 contém os resultados para as regiões 3 e 4. Nos histogramas a barra de cores representa a frequência de ocorrências (em %) e os círculos concêntricos indicam a intensidade da corrente (em m/s), além disso, o vetor da corrente média é sobreposto a cada conjunto de dados.

As velocidades e direções médias em cada região são bastante parecidas. Todos os histogramas apresentam fluxo para SW, coerente com a presença da CB. Os dados dos derivadores apresentam maior espalhamento e velocidades máximas superiores àquelas apresentadas pelo modelo, fatos esperados por se tratarem de dados medidos, sujeitos a eventos de maior energia que podem não ser tão bem representados por modelos.

Regioes Selecionadas

Figura 19 – Regiões delimitadas para a comparação entre as medições realizadas pelos derivadores MONDO e os dados de corrente do modelo HYCOM. Fonte: Tetra Tech Brasil.

Pág.

II-11/11

Figura 20 – Histogramas direcionais dos vetores de corrente comparativos entre os dados do modelo HYCOM e as séries de dados gerados a partir dos derivadores MONDO na Região 1 (a) e Região 2 (b). Fonte: Tetra Tech Brasil.

Figura 21 – Histogramas direcionais dos vetores de corrente comparativos entre os dados do modelo HYCOM e as séries de dados gerados a partir dos derivadores MONDO na Região 3 (a) e Região 4 (b). Fonte: Tetra Tech Brasil.

Pág. III-1/4

III MODELAGEM DE DERRAME DE ÓLEO

Na modelagem de derrame de petróleo foi utilizado o modelo OILMAP. Este modelo é uma ferramenta utilizada para o acompanhamento e previsão do deslocamento e intemperismo de qualquer tipo de óleo derramado em acidentes com petróleo. A descrição completa do modelo encontra-se no Anexo A.

III.1 DADOS DE ENTRADA

Para a elaboração dos cenários de deriva para acidentes com petróleo, a área de estudo foi definida a partir de uma grade *land-water*, com dimensões de 1.000 x 1.000 pontos (Figura 21).

Figura 22 – Grade definindo os contornos de terra (grade land-water) para a modelagem de deriva de óleo.

III.1.1 Campos de Corrente

Os campos de corrente utilizados na modelagem do transporte de óleo foram gerados a partir da base hidrodinâmica simulada com o modelo oceânico HYCOM. As análises do conjunto de dados que representa o campo de correntes utilizado foram apresentadas no Item I.1.1

III.1.2 Campos de Vento

Na modelagem de deriva de óleo foi utilizado um conjunto de dados de vento variável no tempo e no espaço, proveniente da reanálise do modelo atmosférico CFSR¹³. As análises desse conjunto de dados foram apresentadas no Item I.2.1.

III.1.3 Pontos de Risco e Volumes de Derrame

A posição geográfica do ponto de risco representa a localização atual do FPSO Frade. A Tabela 8 lista os pontos de modelagem, suas coordenadas geográficas (WGS-84) e lâmina d'água local (m).

PONTOS	LATITUDE	LONGITUDE	LÂMINA D'ÁGUA (m)	
FPSO Frade	21º53'0,0"S	39º51'5,5"W	~1.100	

|--|

Os volumes utilizados nas simulações foram definidos segundo a Resolução CONAMA nº 398/08 (Brasil, 2008):

a. Pequeno: 8,0 m³;

b. Médio: 200,0 m³;

c. Pior caso: 258.304,99 m³

¹³ Climate Forecast System Reanalysis.

O volume de pior caso foi definido como o volume total da capacidade dos tanques de armazenamento de derivados de petróleo do FPSO Frade.

Nas simulações com volume pequeno (8,0 m³) e médio (200,0 m³) considerou-se o vazamento de todo o volume de óleo instantaneamente, ou seja, no instante inicial da simulação, nas simulações de pior caso o volume total foi vazado por 24 horas.

III.1.4 Características do Produto Utilizado

As características físico-químicas do óleo cru foram fornecidas pela contratante, e são apresentadas abaixo, na Tabela 9.

Tabela 9 – Características do óleo cru tipo Frade.

PARÂMETRO	VALOR
Nome do óleo	FRADE
Grau API	18,7
Densidade a 20ºC (g/cm ³)	0,9421
Viscosidade dinâmica a 25ºC (cP)	866,2
Tensão interfacial (din/cm)	19,9
Ponto de ebulição inicial (k)	450,0
Gradiente da curva de evaporação	680,0
Constante de evaporação A	8,8
Constante de evaporação B	12,6

III.2 CRITÉRIOS DE PARADA ADOTADOS NAS SIMULAÇÕES

O critério de parada adotado nas simulações foi o tempo de 30 dias após o final do vazamento, conforme critérios definidos na Nota Técnica nº 02/2009/CGPEC/DILIC (IBAMA, 2009).

III.3 RESUMO DOS CENÁRIOS SIMULADOS

As simulações para a determinação da dispersão de óleo foram realizadas utilizando-se o modelo OILMAP no modo probabilístico. Neste modo é considerada a variabilidade das forçantes ambientais. Logo, as simulações de comportamento da mancha são realizadas através da variação das condições meteorológicas e oceanográficas, divididas em dois períodos correspondendo ao verão (janeiro a março) e ao inverno (junho a agosto).

Para que se pudesse incorporar a variabilidade dessas forçantes, foi realizada, com o modelo OILMAP, uma série de 600 simulações determinísticas para cada cenário probabilístico. O número de simulações é definido, através de testes, para incorporar as variabilidades das forçantes oceanográficas e meteorológicas da área de estudo, considerando os recursos computacionais disponíveis e o tempo para execução do trabalho. A Tabela 10 apresenta um resumo dos cenários simulados neste estudo.

CENÁRIO	PRODUTO (ÓLEO)	VOLUME DE DERRAME (m ³)	DURAÇÃO DO DERRAME	ESTAÇÃO DO ANO	TEMPO DE SIMULAÇÃO
FRADE_8_VER_30D	Oleo cru	8,0	Instantâneo	Verão	30 dias
FRADE_200_VER_30D	Oleo cru	200,0	Instantâneo	Verão	30 dias
FRADE_PC_VER_31D	Oleo cru	258.304,99	30 dias	Verão	31 dias
FRADE_8_INV_30D	Oleo cru	8,0	Instantâneo	Inverno	30 dias
FRADE_200_INV_30D	Oleo cru	200,0	Instantâneo	Inverno	30 dias
FRADE_PC_INV_31D	Oleo cru	258.304,99	30 dias	Inverno	31 dias

Tabela 10 – Cenários considerados nas simulações probabilísticas.

IV RESULTADOS DA MODELAGEM DE DERRAME DE ÓLEO

Neste capítulo são apresentados os resultados das simulações probabilísticas, determinísticas críticas e determinísticas das condições meteorológicas e oceanográficas mais frequentes para potenciais derrames de óleo a partir do FPSO Frade.

Cabe ressaltar que em nenhuma das simulações realizadas levou-se em consideração as ações provenientes de Planos de Contingência e Planos de Emergência.

IV.1 SIMULAÇÕES PROBABILÍSTICAS

O modelo OILMAP foi utilizado para simular os cenários descritos no Item III.3 e produzir as curvas de contorno, demonstrando a probabilidade da presença de óleo em cada ponto da área de estudo. A Tabela 11 apresenta a extensão da costa com probabilidade de toque. Observa-se que as maiores extensões de probabilidade de toque na costa são resultados das simulações de verão.

CENÁRIOS	EXTENSÃO DE TOQUE NA COSTA (km)
FRADE_8_VER_30D	276,2
FRADE_200_VER_30D	2.022,5
FRADE_PC_VER_31D	2.208,8
FRADE_8_INV_30D	10,1
FRADE_200_INV_30D	712,6
FRADE_PC_INV_31D	1.192,6

Tabela 11 – Extensão da costa com probabilidade de toque.

Na Tabela 12 apresentam-se o percentual de simulações que impactaram a linha de costa, o menor período de tempo e o tempo médio para o óleo atingir a costa. O menor tempo de toque calculado (115 horas – Quissamã, RJ) refere-se aos cenários de derrame de 200 m³ e volume de pior caso do período de verão.

CENÁRIOS	CENÁRIOS CENÁRIOS CENÁRIOS CENÁRIOS COSTA (HORAS)		PERCENTAGEM DE SIMULAÇÕES COM TOQUE NA COSTA (%)	MUNÍCIPIO DE PRIMEIRO TOQUE	
FRADE_8_VER_30D	117	414,8	37,8	Campos dos Goytacazes - RJ	
FRADE_200_VER_30D	115	422,0	38,6	Quissamã - RJ	
FRADE_PC_VER_31D	115	458,1	43,0	Quissamã - RJ	
FRADE_8_INV_30D	640	592,5	26,3	Ilhabela - SP	
FRADE_200_INV_30D	172	582,9	30,2	Ilha Cabo Frio Arraial do Cabo – RJ	
FRADE_PC_INV_31D	172	582,2	42,6	Ilha Cabo Frio Arraial do Cabo – RJ	

 Tabela 12 – Resumo dos resultados da modelagem probabilística.

Cabe aqui ressaltar que, em todas as ilustrações de intervalos de probabilidade de óleo na água e costa, apresentadas a seguir, o valor correspondente ao limite superior dos intervalos da escala de cores está incluído na classe. Assim, por exemplo, no intervalo de probabilidade de 10-20% estão incluídas as probabilidades superiores a 10% e menores ou iguais a 20%.

As ilustrações dos contornos de tempo correspondem ao tempo mínimo de deslocamento de óleo na água calculado (para cada posição da grade) entre todos os cenários determinísticos que compõem o cenário probabilístico. Nestas ilustrações são apresentados os tempos de 2, 6, 12, 36 e 60 horas após o início do derrame, selecionados de acordo com o tempo máximo para a disponibilização de recursos de contenção/limpeza no local da ocorrência da descarga especificados na Resolução do CONAMA nº 398/08 (Brasil, 2008). Para tempos superiores a estes, foram selecionados intervalos que melhor se adequaram à visualização da evolução dos derrames na área de estudo.

As escalas de cores adotadas foram selecionadas de forma a permitir uma melhor diferenciação dos intervalos de probabilidade e tempo escolhidos.

IV.1.1 Simulações Probabilísticas – Volume Pequeno

Para as simulações de volume pequeno (8,0 m³), o menor tempo de toque na costa foi de 117 horas para o verão e 640 horas para o inverno. Da Figura 22 até a Figura 25 são apresentados resultados das simulações probabilísticas de verão, com derrame de volume pequeno. Os resultados das simulações de inverno são apresentados em seguida, da Figura 26 até a Figura 29.

Figura 23 – Cenário FRADE_8_VER_30D. Contornos de probabilidade de óleo cru na água, para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de verão (janeiro a março), com derrame de 8,0 m³ (instantâneo), após 30 dias de simulação.

Pág. IV-4/54

Figura 24 – Cenário FRADE_8_VER_30D. Contornos do tempo de deslocamento do óleo cru na água para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de verão (janeiro a março), com derrame de 8,0 m³ (instantâneo), após 30 dias de simulação.

Revisão 00 01/2013

1**0-0**48

Figura 25 – Cenário FRADE_8_VER_30D. Probabilidade de toque de óleo cru na costa para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de verão (janeiro a março), com derrame de 8,0 m³ (instantâneo), após 30 dias de simulação.

Figura 26 – Cenário FRADE_8_VER_30D. Volume máximo de óleo cru na costa para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de verão (janeiro a março), com derrame de 8,0 m³ (instantâneo), após 30 dias de simulação.

Figura 27 – Cenário FRADE_8_INV_30D. Contornos de probabilidade de óleo cru na água, para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de inverno (junho a agosto), com derrame de 8,0 m³ (instantâneo), após 30 dias de simulação.

Figura 28 – Cenário FRADE_8_INV_30D. Contornos do tempo de deslocamento do óleo cru na água para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de inverno (junho a agosto), com derrame de 8,0 m³ (instantâneo), após 30 dias de simulação.

10-048

Figura 29 – Cenário FRADE_8_INV_30D. Probabilidade de toque de óleo cru na costa para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de inverno (junho a agosto), com derrame de 8,0 m³ (instantâneo), após 30 dias de simulação.

Figura 30 – Cenário FRADE_8_INV_30D. Volume máximo de óleo cru na costa para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de inverno (junho a agosto), com derrame de 8,0 m³ (instantâneo), após 30 dias de simulação.

