

#### **EMPRESA RESPONSÁVEL POR ESTE RELATÓRIO**

| Razão social: MINERAÇAO RIO DO NORTE S.A.  Porto Trombetas - Oriximiná / PA – Rua Rio Jarí s/n  CNPJ 049322160001-46 | http: www.mrn.com.br                                                       |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--|--|--|--|
| REPRESENTANTE LEGAL Paulo Ayres Muselli de Mendonça                                                                  | Gerente de Qualidade, Segurança, Meio Ambiente e<br>Relações Comunitárias. |  |  |  |  |
| GERENTE DEPT. DE CONTROLE AMBIENTAL<br>Eduardo Simões da Silva                                                       | Gerente Departamento de Controle Ambiental                                 |  |  |  |  |
| ASSESSORA DE LICENCIAMENTO AMBIENTAL<br>Milena Moreira                                                               | Assessora de Licenciamento Ambiental                                       |  |  |  |  |

| ESTA EQUIPE PARTICIPOU DA ELABORAÇÃO DESTE DOCUMENTO<br>E RESPONSABILIZA-SE TECNICAMENTE POR SUAS RESPECTIVAS ÁREAS |                                                                         |                                     |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------|--|--|--|--|--|--|
| TÉCNICO                                                                                                             | RESPONSABILIDADE<br>NO PROJETO                                          |                                     |  |  |  |  |  |  |
|                                                                                                                     |                                                                         |                                     |  |  |  |  |  |  |
| Jeferson dos Santos                                                                                                 | Químico Bacharel<br>CRQ PA 14100355<br>CTF IBAMA: 5197941<br>CTDAM 5312 | Elaboração e coordenação do projeto |  |  |  |  |  |  |

# CARACTERIZAÇÃO DO RUÍDO AMBIENTAL DAS OPERAÇÕES NO PLATÔ MONTE BRANCO



# SUMÁRIO

| CAPÍTULO 1. INTRODUÇÃO                                 | 3  |
|--------------------------------------------------------|----|
| CAPÍTULO 2. ÁREA DE ESTUDO                             | 4  |
| 2.1. Principais fontes de ruído                        | 4  |
| 2.2. Localização dos pontos de monitoramento           | 4  |
| CAPÍTULO 3. LEGISLAÇÃO E NORMAS APLICÁVEIS             | 6  |
| CAPÍTULO 4. METODOLOGIA                                | 7  |
| 4.1. Aparelho de medição                               | 7  |
| 4.2. Método de Amostragem                              | 7  |
| 4.3. Área de Amostragem                                | 7  |
| 4.4. Mapeamento com programa computacional ArcGis      | 8  |
| 4.5. Mapa de ruído                                     | 9  |
| CAPÍTULO 5. CARACTERIZAÇÃO DO RUÍDO DAS ÁREAS DE APOIO | 10 |
| CAPÍTULO 6. CARACTERIZAÇÃO DO RUÍDO DAS ÁREAS DE LAVRA | 13 |
| CAPÍTULO 7 CONCLUSÃO                                   | 17 |

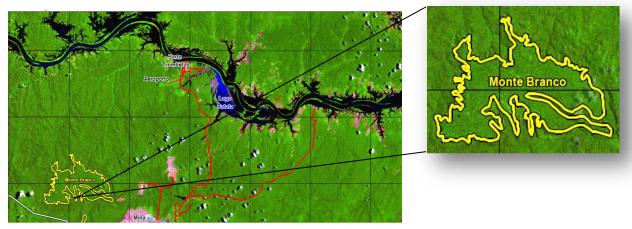


## Capítulo 1. Introdução

A qualidade do ar está diretamente relacionada às concentrações de poluentes atmosféricos, níveis de ruído ambiental e condições meteorológicas existentes num determinado ambiente. Conceitua-se "poluente atmosférico" como toda e qualquer forma de matéria ou energia com intensidade e em quantidade, concentração, tempo ou características em desacordo com os níveis estabelecidos em legislação, e que tornem ou possam tornar o ar impróprio, nocivo ou ofensivo à saúde, inconveniente ao bem-estar público, danoso aos materiais, à fauna e à flora ou prejudicial à segurança, ao uso e gozo da propriedade e às atividades normais da comunidade.

Estudos sobre o ruído ambiental têm contribuído no controle das emissões sonoras. As operações de lavra e áreas de apoio (oficina, posto de abastecimento, britador, correias transpoprtadoras) do platô Monte Branco tem potencial de emissão de ruído, em sua maioria, pela concentração de máquinas e equipamentos utilizados nos diversos processos de mineração.

Neste trabalho apresentamos um panorama do ambiente sonoro do platô Monte Branco, situado na Floresta Naciona Saracá Taquera, identificando os níveis de pressão sonora equivalente das áreas monitoradas.


