

PROGRAMA DE MONITORAMENTO DO RIO SÃO FRANCISCO DURANTE O PERÍODO DE VAZÃO REDUZIDA

CTNI - 92.2013.2490.00

Relatório mensal

Novembro-Dezembro/2013

Janeiro/2014

RELATO	ÓRIO MENSAL	1
NOVEN	//BRO-DEZEMBRO/2013	1
APRESE	ENTAÇÃO	11
1.	INTRODUÇÃO	12
2.	OBJETIVOS	14
3.	MONITORAMENTO DA QUALIDADE DA ÁGUA	15
3.1	Monitoramento mensal da qualidade da água - dados primários	15
3.1.1	METODOLOGIA	15
3.1.2	RESULTADOS	18
3.2	MONITORAMENTO MENSAL DA QUALIDADE DA ÁGUA NAS CAPTAÇÕES PARA ABASTECIMENTO PÚBLICO – DADOS SECUNDÁRIOS	32
4. MON	NITORAMENTO DA INTRODUÇÃO DA CUNHA SALINA	33
4.1	METODOLOGIA	33
4.2	RESULTADOS	35
5.	MONITORAMENTO DE MACRÓFITAS AQUÁTICAS	85
5.1	METODOLOGIA	85
5.2	RESULTADOS	86
6.	MONITORAMENTO DE PROCESSOS EROSIVOS	101
6.1	METODOLOGIA	101
6.2	IMPLANTAÇÃO DAS ESTAÇÕES	112
6.3	RESULTADOS DO MONITORAMENTO MENSAL (dezembro/2013)	122
7.	CONSIDERAÇÕES FINAIS	180
8.	REFERÊNCIAS CONSULTADAS	182
ANEXO)S	183

SUMÁRIO

ÍNDICE DE FIGURAS

Figura 3.1 - Localização das estações de monitoramento da qualidade da água.	
Figura 3.2 – Variação da temperatura da água de superfície nas estações de monitoramento de qualidade da água do submédio e baixo Rio São Francisco, durante a campanha de	
novembro - dezembro/2013 Figura 3.3 – Variação do pH da água de superfície nas estações de monitoramento de qualidade da água do submédio e baixo Rio São Francisco, durante a campanha de novembro - dezembro/2013. As barras vermelhas indicam os limites inferior e superior estabelecidos	19
pela Resolução nº 357/2005 CONAMA para águas da Classe 2 Figura 3.4 – Variação da condutividade elétrica da água de superfície nas estações de monitoramento	20
novembro - dezembro/2013.	20
de monitoramento de qualidade da água do submédio e baixo Rio São Francisco, durante a campanha de novembro - dezembro/2013	21
Figura 3.6 – Variação da salinidade da água de superfície nas estações de monitoramento de qualidade da água do submédio e baixo Rio São Francisco, durante a campanha de novembro - dezembro/2013.	21
Figura 3.7 – Variação da concentração de oxigênio dissolvido da água de superfície nas estações de monitoramento de qualidade da água do submédio e baixo Rio São Francisco, durante a campanha de novembro - dezembro/2013. A barra vermelha indica o limite mínimo estabelecido pela Resolução nº 357/2005 CONAMA para águas da Classe 2	
Figura 3.8 – Variação da saturação de oxigênio dissolvido da água de superfície nas estações de monitoramento de qualidade da água do submédio e baixo Rio São Francisco, durante a campanha de novembro - dezembro/2013.	
Figura 3.9 – Variação da transparência da água nas estações de monitoramento de qualidade da água do submédio e baixo Rio São Francisco, durante a campanha de novembro - dezembro/2013.	
Figura 3.10 – Variação da concentração de nitrato da água de superfície nas estações de monitoramento de qualidade da água do submédio e baixo Rio São Francisco, durante a campanha de novembro - dezembro/2013.	
Figura 3.11 – Variação da concentração de fósforo total da água de superfície nas estações de monitoramento de qualidade da água do submédio e baixo Rio São Francisco, durante a campanha de novembro - dezembro/2013. A barra vermelha indica o limite estabelecido pela Resolução no. 357/2005 CONAMA para águas da Classe 2, respectivamente para ambientes lóticos (50 μg.L ⁻¹) e lênticos (30 μg.L ⁻¹).	
Figura 3.12 – Variação da demanda bioquímica de oxigênio da água de superfície nas estações de monitoramento de qualidade da água do submédio e baixo Rio São Francisco, durante a campanha de novembro - dezembro/2013	26
Figura 4.1 – Instrumentos empregados na mensuração de variáveis meteorológicas e hidrológicas: mini-estação Kestrel (esquerda), mini-CTD YSI CAstAway (meio) e correntômetro Aquadopp modelo AQD 5776 (direita)	33
Figura 4.2 - Localização das estações de monitoramento da introdução da cunha salina.	
Figura 4.3 – Variação da velocidade média da água na coluna entre as estações de amostragem da cunha salina da foz do Rio São Francisco, durante a baixamar da maré de sizígia (lua	42
Figura 4.4 – Direção média da água na coluna em cada estação de amostragem da cunha salina da foz do Rio São Francisco, durante a baixamar da maré de sizígia (lua cheia) do dia 16/11/2013	42
Figura 4.5 – Variação da velocidade média da água na coluna entre as estações de amostragem da cunha salina da foz do Rio São Francisco, durante a preamar da maré de sizígia (lua cheia) do dia 16/11/2013	
uo ula 10/11/2015	

