

PROJETO BÁSICO COM DETALHAMENTO CONSTRUTIVO DOS MOLHES DE FIXAÇÃO DA BARRA DO RIO ARARANGUÁ, MUNICÍPIO DE ARARANGUÁ (SC)

PRODUTO V DIMENSIONAMENTO E CONCEPÇÃO DA OBRA – ANÁLISE DAS CONDICIONANTES GEO-AMBIENTAIS E DE PROJETO

Preparado para: Prefeitura Municipal de Araranguá

Preparado por: Coastal Planning & Engineering do Brasil

Maio de 2011

		Í	NDICE	DE REV	/ISÕES				
VER		DESC	RIÇÃO	E/OU F	OLHAS	S ATIN	GIDAS		
00	ORIGINAL								
DATA	VER. 00	VER. 01	VER. 02	VER. 03	VER. 04	VER. 05	VER. 06	VER. 07	VER. 08
PROJETO	BR73								
EXECUÇÃO	RB								
VERIFICAÇÃO	BC BC								
APROVAÇÃO	LB	~							~
AS INFORMAÇÕ	DES DESTE DOCUMENTO S	SAO PROPRIEDAD	E DA COASTAI SUA	L PLANNING & A FINALIDADE	ENGINEERING	G DO BRASIL,	SENDO PROIB	IDA A UTILIZA	ÇÃO FORA DA
				DOCUMENTO	TORNA A CÓT				
	A INITKI	JJAO OU KERKU	DOÇAO DESTE	DOCOMENTO	IONINA A CUP	IT INTO CON	INOLADA.		

ÍNDICE GERAL

1.	INTRODUÇÃO	1
2.	CARACTERIZAÇÃO OCEANOGRÁFICA	2
2.1	PADRÕES DE MARÉS E CORRENTES	2
2.2	CLIMA DE ONDAS	13
2.	.2.1 ONDAS AO LARGO	13
2.	.2.2 ONDAS EM ÁGUAS RASAS	20
3.	CARACTERIZAÇÃO HIDROLÓGICA	26
4.	CARACTERIZAÇÃO METEOROLÓGICA	27
4.1	VENTOS	27
5.	CARACTERIZAÇÃO GEOLÓGICA E SEDIMENTOLÓGICA	30
5.1	CÁLCULO DO TRANSPORTE DE SEDIMENTOS AO LONGO DA PRAIA	30
5.2	CARACTERÍSTICAS GEOTÉCNICAS E SEDIMENTOLÓGICAS	33
6.	REFERÊNCIAS BIBLIOGRÁFICAS	35

LISTA DE FIGURAS

Figura 1: Constantes harmônicas de maré para a estação Araranguá – SC. Fonte: FEMAR, 2000
Figura 2: Localização do ponto de medição de marés e correntes, no interior do estuário do Rio Araranguá
Figura 3. Perfilador de correntes (AWAC®) e CTD utilizado na aquisição dos dados (painel esquerdo) e estrutura de fixação (painel direito)
Figura 4: Maré medida e sinal sub-mareal (maré meteorológica) obtido a partir de um filtro do tipo Godin (A242A25)/(24225) – dados medidos entre os dias 24/08/2010 e 08/09/20104
Figura 5: Espectro de amplitudes da maré medida no interior do estuário do Rio Araranguá entre os dias 24/08/2010 e 08/09/2010
Figura 6: Série temporal das componentes u e v das correntes medidas na célula 16
Figura 7: Série temporal das componentes u e v das correntes medidas na célula 57
Figura 8: Série temporal das componentes u e v das correntes medidas na célula 107
Figura 9: Diagrama polar de ocorrência das correntes medidas na célula 1
Figura 10: Diagrama polar de ocorrência das correntes medidas na célula 5
Figura 11: Diagrama polar de ocorrência das correntes medidas na célula 109
Figura 12: Diagrama vetorial progressivo da corrente para célula 19
Figura 13: Diagrama vetorial progressivo da corrente para célula 5
Figura 14: Diagrama vetorial progressivo da corrente para célula 10
Figura 15: Espectro de potência da corrente para célula 1 11
Figura 16: Espectro de potência da corrente para célula 5 11
Figura 17: Espectro de potência da corrente para célula 10
Figura 18: Pontos de extração de dados de ondas (modelos WWIII e WWIII-Multi1) 14
Figura 19: Rosa de ondas elaborada a partir dos dados do WWIII (janeiro de 1997 a outubro de 2010)
Figura 20: Função de distribuição da variável altura significativa de ondas elaborada a partir dos dados do WWIII (janeiro de 1997 a outubro de 2010)

Figura 21: Período de retorno de valores de altura significativa de ondas - regime de
extremos
Figura 22: Pontos de análise localizados em frente aos cabeços dos molhes norte e sul 20
Figura 23: Rosa de ondas, elaborada a partir da série reconstruída em água rasa, no ponto
localizado em frente ao cabeço do molhe norte
Figura 24: Rosa de ondas, elaborada a partir da série reconstruída em água rasa, no ponto
localizado em frente ao cabeço do molhe sul
Figura 25: Função de distribuição da variável altura significativa de ondas, elaborada a partir
da série reconstruída em águas rasas, no ponto localizado em frente ao cabeço do molhe
norte
Figura 26: Função de distribuição da variável altura significativa de ondas, elaborada a partir
da série reconstruída em águas rasas, no ponto localizado em frente ao cabeço do molhe
sul
Figura 27: Período de retorno de valores de altura significativa de ondas - regime de
extremos da série reconstruída em águas rasas, no ponto localizado em frente ao cabeço do
molhe norte
Figura 28: Período de retorno de valores de altura significativa de ondas - regime de
extremos da série reconstruída em águas rasas, no ponto localizado em frente ao cabeço do
molhe sul
Figura 29: Localização das Estações Fluviométricas da ANA
Figura 30: Rosa dos ventos. Dados de reanálise do modelo NCEP (NOAA)
Figura 31: Diagrama stick plot dos valores médios diários de dados de vento (NCEP) para o
período de 1° de janeiro de 2007 a 31 de dezembro de 2007 (convenção vetorial)29
Figura 32: 70 classes e casos de ondas representativos selecionados usando o método do
fluxo de energia
Figura 33: Variação sazonal do transporte residual de sedimentos ao longo da costa para o
período de 1998 a 2008. Valores positivos representam transporte de SW para NE; valores
negativos representam transporte de NE para SW
Figura 34: Variação interanual do transporte residual de sedimentos ao longo da costa para o
período de 1998 a 2008. Valores positivos representam transporte de SW para NE; valores
negativos representam transporte de NE para SW

