

II.1 - ANÁLISE HISTÓRICA DE ACIDENTES AMBIENTAIS

II.1.1 - Dados do Worldwide Offshore Accident Databank - Woad

A Análise Histórica elaborada foi desenvolvida com base na publicação Worldwide Offshore Accident Databank - WOAD, edição 1998. Este Banco de Dados contém a análise estatística de acidentes que ocorreram em atividades offshore no período de 01 de janeiro de 1970 a 31 de dezembro de 1997.

Os resultados da estatística dos acidentes são apresentados para plataformas fixas, móveis e outros tipos de unidades em períodos distintos: 1970-1997 e 1980-1997. As Instalações Móveis englobam: plataformas semisubmersíveis, navios de perfuração, barcas de perfuração, etc.

Os principais dados obtidos no WOAD são apresentados mais adiante, todos os dados tabelados foram coletados a nível mundial abrangendo o período de 1980-1997.

II.1.1.1 - Tipos de Acidentes

Os acidentes registrados no WOAD foram classificados conforme as seguintes 21 causas iniciadoras¹.

Quadro II.1.1.1-1 - Classificação dos acidentes segundo as causas iniciadoras.

Tipo de acidente	Descrição
Falha da âncora	Problemas com a âncora, com a linha da âncora ou guinchos
Blowout	Fluxo incontrolável de gás, óleo ou outro fluido do reservatório
Tombamento	Perda de estabilidade, resultando na completa virada da unidade (emborcar)

(continua)

Os Tipos de Acidente: Falha da âncora e Acidente durante reboque não são aplicáveis à esta Unidade de Perfuração.

EIDOS

EIAOS

Relatório
EDQ 0208/06

Quadro II.1.1-1 (conclusão)

Tipo de acidente	Descrição
Colisão	Contato acidental entre uma unidade da atividade offshore e uma outra unidade externa
Contato	Contato acidental entre duas unidades da atividade offshore
Explosão	Explosão
Queda de material	Queda de objetos a partir de guindastes ou outros equipamentos de levantamento de carga. Queda do guindaste, botes salva-vidas que acidentalmente caiam no mar e homem ao mar estão incluídos
Incêndio	Incêndio
Afundamento	Perda de flutuação da instalação
Encalhe	Contato com o fundo do mar
Acidente com helicóptero	Acidente com helicóptero no heliponto ou outro lugar da instalação
Entrada de Água	Alagamento da unidade ou compartimento causando perda de estabilidade / flutuação
Adernamento	Inclinação incontrolada da unidade
Falhas das Máquinas	Falha das máquinas de propulsão
Fora de Posição	Unidade acidentalmente fora da posição esperada ou fora de controle
Vazamento	Perda de fluido ou gás para as circunvizinhanças causando poluição ou risco de explosão/incêndio
Dano estrutural	Falha por quebra ou fadiga de suporte estrutural
Acidente durante reboque	Quebra ou problemas durante o reboque
Problema no poço	Problema acidental com o poço
Outros	Outros eventos além dos especificados acima

A tabela, a seguir, apresenta distribuição dos tipos de acidentes identificados considerando "Todas as Unidades Móveis" e "Navios de Perfuração". Pode-se observar que o dano estrutural é o acidente com maior número de ocorrências em ambos os casos.

Tabela II.1.1.1-2 - Tipo de acidente¹ vs Tipo de unidade. Número de ocorrências.

	Tipo de unidade		
Tipo de acidente	Todas as Unidades Móveis	Navios de Perfuração	
Falha da Âncora	84	4	
Blowout	108	6	
Tombamento	66	5	
Colisão	28	2	
Contato	116	10	
Acidente com guindaste	41	2	
Explosão	28	1	
Queda de Material	81	4	
Incêndio	131	8	
Afundamento	53	3	
Encalhe	32	1	
Acidente com Helicóptero	6	-	
Entrada de Água	33	2	
Adernamento	59	4	
Falha das Máquinas	14	7	
Fora de posição	116	5	
Vazamento de produto	95	2	
Danos Estruturais	172	12	
Acidente durante reboque	59	1	
Problemas no poço	141	7	
Outros	25	1	

Foi também realizada a distribuição do tipo de acidente de acordo com o modo de operação, conforme as atividades definidas a seguir².