Desta forma, o trabalho descrito neste documento traz como resultado o mapa de ruído ambiental para as áreas de operação do Monte Branco, tendo como objetivo a caracterização da área e auxiliar na avaliação da eficácia dos controles adotados.



# Capítulo 2. Área de Estudo

Os pontos de caracterização do ruído ambiental foram definidos estrategicamente no platô Monte Branco (Figura 01), de acordo com as fontes sonoras, com o objetivo de avaliar a influência dos níveis de ruído ocasionados pelas atividades de mineração com foco na flora e fauna. Neste trabalho foram estudadas áreas de lavra e de apoio.

Figura 01: Platô Monte Branco



Fonte: MRN

#### 2.1. Principais fontes de ruído

Nas áreas de lavra as principais fontes emissoras de ruído são as operações de caminhões rodoviários, caminhões de abastecimento, tratores, escavadeiras entre outros equipamentos de mina. Já nas áreas de apoio, tem-se a manutenção de equipamentos de pequeno e grande porte, correias transportadoras sobre o platô e britador de minério.

#### 2.2. Localização dos pontos de monitoramento

As localizações dos pontos de monitoramento situados nas áreas de estudo de caracterização do ruído ambiental estão detalhadas nas tabelas abaixo.



Tabela 01: Pontos de monitoramento lavra leste.

|        | LAVRA LESTE |              |        |        |              |             |        |                        |      |        |         |              |
|--------|-------------|--------------|--------|--------|--------------|-------------|--------|------------------------|------|--------|---------|--------------|
| PONTOS |             | ENADAS<br>TM | PONTOS |        | ENADAS<br>TM | ADAS PONTOS |        | PONTOS COORDENADAS UTM |      | PONTOS |         | ENADAS<br>TM |
| LA 1   | 556067      | 9817855      | LB 1   | 556041 | 9817965      | LE 1        | 556069 | 9817886                | LF 1 | 556045 | 9817803 |              |
| LA 2   | 556115      | 9817850      | LB 2   | 556063 | 9817965      | LE 2        | 556092 | 9817904                | LF 2 | 556085 | 9817767 |              |
| LA 3   | 556166      | 9817848      | LB 3   | 556078 | 9818002      | LE 3        | 556128 | 9817918                | LF 3 | 556103 | 9817735 |              |
| LA 4   | 556211      | 9817841      | LB 4   | 556093 | 9818040      | LE 4        | 556159 | 9817932                | LF 4 | 556141 | 9817701 |              |
| LA 5   | 556268      | 9817838      | LB 5   | 556087 | 9818082      | LE 5        | 556191 | 9817960                | LF 5 | 556161 | 9817669 |              |
| LA 6   | 556329      | 9817841      | LB 6   | 556095 | 9818128      | LE 6        | 556228 | 9817977                | LF 6 | 556185 | 9817630 |              |
| LC 1   | 556026      | 9817809      | LD 1   | 555982 | 9817862      | LG 1        | 555974 | 9817826                | LH 1 | 555953 | 9817940 |              |
| LC 2   | 556032      | 981752       | LD 2   | 555935 | 9817863      | LG 2        | 555954 | 9817784                | LH 2 | 555918 | 9817974 |              |
| LC 3   | 556032      | 9817705      | LD 3   | 555888 | 9817864      | LG 3        | 555892 | 9817762                | LH 3 | 555893 | 9818009 |              |
| LC 4   | 556035      | 9817652      | LD 4   | 555838 | 9817868      | LG 4        | 555858 | 9817748                | LH 4 | 555857 | 9818046 |              |
| LC 5   | 556039      | 9817616      | LD 5   | 555777 | 9817902      | LG 5        | 555811 | 9817719                | LH 5 | 555824 | 9818050 |              |
| LC 6   | 556045      | 9817589      | LD 6   | 555735 | 9817908      | LG 6        | 555765 | 9817706                | LH 6 | 555783 | 9818075 |              |

Tabela 02: Pontos de monitoramento lavra oeste.

