Modelagem do Descarte de Cascalhos e Fluidos de Perfuração para o Bloco BM-PAMA-8, Bacia do Pará-Maranhão

Revisão 00 Maio/2009

Modelagem do Descarte de Cascalhos e Fluidos de Perfuração no Bloco BM-PAMA-8, Bacia do Pará-Maranhão

Revisão 00 Maio / 2009

E&P

CONTROLE DE REVISÕES

00 Relatório Preliminar 17/04/200 00 Documento Original 12/05/2009 1 1 1	REV.	DESCRIÇÃO	DATA
00 Documento Original 12/05/2009 1 1 1 1 1	00	Relatório Preliminar	17/04/2009
Image: Sector of the sector	00	Documento Original	12/05/2009

	Preliminar	Original	Rev. 01	Rev. 02	Rev. 03	Rev. 04	Rev. 05	Rev. 06	Rev. 07
Data	17/04/09	12/05/09							
Elaboração									
Verificação									
Aprovação									

ÍNDICE GERAL

RE	SUM	D		1
L	INTF	roduç	\$ÃO	I-1
	l.1	ÁREA	DE ESTUDO	I-2
		l.1.1	CARACTERÍSTICAS METEOROLÓGICAS DA REGIÃO	I-3
		I.1.2	CARACTERÍSTICAS OCEANOGRÁFICAS DA REGIÃO	I-5
П	MOE	DELAG	EM DO DESCARTE DE CASCALHOS E FLUIDOS	DE
	PER	FURAÇ	ÇÃO	II-1
	II.1	MODE	ELO MUDMAP	II-1
		II.1.1	ASPECTOS TEÓRICOS	II-2
	II.2	DADO)S DE ENTRADA	II-3
		II.2.1	CAMPO DE CORRENTES	II-3
		II.2.2	CAMPO TERMOHALINO	. II-11
	II.3	CENÁ	RIOS DE DESCARTE DE PARTÍCULAS	. II-13
		II.3.1	PONTOS DE DESCARTE	. II-13
		II.3.2	ESPECIFICAÇÕES DOS PROCESSOS DE PERFURAÇÃ	ίΟ E
			DESCARTE	. II-13
		II.3.3	CARACTERIZAÇÃO DOS CASCALHOS E FLUIDOS	DE
			PERFURAÇÃO	. II-14
		II.3.4	CRITÉRIO DE CORTE ADOTADO NA APRESENTAÇÃO	DOS
			RESULTADOS	. II-20
		II.3.5	DESCRIÇÃO DOS CENÁRIOS	. II-20
	RES	ULTAD	OOS DAS SIMULAÇÕES	-1
	III.1	DEPÓ	SITOS NO ASSOALHO OCEÂNICO	-1
		III.1.1	FASE I	III-2
		III.1.2	FASE II	-4
		III.1.3	FASE III	III-8
		III.1.4	FASE IV	III-10
		III.1.5	FASE V	III-12
		III.1.6	DESCARTE TOTAL	III-12
		III.1.7	ÁREA DE INFLUÊNCIA TOTAL	III-15
	III.2	CONC	CENTRAÇÕES NA COLUNA D'ÁGUA	III-16

	III.2.1 FASE II - EXCEDENTE	III-19
	III.2.2 FASE III	III-22
IV	CONSIDERAÇÕES FINAIS	IV-1
V	BIBLIOGRAFIA	V-1
VI	EQUIPE TÉCNICA	VI-1

LISTA DE TABELAS

TABELA	PÁG.
Tabela II.2.2-1 - Perfil médio de densidade para a região do Poço 1-PAS-28,	II-12
Bloco BM- PAMA-8, para os períodos de verão e inverno.	
Tabela II.3.1-1 - Coordenadas (SAD 69) e lâmina d'água (m) dos pontos de	II-13
descarte de partículas no Bloco BM-PAMA-8.	
Tabela II.3.3-1 - Velocidades de queda (cm/s) para cascalhos perfurados	II-15
com fluido de base aquosa (adaptado de Brandsma & Smith, 1999).	11 10
Tabela II.3.3-2 - Velocidades de queda (cm/s) para cascalhos perfurados	II-15
com fluido de base sintética (adaptado de MAPEM, 2004).	11-13
Tabela II.3.3-3 - Classes granulométricas e velocidades de queda para a	II-16
bentonita.	11-10
Tabela II.3.3-4 - Classes granulométricas e velocidades de queda para a	II-16
baritina.	11-10
Tabela II.3.3-5 - Especificações do descarte de cascalhos e fluidos de	11 1 0
perfuração para o Poço 1-PAS-28, Bloco BM-PAMA-8.	11-10
Tabela II.3.3-6 - Especificações do descarte de cascalhos e fluidos de	II_10
perfuração para o Poço 1-PAS-29, Bloco BM-PAMA-8.	11-19
Tabela II.3.5-1 - Cenários elaborados para o estudo de cascalhos e fluidos	
de perfuração para o Poço 1-PAS-28 no Bloco BM-PAMA-8, Bacia	II-21
do Pará-Maranhão, para os períodos de verão e inverno.	
Tabela II.3.5-2 - Cenários elaborados para simular a concentração de	11.00
sólidos em suspensão.	11-22
Tabela III-1 - Máxima espessura depositada e área coberta por	
sedimentos com espessuras maiores que 1 mm para o Poço 1-PAS-28,	III-2
Bloco BM-PAMA-8.	
Tabela III.2-1 - Resultados dos testes de toxicidade e concentração de	
sólidos presente nos fluidos de perfuração.	111-17
Tabela III.2-2 - Características da diluição da pluma na coluna d'água para o	111.40
Poço 1-PAS-28, Bloco BM-PAMA-8.	111-18
Tabela IV-1 - Resumo dos resultados das simulações de todas as fases de	11/2
perfuração do poço simulado.	10-2

LISTA DE FIGURAS

FIGURA	PÁG.
Figura I.1-1 - Localização dos pontos considerados na modelagem do Bloco	1.2
BM-PAMA-8, Bacia do Pará-Maranhão.	1-3
Figura I.1.1-1 - Vento médio a 10 metros (fevereiro, março e abril - 1990-	14
2001).	1-4
Figura I.1.1-2 - Vento médio a 10 metros (setembro, outubro e novembro -	15
1990-2001).	1-5
Figura I.1.2.1-1 - Representação esquemática da circulação média e anéis	
anticiclônicos na porção oeste do oceano Atlântico Tropical; em vermelho,	
trajetórias das massas de água quentes, e em azul, trajetórias da APAN. As	
correntes indicadas são: Corrente Norte do Brasil (CNB), Sub-Corrente	I-7
Equatorial (SCE), Contra Corrente Norte Equatorial (CCNE), Corrente Sul	
Equatorial (CSE), e Corrente de Contorno Oeste Profunda (CCOP). Adaptado	
de Dengler et al., (2004).	
Figura I.1.2.3-1 - Diagrama TS para os primeiros 1.200 m do Atlântico	1-9
Tropical (Fonte: Chepurin & Carton, 1997).	1-3
Figura II.2.1-1 - Pontos correspondentes aos dados obtidos de derivadores	11-4
(SVP/WOCE e CORIOLIS).	11-4
Figura II.2.1-2 - Linhas de corrente para o período de janeiro a abril	11-4
(SVP/WOCE e CORIOLIS)	
Figura II.2.1-3 - Linhas de corrente para o período de agosto a novembro	II-5
(SVP/WOCE e CORIOLIS).	
Figura II.2.1-2 - Localização dos fundeios de correntômetros do WOCE/ACM-7.	II-6
Figura II.2.1-3 - Stick plots do perfil de correntes para o período de 7 de	
setembro de 1989 a 10 de outubro de 1990, obtido a partir dos dados	II-7
coletados pelo WOCE na rede de fundeios ACM-7, fundeio K327.	
Figura II.2.1-4 - Stick plots do perfil de correntes para o período de 13 de	
outubro de 1990 a 08 de setembro de 1991, obtido a partir dos dados	11 0
coletados pelo WOCE na rede de fundeios ACM-7, fundeio K340. Atenção: a	11-0
escala de intensidade da corrente é variável nesta figura.	
Figura II.2.1-5 - Stick plots do perfil de correntes para o período de verão (re-	
amostrados a cada 3 horas), obtido a partir de composição entre modelo	
hidrodinâmico e dados do WOCE, na região do Poço 1-PAS-28, localizado no	II-9
Bloco BM-PAMA-8. Atenção: a escala de intensidade da corrente é variável	
nesta figura.	

FIGURA	PÁG.
Figura II.2.1-6 - Stick plots do perfil de correntes para o período de inverno	
(re-amostrados a cada 3 horas), obtido a partir de composição entre modelo	
hidrodinâmico e dados do WOCE, na região do Poço 1-PAS-28, localizado no	II-10
Bloco BM- PAMA-8. Atenção: a escala de intensidade da corrente é variável	
nesta figura.	
Figura II.2.2-1 - Secção vertical de densidade (kg/m3) ao longo de 0,8ºN,	
para o verão, na região do Poço 1-PAS-28. Dados provenientes do Atlas do	II-11
WOCE.	
Figura II.2.2-2 - Secção vertical de densidade (kg/m3) ao longo de 0,8ºN,	
para o inverno, na região do Poço 1-PAS-28. Dados provenientes do Atlas do	II-12
WOCE.	
Figura III.1.1-1 - Cenário BMPAMA8_FI_VER. Área de abrangência e	
contornos de espessuras médias calculadas para o descarte de partículas do	
Poço 1-PAS-28, ao final da Fase I (diâmetro de 36", sem riser), no período de	111-3
verão.	
Figura III.1.1-2 - Cenário BMPAMA8_FI_INV. Área de abrangência e	
contornos de espessuras médias calculadas para o descarte de partículas do	
Poço 1-PAS-28, ao final da Fase I (diâmetro de 36", sem riser), no período de	111-4
inverno.	
Figura III.1.2-1 - Cenário BMPAMA8_FII_VER. Área de abrangência e	
contornos de espessuras médias calculadas para o descarte de partículas do	
Poço 1-PAS-28, ao final da Fase II (diâmetro de 26", sem riser), no período	C-III
de verão.	
Figura III.1.2-2 - Cenário BMPAMA8_FII_INV. Área de abrangência e	
contornos de espessuras médias calculadas para o descarte de partículas do	ше
Poço 1-PAS-28, ao final da Fase II (diâmetro de 26", sem riser), no período	111-0
de inverno.	
Figura III.1.2-3 - Cenário BMPAMA8_FII_EXCE_VER. Área de abrangência	
e contornos de espessuras médias calculadas para o descarte do fluido	111 7
excedente, ao final da Fase II (diâmetro de 26", sem riser) da perfuração do	111-7
Poço 1-PAS-28, no período de verão.	
Figura III.1.2-4 - Cenário BMPAMA8_FII_EXCE_INV. Área de abrangência e	
contornos de espessuras médias calculadas para o descarte do fluido	
excedente, ao final da Fase II (diâmetro de 26", sem riser) da perfuração	111-8
doPoço 1-PAS-28, no período de inverno.	
Figura III.1.3-1 - Cenário BMPAMA_FIII_VER. Área de abrangência e	
contornos de espessuras médias calculadas para o descarte de partículas do	шо
Poço 1-PAS-28, ao final da Fase III (diâmetro de 17½", com riser), no período	III-9
de verão.	

FIGURA	PÁG.
Figura III.1.3-2 - Cenário BMPAMA8_FIII_INV. Área de abrangência e	
contornos de espessuras médias calculadas para o descarte de partículas do	III 10
Poço 1-PAS-28, ao final da Fase III (diâmetro de 17½", com riser), no período	III-10
de inverno.	
Figura III.1.4-1 - Cenário BMPAMA8_FIV_VER. Área de abrangência e	
contornos de espessuras médias calculadas para o descarte de partículas do	III₋11
Poço 1-PAS-28, ao final da Fase IV (diâmetro de 12¼", com riser), no	111-11
período de verão.	
Figura III.1.6-1 - Área de abrangência e espessuras médias calculadas para	
o descarte de partículas ao final das operações de descarte (todas as fases)	III-13
do Poço 1-PAS-28, localizado no Bloco BM-PAMA-8, no período do verão.	
Figura III.1.6-2 - Área de abrangência e espessuras médias calculadas para	
o descarte de partículas ao final das operações de descarte (todas as fases)	III-14
do Poço 1-PAS-8, localizado no Bloco BM-PAMA-8, no período do inverno.	
Figura III.1.7-1 - Área de influência total, considerando espessuras iguais	
ou superiores a 1 mm, ao final das operações de descarte no Bloco	III-15
BM-PAMA-8, no período de verão.	
Figura III.1.7-2 - Área de influência total, considerando espessuras iguais	
ou superiores a 1 mm, ao final das operações de descarte no Bloco	III-16
BM-PAMA-8, no período de inverno.	
Figura III.2.1-1 - Cenário PAMA8_FII_EXCE_VER_STA. Concentração de	
sólidos em suspensão nos estágios 1 e 2 da pluma: instante final do descarte	III-19
de fluido STA excedente ao final da Fase II (sem riser) do Poço 1-PAS-28,	III 10
Bloco BM-PAMA-8, durante o verão.	
Figura III.2.1-2 - Cenário PAMA8_FII_EXCE_VER_STA. Concentração de	
sólidos em suspensão em relação à distância horizontal nos estágios 1 e 2	
da pluma referente ao instante final do descarte de fluido STA excedente ao	III-20
final da Fase II (sem riser) do Poço 1-PAS-28, Bloco BM-PAMA-8, durante o	11 20
verão. Na figura são demarcadas as concentrações referentes aos testes de	
toxicidade.	
Figura III.2.1-3 - Cenário PAMA8_FII_EXCE_INV_STA. Concentração de	
sólidos em suspensão nos estágios 1 e 2 da pluma: instante final do descarte	-21
de fluido STA excedente ao final da Fase II (sem riser) Poço 1-PAS-28, Bloco	
BM-PAMA-8, durante o inverno.	