Quadro II.1.1.1-3 - Classificação do modo de operação.

Modo de operação	Descrição
Perfuração	Atividade principal relacionada à perfuração incluindo desenvolvimento, exploração
Ociosa	Ociosa, parada
Operação	Atividade de teste, completação, abandono, mobilização, desmobilização ou carregamento
Produção	Atividade principal relacionada à produção e injeção
Construção	Unidade em construção
Suporte	Atividade de suporte, p. ex.: acomodação
Transferência	Transferência da unidade seja flutuando ou em navio ou barca

Obtendo-se os seguintes dados:

Tabela II.1.1.4 - Tipo de acidente vs Modo de operação². Número de ocorrências.

	Tipo de unidade		
Modo de operação	Todas as Unidades Móveis	Navios de Perfuração	
Perfuração	465	32	
Ociosa	46	2	
Operação	122	2	
Produção	34	1	
Construção	12	-	
Suporte	53	-	

(continua)

⁽²⁾ Os Modos de Operação: Ociosa, Produção e Construção, não se aplicam às atividades que serão exercidas pela PETROBRAS nesta fase.

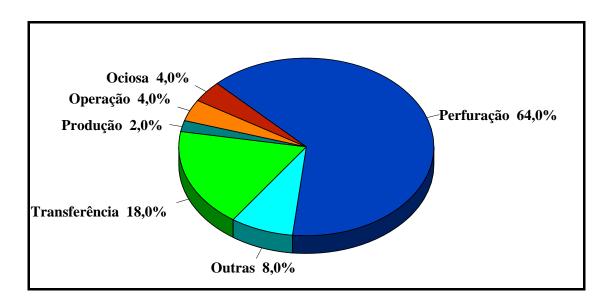

Relatório EDQ 0208/06

Tabela II.1.1.1-4 (conclusão)

	Tipo de unidade		
Modo de operação	Todas as Unidades Móveis	Navios de Perfuração	
Transferência	162	9	
Outras	22	4	
Total	916	50	

Considerando somente os Navios de Perfuração, podemos observar que aproximadamente 64% dos acidentes ocorrem na fase de perfuração, conforme a figura a seguir.

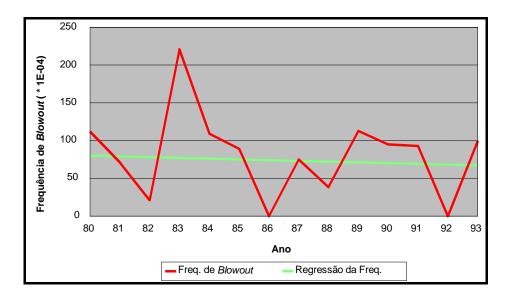


Figura II.1.1.1-1 - Distribuição dos acidentes vs Modo de operação². Navios de Perfuração.

Devido as suas possíveis conseqüências (perda de grande quantidade de óleo/gás e possibilidade de danos), dos 21 tipos de acidentes identificados o *Blowout* é o acidente que traz maiores preocupações na fase de perfuração. De acordo com a *E&P Fórum Risk Assessment Data Directory* – 1996, 86% dos *Blowout*s ocorreram nesta fase (no período de 1980 a 1993). Embora não se tenham dados específicos para as unidades móveis e conseqüentemente para navios de perfuração, somente dados gerais sobre a fase de exploração, pode-se

inferir, com base na análise da figura II.1.1.1-2, que a freqüência de ocorrência de *Blowout* vem diminuindo ao longo dos anos e que devido às atuais inovações tecnológicas estas freqüências deverão ser hoje ainda menores.

Figura II.1.1.1-2 - Freqüência de ocorrência de Blowout (a cada 10.000 poços perfurados no Golfo de México e no Mar do Norte na fase de exploração).

