Modelagem do Descarte de Cascalho e Fluidos de Perfuração no Bloco BM-S-42, Bacia de Santos

Revisão 00 Jun/2006

Modelagem do Descarte de Cascalho e Fluidos de Perfuração no Bloco BM-S-42, Bacia de Santos

Revisão 00 Junho / 2006

E&P

CONTROLE DE REVISÕES

REV.	DESCRIÇÃO	DATA
00	Documento Original	30/06/2006

	Original	Rev. 01	Rev. 02	Rev. 03	Rev. 04	Rev. 05	Rev. 06	Rev. 07	Rev. 08
Data	30/06/06								
Elaboração									
Verificação									
Aprovação									

ÍNDICE GERAL

RE	SUMO	D		1
I	INTF	RODUÇ	ÃO	I-1
	I.1	ÁREA	DE ESTUDO	I-1
		I.1.1	CARACTERÍSTICAS METEOROLÓGICAS DA REGIÃO	I-2
		I.1.2	PADRÕES DE CIRCULAÇÃO NA REGIÃO	I-6
П	MOE	DELO H	IDRODINÂMICO	II-1
	II.1	DESC	RIÇÃO DO PRINCETON OCEAN MODEL	II-1
		II.1.1	EQUAÇÕES BÁSICAS	II-2
	II.2	DISCF	RETIZAÇÃO DO DOMÍNIO E FORÇANTES	II-5
		II.2.1	BATIMETRIA	II-5
		II.2.2	ESTRUTURA TERMOHALINA	-7
		II.2.3	VENTOS	II-8
		II.2.4	MARÉS	II-8
Ш	MOE	DELAGE	EM DO DESCARTE DE CASCALHO E FLUIDOS	DE
	PER	FURAÇ	2ÃO	. 111-1
	III.1	MODE	LO MUDMAP	. 111-1
		III.1.1	ASPECTOS TEÓRICOS	. 111-2
	III.2	DADO	S DE ENTRADA	. III-2
		III.2.1	CAMPO DE CORRENTES	. III-3
		III.2.2	CAMPO TERMOHALINO	. 111-4
	III.3	CENÁ	RIOS DE DESCARTE DE PARTÍCULAS	. 111-7
		III.3.1	PONTO DE DESCARTE	. 111-7
		III.3.2	ESPECIFICAÇÕES DOS PROCESSOS DE PERFURAÇÃ	ΟE
			DESCARTE	. 111-7
		III.3.3	CARACTERIZAÇÃO DO CASCALHO E FLUIDOS	DE
			PERFURAÇÃO	. 111-8
		III.3.4	DESCRIÇÃO DOS CENÁRIOS	III-10
IV	RES	ULTAD	OS DAS SIMULAÇÕES	.IV-1
	IV.1	FASE	Ι	.IV-2
	IV.2	FASE	П	.IV-3
	IV.3	FASE	III	.IV-5

	IV.4 FASE IV	IV-7
	IV.5 FLUIDO EXCEDENTE	IV-9
	IV.6 DESCARTE TOTAL	IV-11
V	CONCLUSÕES	V-1
VI	BIBLIOGRAFIA	VI-1
VII	EQUIPE TÉCNICA	

Pág. 1/4

TABELAS

TABELA	PÁG.				
Tabela III.2.2-1 - Perfil médio de densidade para a região do Poço					
166B, Bloco BM-S-42, Bacia de Santos.	111-0				
Tabela III.3.3-1 - Especificações do descarte de cascalho e fluidos de					
perfuração para o Poço 166B, Bloco BM-S-42.	III-9				
Tabela III.3.4-1 - Cenários elaborados para o estudo de cascalho e					
fluidos de perfuração na Bacia de Santos, para o Poço 166B	III-10				
localizado no Bloco BM-S-42.					
Tabela IV-1 - Máxima espessura depositada e área coberta por					
sedimentos com espessuras maiores que 1 mm para o Poço 166B,					
Bloco BM-S-42.					
Tabela V-1 - Resumo dos resultados das simulações de todas as	V/2				
fases de perfuração do Poço 166B, localizado no Bloco BM-S-42.	V-2				

FIGURAS

FIGURA	PÁG.					
Figura I.1-1 - Localização do ponto de descarte de cascalho e fluidos						
de perfuração, Poço 166B, no Bloco BM-S-42, Bacia de Santos.	1-2					
Figura I.1.1-1 - Médias de 12 anos (1990 - 2001) do vento a 10 m no	1.2					
período de verão (janeiro a março).	1-3					
Figura I.1.1-2 - Médias de 12 anos (1990 - 2001) do vento a 10 m no	13					
período de inverno (junho a agosto).	1-3					
Figura I.1.1-3 - Campo de vento e pressão atmosférica obtidos das						
reanálises do NCEP para o dia 1º de junho de 2003 (situação de bom	I-4					
tempo).						
Figura I.1.1-4 - Campo de vento e pressão atmosférica obtidos das						
reanálises do NCEP para o dia 15 de junho de 2003, às 18GMT	I-5					
(deslocamento de um sistema frontal).						
Figura I.1.2-1 - Representação da circulação no oceano Atlântico Sul,						
indicando as seguintes correntes oceânicas: Corrente Circumpolar						
(CC), Corrente do Atlântico Sul (CAS), Corrente de Benguela (BE),),					
Corrente de Angola (CA), Corrente Sul Equatorial (CSE), Corrente do	gola (CA), Corrente Sul Equatorial (CSE), Corrente do					
Brasil (CB) e Corrente das Malvinas (CM). Adaptado de Tomczak &						
Godfrey (1994).						
Figura I.1.2-2 - Média climatológica da velocidade baroclínica calcu-	I_8					
lada pelo OCCAM.	1-0					
Figura I.1.2-3 - Diagrama stick plot dos vetores de corrente no fundeio						
BM/333 do experimento ACM12 do WOCE, medidos a 230 m de	I-9					
profundidade, entre 10 e 26 de novembro de 1992, dt=2h.						
Figura I.1.2-4 - Espectro de amplitudes (m/s) da corrente registrada no						
fundeio BM/333 do experimento ACM12 do WOCE, medida a 230 m	I-9					
de profundidade, entre 10 e 26 de novembro de 1992, dt=2h.						
Figura II.2.1-1 - Grade computacional do modelo hidrodinâmico e	11-6					
projeção da batimetria, com foco na região da Bacia de Santos.	11-0					
Figura II.2.2-1 - Campos de temperatura e salinidade projetados na	11-7					
grade do modelo hidrodinâmico.	11-7					
Figura II.2.3-1 - Campo de vento NCEP projetado na grade do modelo	11-8					
hidrodinâmico.	1.0					
Figura II.2.4-1 - Mapa cotidal, com as isolinhas de fase sobrepostas à	<u>م</u> ال					
amplitude de maré, projetado na grade do modelo hidrodinâmico.	11-9					

