

II.4 ANÁLISE DAS ALTERNATIVAS

II.4.1 Premissas do Projeto

Os Blocos BM-PEPB-1 e BM-PEPB-3 estão localizados em área oceânica nas cotas batimétricas entre 500 e 2.000 metros, com distância mínima 39,47 km e 45,36 km da costa, respectivamente. Desta maneira, de acordo com as características da região e a distância da costa, a atividade de perfuração exploratória marítima dos Poços Gravatá, Caruaru e Bom Jardim só poderá ser realizada por unidades flutuantes.

Os valores de lâmina d'água dos poços são apresentados no **Quadro II.4.1-1** a seguir:

Quadro II.4.1-1 - Lâmina d'água dos poços e distância do continente.

Blocos	Poço	Lâmina d'água (m)	Distância do continente (km)
BM-PEPB-1 e BM-PEPB-3	Gravatá	1.910	71,00
	Caruaru	780	44,39
	Bom Jardim	1.295	52,67

O projeto prevê a perfuração de 3 (três) poços, denominados Gravatá, Caruaru e Bom Jardim, com duração média estimada de 10 meses para cada um, sendo 15 dias para a mobilização (0,5 mês), 240 dias (8 meses) para a atividade de perfuração e 45 dias para a Avaliação (1,5 mês, TFR – Teste de Formação e Reservatório). A realização da Avaliação está condicionada à descoberta de hidrocarbonetos.

Os itens seguintes descrevem as alternativas tecnológicas, locacionais e suas vantagens e desvantagens para o desenvolvimento da atividade proposta.

II.4.2 Alternativas tecnológicas

II.4.2.1 Tipos de unidades de perfuração

Alguns fatores são determinantes para a escolha do tipo de sonda a ser utilizada na atividade de perfuração exploratória, tais como a lâmina d'água e a finalidade para a qual a plataforma é projetada (perfuração exploratória e/ou produção), além dos custos operacionais.

Considerando-se a atividade de perfuração exploratória dos Poços Gravatá Caruaru e Bom Jardim, e suas respectivas lâminas d'água 1.910 m, 780 m e 1.295 m, as unidades de perfuração habilitadas para o desenvolvimento da atividade são do tipo plataforma semissubmersível e navio sonda.

II.4.2.1.1 Plataforma semissubmersível

As plataformas semissubmersíveis são estruturas flutuantes que atuam em águas profundas e ultra profundas, projetadas para ter pouco movimento. Podem ser compostas por *pontoons* (flutuadores), parte submersa que tem a função de garantir a flutuabilidade da plataforma por meio do empuxo, auxiliando na diminuição dos efeitos causados pelas ondas; *bracings* (contraventamentos), formas tubulares que se interligam à estrutura da plataforma; *upper hull* (convés), área responsável por abrigar pessoas e equipamentos necessários para o desenvolvimento da atividade; e, colunas que contribuem na estabilidade de seu posicionamento e impossibilitam que esta emborque (se vire para baixo).

Quanto ao posicionamento, pode ser ancorada no solo marinho ou dotada de sistema de posicionamento dinâmico.

Para o deslocamento da plataforma semissubmersível pode ser necessário apoio de rebocador.

II.4.2.1.2 Navio sonda

Também conhecido como *drillship*, um navio sonda é uma embarcação utilizada em águas profundas e ultra profundas para perfuração de poços, sendo equipada com uma torre de perfuração situada no centro da embarcação, um *moonpool* (cavidade ao centro do navio que permite a passagem da sonda pelo casco), uma extensa amarração (utilizada somente durante períodos de manutenção na qual o navio precise ficar atracado) e equipamento de posicionamento dinâmico (utilizado nas demais circunstâncias)¹.

O navio sonda possui maior facilidade de deslocamento para outros poços, pois possui propulsão própria.

¹ Embora o navio sonda também possa ser ancorado ao fundo marinho.

uin a

II.4.2.2 Posicionamento de plataformas

Pode-se definir um sistema de ancoragem como a associação de unidades capazes de manter o posicionamento adequado da plataforma ou do navio sonda mesmo ao serem expostos aos elementos do meio ambiente (ondas, ventos, correntes marítimas e outros) que podem desestabilizar e movimentar a plataforma ou navio sonda, comprometendo a segurança e o andamento da perfuração.

Em vista disso, a ancoragem convencional e o sistema de posicionamento dinâmico (DP) geralmente são adotados para operação de controle do posicionamento.

A ancoragem convencional necessita obrigatoriamente de contato físico entre a plataforma/navio sonda e o fundo do mar, e pode ser representada por diversos tipos de sistemas como:

- Single point mooring (SPM) ancoragem em um único ponto que é usualmente utilizada para unidades do tipo floating storage and offloading (FSO) e floating production storage and offloading (FPSO);
- Spread mooring (SM) em catenária;
- Taut-leg;
- Tension leg platform (TLP) ancoragem vertical através de tendões verticais.