LISTA DE TABELAS

Tabela 1: Distâncias das células de medição do Aquadopp® em relação ao fundo 5
Tabela 2: Estatística básica de ondas elaborada a partir dos dados do WWIII (janeiro de 1997
a outubro de 2010)
Tabela 3: Diagrama de ocorrência conjunta de $H_s(m)$ e Dir (s) das ondas em águas profundas,
no período de janeiro de 1997 a outubro de 2010, com intervalo de amostragem de 3 horas. 18
Tabela 4: Diagrama de ocorrência conjunta de Hs (m) e Tp (s) das ondas em águas profundas,
no período de janeiro de 1997 a outubro de 2010, com intervalo de amostragem de 3 horas. 19
Tabela 5: Estatística básica de ondas elaborada a partir da série reconstruída em águas rasas
para o ponto localizado em frente ao cabeço do molhe norte
Tabela 6: Estatística básica de ondas elaborada a partir da série reconstruída em águas rasas
para o ponto localizado em frente ao cabeço do molhe sul
Tabela 7: Valores de Hs no ponto de análise para os períodos de retorno de 2, 5, 10, 25, 50,
100 e 200 anos, para a série reconstruída em águas rasas
Tabela 8: Diagrama de ocorrência conjunta de intensidade (m/s) e direção do vento NCEP no
período de 1° de janeiro de 1970 a 31 de dezembro de 2010, com intervalo de amostragem
dt=3h (convenção meteorológica)

1. INTRODUÇÃO

No presente documento são apresentados os aspectos ambientais que condicionam o projeto básico, com detalhamento construtivo, da obra dos molhes de fixação da desembocadura do Rio Araranguá. Ressalta-se que foram consideradas como condicionantes ambientais específicas da obra, aquelas que influenciam no seu projeto e dimensionamento, bem como na manutenção de uma via navegável e na facilitação do escoamento do rio.

2. CARACTERIZAÇÃO OCEANOGRÁFICA

2.1 PADRÕES DE MARÉS E CORRENTES

O regime de maré na região do Rio Araranguá é de micromaré, com amplitude de maré astronômica de aproximadamente 0,9 m (INPH, 1993), havendo aumento apenas em consequência das marés meteorológicas provocadas pela entrada de frentes frias.

A maré na região é caracterizada como semi-diurna, com desigualdades diurnas, com número de forma NF=1,2, definido a partir da seguinte relação entre componentes: (K1+O1)/(M2+S2). Assim, a maré em toda a área de estudo é caracterizada por apresentar duas preamares e duas baixa-mares ao dia.

Valores de amplitude e fase de cada constituinte harmônico foram extraídos de FEMAR, 2000. Na Figura 1, são apresentadas as constantes harmônicas da maré para um ponto situado no interior do Rio Araranguá, nas seguintes coordenadas geográficas (WGS-84): 28° 55,2'S e 49° 20,5'W.

Nome	da Estação :	ARARANGUÁ -	sc								
]	ocalização :	No Trapiche do late Clube de Araranguá									
Organ. F	tesponsável :	DHN									
	Latitude :	28° 55,2 '	28° 55.2' S Longitude : 49° 20.5								
Períod	Analisado :	25/07/63 a 22/08/6	3	Nº de	Componentes	: 37					
Análise	Harmônica :	Método Tidal Liver	Aétodo Tidal Liverpool Institute								
C	lassificação :	Mará de Desigueld	ades Diu	mas							
E-tabalasiman	to do Dontos	II U SO	min	Nivel	Mádio	32 cm					
Estabelecimen		111 50		(7)	a).	acima do NR					
(HWF	ac)			(2)	oj: D	27					
Média das P	reamares		5 cm	Media das	MI HWA	37 cm					
Superiores (winnw):	acima do NR.		meriores	(MLHW).	acima do NR					
Média das Ba	aixa-mares	2	5 cm	Media das l	Saixa-mares	11 cn					
Superiores (MHLW):	acima do NR.		Interiores	(WILLW):	acima do NR.					
	CONSTA	NTES HARM	ÔNICA	S SELEC	IONADAS						
Componentes	Semi-	Fase (g)	Com	ponentes	Semi-	Fase (g)					
	amplitude				amplitude						
	(H) cm	graus (°)			(H) cm	graus (°)					
Sa	-	-		MU ₂	0,3	341					
Ssa	-	-		N ₂	2,5	214					
Mm	13,3	345		NU ₂ 0,5		214					
Mf	-	-		M ₂	6,4	086					
MTM	-	-		L ₂	0,9	176					
Msf	6,9	351		T ₂	0,4	074					
Q1	5,2	053		S ₂	7,3	074					
O ₁	10,4	077		K ₂	2,0	074					
M ₁	0,4	308		MO ₃	0,5	145					
P ₁	2,0	136		M ₃	0,6	176					
K ₁	6,0	136		MK3	0,2	134					
J1	1,2	136		MN₄	0,6	052					
001	1,0	230		M4	1,6	349					
MNS ₂	-	-		SN4	1,1	083					
2N ₂	0,3	342		MS ₄	0,6	035					
Referências de	Nível: RNs	implantadas no patam	ar do trapi	che do Iate Clu	ibe						

Figura 1: Constantes harmônicas de maré para a estação Araranguá - SC. Fonte: FEMAR, 2000.