|        | 1 2 7 7     |              |        |                    |         |      |        |         |      |              |         |  |              |
|--------|-------------|--------------|--------|--------------------|---------|------|--------|---------|------|--------------|---------|--|--------------|
|        | LAVRA OESTE |              |        |                    |         |      |        |         |      |              |         |  |              |
| PONTOS |             | ENADAS<br>TM | PONTOS | COORDENADAS<br>UTM |         |      |        | PONTOS  |      | ENADAS<br>TM | PONTOS  |  | ENADAS<br>TM |
| OA 1   | 557317      | 9818206      | OC 1   | 553658             | 9818113 | OE 1 | 553692 | 9818162 | OG 1 | 553692       | 9818162 |  |              |
| OA 2   | 553717      | 9818250      | OC 2   | 553589             | 9818113 | OE 2 | 553592 | 9818062 | OG 2 | 553648       | 9818211 |  |              |
| OA 3   | 553717      | 9818299      | OC 3   | 553540             | 9818113 | OE 3 | 553542 | 9818012 | OG 3 | 553594       | 9818250 |  |              |
| OA 4   | 553717      | 9818353      | OC 4   | 553490             | 9818113 | OE 4 | 553492 | 9817962 | OG 4 | 553545       | 9818309 |  |              |
| OA 5   | 553717      | 9818401      | OC 5   | 553446             | 9818113 | OE 5 | 553442 | 9817912 | OG 5 | 553495       | 9818377 |  |              |
| OA 6   | 553717      | 9818450      | OC 6   | 553392             | 9818113 | OE 6 | 553392 | 9817862 | OG 6 | 553442       | 9818416 |  |              |
| OB 1   | 553717      | 9818049      | OD 1   | 553771             | 9818113 | OF 1 | 553771 | 9818167 | OH 1 | 553771       | 9818167 |  |              |
| OB 2   | 553717      | 9817995      | OD 2   | 553815             | 9818113 | OF 2 | 553865 | 9818176 | OH 2 | 553671       | 9818067 |  |              |
| OB 3   | 553717      | 9817956      | OD 3   | 553860             | 9818113 | OF 3 | 553914 | 9818191 | OH 3 | 553621       | 9818017 |  |              |
| OB 4   | 553717      | 9817902      | OD 4   | 553909             | 9818113 | OF 4 | 553958 | 9818230 | OH 4 | 553571       | 9817967 |  |              |
| OB 5   | 553717      | 9817849      | OD 5   | 553963             | 9818113 | OF 5 | 554027 | 9818245 | OH 5 | 553521       | 9817917 |  |              |
| OB 6   | 553717      | 9817795      | OD 6   | 554017             | 9818113 | OF 6 | 554106 | 9818260 | OH 6 | 553471       | 9817867 |  |              |

Tabela 03: Pontos de monitoramento das áreas de apoio

| ÁREAS DE APOIO |                    |         |              |                    |         |              |                    |         |  |  |
|----------------|--------------------|---------|--------------|--------------------|---------|--------------|--------------------|---------|--|--|
| PONTOS         | COORDENADAS PONTOS |         | PONTOS       | COORDENADAS<br>UTM |         | PONTOS       | COORDENADAS<br>UTM |         |  |  |
| MB-1 BRITADOR  | 554412             | 9817817 | MB-1 CORREIA | 554435             | 9817278 | MB-1 OFICINA | 554066             | 9817804 |  |  |
| MB-2 BRITADOR  | 554535             | 9817828 | MB-2 CORREIA | 554838             | 9817268 | MB-2 OFICINA | 554071             | 9817729 |  |  |
| MB-3 BRITADOR  | 554640             | 9817870 | MB-3 CORREIA | 554702             | 9817242 | MB-3 OFICINA | 554048             | 9817591 |  |  |



## Capítulo 3. Legislação e normas aplicáveis

No Brasil não existem normas que tratam especificamente dos critérios e definições de caracterização de ruído ambiental.

Entretanto, a Resolução CONAMA Nº 001/1990 é a norma que determina que é prejudicial à saúde e ao sossego público a emissão de ruídos, em decorrência de quaisquer atividades industriais, comerciais, sociais ou recreativa, em níveis superiores aos considerados aceitáveis pela norma ABNT NBR 10151:2000. A Tabela 04 apresenta os NCA segundo ABNT NBR 10.151:2000 para área predominantemente rural e industrial.

Tabela 04: Variáveis e padrões de ruído

| Tipos de Áreas                    | Diurno    | Noturno   |
|-----------------------------------|-----------|-----------|
| Área sitio e fazenda              | 40 dB (A) | 35 dB (A) |
| Área predominantemente industrial | 70 dB (A) | 60 dB (A) |

A Lei Estadual do Pará Nº 5.887, de 09 de maio de 1995, que trata da Política Estadual do Meio Ambiente, dispõe o seguinte sobre ruídos e vibrações: "Art. 26. Os níveis máximos permitidos dos sons, ruídos e vibrações, bem como as diretrizes, critérios e padrões, para o controle da poluição sonora interna e externa decorrentes de atividades industriais, comerciais, sociais ou recreativas, inclusive de propaganda política e outras formas de divulgação sonorizada, serão estabelecidos em normas específicas".

Assim, como no Estado do Pará não há o estabelecimento de níveis de ruído, deve-se obedecer ao que dispõe a legislação federal, ou seja, a ABNT NBR 10.151:2000 que normatiza a "Acústica – Avaliação do ruído em áreas habitadas visando o conforto da comunidade – Procedimento" e delimita os níveis sonoros máximos permitidos em dB(A) para cada tipo de área.