II.1.1.2 - Severidade dos Danos

Os danos decorrentes dos acidentes identificados foram subdivididos em 3 categorias, a saber:

- Danos ao Meio Ambiente;
- Dano ao Homem;
- Danos ao Patrimônio.

II.1.1.2.1 - Danos ao Meio Ambiente

A partir da seguinte subdivisão com relação ao produto vazado:

Quadro II.1.1.2.1-1 - Subdivisão com relação ao produto vazado.

Produto vazado	Descrição
Óleo Cru	Óleo cru e óleo lubrificante
Óleo e gás	Óleo e gás, ambos para o ar ou formação
Gás	Gás, incluindo gás combustível e gás sulfídrico
Óleo Leve	Óleo combustível aquecido, óleo hidráulico, condensado, metanol, glicol, óleo diesel ou lama a base de óleo
Produtos Químicos	Produtos químicos, lama a base de água para o mar ou para o ar
Outros	Outros produtos

Foi realizada uma distribuição de acordo com a dimensão do vazamento, conforme o seguinte critério:

Tabela II.1.1.2.1-2 - Distribuição de acordo com a dimensão do vazamento.

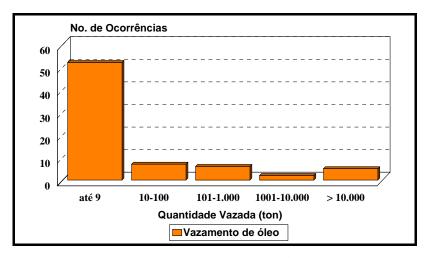
Dimensão do vazamento	Descrição
Pequeno	Vazamentos de 0 – 9 toneladas (0 a 11 m ³) ³
Moderado	Vazamentos de 10 – 100 toneladas (12 a 125 m ³)
Significante	Vazamentos de 101 – 1000 toneladas (126 a 1250 m³)
Grande	Vazamentos de 1001 – 10.000 toneladas (1251 a 12.500 m³)
Muito Grande	Vazamentos > 10.000 toneladas (> 12.500 m ³)

Na tabela, a seguir, apresenta-se a distribuição dos acidentes (que geraram vazamentos) ocorridos de acordo com o produto vazado e a dimensão do vazamento considerando todas as unidades móveis, onde podemos observar que

EIAOS

Eldos

⁽³⁾ Para fazer a correlação do volume vazado em m³, foi considerado um óleo cru com densidade de 818 kg/m.



é pequeno o número de acidentes considerando um vazamento de dimensões grande ou muito grande.

Tabela II.1.1.2.1-3 - Tipo de vazamento vs Dimensão do vazamento. Número de acidentes / Incidentes com vazamento – Todas Unidades Móveis.

	Dimensão do vazamento					
Produto vazado	Pequeno	Menor	Significante	Grande	Muito grande	Desconhecida
Óleo Cru	6	-	2	-	-	5
Óleo e gás	9	-	1	2	5	13
Gás	43	-	3	2	1	60
Óleo Leve	37	7	3	-	-	4
Produtos Químicos	5	1	-	-	-	1
Outros	8	1	-	-	-	-

Utilizando os dados anteriores, e considerando somente os vazamentos de óleo cru, óleo e gás e óleo leve cujas dimensões são conhecidas foi possível identificar que, neste período de 17 anos, 72% das ocorrências foram pequenos vazamentos (quantidades inferiores a 9 t) conforme apresentado na figura a seguir.

Figura II.1.1.2.1-1 - Magnitude dos vazamentos vs № de ocorrências para os vazamentos de óleo.

II.1.1.2.2 - Danos ao Homem

Os dados do WOAD também possibilitaram a elaboração da tabela a seguir, na qual apresenta-se a distribuição do número de acidentes fatais considerandose o tipo de acidente e o tipo de unidade.

Tabela II.1.1.2.2-1 - Tipo de acidente vs Tipo de unidade. Número de acidentes com fatalidades¹.