A elevação do nível do mar torna-se mais pronunciada quando a maré meteorológica coincide com as marés astronômicas de sizígia. A maré meteorológica possui um período de oscilação maior que o da maré astronômica (menor freqüência) e não possui ciclicidade definida (a despeito da maré astronômica). Na costa leste dos continentes situados no hemisfério sul, a elevação do nível do mar devido à maré meteorológica positiva está relacionada à ocorrência de ventos provenientes do quadrante sul/sudoeste, principalmente paralelos à costa, que devido ao efeito de rotação da Terra (Força de Coriolis), geram um transporte de massa de água para o continente. A incidência de ventos do quadrante norte/nordeste resulta em marés meteorológicas negativas. Além da direção e intensidade dos ventos, a amplitude da maré meteorológica é, ainda, influenciada pela pressão atmosférica.

A Coastal Planning & Engineering do Brasil realizou uma campanha de coleta de dados de maré e correntes no interior do estuário do Rio Araranguá, nas seguintes coordenadas geográficas: 28° 55' 23,16" S e 49° 22' 1,96" W (SIRGAS-2000) (Figura 2).

Figura 2: Localização do ponto de medição de marés e correntes, no interior do estuário do Rio Araranguá.

Para a coleta dos dados foi utilizado um perfilador acústico de correntes (ADCP) da marca Nortek, modelo AWAC® 600 kHz, número de série WAV 5432, ilustrado na Figura 3. O ADCP contém, também, sensores de pressão e temperatura. Os equipamentos foram fixados em uma armação piramidal de aço inox, com estacas, cabos e poitas para sustentação e estabilização no fundo.

Figura 3. Perfilador de correntes (AWAC®) e CTD utilizado na aquisição dos dados (painel esquerdo) e estrutura de fixação (painel direito).

A série temporal da maré medida (linha azul) e da maré meteorológica (linha vermelha) é apresentada na Figura 4.

Figura 4: Maré medida e sinal sub-mareal (maré meteorológica) obtido a partir de um filtro do tipo Godin (A242A25)/(24225) – dados medidos entre os dias 24/08/2010 e 08/09/2010.

O espectro de amplitudes é apresentado na Figura 5, abaixo.

Figura 5: Espectro de amplitudes da maré medida no interior do estuário do Rio Araranguá entre os dias 24/08/2010 e 08/09/2010.

No espectro de amplitudes pode-se observar que a maior parte da energia está concentrada na freqüência de 2 ciclos por dia (semi-diurna), seguida pela de 1 ciclo por dia (diurna) e mais baixas freqüências associadas a oscilações infra-mareais.

As correntes foram medidas em 10 células ao longo da coluna d'água. Para caracterização do padrão de circulação estuarino são apresentados, neste relatório, os resultados do processamento dos dados na camada de fundo, meio e superfície (célula 1, célula 5 e célula 10, respectivamente).

As distâncias das células de medição em relação ao fundo são apresentadas na Tabela 1.

Número da Célula (n)	Distância a partir do fundo (m)
Célula 1	1,03
Célula 5	3,03
Célula 10	5,53

Os resultados das medições de correntes são apresentados na forma de séries temporais das componentes $u \, e \, v$, histograma direcional, diagrama vetorial progressivo (DVP) e espectro de

potência de correntes medidas na superfície (célula 1), meio (célula 5) e fundo (célula 10).

O diagrama vetorial progressivo (DVP) foi usado para simular a trajetória resultante dos sucessivos vetores de velocidade oriundos das medições de corrente em cada célula. O DVP corresponde ao deslocamento horizontal que as parcelas de água teriam se o escoamento próximo ao fundeio fosse o mesmo para as sucessivas posições. Neste caso, os pseudo-deslocamentos ao longo de cada uma das duas direções ortogonais (x,y) são calculados a partir dos correspondentes componentes de velocidade (u,v), o que permite obter a pseudo-trajetória de uma parcela de água a partir de sua origem (x_0, y_0) (Emery and Thomson, 2001).

Figura 6: Série temporal das componentes u e v das correntes medidas na célula 1.

Figura 7: Série temporal das componentes u e v das correntes medidas na célula 5.

Figura 8: Série temporal das componentes u e v das correntes medidas na célula 10.

Figura 9: Diagrama polar de ocorrência das correntes medidas na célula 1.

Figura 10: Diagrama polar de ocorrência das correntes medidas na célula 5.

Figura 11: Diagrama polar de ocorrência das correntes medidas na célula 10.

Figura 12: Diagrama vetorial progressivo da corrente para célula 1.

Figura 13: Diagrama vetorial progressivo da corrente para célula 5.

Figura 14: Diagrama vetorial progressivo da corrente para célula 10.

Figura 16: Espectro de potência da corrente para célula 5.

Figura 17: Espectro de potência da corrente para célula 10.

Nas células de fundo a intensidade das correntes é menor e a direção é preferencialmente de sudeste para noroeste (entrando no estuário). Ao longo da coluna d'água as correntes de noroeste para sudeste (em direção ao mar) tornam-se gradativamente mais frequentes e intensas (Figura 9 a Figura 11).

Na célula1, próxima ao fundo, a direção das correntes residuais é de sudeste para nordeste. Na célula 5 as correntes residuais têm baixa intensidade e não possuem uma direção bem definida. Na célula 10 (superfície) a corrente residual possui direção de noroeste para sudoeste.