## Capítulo 4. Metodologia

Para a caracterização do ruído ambiental realizou-se estudo de propagação sonora na área de diretamente afetada pelo empreendimento. O resultado desta caracterização é um mapa de ruído ambiental, que é uma representação geográfica do ruído da área estudada, onde se visualizam as áreas às quais correspondem determinadas classes de valores expressos em dB(A), reportando-se a uma situação existente do empreendimento.

#### 4.1. Aparelho de medição

Para a avaliação do ruído foi usado um medidor de nível de pressão sonora móvel que se baseia na curva de ponderação "A" – nível de pressão sonora equivalente dB(A) – e é configurado para operar no modo de leitura rápida (fast), observando sempre que possível os fenômenos meteorológicos e outras interferências audíveis para evitar quaisquer interferências que possam descaracterizar a amostra coletada. Qualquer influência externa que não caracterize a amostra do ambiente é descartada e substituída por uma nova medição.

#### 4.2. Método de Amostragem

As amostragens obedeceram 1,2 m de distância do solo e com microfone afastado pelo menos 2,0 m de distância de qualquer obstáculo que possa interferir nos resultados obtidos, sendo que o tempo de medição foi programado de forma a permitir coletas em intervalos de tempo de 20 segundos, num total de 10 minutos, totalizando 30 amostras por ponto.

#### 4.3. Área de Amostragem

A caracterização do ruído ambiental foi feita a partir de amostragens em pontos equidistantes, situados nas proximidades das principais fontes emissoras de ruído, são elas:

- Lavra Leste: lavra situada na região leste do platô Monte Branco, que estava em operação em junho de 2014 e sofre influência dos equipamentos de lavra.
- Lavra Oeste: lavra situada na região oeste do platô Monte Branco, que estava em operação em junho de 2014 e sofre influência dos equipamentos de lavra.
- Área de apoio: sofre influencia das oficinas, correias transportadoras e britador de minério.

A figura 02 mostra alguns dos pontos de monitoramento distribuídos nas áreas de amostragem.



Figura 02: Áreas de amostragem



Influencia dique de lavagem



Influencia da oficina



Influencia da lavra



Influencia da lavra



Influencia do britador



Influencia na mata

#### 4.4. Mapeamento com programa computacional ArcGis

Para elaboração do mapa de ruído utilizou-se o Sistema de Informações Geográficas (SIG) ArcGis. O ArcGis é propriedade da Empresa Environmental Systems Research Institute (ESRI). Foi construído para ser utilizado em análises de SIG. O módulo principal é o ArcMap e todas as atividades são organizadas dentro de um Projeto (Project), que consiste de um determinado número de Camadas (Layers), Tabelas (Tables), Gráficos (Charts), Esquemas (Layouts) e Rotinas (Scripts). Para elaboração dos mapas de ruído no ArcGis utilizou-se a interpolação de dados que é feita com o aplicativo Geostatistical Analyst, utilizando o método de krigagem.

Krigagem é uma metodologia de interpolação de dados. Este método utiliza o dado tabular e sua posição geográfica para calcular as interpolações. Utilizando o princípio da Primeira Lei de Tobler, que diz que unidades de análise mais próximas entre si são mais semelhantes do que unidades mais afastadas, a krigagem utiliza funções matemáticas para adicionar pesos maiores nas posições mais próximas aos pontos amostrais e pesos menores nas posições mais distantes, e assim criar novos pontos interpolados com base nas combinações lineares de dados. A partir de gráficos como o (semi)variograma, a superfície contínua de dados é criada, e pode-se ter uma idéia da segregação espacial das variáveis, e o alcance da segregação no espaço, em unidades métricas conhecidas.

A interpolação foi feita selecionando-se a opção Geostatistical Wizard da extensão Geostatistical Analyst, onde foi definido os seguintes parâmetros: método de interpolação (Methods), amostra de treinamento (Dataset 1) e amostra de validação (Validation). Methods=Kriging (método krigagem); Input Data=RP\_Events\_training (amostra de treinamento); Atribute=RP (valores de resistência à penetração).



Os dados que subsidiaram as interpolações feitas pelo ArcGis foram os resultados das medições de pressão sonora obtidos em cada ponto monitorado utilizando o método de medição já descrito anteriormente (tópico 4.2).

#### 4.5. Mapa de ruído

Um mapa de ruído ambiental é uma representação geográfica do ruído do ambiente exterior, onde se visualizam as áreas às quais correspondem determinadas classes de valores expressos em dB(A), reportando-se a uma situação existente ou até mesmo prevista.

Esta representação tem como objetivo ser uma ferramenta de apoio à tomada de decisão no planejamento e ordenamento de uma determinada área, permitindo visualizar os espaços por meio de requisitos acústicos.