A Tabela 13 apresenta a probabilidade de toque, o tempo mínimo de toque na linha de costa e o volume máximo por metro de costa para os municípios com probabilidade de toque, para as simulações dos meses de verão e de inverno, com derrame de volume pequeno (8,0 m³). Para o verão, o menor tempo de toque foi no município de Campo dos Goytacazes (RJ), tendo sido 117 horas, nesse município a maior probabilidade de toque foi de 1%, e o volume máximo de óleo por metro de costa foi 0,00053 m³/m. Para o inverno, o menor tempo de toque foi no município de Ilhabela (SP), tendo sido 640 horas, nesse município a maior probabilidade de toque máximo de óleo por metro de toque foi de 1%, e o volume máximo de costa foi 0,00053 m³/m.

Revisão 00 01/2013

10-048

MUNICÍPIO		PROBABILIDADE DE OLEO NA COSTA (%)		TEMPO MINIMO DE TOQUE NA COSTA (horas)		MAXIMO VOLUME NA COSTA (m³/m)	
		Verão	Inverno	Verão	Inverno	Verão	Inverno
	São Francisco de Itabapoana	1	N.A.	204	N.A.	0,00016	N.A.
	São João da Barra	1	N.A.	133	N.A.	0,00025	N.A.
	Campos dos Goytacazes	1	N.A.	117	N.A.	0,00053	N.A.
	Quissamã	1	N.A.	126	N.A.	0,00042	N.A.
	Carapebus	1	N.A.	204	N.A.	0,00024	N.A.
	Rio das Ostras	1	N.A.	220	N.A.	0,00010	N.A.
	Rio das Ostras (Ilha não identificada)	1	N.A.	253	N.A.	0,00002	N.A.
	Cabo Frio (Ilha Comprida)	1	N.A.	205	N.A.	0,00014	N.A.
	Cabo Frio (Ilha do Papagaio)	1	N.A.	215	N.A.	0,00006	N.A.
	Armação dos Búzios	1	N.A.	202	N.A.	0,00014	N.A.
RJ	Armação dos Búzios (Ilha Ancora)	1	N.A.	195	N.A.	0,00028	N.A.
	Armação dos Búzios (Ilha do Breu)	1	N.A.	204	N.A.	0,00009	N.A.
	Armação dos Búzios (Ilha Gravata)	1	N.A.	201	N.A.	0,00010	N.A.
	Armação dos Búzios (Ilha Pargos)	1	N.A.	205	N.A.	0,00009	N.A.
	Armação dos Búzios (Ilha não identificada)	1	N.A.	199	N.A.	0,00014	N.A.
	Arraial do Cabo	1	N.A.	296	N.A.	0,00047	N.A.
	Araruama	1	N.A.	319	N.A.	0,00017	N.A.
	Niterói	1	N.A.	467	N.A.	0,00027	N.A.
	Niterói (Ilha do Pai)	1	N.A.	346	N.A.	0,00010	N.A.
	Niterói (Ilha na identificada)	1	N.A.	467	N.A.	0,00024	N.A.
	Rio de Janeiro	1	N.A.	332	N.A.	0,00024	N.A.
	Rio de Janeiro (Ilha de Guaratiba)	1	N.A.	298	N.A.	0,00008	N.A.
	Rio de Janeiro (Ilha Redonda)	1	N.A.	317	N.A.	0,00009	N.A.
	Rio de Janeiro (Ilha não identificada)	1	N.A.	309	N.A.	0,00009	N.A.

Tabela 13 – Lista de municípios com probabilidade de toque para os cenários de derrame de óleo com volume pequeno (8,0 m³), durante os períodos de verão e inverno.

Tabela 13 – Lista de municípios com probabilidade de toque para os cenários de derrame de óleo com volume pequeno (8,0 m³), durante os períodos de verão e inverno (continuação).

	Rio de Janeiro (Ilha Urupira)	1	N.A.	303	N.A.	0,00005	N.A.
	Rio de Janeiro (Ilha de Palmas)	1	N.A.	338	N.A.	0,00016	N.A.
	Rio de Janeiro (Ilha da Cagarras)	1	N.A.	324	N.A.	0,00016	N.A.
	Rio de Janeiro (Ilhas Tijucas)	1	N.A.	335	N.A.	0,00011	N.A.
	Angra dos Reis	1	N.A.	389	N.A.	0,00016	N.A.
	Angra dos Reis (Ilha Grande)	1	N.A.	391	N.A.	0,00009	N.A.
	Angra dos Reis (Ilha Jorge Grego)	1	N.A.	389	N.A.	0,00016	N.A.
	Angra dos Reis (Ilha não identificada)	1	N.A.	391	N.A.	0,00009	N.A.
SP	Ilhabela	N.A.	1	N.A.	640	N.A.	0,00018

N.A. = não aplicável (não há probabilidade de toque na costa).

IV.1.2 Simulações Probabilísticas – Volume Médio

Para as simulações de volume médio (200,0 m³) o menor tempo de toque na costa foi de 115 horas para o verão e 172 horas para o inverno.

Da Figura 30 até a Figura 33 são apresentados os resultados das simulações probabilísticas de verão, com derrame de volume médio. Os resultados das simulações de inverno são apresentados a partir da Figura 34 até a Figura 37.

Figura 31 – Cenário FRADE_200_VER_30D. Contornos de probabilidade de óleo cru na água, para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de verão (janeiro a março), com derrame de 200 m³ (instantâneo), após 30 dias de simulação.

Figura 32 – Cenário FRADE_200_VER_30D. Contornos do tempo de deslocamento do óleo cru na água para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de verão (janeiro a março), com derrame de 200 m³ (instantâneo), após 30 dias de simulação.

Figura 33 – Cenário FRADE_200_VER_30D. Probabilidade de toque de óleo cru na costa para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de verão (janeiro a março), com derrame de 200 m³ (instantâneo), após 30 dias de simulação.

Pág.

IV-15/54

Figura 34 – Cenário FRADE_200_VER_30D. Volume máximo de óleo cru na costa para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de verão (janeiro a março), com derrame de 200 m³ (instantâneo), após 30 dias de simulação.

Figura 35 – Cenário FRADE_200_INV_30D. Contornos de probabilidade de óleo cru na água, para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de inverno (junho a agosto), com derrame de 200 m³ (instantâneo), após 30 dias de simulação.

Figura 36 – Cenário FRADE_200_INV_30D. Contornos do tempo de deslocamento do óleo cru na água para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de inverno (junho a agosto), com derrame de 200 m³ (instantâneo), após 30 dias de simulação.

Figura 37 – Cenário FRADE_200_INV_30D. Probabilidade de toque de óleo cru na costa para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de inverno (junho a agosto), com derrame de 200 m³ (instantâneo), após 30 dias de simulação.

Óleo

IV

Figura 38 – Cenário FRADE_200_INV_30D. Volume máximo de óleo cru na costa para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de inverno (junho a agosto), com derrame de 200 m³ (instantâneo), após 30 dias de simulação.

A Tabela 14 apresenta a probabilidade de toque, o tempo mínimo de toque na linha de costa e o volume máximo por metro de costa para os municípios com probabilidade de toque, para as simulações dos meses de verão e inverno, com derrame de 200 m³. Para o verão, o menor tempo de toque foi no município de Quissamã (RJ), tendo sido 115 horas, nesse município a maior probabilidade de toque foi de 6%, e o volume máximo de óleo por metro de costa foi 0,01639 m³/m. Para o inverno, o menor tempo de toque foi na Ilha de Cabo Frio, município de Arraial do Cabo (RJ), tendo sido 172 horas, nesse município a maior probabilidade de toque foi de 2%, e o volume máximo de óleo por metro de costa foi 0,00212 m³/m.

Revisão 00 01/2013

10-048

Tabela	14 – L	.ista de	e mun	icípios co	om prob	abilidade de	toque pa	ara o	s cenários	: de	derran	ıе
	de) óleo	сот	volume	médio	(200,0 m³),	durante	os	períodos	de	verão	е
	in	verno.										

	MUNICÍPIO	PROBAB DE OLI COST	ILIDADE EO NA A (%)	TEMPO DE TO COST	O MINIMO QUE NA A (horas)	MAXIMO V COSTA	OLUME NA (m³/m)
		Verão	Inverno	Verão	Inverno	Verão	Inverno
	Aracruz	N.A.	1	N.A.	468	N.A.	0,00031
	Serra	N.A.	1	N.A.	438	N.A.	0,00052
	Vitória	N.A.	1	N.A.	457	N.A.	0,00031
	Vila Velha	N.A.	1	N.A.	449	N.A.	0,00021
	Vila Velha (Ilha não identificada)	N.A.	1	N.A.	475	N.A.	0,00013
ES	Piúma	1	N.A.	491	N.A.	0,00005	N.A.
	Piúma (Ilha não identificada)	1	N.A.	489	N.A.	0,00005	N.A.
	Itapemirim	1	N.A.	477	N.A.	0,00016	N.A.
	Itapemirim (Ilha não identificada)	1	N.A.	478	N.A.	0,00005	N.A.
	Marataízes	1	N.A.	399	N.A.	0,00073	N.A.
	Presidente Kennedy	1	N.A.	233	N.A.	0,00102	N.A.
	São Francisco de Itabapoana	5	N.A.	211	N.A.	0,00526	N.A.
	São João da Barra	5	1	133	320	0,00635	0,00005
	Campos dos Goytacazes	7	1	117	261	0,01466	0,00070
	Quissamã	6	1	115	244	0,01639	0,00034
	Carapebus	2	N.A.	162	N.A.	0,00245	N.A.
	Macaé	2	N.A.	215	N.A.	0,00361	N.A.
	Macaé (Ilha de Santana)	2	N.A.	194	N.A.	0,00189	N.A.
RJ	Macaé (Ilha do Francês)	2	N.A.	192	N.A.	0,00183	N.A.
	Macaé (Ilha dos Papagaios)	1	N.A.	261	N.A.	0,00137	N.A.
	Macaé (Ilha não identificada)	2	N.A.	203	N.A.	0,00235	N.A.
	Rio das Ostras	1	N.A.	220	N.A.	0,00361	N.A.
	Rio das Ostras (Ilha não identificada)	1	N.A.	253	N.A.	0,00079	N.A.
	Casimiro de Abreu	1	N.A.	349	N.A.	0,00096	N.A.
	Casimiro de Abreu (Ilha não identificada)	2	N.A.	352	N.A.	0,00022	N.A.
	Cabo Frio	3	1	216	497	0,00446	0,00035

	Cabo Frio (Ilha Comprida)	3	1	205	491	0,00217	0,00047
	Cabo Frio (Ilha do Papagaio)	3	1	215	496	0,00223	0,00032
	Armação dos Búzios	3	1	202	476	0,00522	0,00107
	Armação dos Búzios (Ilha Ancora)	4	1	195	403	0,00389	0,00096
	Armação dos Búzios (Ilha Branca)	3	1	211	485	0,00147	0,00017
	Armação dos Búzios (Ilha do Breu)	3	1	204	483	0,00176	0,00027
	Armação dos Búzios (Ilha Gravata)	4	1	201	306	0,00218	0,00061
	Armação dos Búzios (Ilha Pargos)	3	1	205	486	0,00085	0,00030
	Armação dos Búzios (Ilha não identificada)	3	1	199	470	0,00522	0,00038
	Armação dos Búzios (Ilha Rasa)	1	1	318	497	0,00199	0,00038
	Arraial do Cabo	6	1	206	427	0,01178	0,00141
	Arraial do Cabo (Ilha Cabo Frio)	8	2	195	172	0,00666	0,00212
	Arraial do Cabo (Ilha dos Porcos)	3	1	213	427	0,00054	0,00141
	Arraial do Cabo (Ilha não identificada)	5	1	206	313	0,00119	0,00068
RJ	Araruama	3	1	319	675	0,00570	0,00002
	Saquarema	3	1	255	513	0,00365	0,00007
	Saquarema (Ilha não identificada)	2	1	255	507	0,00170	0,00007
	Maricá	1	1	394	516	0,00323	0,00012
	Maricá (Ilhas Maricas)	2	1	397	513	0,00188	0,00010
	Niterói	2	N.A.	411	N.A.	0,00742	N.A.
	Niterói (Ilha do Pai)	2	N.A.	344	N.A.	0,00281	N.A.
	Niterói (Ilha da Mãe)	2	N.A.	437	N.A.	0,00163	N.A.
	Niterói (Ilha na identificada)	2	N.A.	446	N.A.	0,00612	N.A.
	Rio de Janeiro	7	1	299	566	0,00844	0,00007
	Rio de Janeiro (Ilha de Guaratiba)	7	1	298	600	0,00181	0,00002
	Rio de Janeiro (Ilha Rasa)	4	1	321	531	0,00182	0,00017
	Rio de Janeiro (Ilha Redonda)	5	1	317	526	0,00353	0,00010
	Rio de Janeiro (Ilha não identificada)	5	1	303	526	0,00353	0,00007
	Rio de Janeiro (Ilha Urupira)	6	N.A.	303	N.A.	0,00113	N.A.