2.2 CLIMA DE ONDAS

2.2.1 ONDAS AO LARGO

Para caracterizar o clima de ondas em águas profundas, na região sudeste do Estado de Santa Catarina, foram analisados aproximadamente 13 anos de dados de onda (série temporal de janeiro de 1997 a outubro de 2010), em um ponto localizado próximo à quebra da plataforma continental, a leste de Araranguá-SC. Esses dados são provenientes do modelo global WavewatchIII - WWIII (Tolman 1997, 1999), um modelo espectral de terceira geração que simula processos de geração/propagação de ondas em águas profundas, com base em dados meteorológicos de reanálise. As simulações foram conduzidas em escala global pela NOAA/NCEP (National Ocean and Atmosphere Administration/National Centers of Environmental Prediction) e estão disponíveis no website da agência no formato grib (código binário). A transformação dos dados de grib para ASCII foram feitas utilizando programas desenvolvidos pela empresa Coastal Planning & Engineering (CPE). A série temporal apresenta valores de altura significativa (Hs), período de pico (Tp) e direção predominante de propagação a cada três horas. A série de dados é composta pela concatenação de dados extraídos do modelo WWIII entre 1997 e 2005, com resolução espacial de 1° x 1,25° (latitude x longitude), e do modelo WWIII - Multi1, entre 2005 e 2010, com resolução espacial de 0,5° x 0,5°. Os dados foram extraídos para dois pontos (Figura 18), localizados nas seguintes coordenadas geográficas:

- 29° S, 47,75° W para o modelo WWIII
- 29° S, 47,50° W para o modelo WWIII Multi1

Figura 18: Pontos de extração de dados de ondas (modelos WWIII e WWIII-Multi1).

Na Figura 19, é apresentada a rosa de ondas gerada a partir da série temporal de dados de ondas em águas profundas. As ondulações mais frequentes são provenientes de S, representando cerca de 20 % das ocorrências. Estados de mar mais energéticos, com alturas significativas de onda maiores que 2 m, provêm com maior frequência das direções SSW e S.

A função de distribuição dos valores de H_s em águas profundas é apresentada na Figura 20. A partir da função de distribuição, é obtida a probabilidade de superação de determinado valor de H_s , obtida a partir da seguinte relação:

$$P(H_s \ge H_{si}) = 1 - F(x) \tag{1}$$

Conforme apresentado, estados de mar com alturas significativas de onda maiores que 1,54 m ocorrem em 75% do tempo; alturas significativas de onda com 1,95 m são superadas 50% do tempo e alturas significativas de onda com 2,5 m são superadas em 25 % do tempo.

Figura 19: Rosa de ondas elaborada a partir dos dados do WWIII (janeiro de 1997 a outubro de 2010).

Figura 20: Função de distribuição da variável altura significativa de ondas elaborada a partir dos dados do WWIII (janeiro de 1997 a outubro de 2010).

Na Tabela 2, é apresentada a estatística básica da variável H_s utilizando as direções de pico associadas. Nesta, é apresentada a probabilidade de ocorrência de cada banda de direção e, para cada uma, a altura significativa de onda superada em 50 %, 90 % e 99 % do tempo, bem como a altura significativa de onda superada 12 horas ao ano, correspondente à tempestade anual.

Direções	Prob. Direção (%)	Hs _{50%}	Hs _{90%}	Hs99%	Hs ₁₂
Ν	2,41	1,70	2,28	2,73	2,99
NNE	3,87	1,78	2,42	3,17	3,49
NE	7,22	1,83	2,78	3,62	4,46
ENE	15,02	1,69	2,64	3,61	4,21
Ε	10,27	1,73	2,67	3,92	4,52
ESE	8,57	1,82	2,90	3,99	5,01
SE	7,42	1,93	3,04	4,58	5,87
SSE	7,89	1,96	3,04	4,31	4,74
S	20,18	2,17	3,37	4,73	5,52
SSW	13,09	2,37	3,82	5,23	5,98
SW	3,24	2,81	4,19	5,74	6,65
WSW	0,48	2,69	3,83	5,28	5,58
W	0,03	2,09	2,59	2,69	2,69
WNW	0,02	1,87	2,11	2,12	2,12
NW	0,02	1,18	1,36	1,40	1,40
NNW	0,29	1,59	2,12	2,52	2,53

Tabela 2: Estatística básica de ondas	elaborada a partir dos	s dados do	WWIII (janeiro	de 1997	a
	outubro de 2010).				

O regime de extremos é uma função de distribuição dos valores de extremos da altura significativa de onda. Essa distribuição relaciona os valores máximos previstos desta variável com a probabilidade de que determinados valores não sejam superados em um ano. Esta probabilidade também pode ser expressa em período de retorno ou de recorrência. O período de retorno (T), definido para um valor determinado de altura significativa de onda (H_{si}), é o intervalo médio de tempo em que o valor de H_{si} é superado uma única vez. A relação entre a probabilidade de não-superação em um ano e o período de retorno (medido em anos) pode ser expressa como:

$$T(Hsi) = 1/[1 - P(Hs \le Hsi)]$$

O método utilizado para estimar as alturas de ondas para cada período de retorno (dado em anos) foi o de máximos anuais ajustados a uma função do tipo Gumbel (Figura 21).

Figura 21: Período de retorno de valores de altura significativa de ondas - regime de extremos.

Na Tabela 3 e Tabela 4, são apresentados, respectivamente, o diagrama de ocorrência conjunta H_s e Dir_p e o diagrama de ocorrência conjunta de H_s e T_p .