Figura III.2.1-1 - Stick plots de correntes obtidas do modelo hidrodinâ- mico que caracterizam a superfície, três camadas intermediárias e o fundo para o mês de janeiro, que caracteriza o período de verão, do Poço 166B, Bloco BM-S-42.III-3Figura III.2.1-2 - Stick plots de correntes obtidas do modelo hidrodinâ- mico que caracterizam a superfície, três camadas intermediárias e o fundo para o mês de julho, que caracteriza o período de inverno, do Poço 166B, Bloco BM-S-42.III-3Figura III.2.2-1 - Secção vertical de densidade (kg/m³) ao longo de 23 8°S, na região do Bloco BM S 42, Bacia de Santos, no período de III-5III-5
mico que caracterizam a superfície, três camadas intermediárias e o fundo para o mês de janeiro, que caracteriza o período de verão, do Poço 166B, Bloco BM-S-42.III-3Figura III.2.1-2 - Stick plots de correntes obtidas do modelo hidrodinâ- mico que caracterizam a superfície, três camadas intermediárias e o fundo para o mês de julho, que caracteriza o período de inverno, do Poço 166B, Bloco BM-S-42.III-3Figura III.2.1-1Stick plots de correntes obtidas do modelo hidrodinâ- mico que caracterizam a superfície, três camadas intermediárias e o fundo para o mês de julho, que caracteriza o período de inverno, do Poço 166B, Bloco BM-S-42.III-4Figura III.2.2-1 - Secção vertical de densidade (kg/m³) ao longo de 23 8°S na região do Bloco BM S 42. Bacia de Santos no período de III-5III-5
fundo para o mês de janeiro, que caracteriza o período de verão, do Poço 166B, Bloco BM-S-42.III-5Figura III.2.1-2 - Stick plots de correntes obtidas do modelo hidrodinâ- mico que caracterizam a superfície, três camadas intermediárias e o fundo para o mês de julho, que caracteriza o período de inverno, do Poço 166B, Bloco BM-S-42.III-4Figura III.2.2-1 - Secção vertical de densidade (kg/m³) ao longo de 23 8°S, na região do Bloco BM S 42, Bacia de Santos, no período de III-5III-5
Poço 166B, Bloco BM-S-42. Figura III.2.1-2 - Stick plots de correntes obtidas do modelo hidrodinâ- mico que caracterizam a superfície, três camadas intermediárias e o fundo para o mês de julho, que caracteriza o período de inverno, do Poço 166B, Bloco BM-S-42. Figura III.2.2-1 - Secção vertical de densidade (kg/m ³) ao longo de 23 8°S, na região do Bloco BM S 42, Bacia de Santos, no período de III-5
Figura III.2.1-2 - Stick plots de correntes obtidas do modelo hidrodinâ- mico que caracterizam a superfície, três camadas intermediárias e o fundo para o mês de julho, que caracteriza o período de inverno, do Poço 166B, Bloco BM-S-42.III-4Figura III.2.2-1 - Secção vertical de densidade (kg/m³) ao longo de 23 8°S, na região do Bloco BM S 42, Bacia de Santos, no período de III-5III-4
mico que caracterizam a superfície, três camadas intermediárias e o fundo para o mês de julho, que caracteriza o período de inverno, do Poço 166B, Bloco BM-S-42. Figura III.2.2-1 - Secção vertical de densidade (kg/m ³) ao longo de
fundo para o mês de julho, que caracteriza o período de inverno, do III-4 Poço 166B, Bloco BM-S-42. Figura III.2.2-1 - Secção vertical de densidade (kg/m³) ao longo de 23 8% na região do Bloco BM S 42, Bacia de Santos, no período de III-5
Poço 166B, Bloco BM-S-42. Figura III.2.2-1 - Secção vertical de densidade (kg/m ³) ao longo de
Figura III.2.2-1 - Secção vertical de densidade (kg/m ³) ao longo de
23.8°S, na região do Bloco BM S 42, Bacia de Santos, no período de III-5
verão. Dados provenientes do Atlas do WOCE.
Figura III.2.2-2 - Secção vertical de densidade (kg/m ³) ao longo de
23,8°S, na região do Bloco BM-S-42, Bacia de Santos, no período de III-6
inverno. Dados provenientes do Atlas do WOCE.
Figura IV.1-1 - Cenário P166B_FI_VER. Área de abrangência e con-
tornos de espessuras médias calculadas para o descarte de partículas
do Poço 166B, ao final da Fase I (diâmetro de 36", sem <i>riser</i>), no
período de verão.
Figura IV.1-2 - Cenário P166B_FI_INV. Área de abrangência e con-
tornos de espessuras médias calculadas para o descarte de partículas
do Poço 166B, ao final da Fase I (diâmetro de 36", sem <i>riser</i>), no
período de inverno.
Figura IV.2-1 - Cenário P166B_FII_VER. Área de abrangência e con-
tornos de espessuras médias calculadas para o descarte de partículas
do Poço 166B, ao final da Fase II (diâmetro de 17½", sem <i>riser</i>), no
período de verão.
Figura IV.2-2 - Cenário P166B_FII_INV. Área de abrangência e con-
tornos de espessuras médias calculadas para o descarte de partículas
do Poço 166B, ao final da Fase II (diâmetro de 17½", sem <i>riser</i>), no
período de inverno.
Figura IV.3-1 - Cenário P166B_FIII_VER. Área de abrangência e con-
tornos de espessuras médias calculadas para o descarte de partículas
do Poço 166B, ao final da Fase III (diâmetro de 12¼", sem <i>riser</i>), no
período de verão.
Figura IV.3-2 - Cenário P166B_FIII_INV. Área de abrangência e con-
tornos de espessuras médias calculadas para o descarte de partículas
do Poço 166B, ao final da Fase III (diâmetro de 12¼", sem <i>riser</i>), no
período de inverno.

FIGURA	PÁG.
Figura IV.4-1 - Cenário P166B_FIV_VER. Área de abrangência e con- tornos de espessuras médias calculadas para o descarte de partículas do Poco 166B, ao final da Ease IV (diâmetro de 81/6", com <i>riser</i>), no	IV-8
período de verão.	
Figura IV.4-2 - Cenário P166B_FIV_VER. Área de abrangência e con-	
tornos de espessuras médias calculadas para o descarte de partículas do Poço 166B, ao final da Fase IV (diâmetro de 8½", com <i>riser</i>), no período de inverno.	IV-9
Figura IV.5-1 - Cenário P166B_FII-EXCE_INV. Área de abrangência e	
contornos de espessuras médias calculadas para o descarte do fluido	IV-10
excedente do Poço 166B, ao final da Fase II (diâmetro de 17½", sem <i>riser</i>), no período de inverno.	
Figura IV.6-1 - Área de abrangência e espessuras médias calculadas	
para o descarte de partículas ao final das operações de descarte	IV-11
(todas as fases) do Poço 166B, Bloco BM-S-42, no período de verão.	
Figura IV.6-2 - Área de abrangência e espessuras médias calculadas	
para o descarte de partículas ao final das operações de descarte	IV-12
(todas as fases) do Poço 166B, Bloco BM-S-42, no período de inverno.	

RESUMO

O modelo MUDMAP da *Applied Science Associates (ASA), Inc.* foi utilizado para estudar o transporte, dispersão e deposição do cascalho e fluidos de perfuração no assoalho oceânico, decorrentes das atividades de perfuração do Poço 166B, localizado no Bloco BM-S-42, Bacia de Santos.

As condições meteorológicas e oceanográficas da região onde se localiza a Bacia de Santos mostram que, sobre a plataforma, o padrão de circulação predominante está relacionado ao campo de vento e à maré, com eventuais intrusões da Corrente do Brasil (CB). A partir do talude e em oceano profundo, os mesmos padrões são observados, mas com predomínio sensível de correntes médias superficiais para sul-sudoeste, relacionadas à presença da CB.

O campo de correntes utilizado pelo MUDMAP foi obtido a partir dos resultados de um modelo hidrodinâmico de meso-escala, implementado pela **ASA** na costa sul-sudeste do Brasil.

Foram conduzidas simulações do descarte de material, utilizando valores médios de granulometria associados ao diâmetro dos poços. A realização em separado das simulações das fases de perfuração, sem e com *riser*, permitiu concluir que as maiores pilhas de cascalho sobre o assoalho oceânico estão associadas às fases de descarte sem *riser*. Os resultados obtidos para as fases com *riser* mostram espessuras inferiores. De maneira geral, considerando toda a operação, as maiores espessuras concentraram-se nas proximidades do ponto de descarte (fases sem *riser*), a sudoeste (fases com *riser*, verão) e a oestenoroeste do mesmo (fases com *riser*, inverno), sendo que em 99% da área afetada as espessuras foram inferiores a 20 cm. Considerando espessuras iguais ou superiores a 1 mm, a área de influência total do material descartado foi de 339.363 m² no verão e 400.312 m² no inverno.

I INTRODUÇÃO

EL PETROBRAS

Com o objetivo de dar suporte a PETROBRAS no desenvolvimento de Estudos Ambientais na Bacia de Santos, apresenta-se este trabalho de modelagem computacional da distribuição espacial (área de influência e espessura) de cascalho e fluidos de perfuração no Poço 166B, localizado no Bloco BM-S-42 da Bacia de Santos. Essa avaliação foi conduzida através da utilização de um sistema de modelos computacionais conhecido como MUDMAP, desenvolvido pela *Applied Science Associates (ASA), Inc*.

A caracterização dos padrões de circulação e transporte na região foi obtida a partir de resultados de um modelo de meso-escala desenvolvido pela equipe da **ASA SOUTH AMERICA**, baseado no *Princeton Ocean Model* (POM).

O Capítulo I discute o propósito do estudo e fornece informações sobre a área de estudo. O Capítulo II descreve o modelo hidrodinâmico. O Capítulo III descreve o modelo MUDMAP utilizado na modelagem de descarte de partículas, os cenários simulados, suas características e os dados de entrada. Os resultados das simulações são apresentados no Capítulo IV. Por fim, no Capítulo V são apresentadas as conclusões do presente estudo.

I.1 ÁREA DE ESTUDO

A figura I.1-1 apresenta a localização do Poço 166B, no Bloco BM-S-42, Bacia de Santos, onde foram feitas as simulações de descarte de cascalho e fluidos de perfuração.

Figura I.1-1 - Localização do ponto de descarte de cascalho e fluidos de perfuração, Poço 166B, no Bloco BM-S-42, Bacia de Santos.

I.1.1 Características Meteorológicas da Região

Para a região da Bacia de Santos, o padrão característico das condições meteorológicas é dominado pelo Anticiclone (semi-fixo) do Atlântico Sul (AAS), também denominado de Alta Subtropical do Atlântico Sul (ASAS), e pelo Anticiclone Polar Móvel (APM).

A variabilidade sazonal do padrão de ventos na Bacia de Santos, devido ao deslocamento da ASAS, é caracterizado pelo predomínio de ventos de lestenordeste no verão e ventos de norte-nordeste no inverno. Este padrão é ilustrado nas figuras I.1.1-1 e I.1.1-2, que apresentam o comportamento sazonal da circulação atmosférica obtida através da média de 12 anos (1990 – 2001) das reanálises do modelo de circulação geral do NCEP e NCAR¹. Nessa análise foram utilizados dados de vento na altura de 10 m. Observa-se a mudança do posicionamento sazonal da ASAS e o padrão de ventos gerados por esse sistema.

¹ National Centers for Environmental Prediction do National Center for Atmospheric Research.

ETROBRAS

Figura I.1.1-1 - Médias de 12 anos (1990 - 2001) do vento a 10 m no período de verão (janeiro a março).

Figura I.1.1-2 - Médias de 12 anos (1990 - 2001) do vento a 10 m no período de inverno (junho a agosto).

Periodicamente, a situação de bom tempo induzida pelo AAS, caracterizada por ventos moderados vindos de nordeste, é perturbada pelo deslocamento de sistemas frontais forçados pelo APM. Estes sistemas frontais formam-se, geralmente, sobre o Oceano Pacífico Sul, dirigem-se para leste até encontrarem os Andes, e, entre 40 e 20°S, seguem no sentido sudoeste-nordeste ao longo da costa leste sul americana. As figuras I.1.1-3 e I.1.1-4 ilustram instantâneos do vento NCEP/NCAR a 10 m de altura para a América do Sul, em situação de bom tempo e de deslocamento de um sistema frontal, respectivamente.