Pág. 4/4

FIGURA	PÁG.
Figura III.2.1-4 - Cenário PAMA8_FII_EXCE_INV_STA. Concentração de	
sólidos em suspensão em relação à distância horizontal nos estágios 1 e 2	
da pluma referente ao instante final do descarte de fluido STA excedente ao	111.04
final da Fase II (sem riser) do Poço 1-PAS-28, Bloco BM-PAMA-8, durante o	111-21
inverno. Na figura são demarcadas as concentrações referentes aos testes	
de toxicidade.	
Figura III.2.2-1 - Cenário PAMA8_FIII_VER_BRMUL. Concentração de	
sólidos em suspensão nos estágios 1 e 2 da pluma: instante final do descarte	111 22
de fluido BR-MUL durante a Fase III (com riser) do Poço 1-PAS-28, Bloco	111-22
BM-PAMA-8, durante o verão.	
Figura III.2.2-2 - Cenário PAMA8_FIII_VER_BRMUL. Concentração de	
sólidos em suspensão em relação à distância horizontal nos estágios 1 e 2	
da pluma referente ao instante final do descarte de fluido BR-MUL durante a	111-23
Fase III (com riser) do Poço 1-PAS-28, Bloco BM-PAMA-8, durante o verão.	111-23
Na figura são demarcadas as concentrações de 1 e 5 mg/L, além das	
concentrações referentes aos testes de toxicidade.	
Figura III.2.2-3 - Cenário PAMA8_FIII_INV_BRMUL. Concentração de	
sólidos em suspensão nos estágios 1 e 2 da pluma: instante final do descarte	III_24
de fluido BR-MUL durante a Fase III (com riser) do Poço 1-PAS-28, Bloco	111-24
BM-PAMA-8, durante o inverno.	
Figura III.2.2-4 - Cenário PAMA8_FIII_INV_BRMUL. Concentração de	
sólidos em suspensão em relação à distância horizontal nos estágios 1 e 2	
da pluma referente ao instante final do descarte de fluido BR-MUL durante a	III-25
Fase III (com riser) Poço 1-PAS-28, Bloco BM-PAMA-8, durante o inverno.	111 20
Na figura são demarcadas as concentrações de 1 e 5 mg/L, além das	
concentrações referentes aos testes de toxicidade.	

RESUMO

O modelo MUDMAP da *Applied Science Associates, Inc (ASA)* foi utilizado para estudar o transporte, dispersão e deposição de cascalhos e fluidos de perfuração no assoalho oceânico, decorrentes das atividades de perfuração de poços petrolíferos marítimos, na Bacia do Pará-Maranhão, a partir de simulações realizadas para um poço localizado no Bloco BM-PAMA-8.

As condições meteorológicas e oceanográficas da região onde se localiza o Bloco BM-PAMA-8 indicam que, sobre a plataforma continental, há amplificação da maré em co-oscilação e ressonância com as bacias menores. No talude continental e em região oceânica há predominância do sinal de baixa freqüência da Corrente Norte do Brasil (CNB) e da Corrente de Contorno Oeste Profunda (CCOP). Existe também influência significativa dos padrões climatológicos (Zona de Convergência Intertropical), refletindo-se na variabilidade dos padrões mais energéticos presentes na área.

A caracterização dos padrões de circulação na região foi obtida a partir da composição de um modelo numérico hidrodinâmico de meso-escala e um campo médio de corrente superficial representativo da variabilidade sazonal observada na Corrente Norte Brasil (CNB). Esse campo hidrodinâmico composto compreende as principais zonas de geração e propagação das perturbações do campo médio, e dinâmica oceânica da área de interesse. A caracterização da estrutura vertical do padrão de circulação em vários níveis horizontais foi obtida através da composição do campo de superfície descrito acima, ao padrão vertical de cisalhamento (normalizado) das correntes coletadas na região.

Foram conduzidas simulações do descarte de material utilizando as velocidades de queda sugeridas por Brandsma & Smith (1999) para cascalhos perfurados com fluido de base aquosa. Para os cascalhos perfurados com fluido de base sintética (BR-MUL) foram utilizadas as velocidades de queda baseadas nos estudos do MAPEM (2004). Enquanto que para os fluidos de perfuração foi utilizada a granulometria dos seus principais constituintes sólidos (bentonita e baritina). As velocidades de queda das partículas foram calculadas utilizando-se a formulação de Watson (1969).

A realização em separado das simulações das fases de perfuração, sem e com riser, permitiu concluir que as maiores pilhas de cascalhos sobre o assoalho oceânico estão associadas às fases de descarte sem riser. Os resultados obtidos para as fases com riser mostram espessuras inferiores. As maiores espessuras concentraram-se nas proximidades do ponto de descarte nas fases sem riser, tanto no inverno como no verão. Nas fases com riser, no verão a direção preferencial de acúmulo se deu na direção leste-sudeste e no inverno para a direção sudeste.

Adicionalmente, neste relatório, são apresentados os resultados de sólidos na coluna d'água dos fluidos de perfuração para a Fase II (sem riser, excedente) e Fase III (com riser); estas fases foram selecionadas para representar o cenário mais crítico das fases sem e com riser, devido à maior vazão de descarte (volume/tempo) das mesmas, além de utilizarem fluidos de perfuração (STA e BR-MUL) com as maiores concentrações de sólidos. As altas concentrações localizam-se muito próximas do ponto de descarte e sua permanência na coluna d'água está limitada ao período do próprio descarte.

PETROBRAS

I INTRODUÇÃO

Com o objetivo de dar suporte a PETROBRAS no desenvolvimento de estudos ambientais na Bacia do Pará-Maranhão, apresenta-se este trabalho de modelagem computacional da distribuição espacial (área de influência, espessuras e concentrações na coluna d'água) de cascalhos e sólidos dos fluidos de perfuração para o Poço 1-PAS-28, localizado no Bloco BM-PAMA-8, cujos resultados foram replicados para o Poço 1-PAS-29 e o vértice sudoeste. O Poço 1-PAS-28 foi selecionado por estar localizado em lâmina d'água menor, mais próximo da costa e com uma geração de cascalhos muito próxima ao do Poço 1-PAS-29.

Toda a avaliação foi conduzida através da utilização de um sistema de modelos computacionais conhecido como MUDMAP, desenvolvido pela *Applied Science Associates (ASA), Inc*.

Nas simulações foram utilizadas as velocidades de queda sugeridas por Brandsma & Smith (1999) para cascalhos perfurados com fluido de base aquosa. Para os cascalhos perfurados com fluido de base sintética (BR-MUL) foram utilizadas as velocidades de queda baseadas nos estudos do MAPEM (2004). Para os fluidos de perfuração foi utilizada a granulometria dos seus principais constituintes sólidos (bentonita e baritina). As velocidades de queda das partículas foram calculadas utilizando-se a formulação de Watson (1969).

O padrão de circulação na região é extremamente complexo, com alta amplificação da maré sobre a plataforma continental amazônica em co-oscilação e ressonância com as bacias menores. No talude continental e em região oceânica há predominância do sinal de baixa freqüência da Corrente Norte do Brasil e da Corrente de Contorno Oeste Profunda. Há também influência significativa em média escala dos padrões climatológicos, refletindo-se na variabilidade nos padrões mais energéticos presentes na área (marés e circulação de grande escala).

Neste estudo, a caracterização dos padrões de circulação superficial na região foi obtida a partir da composição dos resultados de um modelo numérico hidrodinâmico de meso-escala implementado na área pela equipe da ASA South AMERICA e um campo médio de corrente superficial com variabilidade mensal. O campo médio foi desenvolvido a partir de dados de derivadores na área, o SVP/WOCE¹ e do Projeto CORIOLIS². A caracterização da estrutura vertical do padrão de circulação em vários níveis horizontais foi obtida através da composição do campo de superfície descrito acima, ao padrão vertical de cisalhamento (normalizado) das correntes coletadas na região.

O Capítulo I, além de discutir o propósito do estudo, fornece informações sobre a área em questão. O Capítulo II descreve o modelo MUDMAP utilizado na modelagem de descarte de partículas, os cenários simulados, suas características e os dados de entrada. Os resultados das simulações são apresentados no Capítulo III. Por fim, no Capítulo IV são apresentadas as considerações finais do presente estudo.

ÁREA DE ESTUDO 1.1

A figura I.1-1 apresenta a localização dos poços 1-PAS-28 e 1-PAS-29, além do vértice sudoeste, selecionados para o estudo do descarte de cascalhos e fluidos de perfuração no Bloco BM-PAMA-8, na Bacia do Pará-Maranhão.

¹ Surface Velocity Programme do World Ocean Circulation Experiment.

² Operational Oceanography.

Figura I.1-1 - Localização dos pontos considerados na modelagem do Bloco BM-PAMA-8, Bacia do Pará-Maranhão.

I.1.1 Características Meteorológicas da Região

A circulação atmosférica na região Norte-Nordeste do Brasil é dominada, em grande escala, pelo deslocamento sazonal da Zona de Convergência Intertropical (ZCIT). No período de verão do Hemisfério Sul (HS), considerando-se o mês de março em pico, a ZCIT está em sua posição mais ao sul, em torno de 2ºS (vide figura I.1.1-1, que ilustra as linhas de corrente do vento médio a 10 m). Na figura I.1.1-2 ilustra-se a situação oposta, com a ZCIT mais ao norte tendo outubro como extremo (Satyamurty & Mattos, 1989).

Pág.

I-4/10

As figuras I.1.1-1 e I.1.1-2 apresentam as médias obtidas a partir de 12 anos de Reanálise dos modelos meteorológicos NCEP/NCAR³, ilustrando a mudança sazonal dos diferentes ângulos e intensidades dos ventos na porção oeste do Atlântico equatorial. Observa-se que a Bacia do Pará-Maranhão, no período de fevereiro a abril (FMA), apresenta vento médio proveniente do quadrante NE, e no período de setembro a novembro (SON), vento médio proveniente do quadrante E. Este campo de vento, com variação temporal e espacial (interpolada da grade NCEP para cada ponto da grade hidrodinâmica) foi utilizado como principal forçante climatológica para o modelo hidrodinâmico na área de interesse.

Figura I.1.1-1 - Vento médio a 10 metros (fevereiro, março e abril – 1990-2001).

³ National Centers for Environmental Prediction do National Center for Atmospheric Research.

Figura I.1.1-2 - Vento médio a 10 metros (setembro, outubro e novembro – 1990-2001).

I.1.2 Características Oceanográficas da Região

Na região onde se encontra o Bloco BM-PAMA-8, o transporte resultante de material descartado, é influenciado principalmente pela circulação de baixa freqüência (grande escala), como descrito a seguir.

I.1.2.1 Circulação de Baixa Freqüência

O regime de correntes presente na porção oeste do Oceano Atlântico Tropical caracteriza-se por importantes transferências meridionais de massas de água quentes e frias. Integrando a célula de revolvimento meridional ("*Meridional Overturning Cell*") do Atlântico, aproximadamente 17-20 Sv (Sv \Leftrightarrow 106 m³/s) de Água Profunda do Atlântico Norte (APAN) fluem para sul, em direção à região equatorial, compensados pelo transporte para norte de Água Antártica

Intermediária e Antártica de Fundo (Lux *et al.*, 2001; Ganachaud, 2003; Lumpkin & Speer, 2003; *apud* Schott *et al.*, 2005). Neste contexto, o fluxo sub-superficial associado à Sub-Corrente Norte do Brasil é um elo importante dentro da célula sub-tropical rasa, conectando regiões de subducção⁴ sub-tropicais do Atlântico Sul a sub-correntes para leste e para fora da região equatorial, associadas às regiões de ressurgência equatorial e tropical leste (Malanotte-Rizzoli *et al.*, 2000; Zhang *et al.*, 2003; Snowden & Molinari, 2003; Schott *et al.*, 2004; *apud* Schott *et al.*, 2005).

A circulação de grande escala / baixa freqüência sensível na porção oeste do Oceano Atlântico Tropical é formada pelas correntes relacionadas abaixo e ilustradas na figura I.1.2.1-1 (adaptada de Dengler *et al.,* 2004):

- Corrente Sul Equatorial (CSE): fluxo largo (latitude média de 10°S), para oeste, com velocidades entre 0,1 e 0,3 m/s. Bifurca-se, contribuindo para a origem da Corrente do Brasil, para sul e da Corrente Norte do Brasil, para norte;
- Corrente Norte do Brasil (CNB): formada pela sobreposição do fluxo da CSE ao núcleo sub-superficial da Sub-Corrente Norte do Brasil; fluxo intenso que cruza o Equador transportando para o Hemisfério Norte cerca de ³/₄ da água transportada pela Corrente Sul Equatorial (Stramma *et al.*, 1990; Stramma & England, 1999);
- Contra Corrente Norte Equatorial (CCNE): fluxo para leste, entre 3°N e 10°N;
- Sub-Corrente Equatorial (SCE): fluxo sub-superficial para leste, intenso, com velocidades máximas excedendo 1,2 m/s em seu núcleo (localizado em cerca de 100 m de profundidade).
- Corrente de Contorno Oeste Profunda (CCOP): fluxo profundo, ao longo do contorno oeste, responsável pelo transporte de APAN para o Hemisfério Sul.

Introdução

⁴ Regiões onde a água converge e afunda.

BR PETROBRAS

Figura I.1.2.1-1 - Representação esquemática da circulação média e anéis anticiclônicos na porção oeste do oceano Atlântico Tropical; em vermelho, trajetórias das massas de água quentes, e em azul, trajetórias da APAN. As correntes indicadas são: Corrente Norte do Brasil (CNB), Sub-Corrente Equatorial (SCE), Contra Corrente Norte Equatorial (CCNE), Corrente Sul Equatorial (CSE), e Corrente de Contorno Oeste Profunda (CCOP). Adaptado de Dengler et al., (2004).

Um reflexo do acoplamento entre oceano e atmosfera na região equatorial é o ciclo sazonal das correntes de superfície, que respondem à variação sazonal do campo de vento, associada à posição da ZCIT (Richardson & Walsh, 1986). Com a ZCIT movendo-se para norte, as Correntes Norte e Sul Equatorial também se movem para norte; os Alísios de Sudeste cruzam o Equador e a CNB separa-se abruptamente da costa em torno de 6-7°N, passando a alimentar a CCNE.

Considera-se que esta feição se estende de meados de junho até meados de fevereiro (Campos *et al.*, 2000); alguns consideram que se estende até março (Hellweger & Gordon, 2002), enquanto que nos outros meses a CNB flui para norte e a Contra Corrente se enfraquece na porção oeste do Atlântico (a leste de 25°W a Contra Corrente existe o ano inteiro). A máxima retroflexão é observada em novembro, e a mínima em abril, como observado por Lumpkin & Garzoli (2005).

Durante o período de retroflexão, é comum observar a formação de um forte meandramento do fluxo para leste, com a emissão de anéis anticiclônicos (sentido horário no Hemisfério Norte), como ilustrado na figura I.1.2.1-1. Estes anéis são altamente energéticos, possuem raio médio de 150 km, e transportam por volta de 3Sv para noroeste (Johns et al., 1990; Didden & Schott, 1993; Richardson et al., 1994 e Frantantoni et al., 1995). Richardson et al. (1994) sugere que a Corrente das Guianas seria, na realidade, a retificação dos anéis da CNB se propagando para noroeste. Garzoli et al. (2003) analisaram dados de fundeios de eco-sondas invertidas e observaram a emissão de 7 a 8 anéis em períodos de 12 meses.