	Ν	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	Total	Porc.	Dir Med
0 - 0,5			4	2	2												8	0,02	71
0,5 - 1	32	54	102	300	160	72	58	116	122	27	9	3			3	15	1073	2,69	124
1 - 1,5	267	373	634	1829	1183	834	576	645	1045	520	66	16	2	1	5	26	8022	20,09	141
1,5 - 2	444	633	1056	2019	1406	1130	963	909	2072	1109	183	20	3	4		58	12009	30,07	196
2 - 2,5	195	370	607	1060	793	787	689	735	2142	1233	227	42	4	1		13	8898	22,28	195
2,5 - 3	23	94	320	515	329	307	362	412	1286	894	268	41	2			2	4855	12,16	200
3 - 3,5	1	20	130	204	130	203	165	193	770	641	210	38					2705	6,77	203
3,5 - 4		2	19	45	61	55	72	82	350	388	165	17					1256	3,14	210
4 - 4,5			13	25	29	21	44	44	150	233	77	7					643	1,61	209
4,5 - 5			3		5	8	12	15	83	95	47	4					272	0,68	213
5 - 5,5					1	3	8		31	56	21	2					122	0,31	210
5,5-6						2	9		9	24	12	1					57	0,14	211
6 - 6,5									2	5	5						12	0,03	222
6,5 - 7							2				2						4	0,01	216
7 - 7,5							1										1	0,00	141
Total	962	1546	2888	5999	4099	3422	2961	3151	8062	5225	1292	191	11	6	8	114	39937		
Porc,	2,41	3,87	7,23	15,02	10,26	8,57	7,41	7,89	20,19	13,08	3,24	0,48	0,03	0,02	0,02	0,29			
Hs, Med,	1,98	2,12	2,27	2,19	2,21	2,35	2,44	2,55	2,86	3,19	3,74	3,56	2,44	1,92	1,25	1,86			
Hs Max	4,29	3,56	4,7	4,44	5,15	5,63	7,39	4,96	6,14	6,26	6,84	5,58	2,69	2,12	1,4	2,53			

Tabela 3: Diagrama de ocorrência conjunta de H_s (m) e Dir (s) das ondas em águas profundas, no período de janeiro de 1997 a outubro de 2010, com intervalo de amostragem de 3 horas.

	2 - 4	4 - 6	6 - 8	8 - 10	10 -12	12 - 14	14 - 16	16 - 18	18 - 20	Total	Porc.	Tp med
0 - 0.5		8								8	0.02	4
0.5 - 1	66	288	467	160	61	24	7			1073	2.69	8
1 - 1.5	113	1642	3661	1768	638	161	33	6		8022	20.09	8
1.5 - 2	5	2433	4247	3589	1377	302	48	5	3	12009	30.07	9
2 - 2.5		919	2783	2817	1861	443	70	4	1	8898	22.28	11
2.5 - 3		108	1544	1543	1261	356	41	2		4855	12.16	11
3 - 3.5		3	663	846	799	360	33	1		2705	6.77	12
3.5 - 4			161	462	360	251	22			1256	3.14	12
4 - 4.5			19	282	241	90	11			643	1.61	11
4.5 - 5			2	105	103	57	5			272	0.68	12
5 - 5.5				42	55	25				122	0.31	12
5.5 - 6				12	33	9	3			57	0.14	11
6 - 6.5				1	9	2				12	0.03	11
6.5 - 7					4					4	0.01	11
7 - 7.5					1					1	0	11
Total	184	5401	13547	11627	6803	2080	273	18	4	39937		
Porc.	0.46	13.52	33.92	29.11	17.03	5.21	0.68	0.05	0.01			
Hs. Med.	1.2	1.94	2.34	2.59	3	3.54	3.14	2.34	1.91			
Hs Max	1.65	3.38	4.73	6.45	7.39	6.14	5.9	3.32	2.06			

Tabela 4: Diagrama de ocorrência conjunta de Hs (m) e Tp (s) das ondas em águas profundas, no período de janeiro de 1997 a outubro de 2010, com intervalo de amostragem de 3 horas.

2.2.2 ONDAS EM ÁGUAS RASAS

A caracterização das ondas incidentes é apresentada para dois pontos de análise localizados em frente aos cabeços dos molhes norte e sul (coordenadas UTM: 661897,60 L / 6798594,26 S e 662013,12 E / 6798380,74 S – zona 22 S – WGS-84), em profundidades de 4,5 m e 6,5 m, respectivamente (Figura 22). A metodologia completa para geração dos dados em águas rasas é apresentada em relatório separado (PRODUTO I - MODELAGEM NUMÉRICA DE ONDAS E ANÁLISE DE EXTREMOS).

Figura 22: Pontos de análise localizados em frente aos cabeços dos molhes norte e sul.

Foram geradas as rosas de ondas (Figura 23 e Figura 24), função de distribuição de H_s (Figura 25 e Figura 26), tabela de probabilidades direcionais (Tabela 5 e Tabela 6) e gráfico de altura de onda para cada período de retorno (Figura 27 e Figura 28).

O regime de extremos foi calculado pelo método de máximos anuais ajustados a uma função do tipo Gumbel. Os valores de H_s para o período de retorno de 2, 5, 10, 25, 50, 100 e 200 anos são apresentados na Tabela 7.

Figura 23: Rosa de ondas, elaborada a partir da série reconstruída em água rasa, no ponto localizado em frente ao cabeço do molhe norte.

Figura 24: Rosa de ondas, elaborada a partir da série reconstruída em água rasa, no ponto localizado em frente ao cabeço do molhe sul.

Devido à proteção que o molhe sul gera no molhe norte é observado que o último recebe ondas de menor energia.

Figura 25: Função de distribuição da variável altura significativa de ondas, elaborada a partir da série reconstruída em águas rasas, no ponto localizado em frente ao cabeço do molhe norte.

Figura 26: Função de distribuição da variável altura significativa de ondas, elaborada a partir da série reconstruída em águas rasas, no ponto localizado em frente ao cabeço do molhe sul.

A função de distribuição de H_s para o molhe norte indica que em 25% do tempo são encontrados estados de mar com altura significativa menor que 0,39 m. Em 50% do tempo as ondas não superam 0,64 m e em 75 % do tempo a região está exposta a ondas com altura significativa menores que 0,99 m. A função de distribuição de H_s para o molhe sul indica que em 25% do tempo são encontrados estados de mar com altura significativa menor que 0,71

m. Em 50% do tempo as ondas não superam 1,07 m e em 75 % do tempo a região está exposta a ondas com altura significativa menores que 1,44 m.