Revisão 00 01/2013

Tabela 14 – Lista de municípios com probabilidade de toque para os cenários de derrame de óleo com volume médio (200,0 m³), durante os períodos de verão e inverno (continuação).

	Rio de Janeiro (Ilha de Palmas)	4	N.A.	338	N.A.	0,00495	N.A.
	Rio de Janeiro (Ilha da Cagarras)	4	N.A.	324	N.A.	0,00495	N.A.
	Rio de Janeiro (Ilhas Tijucas)	5	N.A.	335	N.A.	0,00310	N.A.
	Itaguaí (Restinga da Marambaia)	3	1	325	653	0,00386	0,00002
	Mangaratiba	1	N.A.	511	N.A.	0,00028	N.A.
	Mangaratiba (Restinga da Marambaia)	3	N.A.	348	N.A.	0,00289	N.A.
RI	Mangaratiba (Ilha de Guaiba)	1	N.A.	605	N.A.	0,00005	N.A.
1.0	Mangaratiba (Ilha não identificada)	2	1	397	636	0,00072	0,00004
	Angra dos Reis	7	1	389	626	0,00659	0,00406
	Angra dos Reis (Ilha Grande)	5	1	391	620	0,00659	0,00092
	Angra dos Reis (Ilha Jorge Grego)	7	1	389	626	0,00545	0,00406
	Angra dos Reis (Ilha não identificada)	4	1	397	637	0,00534	0,00092
	Parati	3	1	516	607	0,00375	0,00362
	Parati (Ilha não identificada)	2	1	516	611	0,00100	0,00318
	Ubatuba	1	1	550	637	0,00135	0,00037
	Ubatuba (Ilha Anchieta)	2	2	572	629	0,00107	0,00123
	Ubatuba (Ilha Comprida)	1	1	594	673	0,00022	0,00024
	Ubatuba (Ilha das Couves)	1	1	570	641	0,00061	0,00049
	Ubatuba (Ilha do Mar Virado)	1	1	615	683	0,00062	0,00007
	Ubatuba (Ilha não identificada)	2	2	562	627	0,00101	0,00054
	Caraguatatuba	1	N.A.	634	N.A.	0,00095	N.A.
SP	Caraguatatuba (Ilha Tamanduá)	1	N.A.	652	N.A.	0,00005	N.A.
	Ilhabela	10	3	533	538	0,00453	0,00535
	Ilhabela (Ilha de Vitória)	8	3	521	601	0,00449	0,00376
	Ilhabela (Ilha dos Búzios)	8	2	539	597	0,00171	0,00147
	Ilhabela (Ilha não identificada)	4	1	551	593	0,00419	0,00101
	Ilhabela (Ilha Sumitica)	8	2	549	596	0,00028	0,00017
	São Sebastião	1	1	607	697	0,00168	0,00054
	São Sebastião (Arquipélago dos Alcatrazes)	8	5	571	559	0,00348	0,00051

	São Sebastião (Ilha não identificada)	1	N.A.	632	N.A.	0,00016	N.A.
	Guarujá	2	1	634	712	0,00129	0,00004
	Guarujá (Ilha da Moela)	2	1	638	709	0,00072	0,00024
	Guarujá (Ilha não identificada)	2	1	636	709	0,00072	0,00024
	Santos (Parque Estadual Marinho da Laje de Santos)	6	5	592	569	0,00067	0,00039
	Mongaguá	1	N.A.	670	N.A.	0,00016	N.A.
SP	Itanhaém	1	N.A.	680	N.A.	0,00027	N.A.
	Itanhaém (Ilha da Queimada Grande)	1	6	642	634	0,00078	0,00266
	Itanhaém (Ilha da Queimada Pequena)	1	3	670	662	0,00044	0,00017
	Peruíbe	1	N.A.	693	N.A.	0,00011	N.A.
	Peruíbe (Ilha do Guarau)	1	N.A.	693	N.A.	0,00005	N.A.
	Peruíbe (Ilha não identificada)	1	N.A.	702	N.A.	0,00005	N.A.
	Peruíbe (Laje da Conceição)	2	N.A.	650	N.A.	0,00112	N.A.
	São Francisco do Sul	1	N.A.	612	N.A.	0,00011	N.A.
	São Francisco do Sul (Ilha da Paz)	1	N.A.	680	N.A.	0,00005	N.A.
	São Francisco do Sul (Ilha da Sororoca Grande)	1	N.A.	694	N.A.	0,00005	N.A.
	São Francisco do Sul (Ilha da Sororoca Pequena)	1	N.A.	694	N.A.	0,00005	N.A.
	São Francisco do Sul (Ilha da Velha)	1	N.A.	694	N.A.	0,00005	N.A.
	São Francisco do Sul (Ilha Mandigituba)	1	N.A.	659	N.A.	0,00005	N.A.
SC	São Francisco do Sul (Ilha Tamboretes)	1	N.A.	605	N.A.	0,00016	N.A.
	São Francisco do Sul (Ilhota São Luís)	1	N.A.	694	N.A.	0,00005	N.A.
	São Francisco do Sul (Pedra do Cação)	1	N.A.	668	N.A.	0,00005	N.A.
	São Francisco do Sul (Pedra do Filhote do Cação)	1	N.A.	685	N.A.	0,00005	N.A.
	Balneário Barra do Sul	1	N.A.	619	N.A.	0,00005	N.A.
	Balneário Barra do Sul (Ilha Araras)	1	N.A.	618	N.A.	0,00005	N.A.
	Balneário Barra do Sul (Ilha dos Lobos)	1	N.A.	602	N.A.	0,00005	N.A.

Revisão 00 01/2013

10-048

Tabela 14 – Lista de municípios com probabilidade de toque para os cenários de derrame de óleo com volume médio (200,0 m³), durante os períodos de verão e inverno (continuação).

	Balneário Barra do Sul (Ilha Feia)	1	N.A.	610	N.A.	0,00005	N.A.
	Balneário Barra do Sul (Ilha Remédio)	1	N.A.	610	N.A.	0,00005	N.A.
	Balneário Barra do Sul (Ilha Tipitinga)	1	N.A.	607	N.A.	0,00005	N.A.
	Balneário Barra do Sul (Ilha não identificada)	1	N.A.	610	N.A.	0,00005	N.A.
	Penha	1	N.A.	608	N.A.	0,00022	N.A.
	Itajaí	1	N.A.	732	N.A.	0,00005	N.A.
	Balneário Camboriú	1	N.A.	603	N.A.	0,00005	N.A.
	Porto Belo	1	N.A.	564	N.A.	0,00011	N.A.
	Bombinhas	1	N.A.	550	N.A.	0,00162	N.A.
	Bombinhas (Ilha da Galé)	2	N.A.	525	N.A.	0,00106	N.A.
	Bombinhas (Ilha Deserta)	2	N.A.	510	N.A.	0,00033	N.A.
	Bombinhas (Ilha do Amendoim)	1	N.A.	554	N.A.	0,00056	N.A.
	Bombinhas (Ilha do Arvoredo)	1	N.A.	523	N.A.	0,00039	N.A.
SC	Florianópolis	2	N.A.	501	N.A.	0,00152	N.A.
	Florianópolis (Ilha do Xavier)	2	N.A.	525	N.A.	0,00144	N.A.
	Florianópolis (Ilha das Aranhas)	2	N.A.	510	N.A.	0,00028	N.A.
	Florianópolis (Ilha do Badejo)	2	N.A.	518	N.A.	0,00016	N.A.
	Florianópolis (Ilha do Campeche)	2	N.A.	526	N.A.	0,00050	N.A.
	Florianópolis (Ilha Irmã de Fora)	2	N.A.	530	N.A.	0,00208	N.A.
	Florianópolis (Ilha Irmã do Meio)	1	N.A.	531	N.A.	0,00090	N.A.
	Florianópolis (Ilha Irmã Pequena)	1	N.A.	546	N.A.	0,00050	N.A.
	Florianópolis (Ilha Mara Fome)	1	N.A.	528	N.A.	0,00022	N.A.
	Florianópolis (Ilha Moleques do Sul)	2	N.A.	500	N.A.	0,00117	N.A.
	Florianópolis (Ilha Moleques do Norte)	1	N.A.	535	N.A.	0,00022	N.A.
	Florianópolis (Ilha não identificada)	2	N.A.	515	N.A.	0,00039	N.A.
	Palhoça	1	N.A.	552	N.A.	0,00078	N.A.
	Palhoça (Ilha não identificada)	1	N.A.	555	N.A.	0,00011	N.A.
	Paulo Lopes	1	N.A.	560	N.A.	0,00078	N.A.

Óleo

IV

Tabela 14 – Lista de municípios com probabilidade de toque para os cenários de derrame de óleo com volume médio (200,0 m3), durante os períodos de verão e inverno (continuação).

	Paulo Lopes (Ilha do Coral)	2	N.A.	534	N.A.	0,00124	N.A.
66	Garopaba	1	N.A.	542	N.A.	0,00045	N.A.
	Garopaba (Ilhota do Siri)	1	N.A.	580	N.A.	0,00005	N.A.
30	Imbituba (Ilha Tacami)	1	N.A.	546	N.A.	0,00056	N.A.
	Laguna	1	N.A.	591	N.A.	0,00016	N.A.
	Laguna (Ilha não identificada)	1	N.A.	611	N.A.	0,00011	N.A.

N.A. = não aplicável (não há probabilidade de toque na costa).

IV.1.3 Simulações Probabilísticas – Volume Pior Caso

Para as simulações de volume médio (258.304,99 m³) o menor tempo de toque na costa foi de 115 horas para o verão e 172 horas para o inverno.

Da Figura 38 até a Figura 41 são apresentados os resultados das simulações probabilísticas de verão, com derrame de pior caso. Os resultados das simulações de inverno são apresentados a partir da Figura 42 até a Figura 45.

Figura 39 – Cenário FRADE_PC_VER_31D. Contornos de probabilidade de óleo cru na água, para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de verão (janeiro a março), com derrame de 258.304,99 m³ (24 horas), após 31 dias de simulação.

Figura 40 – Cenário FRADE_PC_VER_31D. Contornos do tempo de deslocamento do óleo cru na água para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de verão (janeiro a março), com derrame de 258.304,99 m³ (24 horas), após 31 dias de simulação.

Figura 41 – Cenário FRADE_PC_VER_31D. Probabilidade de toque de óleo cru na costa para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de verão (janeiro a março), com derrame de 258.304,99 m³ (24 horas), após 31 dias de simulação.

Pág.

IV-30/54

Figura 42 – Cenário FRADE_PC_VER_31D. Volume máximo de óleo cru na costa para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de verão (janeiro a março), com derrame de 258.304,99 m³ (24 horas), após 31 dias de simulação.

Figura 43 – Cenário FRADE_PC_INV_31D. Contornos de probabilidade de óleo cru na água, para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de inverno (junho a agosto), com de 258.304,99 m³ (24 horas), após 31 dias de simulação.

Figura 44 – Cenário FRADE_PC_INV_31D. Contornos do tempo de deslocamento do óleo cru na água para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de inverno (junho a agosto), com derrame de 258.304,99 m³ (24 horas), após 31 dias de simulação.

Figura 45 – Cenário FRADE_PC_INV_31D. Probabilidade de toque de óleo cru na costa para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de inverno (junho a agosto), com derrame de 258.304,99 m³ (24 horas), após 31 dias de simulação.

Pág.

Figura 46 – Cenário FRADE_PC_INV_30D. Volume máximo de óleo cru na costa para um acidente a partir do ponto de risco FPSO Frade, Bacia de Campos, durante os meses de inverno (junho a agosto), com derrame de 258.304,99 m³ (24 horas), após 31 dias de simulação.

A Tabela 15 apresenta a probabilidade de toque, o tempo mínimo de toque na linha de costa e o volume máximo por metro de costa para os municípios com probabilidade de toque, para as simulações dos meses de verão e de inverno, com derrame de volume de pior caso. Para o verão, o menor tempo de toque foi no município de Quissamã (RJ), tendo sido 115 horas. A maior probabilidade de toque foi de 11%, e o volume máximo de óleo por metro de costa foi 14,04407 m³/m. Para o inverno, o menor tempo de toque foi na Ilha de Cabo Frio, município de Arraial do Cabo (RJ), tendo sido 172 horas. A maior probabilidade de toque foi de 10%, e o volume máximo de óleo por metro de costa foi 3,11985 m³/m.