Alguns estudos identificam as ondas de Rossby como o mecanismo forçante dos anéis da CNB. Johns et al. (1990) associaram a variabilidade de 40 a 60 dias observada em dados de correntometria provenientes de fundeios realizados na região em 1987-1988, aos anéis da CNB, que são consistentes com ondas de Rossby baroclínicas. Jochum & Malanotte-Rizzoli (2003), utilizaram um modelo de circulação geral de alta resolução, que produziu ondas de Rossby do primeiro modo baroclínico com um período de 63 dias (ventos estacionários) ou 50 dias (ventos variáveis); verificou-se que com o aumento da vorticidade planetária os anticiclones se intensificaram tornando-se anéis da CNB.

A partir de análise de dados coletados na costa nordeste do Brasil (dados de navios e séries longas de perfis de velocidade e temperatura, coletados em cinco fundeios instalados ao longo de 240 km desde a quebra da plataforma, em aproximadamente em 11º S), Dengler et al. (2004) mostram que a CCOP deixa de ser um fluxo contínuo a partir de 8º S. Ao sul desta latitude o transporte da APAN para o Atlântico Sul é realizado pela propagação de anéis anticlicônicos, como ilustrado na figura I.1.2.1-1. Os autores sugerem que a formação de anéis no Hemisfério Sul pode ser vista como uma contra-parte da emissão de anéis pela CNB.

I.1.2.2 Campo Termohalino

Na região tropical do oceano Atlântico, a camada de mistura é definida por temperaturas em torno de 27 °C, caracterizando a Água Tropical de Superfície (AT) (Stramma & Schott, 1999). Nesta região a termoclina é estreita; a isoterma

de 20 °C, localizada entre 125 e 150 m de profundidade, representa o limite inferior para esta massa d'água. Em torno de 100 m de profundidade encontra-se a Água de Salinidade Máxima (Defant, 1936), inserida na AT. Em sub-superfície, encontra-se a Água Central do Atlântico Sul (ACAS) que se estende até aproximadamente 500 m. Entre 500 e 1.000 m de profundidade, está a Água intermediária Antártica (AIA), e de 1.000 a 1.200 m, a parte superior da Água Circumpolar Profunda. Nestes primeiros 1.200 m de profundidade, o transporte líquido de calor cruzando o Equador é em direção ao norte, compensando o transporte realizado pela Água Profunda do Atlântico Norte, que flui em direção ao sul entre 1.200 e 4.000 m de profundidade. A figura I.1.2.3-1 apresenta um diagrama TS para os primeiros 1.200 m do oceano Atlântico Tropical (Chepurin & Carton, 1997). Nesta figura, os autores consideram a sigma theta de 24,5 g/L como a interface entre a AT e ACAS, e a sigma theta de 26,8 g/L como a interface entre a ACAS e a AIA.

Figura I.1.2.3-1 - Diagrama TS para os primeiros 1.200 m do Atlântico Tropical (Fonte: Chepurin & Carton, 1997).

O aporte de água doce na região é significativo, contribuindo localmente na particularização da circulação (inclusive barotrópica), criando regiões de alta dissipação para a maré. A influência na propagação da maré, na componente

estuarina deste domínio é descrita em Godin (1991), Beardsley et al. (1995) e Pereira (2000). Efeitos sobre o aporte de sedimento na plataforma continental são obviamente importantes, mas não considerados aqui devido à distância do ponto de interesse da região de influência da pluma de sedimentos. A pluma do Rio Amazonas é adjacente à região de geração dos anéis da CNB. Assim, de julho a dezembro a mesma sofre os efeitos da retroflexão da CNB, apresentando maior extensão horizontal.

II MODELAGEM DO DESCARTE DE CASCALHOS E FLUIDOS DE PERFURAÇÃO

A modelagem do descarte de cascalhos e fluidos de perfuração foi realizada utilizando-se o modelo MUDMAP, desenvolvido pela *ASA*, constituído por um sistema de modelos computacionais para a previsão do transporte, dispersão e deposição de cascalhos e fluidos de perfuração e dispersão de águas de produção (ASA, 2000; Spaulding *et al.*, 1994; Spaulding, 1994).

II.1 MODELO MUDMAP

O modelo MUDMAP é composto por uma série de componentes integrados. O modelo de descarte em si simula o movimento e a distribuição de materiais descartados no ambiente (na superfície e coluna d'água e no assoalho oceânico). Para efetuar esses cálculos, o modelo baseia-se em dados ambientais como correntes e propriedades de densidade da coluna d'água, dados geográficos como proximidade da linha de costa e parâmetros físicos que definem as propriedades do material descartado, além de informações sobre o processo de descarte (volume, duração, etc.).

As espessuras médias de material depositado são calculadas em função das partículas acumuladas no assoalho oceânico e da área onde estas estão distribuídas. No cálculo das espessuras, leva-se em consideração a massa total de sedimento presente em cada célula da grade, a área da célula, a porosidade e a densidade do material descartado.

O sistema é controlado através de uma interface gráfica (baseada em uma escala de cores), que consiste em: (1) um sistema integrado de modelos computacionais, de forma a permitir a interação entre os modelos de dispersão no campo próximo e no campo afastado, (2) um sistema de informação geográfica, (3) ferramentas de gerenciamento de informações ambientais para fornecer os dados de entrada dos modelos e (4) uma interface para visualização dos resultados.

II.1.1 Aspectos Teóricos

As equações que governam o modelo (conservação de massa, quantidade de movimento, empuxo e fluxo de partículas sólidas) são formuladas utilizando-se a teoria integral de pluma e, então, resolvidas com a técnica de integração numérica Runge Kutta. O MUDMAP é baseado na formulação originalmente desenvolvida por Koh & Chang (1973) e estendida pelos trabalhos de Brandsma & Sauer (1983), conhecido como modelo OOC, para os estágios 1 e 2 do movimento da pluma. No campo afastado (difusão passiva) é empregado o método lagrangiano de trajetória de partículas utilizado no sistema de modelagem de derrames de óleo OILMAP (ASA, 1999). O modelo fornece a dinâmica da pluma, a distribuição das concentrações no campo próximo, a concentração e os padrões de deposição no fundo no campo afastado.

O sistema MUDMAP utiliza três estágios independentes, mas integrados, para a simulação do transporte e dispersão dos materiais descartados. A independência é necessária devido às diferentes escalas de tempo do processo de diluição da pluma entre os estágios. Dessa forma, os estágios são:

- Estágio 1 convectivo dinâmico descendente/ascendente: simula a diluição e o espalhamento iniciais do material na vizinhança imediata do local de despejo. O material descende se for mais denso que a água no ponto de descarte e ascende se a densidade for menor que a da água;
- Estágio 2 colapso dinâmico: estima o crescimento e diluição da pluma e como esta impacta a superfície ou o fundo, ou se mantém aprisionada por um forte gradiente de densidade na coluna d'água;
- Estágio 3 dispersivo (campo afastado): onde o modelo simula o transporte e dispersão do material devido às correntes locais e campos de turbulência.

II.2 DADOS DE ENTRADA

Inicialmente, para a elaboração dos cenários de descarte de cascalhos e fluidos de perfuração no Bloco BM-PAMA-8, foi definida a área de estudo para o ponto de descarte. Nessa área, foi estabelecida uma grade computacional (*i.e.* campo de correntes) e definido o campo termohalino, utilizado como dado de entrada no MUDMAP e no cálculo da velocidade de queda das partículas.

II.2.1 Campo de Correntes

A caracterização dos padrões de circulação superficial na região foi obtida a partir da composição de um modelo numérico hidrodinâmico de meso-escala implementado na área de estudo (compreendendo as principais zonas de geração e propagação das perturbações do campo médio) e um campo médio de corrente superficial com variabilidade mensal, reproduzindo a variabilidade sazonal observada na CNB, retroflexão e formação de vórtices no inverno (HS).

O modelo hidrodinâmico implementado possui grade curvilínea adensada e ortogonal e formulação baseada no modelo *Princeton Ocean Model* (POM), com coordenadas sigma e fechamento turbulento de segunda ordem na vertical. Foram consideradas como forçantes a maré, o vento e as condições climatológicas de corrente nos contornos abertos.

O campo superficial resultante da modelagem hidrodinâmica foi composto ao campo de corrente superficial, que possui variação espaço-temporal (médias climatológicas), obtido a partir de dados de derivadores na área, SVP/WOCE e do Projeto CORIOLIS, conforme ilustrado na figura II.2.1-1. Estes dados de derivadores foram interpolados numa grade regular na região de interesse e são apresentados nas figuras II.2.1-2 e II.2.1-3, na forma de linhas de corrente correspondentes aos meses de janeiro a abril e de agosto a novembro, sendo este último período característico da época de retroflexão da CNB.

A descrição da formulação do modelo hidrodinâmico e sua implementação na Bacia do Pará-Maranhão, além da técnica numérica utilizada na composição entre resultados do modelo e dados dos derivadores, foi apresentada em detalhe em ASA (2007).

Pág. II-4/22

Figura II.2.1-1 - Pontos correspondentes aos dados obtidos de derivadores (SVP/WOCE e CORIOLIS).

Figura II.2.1-2 - Linhas de corrente para o período de janeiro a abril (SVP/WOCE e CORIOLIS).

II

Figura II.2.1-3 - Linhas de corrente para o período de agosto a novembro (SVP/WOCE e CORIOLIS).

A caracterização da estrutura vertical do padrão de circulação em vários níveis horizontais foi obtida através da composição do campo de superfície descrito acima, ao padrão vertical de cisalhamento (normalizado) da corrente medida na região. Este padrão vertical foi obtido a partir dos dados coletados pelo WOCE (ACM-7) em uma rede de fundeios de correntômetros, na região da Bacia Amazônica (figura II.2.1-2).

As figuras II.2.1-3 e II.2.1-4, apresentadas a seguir, ilustram o padrão de correntes observadas nas proximidades do Bloco BM-PAMA-8. A figura II.2.1-3 apresenta os diagramas *stick plot* do perfil de correntes para o período de 7 de setembro de 1989 a 10 de outubro de 1990, obtido a partir dos dados coletados pelo WOCE no fundeio K327 (0,087° N; 44,390° W), localizado em lâmina d'água de 545 m. A figura II.2.1-4 apresenta os diagramas *stick plot* do perfil de correntes para o período de 13 de outubro de 1990 a 8 de setembro de 1991, obtido a partir dos dados coletados pelo WOCE no fundeio K327 (0,087° N; 44,390° W), localizado em lâmina d'água de 545 m. A figura II.2.1-4 apresenta os diagramas *stick plot* do perfil de correntes para o período de 13 de outubro de 1990 a 8 de setembro de 1991, obtido a partir dos dados coletados pelo WOCE no fundeio K340 (0,420° N; 44,250° W), localizado em lâmina d'água de 3.340 m.

Modelagem do Descarte de Cascalhos e Fluidos de Perfuração Ш

Pág.

II-6/22

Figura II.2.1-2 - Localização dos fundeios de correntômetros do WOCE/ACM-7⁵.

A análise dos conjuntos de dados do WOCE/ACM-7 indica que o intenso fluxo superficial para noroeste associado a CNB apresenta velocidades máximas nos meses de inverno (maio a junho). Este fluxo se mantém intenso até 150 m de profundidade e a partir daí começa a diminuir; em torno de 800 m já é possível observar, em alguns meses, o fluxo para sudeste associado a CCOP. O núcleo da CCOP se apresenta em torno de 1.700 m, nesta região.

As figuras II.2.1-5 e II.2.1-6, apresentam os diagramas stick plot dos perfis de correntes resultantes da composição entre resultados do modelo hidrodinâmico e dados do WOCE, na região do Poço 1-PAS-28, localizado no Bloco BM-PAMA-8, para meses verão e inverno, respectivamente.

⁵ http://woce.nodc.noaa.gov/woce_v3/wocedata_1/cmdac/netcdf/acm7/acm7mapa.htm

Figura II.2.1-3 - Stick plots do perfil de correntes para o período de 7 de setembro de 1989 a 10 de outubro de 1990, obtido a partir dos dados coletados pelo WOCE na rede de fundeios ACM-7, fundeio K327.

Figura II.2.1-4 - Stick plots do perfil de correntes para o período de 13 de outubro de 1990 a 08 de setembro de 1991, obtido a partir dos dados coletados pelo WOCE na rede de fundeios ACM-7, fundeio K340. Atenção: a escala de intensidade da corrente é variável nesta figura.

PETROBRAS

BR

Modelagem do Descarte de Cascalhos e Fluidos de Perfuração II

Figura II.2.1-5 - Stick plots do perfil de correntes para o período de verão (re-amostrados a cada 3 horas), obtido a partir de composição entre modelo hidrodinâmico e dados do WOCE, na região do Poço 1-PAS-28, localizado no Bloco BM-PAMA-8. Atenção: a escala de intensidade da corrente é variável nesta figura.

Ш

Pág.

Figura II.2.1-6 - Stick plots do perfil de correntes para o período de inverno (reamostrados a cada 3 horas), obtido a partir de composição entre modelo hidrodinâmico e dados do WOCE, na região do Poço 1-PAS-28, localizado no Bloco BM- PAMA-8. Atenção: a escala de intensidade da corrente é variável nesta figura.

II.2.2 Campo Termohalino

Os dados de densidade são utilizados pelo MUDMAP para o cálculo da velocidade de deposição das partículas. Sendo possível e, desde que as séries temporais possuam significado estatístico, prioriza-se a utilização de dados para este cálculo, buscando considerar uma estrutura de densidade o mais próxima da realidade possível, daí a escolha dos dados do WOCE para caracterizar o campo termohalino local.

As figuras II.2.2-1 e II.2.2-2 apresentam uma seção vertical ao longo de 0,8°N do campo de densidade médio (Sigma-t) calculado para os períodos de verão e inverno, respectivamente, com base em dados de temperatura e salinidade obtidos do Atlas Eletrônico dos dados do WOCE. Estes dados foram analisados, filtrados e interpolados no espaço. A tabela II.2.2-1 apresenta os perfis de densidade obtidos para a região do Poço 1-PAS-28, utilizados como dados de entrada no MUDMAP.

Figura II.2.2-1 - Secção vertical de densidade (kg/m³) ao longo de 0,8ºN, para o verão, na região do Poço 1-PAS-28. Dados provenientes do Atlas do WOCE.