Direções	Prob. Direção (%)	Hs _{50%}	Hs90%	Hs99%	Hs_{12}
N	0,0000	0,0000	0,0000	0,0000	0,0000
NNE	0,0000	0,0000	0,0000	0,0000	0,0000
NE	0,0000	0,0000	0,0000	0,0000	0,0000
ENE	0,0001	0,1028	0,1135	0,1135	0,1135
Ε	0,0861	0,2866	0,4780	0,5605	0,5903
ESE	0,3258	0,8843	1,4498	1,9728	2,3949
SE	0,1903	1,0609	1,7514	2,3254	2,4875
SSE	0,3906	0,4837	0,8402	1,2713	1,5832
S	0,0071	0,0872	0,1216	0,1455	0,1505
SSW	0,0000	0,0000	0,0000	0,0000	0,0000
SW	0,0000	0,0000	0,0000	0,0000	0,0000
WSW	0,0000	0,0000	0,0000	0,0000	0,0000
W	0,0000	0,0000	0,0000	0,0000	0,0000
WNW	0,0000	0,0000	0,0000	0,0000	0,0000
NW	0,0000	0,0000	0,0000	0,0000	0,0000
NNW	0,0000	0,0000	0,0000	0,0000	0,0000

Tabela 5: Estatística básica de ondas elaborada a partir da série reconstruída em águas rasas para o ponto localizado em frente ao cabeço do molhe norte.

Tabela	6: Estat	ística	básica	de (ondas	elabora	da a	a partir	da	série	reconstru	uída	em	águas	rasas	para	0
ponto 1	localizad	o em f	frente a	io ca	abeço	do molh	e su	ıl.									

Direções	Prob. Direção (%)	Hs _{50%}	Hs _{90%}	Hs _{99%}	Hs ₁₂
Ν	0,0000	0,0000	0,0000	0,0000	0,0000
NNE	0,0000	0,0000	0,0000	0,0000	0,0000
NE	0,0000	0,0000	0,0000	0,0000	0,0000
ENE	0,0031	0,1623	0,2005	0,2422	0,2613
Ε	0,2361	0,6087	0,9780	1,2386	1,3476
ESE	0,1957	1,2349	1,8263	2,6420	3,0856
SE	0,1524	1,4673	2,3478	3,3049	3,6091
SSE	0,3647	1,2260	1,8216	2,4889	2,8982
S	0,0479	0,5960	0,8815	1,0228	1,0527
SSW	0,0001	0,2667	0,2996	0,2996	0,2996
SW	0,0000	0,0000	0,0000	0,0000	0,0000
WSW	0,0000	0,0000	0,0000	0,0000	0,0000
W	0,0000	0,0000	0,0000	0,0000	0,0000
WNW	0,0000	0,0000	0,0000	0,0000	0,0000
NW	0,0000	0,0000	0,0000	0,0000	0,0000
NNW	0,0000	0,0000	0,0000	0,0000	0,0000

Figura 27: Período de retorno de valores de altura significativa de ondas – regime de extremos da série reconstruída em águas rasas, no ponto localizado em frente ao cabeço do molhe norte.

Figura 28: Período de retorno de valores de altura significativa de ondas – regime de extremos da série reconstruída em águas rasas, no ponto localizado em frente ao cabeço do molhe sul.

Na Tabela 7 são apresentadas as alturas significativas de ondas com período de retorno de 2, 5, 10, 25, 50, 100 e 200 anos para ambos os molhes.

Período de Retorno	Hs (m) - Molhe Sul	Hs (m) - Molhe Norte										
2	3,37	2,31										
5	3,59	2,56										
10	3,77	2,74										
25	3,98	2,99										
50	4,15	3,18										
100	4,32	3,36										
200	4,48	3,55										

Tabela 7: Valores de Hs no ponto de análise para os períodos de retorno de 2, 5, 10, 25, 50, 100 e 200 anos, para a série reconstruída em águas rasas.

3. CARACTERIZAÇÃO HIDROLÓGICA

A descarga fluvial do Rio Araranguá é monitorada diariamente em uma série de estações fluviométricas da Agência Nacional das Águas (ANA), sendo que os registros históricos apontam grande variabilidade temporal e baixo padrão sazonal. As estações situadas mais a jusante, sem influência da maré, são: a Estação de Taquaruçu (Rio Itoupava), que fornece uma vazão média mensal de 33,9 m³/s (dados entre 1943 e 2004), com um pico histórico de 1222 m³/s; a Estação de Forquilhinha (Rio Mãe Luzia), com vazão média mensal de 18,2 m³/s (dados entre 1942 e 2004), com um pico histórico de 1103 m³/s e a Estação da Foz do Rio Manoel Alves (Rio Manoel Alves), vazão média mensal de 12,7 m³/s (dados entre 1977 e 2004), com um pico histórico de 1425 m³/s. O Rio Manoel Alves desemboca no Rio Mãe Luzia, este que converge junto ao Rio Itoupava e dá origem ao Rio Araranguá.

Figura 29: Localização das Estações Fluviométricas da ANA.

4. CARACTERIZAÇÃO METEOROLÓGICA

4.1 VENTOS

Os dados de vento analisados são provenientes do programa de reanálise do NCEP/NCAR/NOAA. Nesse programa são geradas bases de dados globais através da utilização combinada de resultados de modelos numéricos e dados observacionais provenientes de diversas fontes, tais como navios em rota, aviões, estações meteorológicas, satélites, entre outras. Foi analisada uma série extraída nas coordenadas geográficas (WGS-84): 25,7° S e 46,8° W, para o período compreendido entre os anos de 1970 e 2010. A rosa dos ventos elaborada a partir da série temporal de dados do NCEP é apresentada na Figura 30.

Figura 30: Rosa dos ventos. Dados de reanálise do modelo NCEP (NOAA).

O diagrama de distribuição conjunta de intensidade e direção dos ventos NCEP é apresentado na Tabela 8.