Os sistemas frontais atuam durante o ano todo sobre todo o Atlântico Sul, com freqüências maiores nas latitudes mais altas e menores nas latitudes mais baixas. As perturbações geradas são essenciais para a determinação das variabilidades intra-anuais na superfície oceânica.

Figura I.1.1-3 - Campo de vento e pressão atmosférica obtidos das reanálises do NCEP para o dia 1º de junho de 2003 (situação de bom tempo).

ETROBRAS

Figura I.1.1-4 - Campo de vento e pressão atmosférica obtidos das reanálises do NCEP para o dia 15 de junho de 2003, às 18GMT (deslocamento de um sistema frontal).

De acordo com a estatística de sistemas frontais que atuaram no litoral do Brasil entre os anos de 1975 a 1984 e 1987 a 1995, apresentada pelo Boletim de Monitoramento e Análise Climática (Climanálise, 1996), a média mensal desses sistemas atuando sobre a costa sudeste brasileira é de quatro sistemas nos meses de verão e sete sistemas nos meses de inverno.

O deslocamento desses sistemas está associado ao escoamento ondulatório de grande escala. A intensificação ou dissipação dos mesmos está relacionada com as características atmosféricas sobre o continente. Algumas regiões do Brasil, tais como as Regiões Sul e Sudeste são regiões frontogenéticas, *i.e.* as frentes podem se formar ou se intensificar nessas regiões (Satyamurty & Mattos, 1989).

Em meso e micro escalas, a variabilidade meteorológica induzida pelas brisas marinhas e terrestres também é significativa, principalmente nos padrões dinâmicos da circulação observada sobre a plataforma continental.

BR PETROBRAS

I.1.2 Padrões de Circulação na Região

A figura I.1.2-1 ilustra o Giro Sub-Tropical do Atlântico Sul. Pode-se identificar uma corrente de contorno oeste para sul, a Corrente do Brasil (CB), a qual se separa da costa na região da confluência com a Corrente das Malvinas (CM). A partir deste ponto, a CB, composta com a CM, afasta-se da costa e flui para leste como a Corrente do Atlântico Sul (CAS). O giro no Atlântico é complementado pela Corrente de Benguela (BE) e Corrente Sul Equatorial (CSE), fechando o circuito com a CB para sul, e a Corrente Norte do Brasil (CNB) para noroeste.

Figura I.1.2-1 - Representação da circulação no oceano Atlântico Sul, indicando as seguintes correntes oceânicas: Corrente Circumpolar (CC), Corrente do Atlântico Sul (CAS), Corrente de Benguela (BE), Corrente de Angola (CA), Corrente Sul Equatorial (CSE), Corrente do Brasil (CB) e Corrente das Malvinas (CM). Adaptado de Tomczak & Godfrey (1994).

Pág. I-7/9

A circulação oceânica na região da Bacia de Santos é determinada por forçantes variadas, que se sobrepõem de modo diferenciado, dependendo de fatores morfológicos e dinâmicos da área. Sobre a plataforma há amplificação natural do sinal de maré e intensificação dos padrões meteorológicos locais, *i.e.* brisa marinha e efeitos orográficos no vento. Sobreposto a estes sinais existe a presença energética da passagem de frentes e a influência da CB. Em região de oceano profundo, a composição da passagem de frentes e do fluxo determinado pela CB é preponderante.

As primeiras medições diretas da CB foram feitas por Evans & Signorini (1985), nas latitudes de 20°30'S e 23°S, as quais apresentaram um fluxo confinado aos primeiros 400 m de profundidade, com uma contra-corrente no sentido norte, abaixo destes 400 m iniciais. Na parte norte da área, acima do Cabo de São Tomé, a direção da corrente é para 180°, variando para 220° na região de Cabo Frio. Esta mudança afeta significativamente a CB, induzindo à formação de vórtices e meandros. Este meandramento da CB foi capturado por Signorini (1978), em sua análise de topografia dinâmica, e por Miranda & Castro (1979) em suas observações hidrográficas na região adjacente à Cabo Frio (23° S), ao longo de duas secções meridionais.

O volume estimado transportado pela CB na região da quebra da plataforma e do talude na latitude de 22°S é de 5,5 \pm 2,6 Sv (Lima, 1997). Algumas regiões sobre o talude continental podem apresentar velocidades de correntes maiores que 1,0 m/s (Castro & Miranda, 1998).

Parte significativa do fluxo da CB passa através dos canais dos Bancos de Abrolhos e divide-se em dois ramos. Um deles flui afastado da costa, além da isóbata de 3.000 m (Stramma *et al.*, 1990), enquanto o outro flui seguindo a linha de quebra da plataforma (Signorini, 1978).

A corrente que flui para sudoeste durante o verão é reforçada pelos ventos que provêm principalmente de nordeste nessa estação devido à influência da ASAS. Outra conseqüência do predomínio dos ventos de NE é a ressurgência de águas frias (Água Central do Atlântico Sul – ACAS) em regiões costeiras. Esses eventos são muito comuns na região de Cabo Frio. No inverno, entretanto, a alta incidência de sistemas frontais induz a ocorrência de correntes com direção nordeste nas porções interna e média da plataforma (Castro & Miranda, 1998).

Vários modelos numéricos globais reproduzem o sistema de correntes em larga escala nesta região. O processo de *warm up* do modelo hidrodinâmico utilizado neste trabalho foi baseado nos resultados de uma simulação de 14 anos do modelo OCCAM², disponibilizados pela Universidade de Southampton.

O OCCAM foi elaborado com base no MOM do GFDL³, incluindo uma superfície livre e esquemas de advecção melhorados. A grade, para o Oceano Atlântico Sul, é regular (¼ de grau), com 36 níveis (variando de 20 m de espessura, próximo à superfície, a 255 m em 5.500 m de profundidade). Este modelo foi inicializado com médias anuais de temperatura e salinidade do LEVITUS⁴, forçado na superfície com dados de vento do ECMWF⁵ (médias mensais) e relaxado para os campos sazonais de temperatura e salinidade do LEVITUS.

A figura I.1.2-2 ilustra uma média climatológica da velocidade baroclínica calculada pelo OCCAM. Nota-se o ramo sul da Corrente Sul Equatorial atingindo a costa do Brasil em torno de 15°S, bifurcando-se e originando a CNB, fluindo para norte, e a CB, fluindo para sul.

Figura I.1.2-2 - Média climatológica da velocidade baroclínica calculada pelo OCCAM.

⁵ European Centre for Medium-range Weather Forecast.

Introdução

² Ocean Circulation and Climate Advanced Modelling Project - Southampton Oceanography Centre.

³ Modular Ocean Model - Global Fluid Dynamics Laboratory.

⁴ http://ingrid.ldgo.columbia.edu/SOURCES/.LEVITUS94.

PETROBRAS

Dados provenientes do fundeio BM/333 do experimento ACM12 do WOCE⁶, medidos na Bacia de Santos, na região do talude (27,9020°S/46,7040°W, profundidade local de cerca de 1.200 m), a 230 m de profundidade, mostraram predominância de correntes nos quadrantes SW e S, com um sinal associado à maré diurna e variações de baixa freqüência, não havendo, contudo, a reversão do sentido predominante do fluxo, indicando a presença da CB, dominando a direção da corrente. A figura I.1.2-3 apresenta o diagrama *stick plot* da série temporal da corrente para o período compreendido entre 10 e 26 de novembro de 1992 e a figura I.1.2-4, o espectro de amplitudes correspondente.

Corrente WOCE ACM12 - BM333

Figura I.1.2-3 - Diagrama stick plot dos vetores de corrente no fundeio BM/333 do experimento ACM12 do WOCE, medidos a 230 m de profundidade, entre 10 e 26 de novembro de 1992, dt=2h.

Figura I.1.2-4 - Espectro de amplitudes (m/s) da corrente registrada no fundeio BM/333 do experimento ACM12 do WOCE, medida a 230 m de profundidade, entre 10 e 26 de novembro de 1992, dt=2h.

⁶ World Ocean Circulation Experiment.

II MODELO HIDRODINÂMICO

Nesta etapa do trabalho descreve-se o modelo hidrodinâmico e sua implementação na Bacia de Santos, com o intuito de reproduzir à dinâmica local e, conseqüentemente, o campo base de correntes necessário para a finalização do estudo proposto. Foi utilizado um modelo baseado no POM (Blumberg & Mellor, 1987), implementado na área pelo grupo de modelagem da *ASA South AMERICA*.

O modelo utiliza como forçantes, marés do CSR3, campos tridimensionais de ventos das reanálises dos modelos meteorológicos NCEP e campo termohalino tratado a partir dos resultados do OCCAM. Nas bordas abertas são também utilizadas condições datadas do OCCAM para elevação, velocidade barotrópica, temperatura e salinidade.

Este modelo, já apresentado a PETROBRAS (ASA, 2005), foi validado nas regiões das Bacias de Campos e Santos, apresentando bons coeficientes de ajuste, de 8 a 10% para marés e de 15 a 24% para as componentes do campo de correntes. Estes resultados, entretanto, são específicos para um dado período e determinados pelo atual nível de conhecimento na área de estudo. A extrapolação desses resultados no espaço e no tempo é sempre possível, sendo esta uma das vantagens da utilização de ferramentas numéricas. No entanto, é recomendável manter margens de segurança suficientes na análise dos resultados.

II.1 DESCRIÇÃO DO PRINCETON OCEAN MODEL

O modelo utilizado tem estrutura tridimensional, não linear, com as equações hidrodinâmicas sob as aproximações de Boussinesq e hidrostática. Este modelo permite também a utilização de grades curvilíneas, de coordenadas σ na vertical e a resolução das camadas turbulentas de superfície e de fundo, por meio de um submodelo de fechamento turbulento de 2^ª ordem.