Pág. II-12/22

Figura II.2.2-2 - Secção vertical de densidade (kg/m³) ao longo de 0,8ºN, para o inverno, na região do Poço 1-PAS-28. Dados provenientes do Atlas do WOCE.

Tabela II.2.2-1 - Pe	erfil médio de densida	ade para a região	do Poço 1-PA	AS-28, Bloco
BN	/I-PAMA-8, para os p	eríodos de verão	e inverno.	

	DENSIDADE (kg/m ³)				
PROFUNDIDADE (III)	VERÃO	INVERNO			
0	1.022,5	1.022,9			
25	1.023,3	1.023,6			
50	1.023,7	1.023,8			
75	1.024,3	1.024,1			
100	1.025,1	1.024,3			
200	1.027,2	1.027,3			
300	1.028,1	1.028,2			
500	1.029,3	1.029,4			
1.000	1.032,1	1.032,1			
1.500	1.034,5	1.034,5			
2.000	1.036,8	1.036,8			
3.000	1.041,2	1.041,2			

PETROBRAS

II.3 CENÁRIOS DE DESCARTE DE PARTÍCULAS

Os cenários simulados foram definidos de forma a abranger as condições oceanográficas típicas na região do Bloco BM-PAMA-8, divididos em dois períodos: verão e inverno. As informações que definem os cenários de descarte são: ponto de descarte, período de simulação, informações sobre o processo de descarte e propriedades do material descartado.

II.3.1 Pontos de Descarte

As simulações do descarte de partículas foram realizadas no Bloco BM-PAMA-8, no Poço 1-PAS-28 indicado na figura I.1-1, cujas coordenadas foram especificadas pela PETROBRAS e se encontram listadas na tabela III.3.1-1. Esta tabela apresenta também, as coordenadas do Poço 1-PAS-29 e do vértice sudoeste, para os quais os resultados das simulações foram replicados.

Tabela II.3.1-1 - Coordenadas (SAD 69) e lâmina d'água (m) dos pontos de descarte de partículas no Bloco BM-PAMA-8.

POÇO	BLOCO	LATITUDE	LONGITUDE	LÂMINA D'ÁGUA (m)
1-PAS-28	BM-PAMA-8	00º49'11,10"N	45º34'35,29"W	2.115
1-PAS-29	BM-PAMA-8	01º01'50,99"N	45º42'51,98"W	2.430
Vértice Sudoeste	BM-PAMA-8	00º45'00,00"N	45°45'00,00"W	~ 1.000

II.3.2 Especificações dos Processos de Perfuração e Descarte

O processo de perfuração é dividido em duas etapas: sem *riser* e com *riser*. Até a instalação do *riser*, não existe retorno de cascalhos para a sonda e todo o material retirado do poço é descartado no fundo do mar, depositando-se próximo à cabeça de poço. A perfuração com *riser* corresponde à etapa com retorno de fluido de perfuração e cascalhos para a superfície, sendo o descarte realizado na superfície do mar.

Para a perfuração do Poço 1-PAS-28 será utilizada a sonda NS-21 e o processo de perfuração será composto por cinco fases distintas: Fases I e II sem *riser*, e Fases III, IV e V com *riser*.

O início da perfuração se dará com um poço de diâmetro 36" e intervalo de cerca de 45 m, com a utilização de fluido de perfuração convencional. Na Fase II inicia-se a perfuração com o poço de 26" de diâmetro, utilizando os fluidos de perfuração convencional e salgado tratado com amido (STA), perfazendo um intervalo de 450 m. Toda a fase foi perfurada com fluido convencional e, ao final, este foi substituído pelo STA, que é um fluido mais completo, com o objetivo de inibir o inchamento de argilas e conseqüentes complicações na descida do revestimento. Portanto, ao final desta fase foi descartado o fluido STA excedente.

A perfuração com *riser*, Fases III a V, será perfurada com fluido sintético (BR-MUL), que não será descartado (nas simulações considerou-se apenas a porcentagem aderida aos cascalhos). A Fase III (17½") terá intervalo de 1.000 m, a Fase IV (12¼") de 1.900 m e a Fase V (8½") de 1.000 m.

Adicionalmente, na modelagem consideram-se os descartes das fases sem *riser* efetuados 5 m acima do fundo do mar. Enquanto que, os descartes das fases com *riser*, foram efetuados na superfície do mar através de uma tubulação de 19,75".

II.3.3 Caracterização dos Cascalhos e Fluidos de Perfuração

Como não existem informações consolidadas sobre a granulometria dos cascalhos gerados nas operações de perfuração da Bacia do Pará-Maranhão, nas simulações foram utilizadas as velocidades de queda sugeridas por Brandsma & Smith (1999) para cascalhos perfurados com fluido de base aquosa (tabela II.3.3-1). E para cascalhos perfurados com fluido de base sintética (BR-MUL) foram utilizadas velocidades de queda sugeridas em MAPEM⁶ (2004), medidas em laboratório para o Poço Kittyhawk (tabela II.3.3-2), uma vez que

⁶ Monitoramento Ambiental em Atividades Marítimas de Perfuração.

Brandsma & Smith (op. cit.) não fazem sugestão para cascalhos perfurados com fluido de base sintética.

Salienta-se que as velocidades de queda das partículas foram recalculadas, utilizando-se a formulação de Watson (1969), para a densidade real dos cascalhos descartados (2,6 kg/m³) e as densidades da água do mar da região onde se localiza o Bloco BM-PAMA-8.

		VELOCIDADE DE QUEDA (cm/s)			
CLASSE	FRAÇÃO DE VOLUME	VERÃO	INVERNO		
1	4,272E-2	0,00013	0,00013		
2	3,204E-2	0,0160	0,00160		
3	3,738E-2	0,02072	0,02072		
4	1,602E-2	0,22112	0,22112		
5	1,068E-2	1,37911	1,37909		
6	9,612E-2	3,85066	3,85062		
7	8,544E-2	9,46768	9,46760		
8	8,010E-2	13,07899	13,07887		
9	1,335E-1	25,15114	25,15091		

Tabela II.3.3-1 - Velocidades de queda (cm/s) para cascalhos perfurados com fluido de
base aquosa (adaptado de Brandsma & Smith, 1999).

Tabela II.3.3-2 -	Velocidades de queda (cm/s) para cascalhos perfurados com fluido de
l	base sintética (adaptado de MAPEM, 2004).

		VELOCIDADE DE QUEDA (cm/s)			
CLASSE	FRAÇÃO DE VOLUME	VERÃO	INVERNO		
1	1,000E-1	35,12904	35,13050		
2	1,000E-1	33,17755	33,17893		
3	1,000E-1	30,90635	30,90764		
4	1,125E-1	28,30498	28,30616		
5	4,250E-2	25,05406	25,05511		
6	2,000E-2	19,53640	19,53722		
7	6,250E-3	13,05235	13,05291		
8	1,875E-2	6,61442	6,61471		

Para os fluidos de perfuração foi utilizada a granulometria de seus principais constituintes sólidos (bentonita e baritina) fornecidas pela PETROBRAS, com base em análises de laboratório realizadas pela Universidade Federal Fluminense em 2008, conforme mostram as tabelas II.3.3-3 e II.3.3-4. As velocidades de deposição das partículas dos sólidos dos fluidos foram, também, calculadas segundo a formulação de Watson (1969).

		VELOCIDADE DE QUEDA (cm/s)					
GRANULOMETRIA	%	SEM	RISER	COM RISER			
		Verão	Inverno	Verão	Inverno		
Areia Muito Grossa	0,3	13,88983	13,88970	13,98077	13,98140		
Areia Grossa	0,3	9,25112	9,25103	9,31275	9,31317		
Areia Média	0,6	5,55206	5,55200	5,59070	5,59097		
Areia Fina	2,7	2,62013	2,62010	2,63994	2,64008		
Areia Muito Fina	7,7	0,87237	0,87236	0,87949	0,87954		
Silte grosso	40,8	0,23254	0,23253	0,23449	0,23450		
Silte médio	22,6	0,05854	0,05854	0,05904	0,05904		
Silte fino	14,4	0,01465	0,01465	0,01478	0,01478		
Silte Muito fino	6,7	0,00366	0,00366	0,00369	0,00370		
Argila	3,9	0,00092	0,00092	0,00092	0,00092		

Tabela II.3.3-3 - Classes granulométricas e velocidades de queda para a bentonita.

			VELOCIDADE D	E QUEDA (cm/s)		
GRANULOMETRIA	%	SEM	RISER	COM RISER		
		Verão	Inverno	Verão	Inverno	
Areia Grossa	0,2	15,47233	15,47221	15,55481	15,55538	
Areia Média	0,4	9,86334	9,86326	9,91666	9,91703	
Areia Fina	2,6	5,30825	5,30821	5,33788	5,33809	
Areia Muito Fina	10,7	2,07636	2,07634	2,08849	2,08857	
Silte grosso	44,7	0,59646	0,59646	0,60004	0,60006	
Silte médio	17,5	0,15231	0,15231	0,15323	0,15324	
Silte fino	11,2	0,03820	0,03820	0,03843	0,03843	
Silte Muito fino	6,9	0,00955	0,00955	0,00961	0,00961	
Argila	5,8	0,00239	0,00239	0,00240	0,00240	

PETROBRAS

A seguir, apresenta-se a formulação de Watson (1969), utilizada no cálculo de velocidade de queda das partículas, onde são considerados o tamanho das partículas, densidade das partículas, densidade do fluido ambiente e viscosidade dinâmica da água:

$$V_{t} = \frac{\sqrt{9Z^{2}\mu^{2} + \frac{4}{3}WR^{3}(\rho_{particula} - \rho_{fluido})g - 3Z\mu}}{WR\rho_{fluido}}$$

onde,

 V_t = velocidade de queda (cm/s);

Z = coeficiente de arraste viscoso, constante adimensional, igual a 0,622;

W = coeficiente de arraste de pressão, constante adimensional, igual a 0,5305;

 μ = viscosidade dinâmica, poise (dina-s/cm²), 10⁻²;

 $\rho_{particula}$ = densidade (g/cm³) da partícula;

 ρ_{fluido} = densidade (g/cm³) do fluido ambiente;

g = aceleração da gravidade, igual a 980 cm/s²;

R = raio da partícula (cm).

A tabela II.3.3-5 apresenta os volumes e a caracterização dos cascalhos e fluidos de perfuração gerados no Poço 1-PAS-28, segundo informações fornecidas pela PETROBRAS. São apresentadas, também, as informações relativas ao Poço 1-PAS-29 (tabela II.3.3-6), localizado no mesmo bloco, para o qual os resultados das simulações foram replicados. Vale ressaltar que apenas nas fases com *riser* será utilizado fluido de perfuração sintético (BR-MUL), e apenas a porcentagem aderida aos cascalhos será descartada.

Tabela II.3.3-5 - Especificações do descarte de cascalhos e fluidos de perfuração para o Poço 1-PAS-28, Bloco BM-PAMA-8.

FASE	DIÂMETRO DO POÇO	INTERV. DA FASE (m)	DURAÇÃO DO DESCARTE (horas)	PROF. DO DESCARTE (m)	MATERIAIS	TIPO DE FLUIDO	VOLUME EFETIVAMENTE DESCARTADO (m ³)	DENS. MÉDIA (kg/m³)	CONSTITUINTES SÓLIDOS	DENS. DOS SÓLIDOS (kg/m³)	CONC. DE SÓLIDOS NO FLUIDO (kg/m³)								
				5 m acima	cascalhos	N.A.	36,0	2.600,0	N.A.	N.A.	N.A.								
I	36"	45	5,5	do fundo do mar	fluido	Convencional	670,0	1.068,0	Bicarbonato sódio* Bentonita	2.160 2.250	1,43 71,45								
					cascalhos	N.A.	185,0	2.600,0	N.A.	N.A.	N.A.								
Ш	26"	450 20,75	20,75	5 m acima do fundo do	5 m acima o fundo do mar fluido	Convencional	900,0	1.068,0	Bicarbonato sódio* Bentonita	2.160 2.250	1,43 71,45								
. 20				mar		STA (excedente) ⁺	600,0	1.320,0	Bicarbonato sódio* Bentonita Cloreto sódio* Baritina	2.160 2.250 2.160 4.200	1,43 28,6 85,7 399,0								
					cascalhos	N.A.	198,0	2.600,0	N.A.	N.A.	N.A.								
Ш	17½" 1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	44,0	do mar	fluido	BR-MUL	45,0	780,0	Cal hidratada* Argila organofílica* Baritina	2.280 2.280 4.200	28,50 5,72 691,13
					cascalhos	N.A.	163,0	2.600,0	N.A.	N.A.	N.A.								
IV 12¼"	12¼"	1.900	241,5	superfície do mar	fluido	BR-MUL	37,0	780,0	Cal hidratada* Argila organofílica* Baritina	2.280 2.280 4.200	28,50 5,72 691,13								
					cascalhos	N.A.	41,0	2.600,0	N.A.	N.A.	N.A.								
V 8½"	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	254,0	do mar	fluido	BR-MUL	9,0	780,0	Cal hidratada* Argila organofílica* Baritina	2.280 2.280 4.200	28,50 5,72 691,13		

⁺ Fluido excedente descartado ao final da fase como descarte instantâneo de todo o volume.

* Foi utilizada a granulometria da bentonita para estes sólidos, uma vez que a densidade destes é similar.

N.A. = não aplicável.

OBS: a fim de se trabalhar com cenários mais conservadores, foram considerados inclusive os sólidos dos fluidos solúveis em água.

Pág.

