MEMORIAL DE CÁLCULO DA DEMANDA DE ÁGUA PARA INSTALAÇÃO E OPERAÇÃO DO ESTALEIRO EISA ALAGOAS

O presente memorial tem como objetivo apresentar a demanda de água a ser utilizada durante a fase de construção do estaleiro, bem como em sua fase de operação. Utilizaram-se como parâmetros as Normas NB-92/80 e NBR-5626, além das recomendações der *Cleder, Helio em sua obra, Instalações Hidráulicas 5ª Ed.*

CÁLCULO DE DEMANDA DE ÁGUA

- FASE DE INSTALAÇÃO

CONSUMIDORES	POPULAÇÃO	FATOR DE CONSUMO(L/dia)	DIAS	TOTAL (m³)
Canteiro	5000	80	30	2400
Central de concreto	2	24000	30	1440
TOTAL				3840

Consumo de Água:

Consumo = população x fator de consumo x quantidade de dias

Canteiro = $5000 \times 80 \times 30 = 12.000.000 \text{ L/mês} = 12000 \text{ m}^3/\text{ mês}$. Central de Concreto = $2 \times 24000 \times 30 = 1.440.000 \text{ L/mês} = 1440 \text{ m}^3/\text{ mês}$.

 $TOTAL = 13440 \text{ m}^3/\text{ mês. (I)}$

- FASE DE OPERAÇÃO

CONSUMIDORES	POPULAÇÃO	FATOR DE CONSUMO(L/dia)	DIAS	TOTAL (m³)
Produção	4500	70	30	8400
Administração	1000	50	30	1500
TOTAL				9900

Consumo de Água:

Consumo = população x fator de consumo x quantidade de dias

Produção = $4500 \times 70 \times 30 = 9.450.000 \text{ L/mês} = 9450 \text{ m}^3/\text{ mês}$. Administração = $1000 \times 50 \times 30 = 1.500.000 \text{ L/mês} = 1500 \text{ m}^3/\text{ mês}$.

 $TOTAL = 10950 \text{ m}^3/\text{ mês. (II)}$

CÁLCULO DE ÁGUA INDUSTRIAL

O consumo de água industrial equivale a 20% do consumo de água potável.

Temos então:

Consumo de água industrial = consumo de água potável x 20%

Consumo de água industrial = 10950 x 0,2 = 2190 m³/mês.

TOTAL = 2190 m³/mês. (III)

CÁLCULO DE CAPTAÇÃO DE ÁGUAS PLUVIAIS

ÁREA DE CAPTAÇÃO	(m²)	INDICE ANUAL PLUVIOMÉTRICO DE CORURIPE
ÁREA INDUSTRIAL COBERTA 237.060,00		1413.4 mm³
ÁREA PREDIAL	55.300	1413,4 111111

CAPACIDADE DE ARMAZENAMENTO DAS CISTERNAS

CISTERNAS (50X20X2)	CAPACIDADE POR UNIDADE	TOTAL
8	2.000 m ³	16.000 m³

CÁLCULO DE ACÚMULO DE ÁGUAS PLUVIAIS COM BASE NA PRECIPITAÇÃO MÉDIA ANUAL DO LOCAL

Referência: PDRH - Plano Diretor de Recursos Hídricos de Alagoas.

Precipitação média anual em Coruripe = 1.413, 4 mm, conforme apresentado no PDRH – Plano Diretor de Recursos Hídricos de Alagoas.

Fazendo 1.413,4/12 temos, 117,8 mm/h - média no mês.

CÁLCULO DO VOLUME DE ÁGUAS PLUVIAIS X ÁREA COBERTA

Segundo a NB-611, a fórmula para vazão de projeto é Q= I X A / 60

Q = I/min I = mm/h $A = m^2$

Fazendo a captação por área temos:

- área coberta predial = 55.300m²

Q = 117,8 x 55.300 / 60 Q = 108.572,3 l/min Q = 108,6 m³/min

- área coberta industrial = 237.060 m²

Q = 117,8 x 237.060 / 60 Q = 465.427,8 l/min Q = 465,4 m³/min

CONCLUSÃO:

Somando as vazões de precipitação de 1 minuto da média anual de Coruripe, tem-se:

- Área Predial: 108,6 m3;

- Área Industrial: 465,4 m³;

- Total = $108.6 \text{ m}^3 + 465.4 \text{ m}^3 = 574 \text{ m}^3 \text{ em } 01 \text{ (um) minuto.}$

Conclui-se que, em um período muito pequeno de precipitação, será gerado um grande volume d'água, o que demonstra uma excelente fonte de recurso hídrico que poderá atender plenamente a demanda de água industrial. O volume excedente deverá ser canalizado para a rede de águas pluviais para seu devido destino.

Devido à extensa área coberta do estaleiro se recomenda ainda o acréscimo de cisterna para aumento da capacidade de armazenamento, com cisternas dedicadas às redes de incêndio, lavagem de banheiros, descargas, jardinagem e nos processos industriais.