	Tipo de unidade		
Tipo de acidente	Todas as Unidades Móveis	Navios Perfuração	
Falha da Âncora	2	-	
Blowout	3	-	
Tombamento	20	3	
Colisão	1	1	
Contato	-	-	
Acidente com guindaste	-	-	
Explosão	6	1	
Queda de Material	13	-	
Incêndio	11	1	
Afundamento	1	-	
Encalhe	-	-	
Acidente com Helicóptero	4	-	
Entrada de Água	1	-	
Adernamento	2	-	
Falha de Equipamento	-	-	
Fora de posição	-	-	
Vazamento de produto	1	-	
Danos Estruturais	-	-	

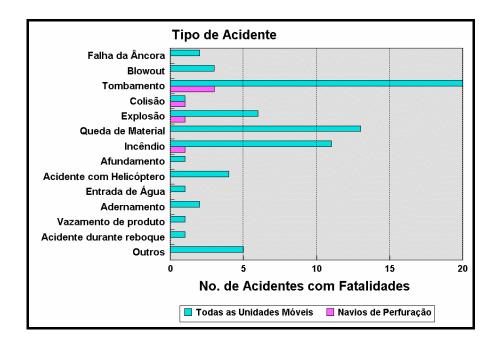


Tabela II.1.1.2.2-1 (conclusão)

	Tipo de unidade		
Tipo de acidente	Todas as Unidades Móveis	Navio de Perfuração	
Acidente durante reboque	1	-	
Problemas no poço	-	-	
Outros	5	-	

Pode-se observar, no gráfico a seguir, que o tombamento é o tipo de acidente que causa fatalidades com mais freqüência tanto para as todas as Unidades Móveis, como para somente os Navios de Perfuração.

Figura II.1.1.2.2-1 - Tipo de acidente¹ vs Tipo de unidade. Número de acidentes com fatalidades.

Considerando todas as unidades móveis, podemos observar conforme a figura a seguir que a fase de perfuração é responsável por mais de 50% dos acidentes com fatalidade.

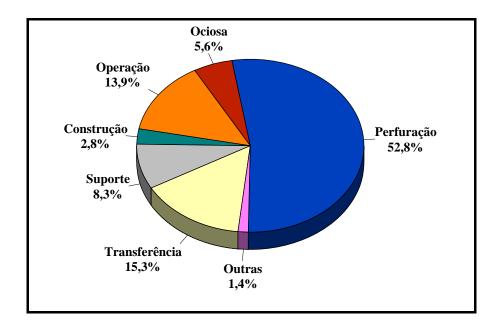


Figura II.1.1.2.2-2 - Distribuição do número de acidentes com fatalidade por modo de operação² – Unidades Móveis.

Realizando a distribuição do número de vítimas pelo tipo de acidente e tipo de unidade, observa-se que o tipo de acidente que gerou o maior número de vítimas global foi o tombamento da unidade, conforme pode ser observado pela análise da tabela a seguir.

Tabela II.1.1.2.2-2 - Tipo de acidente¹ vs Tipo de unidade. Número de fatalidades.

	Tipo de unidade		
Tipo de acidente	Todas as Unidades Móveis	Navio de Perfuração	
Falha da Ancora	3	-	
Blowout	21	-	
Tombamento	424	173 ⁴	

(continua)

⁽⁴⁾ Seacrest, 91 fatalidades, 1989; Glomar Java Sea, 81 fatalidades, 1983

Relatório EDQ 0208/06

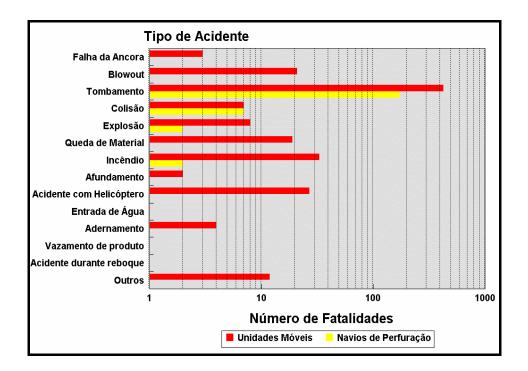


Tabela II.1.1.2.2-2 (conclusão)