Tabela II.3.3-6 -	Especificações	do descarte de	cascalhos e fluidos	s de perfuração	para o Poço	1-PAS-29, Bloco	BM-PAMA-8.
-------------------	----------------	----------------	---------------------	-----------------	-------------	-----------------	------------

FASE	DIÂMETRO DO POÇO	INTERV. DA FASE (m)	PROF. DO DESCARTE (m)	MATERIAIS	TIPO DE FLUIDO	VOLUME EFETIVAMENTE DESCARTADO (m ³)	DENS. MÉDIA (kg/m³)	CONSTITUINTES SÓLIDOS	DENS. DOS SÓLIDOS (kg/m³)	CONC. DE SÓLIDOS NO FLUIDO (kg/m³)											
			5 m acima	cascalhos	N.A.	44,0	2.600,0	N.A.	N.A.	N.A.											
ļ	36"	55	do fundo do mar	fluido	Convencional	773,0	1.068,0	Bicarbonato sódio* Bentonita	2.160 2.250	1,43 71,45											
				cascalhos	N.A.	216,0	2.600,0	N.A.	N.A.	N.A.											
ш	II 26"	505	5 m acima do fundo do	i m acima o fundo do mar fluido	Convencional	1.042,0	1.068,0	Bicarbonato sódio* Bentonita	2.160 2.250	1,43 71,45											
" 20		525	mar		STA (excedente) ⁺	695,0	1.320,0	Bicarbonato sódio* Bentonita Cloreto sódio* Baritina	2.160 2.250 2.160 4.200	1,43 28,6 85,7 399,0											
		1.300		cascalhos	N.A.	257,0	2.600,0	N.A.	N.A.	N.A.											
III 17½"	17½"		1.300	1.300	1.300	1.300	1.300	1.300	1.300	1.300	1.300	1.300	1.300	1.300	superficie do mar	fluido	BR-MUL	59,0	780,0	Cal hidratada* Argila organofílica* Baritina	2.280 2.280 4.200
				cascalhos	N.A.	137,0	2.600,0	N.A.	N.A.	N.A.											
IV 12¼"	12¼"	1.600	do mar	fluido	BR-MUL	32,0	780,0	Cal hidratada* Argila organofílica* Baritina	2.280 2.280 4.200	28,50 5,72 691,13											
			even entí el e	cascalhos	N.A.	37,0	2.600,0	N.A.	N.A.	N.A.											
v	8½"	890	890	superfície do mar	fluido	BR-MUL	8,0	780,0	Cal hidratada* Argila organofílica* Baritina	2.280 2.280 4.200	28,50 5,72 691,13										

⁺ Fluido excedente descartado ao final da fase como descarte instantâneo de todo o volume.

* Foi utilizada a granulometria da bentonita para estes sólidos, uma vez que a densidade destes é similar.

N.A. = não aplicável.

OBS: a fim de se trabalhar com cenários mais conservadores, foram considerados inclusive os sólidos dos fluidos solúveis em água.

II.3.4 Critério de Corte Adotado na Apresentação dos Resultados

Na apresentação dos resultados foi adotado o critério de corte de espessuras de 1 mm. Este critério foi definido em função de:

- Segundo Henrik et al. (2006), o limite do PNEC (Predicted No Effect Concentration or Predicted No Effect Change) para soterramento de organismos em operações de descarte de cascalhos e fluidos de perfuração é de 0,65 cm (6,5 mm).
- Em áreas dragadas nos EUA (regiões costeiras), organismos (considerando diferentes espécies e estágios de vida) precisariam de espessuras superiores a 1 mm para sofrer efeitos letais significativos (ASA, 2003). Para o descarte de cascalhos e fluidos de perfuração, efetuados em região offshore, esta seria uma espessura bastante conservativa.

Na apresentação dos resultados para a coluna d'água foram adotadas as concentrações de corte de 1 mg/L e 5 mg/L, sugeridas pelo IBAMA por serem valores que representam alterações significativas na concentração de sedimentos em suspensão em relação aos valores usuais encontrados no oceano (IBAMA, 2008).

II.3.5 Descrição dos Cenários

A tabela II.3.5-1 apresenta os cenários elaborados para as simulações de descarte de cascalhos e fluidos de perfuração selecionados para caracterizar as operações de perfuração realizadas na Bacia do Pará-Maranhão. Ao todo, foram simulados 12 cenários contemplando: <u>1 ponto de descarte</u>, <u>5 fases de perfuração</u> (sem e com *riser*) e <u>2 condições sazonais</u> (verão e inverno).

A terminologia utilizada para a identificação dos cenários é a seguinte:

- BMPAMA8 identifica o bloco;
- FI, FII, FIII, FIV e FV indicam as fases de perfuração/descarte;
- EXCE indica o descarte de fluido excedente ao final da Fase II;
- VER e INV indicam os períodos sazonais de verão e inverno, respectivamente.

Tabela II.3.5-1 - Cer	nários elaborados para o estudo de cascalhos e fluidos de perfuração
par	a o Poço 1-PAS-28 no Bloco BM-PAMA-8, Bacia do Pará-Maranhão,
par	a os períodos de verão e inverno.

	CENÁRIOS			
FASES DE FERFURAÇÃO	VERÃO	INVERNO		
FASE I	BMPAMA8_FI_VER	BMPAMA8_FI_INV		
	BMPAMA8_FII_VER	BMPAMA8_FII_INV		
FASE II	BMPAMA8_FII_EXCE_VER	BMPAMA8_FII_EXCE_INV		
FASE III	BMPAMA8_FIII_VER	BMPAMA8_FIII_INV		
FASE IV	BMPAMA8_FIV_VER	BMPAMA8_FIV_INV		
FASE V	BMPAMA8_FV_VER	BMPAMA8_FV_INV		

Nas simulações do descarte de partículas são considerados cascalhos e sólidos dos fluidos com diferentes características (*e.g.* velocidade de deposição), portanto, as simulações são realizadas por um período suficiente para permitir a deposição significativa das partículas descartadas (*i.e.*, deposição com espessuras \geq 1 mm).

Para as fases sem *riser*, já que os descartes são efetuados junto à cabeça do poço, a duração da simulação, considerada neste trabalho, é igual à duração do descarte adicionada de três dias. E para as fases com *riser*, como as partículas devem percorrer toda a coluna d'água para se depositarem, a duração da simulação para cada fase é igual à duração do descarte adicionada de seis dias.

A tabela II.3.5-2 apresenta os cenários elaborados para simular a concentração de sólidos de fluidos na coluna d'água. Para representar a área de influência na coluna d'água, foram selecionadas a Fase II (sem *riser*, excedente) e a Fase III (com *riser*), por serem os cenários mais críticos das fases sem e com *riser*, devido à maior vazão de descarte (volume/tempo) das mesmas,

além de serem fluidos de perfuração (STA e BR-MUL) com as maiores concentrações de sólidos.

Foram simulados 4 cenários que contemplam: 1 ponto de descarte (Poço 1-PAS-28), 2 fases de perfuração (sem riser e com riser) e 2 condições sazonais (verão e inverno).

A terminologia utilizada para a identificação dos cenários de coluna d'água é a seguinte:

- BMPAMA8 identifica o bloco; •
- FII-EXCE e FIII indicam as fases de perfuração/descarte selecionadas; •
- VER E INV indicam os períodos sazonais de verão e inverno, • respectivamente;
- STA e BRMUL indicam, respectivamente, os fluidos STA e BR-MUL. •

Tabela II.3.5-2 - Cenários elaborados para	simular a concentração de sólidos em
suspensão.	

	CENÁRIOS			
FASES DE FERFORAÇÃO	VERÃO	INVERNO		
FASE II - EXCE	BMPAMA8_FII_EXCE_VER_STA	BMPAMA8_FII_EXCE_INV_STA		
FASE III	BMPAMA8_FIII_VER_BRMUL	BMPAMA8_FIII_INV_BRMUL		

ER PETROBRAS

III RESULTADOS DAS SIMULAÇÕES

O modelo MUDMAP foi utilizado para simular os cenários descritos no Subitem II.3.5 e fornecer informações sobre a distribuição espacial dos cascalhos e sólidos de fluidos descartados durante as operações de perfuração no Bloco BM-PAMA-8. Para melhor visualização e interpretação dos resultados de deposição no assoalho oceânico e na coluna d'água, optou-se por apresentá-los separadamente em: "Depósitos no Assoalho Oceânico" e "Concentrações na Coluna D'Água".

Os resultados de concentrações na coluna d'água são apresentados apenas para a Fase II excedente (sem *riser*) e Fase III (com *riser*), selecionadas como os descartes mais críticos por apresentarem os maiores volumes de materiais descartados nas fases sem e com *riser*.

III.1 DEPÓSITOS NO ASSOALHO OCEÂNICO

A tabela III.1-1 fornece as características da deposição de material calculadas pelo MUDMAP para o ponto simulado. A tabela lista a área coberta por depósitos de sedimento com espessuras maiores que 1 mm, a extensão horizontal máxima do ponto de descarte até o contorno da mesma espessura e a espessura máxima depositada nessa região. O critério de corte em 1 mm foi adotado em função dos estudos descritos no Subitem II.3.4.

A seguir, são apresentados os resultados obtidos nas simulações para os depósitos no assoalho oceânico. Para facilitar a compreensão dos resultados, são apresentadas as distribuições espaciais dos cascalhos e fluidos de perfuração ao final de cada fase e ao final das operações de descarte para o ponto simulado, divididos em verão e inverno.

Tabela III.1-1 - Máxima espessura depositada e área coberta por sedimentos com					
	espessuras maiores que 1 mm para o Poço 1-PAS-28, Bloco BM-PAMA-8.				

FASE	ÁREA (m²) COBERTA POR ESPESSURAS ≥ 1 mm		EXTENSÃO MÁXIMA HORIZONTAL (m) A PARTIR DO DE DESCARTE ATÉ O CONTORNO DE 1 mm		ESPESSURA MÁXIMA DEPOSITADA (mm)	
	VERÃO	INVERNO	RNO VERÃO INVI		VERÃO	INVERNO
I	4.184,0	4.180,0	54,0 (SE)	53,0 (SSE)	43,7	42,0
II	7.298,0	7.187,0	67,0 (ESE)	70,0 (ESE)	217,0	217,0
II-EXCE	13.004,0	14.388,0	155,0 (ESE)	158,0 (SE)	3,2	3,1
III	186.048,0	101.678,0	2.230,0 (ESE)	2.070,0 (SE)	1,7	1,6
IV	42.911,0	N.D.	1.980,0 (ESE)	N.D.	1,1	0,9
V	N.D.	N.D.	N.D.	N.D.	0,27	0,20
TOTAL	319.419,0	231.872,0	2.230,0 (ESE)	2.110,0 (SE)	258,0	257,0

N.D. = não detectado.

Na modelagem do descarte de partículas do Poço 1-PAS-28, em todas as fases de descarte e ambos os períodos simulados, 100% dos cascalhos depositaram-se durante o período simulado. No caso dos sólidos dos fluidos, a porcentagem depositada durante todo o período da simulação foi de 70% a 85%, uma vez que as velocidades de queda das partículas dos sólidos dos fluidos são menores quando comparadas às velocidades de queda dos cascalhos. Isto proporciona um grande espalhamento das partículas dificultando a deposição das mesmas. Os sólidos dos fluidos correspondem a espessuras inferiores a 1 mm em praticamente toda a extensão dos depósitos.

Em resumo, os depósitos de sedimento significativos (com espessuras superiores ou iguais a 1 mm) gerados durante as operações de descarte do Poço 1-PAS-28, correspondem principalmente aos cascalhos descartados.

III.1.1 Fase I

A figura III.1.1-1 apresenta os resultados da simulação para a Fase I (sem riser) do descarte de partículas do Poço 1-PAS-28, no período de verão. Os

maiores valores de espessura calculados foram de, aproximadamente, 4,4 cm, e estão concentrados cerca de 5 m a sudeste do ponto de descarte. A área total de abrangência do material descartado foi de, aproximadamente, 4.184 m².

Figura III.1.1-1 - Cenário BMPAMA8_FI_VER. Área de abrangência e contornos de espessuras médias calculadas para o descarte de partículas do Poço 1-PAS-28, ao final da Fase I (diâmetro de 36", sem riser), no período de verão.

A figura III.1.1-2 apresenta os resultados da simulação para a Fase I (sem *riser*) do descarte de partículas do Poço 1-PAS-28, no período de inverno. Os maiores valores de espessura calculados foram de, aproximadamente, 4,2 cm, e estão concentrados cerca de 8 m a sudeste do ponto de descarte. A área total de abrangência do material descartado foi de, aproximadamente, 4.180 m².

Figura III.1.1-2 - Cenário BMPAMA8_FI_INV. Área de abrangência e contornos de espessuras médias calculadas para o descarte de partículas do Poço 1-PAS-28, ao final da Fase I (diâmetro de 36", sem riser), no período de inverno.

III.1.2 Fase II

A figura III.1.2-1 apresenta os resultados da simulação para a Fase II (sem riser) do descarte de partículas do Poço 1-PAS-28, no período de verão. Os maiores valores de espessura calculados foram de, aproximadamente, 21,7 cm, e estão concentrados cerca de 3 m a sudeste do ponto de descarte. A área total de abrangência do material descartado foi de, aproximadamente, 7.298 m².

Pág. III-5/25

Figura III.1.2-1 - Cenário BMPAMA8_FII_VER. Área de abrangência e contornos de espessuras médias calculadas para o descarte de partículas do Poço 1-PAS-28, ao final da Fase II (diâmetro de 26", sem riser), no período de verão.

A figura III.1.2-2 apresenta os resultados da simulação para a Fase II (sem *riser*) do descarte de partículas do Poço 1-PAS-28, no período de inverno. Os maiores valores de espessura calculados foram de, aproximadamente, 21,7 cm, e estão concentrados cerca de 6 m a sul-sudeste do ponto de descarte. A área total de abrangência do material descartado foi de, aproximadamente, 7.187 m².

Resultados das Simulações

ш

Pág.

III-6/25

Figura III.1.2-2 - Cenário BMPAMA8_FII_INV. Área de abrangência e contornos de espessuras médias calculadas para o descarte de partículas do Poço 1-PAS-28, ao final da Fase II (diâmetro de 26", sem riser), no período de inverno.

Ao final da Fase II (sem *riser*), o fluido STA, utilizado para inibir o inchamento de argilas, será descartado ao final da perfuração na própria locação do Poço 1-PAS-28. A seguir, na figura III.1.2-2, são apresentados os contornos de espessura calculados para o descarte do fluido STA excedente, no período de verão. A área coberta por espessura maior que 1 mm foi de 13.004 m², com espessura máxima calculada de 3,2 mm concentrada a, aproximadamente, 43 m a leste-sudeste do ponto de descarte.

Figura III.1.2-3 - Cenário BMPAMA8_FII_EXCE_VER. Área de abrangência e contornos de espessuras médias calculadas para o descarte do fluido excedente, ao final da Fase II (diâmetro de 26", sem riser) da perfuração do Poço 1-PAS-28, no período de verão.

Na figura III.1.2-3, são apresentados os contornos de espessura calculados para o descarte do fluido STA excedente, ao final da Fase II (sem *riser*), no período de inverno. A área coberta por espessura maior que 1 mm foi de 14.338 m², com espessura máxima calculada de 3,1 mm concentrada a, aproximadamente, 36 m a sudeste do ponto de descarte.

Figura III.1.2-4 - Cenário BMPAMA8_FII_EXCE_INV. Área de abrangência e contornos de espessuras médias calculadas para o descarte do fluido excedente, ao final da Fase II (diâmetro de 26", sem riser) da perfuração do Poço 1-PAS-28, no período de inverno.