	Ν	NNE	NE	ENE	E	ESE	SE	SSE	S	SSW	SW	WSW	W	WNW	NW	NNW	Total	Porc.	Dir.med.
0.0- 1.0	66	78	66	80	51	58	56	65	41	54	52	57	52	53	53	71	953	1.6	41
1.0- 2.0	186	210	188	200	151	216	172	171	146	139	127	132	103	161	157	186	2645	4.5	56
2.0- 3.0	322	396	354	388	347	339	315	319	266	229	184	182	164	222	227	333	4587	7.7	66
3.0- 4.0	606	639	632	647	517	509	450	462	396	320	245	234	206	225	322	438	6848	11.6	64
4.0- 5.0	843	964	868	811	680	587	539	587	524	395	282	235	218	247	331	538	8649	14.6	61
5.0- 6.0	976	1207	1126	864	723	567	503	526	521	514	360	266	211	229	308	546	9447	15.9	55
6.0- 7.0	922	1270	1088	835	570	396	369	436	483	458	386	267	197	164	212	455	8508	14.4	49
7.0- 8.0	706	1118	958	584	398	271	265	320	424	409	391	330	161	126	139	284	6884	11.6	48
8.0- 9.0	389	859	683	384	225	136	148	204	291	333	392	279	158	83	69	171	4804	8.1	44
9.0-10.0	187	464	400	208	102	62	57	107	184	216	291	254	136	57	41	67	2833	4.8	28
10.0-11.0	54	194	219	85	39	24	30	55	101	120	210	217	114	32	10	19	1523	2.6	246
11.0-12.0	15	69	77	32	8	9	7	25	44	80	116	152	114	26	10	7	791	1.3	245
12.0-13.0	6	19	27	13	6	5	4	9	14	25	58	118	79	17	3	3	406	0.7	249
13.0-14.0	3	8	5	1		1	2	5	10	10	24	76	54	6	1		206	0.3	248
14.0-15.0			3		1		2	1	2	4	10	46	34	4	1	2	110	0.2	252
15.0-16.0			1				1		2	1	3	8	22	10	1		49	0.1	264
16.0-17.0								1			1	8	8	3			21	0	260
17.0-18.0												2	5	1			8	0	264
18.0-19.0												1	2		1		4	0	271
Total	5281	7495	6695	5132	3818	3180	2920	3293	3449	3307	3132	2864	2038	1666	1886	3120	59276		
Porc.	8.9	12.6	11.3	8.7	6.4	5.4	4.9	5.6	5.8	5.6	5.3	4.8	3.4	2.8	3.2	5.3			
Vel.med.	5.6	6.1	6.1	5.5	5.2	4.9	5	5.2	5.7	6.1	6.7	7.1	6.8	5	4.7	5			
Vel.max.	14	13.8	15.3	13.5	14.6	13.2	15.7	16.9	15.1	15	16	18.2	18.9	17.3	18	14.2			
Percts(0,9)	8	9	9	8	7	7	7	8	9	9	10	11	11.7	8	7	7			

Tabela 8: Diagrama de ocorrência conjunta de intensidade (m/s) e direção do vento NCEP no período de 1° de janeiro de 1970 a 31 de dezembro de 2010, com intervalo de amostragem dt=3h (convenção meteorológica).

Os ventos predominantes são provenientes do quadrante nordeste, em especial a direção nornordeste (NNE), com velocidades entre 5 e 7 m/s. Os ventos mais intensos (maiores velocidades) são provenientes de sudoeste e oeste, com intensidades de até 19 m/s.

Um diagrama *stick plot* do vento NCEP, para o ano de 2007, é apresentado na Figura 31. Como pode ser observado, há uma maior predominância de ventos provenientes de NE nos meses de verão (dezembro, janeiro e fevereiro) e maior freqüência de entradas de sistemas frontais nos meses de inverno (junho, julho e agosto), caracterizados pelos ventos provenientes do quadrante S.

VENTO ARARANGUÁ 2007

Figura 31: Diagrama stick plot dos valores médios diários de dados de vento (NCEP) para o período de 1° de janeiro de 2007 a 31 de dezembro de 2007 (convenção vetorial).

5. CARACTERIZAÇÃO GEOLÓGICA E SEDIMENTOLÓGICA

5.1 CÁLCULO DO TRANSPORTE DE SEDIMENTOS AO LONGO DA PRAIA

A fim de quantificar a variância sazonal e interanual da magnitude de transporte de sedimentos ao longo da costa foram selecionados e propagados 70 casos de ondas representativos do clima de ondas da região.

Inicialmente foram separados da série temporal total os casos de ondas com direções de propagação entre 25 e 225 graus, ondas com diferentes direções se propagam em direção a mar aberto, não sendo relevantes para processos costeiros. Na Figura 32 são apresentados os casos selecionados da série temporal de dados de ondas (pontos azuis), as 70 classes selecionadas (linhas) e os casos representativos de cada classe (pontos vermelhos).

Figura 32: 70 classes e casos de ondas representativos selecionados usando o método do fluxo de energia.

A seleção das classes de ondas foi feita de modo que o somatório do fluxo de energia dos casos de onda encontrados dentro de cada classe seja aproximadamente o mesmo. Assim "regiões" do clima de ondas que possuem maior energia (com maior importância para o transporte) possuem classes menores, sendo mais detalhadamente aplicadas no modelo.

A propagação dos 70 casos de ondas selecionados foi feita a partir de águas profundas, desde a quebra da plataforma continental, até a área de estudo.

Cada caso de onda propagado gerou um campo espacial de transporte de sedimentos ao longo

do domínio de modelagem. Este campo foi posteriormente ponderado pela freqüência de ocorrência das classes associadas a cada caso. A soma vetorial dos campos ponderados pela frequência gera a distribuição do transporte total ocorrido ao longo do período analisado. A frequência de ocorrência de cada classe de onda varia ao longo dos anos e meses, variando da mesma forma o campo final de transporte resultante de cada ano e mês.

Dos campos de transporte de sedimentos foi integrado um perfil transversal a praia localizado na região onde se pretende instalar a obra, sendo obtido o valor total de transporte ao longo do perfil para os períodos analisados. O transporte residual ao longo da costa para os onze anos analisados é de aproximadamente 550.000 m³/ano, de sudoeste para nordeste. Foi adotado como positivo o transporte de sul para norte e como negativo o transporte de norte para sul.