Os sistemas SM e *Taut-leg*, geralmente, são utilizados em plataformas semissubmersíveis, podendo ser compostos por um conjunto de âncoras, cabos e/ou correntes que trabalham em função de contrapor as forças da natureza e apresentados como turret interno ou externo, *Catenary Anchor Leg Mooring* (CALM) ou *Single Anchor Leg Mooring* (SALM).

O sistema de posicionamento dinâmico (DP) possibilita a manutenção da posição da plataforma por meio de sensores acústicos, propulsores e computadores, ou seja, quando há forças do meio ambiente que tendem a deslocar o navio de sua posição ou alterar a posição da plataforma, o sistema dinâmico restabelece a posição ideal sem que seja necessário um contato físico entre a plataforma e o fundo do mar.

Este sistema é comum em unidades de perfuração que não permanecem um considerável período de tempo no mesmo local e, portanto, facilita a mobilidade

da unidade. Além disso, também pode ser representado por diversos tipos de sistemas, entretanto, o sistema DP-3 é conceituado atualmente como o mais confiável, atuando à base de localização por GPS, propulsores (*thrusters*) e tendo a capacidade de manter o posicionamento após a falha de qualquer sistema ou compartimento devido a incêndio, inundação ou às redundâncias no sistema.

Comparado ao sistema de ancoragem convencional, suas principais vantagens são o menor tempo para instalação, maior alcance de profundidade e a diminuição do impacto ambiental causado no processo de instalação, pois permite uma menor perturbação do substrato marinho.

II.4.2.3 Descarte de Resíduos

II.4.2.3.1 In loco

Na etapa inicial de perfuração do poço ocorre a utilização de fluidos de base aquosa que possuem características de dispersão diferentes dos fluídos de base oleosa, com uma composição simplificada e classe de toxicidade baixa.

Neste contexto, o poço pode ser jateado ou perfurado, onde, nesta última opção, a cavidade é desenvolvida pela coluna de perfuração com o auxílio de broca e sem uma tubulação (*riser*) que interliga o fundo do mar à plataforma. Devido a esta configuração, há inviabilização da condução de fluidos e cascalhos para a unidade de perfuração e, portanto, estes são depositados no próprio leito oceânico.

Posteriormente, o *riser* é instalado com o *Blowout Preventer* (BOP), equipamento de segurança utilizado para o controle de pressão dentro do poço, permitindo, desta maneira, o retorno do cascalho e dos fluidos à unidade para o tratamento no sistema de controle de sólidos dos fluidos advindos da perfuração. Este sistema é composto por:

- Peneiras vibratórias;
- Desgassificador;
- Dessiltador;
- Centrífuga (secador de cascalho).

Após o tratamento no sistema descrito acima e após a realização de testes para comprovação do enquadramento dos resíduos nos parâmetros estabelecidos pelos órgãos reguladores, o descarte é efetuado diretamente no mar.

Considerando as características das locações objeto do presente processo de licenciamento ambiental, tais como lâminas d'água dos poços e distâncias mínimas em relação à costa, além da avaliação da sensibilidade da área dos blocos, a hipótese de descarte zero de cascalho e fluidos não é aplicável ao projeto.

Se considera, ainda, que devido às atividades ocorrerem em águas ultra profundas, dotadas de um hidrodinamismo e com baixa produtividade biológica, o impacto ambiental causado pelos resíduos de cascalho fique restrito ao entorno do poço e seja menor do que se ocorrido fora deste contexto. Portanto, espera-se que o meio possibilite uma rápida dispersão e minimize a perturbação motivada pelo descarte.

II.4.2.3.2 Em terra

O descarte em terra se dá após o recolhimento e armazenamento na Unidade (plataforma/navio sonda) dos resíduos gerados pela atividade de perfuração ao longo de suas fases e seu posterior encaminhamento por meio de *cutting boxes* (caixas coletoras) para destinação final adequada.

Assim como no descarte *in loco*, a destinação de resíduos em terra também pode gerar impacto ao meio devido, por exemplo, à emissão de poluentes e gases para a atmosfera, de acordo com o volume gerado e com o número de viagens feitas pelas embarcações de apoio e por caminhões no trajeto da destinação final. Além disso, possíveis acidentes como colisões e vazamento de fluidos tanto em terra quanto no mar podem acarretar poluição do ambiente marinho, do solo e/ou do lençol freático.

Especificamente em relação aos blocos BM-PEPB-1 e BM-PEPB-3 serão utilizados, preferencialmente, fluidos de base aquosa. O uso de fluido de base não aquosa está previsto apenas nas fases III e IV quando as análises das estruturas e formações, durante a perfuração, identifiquem a necessidade.