No sistema de coordenadas σ , a coordenada z é escalonada de acordo com a profundidade da coluna d'água local, conforme mostra a equação abaixo, onde D é a profundidade local, η a elevação da superfície e H a profundidade média local:

Coordenador da Equipe

Pág. II-2/9

$$\sigma = \frac{z - \eta}{D}$$

(II.1-1)

onde

 $D(x, y, t) = H(x, y) + \eta(x, y, t)$

O modelo inclui um submodelo de fechamento turbulento, para o cálculo dos coeficientes de mistura turbulenta vertical. O fechamento turbulento de 2^ª ordem utiliza os resultados das equações da energia cinética turbulenta e da escala de comprimento de turbulência, no cálculo dos coeficientes cinemáticos de viscosidade e de difusão turbulenta de calor e sal na vertical (Mellor & Yamada, 1982). Esses cálculos são efetuados com base em relações empíricas, que utilizam constantes estabelecidas em experimentos de laboratório e em observações de campo. Com o fechamento turbulento de 2^ª ordem, o modelo reproduz de maneira mais realística as camadas de Ekman, de superfície e de fundo.

Além dos aspectos específicos acima mencionados, o modelo adota soluções largamente utilizadas na literatura, como gradeamento do tipo C de *Arakawa* e métodos de integração diferentes na horizontal e na vertical – integração horizontal e temporal explícita e vertical implícita. Por meio desses procedimentos, elimina-se a restrição temporal na vertical, permitindo o uso de maior resolução nas camadas de Ekman de superfície e de fundo.

O modelo apresenta uma superfície livre e dois intervalos de tempo distintos, um para o modo de oscilação externo e outro para o interno. O modo externo (barotrópico) usa um intervalo de tempo menor, baseado na condição de estabilidade computacional de Courant-Friedrichs-Levy (CFL). O modo interno (baroclínico) usa um intervalo de tempo mais longo (*spliting mode*).

II.1.1 Equações Básicas

O modelo hidrodinâmico aqui descrito é baseado em uma formulação tridimensional prognóstica com aproximação hidrostática. As variáveis potencialmente prognósticas são: as três componentes da velocidade (u, v e w),

PETROBRAS

Pág. II-3/9

a temperatura (*T*), a salinidade (*S*), a energia cinética turbulenta ($q^2/2$), a escala turbulenta (*l*), e a elevação da superfície (η).

O conjunto de equações básicas utilizadas no código é descrito abaixo. Consideremos um sistema de coordenadas cartesianas ortogonais, com *x* crescendo para Leste, *y* para Norte e *z* para cima, no qual as coordenadas horizontais (*i.e.*, *x*, *y*) referem-se ao espaço computacional. A superfície livre está localizada em $z = \eta(x, y, t)$ e o fundo em z = -H(x, y). Neste sistema as equações de conservação e a equação de estado são escritas como:

Equação da continuidade:

$$\frac{\partial U}{\partial x} + \frac{\partial V}{\partial y} + \frac{\partial W}{\partial z} = 0$$
(II.1.1-1)

Equação de Reynolds para conservação da quantidade de movimento:

$$\frac{\partial U}{\partial t} + U \frac{\partial U}{\partial x} + V \frac{\partial U}{\partial y} + W \frac{\partial U}{\partial z} - fV = -\frac{1}{\rho_o} \frac{\partial P}{\partial x} + \frac{\partial}{\partial z} \left(K_M \frac{\partial U}{\partial z} \right) + \frac{\partial}{\partial x} \left(2A_M \frac{\partial U}{\partial x} \right) + \frac{\partial}{\partial y} \left[A_M \left(\frac{\partial U}{\partial y} + \frac{\partial V}{\partial x} \right) \right]$$
(II.1.1-2)
$$\frac{\partial V}{\partial t} + U \frac{\partial V}{\partial x} + V \frac{\partial V}{\partial y} + W \frac{\partial V}{\partial z} + fU = -\frac{1}{\rho_o} \frac{\partial P}{\partial y} + \frac{\partial}{\partial z} \left(K_M \frac{\partial V}{\partial z} \right) + \frac{\partial}{\partial x} \left[A_M \left(\frac{\partial U}{\partial y} + \frac{\partial V}{\partial x} \right) \right] + \frac{\partial}{\partial y} \left(2A_M \frac{\partial V}{\partial y} \right)$$
(II.1.1-3)
$$\frac{\partial P}{\partial x} = \frac{\partial V}{\partial x} \left[A_M \left(\frac{\partial U}{\partial y} + \frac{\partial V}{\partial x} \right) \right] + \frac{\partial}{\partial y} \left(2A_M \frac{\partial V}{\partial y} \right)$$
(II.1.1-3)

$$\rho g = -\frac{\partial F}{\partial z} \tag{II.1.1-4}$$

Conservação de Temperatura Potencial:

$$\frac{\partial \Theta}{\partial t} + U \frac{\partial \Theta}{\partial x} + V \frac{\partial \Theta}{\partial y} + W \frac{\partial \Theta}{\partial z} = \frac{\partial}{\partial z} \left(K_H \frac{\partial S}{\partial z} \right) + F(_H)$$
(II.1.1-5)

Pág. II-4/9

Conservação de Salinidade:

$$\frac{\partial S}{\partial t} + U \frac{\partial S}{\partial x} + V \frac{\partial S}{\partial y} + W \frac{\partial S}{\partial z} = \frac{\partial}{\partial z} \left(K_H \frac{\partial S}{\partial z} \right) + F_S$$
(II.1.1-6)

Equação de Estado:

$$\rho = \rho(S, \Theta, P) \tag{II.1.1-7}$$

Equação da Energia Cinética Turbulenta:

$$\frac{\partial q^{2}}{\partial t} + U \frac{\partial q^{2}}{\partial x} + V \frac{\partial q^{2}}{\partial y} + W \frac{\partial q^{2}}{\partial z} = \frac{\partial}{\partial z} \left(K_{q} \frac{\partial q^{2}}{\partial z} \right) + 2K_{M} \left[\left(\frac{\partial U}{\partial z} \right)^{2} + \left(\frac{\partial V}{\partial z} \right)^{2} \right] + \frac{2g}{\rho_{0}} K_{H} \frac{\partial \rho}{\partial z} - \frac{2q^{3}}{B_{1}l} + F_{q^{2}}$$
(II.1.1-8)

Equação da Turbulência em Macro Escala:

$$\frac{\partial}{\partial t}(q^{2}l) + U\frac{\partial}{\partial x}(q^{2}l) + V\frac{\partial}{\partial y}(q^{2}l) + W\frac{\partial}{\partial z}(2q^{2}l) = \frac{\partial}{\partial z}\left[K_{q}\frac{\partial}{\partial z}(q^{2}l)\right] + lE_{1}K_{M}\left[\left(\frac{\partial U}{\partial z}\right)^{2} + \left(\frac{\partial V}{\partial z}\right)^{2}\right] + \frac{lE_{1}g}{\rho_{0}}K_{H}\frac{\partial\rho}{\partial z} - \frac{q^{3}}{B_{1}}\widetilde{W} + F_{q^{2}l}$$
(II.1.1-9)

sendo,

$$F_{q^2,q^2l} = \frac{\partial}{\partial x} \left(A_H \frac{\partial q^2, q^2 l}{\partial x} \right) + \frac{\partial}{\partial y} \left(A_H \frac{\partial q^2, q^2 l}{\partial y} \right)$$
(II.1.1-10)

$$(L)^{-1} \equiv (\eta - z)^{-1} + (H + z)^{-1}$$
 (II.1.1-11)

$$\widetilde{W} \equiv 1 + E_2 \left(\frac{l}{kL}\right)^2 \tag{II.1.1-12}$$

onde

- U, V, W = componentes do vetor velocidade (m/s);
- F = parâmetro de Coriolis (s⁻¹);
- ρ_0 = densidade de referência (kg/m³);

 ρ = densidade *in situ* (kg/m³);

$$P$$
 = pressão (N/m²);

 K_M = coeficiente cinemático vertical de viscosidade turbulenta (m²/s);

- *K_H* = coeficiente cinemático vertical de difusão turbulenta de calor e sal (m²/s);
- g = aceleração da gravidade (m/s²);
- Θ = temperatura potencial (°C);
- S =salinidade (PSU);
- A_M = coeficiente cinemático horizontal de viscosidade turbulenta (m²/s);
- A_{H} = coeficiente cinemático horizontal de difusão turbulenta de calor sal (m²/s);
- $q^2/2$ = energia cinética turbulenta;
- *L* = escala característica de comprimento para o movimento turbulento;
- \widetilde{W} = função proximidade-do-contorno;
- K = constante de von Karman (k=0,4);
- F_{q^2,q^2l} = termos horizontais de mistura para q² e q²l.

II.2 DISCRETIZAÇÃO DO DOMÍNIO E FORÇANTES

II.2.1 Batimetria

A grade geral implementada representa um compromisso entre os objetivos do projeto de modelagem final e a descrição dos processos hidrodinâmicos necessariamente definidos para a região de interesse, bem como entre os recursos computacionais e o tempo de processamento necessário. Uma grade final de meso-escala com dimensões de 100x300 pontos foi implementada sobre toda a região com resolução média máxima de 3 km na área de foco, e está ilustrada na figura II.2.1-1. Nessa grade foram utilizadas 20 camadas sigma para a definição da estrutura vertical da região. Os resultados obtidos nas simulações são comparados com dados observacionais de elevação e correntes, medidos na zona costeira da área de interesse.

Pág. II-6/9

Figura II.2.1-1 - Grade computacional do modelo hidrodinâmico e projeção da batimetria, com foco na região da Bacia de Santos.