Os critérios adotados neste estudo para a elaboração do mapa de ruído ambiental da lavra no Platô Monte Branco tiveram como referencia bibliográfica a Norma Diretiva do Parlamento Europeu e o Conselho da União Européia, Nº 49 de Junho de 2002, artigo 7º e Anexo IV, considerando a metodologia exposta neste capítulo e os requisitos abaixo:

- 1. Identificação das possíveis fontes de emissão de ruído;
- 2. Identificação das áreas de influencia direta e indireta do ruído emitido pelas fontes;
- 3. Definição das áreas de estudo e pontos de monitoramento;
- 4. Definição da legislação ambiental aplicável ao empreendimento;
- 5. Medição do ruído ambiental nas áreas definidas.
- 6. Mapa de ruído representado por figura;

A tabela 05 traz a relação de cores adotada no mapa de ruído para as classes dos níveis sonoros.

Tabela 05: Padrão de cores

| Classe Indicador    | Cor | Nome           |
|---------------------|-----|----------------|
| Leq dB(A ≤ 45       |     | Verde claro    |
| 45 < Leq dB(A) ≤ 50 |     | Verde escuro   |
| 50 < Leq dB(A) ≤ 55 |     | Azul claro     |
| 55 < Leq dB(A) ≤ 60 |     | Azul escuro    |
| 60 < Leq dB(A) ≤ 65 |     | Laranja claro  |
| 65 < Leq dB(A) ≤ 70 |     | Laranja escuro |
| Lea dB(A) > 70      |     | Vermelho       |

Fonte: Adaptada Politica 2002/49/EC



### Capítulo 5. Caracterização do ruído das áreas de apoio

Para a caracterização do ruído das áreas de apoio foram consideradas todas as fontes sonoras existentes durante o perído de estudo.

Para melhor caracterização sonora do ambiente, as medições foram feitas considerando períodos de execução das atividades manhã (8 às 11h) e tarde (14 às 17h) entre os dias 16 e 20 de junho de 2014.

A tabela 06 apresenta os resultados obtidos nas medições dos níveis de pressão sonora nas áreas de apoio (britador, correia transportadora e oficina de manutenção de equipamentos) do platô Monte Branco.

Tabela 06: Resultados de medições

| RESULTADOS ÁREAS DE APOIO                                                 |      |              |      |              |      |  |  |  |  |  |
|---------------------------------------------------------------------------|------|--------------|------|--------------|------|--|--|--|--|--|
| PONTOS Resultado Leq (A) dB PONTOS Resultado Leq (A) dB PONTOS Leq (A) dB |      |              |      |              |      |  |  |  |  |  |
| MB-1 BRITADOR                                                             | 75,0 | MB-1 CORREIA | 79,9 | MB-1 OFICINA | 60,1 |  |  |  |  |  |
| MB-2 BRITADOR                                                             | 57,3 | MB-2 CORREIA | 59,3 | MB-2 OFICINA | 45,5 |  |  |  |  |  |
| MB-3 BRITADOR                                                             | 45,1 | MB-3 CORREIA | 45,1 | MB-3 OFICINA | 40,0 |  |  |  |  |  |

De forma a visualizar o comportamento dos resultados em cada ponto de monitoramento das áreas, são apresentados os gráficos (Figura 03 a 05) com os seguintes elementos:

- A linha em laranja representa o limite definido pela norma ABNT NBR 10151:2000, sendo considerada área de predominância industrial.
- A linha em laranja representa o limite definido pela norma ABNT NBR 10151:2000, sendo considerada área de sitio ou fazenda (rural).
- A barra vermelha representa o valor médio encontrado durante a medição da área em estudo.
- A barra marrom representa o valor de background do platô Monte Branco.
- As barras coloridas representam os resultados das medições de cada ponto monitorado para a área.



Figura 03: Gráfico resultados, em dB(A), dos pontos do britador.

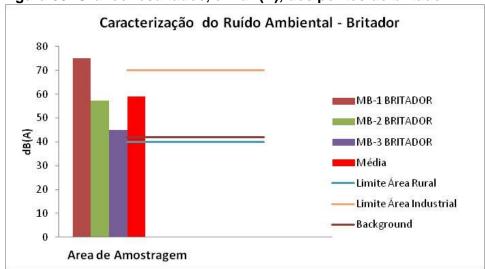



Figura 04: Gráfico resultados, em dB(A), dos pontos da correia

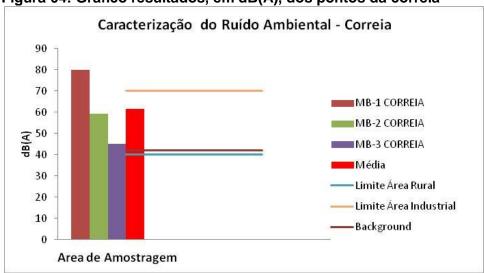
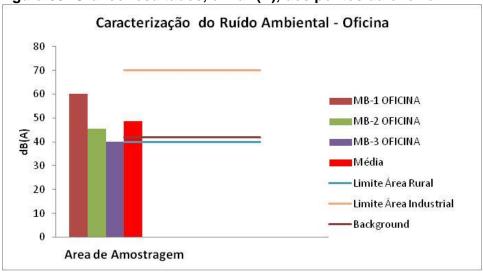