Revisão 00 01/2013

10-048

	MUNICÍPIO	PROBAE DE OL COST	SILIDADE EO NA A (%)	TEMPO MI TOQUE N/ (hor	TEMPO MINIMO DE TOQUE NA COSTA (horas)		MAXIMO VOLUME NA COSTA (m3/m)	
		Verão	Inverno	Verão	Inverno	Verão	Inverno	
	Aracruz	N.A.	2	N.A.	431	N.A.	0,33600	
	Fundão	N.A.	2	N.A.	436	N.A.	0,11187	
	Serra	N.A.	3	N.A.	437	N.A.	0,56107	
	Vitória	N.A.	2	N.A.	457	N.A.	0,33643	
	Vila Velha	N.A.	3	N.A.	449	N.A.	0,26251	
	Vila Velha (Ilha não identificada)	N.A.	3	N.A.	475	N.A.	0,06254	
	Guarapari	N.A.	1	N.A.	486	N.A.	0,07437	
ES	Guarapari (Ilha não identificada)	N.A.	1	N.A.	486	N.A.	0,03741	
	Anchieta	1	1	524	526	0,03365	0,03711	
	Piúma	1	1	491	571	0,03435	0,03702	
	Piúma (Ilha não identificada)	1	1	489	573	0,03431	0,03702	
	Itapemirim	1	1	477	593	0,06875	0,11030	
	Itapemirim (Ilha não identificada)	1	1	478	599	0,03441	0,03693	
	Marataízes	1	1	200	593	0,44717	0,03695	
	Presidente Kennedy	4	1	231	627	0,48172	0,03683	
	São Francisco de Itabapoana	7	1	211	595	6,25825	0,03687	
	São João da Barra	8	2	132	320	8,34601	0,10909	
	Campos dos Goytacazes	11	6	117	261	15,51580	0,70885	
	Quissamã	11	6	115	244	14,04407	0,22461	
	Carapebus	5	1	162	683	1,85335	0,03605	
RJ	Macaé	4	1	215	692	0,94150	0,03623	
	Macaé (Ilha de Santana)	5	2	194	653	0,86605	0,07255	
	Macaé (Ilha do Francês)	6	2	191	651	0,86605	0,07221	
	Macaé (Ilha dos Papagaios)	4	1	223	698	0,31137	0,03601	
	Macaé (Ilha não identificada)	5	1	203	700	0,94150	0,03611	
	Rio das Ostras	4	1	220	700	0,68980	0,03624	

	Rio das Ostras (Ilha não identificada)	4	N.A.	253	N.A.	0,37870	N.A.
	Casimiro de Abreu	4	1	349	704	0,61669	0,03624
	Casimiro de Abreu (Ilha não identificada)	4	N.A.	352	N.A.	0,61669	N.A.
	Cabo Frio	6	5	216	497	2,20807	0,79632
	Cabo Frio (Ilha Comprida)	7	5	205	490	1,01481	0,50802
	Cabo Frio (Ilha do Papagaio)	7	4	215	496	1,01246	0,47114
	Armação dos Búzios	7	6	202	470	4,53336	0,76311
	Armação dos Búzios (Ilha Ancora)	7	8	195	403	3,34504	0,91220
	Armação dos Búzios (Ilha Branca)	6	6	211	482	0,51596	0,69308
	Armação dos Búzios (Ilha do Breu)	7	6	202	404	1,75453	0,50840
	Armação dos Búzios (Ilha Gravata)	7	7	201	306	1,81814	0,47455
	Armação dos Búzios (Ilha Pargos)	6	6	205	391	1,75453	0,29079
	Armação dos Búzios (Ilha não identificada)	7	6	199	470	4,53336	0,76311
RJ	Armação dos Búzios (Ilha Rasa)	5	5	227	497	1,24240	0,36236
	Arraial do Cabo	9	5	203	427	6,36986	3,37353
	Arraial do Cabo (Ilha Cabo Frio)	12	10	195	172	4,41718	3,11985
	Arraial do Cabo (Ilha dos Porcos)	8	5	213	427	0,36159	3,37353
	Arraial do Cabo (Ilha não identificada)	10	7	206	313	0,93619	1,77517
	Araruama	7	1	319	526	4,80008	0,03636
	Saquarema	6	1	255	509	3,58046	0,10888
	Saquarema (Ilha não identificada)	6	1	255	507	0,24880	0,03637
	Maricá	3	1	394	516	1,20458	0,18118
	Maricá (Ilhas Maricas)	5	2	397	513	0,85927	0,18145
	Niterói	3	N.A.	411	N.A.	7,43298	N.A.
	Niterói (Ilha do Pai)	3	1	344	541	2,25077	0,03618
	Niterói (Ilha do Mãe)	3	N.A.	437	N.A.	0,98820	N.A.
	Rio de Janeiro	9	2	299	566	8,01718	0,07201
	Rio de Janeiro (Ilha de Guaratiba)	10	2	298	600	3,84242	0,03601

Revisão 00 01/2013

	Rio de Janeiro (Ilha Rasa)	6	2	321	531	0,72186	0,25377
	Rio de Janeiro (Ilha Redonda)	7	2	317	524	1,27806	0,14505
	Rio de Janeiro (Ilha não identificada)	8	2	303	524	1,53286	0,03633
	Rio de Janeiro (Ilha Urupira)	8	1	303	564	1,42667	0,03612
	Rio de Janeiro (Ilha de Palmas)	5	N.A.	338	N.A.	5,87201	N.A.
	Itaguaí (Restinga da Marambaia)	6	N.A.	325	N.A.	2,85834	N.A.
	Mangaratiba	1	N.A.	508	N.A.	0,13966	N.A.
. .	Mangaratiba (Restinga da Marambaia)	6	1	348	656	2,23083	0,03588
RJ	Mangaratiba (Ilha de Guaiba)	1	N.A.	605	N.A.	0,06769	N.A.
	Mangaratiba (Ilha não identificada)	5	N.A.	397	N.A.	0,47875	N.A.
	Angra dos Reis	10	4	389	626	3,46149	2,43346
	Angra dos Reis (Ilha Grande)	7	3	391	620	5,91630	0,93114
	Angra dos Reis (Ilha Jorge Grego)	10	4	389	626	1,64485	2,43346
	Angra dos Reis (Ilha não identificada)	6	2	391	637	2,67087	0,93114
	Parati	7	4	512	618	1,66653	2,06905
	Parati (Ilha não identificada)	7	4	512	618	0,74121	2,06905
	Ubatuba	7	3	548	637	1,23347	0,42588
	Ubatuba (Ilha Anchieta)	8	6	572	629	0,92571	1,99524
	Ubatuba (Ilha Comprida)	4	2	574	652	0,16894	0,24778
	Ubatuba (Ilha das Couves)	6	4	570	641	0,27037	0,46120
	Ubatuba (Ilha do Mar Virado)	6	1	607	683	1,16432	0,14235
0.5	Ubatuba (Ilha não identificada)	10	6	562	627	0,92571	0,89083
SP	Caraguatatuba	6	1	634	713	1,25881	0,03543
	Caraguatatuba (Ilha do Tamanduá)	2	N.A.	652	N.A.	0,06845	N.A.
	Ilhabela	17	10	533	538	6,00590	6,16218
	Ilhabela (Ilha de Vitória)	15	9	521	562	6,64810	2,16967
	Ilhabela (Ilha dos Búzios)	15	9	539	597	1,46482	3,11923
	Ilhabela (Ilha não identificada)	13	8	551	593	6,00590	0,85310

	Ilhabela (Ilha Sumitica)	13	8	549	596	0,30623	0,2486
	São Sebastião	7	2	606	697	1,46117	0,60189
	São Sebastião (Arquipélago dos Alcatrazes)	14	14	566	559	1,90655	1,02574
	São Sebastião (Ilha não identificada)	1	1	630	736	0,06809	0,03540
	Guarujá	4	1	634	701	1,59710	0,07031
	Guarujá (Ilha da Moela)	4	1	633	702	0,98630	0,10555
	Guarujá (Ilha não identificada)	4	1	636	702	1,02048	0,10555
	Santos (Parque Estadual Marinho da Laje de Santos)	12	15	592	569	0,88455	0,52922
٩Р	Praia Grande	1	N.A.	706	N.A.	0,03395	N.A.
01	Mongaguá	2	N.A.	670	N.A.	0,10216	N.A.
	Itanhaém	2	1	678	735	0,20370	0,03527
	Itanhaém (Ilha da Queimada Grande)	5	10	642	634	0,54140	2,76270
	Itanhaém (Ilha da Queimada Pequena)	3	5	670	651	0,67662	0,67252
	Peruíbe	2	2	693	712	0,30435	0,07074
	Peruíbe (Ilha do Guarau)	2	1	692	716	0,30442	0,07089
	Peruíbe (Ilha não identificada)	2	2	693	714	0,23731	0,07085
	Peruíbe (Laje da Conceição)	3	N.A.	650	N.A.	1,15379	N.A.
	Iguape	1	1	717	724	0,03390	0,03547
	São Francisco do Sul	1	N.A.	600	N.A.	0,37015	N.A.
	São Francisco do Sul (Ilha da Paz)	1	N.A.	680	N.A.	0,06758	N.A.
	São Francisco do Sul (Ilha da Sororoca Grande)	1	N.A.	694	N.A.	0,06758	N.A.
	São Francisco do Sul (Ilha da Sororoca Pequena)	1	N.A.	694	N.A.	0,06758	N.A.
SC	São Francisco do Sul (Ilha da Velha)	1	N.A.	694	N.A.	0,06758	N.A.
	São Francisco do Sul (Ilha da Mandigituba)	1	N.A.	659	N.A.	0,03381	N.A.
	São Francisco do Sul (Ilha Tamboretes)	2	N.A.	605	N.A.	0,57396	N.A.
	São Francisco do Sul (Ilhota São Luís)	1	N.A.	694	N.A.	0,06758	N.A.
	São Francisco do Sul (Pedra do Cação)	1	N.A.	652	N.A.	0,03392	N.A.

Revisão 00 01/2013

10-048

	São Francisco do Sul (Pedra do Filhote)	1	N.A.	685	N.A.	0,03381	N.A.
	São Francisco do Sul (Ilha do Itacolomi)	1	N.A.	680	N.A.	0,03385	N.A.
	São Francisco do Sul (Ilha não identificada)	1	N.A.	680	N.A.	0,06758	N.A.
	Balneário Barra do Sul	1	N.A.	619	N.A.	0,26885	N.A.
	Balneário Barra do Sul (Ilha Araras)	2	N.A.	573	N.A.	0,40325	N.A.
	Balneário Barra do Sul (Ilha dos Lobos)	3	N.A.	587	N.A.	0,33722	N.A.
	Balneário Barra do Sul (Ilha Feia)	2	N.A.	601	N.A.	0,40325	N.A.
	Balneário Barra do Sul (Ilha Remédio)	2	N.A.	601	N.A.	0,40325	N.A.
	Balneário Barra do Sul (Ilha Tipitinga)	2	N.A.	598	N.A.	0,13445	N.A.
	Balneário Barra do Sul (Ilha não identificada)	2	N.A.	575	N.A.	0,40325	N.A.
	Araquari	1	N.A.	724	N.A.	0,03372	N.A.
	Barra Velha (Ilhas Itacolomis)	1	N.A.	611	N.A.	0,03388	N.A.
	Penha	3	N.A.	576	N.A.	0,30291	N.A.
SC	Navegantes	2	N.A.	713	N.A.	0,06735	N.A.
	Navegantes (Ilha não identificada)	1	N.A.	732	N.A.	0,03364	N.A.
	Itajaí	1	N.A.	732	N.A.	0,03364	N.A.
	Balneário Camboriú	1	N.A.	603	N.A.	0,03389	N.A.
	Porto Belo	3	N.A.	564	N.A.	0,20408	N.A.
	Bombinhas	4	N.A.	541	N.A.	2,55159	N.A.
	Bombinhas (Ilha da Galé)	4	N.A.	525	N.A.	1,32866	N.A.
	Bombinhas (Ilha Deserta)	4	N.A.	510	N.A.	0,47713	N.A.
	Bombinhas (Ilha do Amendoim)	3	N.A.	554	N.A.	1,08987	N.A.
	Bombinhas (Ilha do Arvoredo)	4	N.A.	523	N.A.	0,51142	N.A.
	Florianópolis	4	N.A.	496	N.A.	2,09242	N.A.
	Florianópolis (Ilha do Xavier)	5	1	525	729	0,98104	0,03543
	Florianópolis (Ilha das Aranhas)	4	N.A.	509	N.A.	0,37628	N.A.
	Florianópolis (Ilha do Badejo)	5	N.A.	514	N.A.	0,23850	N.A.
	Florianópolis (Ilha do Campeche)	4	N.A.	526	N.A.	0,61432	N.A.