Figura 4.6 – Direção média da água na coluna em cada estação de amostragem da cunha salina da foz do Rio São Francisco, durante a preamar da maré de sizígia (lua cheia) do dia 16/11/2013.	44
Figura 4.7 – Variação da velocidade média da água na coluna entre as estações de amostragem da cunha salina da foz do Rio São Francisco, durante a baixamar da maré de sizígia (lua cheia) do dia 17/11/2013	45
Figura 4.8 – Direção média da água na coluna em cada estação de amostragem da cunha salina da foz do Rio São Francisco, durante a baixamar da maré de sizígia (lua cheia) do dia 17/11/2013.	
Figura 4.9 – Variação da velocidade média da água na coluna entre as estações de amostragem da cunha salina da foz do Rio São Francisco, durante a preamar da maré de sizígia (lua cheia) do dia 17/11/2013.	47
Figura 4.10 – Direção média da água na coluna em cada estação de amostragem da cunha salina da foz do Rio São Francisco, durante a preamar da maré de sizígia (lua cheia) do dia 17/11/2013.	47
Figura 4.11 – Variação da profundidade das estações de amostragem da cunha salina na foz do Rio São Francisco, durante a preamar (PM) e a baixamar (BM) da maré de sizígia (lua cheia) dos dias 16 e 17/11/2013.	48
Figura 4.12 – Variação da velocidade média da coluna d´água nas estações de amostragem da cunha salina na foz do Rio São Francisco, durante a preamar (PM) e a baixamar (BM) da maré de sizígia (lua cheia) dos dias 16 e 17/11/2013.	48
Figura 4.13 – Variação da direção média da coluna d´água nas estações de amostragem da cunha salina na foz do Rio São Francisco, durante a preamar (PM) e a baixamar (BM) da maré de sizígia (lua cheia) dos dias 16 e 17/11/2013	49
Figura 4.14 – Variação da velocidade média da água na coluna entre as estações de amostragem da cunha salina da foz do Rio São Francisco, durante a baixamar da maré de sizígia (lua nova) do dia 30/11/2013.	
Figura 4.15 – Direção média da água na coluna em cada estação de amostragem da cunha salina da foz do Rio São Francisco, durante a baixamar da maré de sizígia (lua nova) do dia 30/11/2013.	50
Figura 4.16 – Variação da velocidade média da água na coluna entre as estações de amostragem da cunha salina da foz do Rio São Francisco, durante a preamar da maré de sizígia (lua nova) do dia 30/11/2013	51
Figura 4.17 – Direção média da água na coluna em cada estação de amostragem da cunha salina da foz do Rio São Francisco, durante a preamar da maré de sizígia (lua nova) do dia 30/11/2013	
Figura 4.18 – Variação da velocidade média da água na coluna entre as estações de amostragem da cunha salina da foz do Rio São Francisco, durante a baixamar da maré de sizígia (lua nova) do dia 01/12/2013.	53
Figura 4.19 – Direção média da água na coluna em cada estação de amostragem da cunha salina da foz do Rio São Francisco, durante a baixamar da maré de sizígia (lua nova) do dia 01/12/2013.	53
Figura 4.20 – Variação da velocidade média da água na coluna entre as estações de amostragem da cunha salina da foz do Rio São Francisco, durante a preamar da maré de sizígia (lua nova) do dia 01/12/2013	54
Figura 4.21 – Direção média da água na coluna em cada estação de amostragem da cunha salina da foz do Rio São Francisco, durante a preamar da maré de sizígia (lua nova) do dia 01/12/2013	
Figura 4.22 - Variação da profundidade das estações de amostragem da cunha salina na foz do Rio São Francisco, durante a preamar (PM) e a baixamar (BM) da maré de sizígia (lua nova) dos dias 30/11 e 01/12/2013.	
Figura 4.23 – Variação da velocidade média da coluna d´água nas estações de amostragem da cunha salina na foz do Rio São Francisco, durante a preamar (PM) e a baixamar (BM) da maré de sizígia (lua nova) dos dias 30/11 e 01/12/2013.	