Para a região da plataforma, os dados de profundidade foram obtidos através da digitalização dos valores batimétricos das cartas náuticas da DHN⁷, números 70, 1.100, 1.131, 1.400, 1.420, 1.700, 1.800, 1.820 e 1.824. Para a representação topográfica da região do talude e planície abissal foi também utilizada a base de dados batimétricos extraída do ETOPO 2 obtido no NGDC⁸, reamostradas para

⁸ National Geophysical Data Center da National Oceanic and Atmospheric Administration (NOAA).

⁷ Diretoria de Hidrografia e Navegação da Marinha.

Pág. II-7/9

um espaçamento de 10'. Visando o ajuste fino da batimetria à linha de costa e as camadas de sistemas de informações geográficas (SIG) utilizadas pelos modelos matemáticos implementados na região, foram utilizadas também informações provenientes de imagens de satélite, complementando a base de dados batimétricos da *ASA South America* na área. Os resultados finais da discretização da área e projeção da batimetria estão ilustrados na figura II.2.1-1.

II.2.2 Estrutura Termohalina

Os campos de temperatura e salinidade, utilizados para inicialização do campo baroclínico do POM foram obtidos a partir de resultados do OCCAM. A figura II.2.2-1 ilustra estes campos, projetados na grade do modelo.

Figura II.2.2-1 - Campos de temperatura e salinidade projetados na grade do modelo hidrodinâmico.

II.2.3 Ventos

O campo de vento utilizado como forçante foi extraído das reanálises do modelo de circulação geral do NCEP para as simulações de calibração e de longo período. A figura II.2.3-1 ilustra um instante deste campo de vento, já projetado na grade do modelo.

Figura II.2.3-1 - Campo de vento NCEP projetado na grade do modelo hidrodinâmico.

II.2.4 Marés

Embora usadas somente nos contornos abertos (não se ativou o potencial de maré neste domínio, devido à relativamente pequena escala para o fenômeno), o campo de harmônicos utilizado como forçante para o POM é proveniente do

E PETROBRAS

CSR3⁹. Este campo foi projetado em toda a grade, de tal forma a permitir focalizações automáticas em áreas de interesse (redução eventual do domínio).

Conforme ilustrado na figura II.2.4-1, foram utilizados campos com variação espacial de amplitude e fase das componentes de maré mais significativas na região, com energia superior a 10% da energia da M₂, no caso, as diurnas e semidiurnas.

Figura II.2.4-1 - Mapa cotidal, com as isolinhas de fase sobrepostas à amplitude de maré, projetado na grade do modelo hidrodinâmico.

⁹ Modelo global de maré do *Center for Space Research* da Universidade do Texas.

III MODELAGEM DO DESCARTE DE CASCALHO E FLUIDOS DE PERFURAÇÃO

A modelagem de cascalho foi realizada utilizando-se o modelo MUDMAP, desenvolvido pela *ASA*, constituído por um sistema de modelos computacionais para a previsão do transporte, dispersão e deposição de cascalhos e fluidos de perfuração e dispersão de águas de produção (ASA, 2000; Spaulding *et al.*, 1994; Spaulding, 1994).

III.1 MODELO MUDMAP

O modelo MUDMAP é composto por uma série de componentes integrados. O modelo de descarte em si simula o movimento e a distribuição de materiais descartados no ambiente (na superfície e coluna d'água e no assoalho oceânico). Para efetuar esses cálculos, o modelo baseia-se em dados ambientais como correntes e propriedades de densidade da coluna d'água, dados geográficos como proximidade da linha de costa e parâmetros físicos que definem as propriedades do material descartado, além de informações sobre o processo de descarte (volume, duração, etc.).

As espessuras médias de material depositado são calculadas em função das partículas acumuladas no assoalho oceânico e da área onde estas estão distribuídas. No cálculo das espessuras, leva-se em consideração a massa total de sedimento presente em cada célula da grade, a área da célula, a porosidade e a densidade do material descartado.

O sistema é controlado através de uma interface gráfica (baseada em uma escala de cores), que consiste em: (1) um sistema integrado de modelos computacionais, de forma a permitir a interação entre os modelos de dispersão no campo próximo e no campo afastado, (2) um sistema de informação geográfica, (3) ferramentas de gerenciamento de informações ambientais para fornecer os dados de entrada dos modelos e (4) uma interface para visualização dos resultados.

Coordenador da Equipe

III.1.1 Aspectos Teóricos

As equações que governam o modelo (conservação de massa, quantidade de movimento, empuxo e fluxo de partículas sólidas) são formuladas utilizando-se a teoria integral de pluma e, então, resolvidas com a técnica de integração numérica Runge Kutta. O MUDMAP é baseado na formulação originalmente desenvolvida por Koh & Chang (1973) e estendida pelos trabalhos de Brandsma & Sauer (1983), conhecido como modelo OOC, para os estágios 1 e 2 do movimento da pluma. No campo afastado (difusão passiva) é empregado o método lagrangiano de trajetória de partículas utilizado no sistema de modelagem de derrames de óleo OILMAP (ASA, 1999). O modelo fornece a dinâmica da pluma, a distribuição das concentrações no campo próximo, a concentração e os padrões de deposição no fundo no campo afastado.

O sistema MUDMAP utiliza três estágios independentes, mas integrados, para a simulação do transporte e dispersão dos materiais descartados. A independência é necessária devido às diferentes escalas de tempo do processo de diluição da pluma entre os estágios. Dessa forma, os estágios são:

- Estágio 1 convectivo dinâmico descendente/ascendente: simula a diluição e o espalhamento iniciais do material na vizinhança imediata do local de despejo. O material descende se for mais denso que a água no ponto de descarte e ascende se a densidade for menor que a da água;
- Estágio 2 colapso dinâmico: estima o crescimento e diluição da pluma e como esta impacta a superfície ou o fundo, ou se mantém aprisionada por um forte gradiente de densidade na coluna d'água;
- Estágio 3 dispersivo (campo afastado): onde o modelo simula o transporte e dispersão do material devido às correntes locais e campos de turbulência.

III.2 DADOS DE ENTRADA

Inicialmente, para a elaboração dos cenários de descarte de cascalho e fluidos de perfuração na Bacia de Santos, foi definida a área de estudo para os pontos de descarte. Nessa área, foi estabelecida uma grade computacional (*i.e.*

campo de correntes) e definido o campo termohalino, fundamental para o cálculo das velocidades de deposição das partículas descartadas.

III.2.1 Campo de Correntes

O campo de correntes utilizado foi obtido a partir dos resultados do modelo hidrodinâmico descrito no Capítulo II. Nas figuras III.2.1-1 e III.2.1-2 são apresentados os *stick plots* das correntes que caracterizam as camadas de superfície, três camadas intermediárias e a camada de fundo do modelo hidrodinâmico, para os períodos característicos de verão e inverno, respectivamente.

Figura III.2.1-1 - Stick plots de correntes obtidas do modelo hidrodinâmico que caracterizam a superfície, três camadas intermediárias e o fundo para o mês de janeiro, que caracteriza o período de verão, do Poço 166B, Bloco BM-S-42.

Figura III.2.1-2 - Stick plots de correntes obtidas do modelo hidrodinâmico que caracterizam a superfície, três camadas intermediárias e o fundo para o mês de julho, que caracteriza o período de inverno, do Poço 166B, Bloco BM-S-42.

III.2.2 Campo Termohalino

Modelagem do Descarte

de Cascalho e Fluidos

de Perfuração

Ш

Pág.

III-4/10

Os dados de densidade são utilizados pelo MUDMAP para o cálculo da velocidade de deposição das partículas. Sendo possível e, desde que as séries temporais possuam significado estatístico, prioriza-se a utilização de dados para este cálculo, buscando considerar uma estrutura de densidade o mais próxima da realidade possível.

PETROBRAS

Pág. III-5/10

As figuras III.2.2-1 e III.2.2-2 apresentam secções verticais ao longo de 23,8°S do campo de densidade médio calculado para os períodos de verão e inverno, respectivamente, com base em dados de temperatura e salinidade obtidos do Atlas Eletrônico dos dados do WOCE. Estes dados foram analisados, filtrados e interpolados no espaço. A tabela III.2.2-1 apresenta os perfis de densidade obtidos para a região do Poço 166B, Bloco BM-S-42, utilizados como dados de entrada no MUDMAP.

Figura III.2.2-1 - Secção vertical de densidade (kg/m³) ao longo de 23,8°S, na região do Bloco BM-S-42, Bacia de Santos, no período de verão. Dados provenientes do Atlas do WOCE.

Figura III.2.2-2 - Secção vertical de densidade (kg/m³) ao longo de 23,8°S, na região do Bloco BM-S-42, Bacia de Santos, no período de inverno. Dados provenientes do Atlas do WOCE.

Tabela III.2.2-1 - Perfil médio	de densidade para a regiâ	io do Poço 166B	, Bloco BM-S-42,
Bacia de Sal	ntos.		

	DENSIDADE (kg/m ³)					
PROFUNDIDADE (III)	VERÃO	INVERNO				
0	1.024,5	1.025,9				
10	1.024,8	1.025,9				
25	1.025,1	1.026,1				
50	1.025,5	1.026,6				
75	1.026,1	1.026,9				
100	1.026,8	1.027,1				
200	1.027,7	1.027,5				
300	1.028,2	1.028,3				
500	1.029,1	1.029,1				

R PETROBRAS

III.3 CENÁRIOS DE DESCARTE DE PARTÍCULAS

Os cenários simulados foram definidos de forma a abranger as condições características dos períodos de verão e inverno na região onde se localiza o Bloco BM-S-42. As informações que definem os cenários de descarte são: ponto de descarte, período de simulação, informações sobre o processo de descarte e propriedades do material descartado.