	Florianópolis (Ilha Irmã de Fora)	4	N.A.	530	N.A.	0,92393	N.A.
	Florianópolis (Ilha Irmã do Meio)	4	N.A.	531	N.A.	0,40973	N.A.
	Florianópolis (Ilha Irmã Pequena)	4	N.A.	533	N.A.	0,30739	N.A.
	Florianópolis (Ilha Mara Fome)	4	N.A.	525	N.A.	0,44408	N.A.
	Florianópolis (Ilha Moleques do Sul)	4	N.A.	500	N.A.	1,15951	N.A.
	Florianópolis (Ilha Moleques do Norte)	4	N.A.	535	N.A.	0,17028	N.A.
	Florianópolis (Ilha não identificada)	4	N.A.	514	N.A.	0,30694	N.A.
	Palhoça	3	N.A.	552	N.A.	0,71529	N.A.
SC	Palhoça (Ilha não identificada)	2	N.A.	555	N.A.	0,10188	N.A.
	Paulo Lopes	3	N.A.	560	N.A.	0,71529	N.A.
	Paulo Lopes (Ilha do Coral)	4	N.A.	534	N.A.	0,27404	N.A.
	Garopaba	3	N.A.	542	N.A.	0,47720	N.A.
	Garopaba (Ilhota do Siri)	2	N.A.	554	N.A.	0,03417	N.A.
	Imbituba	2	N.A.	591	N.A.	0,03403	N.A.
	Imbituba (Ilha Tacami)	4	N.A.	546	N.A.	0,34190	N.A.
	Laguna	2	N.A.	591	N.A.	0,10190	N.A.
	Laguna (Ilha não identificada)	2	N.A.	591	N.A.	0,10166	N.A.

N.A. = não aplicável (não há probabilidade de toque na costa).

IV.2 SIMULAÇÕES DETERMINÍSTICAS CRÍTICAS

A análise dos resultados das simulações probabilísticas realizadas permitiu identificar os cenários determinísticos críticos de verão e inverno. Em cada período, de todas as 600 simulações realizadas para cada ponto de risco, foram considerados como mais críticos os cenários que apresentaram o menor tempo de toque na costa ou a menor distância com relação à costa, para os cenários com volumes de pior caso. A Tabela 16 apresenta um resumo dos cenários determinísticos críticos simulados que apresentaram toque na costa.

10-048

Tabela 16 - Resumo dos cenários	determinísticos	críticos	simulados	que	apresentaram
toque na costa.					

CENÁRIOS	DATA DE INÍCIO DA SIMULAÇÃO	TEMPO MÍNIMO PARA ATINGIR A COSTA (HORAS)	MUNICÍPIO DO PRIMEIRO TOQUE	VOLUME FINAL DE ÓLEO NA COSTA (m³)
DET_FRADE_PC_VER_31D	01/03/2010 – 02:00 h	115	Quissamã - RJ	112.090
DET_FRADE_ PC_INV_31D	14/07/2010 – 19:00 h	172	llha Cabo Frio Arraial do Cabo – RJ	9.255

Os resultados das simulações determinísticas críticas são apresentados na forma de três figuras. Uma das figuras apresenta os contornos de espessura no instante do primeiro toque na linha de costa e a área varrida pela mancha ao longo dos 31 dias de simulação. A cor cinza representa a região por onde a mancha se deslocou durante o período de duração da simulação e, portanto, não está associada a uma espessura. A mancha no instante de primeiro toque ou instante mais próximo da costa é aquela representada pela escala de cores indicada nas legendas.

A outra figura apresenta um gráfico com o balanço de massa (óleo na superfície, na costa, evaporado e na coluna d'água). Adicionalmente, são apresentadas figuras com as condições meteorológicas e oceanográficas atuantes nos cenários determinísticos críticos para os cenários que apresentaram o menor tempo de toque na costa para cada condição sazonal simulada (verão e inverno).

Da Figura 46 até a Figura 49 são apresentados os resultados determinísticos críticos de verão e inverno para os derrames com volume de pior caso. Analisando os gráficos de balanço de massa destas simulações, observa-se que a evaporação é o principal processo atuante na redução da massa de óleo cru na água.

Pág. IV-42/54 Resultados da Modelagem de Óleo IV

Figura 47 – Cenário DET_FRADE_PC_VER_31D. Cenário determinístico mais frequente para um derrame de 258.304,99 m³ (ao longo de 24 horas, simulado por 31 dias) ocorrido durante o verão.

Figura 48 – Balanço de massa do cenário DET_FRADE_PC_VER_31D.

Figura 49 – Cenário DET_FRADE_PC_INV_31D. Cenário determinístico mais frequente para um derrame de 258.304,99 m³ (ao longo de 24 horas, simulado por 31 dias) ocorrido durante o verão.

Figura 50 – Balanço de massa do cenário DET_FRADE_PC_INV_31D.

IV.2.1 Condições Meteorológicas e Oceanográficas - Simulações Determinísticas Críticas

A seguir, a Figura 50 e a Figura 51 são apresentadas figuras das condições meteorológicas e oceanográficas que atuam nos cenários determinísticos críticos e que propiciaram a chegada do óleo na costa. São apresentados o instante inicial e instante do primeiro toque para o cenário de verão, que apresentou menor tempo de toque na costa, em relação ao cenário de inverno.

Figura 51 – Condições meteorológicas e oceanográficas e espessuras da mancha de óleo cru, no início da simulação determinística crítica, no verão: Corrente para SW; Vento de SE.

Figura 52 – Condições meteorológicas e oceanográficas e espessuras da mancha de óleo cru, no instante de toque na costa da simulação determinística crítica, no verão: Corrente para SW; Vento de SE.

IV.3 SIMULAÇÕES DETERMINÍSTICAS PARA AS CONDIÇÕES METEOROLÓGICAS E OCEANOGRÁFICAS MAIS FREQUENTES

Os resultados das análises das informações de vento e correntes (Anexo B) permitiram caracterizar e identificar as condições meteorológicas e oceanográficas mais frequentes atuantes sobre as localidades simuladas.

Observou-se predominância de ventos oriundos do quadrante NE, no período de verão e inverno. No caso do campo hidrodinâmico, observou-se maior variabilidade espacial e temporal.

Para estas condições (ventos e correntes mais frequentes) foram elaborados os cenários determinísticos cujo instante inicial corresponde a uma condição mais frequente, no ponto de risco considerado, no verão e uma no inverno, para os volumes de pior caso.

A Tabela 17 apresenta um resumo dos cenários determinísticos das condições mais frequentes de verão e inverno.

 Tabela 17 – Resumo dos cenários determinísticos das condições mais frequentes sem probabilidade de toque na costa.

CENÁRIOS	DATA DE INÍCIO	MUNICÍPIO DO PRIMEIRO TOQUE / MUNICÍPIO MAIS PRÓXIMO	VOLUME FINAL DE ÓLEO NA COSTA (m³)	
DET_MF_FRADE_PC_VER_31D	06/01/2010 – 00:00 h	São Francisco do Sul - SC	N.A.	
DET_MF_FRADE_PC_INV_31D	26/07/2010 – 00:00 h	Ilhabela – SP	17.195	

N.A. = não aplicável (não há toque na costa).

Os resultados gráficos apresentados, a seguir, seguem o mesmo padrão adotado nos cenários determinísticos críticos, onde são apresentadas três figuras. Uma das figuras apresenta os contornos de espessura no instante de menor distância da costa e a área varrida pela mancha ao longo dos 31 dias de simulação. A cor cinza representa a região por onde a mancha se deslocou durante o período de duração da simulação e, portanto, não está associada a

uma espessura. A mancha no instante de maior proximidade em relação à costa é aquela representada pela escala de cores indicada nas legendas.

A outra figura apresenta um gráfico com o balanço de massa (óleo na superfície, na costa, evaporado e na coluna d'água).

A seguir, da Figura 52 até a Figura 55 são apresentados os resultados determinísticos das condições meteorológicas e oceanográficas mais frequentes, para os cenários de verão e inverno.

Figura 53 – Cenário DET_MF_FRADE_PC_VER_31D. Cenário determinístico mais frequente para um derrame de 258.304,99 m³ (ao longo de 24 horas, simulado por 31 dias) ocorrido durante o verão.

BALANÇO DE MASSA PARA ÓLEO CRU - FRADE

Figura 54 – Balanço de massa do cenário DET_MF_FRADE_PC_VER_31D.

Resultados da Modelagem de Óleo IV

Figura 55 – DET_MF_FRADE_PC_INV_60D. Cenário determinístico mais frequente para um derrame de 258.304,99 m³ (ao longo de 24 horas, simulado por 31 dias) ocorrido durante o inverno.

Figura 56 – Balanço de massa do cenário DET_MF_FRADE_PC_INV_31D

IV.3.1 Condições Meteorológicas e Oceanográficas - Simulações Determinísticas Para as Condições Mais Frequentes

A seguir, a Figura 56 e Figura 57 são apresentadas figuras das condições meteorológicas e mais frequentes que atuam nos cenários determinísticos para as condições mais frequentes. São apresentados o instante inicial e instante do primeiro toque para o cenário de inverno, por ter apresentado toque na costa, o que não foi observado no cenário mais frequente de verão.

Figura 57 – Condições meteorológicas e oceanográficas e espessuras da mancha de óleo cru, no início da simulação determinística mais frequente, no inverno: Corrente para S/SW; Vento de NE.

Figura 58 – Condições meteorológicas e oceanográficas e espessuras da mancha de óleo cru, no instante de toque na costa, da simulação determinística mais frequente no inverno: Corrente para N/NW; Vento de SE.

V CONSIDERAÇÕES FINAIS

Neste relatório são apresentados os estudos realizados para a determinação da trajetória e intemperismo de óleo cru decorrente de potenciais acidentes com derrame de petróleo a partir do FPSO Frade, na Bacia de Campos.

Foram simulados cenários probabilísticos e determinísticos de derrames de óleo cru, considerando: 1) volumes pequeno, médio e de pior caso, sendo este o volume correspondente ao afundamento do FPSO: 258.304,99 m³, derramados por 24 horas (calculado de acordo com a Resolução do CONAMA¹⁴ nº 398/08); 2) condições sazonais de verão e inverno; e 3) características do óleo cru Frade.

O critério de parada utilizado nas simulações foi o tempo de 30 dias após o final do vazamento, ou seja, os cenários de volume pequeno e médio foram simulados por 30 dias, e os cenários de pior caso por 31 dias. A partir dos resultados das simulações probabilísticas foram selecionados os cenários determinísticos críticos para condições de verão e inverno, utilizando como critério o menor tempo de chegada do óleo na costa. Adicionalmente, foram realizadas simulações determinísticas referentes às condições meteorológicas e oceanográficas mais frequentes.

O sistema de modelos OILMAP foi utilizado para definir a área potencialmente ameaçada por derramamentos de óleo.

O campo de correntes característico dos padrões de circulação na região foi obtido a partir de um modelo numérico de mesoescala, baseado no HYCOM. Enquanto o campo de ventos foi baseado em dados de Reanálise dos modelos meteorológicos do NCEP/NCAR, utilizando os resultados do modelo CFSR.

Dentro dos cenários probabilísticos simulados neste estudo, observou-se que todos os cenários apresentaram probabilidades de toque do óleo na costa. A maior extensão de costa atingida pelo óleo foi encontrada para o cenário de pior caso, durante o período de verão. Comparando ao período de inverno, o resultado de verão estende até uma região mais ao sul, em um trecho compreendido entre os municípios costeiros de Anchieta (ES) e Laguna (SC). Já no inverno, as

¹⁴ Conselho Nacional do Meio Ambiente.

simulações alcançaram um trecho entre Aracruz (ES) até Iguape (SP), além da Ilha de Santa Catarina (SC).

Em todos os cenários de verão simulados, a probabilidade de toque de óleo na costa não foi nunca superior a 17% e, nos cenários de inverno, 15%, ou seja, durante o período de verão existe maior probabilidade de o óleo atingir a costa.

O menor tempo de toque do óleo na costa foi identificado para os derrames de pior caso, ocorrendo no município de Quissamã (RJ) e na Ilha de Cabo Frio, município de Arraial do Cabo (RJ). Para o período de verão, este tempo foi de 115 horas e, no período de inverno, de 172 horas.

Os resultados das simulações dos cenários determinísticos críticos mostraram que o maior volume final de óleo que chega à costa foi de 112.096,00 m³ para o verão e 9.255,00 m³ para o inverno, volumes estes resultantes dos cenários de volume de pior caso. Ainda com relação aos cenários determinísticos críticos, no geral, observa-se que a evaporação é o principal processo pela redução da massa de óleo na água, nas simulações realizadas.