III.1.3 Fase III

A figura III.1.3-1 apresenta os resultados da simulação para a Fase III (com riser) do descarte de partículas do Poço 1-PAS-28, no período de verão. Os maiores valores de espessura calculados foram de, aproximadamente, 0,17 cm, e estão concentrados, em média, em 2.018 m a leste-sudeste do ponto de descarte. A área total de abrangência do material descartado foi de, aproximadamente, 186.048 m².

Figura III.1.3-1 - Cenário BMPAMA8_FIII_VER. Área de abrangência e contornos de espessuras médias calculadas para o descarte de partículas do Poço 1-PAS-28, ao final da Fase III (diâmetro de 17½", com riser), no período de verão.

A figura III.1.3-2 apresenta os resultados da simulação para a Fase III (com *riser*) do descarte de partículas do Poço 1-PAS-28, no período de inverno. Os maiores valores de espessura calculados foram de, aproximadamente, 0,16 cm, e estão concentrados, em média, 1.870 m a sudeste do ponto de descarte. A área total de abrangência do material descartado foi de, aproximadamente, 101.678 m².

Figura III.1.3-2 - Cenário BMPAMA8_FIII_INV. Área de abrangência e contornos de espessuras médias calculadas para o descarte de partículas do Poço 1-PAS-28, ao final da Fase III (diâmetro de 17½", com riser), no período de inverno.

III.1.4 Fase IV

A figura III.1.4-1 apresenta os resultados da simulação para a Fase IV (com *riser*) do descarte de partículas do Poço 1-PAS-28, no período de verão. As maiores de espessuras calculadas foram de, aproximadamente, 0,1 cm, e estão

concentradas, em média, a 1.700 m a leste-sudeste do ponto de descarte. A área total de abrangência do material descartado foi de, aproximadamente, 42.911 m².

Figura III.1.4-1 - Cenário BMPAMA8_FIV_VER. Área de abrangência e contornos de espessuras médias calculadas para o descarte de partículas do Poço 1-PAS-28, ao final da Fase IV (diâmetro de 12¼", com riser), no período de verão.

Os resultados da simulação para a Fase IV (com *riser*) do descarte de partículas do Poço 1-PAS-28, no período de inverno, apresentaram espessuras inferiores a 1 mm. Desta forma, não será apresentada a figura dos contornos de espessura para este caso. Os maiores valores de espessuras encontrados foram

de 0,09 cm e se concentram a, aproximadamente, 1.750 m a sudeste do ponto de descarte.

III.1.5 Fase V

Como as simulações do descarte de partículas da Fase V (com *riser*) apresentaram espessuras inferiores a 1 mm, não são apresentadas figuras ilustrativas para esta fase. No verão, as maiores espessuras calculadas foram de 0,027 cm e se concentraram a, aproximadamente, 1.790 m a leste-sudeste do ponto de descarte. No inverno, as maiores espessuras calculadas foram de 0,020 cm e se concentraram, aproximadamente, 1.060 m a sudeste do ponto de descarte.

III.1.6 Descarte Total

A figura III.1.6-1 apresenta a área de abrangência e espessuras previstas ao final de toda a operação de descarte de partículas no Poço 1-PAS-28, localizado no Bloco BM-PAMA-8, no período de verão. Os maiores valores de espessura são referentes às fases descartadas no fundo (Fases I e II, sem *riser*), com 25,8 cm, e estão concentrados, nas proximidades (cerca de 4,0 m a sudeste) do ponto de descarte. A área total de abrangência do material descartado foi de, aproximadamente, 319.419 m², sendo que 99% da mesma apresentou espessuras inferiores a 4,5 cm.

Figura III.1.6-1 - Área de abrangência e espessuras médias calculadas para o descarte de partículas ao final das operações de descarte (todas as fases) do Poço 1-PAS-28, localizado no Bloco BM-PAMA-8, no período do verão.

A figura III.1.6-2 apresenta a área de abrangência e espessuras previstas ao final de toda a operação de descarte de partículas no Poço 1-PAS-28, localizado no Bloco BM-PAMA-8, no período de inverno. Os maiores valores de espessura são referentes às fases descartadas no fundo (Fases I e II, sem *riser*), com 25,7 cm, e estão concentrados, nas proximidades (cerca de 5,5 m a sul-sudeste) do ponto de descarte. A área total de abrangência do material descartado foi de,

aproximadamente, 231.872 m², sendo que 99% da mesma apresentou espessuras inferiores a 4,5 cm.

Figura III.1.6-2 - Área de abrangência e espessuras médias calculadas para o descarte de partículas ao final das operações de descarte (todas as fases) do Poço 1-PAS-8, localizado no Bloco BM-PAMA-8, no período do inverno.

III.1.7 Área de Influência Total

As figuras III.1.7-1 e III.1.7-2 apresentam as áreas de influência totais de verão e inverno, respectivamente, para as espessuras previstas ao final de toda a operação de descarte de partículas no Poço 1-PAS-28 e replicadas para a locação do Poço 1-PAS-29 e Vértice Sudoeste, localizados no Bloco BM-PAMA-8. No verão, a área de influência total, considerando espessuras iguais ou superiores a 1 mm, foi de 319.419 m²; enquanto no inverno, foi de 231.872 m².

Figura III.1.7-1 - Área de influência total, considerando espessuras iguais ou superiores a 1 mm, ao final das operações de descarte no Bloco BM-PAMA-8, no período de verão.

Figura III.1.7-2 - Área de influência total, considerando espessuras iguais ou superiores a 1 mm, ao final das operações de descarte no Bloco BM-PAMA-8, no período de inverno.

III.2 CONCENTRAÇÕES NA COLUNA D'ÁGUA

Como descrito no Subitem II.3.2, na perfuração do Poço 1-PAS-28 serão utilizados três tipos de fluidos, sendo eles: fluidos convencional, salgado tratado com amido (STA) e BR-MUL (sintético). A tabela III.2-1 apresenta as concentrações dos resultados dos testes de toxicidade (laudos de toxicidade elaborados pelos laboratórios LABTOX e TECAM, fornecidos pela PETROBRAS)

e as concentrações totais de sólidos presentes nestes fluidos (retiradas das fichas do fabricante). As concentrações máximas na coluna d'água esperadas logo após o descarte correspondem às concentrações totais de sólidos presentes nos fluidos de perfuração. As comparações dos resultados da modelagem com os testes de toxicidade contidas neste estudo fazem parte das recentes solicitações do IBAMA para apresentação dos sólidos na coluna d'água (IBAMA, 2008). Na tabela IV.2-1, observa-se que, para o fluido convencional, as concentrações de sólidos são inferiores às concentrações dos testes de toxicidade.

PARÂMETROS		FLUIDO			
		Convencional	STA	BR-MUL	
DADE DA	CL50 (ppm)	>1.000.000,00	124.116,00	548.412,49	
	Código do Laudo	L4494MJA	RL9412MYA	L1051MJA	
IOXCI AGL	Data do Laudo	27/11/2008	03/11/2008	10/07/2003	
-	Laboratório	LABTOX	TECAM	LABTOX	
TOXICIDADE CRÔNICA	CENO (ppm)	N.I.	< 12,80	3.906,00	
	CEO (ppm)	>1.000.000,00	N.I.	7.813,00	
	VC (ppm)	N.I.	N.I.	5.524,30	
	Código do Laudo	L4494LVC	RL9412LYC	L1051LVC	
	Data do Laudo	03/11/2008	03/11/2008	30/07/2003	
	Laboratório	LABTOX	TECAM	LABTOX	
Conc sólido	entração total de os no fluido (ppm)	72.880,00 514.770,00 725.350,00			

Tabela III.2-1 - Resultados dos testes de toxicidade e concentração de sólidos presente nos fluidos de perfuração.

OBS 1: A concentração de sólidos no fluido de perfuração foi considerada em massa/volume. No caso dos resultados de toxicidade, como não foi possível identificar se a unidade ppm utilizada é massa/massa ou massa/volume, optou-se por considerar massa/volume para termos valores mais conservativos no caso dos sólidos nos fluidos;

OBS 2: Os resultados dos testes de toxicidade são referentes à fração particulada suspensa (FPS) ou à fase sólida suspensa (FSS).

N.I. = não inferido.

Para representar a área de influência na coluna d'água referente aos descartes a partir do Poço 1-PAS-28, foram selecionadas a Fase II (sem *riser*, excedente) e a Fase III (com *riser*), por serem os cenários mais críticos das fases sem e com *riser*, devido à maior vazão de descarte (volume/tempo) das mesmas,

além de serem os fluidos de perfuração (STA e BR-MUL) com as maiores concentrações de sólidos.

A tabela III.2-2 apresenta as características da diluição da pluma de sólidos na coluna d'água para os descartes do Poço 1-PAS-28, localizado no Bloco BM-PAMA - 8. A tabela fornece a concentração de sólidos ao final dos estágios 1 e 2 (vide descrição no Subitem II.1.1) e as distâncias necessárias para alcançar as concentrações de 1 mg/L e 5 mg/L, além da CENO para as fases selecionadas. Observa-se, na tabela III.2-2, que as concentrações de sólidos diminuem rapidamente ao final dos estágios 1 e 2, correspondentes à diluições da ordem de 92 x 10^4 vezes (fase sem *riser*) e 23 x 10^5 vezes (fases com *riser*). As distâncias até a concentração de 1 mg/L variaram de 4,0 m a 15,5 m, enquanto que, para a concentração de 5 mg/L, as distâncias variaram de 3,7 m a 14,0 m.

Tabela III.2-2 - Características da diluição da pluma na coluna d'água para o Poço1-PAS-28, Bloco BM-PAMA-8.

CENÁRIO	TIPO DE FLUIDO	CONCENTRAÇÃO (mg/L) AO FINAL DOS ESTÁGIOS 1 E 2 DA PLUMA	DISTÂNCIA ATÉ A CENO (m)	DISTÂNCIA ATÉ 5 mg/L (m)	DISTÂNCIA ATÉ 1 mg/L (m)
PAMA8_FII_EXCE_VER_STA	STA	0,5567	13,0	14,0	15,5
PAMA8_FII_EXCE_INV_STA	STA	0,9554	7,0	7,5	8,5
PAMA8_FIII_VER_MUL	BR-MUL	0,3121	2,0	3,7	4,0
PAMA8_FIII_INV_MUL	BR-MUL	0,4920	1,5	4,0	4,5

A seguir, são apresentados os resultados, na forma gráfica, das concentrações de sólidos na coluna d'água para os descartes das fases selecionadas. Estes resultados são referentes apenas aos estágios 1 e 2 da pluma, dentro dos quais as concentrações de corte (1 e 5 mg/L) foram atingidas.

Os resultados de sólidos nos estágios 1 e 2 da pluma são apresentados considerando o último instante do descarte, na forma de duas figuras por fase: visão tridimensional da pluma de sólidos (com a concentração ao longo da coluna d'água) e a concentração de sólidos *versus* a distância horizontal percorrida pela pluma (com a delimitação das concentrações de 1 e 5 mg/L, além das concentrações dos testes de toxicidade).

III.2.1 Fase II - Excedente

As figuras III.2.1-1 e III.2.1-2 apresentam os resultados de concentração de sólidos na coluna d'água referente aos estágios 1 e 2 da pluma para o descarte de fluido STA ao final da Fase II excedente (sem *riser*), no verão. A influência do descarte de sólidos, acima dos valores de toxicidade mais restritivos (CENO), não ultrapassa a distância de 13 m do ponto de descarte. Observa-se que a concentração inicial dilui rapidamente, passando de 514.770,0 mg/L para 0,5567 mg/L em cerca de 16,0 m do ponto de descarte (figuras III.2.1-1 e III.2.1-2). A concentração de 5 mg/L é atingida em, aproximadamente, 14,0 m de distância; e a concentração de 1 mg/L, em torno de 15,5 m. A influência significativa da pluma de sólidos em suspensão ocorre apenas na camada de fundo (até 5 m acima do fundo do mar).

Figura III.2.1-1 - Cenário PAMA8_FII_EXCE_VER_STA. Concentração de sólidos em suspensão nos estágios 1 e 2 da pluma: instante final do descarte de fluido STA excedente ao final da Fase II (sem riser) do Poço 1-PAS-28, Bloco BM-PAMA-8, durante o verão.

Pág.

As figuras III.2.1-3 e III.2.1-4 apresentam os resultados de concentração de sólidos na coluna d'água referente aos estágios 1 e 2 da pluma para o descarte de fluido STA ao final da Fase II excedente (sem riser), no inverno. A influência do descarte de sólidos, acima dos valores de toxicidade mais restritivos (CENO), não ultrapassa a distância de 7,5 m do ponto de descarte. Observa-se que a concentração inicial dilui rapidamente, passando de 514.770,0 mg/L para 0,9554 mg/L em cerca de 8,5 m do ponto de descarte (figuras III.2.1-3 e III.2.1-4). A concentração de 5 mg/L é atingida em, aproximadamente, 7,5 m de distância; e a concentração de 1 mg/L, em torno de 8,5 m. A influência significativa da pluma de sólidos em suspensão ocorre apenas na camada de fundo (até 5 m acima do fundo do mar).

Figura III.2.1-3 - Cenário PAMA8_FII_EXCE_INV_STA. Concentração de sólidos em suspensão nos estágios 1 e 2 da pluma: instante final do descarte de fluido STA excedente ao final da Fase II (sem riser) Poço 1-PAS-28, Bloco BM-PAMA-8, durante o inverno.

Figura III.2.1-4 - Cenário PAMA8_FII_EXCE_INV_STA. Concentração de sólidos em suspensão em relação à distância horizontal nos estágios 1 e 2 da pluma referente ao instante final do descarte de fluido STA excedente ao final da Fase II (sem riser) do Poço 1-PAS-28, Bloco BM-PAMA-8, durante o inverno. Na figura são demarcadas as concentrações referentes aos testes de toxicidade.

III.2.2 Fase III

As figuras III.2.2-1 e III.2.2-2 apresentam os resultados de concentração de sólidos na coluna d'água referente aos estágios 1 e 2 da pluma para o descarte de fluido BR-MUL durante a Fase III (com *riser*), no verão. Observa-se que a concentração inicial dilui rapidamente, passando de 725.350,0 mg/L para 0,3121 mg/L em cerca de 4,5 m do ponto de descarte. A influência do descarte de sólidos, acima dos valores de toxicidade mais restritivos (CENO), não ultrapassa a distância de 2 m do ponto de descarte. A concentração de 5 mg/L é atingida em, aproximadamente, 3,7 m de distância; e a concentração de 1 mg/L, em torno de 4,0 m. A profundidade máxima onde existe influência significativa da pluma de sólidos em suspensão (*i.e.*, concentrações superiores a 1 mg/L) é de, aproximadamente, 1,4 m.