	Tipo de	unidade
Tipo de acidente	Todas as Unidades Móveis	Navios de Perfuração
Colisão	7	7
Contato	-	-
Acidente com guindaste	-	-
Explosão	8	2
Queda de Material	19	-
Incêndio	33	2
Afundamento	2	-
Encalhe	-	-
Acidente com Helicóptero	27	-
Entrada de Água	1	-
Adernamento	4	-
Falha de Equipamento	-	-
Fora de posição	-	-
Vazamento de produto	1	-
Danos Estruturais	-	-
Acidente durante reboque	1	-
Problemas no poço	-	-
Outros	12	-

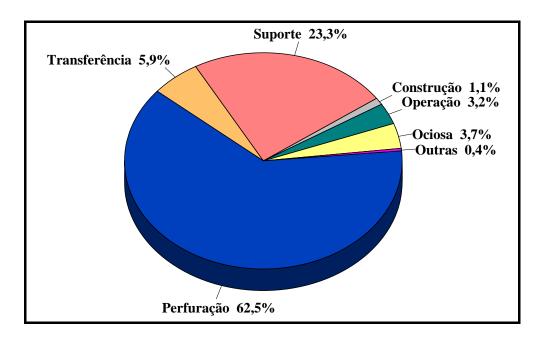

A análise estatística dos dados da tabela anterior permitiu identificar que o Tombamento é tipo de acidente responsável por 94% do número de vítimas fatais ocorridas em navios de perfuração.

Figura II.1.1.2.2-3 - Tipo de acidente¹ vs Tipo de unidade. Número de fatalidades.

Considerando o Modo de Operação, temos a seguinte distribuição do número de acidentes com fatalidades, para as unidades móveis

Figura II.1.1.2.2-4 - Distribuição do número de fatalidades por modo de operação² – Unidades Móveis.

II.1.1.2.3 - Danos ao Patrimônio

O Banco de Dados WOAD também apresenta informações sobre a severidade dos danos decorrente de acidentes nas unidades de perfuração. Os danos sofridos pela unidade móvel / navios de perfuração foram subdivididos de acordo com a seguinte classificação:

Quadro II.1.1.2.3-1 - Subdivisão com relação ao grau de dano sofrido.

Grau de dano	Descrição
Perda Total	Perda total da unidade incluindo perda total da construção do ponto de vista das seguradoras
Dano Severo	Dano severo para um ou mais módulos da unidade, grandes danos em equipamentos essenciais
Dano Significativo	Dano sério e significativo para módulo ou área localizada da unidade
Dano Menor	Dano a mais de um equipamento não essencial ou dano menor em um equipamento essencial
Dano Insignificante	Dano insignificante ou nenhum dano ou nenhum dano à(s) parte(s) de equipamento essencial

Na tabela a seguir encontra-se a freqüência histórica de ocorrência de acidentes distribuída de acordo com o grau de dano sofrido pela instalação, para cada tipo de unidade.

Tabela II.1.1.2.3-2 - Grau de Dano vs Tipo de Unidade. Número de Acidentes / Incidentes por 1000 Unidades-ano.

	Tipo de u	Tipo de unidade			
Grau de dano	Todas as unidades Móveis	Navio de Perfuração			
Perda Total	7,55	6,67			
Danos Severos	8,94	6,67			

Tabela II.1.1.2.3-2 (conclusão)

	Tipo de unidade			
Grau de dano	Todas as Unidades Móveis	Navio de Perfuração		
Danos Significativos	24,45	25,00		
Danos Menores	16,79	35,00		
Danos Insignificantes	33,29	10,00		

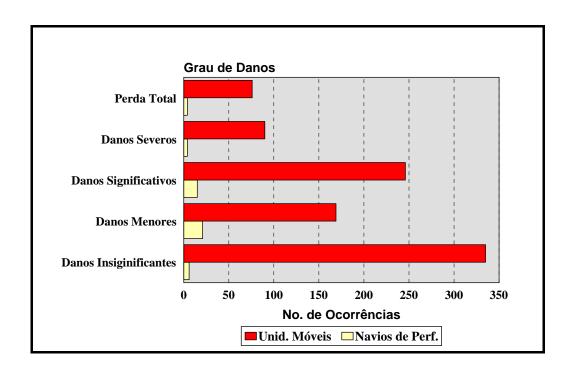

A tabela a seguir, apresenta a distribuição do número de acidentes / incidentes, considerando o grau de danos sofrido por tipo de unidade.