Figura 05: Gráfico resultados, em dB(A), dos pontos da oficina





#### Nivel 01 – Pontos próximos à fonte

Como já era de esperar em todos os pontos de medição proximos as fontes emissoras de ruído os níveis ultrapassaram os índices estipulados pela norma ABNT NBR 10151 para áreas rural e industrial, 40 e 70 respectivamente. Pôde-se observar, também, que os índices médios coletados em cada ponto não registram grandes diferenças entre si, oscilando entre a máxima de 19,8 dB(A), com níveis sonoros maiores de 79,9 dB(A) e menores de 60,1 dB(A). Quando comparado com o background os resultados também foram superiores.

Neste nível, observa-se que o MB-1 Correia transportada foi o ponto que apresentou maior índice de ruído atingindo 79,9 dB(A), seguido do ponto MB-1 Britador e MB-1 Oficina. Pode-se concluir que este resultado foi fortemente influenciado pelo fato das correias estarem em uma área de estrada onde o som é emitido livremente. Diferentemente dos pontos do britador e oficina que embora emitam ruído na mesma frequência, nestes locais existe atenuação da propagação devido à presença das instalações.

#### Nivel 02 - Pontos mais afastado da fonte

Para os pontos de medição de ruído mais afastados das fontes emissoras de ruído observouse que os níveis de ruído ficaram abaixo dos índices estipulados pela ABNT NBR 10151 para industrial e levemente acima dos índices definidos para área rural. Observa-se ainda, que os índices encontrados neste nível apresentaram redução significativa quando comparados com os resultados do nível 01. Para o ponto MB-2 Britador a redução foi de 17,7 dB(A), MB-02 Correia de 20,6 dB(A) e de 14,6 dB(A) para MB-2 Oficina. Quando comparado com o background os resultados também foram superiores.

Para o nível 02, o ponto MB-2 Correia transportada foi o ponto que apresentou maior redução do índice de ruído e em segundo lugar o ponto MB-1 Britador. Já o ponto MB-1 Oficina embora tenha apresentado a menor redução, apresentou também o menor nível de ruído, 45,5 dB(A). Este menor valor para o ponto MB-1 Oficina é um comportamento previsto considerando que a propagação do som é atenuada em razão das instalações prediais, as quais funcionam como barreiras. Uma barreira sonora atua bloqueando o caminho direto da fonte sonora ao ponto receptor. O ruído então chega ao receptor somente através de difração ao redor das bordas da barreira. Este mesmo fenômeno justifica a redução expressiva para as instalações do Britador. Já para o ponto MB-02 Correia a redução é esperada em função da dispersão natural do som, que sofre atenuação devido principalmente a variáveis como tipo de solo, temperatura e umidade do ar através da absorção atmosférica.

#### Nivel 03 – Pontos próximos à floresta

Os resultados para o nível 03 ficaram 5,1 dB(A) acima do índice de área rural para os pontos MB-03 Britador e Correia, enquanto que para o ponto MB-03 Oficina ficou igual ao padrão. Estes valores baixos, esperados, devem-se pricipalmente ao distanciamento do receptor em relação à fonte, que após emitir o som este sofre alteração ao longo do seu trajeto por diversos fatores, dentre eles cita-se:

- A divergência geométrica que é a perda da energia sonora com relação a distancia em que se encontra o receptor a fonte sonora.
- Absorção atmosférica é a perda da energia sonora em função das condições atmosféricas como temperatura, pressão e umidade do ar.
- Reflexão é a contribuição da pressão sonora no ponto receptor, uma vez que ocorre a cada reflexão a energia sonora é perdida, reduzindo a força de reflexão e consequntemente o ruído.

Neste nível observa-se que a influencia do ruído provinientes das fontes é relativamente baixa sobre a área de borda do platô e os resultados ficaram semelhantes aos valores de background.