Figura 4.24 – Variação da direção média da coluna d´água nas estações de amostragem da cunha salina na foz do Rio São Francisco, durante a preamar (PM) e a baixamar (BM) da maré de sizígia (lua nova) dos dias 30/11 e 01/12/2013.	56
Figura 4.25 – Diagramas da dispersão comparativa dos perfis verticais da temperatura (esquerda), condutividade elétrica específica (centro) e salinidade (direita) da água nas diferentes estações de monitoramento da cunha salina da foz do Rio São Francisco, durante a baixamar da maré de sizígia (lua cheia), do dia 16 de novembro de 2013. Gráficos gerados pelo Programa CTD-CastAway	
Figura 4.26 – Diagramas da dispersão comparativa dos perfis verticais da temperatura (esquerda), condutividade elétrica específica (centro) e salinidade (direita) da água nas diferentes estações de monitoramento da cunha salina da foz do Rio São Francisco, durante a preamar da maré de sizígia (lua cheia), do dia 16 de novembro de 2013. Gráficos gerados pelo Programa CTD-CastAway.	60
Figura 4.27 – Diagramas da dispersão comparativa dos perfis verticais da temperatura (esquerda), condutividade elétrica específica (centro) e salinidade (direita) da água nas diferentes estações de monitoramento da cunha salina da foz do Rio São Francisco, durante a baixamar da maré de sizígia (lua cheia), do dia 17 de novembro de 2013. Gráficos gerados pelo Programa CTD-CastAway	61
Figura 4.28 – Diagramas da dispersão comparativa dos perfis verticais da temperatura (esquerda), condutividade elétrica específica (centro) e salinidade (direita) da água nas diferentes estações de monitoramento da cunha salina da foz do Rio São Francisco, durante a preamar da maré de sizígia (lua cheia), do dia 17 de novembro de 2013. Gráficos gerados pelo Programa CTD-CastAway.	
Figura 4.29 – Diagramas da dispersão comparativa dos perfis verticais da temperatura (esquerda), condutividade elétrica específica (centro) e salinidade (direita) da água nas diferentes estações de monitoramento da cunha salina da foz do Rio São Francisco, durante a baixamar da maré de sizígia (lua nova), do dia 30 de novembro de 2013. Gráficos gerados pelo Programa CTD-CastAway	63
Figura 4.30 – Diagramas da dispersão comparativa dos perfis verticais da temperatura (esquerda), condutividade elétrica específica (centro) e salinidade (direita) da água nas diferentes estações de monitoramento da cunha salina da foz do Rio São Francisco, durante a preamar da maré de sizígia (lua nova), do dia 30 de novembro de 2013. Gráficos gerados	
Figura 4.31 – Diagramas da dispersão comparativa dos perfis verticais da temperatura (esquerda), condutividade elétrica específica (centro) e salinidade (direita) da água nas diferentes estações de monitoramento da cunha salina da foz do Rio São Francisco, durante a baixamar da maré de sizígia (lua nova), do dia 01 de dezembro de 2013. Gráficos gerados pala Programa CTD. Cast	
Figura 4.32 – Diagramas da dispersão comparativa dos perfis verticais da temperatura (esquerda), condutividade elétrica específica (centro) e salinidade (direita) da água nas diferentes estações de monitoramento da cunha salina da foz do Rio São Francisco, durante a preamar da maré de sizígia (lua nova), do dia 01 de dezembro de 2013. Gráficos gerados pelo Programa CTD-CastAway.	65
Figura 4.33 – Perfis verticais da temperatura da água nas duas marés de baixamar (BM1 e BM2) e preamar (PM1 e PM2) durante a fase de lua cheia nas diferentes estações de monitoramento da cunha salina da foz do Rio São Francisco, durante as coletas de novembro-dezembro/2013.	67
Figura 4.33 (continuação) – Perfis verticais da temperatura da água nas duas marés de baixamar (BM1 e BM2) e preamar (PM1 e PM2) durante a fase de lua cheia nas diferentes estações de monitoramento da cunha salina da foz do Rio São Francisco, durante as coletas de novembro-dezembro/2013.	
Figura 4.33 (continuação) – Perfis verticais da temperatura da água nas duas marés de baixamar (BM1 e BM2) e preamar (PM1 e PM2) durante a fase de lua cheia nas diferentes estações de	

monitoramento da cunha salina da foz do Rio São Francisco, durante as coletas de Figura 4.34 – Perfis verticais da salinidade da água nas duas marés de baixamar (BM1 e BM2) e preamar (PM1 e PM2) durante a fase de lua cheia nas diferentes estações de monitoramento da cunha salina da foz do Rio São Francisco, durante as coletas de novembro-dezembro/2013......71 Figura 4.35 – Perfis verticais da temperatura da água nas duas marés de baixamar (BM1 e BM2) e preamar (PM1 e PM2) durante a fase de lua nova nas diferentes estações de monitoramento da cunha salina da foz do Rio São Francisco, durante as coletas de novembro-dezembro/2013......75 Figura 4.36 – Perfis verticais da salinidade da água nas duas marés de baixamar (BM1 e BM2) e preamar (PM1 e PM2) durante a fase de lua nova nas diferentes estações de monitoramento da cunha salina da foz do Rio São Francisco, durante as coletas de Figura 4.37 – Perfis verticais da salinidade da água nas duas marés de baixamar (BM1 e BM2) e preamar (PM1 e PM2) durante as fases de lua cheia (1ª. coleta) e nova (2ª. coleta) nas estações ESF 20, ESF 21 e ESF 22 de monitoramento da cunha salina da foz do Rio São Francisco, localizadas respectivamente a jusante, à frente e a montante, da cidade de Figura 5.1 – Mapa de localização das áreas de monitoramento de macrófitas aquáticas. As setas pretas indicam as áreas de macrófitas aquáticas selecionadas preliminarmente e amostradas, com exceção daquela próxima à confluência do rio Moxotó com o corpo do reservatório, Figura 5.2 – Delimitação do perímetro reconstituído da área IT PTL 01, coberta com macrófitas na região de Petrolândia (acima), indicando a delimitação da área pela CHESF (linha verde) e do perímetro e colonização com Eichhornia crassipes (linha vermelha). A figura inferior indica o limite externo da área ocupada por vegetação submersa, predominantemente Egerea densa (cercada por linha branca), com o limite externo em outubronovembro/2013 (linha azul), em relação a novembro-dezembro/2013 (linha amarela), Figura 5.3 – Delimitação do perímetro reconstituído da área MO RM Inter, coberta com macrófitas na região de Moxotó (acima), indicando a delimitação da área pela CHESF (linha verde) e do perímetro inicial ocupado por Eichhornia crassipes (linha vermelha). A figura inferior indica o limite da área ocupada por macrófitas em outubro-novembro/2013 (linha azul) em relação ao limite externo em novembro-dezembro (linha amarela), com ampliação da Figura 5.4 – Delimitação do perímetro reconstituído da área MO RM Final, coberta com macrófitas na região de Moxotó (acima), indicando a delimitação total da área (linha vermelha fina) e do perímetro livre de macrófitas (linha vermelha grossa) em maio-junho/2013. A figura inferior indica os limites da área ocupada com macrófitas nas coletas de outubronovembro (linha azul), em relação a novembro-dezembro/2013 (linha amarela), sem

- Figura 5.5 Vistas do meandro da estação IT PTL 01, no reservatório de Itaparica, em Petrolândia (PE). Nas imagens superiores, limite de ocupação dos bancos de *Eichhornia crassipes*, evidenciando o afloramento dos bancos imersos de *Egerea densa* (imagens do meio), cuja exposição está associada ao rebaixamento do nível da água do reservatório (imagens inferiores).
 98
 Figura 5.6 – Vistas do meandro da estação IT PTL 01, no reservatório de Itaparica, em Petrolândia (PE).