Nos cenários determinísticos para as condições meteorológicas e oceanográficas mais frequentes, observa-se que, o cenário de verão, não apresentou probabilidade de toque de óleo na costa. Verifica-se que, para este cenário, a menor distância atingida pelo óleo com relação à costa é de, aproximadamente 25 km, em relação ao município de São Francisco do Sul (SC). Para as condições de inverno, observou-se o primeiro toque na costa no município de Ilhabela (SP)

Em conclusão, este trabalho mostrou a modelagem de derrames de óleo cru no Campo de Frade, na Bacia de Campos, considerando a hipótese mais conservativa em relação ao tipo de óleo e volume de pior caso, fornece uma visão abrangente das possíveis trajetórias de óleo, hipoteticamente derramado na região.

Finalmente, nas simulações apresentadas neste estudo, não foram consideradas quaisquer medidas de resposta ou controle para os potenciais acidentes simulados.

VI BIBLIOGRAFIA

- ASSIREU, A.T., F.A. SANTOS, M.R. FRAGOSO, L.M.M. CRUZ, J.A.C PELLEGRINI, J.L. STECH, J.A. LORENZZETTI, 2008. Evidências de conservação de vorticidade potencial ao longo da costa SE/S do Brasil a partir de dados de derivadores rastreados por satélite. Anais do III Congresso Brasileiro de Oceanografia, Fortaleza/CE.
- **BRASIL, 2008.** Resolução CONAMA nº 398, de 11 de junho de 2008. Diário Oficial [da República Federativa do Brasil], Brasília, 12 jun. 2008.
- CALIL, L.M., R.N. CANDELLA, M.R. FRAGOSO, 2008. Estudo do fluxo da Corrente do Brasil a partir de derivadores oceânicos. Anais do III Congresso Brasileiro de Oceanografia, Fortaleza/CE.
- **CERRONE, B. N., F. A. DOS SANTOS, A.T. ASSIREU, 2008.** Estimativa da difusividade e das escalas integrais lagrangeanas na Bacia Sudoeste do Atlântico a partir de derivadores. Anais do III Congresso Brasileiro de Oceanografia, Fortaleza/CE.
- EVANS, D.L. & S.R. SIGNORINI, 1985. Vertical structure of the Brazil Current. Nature, 315, p. 48-50.
- FRAGOSO, M.R., J.A.C PELLEGRINI, A.T. ASSIREU, F.A. DOS SANTOS, L.M. MARQUES DA CRUZ, 2008. Caracterização cinemática e estatística dos vórtices na Bacia Oceânica SE/S do Brasil obtidos por derivadores rastreados por satélite durante a primavera de 2007. Anais do III Congresso Brasileiro de Oceanografia, Fortaleza/CE.

- **GODOI, S.S. de, 2005.** Dinâmica Quase-Geostrófica do Sistema Corrente do Brasil no Embaiamento de São Paulo. Tese de Doutorado apresentada ao Instituto Oceanográfico da Universidade de São Paulo.
- **GONÇALVES, J. E., 2000.** Características e Circulação de Massas de Água no Limite Oeste do Atlântico Sul entre 20º e 30ºS. Tese de Doutorado. Instituto Oceanográfico. Universidade de São Paulo. 133p.
- GORDON, A.L, 1989. Brazil-Malvinas confluence 1984. Deep-Sea Research, 36(3): 359-384.
- **IBAMA, 2009**. Nota Técnica Nº02/2009/CGPEG/DILIC. Síntese dos aspectos técnicos da modelagem de transporte de óleo no mar e suas aplicações aos processos de licenciamento em E&P. Rio de Janeiro, 02 de março de 2009.
- **LUMPKIN, R. & Z. GARRAFFO, 2005.** Evaluating the Decomposition of Tropical Atlantic Drifter Observations. J. Atmos. Oceanic Techn. I 22, 1403-1415.
- MIRANDA, L.B. de & B.M. CASTRO FILHO, 1979. Condições do movimento geostrófico das águas adjacentes a Cabo Frio (RJ). *Bolm. Inst. Oceanogr.*, S. Paulo, 28(2):79-93.
- OLSON, B.D., G.P. PODESTÁ, R.H. EVANS & O.B. BROWN, O.B., 1988. Temporal variations in the separation of Brazil and Malvinas currents. Deep-Sea Research, 35(12):1971-1990.
- PROJETO MONDO Monitoramento por Derivadores Oceânicos. Disponível em <http://www.prooceano.com.br/historico/mondo/mondo/>. Acesso em: 08 de outubro de 2012.

- SIGNORINI, S.S., 1978. On the Circulation and volume transport of the Brazil Current between Cape of São Tomé and Guanabara Bay. Deep Sea Res., 25, p. 481-490.3.
- **SYBRANDY, A. L.; NIILER, P. P. 1991.** WOCE/TOGA Lagrangian drifterconstruction manual. Califórnia, CA. University of Califórnia, 1991. 92 p.
- **TOMCZAK, M. & GODFREY, S.J. 1994.** Regional Oceanography: an Introduction. Pergamon Press, New York, 422 p.

ANEXO A - DESCRIÇÃO DO SISTEMA DE MODELOS OILMAP

O modelo OILMAP, desenvolvido pela *Applied Science Associates (ASA), Inc.*, é uma ferramenta utilizada para o acompanhamento e previsão do deslocamento e intemperismo de qualquer tipo de óleo derramado em acidentes com petróleo.

O OILMAP é um sistema de modelos, utilizado em Planos de Contingência (LIMA *et al.*, 2003, ASA 2003a,b,c), Planos de Emergência com acompanhamento em tempo real (PEREIRA *et al.*, 2005), Planos de Emergência Individuais (ASA, 2003d, 2004), Relatório de Controle Ambiental (ASA, 2005a) e Estudos de Impacto Ambiental (EIA/RIMA) no Brasil (ASA, 2005b) e em várias regiões do mundo (JAYKO & HOWLETT, 1992; SPAULDING *et al.*, 1992a,b).

O OILMAP foi projetado em uma configuração modular de forma que diferentes tipos de modelos, bem como um conjunto de ferramentas sofisticadas de dados ambientais, podem ser acoplados dependendo do problema e da situação em estudo. Através de sua interface gráfica, o OILMAP permite ao usuário a especificação dos cenários; animação das trajetórias, correntes e vento; importar e exportar dados ambientais; a definição da grade computacional para qualquer área dentro do domínio; gerar correntes médias ou de maré; incluir ou editar as características dos óleos registrados no banco de dados; apresentar dados contidos em objetos georreferenciados (SIG); e determinar o impacto ambiental em recursos naturais. As funções do SIG permitem ao usuário a entrada, manipulação e exibição de objetos na tela através de pontos, linhas, e polígonos georreferenciados ao domínio definido pelo cenário. A cada objeto podem ser atribuídos dados em formato de texto, valores numéricos ou arquivos a partir de *links* externos.

O sistema OILMAP inclui os seguintes modelos: um modelo de deriva e intemperismo para óleo de superfície e subsuperfície, um modelo de resposta a derramamento de óleo, modelo probabilístico, e um modelo receptor que através

do método reverso localiza a origem do derramamento a partir de informações da posição da mancha.

Para elaboração de cenários de deriva para acidentes com petróleo deve ser definido um conjunto de duas grades computacionais, sobrepostas ao mapa digital da área de estudo. Uma das grades, compreendendo apenas a região de água, define o campo de circulação, podendo neste caso ser baseada em resultados de um modelo hidrodinâmico implementado na região de estudo. A outra grade (*land-water*) define quais as células ou blocos correspondem à área de terra e quais à área de água, com a interface definida pela linha de costa. A linha de costa é representada por uma série de blocos que limita a extensão em que a mancha de óleo pode se movimentar em uma determinada direção, dependendo do tipo de costa (*e.g.* manguezais, costões rochosos, praias).

O modelo de deriva de óleo prevê o transporte e intemperismo do óleo a partir de derrames instantâneos e contínuos. As estimativas demonstram a localização e massa do óleo na superfície *versus* o tempo. O modelo estima a variação temporal da cobertura de área, espessura da mancha e viscosidade do óleo. O modelo também estima o balanço da massa de óleo ou a quantidade de óleo sobre a superfície do mar, na coluna de água, evaporado, na costa, e fora da área de estudo *versus* o tempo. Os processos de transformações biogeoquímicas no modelo incluem dispersão, evaporação, entranhamento, dispersão natural ou por suspensão e emulsificação. O OILMAP pode também calcular as interações do óleo com a camada de sedimentos e, no balanço de massa, a sedimentação associada a este processo.

A advecção e a dispersão são os processos físicos associados ao deslocamento e espalhamento do óleo, resultantes da ação combinada do vento, das ondas, da maré e dos fluxos induzidos por gradiente de densidade. O processo de advecção é modelado usando uma formulação lagrangiana e o processo de dispersão é modelado usando uma formulação do tipo deslocamento aleatório (*random walk*). A dispersão e o espalhamento da mancha são representados no modelo pela formulação espesso-fino de Mackay *et al.* (1980a, 1982), utilizando-se a abordagem de mancha espessa dos mesmos autores.

O processo de evaporação baseia-se na formulação analítica parametrizada em termos de exposição à evaporação (MACKAY *et al.*, 1980b, 1982). O modelo de Exposição à Evaporação (STIVER & MACKAY, 1984) é uma aproximação analítica para a previsão do volume evaporado. O modelo utiliza informações da curva de destilação para estimar os parâmetros necessários à equação analítica.

Os processos de entranhamento são modelados utilizando-se a formulação de Delvigne & Sweeney (1988) que, explicitamente, representa índices de injeção de óleo para dentro da coluna d'água por gotículas de óleo. O coeficiente de entranhamento, como uma função da viscosidade do óleo, baseia-se em Delvigne & Hulsen (1994).

O processo de emulsificação do óleo, em função de perdas de evaporação e alterações na porcentagem de água na mistura, baseia-se em Mackay *et al.* (1980a, 1982) e depende da composição do óleo e do estado do mar. O método de emulsificação de Mackay *et al.* (1982) é implementado através dos valores dos parâmetros de entrada do coeficiente de viscosidade do *mousse* e uma taxa de emulsificação que podem ser usados para diminuir a taxa em que a emulsificação está prevista para ocorrer.

A interação do óleo com o litoral e a linha de costa é modelada com base em uma versão simplificada de Reed *et al.* (1989), que formula o problema em termos de uma capacidade de retenção dependendo do tipo da costa e de um índice de remoção exponencial.

Utilizando-se o OILMAP em modo probabilístico, é possível considerar a variabilidade das forçantes ambientais. As simulações de derrame são realizadas através da variação aleatória do início do mesmo dentro do período para o qual se dispõe de dados meteorológicos e oceanográficos. Tanto os ventos quanto as correntes, ou ambos, podem variar estocasticamente. As múltiplas trajetórias são, então, utilizadas para a produção de curvas de contorno, demonstrando a probabilidade da presença de óleo em cada ponto da grade computacional (área de estudo). As probabilidades de presença de óleo e tempo de deslocamento da mancha podem ser correlacionadas a recursos naturais armazenados no banco de dados (SIG), de forma a auxiliar na avaliação de impactos ambientais em termos da probabilidade da presença de óleo em recursos importantes.

A.1 FORMULAÇÃO

Anexo A

Modelos OILMAP)

O sistema OILMAP inclui um modelo de trajetória e intemperismo para óleo de superfície que prevê o transporte e a degradação do óleo a partir de derrames instantâneos e contínuos.

No OILMAP, a mancha de óleo é considerada como um conjunto de partículas lagrangianas contendo, cada uma delas, massa conhecida. O vetor posição (\vec{X}_t) de uma dada partícula, num determinado instante t, é definido como:

$$\vec{X}_{t} = \vec{X}_{t-\Delta t} + \Delta t \vec{U}_{oil} \tag{1}$$

onde

= passo de tempo (s); Δt

 $\vec{X}_{t-\Delta t}$ = posição em $t - \Delta t$;

 $ec{U}_{\it oil}$ = velocidade da mancha (m/s).

$$\vec{U}_{oil} = \vec{U}_w + \vec{U}_t + \vec{U}_r + \alpha \vec{U}_e + \beta \vec{U}_p$$
⁽²⁾

onde

 \vec{U}_w = componente da velocidade devido ao vento e às ondas (m/s);

 \vec{U}_t = componente da velocidade devido às correntes de maré (m/s);

 \vec{U}_r = componente da velocidade devido ao fluxo residual (m/s);

 \vec{U}_e = componente da velocidade devido ao fluxo de Ekman (m/s);

 \vec{U}_{p} = componente da velocidade devido ao *blowout* (m/s);

= 0 para derrame de superfície, 1 para subsuperfície; α

= 0 para derrame sem blowout, 1 para blowout. β

A componente da velocidade advectiva devida às correntes de maré, \vec{U}_r , e ao fluxo residual, \vec{U}_r , são provenientes do modelo hidrodinâmico. A velocidade de deriva devida ao vento, u_{wc} e v_{wc} (m/s), componentes Leste-Oeste e Norte-Sul, respectivamente, são:

$$u_{wc} = C_1 u_w \tag{3}$$

$$v_{wc} = C_1 v_w \tag{4}$$

onde

- u_w = componente Leste-Oeste da velocidade do vento (m/s);
- v_w = componente Norte-Sul da velocidade do vento (m/s);
- C_1 = fator de deriva (%).