A variação sazonal e interanual do transporte pode ser observada na Figura 33 e na Figura 34.

Figura 33: Variação sazonal do transporte residual de sedimentos ao longo da costa para o período de 1998 a 2008. Valores positivos representam transporte de SW para NE; valores negativos representam transporte de NE para SW.

Figura 34: Variação interanual do transporte residual de sedimentos ao longo da costa para o período de 1998 a 2008. Valores positivos representam transporte de SW para NE; valores negativos representam transporte de NE para SW.

A oscilação do transporte ao longo dos meses do ano e ao longo dos anos tem relação direta com variações nas características das ondas nos períodos analisados. Na Figura 33 fica evidente a predominância de transporte no sentido de SW para NE, explicada pela maior intensidade dos sistemas frontais que passam pela região durante o outono e inverno, com ventos e ondas intensos vindos do quadrante sul. Durante a primavera e o verão, é observada uma redução da magnitude do transporte residual de sedimentos ao longo da costa e eventual inversão do sentido da deriva. Este padrão, também relacionado ao clima de ondas, é explicado pela redução da intensidade dos sistemas frontais, aumentando a influência das ondas vindas de leste/nordeste. A frequencia e intensidade dos sistemas frontais também variam entre os anos, podendo-se observar marcantes variações interanuais do transporte residual de sedimentos.

A oscilação interanual do transporte de sedimentos (Figura 34) é marcante, havendo inclusive inversão da deriva residual de sedimentos nos anos de 1998, 2001, 2004 e 2008. Enquanto o ano de 2003 apresenta um valor extremo de transporte residual ao longo da costa (cerca de 2.600.000 m³/ano). Esta variação é associada às variabilidades das características do clima de ondas da região.

Essas simulações indicaram que o transporte residual de sedimentos ao longo da costa é de

SW-NE (sul para norte), podendo haver inversões anuais ou até mesmo sazonais. De acordo com resultados destas simulações recomenda-se o transpasse de sedimentos do sul dos molhes para o norte dos molhes, a fim de minimizar ou eliminar efeitos negativos de erosão nas praias ao norte dos molhes (Barra Velha e Rincão). O transporte residual de sedimentos durante um período de 10 anos é de 550.000 m³/ano, no entanto com alta variabilidade interanual (Figura 34). Portanto, recomenda-se o transpasse de aproximadamente 500.000 m³/ano +/-25% de acordo com variabilidade anual do clima de ondas. Este transpasse deve ser, preferencialmente, executado logo após os meses de verão (março) e se estender até o inicio do inverno (maio). Os sedimentos transpassados devem ser depositados a uma distância de pelo menos 800 m a NE dos molhes, para garantir seu transporte ao longo da costa e evitar que os mesmos retornem ao canal de navegação.

5.2 CARACTERÍSTICAS GEOTÉCNICAS E SEDIMENTOLÓGICAS

A caracterização geotécnica e sedimentológica foi realizada a partir dos resultados das sondagens realizadas na região de assentamento das estruturas através dos métodos SPT (em terra) e *Jet Probe*, em água. Detalhes sobre os métodos de execução e resultados de cada sondagem são apresentados em relatórios independentes (PRODUTO III - INVESTIGAÇÕES GEOTÉCNICAS – SONDAGEM DE SIMPLES RECONHECIMENTO POR SPT e PRODUTO IV: INVESTIGAÇÕES GEOTÉCNICAS – SONDAGEM EM MAR ABERTO POR JET PROBE).

Os resultados das sondagens por SPT apontaram para camadas de areia fina compacta a medianamente compacta da superfície até profundidades que variaram de 4 m a 7 m. Nesta camada, o N sempre esteve acima de 30 golpes.

Nas camadas inferiores, foi detectada uma transição, esbelta, caracterizada por uma areia pouco argilosa medianamente compacta com N variando entre os 15 golpes. Abaixo dessa camada, a profundidades médias de 8,5 m até os 10 m investigados, foi evidenciada em todos os furos a ocorrência de uma argila mole, com N de 2 golpes.

Nas profundidades abaixo de 7 m, quando o perfil transita da areia fina compacta para a argila mole, também foram evidenciados cascalhos.

Os resultados das sondagens por *Jet Probe*, realizadas em água, mostraram que há uma homogeneidade no pacote sedimentar onde será alocado o molhe de fixação da desembocadura do Rio Araranguá. Os sedimentos foram classificados como areia fina, sendo

que em todos os furos realizados houve penetração de 6 m de profundidade. Não foi relatada pelos mergulhadores qualquer dificuldade de penetração do tubo.

A natureza arenosa e a resistència à penetração do material amostrado em camadas que vão além dos limites de assentamento dos molhes, o caracteriza como sendo de capacidade portante das estruturas propostas, não sendo necessário qualquer procedimento adicional para aumento dessa capacidade, tal como substituição do terreno, precarga, vibração profunda, compactação dinâmica, injeções ou outros tipos de melhora

6. REFERÊNCIAS BIBLIOGRÁFICAS

EMERY, W. J. E R. E. THOMSON. 2001: Data analysis methods in physical oceanography. Elsevier, Amsterdam, 638 p.

INPH – Instituto de Pesquisa Hidroviária. (1993). Projeto de Abertura e Fixação da Barra do Rio Araranguá-SC. Vol 1.

TOLMAN, H. L.; 1997. User manual and system documentation of WAVEWATCH-III version 1.15. *NOAA/NWS/NCEP/OMB Technical Note 151*, 97 pp.

TOLMAN, H. L.; 1999a. User manual and system documentation of WAVEWATCH-III version 1.18. *NOAA/NWS/NCEP/OMB Technical Note 166*, 110 pp.

FEMAR. Catálago das Estações Maregráficas Brasileiras, 2000. 281 p.