Figura 5.7 – Vistas do meandro da estação MOX 03 (MO RM Inter), no reservatório de Moxotó, em novembro/2013. Nas imagens superiores, limite da área ocupada pelos bancos de

<i>Eichhornia crassipes</i> , na porção a jusante da área limite do monitoramento. evidenciando o afloramento dos bancos imersos de <i>Egerea densa</i> (imagens do meio), cuja exposição	
está associada ao rebaixamento do nível da água do reservatório (imagens inferiores)	100
Figura 6.1 - Localização das estações de monitoramento ao longo do rio São Francisco, entre os reservatórios de Itaparica e Sobradinho.	102
Figura 6.2 - Localização das estações de monitoramento ao longo do rio São Francisco, a jusante do reservatório de Xingó.	102
Figura 6.3 – Marcos de concreto utilizados na demarcação das áreas de monitoramento dos Processos	102
El USIVOS.	
Figura 6.4 – Hastes de reiro dullizadas para facilitar as ieituras en cada transecto por estação	103
Figura 6.5 - Exemplo de permi de seção de uma estação de monitoriamento de processos erosivos	104
margem do rio numa estação de monitoramento.	105
Figura 6.7 – GPS de Navegação Garmim map 76Sx utilizado na determinação das coordenadas de partida das estações de monitoramento	106
Figura 6.8 – Estação Total Pentax R425VN: utilizada na determinação do plano cotado e dos perfis, bem como nas leituras resultantes do levantamento planialtimétrico.	107
Figura 6.9 – Vistas das Estações de Monitoramento 1.1 (acima) e 1.3 (abaixo), bem como de sua localização na área monitorada (centro)	108
Figura 6.10 - Vistas das Estações de Monitoramento 2.1 (acima) e 2.5 (abaixo), bem como de sua localização na área monitorada (centro)	109
Figura 6.11 – Vistas das Estações de Monitoramento 4.2 (acima) e 4.3 (abaixo), bem como de sua localização na área monitorada (centro)	110
Figura 6.12 – Vistas das Estações de Monitoramento 5.1 (acima) e 5.2 (abaixo), bem como de sua localização na área monitorada (centro)	111
Figura 6.13 – Localização das Estações de Monitoramento situadas entre os reservatórios de Sobradinho e Itaparica	112
Figura 6 14 – Localização das Estações de Monitoramento situadas a jusante da Barragem de Xingó	112
Figura 6 15 – Vistas da estação de monitoramento EM 1.1. com vista detalhada do barranco (abaixo)	113
Figura 6.16 – Imagem de satélite com a localização da Estação de Monitoramento EM 1.1.	
Figura 6 17– Vistas do barranco à beira do rio São Francisco, na estação de monitoramento EM 1.3	114
Figura 6 18- Imagem de satélite com a localização da Estação de Monitoramento EM 1.3	115
Figura 6.19 –Vistas da estação EM 2.1, com evidência de erosão por ação antrópica num ponto de ancoragem de barcos de serviços (esquerda) e presença de certa cobertura vegetal	
(direita)	115
Figura 6.20 – Imagem de satélite com a localização da Estação de Monitoramento EM 2.1	116
Figura 6.21 – Vistas com detalhes da área de monitoramento da estação EM 2.5	116
Figura 6.22 – Imagem de satélite com a localização da Estação de Monitoramento EM 2.5	117
Figura 6.23 – Vista da estação EM 4.2, evidenciando detalhe com solo franco arenoso, sem cobertura vegetal, usado para a criação de gado bovino	117
Figura 6.24 – Imagem de satélite com a localização da Estação de Monitoramento EM 4.2	118
Figura 6.25 – Vistas da estação de monitoramento EM 4.3.	118
Figura 6.26 – Vistas da estação EM 4.3, com detalhes da vegetação rala e a presença de pasto e gado bovino.	119
Figura 6.27 - Imagem de satélite com a localização da Estação de Monitoramento EM 4.3.	
Figura 6.28 - Vistas do barranco (esquerda) e da área de pastagem (direita) na estação de monitoramento FM 5.1	120
Figura 6.29 - Imagem de satélite com a localização da Estação de Monitoramento EM 5.1	120
Figura 6.30 - Vistas do talude na estação M.5.2 constituído nor solo arenoso	120
Figura 6.31 – Imagem de satélite com a localização da Estação de Monitoramento FM 5.2	