## Capítulo 6. Caracterização do ruído das áreas de lavra

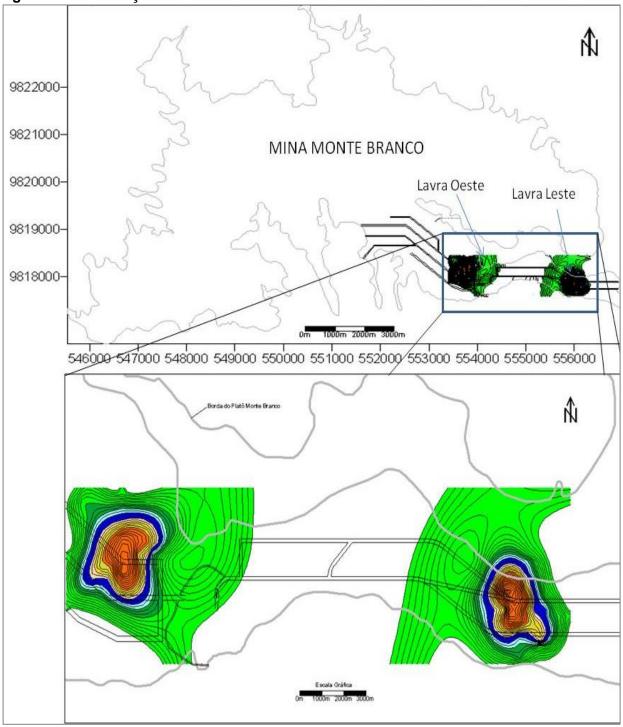
Na caracterização do ruído da área de lavra foram consideradas todas as fontes sonoras existentes durante o perído de estudo.

Para melhor caracterização sonora do ambiente, as medições foram feitas considerando períodos de execução das atividades manhã (8 às 11h) e tarde (14 às 17h) entre os dias 09 a 23 de junho de 2014.

As tabelas 07 e 08 apresentam os resultados da caracterização do ruído obtidos nas medições dos níveis de pressão sonora das áreas de lavra do platô Monte Branco.

Tabela 07: Resultados de medições.

| RESULTADOS LAVRA LESTE |                         |        |                         |        |                         |        |                         |  |  |  |
|------------------------|-------------------------|--------|-------------------------|--------|-------------------------|--------|-------------------------|--|--|--|
| PONTOS                 | Resultado<br>Leq (A) dB | PONTOS | Resultado<br>Leq (A) dB | PONTOS | Resultado<br>Leq (A) dB | PONTOS | Resultado<br>Leq (A) dB |  |  |  |
| LA 1                   | 75,4                    | LB 1   | 80,7                    | LE 1   | 80,8                    | LF 1   | 84,1                    |  |  |  |
| LA 2                   | 60,1                    | LB 2   | 68,1                    | LE 2   | 71,1                    | LF 2   | 69,3                    |  |  |  |
| LA 3                   | 57,2                    | LB 3   | 61,2                    | LE 3   | 60,1                    | LF 3   | 62,1                    |  |  |  |
| LA 4                   | 50,1                    | LB 4   | 54,8                    | LE 4   | 50,1                    | LF 4   | 65,1                    |  |  |  |
| LA 5                   | 44,2                    | LB 5   | 50,5                    | LE 5   | 42,1                    | LF 5   | 45,8                    |  |  |  |
| LA 6                   | 37,1                    | LB 6   | 42,1                    | LE 6   | 32,1                    | LF 6   | 34,1                    |  |  |  |
| LC 1                   | 78,1                    | LD 1   | 85,1                    | LG 1   | 89,0                    | LH 1   | 98,1                    |  |  |  |
| LC 2                   | 59,2                    | LD 2   | 70,1                    | LG 2   | 77,1                    | LH 2   | 80,0                    |  |  |  |
| LC 3                   | 53,2                    | LD 3   | 62,1                    | LG 3   | 63,2                    | LH 3   | 62,8                    |  |  |  |
| LC 4                   | 50,1                    | LD 4   | 54,8                    | LG 4   | 52,4                    | LH 4   | 55,1                    |  |  |  |
| LC 5                   | 48,2                    | LD 5   | 47,1                    | LG 5   | 44,1                    | LH 5   | 43,1                    |  |  |  |
| LC 6                   | 40,2                    | LD 6   | 41,1                    | LG 6   | 36,6                    | LH 6   | 36,3                    |  |  |  |


Tabela 08: Resultados de medições.