II.4.2.4 Conclusão

Comparativamente, ambas as alternativas tecnológicas abordadas (plataforma semissubmersível e navio sonda) são consideradas adequadas ao contexto do projeto. Portanto, é necessário avaliar e ponderar a disponibilidade e os custos da operação que envolverá cada uma das alternativas.

Contudo, para a tomada de decisão, é importante considerar, além do exposto e das posições dos poços a serem perfurados nos blocos, as condições meteoceanográficas e as correntes marítimas presentes na área, tendo em vista não somente a definição do modelo da unidade de perfuração, mas também o sistema de posicionamento, de modo a analisar e estimar o impacto ambiental que esse conjunto de ações deverá proporcionar para o meio.

Nos blocos BM-PEPB-1 e BM-PEPB-3 foram consideradas mais adequadas as unidade de perfuração do tipo navio-sonda denominados ODN-1 (NS-41) e ODN-2 (NS42), devido à capacidade de deslocamento sem a necessidade de apoio rebocador e ao seu sistema de posicionamento dinâmico, eliminando assim a necessidade de instalação de âncoras e linhas de ancoragem.

II.4.3 Alternativas locacionais

A partir de estudos geológicos, levantamentos sísmicos, estratigrafia e estudos operacionais é possível estabelecer os locais adequados para perfuração dos poços.

Neste projeto, as localizações dos poços Gravatá, Caruaru e Bom Jardim, situados na Bacia de Pernambuco-Paraíba, nos blocos BM-PEPB-1 e BM-PEPB-3, foram definidas de acordo com estudos preliminares que indicaram a possível presença de hidrocarbonetos e identificou prováveis zonas de risco que forneceriam dano ao desenvolvimento do trabalho como perdas ao empreendimento e impacto ao meio ambiente.

É importante destacar que, seguindo as normas referentes à desmobilização da unidade que regimentam a preservação da área no sentido de manter suas características mais próximas possíveis ao natural, ou seja, buscar manter a situação encontrada antes da atividade exploratória haverá, após o término da perfuração e eventuais testes de formação do poço, o tamponamento e a

desocupação dos intervalos testados para evitar fluxos indesejados ao meio e a retirada segura dos equipamentos do fundo do mar.

II.4.3.1 Conclusão

Como descrito, foram utilizados parâmetros para determinar a área da atividade de perfuração considerando a capacidade exploratória da região, sua viabilidade tanto econômica quanto física, em que os possíveis riscos e a segurança do empreendimento e do meio ambiente a ser afetado foram determinados com base em estudos ambientais (geológicos, sísmicos, etc.) e operacionais.

Sendo assim, a localização dos poços Gravatá, Caruaru e Bom Jardim, nos blocos BM-PEPB-1 e BM-PEPB-3 se enquadra no descrito e esperado para a atividade de perfuração marítima.

II.4.4 Hipótese de não execução do projeto

De acordo com a caracterização da atividade é possível identificar as possíveis contribuições e suas respectivas justificativas para o desenvolvimento da atividade de perfuração na região de estudo. Dentre elas o viés econômico em suas diversas escalas se apresenta como o mais significativo e impactante, onde demanda exigida tanto de equipamentos e infraestrutura quanto investimentos locais temporários, pode alavancar e contribuir desenvolvimento da economia local com a cobrança de Imposto de Serviços sobre a Circulação de Mercadorias e Serviços (ICMS) e Imposto sobre Serviço de Qualquer Natureza (ISSQN), provenientes da aquisição de peças de suporte e manutenção e da contratação de empresas prestadoras de serviços para a execução de atividades necessárias à realização da atividade, tais como transporte e destinação de resíduos.

Em escala nacional é importante ressaltar o crescimento da indústria de petróleo no Brasil, onde a quantidade de barris/dia produzido saltou de um milhão para mais de dois milhões e meio em pouco mais de uma década (ANP, 2014).

Espera-se, conforme as explorações ocorridas nas Bacias do Sudeste Brasileiro, que os blocos BM-PEPB-1 e BM-PEPB-3 tenham considerável capacidade exploratória e, no caso de confirmação dessa reserva de hidrocarboneto, a produção poderá gerar pagamentos de royalties, impostos, participação especial, dentre outros, ampliando seu beneficiamento para a federação.

Dessa maneira, ainda é necessário ressaltar que o tempo previsto e a localização da atividade de perfuração não produzem alterações no âmbito social regional. Além disso, a operação foi planejada para gerar baixos impactos sobre os recursos naturais, pela adoção de plataforma do tipo navio sonda e o uso do posicionamento dinâmico, o que reforça a preocupação com a minimização dos danos e com a qualidade do serviço, tanto no sentido operacional, quanto ambiental.

Nessas circunstâncias, na possibilidade de não realização da atividade de perfuração exploratória nos bloco BM-PEPB-1 e BM-PEPB-3, haveria uma considerável perda econômica e de conhecimento associada ao dinamismo que a perfuração e a possível produção de petróleo podem oferecer ao país.