III.3.1 Ponto de Descarte

As simulações do descarte de partículas foram realizadas na região da Bacia de Santos, a partir do Poço 166B (figura I.1-1), cujas coordenadas foram especificadas pela PETROBRAS como 23°49'00,47"S e 42°17'42,00"W (SAD 69). Este poço está localizado no Bloco BM-S-42, em local com lâmina d'água de 600 m.

III.3.2 Especificações dos Processos de Perfuração e Descarte

O processo de perfuração é dividido em duas etapas: sem *riser* e com *riser*. Até a instalação do *riser*, não existe retorno de cascalhos para a sonda e todo o material retirado do poço será descartado 2,5 m acima do fundo do mar, depositando-se próximo à cabeça de poço. A perfuração com *riser* corresponde à etapa com retorno de fluido de perfuração e cascalho para a superfície, sendo o descarte realizado na 1 m abaixo da superfície do mar.

Para a perfuração do Poço 166B será utilizada a sonda SS-54. O processo de perfuração será composto por 4 fases distintas: Fases I e II sem *riser*, e Fases III e IV com *riser*.

O início da perfuração se dará com um poço de diâmetro 36" e intervalo de 70 m, com a utilização de fluido de perfuração convencional. Na Fase II a perfuração será realizada com broca de 17½" de diâmetro, com intervalo de 530 m, utilizando os fluidos de perfuração convencional e salgado tratado com

Coordenador da Equipe

PETROBRAS

amido (STA). Toda a fase será perfurada com fluido convencional e, ao final, este

Modelagem do Descarte

de Cascalho e Fluidos

de Perfuração

Ш

Pág.

III-8/10

é substituído pelo STA, que é um fluido mais completo, com o objetivo de inibir o inchamento de argilas e consegüentes complicações na descida do revestimento.

Na Fase III a perfuração será realizada com um poço de 12¹/₄", e um intervalo de 2.300 m, utilizando o fluido de perfuração com polímero catiônico. Na perfuração da Fase IV será utilizado fluido de perfuração sintético (BR-MUL) e o diâmetro do poço será de 81/2", completando um intervalo de 1.100 m.

Nas fases de perfuração sem riser serão descartados cascalhos e fluido em conjunto, sendo que no final da Fase II será descartado todo o fluido STA. Ao final da Fase III será descartado o fluido excedente além do fluido aderido ao cascalho, enquanto na fase IV (onde será utilizado fluido não aquoso) será descartado apenas o cascalho com no máximo de 6,9% de fluido aderido.

III.3.3 Caracterização do Cascalho e Fluidos de Perfuração

A tabela III.3.3-1 apresenta os volumes e a caracterização do cascalho e fluidos de perfuração descartados no Poço 166B, segundo informações fornecidas pela PETROBRAS e provenientes do banco de dados da ASA. Vale ressaltar que apenas o fluido tipo BR-MUL, utilizado na Fase IV da perfuração, é um fluido de base não aquosa.

As velocidades de deposição das partículas foram calculadas segundo os pressupostos em Dyer (1986), Lima & Luz (2001) e Luz & Lima (2001). Nesses cálculos são considerados o tamanho das partículas, a densidade do material, a densidade do meio onde este será descartado, além da viscosidade dinâmica da água.

Pág.

Tabela III.3.3-1 - Especificações do descarte de cascalho e fluidos de perfuração para o Poço 166B, Bloco BM-S-42.

FASE	DIÂMETRO POÇO	INTERV. DA FASE (m)	DURAÇÃO DO DESCARTE (horas)	PROF. DO DESCARTE (m)	MATERIAIS	TIPO DE FLUIDO	VOLUME EFETIVAMENTE DESCARTADO (m ³)	DENS. MÉDIA (kg/m³)	Constituintes Sólidos	DENS. DOS SÓLIDOS (kg/m ³)	CONC. DE SÓLIDOS NO FLUIDO (kg/m ³)	TAMANHO MÉDIO DA PARTÍCULA (mm)	MASSA PERCENTUAL (%)	VEL. DE DEPOSIÇÃO (cm/s)										
												2,54	10	37,8463										
				2,5 m	cascalho	-	46	2.500	-	-	-	8,89	40	70,8040										
Т	36"	70	11	acima do fundo do								12,7	50	84,6270										
				mar	fluido	Convencional	246	1 040	Bentonita	2 250	71 5	0,001 – 0,01	50	0,0010										
					nuido		240	1.040	Dentonità	2.200	71,0	0,01 – 0,07	50	0,0508										
												2,54	10	37,8463										
					cascalho	-	105	2.500	-	-	-	6,35	50	59,8403										
				2,5 m								10,16	40	75,6927										
П	17½"	530	24	acima do fundo do		Convencional	370	1.040	Bentonita	2 250	71 5	0,001 – 0,01	50	0,0012										
				mar	fluido				Demonita	2.200	71,0	0,01 - 0,07	50	0,0635										
																STA*	247	1.320	Bentonita	2.250	28,6	0,001 – 0,01	50	0,0029
									Baritina	4.200	400,4	0,01 - 0,07	50	0,1508										
												2,54	10	37,2617										
				1 m abaixo	cascalho	-	197	2.453	-	-	-	6,35	50	58,9159										
ш	12¼"	2.300	292	superfície								10,16	40	74,5234										
				do mar	fluido	Catiônico	71	1.440	Bentonita	4.200	630.2	0,001 – 0,01	50	0,0029										
					inanaro	00.000	(excedente)*		20			0,01 - 0,07	50	0,1526										
												1,27	10	14,8144										
				1 m abaixo da	cascalho	-	45	2.481	-	-	-	6,35	50	59,4970										
IV	81⁄2"	1.100	279	superfície								10,16	40	75,2584										
				do mar	fluido	Sintético	6	1.320	Baritina	4.200	691,1	0,001 - 0,01	50	0,0029										
												0,01 – 0,07	50	0,1526										

*Nas simulações do descarte do fluido STA (Fase II) e do fluido catiônico excedente (Fase III) foram considerados descartes instantâneos.

III.3.4 Descrição dos Cenários

A tabela III.3.4-1 apresenta os cenários elaborados para as simulações de descarte de cascalho e fluidos de perfuração selecionados para caracterizar as operações de perfuração realizadas na Bacia de Santos. Ao todo, foram simulados 12 cenários contemplando: <u>1 ponto de descarte</u>, <u>4 fases de perfuração</u> (sem e com *riser*) e <u>2 condições sazonais</u> (verão e inverno).

A terminologia utilizada para a identificação dos cenários é a seguinte:

- P166B identifica o Poço 166B;
- FI, FII, FIII e FIV indicam as fases de perfuração/descarte;
- EXCE indica o descarte de fluido excedente ao final das Fases II e III;
- VER e INV identificam os períodos de verão e inverno, respectivamente.

Tabela III.3.4-1 - Cenários elaborados para o estudo de cascalho e fluidos de perfuraçãona Bacia de Santos, para o Poço 166B localizado no Bloco BM-S-42.

CENÁRIOS	CAMPOS						
CENARIOS	VERÃO	INVERNO					
FASE I	P166B_FI_VER	P166B_FI_INV					
FASE II	P166B_FII_VER	P166B_FII_INV					
FASE II - EXCEDENTE	P166B_FII_EXCE_VER	P166B_FII_EXCE_INV					
FASE III	P166B_FIII_VER	P166B_FIII_INV					
FASE III - EXCEDENTE	P166B_FIII_EXCE_VER	P166B_FIII_EXCE_INV					
FASE IV	P166B_FIV_VER	P166B_FIV_INV					

IV RESULTADOS DAS SIMULAÇÕES

O modelo MUDMAP foi utilizado para simular os cenários descritos no item III.3.4 e fornecer informações sobre a distribuição espacial do cascalho e fluidos descartados durante as operações de perfuração na Bacia de Santos. A tabela IV-1 fornece as características da deposição de material calculadas pelo MUDMAP para o ponto simulado. A tabela lista a área coberta por depósitos de sedimento com espessuras maiores que 1 mm, a extensão horizontal máxima do ponto de descarte até o contorno da mesma espessura e a espessura máxima depositada nessa região.

O critério de corte em 1 mm foi definido em função da metodologia de cálculo de espessura adotada pelo modelo. Como descrito no item III.1, a espessura é função da massa de sedimentos, área depositada, porosidade e densidade das partículas descartadas. Desta forma, como o volume de material descartado é pequeno em relação à profundidade local e área de deposição, o cálculo de espessuras médias não permite uma resolução significativa para valores inferiores a 1 mm.

FASE	ÁREA (m²) COBERTA POR ESPESSURAS ≥ 1 mm		EXTENSÃO MÁXIMA HORIZONTAL (m) A PARTIR DO DE DESCARTE ATÉ O CONTORNO DE 1 mm		ESPESSURA MÁXIMA DEPOSITADA (mm)	
	VERÃO	INVERNO	VERÃO	INVERNO	VERÃO	INVERNO
I	303	292	13 (NE)	13 (NE)	743,0	767,0
Ш	339	332	14 (NE)	14 (NE)	1.580,0	1.570,0
II EXCEDENTE	_	289	_	82 (NE)	0,6	1,6
=	339.363	400.312	542 (SW)	501 (SW)	71,5	48,3
III EXCEDENTE					0,02	0,03
IV	116.265	126.458	291 (WNW)	322 (WNW)	8,3	8,4
TOTAL	339.363	400.312	542 (SW)	501 (SW)	2.237,0	2.252,0

Tabela IV-1 - Máxima espessura depositada e área coberta por sedimentos comespessuras maiores que 1 mm para o Poço 166B, Bloco BM-S-42.