ÍNDICE DE TABELAS

Tabela 3.2 – Valores de temperatura, condutividade elétrica, sólidos totais dissolvidos (STD), oxigênio (OD), pH e transparência da água de superfície nas estações de monitoramento de qualidade da água do submédio e baixo Rio São Francisco, durante a campanha de Tabela 3.3 – Valores da concentração de nitrato e fósforo total e da demanda bioquímica de oxigênio (DBO) da água de superfície nas estacões de monitoramento de gualidade da água do submédio e baixo Rio São Francisco, durante a campanha de novembro -Tabela 3.4 – Valores de vazão (m³.s⁻¹) médios diários do Rio São Francisco, conforme as datas de coleta de dados de qualidade da água (azul) e de monitoramento da cunha salina (cinza). Os valores das estações Itaparica, Moxotó e Xingó referem-se aos valores de afluência dos reservatórios. Os demais são valores observados nos postos hidrométricos. Dados Tabela 3.5 – Resultados das variáveis de gualidade da água monitoradas no presente estudo. analisadas em estações de captação do submédio Rio São Francisco durante o mês de Tabela 4.1 - Localização e características das estações utilizadas no Monitoramento da introdução da Tabela 4.2 – Dados de altura da maré durante as fases de lua cheia (16 e 17/11/13) e lua nova (30/11 e 01/12/13), com indicação dos horários de realização das coletas (em azul). Dados Tabela 4.3- Dados da direção e velocidade do vento e da temperatura do ar em cada estação de amostragem da cunha salina, durante a baixamar da maré de sizígia (lua cheia) do dia Tabela 4.4 - Dados da direção e velocidade do vento e da temperatura do ar em cada estação de amostragem da cunha salina, durante a preamar da maré de sizígia (lua cheia) do dia Tabela 4.5 – Dados da direção e velocidade do vento e da temperatura do ar em cada estação de amostragem da cunha salina, durante a baixamar da maré de sizígia (lua cheia) do dia Tabela 4.6 – Dados da direção e velocidade do vento e da temperatura do ar em cada estação de amostragem da cunha salina, durante a preamar da maré de sizígia (lua cheia) do dia Tabela 4.7 - Valores médios da direcão e velocidade do vento e da temperatura do ar durante as coletas nas estações de monitoramento da cunha salina nas diferentes marés de sizígia Tabela 4.9 – Dados da direção e velocidade do vento e da temperatura do ar em cada estação de amostragem da cunha salina, durante a preamar da maré de sizígia (lua nova) do dia Tabela 4.10 - Dados da direção e velocidade do vento e da temperatura do ar em cada estação de amostragem da cunha salina, durante a baixamar da maré de sizígia (lua nova) do dia Tabela 4.11 - Dados da direção e velocidade do vento e da temperatura do ar em cada estação de amostragem da cunha salina, durante a preamar da maré de sizígia (lua nova) do dia Tabela 4.12 - Valores médios da direção e velocidade do vento e da temperatura do ar durante as coletas nas estacões de monitoramento da cunha salina nas diferentes marés de sizígia (lua nova) dos dias 30/11 e 01/12/2013. 41

Tabela 4.13 – Dados da profundidade, velocidade média e direção média da água na coluna em cada estação de amostragem da cunha salina, durante a baixamar da maré de sizígia (lua	40
Tabela 4.14– Dados da profundidade, velocidade média e direção média da água na coluna em cada estação de amostragem da cunha salina, durante a preamar da maré de sizígia (lua cheia) do dia 16/11/2013, na foz do Rio São Francisco	42
Tabela 4.15 – Dados da profundidade, velocidade média e direção média da água na coluna em cada estação de amostragem da cunha salina, durante a baixamar da maré de sizígia (lua cheia) do dia 17/11/2013, na foz do Rio São Francisco	
Tabela 4.16 – Dados da profundidade, velocidade média e direção média da água na coluna em cada estação de amostragem da cunha salina, durante a preamar da maré de sizígia (lua cheia) do dia 17/11/2013, na foz do Rio São Francisco	
Tabela 4.17 – Dados da profundidade, velocidade média e direção média da água na coluna em cada estação de amostragem da cunha salina, durante a baixamar da maré de sizígia (lua nova) do dia 30/11/2013, na foz do Rio São Francisco	
Tabela 4.18 – Dados da profundidade, velocidade média e direção média da água na coluna em cada estação de amostragem da cunha salina, durante a preamar da maré de sizígia (lua nova) do dia 30/11/2013, na foz do Rio São Francisco	51
Tabela 4.19 – Dados da profundidade, velocidade média e direção média da água na coluna em cada estação de amostragem da cunha salina, durante a baixamar da maré de sizígia (lua nova) do dia 01/12/2013, na foz do Rio São Francisco	
Tabela 4.20 – Dados da profundidade, velocidade média e direção média da água na coluna em cada estação de amostragem da cunha salina, durante a preamar da maré de sizígia (lua nova) do dia 01/12/2013, na foz do Rio São Francisco	
Tabela 5.1 - Localização dos prados para o Monitoramento de Macrófitas	85
Tabela 5.2 – Espécies de macrófitas aquáticas com ocorrência em cada região amostrada nos reservatórios de Itaparica e Moxotó. Em negrito, as espécies com ocorrência nos quadrados amostrados na campanha de novembro-dezembro/2013	

ÍNDICE DE QUADROS

Quadro 5.1 – Dados da extensão de cada banco de macrófitas nas regiões amostradas e respectivas estimativas de biomassa úmida e seca total ao longo das coletas realizadas em maio- junho, junho-julho, julho-agosto, agosto-setembro e setembro-outubro/2013	
Quadro 5.1 (continuação) - Dados da extensão de cada banco de macrófitas nas regiões amostradas e respectivas estimativas de biomassa úmida e seca total ao longo da coleta realizada em outubro-novembro e novembro-dezembro/2013.	
Quadro 5.2 – Dados da composição e biomassa (g) das espécies de macrófitas nos quadrados amostrados na região de Petrolândia (IT PTL 01), na amostragem de novembro- dezembro/2013.	
Quadro 5.3 – Dados da composição e biomassa (g) das espécies de macrófitas nos quadrados amostrados na região de Moxotó (MO RM Final – MOX 04), na amostragem de novembro-dezembro/2013	
Quadro 5.4 – Dados da composição e biomassa (g) das espécies de macrófitas nos quadrados amostrados na região de Moxotó (MO RM Inter – MOX 03), na amostragem de novembro-dezembro/2013.	