Figura III.2.2-1 - Cenário PAMA8_FIII_VER_BRMUL. Concentração de sólidos em suspensão nos estágios 1 e 2 da pluma: instante final do descarte de fluido BR-MUL durante a Fase III (com riser) do Poço 1-PAS-28, Bloco BM-PAMA-8, durante o verão.

Figura III.2.2-2 - Cenário PAMA8_FIII_VER_BRMUL. Concentração de sólidos em suspensão em relação à distância horizontal nos estágios 1 e 2 da pluma referente ao instante final do descarte de fluido BR-MUL durante a Fase III (com riser) do Poço 1-PAS-28, Bloco BM-PAMA-8, durante o verão. Na figura são demarcadas as concentrações de 1 e 5 mg/L, além das concentrações referentes aos testes de toxicidade.

As figuras III.2.2-3 e III.2.2-4 apresentam os resultados de concentração de sólidos na coluna d'água referente aos estágios 1 e 2 da pluma para o descarte de fluido BR-MUL durante a Fase III (com *riser*), no inverno. Observa-se que a concentração inicial dilui rapidamente, passando de 725.350,0 mg/L para 0,4920 mg/L em cerca de 5,0 m do ponto de descarte. A influência do descarte de sólidos, acima dos valores de toxicidade mais restritivos (CENO), não ultrapassa a distância de 1,5 m do ponto de descarte. A concentração de 5 mg/L é atingida em, aproximadamente, 4 m de distância; e a concentração de 1 mg/L, em torno de 4,5 m. A profundidade máxima onde existe influência significativa da pluma de sólidos em suspensão (*i.e.*, concentrações superiores a 1 mg/L) é de, aproximadamente, 1,25 m.

Pág.

III-24/25

Figura III.2.2-3 - Cenário PAMA8_FIII_INV_BRMUL. Concentração de sólidos em suspensão nos estágios 1 e 2 da pluma: instante final do descarte de fluido BR-MUL durante a Fase III (com riser) do Poço 1-PAS-28, Bloco BM-PAMA-8, durante o inverno.

Figura III.2.2-4 - Cenário PAMA8_FIII_INV_BRMUL. Concentração de sólidos em suspensão em relação à distância horizontal nos estágios 1 e 2 da pluma referente ao instante final do descarte de fluido BR-MUL durante a Fase III (com riser) Poço 1-PAS-28, Bloco BM-PAMA-8, durante o inverno. Na figura são demarcadas as concentrações de 1 e 5 mg/L, além das concentrações referentes aos testes de toxicidade.

IV CONSIDERAÇÕES FINAIS

O MUDMAP foi utilizado para simular a deposição de cascalhos e fluidos provenientes do descarte das operações de perfuração na Bacia do Pará-Maranhão, referente ao Poço 1-PAS-28, cujos resultados foram replicados para o Poço 1-PAS-29 e o vértice sudoeste, localizados no Bloco BM-PAMA-8.

O Poço 1-PAS-28 foi escolhido por apresentar características mais críticas, entre elas: a menor lâmina d'água, a maior proximidade à costa e maior volume de cascalhos gerados e descartados.

Nas simulações foram utilizadas as velocidades de queda sugeridas por Brandsma & Smith (1999) para cascalhos perfurados com fluido de base aquosa e as velocidades de queda dos estudos do MAPEM (2004) para os cascalhos perfurados com fluido de base sintética (BR-MUL). Para os fluidos foi utilizado a granulometria dos seus principais constituintes sólidos (bentonita e baritina). As velocidades de queda das partículas foram calculadas utilizando-se a formulação de Watson (1969).

A realização em separado das simulações sem e com *riser* permitiu concluir que a maior influência sobre o assoalho oceânico é conseqüência do descarte sem *riser*, onde o acúmulo de material é maior, alcançando espessuras de até 21,7 cm (Fase II, tanto no verão como no inverno). Já os resultados obtidos para as fases com *riser* mostraram espessuras de partículas no fundo inferiores, com no máximo 0,168 cm (Fase III no período de verão). Tal resultado se deve ao fato do descarte das fases com *riser* ser efetuado próximo à superfície do mar (*i.e.* maior tempo sob a ação das correntes na coluna d'água).

Os resultados das simulações, considerando as fases de deposição sem *riser* (Fases I e II), mostraram que as partículas apresentaram uma tendência de maior deposição nas proximidades do ponto de descarte (cerca de 5 m na direção sudeste) tanto no verão como no inverno. As espessuras depositadas são maiores na Fase II, devido ao maior volume de cascalhos descartados. Em ambos os períodos simulados, as espessuras e áreas de influência possuem mesma ordem de grandeza, sendo as espessuras relativamente inferiores no inverno (maior intensidade das correntes neste período).

Os resultados das simulações, considerando as fases de deposição com *riser* (Fases III a V), mostraram uma tendência de maior deposição para sudeste e leste-sudeste do ponto de descarte. As espessuras depositadas são maiores na Fase III, em função do maior volume de cascalhos descartados na mesma. As áreas de influência, comparando as simulações de verão e inverno, são maiores no verão. No período de inverno as correntes são mais intensas, o que propicia uma maior espalhamento das partículas, que acabaram por se depositarem com espessuras inferiores ao corte de 1 mm adotado.

A tabela IV-1 resume os resultados finais, considerando o processo ao final de toda a operação, para o poço estudado. Observa-se que, nas fases sem *riser* o acúmulo preferencial das partículas se deu nas proximidades do ponto de descarte, com direção leste-sudeste (ver correntes de fundo, figuras II.2.1-5 e II.2.1-6). Nas fases com *riser*, a direção preferencial de acúmulo de partículas ocorreu na mesma direção, coerente com as correntes predominantes nas camadas intermediárias e de fundo. Isto ocorre uma vez que a intensa corrente com direção noroeste (Corrente Norte do Brasil) está presente somente nas camadas superficiais, que representam cerca de 1/4 da coluna d'água nesta região (a partir do talude). Desta forma, na maior parte do tempo, as partículas ficam submetidas ao fluxo para leste-sudeste, associado à Corrente de Contorno Oeste Profunda, presente nas camadas intermediárias e de fundo sintermediárias e de fundo figuras II.2.1-5 e II.2.1-6).

De maneira geral, as maiores espessuras foram observadas nas proximidades do ponto de descarte nas fases sem *riser* e na direção leste-sudeste nas fases com *riser*.

Para o Poço 1-PAS-28 modelado, as maiores espessuras calculadas foram de 25,8 cm no verão e 25,7 cm no inverno. Considerando espessuras iguais ou superiores a 1 mm, a área de influência total do material descartado foi de, aproximadamente, 319.419 m² no verão e 231.872 m² no inverno, sendo que 99% das mesmas apresentou depósitos com espessuras inferiores a 4,5 cm.

3,0 (SE)

43,0 (ESE)

2.018,0 (ESE)

1.700,0 (ESE)

1.790,0 (ESE)

8,0 (SE)

6,0 (SSE)

36,0 (SE)

1.870,0 (SE)

1.750,0 (SE)

1.060,0 (SE)

	poço simu	lado.			
POÇO	BLOCO	SAZÃO	FASES	ESPESSURA MÁXIMA (cm)	DISTÂNCIA (m) A PARTIR DO PONTO DE DESCARTE E DIREÇÃO PREFERENCIAL DE ACÚMULO DA ESPESSURA MÁXIMA
			sem <i>riser</i>	4,4 (Fase I)	5,0 (SE)
		1			

21,7 (Fase II)

0,32

(Fase II - excedente) 0,17 (Fase III)

0,11 (Fase IV)

0,03 (Fase V)

4,2 (Fase I)

21,7 (Fase II)

0,31

(Fase II - excedente) 0,16 (Fase III)

0,09 (Fase IV)

0,02 (Fase V)

sem riser

sem riser

com riser com riser

com riser

sem riser

sem riser

sem riser

com riser com riser

com riser

Verão

Inverno

BM-PAMA-8

1-PAS-28

Tabela IV-1 - Resumo dos resultados das simulações de todas as fases de perfuração do

Para representar as concentrações de sólidos na coluna d'água referentes aos fluidos de perfuração, foram selecionadas duas fases de perfuração: Fase II (sem riser, excedente) e Fase III (com riser). Estas fases foram selecionadas para representar o cenário mais crítico das fases sem e com riser, devido à maior vazão de descarte (volume/tempo) das mesmas, além de utilizarem fluidos de perfuração (STA e BR-MUL) com as maiores concentrações de sólidos.

A partir dos resultados apresentados para os estágios 1 e 2 da pluma, observa-se que, em uma distância inferior a 13,0 m do ponto de descarte, as concentrações de sólidos já alcançaram os valores do teste de toxicidade mais restritivo (CENO). As altas concentrações localizam-se muito próximas do ponto de descarte e sua permanência na coluna d'água está limitada ao período do próprio descarte.

V BIBLIOGRAFIA

ASA (APPLIED SCIENCE ASSOCIATES, Inc.), 1999. OILMAP Technical and User's Manuals, Narragansett, RI.

ASA (APPLIED SCIENCE ASSOCIATES, Inc.), 2000. User's Manuals for MUDMAP, Version 3.5, Narragansett, RI.

ASA (APPLIED SCIENCE ASSOCIATES, INC.), 2003. Weavers Cove Energy Final Report. Technical Report. December 12th, 2003.

ASA (APPLIED SCIENCE ASSOCIATES SOUTH AMERICA), 2007. Modelagem do Transporte e Dispersão de Óleo no Mar para o Bloco BM-PAMA-3, Poço Gavião. Relatório Técnico. Dezembro de 2007, 119pp.

BEARDSLEY, R.C., J. CANDELA, R. LIMEBURNER, W.R. GEYER, S.J. LENTZ, B.M. CASTRO, D. CACCHIONE & N. CARNEIRO, 1995. The M2 tide on the Amazon shelf. Journal of Geophysical Research, v. 100(2): p. 2283-2319.

BRANDSMA, M.G. & SAUER, T.C., 1983. The OOC model: Prediction of short term fate of drilling mud in ocean. Part I: Model description, Part II: Model results. Proceedings of Workshop on an Evaluation of Effluent Dispersion and Fate Models for OCS Platforms, Santa Barbara, California, February 7-10.

BRANDSMA, M.G. & J.P. SMITH, 1999. Offshore Operators Committee Mud and Produced Water Discharge Model – Report and User Guide. Exxon Production Research Company, December 1999.

CAMPOS, E. J.D.; PATTI JR, E.; SILVEIRA, I.C.A. da; CHASSIGNET, E., 2000. A Numerical Study of the Retroflection and Rings of the North Brazil Current. In: Sixth International Conference on Southern Hemisphere Meteorology and Oceanography, 2000, Santiago, Chile. Proceedings, 2000. p. 61-62.

CHEPURIN, G. & CARTON, J.A., 1997. Hydrography and circulation of the upper 1000 meters of the tropical North Atlantic during 1982-1991. **J. Mar. Res.** 55: p. 633-670.

DEFANT, A., 1936. Schichung und Zirkunlation des Atlantischen Ozeans. Die Troposphare. Wiss. Ergebn. Dt Atlant. Exped. "Meteor" 1925-1927. 6, p. 289-411.

DENGLER, M., F. A. SCHOTT, C. EDEN, P. BRANDT, J. FISCHER & J. ZANTOPP, 2004. Break-up of the Atlantic Deep Western Boundary Current into Eddies at 80 S. **Nature**, Vol. 432, 23/30, p. 1018 -1020.

DIDDEN, N. & SCHOTT, F., 1993. Eddies in the North Brazil Current Retroflection Region Observed by Geosat Altimetry. **J. Geophys. Res.**, 98: p. 121-131.

FRANTANTONI, D. M., W. E. JOHNS E T. L. TOWNSEND, 1995. Rings of the North Brazil Current: Their structure and behavior inferred from observations and a numerical simulation. **J. Geophys. Res.**, 100 (C6): 10633-10654.

GARZOLI, S.L.; FFIELD A. & YAO, Q., 2003. North Brazil Current rings and the variability in the latitude of retroflection, Interhemispheric Water Exchange in the Atlantic Ocean, **Elsevier Oceanographic Series**, Elsevier Sci., New York, 68, ed. G. Goni & P. Malanotte-Rizzoli, p. 357-373.

GODIN, G. 1991. Compact approximation to the bottom friction term for the study of tides propagating in channels. **Continental Shelf Research**. 11(7), p. 579-589.

HELLWEGER, F. L. & A. L. GORDON, 2002. Tracing Amazon River water into the Caribbean Sea. Journal of Marine Research, 60, 537-549.

HENRIK, R.; REED, M.; DURGUT, I. & DITLEVSEN, M.K., 2006. The use of the diagenetic equations to predict impact on sediment due to discharges of drill cuttings and muds. In: 9th IMEMS Proceedings. October, 2006. CD-ROM. p. 4-25 of drilling discharges section.

HELLWEGER, F. L. & A. L. GORDON, 2002. Tracing Amazon River water into the Caribbean Sea. Journal of Marine Research, 60, 537-549.

IBAMA (Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis), 2008. Análise do Estudo de Impacto Ambiental – AIA – Bloco BM-SEAL-9 e campos de Caioba, Camorim, Dourado e Guaricema – Bacia de Sergipe-Alagoas. **Parecer Técnico CGPEG/DILIC/IBAMA/ Nº 207/08.** Processo IBAMA Nº 02022.007195/03. 10pp.

JOHNS, W.E.; LEE, T.N.; SCHOTT, F.A.; ZANTOPP, R.J. & EVANS, R.H., 1990. The North Brazil Current Retroflection: Seazonal Structure and Eddy Variability, **J. Geophys. Res.**, 95, p. 22103-22120.

JOCHUM, M. & MALANOTTE-RIZZOLI, P., 2003. On the generation of North Brazil Current Rings, **J. Mar. Res.**, 61: p. 147-173.

KOH, R.C.Y. & CHANG, Y.C., 1973. Mathematical modeling for barged ocean disposal of waste. Environmental Protection Agency Technology Series EPA 660/2-73-029, US Army Engineer Waterways Experiment Station, Vicksburg, Mississipi.

LUMPKIN, R. & S. L. GARZOLI, 2005. Near-surface circulation in the Tropical Atlantic Ocean. **Deep-Sea Research** I, 52: 495-518.