O fator de deriva, C_1 , é constante (LANGE & HÜHNERFUSS, 1978), podendo variar entre 1,0 e 4,5%, baseado em observações. Valores de 3 a 3,5% são mais frequentemente utilizados para ventos moderados em áreas de mar aberto. Valores menores são mais utilizados em zonas costeiras protegidas, como estuários e baías. O valor *default* no modelo é 3,5%. Se as correntes de superfície, fornecidas pelo modelo hidrodinâmico (ou dados observacionais), já são forçadas pelo vento, então o fator de deriva deve ser reduzido.

O ângulo de deriva é no sentido anti-horário da direção do vento (Hemisfério Sul). Assim, a velocidade de deriva devida ao vento, u_{wd} e v_{wd} (m/s), componentes Leste-Oeste e Norte-Sul, respectivamente, são:

$$u_{wd} = u_{wc}\cos\theta + v_{wc}sen\theta \tag{5}$$

$$v_{wd} = u_{wc} sen\theta + v_{wc} \cos\theta \tag{6}$$

onde

*u*_{wd} = componente Leste-Oeste da velocidade devida à deriva do vento (m/s);

 v_{wd} = componente Norte-Sul da velocidade devida à deriva do vento (m/s);

 θ = ângulo de deriva (°) constante ($\theta = C_c$). O valor *default* é zero.

Utilizando a formulação *random walk* para a dispersão horizontal, é possível simular os processos dispersivos que ocorrem numa escala de movimento inferior à escala de resolução do campo de corrente fornecido pelos dados e ou modelo hidrodinâmico (OKUBO, 1971; OKUBO & OZMIDOV, 1970). As componentes da velocidade de dispersão da mancha, u_{dd} e v_{dd} , (m/s), são definidas (BEAR & VERRUIJT, 1987) por:

$$u_{dd} = \gamma \sqrt{\frac{6D_x}{\Delta t}}$$
(7)

$$v_{dd} = \gamma \sqrt{\frac{6D_x}{\Delta t}}$$
(8)

onde

 D_x = coeficiente de dispersão horizontal na direção Leste-Oeste (m²/s);

 D_y = coeficiente de dispersão horizontal na direção Norte-Sul (m2/s);

 Δt = passo de tempo (s);

 γ = número aleatório entre (-1) e (1).

Os coeficientes de dispersão horizontal nas direções Leste-Oeste (D_x) e Norte-Sul (D_y) são, geralmente, iguais.

O processo de espalhamento da mancha é representado pela formulação espesso-fino de Mackay *et al.* (1980a,b, 1982), utilizando-se a abordagem de mancha espessa. O OILMAP modela apenas a mancha espessa que contém mais de 90% da massa associada à mancha. A taxa de mudança da área superficial para o espalhamento da mancha espessa (MACKAY *et al.*, 1980a), \vec{A}_{tk} (m²/s), é definida por:

$$\widetilde{A}_{tk} = \frac{dA_{tk}}{dt} = K_1 A_{tk}^{1/3} \left(\frac{V_m}{A_{tk}}\right)^{4/3}$$
(9)

Revisão 00 01/2013

10-048

onde

• •

t

- A_{tk} = área superficial da mancha (m²);
- K_1 = taxa de espalhamento constante (s⁻¹);

$$V_m$$
 = volume da superfície da mancha (m3);

A análise de sensibilidade deste algoritmo demonstrou que a solução é sensível ao número de partículas utilizadas. Com o objetivo de minimizar esta dependência, Kolluru (1992) derivou uma formulação, normalizando a solução para diferentes números de partículas superficiais.

A taxa de mudança da área superficial de uma única partícula (m²/s) é dada por:

$$\widetilde{A}_{tk} = \frac{dA_{tk}}{dt} = K_1 A_{tk}^{1/3} \left(\frac{V_m}{A_{tk}}\right)^{4/3} \left(\frac{R_s}{R_e}\right)^{4/3}$$
(10)

onde

 A_{tk} = área superficial de uma partícula (m2);

 K_1 = taxa de espalhamento constante (s-1);

 V_m = volume de óleo de uma partícula (m3);

 R_s = raio de uma partícula (m);

 R_e = raio efetivo da superfície da mancha (m).

O raio efetivo da superfície da mancha R_e (m), (KOLLURU, 1992) é dado por:

$$R_e \left[\left(\frac{1}{\pi}\right) \sum_{n=1}^{N} A_{ik} \right]^{1/2}$$
(11)

onde

 A_{tk} = área superficial de uma partícula (m2);

N = número de partículas usadas para representar a superfície da mancha.

O processo de evaporação baseia-se na formulação analítica parametrizada em termos de exposição à evaporação (MACKAY *et al.*, 1980b, 1982).

O modelo de Exposição à Evaporação (STIVER & MACKAY, 1984) é uma aproximação analítica para a previsão do volume evaporado. O modelo utiliza informações da curva de destilação do óleo (curva PEV) para estimar os parâmetros necessários a esta equação analítica. A fração evaporada, F_{v} , é definida por:

$$F_{\nu} = \frac{\ln[1 + B(T_G / T)\theta \exp(A - BT_0 / T)]}{[T / BT_G]}$$
(12)

onde

 T_0 = ponto de ebulição inicial (K);

 T_G = gradiente da curva de destilação modificada;

T = temperatura do ambiente (K);

A, B = constantes adimensionais;

 θ = exposição à evaporação.

A exposição à evaporação, θ , é definida por:

$$\theta = \left(\frac{K_m A_t}{V_0}\right) \tag{13}$$

onde

 K_m = coeficiente de transferência de massa (m/s);

A =área da mancha (m2);

t = tempo (s);

 V_0 = volume do derrame de óleo (m³).

Dados da curva de destilação (T_0 , T_G , A, B), para óleo cru, podem ser obtidos no *Environment Canada's Oil Catalog* (WHITICAR *et al.*, 1992), ou através dos seguintes procedimentos:

- **Pág.** A-9/20
- 1. T_0 (ponto de ebulição inicial) e T_G (gradiente) são obtidos plotando-se a temperatura de ebulição (T_B) com a fração do volume destilado (F_v) para um determinado tipo de óleo, como se segue:

$$T_B = T_0 + T_G F_v \tag{14}$$

2. *A* (ponto de intersecção com o eixo y) e *B* (declividade) são obtidos plotando-se o logaritmo natural da constante da Lei de Henry, *H*, com a temperatura de ebulição (T_B). A constante da Lei de Henry, *H*, é definida como a razão da concentração do óleo na fase de vapor com a fase líquida. É uma constante adimensional obtida através de experimentos em laboratórios e definida por:

$$H = PV / RT \tag{15}$$

onde

V = volume do óleo (m3);

R = constante universal dos gases;

T = temperatura ambiente (K).

H é comumente fornecido em unidades de atm - m³/mol, devendo ser dividido por *RT* para adimensionalizá-lo. A relação entre *H* e T_{R} é:

$$\ln H = A - B\left(\frac{T_B}{T}\right) \tag{16}$$

Os valores de A e B são fornecidos no banco de dados do OILMAP e variam de 1 a 20 e de 7 a 18, respectivamente.

Os processos de entranhamento são modelados utilizando-se a formulação de Delvigne & Sweeney (1988) que, explicitamente, representa índices de injeção de óleo para dentro da coluna de água por gotículas de óleo. O coeficiente de entranhamento, como uma função da viscosidade do óleo, baseia-se em Delvigne & Hulsen (1994).

Delvigne & Sweeney (1988) desenvolveram uma relação para a taxa de entranhamento do óleo como uma função do tamanho da partícula de óleo, Q_d (kg/m²s), expressa como:

$$Q_{d} = C * D_{d}^{0.57} SFd^{0.7} \Delta d$$
(17)

onde

- C* = constante empírica de entranhamento que depende do tipo de óleo e do estado do tempo;
- D_d = energia dissipada da arrebentação da onda por unidade de área superficial (J/m2);
- *S* = fração da superfície do mar coberta pelo óleo;
- F = fração da superfície do mar atingida pela arrebentação das ondas;
- d = diâmetro da partícula de óleo (m);
- Δd = intervalo de diâmetro da partícula de óleo (m).

A constante de entranhamento, C^* , foi ajustada aos dados relatados em Delvigne & Hulsen (1994) como:

$$C^* = \exp(a\ln(\mu/\rho) + b) \tag{18}$$

onde

O diâmetro médio da partícula, d_{50} (µm), é definido por:

$$d_{50} = 1818 (E)^{-0.5} \left(\frac{\mu}{\rho_0}\right)^{0.34}$$
(19)

onde

E = taxa de dissipação da energia da onda por unidade de volume (J/m³s), com 10³ a 10⁴ para ondas em zona de arrebentação, 1 a 10 para camada superficial, 10⁻¹ a 1 para estuários e 10⁻⁴ a 10⁻² para oceano profundo;

$$\mu$$
 = viscosidade do óleo (cP);

 ρ = densidade do óleo (g/cm³).

O processo de entranhamento é muito sensível aos valores mínimo (d_{\min}) e máximo (d_{\max}) do diâmetro da partícula (µm), sendo:

$$d_{\min} = 0.1 d_{50} \tag{20}$$

$$d_{\max} = 2.0d_{50}$$
(21)

A energia dissipada da onda, D_d (J/m²), é:

$$D_d = 3.4 \times 10^{-3} \rho_w g H^2 \tag{22}$$

onde

 ρ_w = densidade da água (kg/m3);

^g = aceleração da gravidade (m/s2);

H = raiz quadrada média da altura da arrebentação da onda (m).

A fração da superfície marinha impactada pela arrebentação das ondas por unidade de tempo, *F*, é:

$$F = 0.032 (U_w - U_t) / T_w$$
(23)

onde

 U_w = velocidade do vento 10 m acima da superfície do mar (m/s);

 U_{t} = valor limite do vento para a quebra da onda (~ 5 m/s);

 T_w = período de onda significativo (s).

O total da massa que sofre entranhamento na coluna d'água, M_e (kg), é:

$$M_e = A dt \int_{d_{\min}}^{d_{\max}} Q_d dd$$
 (24)

onde

A =área superficial da mancha (m2);

dt = passo de tempo (s);

$$Q_d$$
 = taxa de entranhamento (kg m⁻² s⁻¹).

A profundidade de intrusão, z_m (m), é:

$$z_m = 1,5H_b \tag{25}$$

onde

 H_b = altura da quebra da onda (m).

A velocidade de ascensão para cada tamanho de gotícula, W_i (m/s), é:

$$W_i = d_i^2 g (1 - \rho_0 / \rho_w) 18 v_w$$
(26)

onde

- d_i = diâmetro da gotícula (m);
- ^g = constante gravitacional (m/s2);
- ρ_0 = densidade do óleo (kg/m3);
- ρ_w = densidade da água (kg/m3);
- v_w = viscosidade da água (m²/s).

Esta relação usa a Lei de Stokes e é válida para baixos valores de números de Reynolds (R_e < 20).

A profundidade de mistura para cada tamanho de partícula, Z_i (m), é:

$$Z_i = \max\left(\frac{D_v}{W_i}, Z_m\right) \tag{27}$$

onde

 D_v = coeficiente de dispersão vertical (m²/s).

O coeficiente de dispersão vertical, D_{ν} (m²/s), é definido como:

$$D_{v} = 0.0015W_{10} \tag{28}$$

onde

 W_{10} = velocidade do vento a 10 m de altura (m/s).

A fração da massa que volta à superfície para cada tamanho de partícula, R_i , é dada por:

$$R_i = \frac{W_i dt}{Z_i} \tag{29}$$

onde

dt = passo de tempo (s).

O processo de emulsificação do óleo, em função de perdas de evaporação e alterações na porcentagem de água na mistura, baseia-se em Mackay *et al.* (1980a, 1982) e depende da composição do óleo e do estado do mar.