APRESENTAÇÃO

A Fundação Apolônio Sales de Desenvolvimento Educacional - FADURPE, através deste documento, apresenta o 3°. Relatório Mensal conforme Plano de Trabalho Consolidado em atendimento ao Termo de Referência elaborado pela CHESF, conforme o Contrato CTNI - 92.2013.2490.00, em função da Autorização Especial N° 1/2013 (IBAMA).

Conforme o escopo do referido Termo de Referência, o trabalho tem como objeto o monitoramento dos ecossistemas aquáticos do Rio São Francisco na área de abrangência, nos aspectos relativos à qualidade de água, introdução da cunha salina, desenvolvimento de macrófitas aquáticas e processos erosivos, durante o período de redução de vazão do rio.

A área de abrangência definida refere-se aos trechos do submédio e baixo Rio São Francisco, de jusante da UHE Sobradinho até sua foz, compreendendo os reservatórios e trechos lóticos neles inseridos, submetidos à redução de vazão de que trata a Autorização Especial n°.01/2013, emitida pelo IBAMA em 01 de abril de 2013.

1. INTRODUÇÃO

Este Relatório tem por objetivo o atendimento às condicionantes referentes à autorização Especial n° 1/2013 concedida pelo IBAMA para reduzir, em caráter emergencial, a vazão em todo o vale do São Francisco a jusante das barragens de Sobradinho e de Xingó para 1.100 m³/s. Apresenta a situação de atendimento de suas condicionantes, mais especificamente as condicionantes 2.2, 2.3 e parte da 2.4 da Autorização Especial n°1/2013 do IBAMA.

Com base no histórico de operação e do processo de licenciamento ambiental da UHE Xingó, relata-se que em três ocasiões anteriores a Chesf já foi autorizada a operar o seu conjunto de Hidrelétricas no São Francisco, com uma vazão defluente mínima da UHE Xingó abaixo de 1.300 m³/s. Essas ocasiões foram:

1^a – Durante o racionamento de energia elétrica de 2001/2002, quando foi permitido que a vazão defluente de Xingó fosse de 1.000 m³/s, autorizado pela Resolução n° 39, de 21 de agosto de 2001 da Câmera de Gestão da Crise de Energia Elétrica.

2^a – Devido a violação da Curva de Aversão a Risco em 2003, foi autorizado pela Licença Especial do Ibama nº 01/2003, que autorizou a operação com uma vazão defluente da UHE Xingó a 1.100 m³/s.

3^a – Entre os meses de outubro de 2007 e fevereiro de 2008, devido à situação hidrometereológica crítica, foi autorizada a vazão defluente da UHE Xingó em 1.100 m³/s, pela Licença Especial do IBAMA n° 01/2007.

A Autorização Especial nº1/2013, que estabelece a redução da vazão do Rio em caráter emergencial a partir das UHE Sobradinho, Complexo Hidrelétrico Paulo Afonso e UHE Xingó, é válida por 6 meses, a contar do momento em que a CHESF comunicar ao IBAMA que já foram adotadas todas as ações de responsabilidade das diversas entidades e usuários, a jusante de Sobradinho, que possibilitam a redução da restrição da defluência.

Assim sendo, considerando a manutenção da situação de restrição de vazão, a supracitada Autorização foi prorrogada automaticamente e continua em vigor. A mesma deverá ser suspensa quando o regime hídrico do Rio São Francisco atingir uma vazão que permita às Usinas Hidrelétricas operarem com uma vazão residual mínima de 1.300 m³/s, podendo ser caso não se atinja a condição disposta anteriormente.

Neste sentido, este Relatório Mensal apresenta os dados da 13^a. e 14^a. Campanhas do Programa de Monitoramento da Cunha Salina, assim como a 7^a. Campanha dos

Programas de Monitoramento da Qualidade da Água, Monitoramento das Macrófitas Aquáticas e Monitoramento de Processos Erosivos.

2. OBJETIVOS

Monitorar os ecossistemas aquáticos do Rio São Francisco na área de abrangência definida no item anterior, nos aspectos relativos à qualidade de água, introdução da cunha salina, desenvolvimento de macrófitas aquáticas e ocorrência de processos erosivos.

Especificamente, este relatório corresponde à:

- Segunda Campanha do Monitoramento da Qualidade da Água;
- Terceira e Quarta Campanhas do Monitoramento da Introdução da Cunha Salina;
- Segunda Campanha do Monitoramento de Macrófitas Aquáticas;
- Segunda Campanha do Monitoramento de Processos Erosivos.

As atividades desenvolvidas no âmbito de cada monitoramento acima citado, assim como os resultados levantados, estão detalhadas nos itens posteriores.

3. MONITORAMENTO DA QUALIDADE DA ÁGUA

O monitoramento da qualidade da água foi subdividido em duas etapas distintas, uma a partir de dados primários e outra, a partir de dados secundários, coletados junto às empresas que captam as águas do Rio São Francisco para abastecimento humano.

3.1 MONITORAMENTO MENSAL DA QUALIDADE DA ÁGUA – DADOS PRIMÁRIOS

3.1.1 METODOLOGIA

As amostras de água para determinação das variáveis físicas e químicas foram coletadas com uma garrafa Van Dorn, com capacidade de 5,0 L, na superfície. Após determinação *in situ* das variáveis, as amostras foram acondicionadas em garrafas PET e refrigeradas em caixas isotérmicas com gelo para seu transporte até Recife (PE), para serem analisadas.

Determinação de variáveis in situ

As variáveis temperatura (°C), pH, condutividade elétrica (µS.cm⁻¹), oxigênio dissolvido da água (mg.L⁻¹ e % Sat.), salinidade e sólidos totais dissolvidos (STD)(g.L⁻¹), foram determinadas mediante o uso de um analisador multiparâmetros YSI 556.