|                        | abela vo. Nesaltados de medigoes. |        |                         |        |                         |        |                         |  |  |  |
|------------------------|-----------------------------------|--------|-------------------------|--------|-------------------------|--------|-------------------------|--|--|--|
| RESULTADOS LAVRA OESTE |                                   |        |                         |        |                         |        |                         |  |  |  |
| PONTOS                 | Resultado<br>Leq (A) dB           | PONTOS | Resultado<br>Leq (A) dB | PONTOS | Resultado<br>Leq (A) dB | PONTOS | Resultado<br>Leq (A) dB |  |  |  |
| OA 1                   | 82,3                              | OC 1   | 81,5                    | OE 1   | 88,5                    | OG 1   | 80,1                    |  |  |  |
| OA 2                   | 74,1                              | OC 2   | 71,2                    | OE 2   | 71,5                    | OG 2   | 72,8                    |  |  |  |
| OA 3                   | 60,1                              | OC 3   | 59,1                    | OE 3   | 62,3                    | OG 3   | 61,5                    |  |  |  |
| OA 4                   | 49,8                              | OC 4   | 48,1                    | OE 4   | 53,1                    | OG 4   | 48,1                    |  |  |  |
| OA 5                   | 42,6                              | OC 5   | 42,1                    | OE 5   | 42,1                    | OG 5   | 44,5                    |  |  |  |
| OA 6                   | 35,1                              | OC 6   | 35,5                    | OE 6   | 35,1                    | OG 6   | 36,1                    |  |  |  |
| OB 1                   | 92,1                              | OD 1   | 83,1                    | OF 1   | 81,5                    | OH 1   | 85,1                    |  |  |  |
| OB 2                   | 82,1                              | OD 2   | 71,5                    | OF 2   | 73,1                    | OH 2   | 73,1                    |  |  |  |
| OB 3                   | 70,8                              | OD 3   | 63,1                    | OF 3   | 62,1                    | OH 3   | 62,1                    |  |  |  |
| OB 4                   | 62,1                              | OD 4   | 52,0                    | OF 4   | 54,1                    | OH 4   | 55,2                    |  |  |  |
| OB 5                   | 48,1                              | OD 5   | 42,1                    | OF 5   | 48,1                    | OH 5   | 44,4                    |  |  |  |
| OB 6                   | 38,1                              | OD 6   | 35,1                    | OF 6   | 36,2                    | OH 6   | 33,1                    |  |  |  |



As figuras 06 e 07 mostram a localização e caracterização respectivamente do ruído ambiental nas áreas de lavra do platô Monte Branco na forma de representação geográfica.

Figura 06: Localização da área de estudo



Fonte: MRN



Portos - Medições de Ruídos Legenda .Borda do Platô Morte Branco Fonte: MRN

Figura 07: Mapa de ruído das áreas de lavra do platô Monte Branco



#### Lavra leste

Pode-se observar que para esta área, como já se esperava, o ponto mais próximo da fonte emissora de ruído o valor é mais elevado e atingiu 98,1 dB(A) e a medida que se distancia da fonte os valores reduzem, onde atingiu no ponto mais afastado o valor mínimo de 32,1 dB(A), ou seja, observa-se que nas áreas próximas a borda do platô os níveis de ruído são inferiores aos índices estipulados pela norma ABNT NBR 10151 para áreas rural, industrial e background (40 dB(A), 70 dB(A) e 42 dB(A) respectivamente).

#### Lavra oeste

Para a lavra oeste observa-se que no ponto mais próximo da fonte de ruído o valor mais elevado encontrado foi de 92,1 dB(A) e de 33,1 dB(A) no ponto mais afastado . Assim, percebemos que nas áreas de borda do platô os níveis de ruído apresentam níveis baixos, inferiores aos índices estipulados pela norma ABNT NBR 10151.

Para as duas áreas de lavra estudadas acompanhamos um comportamento semelhante do ruído, ou seja, para os pontos mais próximos a fonte obteve-se os valores mais elevados e para os pontos mais distantes, um descrescimo significativo. Este comportamento já era previsto considerando que a propagação do nível de ruído ambiental é influenciada principalmente pelos fatores divergência geométrica, absorção atmosférica e reflexão, explicados anteriormente no capitulo 5. Salientamos ainda que os valores dos pontos mais distantes ficaram abaixo do valor de background.



# Capítulo 7. CONCLUSÃO

A partir dos valores coletados constatou-se que nas áreas estudadas (áreas de apoio e lavra) do platô Monte Branco, as regiões próximas às fontes emissoras os níveis de ruído ambiental superam os níveis máximos toleráveis, recomendados pela Norma NBR 10151 da ABNT para o período diurno, apresentando uma média de 82,5 dB(A). Por outro lado, para estas mesmas áreas, observou-se que nas regiões mais distantes da fonte e mais próximas da borda do platô os níveis de ruído ficaram 54,5% abaixo, apresentando uma média igual a 37,5 dB(A), sendo inferior ao índice para área rural e backgraound, de acordo com a Norma NBR 10151 da ABNT.

Portanto, neste trabalho foi alcançado o seu objetivo que era de caracterizar o ruído produzido pelas fontes sonoras do platô Monte Branco e a sua abrangência ao longo dos diversos pontos monitorados até a floresta circunvizinha (borda). Um aspecto positivo que se destaca é que os níveis sonoros encontrados nos pontos mais distantes das fontes evidenciaram a influência mínima sobre a fauna e flora da região.