Coordenador da Equipe

A seguir, são apresentados graficamente os resultados obtidos nas simulações com o MUDMAP. Para facilitar a compreensão dos resultados, são apresentadas as distribuições espaciais do cascalho e fluidos de perfuração ao final de cada fase e ao final das operações de descarte para cada uma das condições sazonais simuladas.

IV.1 FASE I

A figura IV.1-1 apresenta os resultados da simulação para a Fase I (sem *riser*) do descarte de partículas do Poço 166B, Bloco BM-S-42, em condição de verão. Observa-se que a espessura máxima depositada foi de 74,3 cm e a área de deposição está distribuída em 303 m². As maiores espessuras concentram-se nas proximidades do ponto de descarte.

Figura IV.1-1 - Cenário P166B_FI_VER. Área de abrangência e contornos de espessuras médias calculadas para o descarte de partículas do Poço 166B, ao final da Fase I (diâmetro de 36", sem riser), no período de verão.

A figura IV.1-2 apresenta os resultados da simulação para a Fase I (sem *riser*) do descarte de partículas do Poço 166B, Bloco BM-S-42, em condição de inverno. Observa-se que a espessura máxima depositada foi de 76,7 cm e a área de deposição está distribuída em 292 m². As maiores espessuras concentram-se nas proximidades do ponto de descarte.

Figura IV.1-2 - Cenário P166B_FI_INV. Área de abrangência e contornos de espessuras médias calculadas para o descarte de partículas do Poço 166B, ao final da Fase I (diâmetro de 36", sem riser), no período de inverno.

IV.2 FASE II

A figura IV.2-1 apresenta os resultados da simulação para a Fase II (sem *riser*) do descarte de partículas do Poço 166B, Bloco BM-S-42, em condição de verão. Observa-se que a espessura máxima depositada foi de 158 cm e a área de deposição está distribuída em 339 m². As maiores espessuras concentram-se nas proximidades do ponto de descarte.

Figura IV.2-1 - Cenário P166B_FII_VER. Área de abrangência e contornos de espessuras médias calculadas para o descarte de partículas do Poço 166B, ao final da Fase II (diâmetro de 17½", sem riser), no período de verão.

A figura IV.2-2 apresenta os resultados da simulação para a Fase II (sem *riser*) do descarte de partículas do Poço 166B, Bloco BM-S-42, em condição de inverno. Observa-se que a espessura máxima depositada foi de 157 cm e a área de deposição está distribuída em 332 m². As maiores espessuras concentram-se nas proximidades do ponto de descarte.

Pág. IV-5/12

Figura IV.2-2 - Cenário P166B_FII_INV. Área de abrangência e contornos de espessuras médias calculadas para o descarte de partículas do Poço 166B, ao final da Fase II (diâmetro de 17½", sem riser), no período de inverno.

IV.3 FASE III

A figura IV.3-1 apresenta os resultados da simulação para a Fase III (com *riser*) do descarte de partículas do Poço 166B, Bloco BM-S-42, em condição de verão. Observa-se que a espessura máxima depositada foi de 7,15 cm e a área de deposição está distribuída em 339.363 m². As maiores espessuras concentram-se, em média, a 128 m a sudoeste do ponto de descarte.

Figura IV.3-1 - Cenário P166B_FIII_VER. Área de abrangência e contornos de espessuras médias calculadas para o descarte de partículas do Poço 166B, ao final da Fase III (diâmetro de 12¼", sem riser), no período de verão.

A figura IV.3-2 apresenta os resultados da simulação para a Fase III (com *riser*) do descarte de partículas do Poço 166B, Bloco BM-S-42, em condição de inverno. Observa-se que a espessura máxima depositada foi de 4,83 cm e a área de deposição está distribuída em 400.312 m². As maiores espessuras concentram-se, em média, a 85 m a oeste-noroeste do ponto de descarte.

BR PETROBRAS

Figura IV.3-2 - Cenário P166B_FIII_INV. Área de abrangência e contornos de espessuras médias calculadas para o descarte de partículas do Poço 166B, ao final da Fase III (diâmetro de 12¼", sem riser), no período de inverno.

IV.4 FASE IV

A figura IV.4-1 apresenta os resultados da simulação para a Fase IV (com *riser*) do descarte de partículas do Poço 166B, Bloco BM-S-42, em condição de verão. Observa-se que a espessura máxima depositada foi de 0,83 cm e a área de deposição está distribuída em 116.265 m². As maiores espessuras concentram-se, em média, a 100 m a sudoeste do ponto de descarte.

Figura IV.4-1 - Cenário P166B_FIV_VER. Área de abrangência e contornos de espessuras médias calculadas para o descarte de partículas do Poço 166B, ao final da Fase IV (diâmetro de 8½", com riser), no período de verão.

A figura IV.4-2 apresenta os resultados da simulação para a Fase IV (com *riser*) do descarte de partículas do Poço 166B, Bloco BM-S-42, em condição de inverno. Observa-se que a espessura máxima depositada foi de 0,84 cm e a área de deposição está distribuída em 126.458 m². As maiores espessuras concentram-se, em média, a 138 m a oeste-noroeste do ponto de descarte.

BR PETROBRAS

Pág. IV-9/12

Figura IV.4-2 - Cenário P166B_FIV_VER. Área de abrangência e contornos de espessuras médias calculadas para o descarte de partículas do Poço 166B, ao final da Fase IV (diâmetro de 8½", com riser), no período de inverno.

IV.5 FLUIDO EXCEDENTE

Ao final da Fase II (sem *riser*), o fluido STA, utilizado para inibir o inchamento de argilas, será descartado na própria locação. Como o descarte do STA no período de verão apresentou espessuras inferiores a 1 mm, não é apresentada figura ilustrativa para este caso. No verão, as maiores espessuras calculadas foram de 0,6 mm e concentraram-se 40 m a leste do ponto de descarte.

No período de inverno (figura IV.5-1,), a espessura máxima de fluido STA depositada foi de 1,6 mm e a área de deposição está distribuída em 289 m². As

BR

PETROBRAS

maiores espessuras concentram-se, em média, 38 m a norte-nordeste e 48 m a nordeste do ponto de descarte.

Figura IV.5-1 - Cenário P166B_FII-EXCE_INV. Área de abrangência e contornos de espessuras médias calculadas para o descarte do fluido excedente do Poço 166B, ao final da Fase II (diâmetro de 17½", sem riser), no período de inverno.

Ao final da Fase III será descartado, na própria locação, o excedente de fluido com polímero catiônico. Como os descartes do fluido excedente apresentaram espessuras inferiores a 1 mm, tanto no verão como no inverno, não são apresentadas figuras ilustrativas para estes casos. As maiores espessuras calculadas foram de 0,02 mm no verão e 0,03 mm no inverno. Salienta-se que as maiores espessuras concentraram-se, em média, 10 km a sudoeste do ponto de descarte (verão) e 7 km (inverno) a oeste-noroeste do mesmo.

Pág. IV-11/12

IV.6 DESCARTE TOTAL

As figuras IV.6-1 e IV.6.-2 apresentam as áreas de abrangência e espessuras previstas ao final de toda a operação de descarte de partículas no Poço 166B, Bloco BM-S-42, nos períodos de verão e inverno, respectivamente. Os maiores valores de espessura, 223,7 cm no verão e 225,2 cm no inverno, estão concentrados nas proximidades do ponto de descarte (detalhe). No verão, a área total de abrangência do material descartado é de, aproximadamente, 339.363 m², sendo que grande parte da mesma (~339.188 m²) apresenta espessuras inferiores a 20 cm. No inverno, a área total é cerca de 400.312 m², e grande parte da mesma (~400.141 m²) também apresenta espessuras inferiores a 20 cm.

Figura IV.6-1 - Área de abrangência e espessuras médias calculadas para o descarte de partículas ao final das operações de descarte (todas as fases) do Poço 166B, Bloco BM-S-42, no período de verão.

Figura IV.6-2 - Área de abrangência e espessuras médias calculadas para o descarte de partículas ao final das operações de descarte (todas as fases) do Poço 166B, Bloco BM-S-42, no período de inverno.

V CONCLUSÕES

O MUDMAP foi utilizado para simular a deposição de cascalho e fluidos provenientes do descarte das operações de perfuração na Bacia de Santos.

A realização em separado das simulações sem e com *riser* permitiu concluir que a maior influência sobre o assoalho oceânico é conseqüência do descarte sem *riser*, onde o acúmulo de material é maior, alcançando espessuras de até 158 cm (Fase II no verão). Já os resultados obtidos para as fases com *riser* mostraram espessuras de partículas no fundo inferiores, com no máximo 0,84 cm (Fase IV no inverno). Tal resultado se deve ao fato do descarte das fases com *riser* ser efetuado próximo à superfície do mar (*i.e.* maior tempo sob a ação das correntes na coluna d'água).

Os resultados das simulações, considerando as fases de deposição sem *riser*, apresentaram uma distribuição mais uniforme, principalmente em função da menor intensidade das correntes de fundo nessa região. Em ambas as fases sem *riser* (I e II), as partículas apresentaram uma tendência de maior deposição nas proximidades do ponto de descarte. Na Fase II as espessuras depositadas são maiores que na Fase I, devido ao maior volume de cascalhos descartados na Fase II.

Os resultados das simulações, considerando as fases de deposição com *riser*, apresentaram uma tendência de maior deposição a sudoeste do ponto de descarte no verão e a oeste-noroeste do mesmo no inverno. Na Fase III as espessuras depositadas são maiores que na outra fase com *riser* (Fase IV), em função do maior volume de cascalhos descartados na mesma, além da duração do descarte ser menor (292 h na Fase III e 490 h na Fase IV).