A transparência da água foi estimada através da leitura da profundidade média de extinção de disco de Secchi (Zds), medida à sombra.

Determinação de variáveis em laboratório

A concentração de nitrato (μ g.L⁻¹ N), foi determinada segundo Mackereth et al. (1978), o fósforo total (μ g.L⁻¹ P) foi determinado segundo Strickland & Parsons (1960) e o DBO_{5/20} segundo a metodologia constante de APHA (1995).

Estações de Monitoramento

As estações de monitoramento limnológico, num total de vinte e uma (21), foram distribuídas no trecho lótico entre Sobradinho e Itaparica (4 estações), no reservatório de Itaparica (5 estações), no reservatório de Moxotó (4 estações), no reservatório de PA IV (1 estação), no reservatório de Xingó (3 estações) e no trecho lótico do baixo São Francisco (4

estações), de acordo com a Figura 3.1 e Tabela 3.1. Todas as estações tiveram suas posições definitivas devidamente georreferenciadas, empregando-se um receptor GPS.

Figura 3.1 - Localização das estações de monitoramento da qualidade da água.

Trecho	Estação	Localização	Latitude (Sul)	Longitude (Oeste)
	SOB 22	Petrolina/Juazeiro	09°24′23′′	040°29′47′′
Lótico, entre	SOB 24	Vermelhos	09°05′19′′	040°07′16′′
Itaparica	SOB 25	Santa Maria da Boa Vista	08°48′32′′	039°49′39′′
	SOB 29	lbó	08°37′54′′	039°14′31′′
	ITA 01	Belém de São Francisco	08°47'30"	038°57'42"
	ITA 04	Rodelas	08°54'21"	038°41'05"
Reservatório de Itaparica	ITA 08	Petrolândia	08°55'58"	038°31'00"
	ITA 10	Petrolândia	08°59'48"	038°14'09"
	ITA 11	Barragem	09°05'02"	038°21'14"
	MOX 02	Jusante de Jatobá	09°14'05"	038°16'53"
Reservatório de	MOX 03	Braço do Rio Moxotó	09°16'16"	038°09'58"
Moxotó	MOX 04	Braço do Rio Moxotó	09°18'45"	038°13'15"
	MO PI 09	Próximo a Pisciculturas	09°19'10"	038°14'49"
Reservatório de PAIV	PAIV 01	Final do canal	09°24'31"	038°13'48"
	XIN 01	Paulo Afonso	09°26′26″	038°09′18″
Reservatório de Xingó	XIN 04	Corpo do Reservatório	09°29'57"	037°59'58"
Ŭ	XIN 10	Canindé de São Francisco	09°36'22"	037°52'49"
	BSF 02	Entremontes	09°42′15″	037°37′34″
Lótico, Baixo São	BSF 06	Belo Monte	09°53′45″	037°14′28″
Francisco	BSF 11	Porto Real do Colégio	10°11′30″	036°50′30″
	BSF 16	Piaçabuçu	10°26′04″	036°25′28″

A coleta de campo foi realizada no período de 21 de novembro a 01 de dezembro de 2013.

3.1.2 RESULTADOS

Ficha de Monitoramento dos Pontos de Controle

A) Mapa de localização das estações de monitoramento da qualidade da água

B) Dados da coleta

Os resultados das variáveis monitoradas em campo e analisadas em laboratório nas estações de amostragem constam, respectivamente, das Tabelas 3.2 e 3.3. As Figuras 3.2 a 3.12 apresentam a variação espacial das variáveis nas diferentes estações de amostragem. Dados de vazão do Rio São Francisco em estações de monitoramento hidrológico localizadas ao longo do trecho monitorado, relativos aos dias de coleta, constam da Tabela 3.4.

Tabela 3.2 – Valores de temperatura, condutividade elétrica, sólidos totais dissolvidos (STD), oxigênio (OD), pH e transparência da água de superfície nas estações de monitoramento de qualidade da água do submédio e baixo Rio São Francisco, durante a campanha de novembro - dezembro/2013.

Estaçõos	Temperatura	Condutividade	STD	Salinidado	OD	OD	nH	Secchi
Estações	(°C)	mS.cm⁻¹	g.L ⁻¹	Salimuaue	%Sat.	mg.L ⁻¹	рп	(M)
SOB 22	24,90	60	0,039	0,03	103,50	8,57	7,94	2,70
SOB 24	24,80	59	0,039	0,03	105,60	8,95	7,71	1,80
SOB 25	25,34	59	0,039	0,03	105,50	8,66	7,81	3,00
SOB 29	25,57	60	0,039	0,03	106,90	8,74	7,72	3,40
ITA 01	25,91	60	0,039	0,03	108,60	8,82	7,75	3,20
ITA 04	26,34	61	0,039	0,03	107,50	8,66	7,69	3,30
ITA 08	26,31	64	0,041	0,03	105,80	8,53	7,69	4,80
ITA 10	27,12	66	0,043	0,03	108,00	8,59	7,91	3,80
ITA 11	26,76	65	0,042	0,03	109,30	8,73	7,84	4,00
MOX 02	26,56	65	0,042	0,03	106,40	8,53	7,74	4,70
MOX 03	28,20	74	0,048	0,03	84,60	6,47	7,12	3,50
MOX 04	27,20	66	0,043	0,03	119,50	9,48	8,36	4,20
MO PI 09	27,10	65	0,042	0,03	110,50	8,79	7,84	4,15
XIN 01	26,21	65	0,042	0,03	102,50	8,28	7,56	4,85
XIN 04	27,21	66	0,043	0,03	110,90	8,81	7,97	3,80
XIN 10	28,94	68	0,044	0,03	120,60	9,28	8,56	2,80
PA IV 01	26,39	65	0,042	0,03	105,70	8,51	7,62	4,90
BSF 02	26,31	65	0,043	0,03	102,90	8,28	7,48	7,00
BSF 06	27,18	66	0,043	0,03	126,10	9,85	7,23	7,00
BSF 11	27,67	65	0,043	0,03	112,90	8,89	7,66	3,00
BSF 16	28,54	3244	2,105	1,67	122,40	9,27	6,59	2,00

Figura 3.2 – Variação da temperatura da água de superfície nas estações de monitoramento de qualidade da água do submédio e baixo Rio São Francisco, durante a campanha de novembro - dezembro/2013.