O método de emulsificação de Mackay *et al.* (1982) é implementado pelo usuário através dos valores dos parâmetros de entrada do coeficiente de viscosidade do *mousse* e uma taxa de emulsificação, que podem ser usados para diminuir a taxa em que a emulsificação está prevista para ocorrer.

Pág. A-14/20

O aumento exponencial do algoritmo da formação do *mousse* é apresentado em Mackay *et al.* (1980a, 1982). A taxa de água que é incorporada ao óleo, \tilde{F}_{wc} (s⁻¹), é dada por:

$$\tilde{F}_{wc} = \frac{dF_{wc}}{dt} = C_1 U_w^2 \left(1 - \frac{F_{wc}}{C_2} \right)$$
(30)

onde

- U_w = velocidade do vento (m/s);
- C_1 = constante empírica (2x10-6 para o óleo emulsificado; 0 para outros);
- C_2 = constante que controla a quantidade máxima de água (0,7 para óleo combustível pesado e óleo cru);
- F_{wc} = fração máxima de água no óleo (valor de entrada para caracterização do óleo) (s⁻¹).

A viscosidade do óleo emulsificado, μ (cP), é dada por:

$$\mu = \mu_0 \exp\left(\frac{2.5F_{wc}}{1 - C_0 F_{wc}}\right)$$
(31)

onde

 μ_0 = viscosidade inicial do óleo (cP);

 F_{wc} = fração máxima de água no óleo;

 C_0 = constante de emulsificação (~0,65).

O efeito da evaporação na viscosidade, μ (cP), é dada por:

$$\mu = \mu_0 \exp(C_4 F_v) \tag{32}$$

onde

 μ_0 = viscosidade inicial do óleo (cP);

 C_4 = constante (1 para óleo leve e 10 para óleo pesado);

 F_v = fração evaporada da superfície da mancha.

A interação do óleo com o litoral e linha de costa é modelada com base em uma versão simplificada de Reed *et al.* (1989), que formula o problema em termos de uma capacidade de retenção dependendo do tipo da costa e de um índice de remoção exponencial. Estes processos foram parametrizados no OILMAP da seguinte forma:

- A grade que representa a linha de costa do OILMAP (grade *land-water*) pode conter diferentes informações sobre as capacidades de retenção de óleo para cada elemento de grade. A deposição ocorre quando uma partícula de óleo cruza a linha de costa e termina quando a capacidade de absorção da superfície especificada é atingida. As partículas de óleo que posteriormente atingem um elemento de grade costeira já saturada não permanecem na superfície da costa;
- O óleo depositado na linha de costa é exponencialmente removido com o tempo, retornando à coluna d'água numa maré enchente suficientemente alta para umedecer a superfície com o óleo, aliada a ação do vento;
- A fração de massa disponível para deposição na linha de costa, F_{sh} , é:

$$F_{sh} = \frac{A_{lg}}{A_s}$$
(33)

onde

- A_{lg} = área de um elemento de grade;
- A_s = área de uma partícula na superfície.
- A massa é depositada na grade costeira apenas se o total de massa acumulada é menor do que a capacidade de absorção de determinado elemento de grade. Esta capacidade de absorção para um determinado tipo de costa *i*, *M*_{h,i} (kg), é:

$$M_{h,i} = \rho_0 t_i W_i L_{gi} \tag{34}$$

onde

- *i* = parâmetro do tipo de costa;
- ρ_0 = densidade do óleo depositado (kg/m³);
- t_i = espessura máxima do óleo que pode ser depositada na costa (varia de acordo com o tipo de costa e viscosidade do óleo);
- W_i = largura do elemento de grade atingido pelo óleo;
- L_{ei} = comprimento do elemento de grade atingido pelo óleo.
- A massa de óleo restante na costa em qualquer instante, M_R (kg), é

$$M_{R} = M_{0} (1 - \exp[t/T])$$
(35)

onde

- M_0 = massa inicial do óleo depositado na costa (kg);
- t = tempo (dias);
- T = tempo de remoção dependente do tipo de costa (dias).

A.2 DADOS DE ENTRADA

Os conjuntos de dados de entrada e parâmetros do modelo que definem um cenário são:

- $\sqrt{}$ localização geográfica do ponto de derrame;
- ✓ data e horário;
- √ duração do derrame;
- $\sqrt{}$ volume derramado;
- √ tipo de óleo;
- $\sqrt{}$ duração da simulação;
- $\sqrt{}$ opções de resposta (*e.g.*, barreiras, sobrevôo, dispersantes);
- $\sqrt{}$ campo de correntes;
- $\sqrt{}$ arquivo de dados meteorológicos;
- $\sqrt{}$ opções de saída;
- $\sqrt{}$ parâmetros de simulação:

Os resultados de cada simulação correspondem, então, a um único cenário, definido pelo arquivo de entrada de dados e parâmetros do modelo.

A.3 BIBLIOGRAFIA

- ASA (Applied Science Associates South America), 2003a. Cenários de Acidentes com Petróleo no Terminal de Alemoa (SP). Relatório Técnico (janeiro de 2003). 57pp.
- ASA (Applied Science Associates South America), 2003b. Cenários de Acidentes com Petróleo no Terminal de Paranaguá (PR). Relatório Técnico (janeiro de 2003). 51pp.

- ASA (Applied Science Associates South America), 2003c. Cenários de Acidentes com Petróleo na Refinaria de Presidente Bernardes – RPBC (SP). Relatório Técnico (dezembro de 2003). 47pp.
- ASA (Applied Science Associates South America), 2003d. Estudos de Deriva para Acidentes com Produtos Derivados de Petróleo no Terminal de São Luís (MA). Relatório Técnico (dezembro de 2003). 196pp.
- ASA (Applied Science Associates South America), 2004. Estudos de Deriva para Acidentes com Produtos Derivados de Petróleo na Base Vila do Conde (PA). Relatório Técnico (janeiro de 2004). 207pp.
- ASA (Applied Science Associates South America), 2005a. Modelagem do Transporte e Dispersão de Óleo no Mar para o Bloco BM-CAL-6. Relatório Técnico, Revisão 01 (outubro de 2005). 212pp.
- ASA (Applied Science Associates South America), 2005b. Modelagem do Transporte e Dispersão de Óleo no Mar para o FPSO Capixaba, Campo de Golfinho, Bacia do Espírito Santo. Relatório Técnico (abril de 2005). 107pp.
- **BEAR, J. & A. VERRUIJT, 1987.** Modeling groundwater flow and pollution with computer programs for sample cases. Kluwer Academic Publishers.
- DELVIGNE G.A.L. & C.E. SWEENEY, 1988. Natural dispersion of oil. Oil & Chemical Pollution, 4 (1988): p. 281-310.
- DELVIGNE G.A.L. & L.J.M. HULSEN, 1994. Simplified laboratory measurement of oil dispersion coefficient – Application in computations of natural oil dispersion. Proceedings of the Seventeenth Arctic and Marine Oil Spill Program, Technical Seminar, June 8-10, 1994, Vancouver, BC Canada, pp.173-187.
- JAYKO K. & E. HOWLETT, 1992. OILMAP an interactive oil spill model. In: OCEANS 92, October 22-26, 1992, Newport, RI.

- **KOLLURU, V.S., 1992.** Influence of Number of Spillets on Spill Model Predictions. Applied Science Associates Internal Report, 1992.
- LANGE, P. & H. HÜHNERFUSS, 1978. Drift response of mono-molecular slicks to wave and wind action. *Journal of Physical Oceanography*, v. 8, p. 142-150.
- LIMA J.A., A. SARTORI, E.A. YASSUDA, J.E. PEREIRA & E. ANDERSON, 2003. Development of oil spill scenarios for contingency planning along the Brazilian coast. In: International Oil Spill Conference, 2003, Vancouver, BC, Canada.
- MACKAY, D., S. PATERSON & K. TRUDEL, 1980a. A mathematical model of oil spill behavior, Department of Chemical Engineering, University of Toronto, Canada, 39pp.
- MACKAY D., S. PATERSON & K. TRUDEL, 1980b. Oil spill processes and models Report EE-8, Environmental Protection Service, Canada.
- MACKAY D., W. SHUI, K. HOUSSAIN, W. STIVER, D. McCURDY & S. PATERSON, 1982. Development and calibration of an oil spill behavior model, Report No. CG-D027-83, US Coast Guard Research and Development Center, Groton, CT.
- **OKUBO A. & R.V. OZMIDOV, 1970.** Empirical dependence of the coefficient of horizontal turbulent diffusion on the ocean in the scale of the phenomenon in question. *Atmospheric and Ocean Physics*, 6(5): p. 534-536.
- **OKUBO, A., 1971.** Oceanic diffusion diagrams. *Deep Sea Research*, v. 8, p. 789-802.
- PEREIRA J.E.; E.A. YASSUDA, & E. CAMPOS, 2005. Development of an operational metocean modelling system, with applications in South America.

In: 9th International Conference on Estuarine and Coastal Modelling, 2005. Charleston, SC, USA.

- REED M., E. GUNDLACH, & T. KANA, 1989. A coastal zone oil spill model: development and sensitivity studies, *Oil and Chemical Pollution*, Vol. 5, p. 411-449.
- SPAULDING, M. L., E. HOWLETT, E. ANDERSON, & K. JAYKO, 1992a. OILMAP a global approach to spill modeling. 15th Arctic and Marine Oil Spill Program, Technical Seminar, June 9-11, 1992, Edmonton, Alberta, Canada, p. 15-21.
- SPAULDING M.L., E. HOWLETT, E. ANDERSON & K. JAYKO, 1992b. Oil spill software with a shell approach. *Sea Technology*, April 1992, p. 33-40.
- **STIVER W. & D. MACKAY, 1984.** Evaporation rate of spills of hydrocarbons and petroleum mixtures. *Environmental Science and Technology*, 18:834-840.
- WHITICAR S., M. BOBRA, M. FINGAS, P. JOKUTY, P. LIUZZO, S. CALLAGHAN, S. ACKERMAN & J. CAO, 1992. A catalogue of crude oil and oil product properties 1992 (edition), Report #EE-144, Environment Canada, Ottawa, Canada.

ANEXO B – ANÁLISE METEOROLÓGICA E OCEANOGRÁFICA DAS CONDIÇÕES MAIS FREQUENTES

De forma a determinar qual a direção mais frequente de corrente e vento para cada ponto de interesse dentro dos resultados utilizados como forçante para a modelagem da dispersão de óleo (HYCOM para correntes e CFSR para vento), foi produzido um histograma da direção da corrente para cada uma das posições. Tais histogramas apresentam o número de vezes em que se registrou o fluxo de corrente/vento para uma determinada direção ao longo da série de dados, entre 0 e 360° (a cada 5°). O eixo x apresenta as direções variando entre 0° e 360° a cada 5° e eixo Y apresenta a porcentagem de ocorrências da referida direção.

A Figura B-1 abaixo apresenta os histogramas das direções da corrente para o ponto FPSO Frade, durante o período de verão enquanto a Figura B-2 apresenta os histogramas das direções da corrente para o período de inverno. As direções seguem a convenção oceanográfica, ou seja, indicam para onde vai a corrente.

O ponto apresenta um padrão de correntes para SW bastante uniforme durante as duas estações, o qual é associado à presença do ramo mais persistente da Corrente do Brasil a norte do ponto.

Figura B-1 – Histogramas de ocorrência de direção da corrente (considerando intervalo de 5°, valores em porcentagem) para o período de verão (janeiro a março). A direção segue a convenção oceanográfica.

Figura B2 – Histogramas de ocorrência de direção da corrente (considerando intervalo de 5°, valores em porcentagem) para o período de inverno (junho a agosto). A direção segue a convenção oceanográfica.

A Figura B-3 abaixo apresenta os histogramas das direções do vento para o ponto FPSO Frade, durante o período de verão, enquanto a Figura B-4 apresenta os histogramas para o período de inverno. As direções seguem a convenção meteorológica, ou seja, indicam de onde o vento vem.

A maioria das observações são do quadrante NE, padrão associado à influência da Alta Subtropical do Atlântico Sul. Também é possível notar um segundo pico consideravelmente menor do que o primeiro para o quadrante SW, referente à passagem de sistemas frontais sobre a região.

Figura B-3 – Histogramas de ocorrência de direção do vento (considerando intervalo de 5°, valores em porcentagem) para o período de verão (janeiro a março). A direção segue a convenção meteorológica.

Figura B-4 – Histogramas de ocorrência de direção do vento (considerando intervalo de 5°, valores em porcentagem) para o período de inverno (junho a agosto). A direção segue a convenção meteorológica.