Tabela II.1.1.2.3-3 - Grau de dano vs Tipo de unidade. Número de acidentes / incidentes.

	Tipo de unidade			
Grau de dano	Todas as Unidades Móveis	Navio de Perfuração		
Perda Total	76	4		
Danos Severos	90	4		
Danos Significativos	246	15		
Danos Menores	169	21		
Danos Insignificantes	335	6		

Considerando-se a distribuição estatística da intensidade de dano sofrido pelas instalações e o número de acidentes, é possível observar que 54% dos acidentes registrados para os navios de perfuração são classificados com grau de dano "Menor" e "Insignificante".

Figura II.1.1.2.3-1 - Grau de dano vs Tipo de unidade. Número de acidentes / incidentes.

Na tabela a seguir é apresentada a distribuição do tipo de dano gerado por um acidente de acordo com o modo de operação, onde podemos observar que 62 % dos acidentes ocorridos na fase de perfuração geraram danos menores ou insignificantes.

Tabela II.1.1.2.3-4 - Grau de dano vs Modo de operação². Número de acidentes / incidentes.

Grau de	Dimensão do vazamento							
dano	Perfuração Ociosa Operação Produção Construção Suporte Transferência							Outros
Perda Total	30	3	13	1	1	7	20	1
Danos Severos	24	7	18	2	5	9	21	4
Danos Significativos	110	12	39	7	2	20	50	6

Tabela II.1.1.2.3-4 (conclusão)

Grau de	Dimensão do vazamento							
dano	Perfuração	Ociosa	Operação	Produção	Construção	Suporte	Transferência	Outros
Danos Menores	85	16	17	9	1	10	21	10
Danos Insignificantes	216	8	35	15	3	7	50	1

Distribuindo os Tipos de Acidentes pelo Grau de Danos gerados obtém-se a tabela a seguir, onde podemos concluir que 93% do *blowouts* ocorridos geraram danos menores ou insignificantes, sendo que nenhum causou a perda total da unidade.

Tabela II.1.1.2.3-5 - Distribuição dos tipos de acidentes¹ pelo grau de dano gerado.

	Grau de dano						
Tipo de acidente	Perda total	Danos severos	Danos significativos	Danos menores	Danos insignificantes		
Falha da Âncora	-	-	16	27	10		
Blowout	-	3	9	6	51		
Tombamento	43	21	-	-	-		
Colisão	1	4	8	8	4		
Contato	1	5	51	41	13		
Acidente com guindaste	-	-	2	3	-		
Explosão	-	-	6	3	8		
Queda de Material	1	4	13	10	41		
Incêndio	16	17	19	19	47		
Afundamento	7	4	1	-	-		
Encalhe	1	7	14	6	1		
Acidente com Helicóptero	-	-	-	5	1		

Tabela II.1.1.2.3-5 (conclusão)

Análise Histórica de

Acidentes Ambientais

		Grau de dano						
Tipo de acidente	Perda total	Danos severos	Danos significativos	Danos menores	Danos insignificantes			
Entrada de Água	1	3	7	6	1			
Adernamento	2	5	11	4	4			
Falha das Máquinas	-	-	-	5	5			
Fora de posição	-	-	1	1	9			
Vazamento de produto	-	-	1	3	53			
Danos Estruturais	3	15	83	13	2			
Acidente durante reboque	-	1	1	-	33			
Problemas no poço	-	-	-	2	40			
Outros	-	1	3	7	12			

II.1.1.3 - Conclusões

A partir da Análise dos dados históricos anteriormente apresentados é possível identificar que:

- Considerando o período de 1980 a 1997, a freqüência histórica de ocorrência de um acidente em navios de perfuração a nível mundial é de 0,083 ocorrências/ unidade-ano. Se for considerada somente a fase de perfuração esta freqüência passa ser de 0,053 ocorrências/ unidade-ano;
- Os tipos de acidentes mais freqüentes em unidades móveis são: "Danos Estruturais (13,8%)" seguido de "Contato (11,5%)";
- A frequência estimada para a ocorrência do tipo de acidente "Vazamento de Produto" em navios de perfuração é de 0,0019 ocorrências/unidadeano;
- Em termos de danos ao meio ambiente, observou-se que 72% dos acidentes que geraram vazamentos de óleo/gás em unidades móveis foram considerados pequenos vazamentos (≤ 9 t);

- Os dados históricos mundiais mostraram que o Tombamento é o tipo de acidente mais freqüente e o que causou o maior número de fatalidades nos navios de perfuração;
- Considerando-se o grau de danos dos acidentes nas unidades móveis, observa-se que 62% dos acidentes na fase de perfuração provocaram danos menores ou insignificantes, e nenhum *blowout* causou a perda total da unidade.
- Extrapolando os dados obtidos na Figura II.1.1.1-2 para o ano de 2003, obtém-se a Figura II.1.1.3-1 onde se pode observar que aproximadamente 58 blowouts são estatisticamente esperados de ocorrer a cada 10.000 poços perfurados no Golfo de México e no Mar do Norte na fase de exploração, ou seja, uma probabilidade de ocorrência de 0,58% por poço⁵;

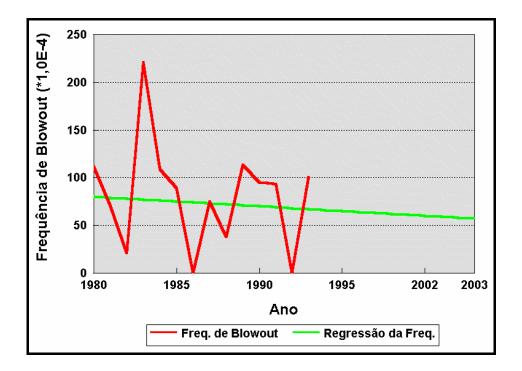


Figura II.1.3-1 - Extrapolação até o ano de 2003 da Regressão da Freqüência de Ocorrência de Blowout (a cada 10.000 poços perfurados no Golfo de México e no Mar do Norte na fase de exploração).

_

⁽⁵⁾ Estes dados englobam unidades fixas e móveis

Análise Histórica de

Acidentes Ambientais

II.1.2 - Dados do "Gulf Of Mexico Deepwater Operations and Activities – Environmental Assessment" – Relatório MMS 2000-001

De acordo com o relatório elaborado pelo Mineral Managemet Service -MMS, abrangendo as operações de unidades fixas e móveis durante a fase de perfuração, no período de 1976 a 1985 ocorreram um total de 80 vazamentos de óleo diesel com volume vazado superior a 1 barril, com as seguintes características:

- Somente em um acidente o volume vazado foi superior a 1.000 bbl (≈ 159 m^3).
- O volume médio vazado em cada acidente é muito pequeno. aproximadamente 5 barris ($\approx 0.8 \text{ m}^3$);
- 19% dos acidentes estão relacionados ao mau funcionamento de equipamentos associados aos tanques de armazenamento;
- 10% dos acidentes estão relacionados a choques com a embarcação de apoio.

II.1.3 – Registros da PETROBRAS na Atividade de Perfuração **OffShore**

A PETROBRAS possui o registro de duas erupções de poços (blow out de gás) ocorridos na Bacia de Campos, ambos na Sonda Modulada 6 (SM-6), em 1984 e 1988, então associada à Plataforma Central de Enchova (Unidade Fixa).

O acidente de 16 de agosto de 1984 resultou em 42 vítimas fatais e o de 24 de abril de 1988 não gerou vítimas. Não há registro dos volumes envolvidos nas ocorrências ou de qualquer ocorrência de óleo no litoral naquelas ocasiões.

A SM-6 não está mais em operação e a Plataforma Central de Enchova não dispõe de sonda modulada associada.