A tabela V-1 resume os resultados finais, considerando o processo ao final de toda a operação, para o poço estudado. Como pode ser observado, nas fases sem *riser* o acúmulo preferencial das partículas se deu nas proximidades do ponto de descarte. Já nas fases com *riser*, a direção preferencial de acúmulo de partículas ocorreu nas direções sudoeste e oeste-noroeste, coerente com as correntes predominantes nas camadas superficiais (figuras III.2.1-1 e III.2.1-2). De maneira geral, as maiores espessuras foram observadas nas proximidades do ponto de descarte nas fases sem *riser* e a sudoeste (verão) e oeste-noroeste (inverno) nas fases com *riser*.

BR

PETROBRAS

POÇO	CONDIÇÃO SAZONAL	FASES	ESPESSURA MÁXIMA (cm)	DIREÇÃO PREFERENCIAL DE ACÚMULO DA ESPESSURA MÄXIMA
	VERÃO	sem riser	74,3 (Fase I)	proximidades do ponto de descarte
		sem riser	158,0 (Fase II)	proximidades do ponto de descarte
		sem riser	158,0 (Fase II excedente)	Е
		com riser	7,2 (Fase III)	SW
166B		com <i>riser</i>	0,002 (Fase III excedente)	SW
		com <i>riser</i>	0,8 (Fase IV)	SW
	INVERNO	sem <i>riser</i>	76,7 (Fase I)	proximidades do ponto de descarte
		sem riser	157,0 (Fase II)	proximidades do ponto de descarte
		sem <i>riser</i>	0,2 (Fase II excedente)	NNE / NE
		com riser	4,8 (Fase III)	WNW
		com riser	0,003 (Fase III excedente)	WNW
		com riser	0,8 (Fase IV)	WNW

Para o Poço 166B modelado, as maiores espessuras calculadas foram de 223,7 cm no verão e 225,2 cm no inverno. Considerando espessuras iguais ou superiores a 1 mm, a área de influência total do material descartado foi de 339.363 m² no verão e 400.312 m² no inverno. Salienta-se que, tanto no verão quanto no inverno, 99% das áreas afetadas apresentam espessuras inferiores a 20 cm.

VI BIBLIOGRAFIA

ASA (APPLIED SCIENCE ASSOCIATES, Inc.), 1999. OILMAP Technical and User's Manuals, Narragansett, RI.

ASA (APPLIED SCIENCE ASSOCIATES, Inc.), 2000. User's Manuals for MUDMAP, Version 3.5, Narragansett, RI.

ASA (APPLIED SCIENCE ASSOCIATES SOUTH AMERICA), 2005. Modelagem do Transporte e Dispersão de Óleo no Mar para a Área Geográfica da Bacia de Campos (Base 4.2).

BLUMBERG, A.F. & MELLOR, G.L., 1987. A description of a three-dimensional coastal ocean circulation model. In: N.S. Heaps (Ed.), **Coastal and Estuarine Sciences 4: Three-dimensional Coastal Ocean Models**. American Geophysical Union, pp. 1-16.

BRANDSMA, M.G. & SAUER, T.C., 1983. The OOC model: Prediction of short term fate of drilling mud in ocean. Part I: Model description, Part II: Model results. **Proceedings of Workshop on an Evaluation of Effluent Dispersion and Fate Models for OCS Plataforms**, Santa Barbara, California, February 7-10.

CASTRO FILHO, B.M.C. & MIRANDA, L.B., 1998. Physical Oceanography of the Western Atlantic Continental Shelf located between 40 N and 340 S. **The Sea**. John Wiley & Sons, Inc. 11: p. 209-251.

CLIMANÁLISE, 1996. **Boletim de Monitoramento e Análise Climática**. Edição comemorativa de 10 anos. Outubro.

DYER, K.R., 1986. Coastal and estuarine sediment dynamics. John Wiley & Sons Ltd.

Coordenador da Equipe

EVANS, D.L. & SIGNORINI, S.R., 1985. Vertical structure of the Brazil Current. **Nature**, 315, p. 48-50.

KOH, R.C.Y. & CHANG, Y.C., 1973. Mathematical modeling for barged ocean disposal of waste. Environmental Protection Agency Technology Series EPA 660/2-73-029, US Army Engineer Waterways Experiment Station, Vicksburg, Mississipi.

LIMA, J.A.M., 1997. Oceanic Circulation on the Brazilian Shelf Break and Continental Slope at 22°S. Tese de doutorado. University of New South Wales, Austrália.

LIMA, R.M.F. & LUZ, J.A.M., 2001. Análise granulométrica por técnicas que se baseiam na sedimentação gravitacional: Lei de Stokes. **Rev. Esc. Minas**, vol. 54, nº 2: p.155-159. ISSN 0370-4467.

LUZ, J.A.M. & LIMA, R.M.F., 2001. Análise granulométrica por técnicas que se baseiam na sedimentação gravitacional: Regime turbulento e intermediário. **Rev. Esc. Minas**, vol. 54, nº 3: p. 215-218. ISSN 0370-4467.

MELLOR, G.L. & YAMADA, T., 1982. Development of a turbulence closure models for geophysical fluid problems. **Rev. Geophys. Space Phys.**, 20, n^o 4, 851-875.

MIRANDA, L.B. de & CASTRO FILHO, B.M. 1979. Condições do movimento geostrófico das águas adjacentes a Cabo Frio (RJ). **Bolm. Inst. Oceanogr.**, S. Paulo, 28(2): p. 79-93.

SATYAMURTI, P. & MATTOS, L.F., 1989. Climatological lower trophosferic frontogenesis in the midlalatitudes due to horizontal deformation and divergence. **Mon.Wea. Rev.**, 108:410-520.

SIGNORINI, S. S., 1978. On the Circulation and volume transport of the Brazil Current between Cape of São Tomé and Guanabara Bay. **Deep Sea Res**., 25, p. 481-490.3.

SPAULDING, M.L., ISAJI, T. & HOWLETT, E., 1994. MUDMAP: A model to predict the transport and dispersion of drill muds and production water. Applied Science Associates, Inc, Narragansett, RI.

SPAULDING, M.L., 1994. MUDMAP: A numerical model to predict drill fluid and production water dispersion, Offshore, Houston, Texas, March 1993. Applied Science Associates, Inc, Narragansett, RI.

STRAMMA, L.; IKEDA, Y. & PETERSEN, R.G., 1990. Geostrophic transport in the Brazil Current region, **Deep-Sea. Res**., 37(12): p. 1875-1886.

TOMCZAK, M. & GODFREY, J.S., 1994. Regional Oceanography: An Introduction. **Pergamon**. 422pp.

VII EQUIPE TÉCNICA

Equipe da Empresa Consultora Applied Science Consultoria Ltda.

Profissional	Ana Carolina da Rocha
Empresa	ASA Consultoria Ltda
Registro no Conselho de Classe	000.000.000-0
Cadastro Técnico Federal de Atividades	325047
e Instrumentos de Defesa Ambiental	
Responsável pela(s) Capítulo (s)	TODAS
Assinatura	

Profissional	Andrea Gallo Xavier
Empresa	ASA Consultoria Ltda
Registro no Conselho de Classe	000.000.000-0
Cadastro Técnico Federal de Atividades	58617
e Instrumentos de Defesa Ambiental	
Responsável pela(s) Capítulo (s)	TODAS
Assinatura	

Profissional	Carlos Eduardo Simão
Empresa	ASA Consultoria
Registro no Conselho de Classe	000.000.000-0
Cadastro Técnico Federal de Atividades	434226
e Instrumentos de Defesa Ambiental	
Responsável pela(s) Capítulo (s)	IV
Assinatura	

Profissional	Daniel Constantino Zacharias
Empresa	ASA Consultoria Ltda
Registro no Conselho de Classe	000.000.000-0
Cadastro Técnico Federal de Atividades	638533
e Instrumentos de Defesa Ambiental	
Responsável pela(s) Capítulo (s)	lell
Assinatura	

Profissional	Eduardo Yassuda
Empresa	ASA Consultoria Ltda
Registro no Conselho de Classe	060.184.738.5
Cadastro Técnico Federal de Atividades	94066
e Instrumentos de Defesa Ambiental	
Responsável pela(s) Capítulo (s)	TODAS
Assinatura	

Profissional	Erika Naomi de Souza Tominaga
Empresa	ASA Consultoria Ltda
Registro no Conselho de Classe	
Cadastro Técnico Federal de Atividades	980855
e Instrumentos de Defesa Ambiental	
Responsável pela(s) Capítulo (s)	IV
Assinatura	

Profissional	José Edson Pereira
Empresa	ASA Consultoria Ltda
Registro no Conselho de Classe	000.000.000-0
Cadastro Técnico Federal de Atividades	326336
e Instrumentos de Defesa Ambiental	
Responsável pela(s) Capítulo (s)	lell
Assinatura	

Profissional	Maria Regina Fonseca Guimarães
Empresa	ASA Consultoria Ltda
Registro no Conselho de Classe	000.000.000-0
Cadastro Técnico Federal de Atividades	434231
e Instrumentos de Defesa Ambiental	
Responsável pela(s) Capítulo (s)	lell
Assinatura	

Profissional	Marco Antônio Corrêa
Empresa	ASA Consultoria Ltda.
Registro no Conselho de Classe	000.000.000-0
Cadastro Técnico Federal de Atividades	434236
e Instrumentos de Defesa Ambiental	
Responsável pela(s) Capítulo (s)	lell
Assinatura	

Profissional	Maurício Person Lammardo
Empresa	ASA Consultoria Ltda.
Registro no Conselho de Classe	000.000.000-0
Cadastro Técnico Federal de Atividades	272165
e Instrumentos de Defesa Ambiental	
Responsável pela(s) Capítulo (s)	IV
Assinatura	

_