MAPEM, 2004. Monitoramento ambiental em atividades de perfuração exploratória marítima: águas profundas / Editores Elírio Ernestino Toldo Jr; Ricardo Norberto Ayup-Zouain Porto Alegre : Elírio E. Toldo Jr./ Ricardo N. Ayup-Zouain. CR-Rom.

PEREIRA, J.E.R. 2000. Identificação de Sistemas Ressonantes: Aplicação na Plataforma Amazônica. Tese de Doutorado, Instituto Oceanográfico da USP, 260pp.

RICHARDSON, P.L. & WALSH, D., 1986. Mapping climatological seasonal variations of surface currents in the tropical Atlantic using ship drift data. **J. Geophys. Res.** 91, p. 10537-10550.

RICHARDSON, P.L.; HUFFORT, G.E.; LIMEBURNER, R. & BROWN, W.S., 1994. North Brazil Current retroflection eddies. **J. Geophys. Res.**, 99(C3): p. 5081-5093.

SATYAMURTI, P. & L.F. MATTOS, 1989. Climatological lower trophosferic frontogenesis in the midlalatitudes due to horizontal deformation and divergence. **Mon. Wea. Rev.**,108: p. 410-520.

SCHOTT, F.A., DENGLER M., ZANTOPP R., STRAMMA L., FISCHER J. & P. BRANDT, 2005. The Shallow and Deep Western Boundary Circulation of the South Atlantic at 5°-11°S, **Journal of Physical Oceanography**, 35, 2031-2053.

SPAULDING, M.L.; ISAJI, T. & HOWLETT, E., 1994. MUDMAP: A model to predict the transport and dispersion of drill muds and production water. Applied Science Associates, Inc, Narragansett, RI.

SPAULDING, M.L., 1994. MUDMAP: A numerical model to predict drill fluid and production water dispersion, Offshore, Houston, Texas, March 1993. Applied Science Associates, Inc, Narragansett, RI.

STRAMMA, L. & M. ENGLAND, 1999. On the water masses and circulation of the South Atlantic Ocean. **J. Geophys. Res.**, Vol. 104, N^o. C9: 20.863-20.883.

STRAMMA, L. & SCHOTT, F., 1999. The mean flow field of the tropical Atlantic Ocean. **Deep-Sea**. *Res.* II: 46:279-303.

STRAMMA, L.; IKEDA, Y. & PETERSEN, R.G., 1990. Geostrophic transport in the Brazil Current region, **Deep-Sea**. *Res.*, 37(12): p. 1875-1886.

WATSON, R.L., 1969. Modified Ruber's Law Accurately Predicts Sediment Settling Velocities. **Water Resources Research**. 5(5): p. 1147-1150.

VI EQUIPE TÉCNICA

Equipe da Empresa Consultora Applied Science Consultoria Ltda.

Profissional	Ana Carolina da Rocha Lammardo	
Empresa	ASA Consultoria Ltda	
Registro no Conselho de Classe	000.000.000-0	
Cadastro Técnico Federal de Atividades	205047	
e Instrumentos de Defesa Ambiental	323047	
Responsável pelo(s) Capítulo(s)	TODOS	
Assinatura		

Profissional	Breno Mendes Quintanilha Sierra	
Empresa	ASA Consultoria Ltda	
Registro no Conselho de Classe	000.000.000-0	
Cadastro Técnico Federal de Atividades	2202000	
e Instrumentos de Defesa Ambiental	2393090	
Responsável pelo(s) Capítulo(s)	ll a V	
Assinatura		

Profissional	Camila Cantagallo Devids	
Empresa	ASA Consultoria Ltda	
Registro no Conselho de Classe	000.000.000-0	
Cadastro Técnico Federal de Atividades	2393696	
e Instrumentos de Defesa Ambiental		
Responsável pelo(s) Capítulo(s)	III a V	
Assinatura		

Profissional	Erika Naomi de Souza Tominaga	
Empresa	ASA Consultoria Ltda	
Registro no Conselho de Classe	000.000.000-0	
Cadastro Técnico Federal de Atividades	000055	
e Instrumentos de Defesa Ambiental	980855	
Responsável pelo(s) Capítulo(s)	TODOS	
Assinatura		

Profissional	Gabriel Clauzet	
Empresa	ASA Consultoria Ltda	
Registro no Conselho de Classe	000.000.000-0	
Cadastro Técnico Federal de Atividades	1001070	
e Instrumentos de Defesa Ambiental	1031373	
Responsável pelo(s) Capítulo(s)	lell	
Assinatura		

Profissional	Maria Regina Fonseca Guimarães	
Empresa	ASA Consultoria Ltda	
Registro no Conselho de Classe	000.000.000-0	
Cadastro Técnico Federal de Atividades	434231	
e Instrumentos de Defesa Ambiental		
Responsável pelo(s) Capítulo(s)	lell	
Assinatura		

CADASTRO TÉCNICO FEDERAL EQUIPE ASA SOUTH AMERICA

Ministério do Meio Ambiente Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis CADASTRO TÉCNICO FEDERAL CERTIFICADO DE REGULARIDADE						
Nr. de Cadastro:	CPF/CNPJ:	Emitido em:	Válido até:			
325047	216.695.528-29	04/05/2009	04/08/2009			
Nome/Razão Social/End Ana Carolina da Rocha L R. Fidalga, 711 Vila Madalena SAO PAULO/SP 05432-070	Jereço .ammardo					
Este certificado comprova a regularidade no Cadastro de Instrumentos de Defesa Ambiental						
Consultor Técnico Ambiental - Classe 5.0 Controle da Poluição Gestão Ambiental						
Observações: A inclusão de Pessoas Físicas e Jurídicas no Cadastro Técnico Federal não 1 - Este certificado não habilita o interessado ao exercício da(s) atividade(s) A inclusão de Pessoas Físicas e Jurídicas no Cadastro Técnico Federal não descrita(s), sendo necessário, conforme o caso de obtenção de licença, permissão ou autorização específica após análise técnica do IBAMA, do programa ou projeto correspondente: A inclusão de Pessoas Físicas e Jurídicas no Cadastro Técnico Federal não 2 - No caso de encerramento de qualquer atividade específicada neste certificado, o interessado deverá comunicar ao IBAMA,obrigatoriamente, po prazo de 30 (trinta) dias a ocorrência para atualização do sistema A inclusão de Pessoas Físicas e Jurídicas no Cadastro Técnico Federal não						
o prazo de 30 (trinta) dias, a ocorrência para atualização do sistema. - Este certificado não substitui a necessária licença ambiental emitida pelo rgão competente. - Este certificado não habilita o transporte de produtos ou subprodutos lorestais e faunísticos. - Este certificado não habilita o transporte de produtos ou subprodutos						

Ministério do Meio Ambiente Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis CADASTRO TÉCNICO FEDERAL CERTIFICADO DE REGULARIDADE							
Nr. de Cadastro:	CPF/CNPJ:	Emitido em:	Válido até:				
1988616	331.714.778-40	04/03/2009	04/06/2009				
Nome/Razão Social/End Breno Mendes Quintanill Av. Conselheiro Rodu Vila Mariana SAO PAULO/SP 04014-002	Nome/Razão Social/Endereço Breno Mendes Quintanilha Sierra Av. Conselheiro Rodrigues Alves 984 ap 12 Vila Mariana SAO PAULO/SP						
Consultor Técnico Ai	Cadastro de Instrumentos de Defesa Ambiental						
Ecossistemas Terrestres e Aquaticos Qualidade da Água Recuperação de Áreas Recursos Hídricos							
Observações: A inclusão de Pessoas Físicas e Jurídicas no Cadastro Técnico Federal não 1 - Este certificado não habilita o interessado ao exercício da(s) atividade(s) implicará por parte do IBAMA e perante terceiros, em certificação do germissão ou autorização específica após análise técnica do IBAMA, do programa ou projeto correspondente: audidade, nem juízo de valor de qualquer espécie. 2 - No caso de encerramento de qualquer atividade específicada neste no prazo de 30 (trinta) dias, a ocorrência para atualização do sistema. 3 - Este certificado não substitui a necessária licença ambiental emitida pelo Autenticação órgão competente. 4 - Este certificado não habilita o transporte de produtos ou subprodutos 4 - Este certificado. não habilita o transporte de produtos ou subprodutos							

Ministério do Meio Ambiente						
Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis						
	CADASTRO TÉC	NICO FEDERAL	M M A			
	CERTIFICADO DE	CREGULARIDADE				
Nr. de Cadastro:	CPF/CNPJ:	Emitido em:	Válido até:			
2393696	287.483.888-82	04/05/2009	04/08/2009			
Nome/Razão Social/Ende	reço					
Camila Cantagallo Devids						
Rua Dr. Antonio de Pa	ndua Sales, 176					
Jardim Aurelia						
CAMPINAS/SP						
13033-590						
Cadastro de Instrumentos de Defesa Ambiental						
Consultor Técnico Am	Consultor Técnico Ambiental - Classe 5.0					
Controle da Poluição						
Ecossistemas Terrestres e Aquaticos						
Gestão Ambiental						
Observações: 1 - Este certificado não habilita o inte descrita(s), sendo necessário, conforn permissão ou autorização específica programa ou projeto correspondente: 2 - No caso de encerramento de certificado, o interessado deverá comu	eressado ao exercício da(s) atividade(s) me o caso de obtenção de licença, após análise técnica do IBAMA, do qualquer atividade específicada neste	A inclusão de Pessoas Físicas e Jurí implicará por parte do IBAMA e qualidade, nem juízo de valor de qual	dicas no Cadastro Técnico Federal não perante terceiros, em certificação de quer espécie.			
prazo de 30 (trinta) dias, a ocorrência para atualização do sistema. 3 - Este certificado não substitui a necessária licença ambiental emitida pelo						
4 - Este certificado não habilita o tr florestais e faunísticos.	ransporte de produtos ou subprodutos	dmau.7q9n	n.82qq.rgzm			

Ministério do Meio Ambiente Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis CADASTRO TÉCNICO FEDERAL CERTIFICADO DE REGULARIDADE						
Nr. de Cadastro:	CPF/CNPJ:	Emitido em:	Válido até:			
980855	215.493.268-13	05/05/2009	05/08/2009			
Nome/Razão Social/End Erika Naomi de Souza toi RUA FIDALGA, 711 VILA MADALENA SAO PAULO/SP 05432-070	dereço minaga					
Cadastro de Instrumentos de Defesa Ambiental						
Consultor Técnico Ambiental - Classe 5.0 Gestão Ambiental						
Observações: 1 - Este certificado não habilita o inte descrita(s), sendo necessário, confor permissão ou autorização específica programa ou projeto correspondente: 2 - No caso de encerramento de q certificado, o interessado deverá con no prazo de 30 (trinta) dias, a ocorrêno	ressado ao exercício da(s) atividade(s) rme o caso de obtenção de licença, após análise técnica do IBAMA, do ualquer atividade específicada neste nunicar ao IBAMA,obrigatoriamente, cia para atualização do sistema.	A inclusão de Pessoas Físicas e Juríd implicará por parte do IBAMA e qualidade, nem juízo de valor de qual	licas no Cadastro Técnico Federal não perante terceiros, em certificação de quer espécie.			
 3 - Este certificado não substitui a nec órgão competente. 4 - Este certificado não habilita o tr florestais e faunísticos. 	essária licença ambiental emitida pelo ansporte de produtos ou subprodutos	Auten d44r.1zjg	ticação .fx1h.7x26			

Ministério do Meio Ambiente Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis CADASTRO TÉCNICO FEDERAL CERTIFICADO DE REGULARIDADE						
Nr. de Cadastro:	Nr. de Cadastro: CPF/CNPJ: Emitido em: Válido até:					
1031373	188.764.658-20	08/04/2009	08/07/2009			
Nome/Razão Social/End Gabriel Clauzet Rua Girassol, 584 - aj Vila Madalena SAO PAULO/SP 05433-001	lereço pto.402B					
(Consultor Técnico Aı	Cadastro de Instrumentos de Defesa Ambiental					
Auditoria Ambiental Ecossistemas Terrestres e Aquaticos Educação Ambiental Gestão Ambiental Recursos Hídricos						
Observações: 1 - Este certificado não habilita o inter descrita(s), sendo necessário, confor permissão ou autorização específica programa ou projeto correspondente: 2 - No caso de encerramento de q certificado, o interessado deverá com no prazo de 30 (trinta) dias, a ocorrêndo 3 - Este certificado não substitui a nec órgão competente. 4 - Este certificado não habilita o tr florestais e faunísticos.	ressado ao exercício da(s) atividade(s) me o caso de obtenção de licença, após análise técnica do IBAMA, do jualquer atividade específicada neste nunicar ao IBAMA,obrigatoriamente, cia para atualização do sistema. sessária licença ambiental emitida pelo ansporte de produtos ou subprodutos	A inclusão de Pessoas Físicas e Juríd implicará por parte do IBAMA e qualidade, nem juízo de valor de qual Auten 93r7.xz21	licas no Cadastro Técnico Federal não perante terceiros, em certificação de quer espécie. ticação r.rg1g.tapi			

Ministério do Meio Ambiente Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis CADASTRO TÉCNICO FEDERAL CERTIFICADO DE REGULARIDADE			
Nr. de Cadastro:	CPF/CNPJ:	Emitido em:	Válido até:
434231	118.305.938-89	06/05/2009	06/08/2009
Nome/Razão Social/Endereço Maria Regina Fonseca Guimarães Rua Purpurina, 155 - cj 95 Vila Madalena SAO PAULO/SP 05435-030			
Cadastro de Instrumentos de Defesa Ambiental Consultor Técnico Ambiental - Classe 5.0			
Controle da Poluição Ecossistemas Terrestres e Aquaticos Educação Ambiental Qualidade da Água Recursos Hídricos			
Observações: 1 - Este certificado não habilita o inte descrita(s), sendo necessário, confor permissão ou autorização específica programa ou projeto correspondente: 2 - No caso de encerramento de q certificado, o interessado deverá cor no prazo de 30 (trinta) dias, a ocorrêm 3 - Este certificado não substitui a nec órgão competente. 4 - Este certificado não habilita o tr florestais e faunísticos.	ressado ao exercício da(s) atividade(s) me o caso de obtenção de licença, após análise técnica do IBAMA, do jualquer atividade específicada neste nunicar ao IBAMA,obrigatoriamente, cia para atualização do sistema. cessária licença ambiental emitida pelo ransporte de produtos ou subprodutos	A inclusão de Pessoas Físicas e Juría implicará por parte do IBAMA e qualidade, nem juízo de valor de qua Auten nu52.7kld	dicas no Cadastro Técnico Federal não perante terceiros, em certificação de lquer espécie. nticação