Figura 3.3 – Variação do pH da água de superfície nas estações de monitoramento de qualidade da água do submédio e baixo Rio São Francisco, durante a campanha de novembro - dezembro/2013. As barras vermelhas indicam os limites inferior e superior estabelecidos pela Resolução nº 357/2005 CONAMA para águas da Classe 2.

Figura 3.4 – Variação da condutividade elétrica da água de superfície nas estações de monitoramento de qualidade da água do submédio e baixo Rio São Francisco, durante a campanha de novembro - dezembro/2013.

Figura 3.5 – Variação da concentração de sólidos totais dissolvidos da água de superfície nas estações de monitoramento de qualidade da água do submédio e baixo Rio São Francisco, durante a campanha de novembro - dezembro/2013.

Figura 3.6 – Variação da salinidade da água de superfície nas estações de monitoramento de qualidade da água do submédio e baixo Rio São Francisco, durante a campanha de novembro - dezembro/2013.

Figura 3.7 – Variação da concentração de oxigênio dissolvido da água de superfície nas estações de monitoramento de qualidade da água do submédio e baixo Rio São Francisco, durante a campanha de novembro - dezembro/2013. A barra vermelha indica o limite mínimo estabelecido pela Resolução nº 357/2005 CONAMA para águas da Classe 2.

Figura 3.8 – Variação da saturação de oxigênio dissolvido da água de superfície nas estações de monitoramento de qualidade da água do submédio e baixo Rio São Francisco, durante a campanha de novembro - dezembro/2013.

Figura 3.9 – Variação da transparência da água nas estações de monitoramento de qualidade da água do submédio e baixo Rio São Francisco, durante a campanha de novembro - dezembro/2013.

Tabela 3.3 – Valores da concentração de nitrato e fósforo total e da demanda bioquímica de oxigênio (DBO) da água de superfície nas estações de monitoramento de qualidade da água do submédio e baixo Rio São Francisco, durante a campanha de novembro - dezembro/2013.

Fataaãaa	Nitrato	Fósforo total	DBO
Estações	mg.L ⁻¹	mg.L ⁻¹	mg.L ⁻¹
SOB 22	2,834	20,600	0,80
SOB 24	4,669	18,025	1,00
SOB 25	0,049	48,925	1,30
SOB 29	3,451	43,775	0,90
ITA 01	0,049	10,300	1,90
ITA 04	0,350	0,004	1,20
ITA 08	0,033	10,300	1,70
ITA 10	0,366	43,775	1,10
ITA 11	0,033	12,875	1,00
MOX 02	1,900	23,175	1,10
MOX 03	0,049	23,175	1,20
MOX 04	3,435	69,525	0,80
MOPI 09	0,666	2,575	0,90
PA IV 01	0,666	15,450	0,90
XIN 01	0,382	25,750	0,80
XIN 04	0,033	28,325	1,30
XIN 10	0,350	25,750	0,70
BSF 02	34,285	28,325	1,30
BSF 06	13,006	15,450	0,70
BSF 11	5,002	30,900	0,80
BSF 16	2,201	15,450	0,70

Figura 3.10 – Variação da concentração de nitrato da água de superfície nas estações de monitoramento de qualidade da água do submédio e baixo Rio São Francisco, durante a campanha de novembro - dezembro/2013.

Figura 3.11 – Variação da concentração de fósforo total da água de superfície nas estações de monitoramento de qualidade da água do submédio e baixo Rio São Francisco, durante a campanha de novembro - dezembro/2013. A barra vermelha indica o limite estabelecido pela Resolução no. 357/2005 CONAMA para águas da Classe 2, respectivamente para ambientes lóticos (50 µg.L⁻¹) e lênticos (30 µg.L⁻¹).

Figura 3.12 – Variação da demanda bioquímica de oxigênio da água de superfície nas estações de monitoramento de qualidade da água do submédio e baixo Rio São Francisco, durante a campanha de novembro - dezembro/2013.

Tabela 3.4 – Valores de vazão (m³.s⁻¹) médios diários do Rio São Francisco, conforme as datas de coleta de dados de qualidade da água (azul) e de monitoramento da cunha salina (cinza). Os valores das estações *Itaparica, Moxotó e Xingó* referem-se aos valores de afluência dos reservatórios. Os demais são valores observados nos postos hidrométricos. Dados fornecidos pela DORH/CHESF.

	Data							
Estações	16/nov	17/nov	21/nov	25/nov	26/nov	28/nov	30/nov	01/dez
Juazeiro	1308	1341	1323	1276	1262	1397	1294	1374
Sta M ^a da Boa								
Vista	1202	1196	1196	1207	1196	1191	1415	1207
lbó	1452	1351	1345	1523	1371	1351	1634	1488
Itaparica	1370	1080	1345	1310	920	1020	1100	1280
Moxotó	973	1105	1604	1188	1143	988	937	1176
Xingó	1058	1093	1523	1223	1065	988	995	1326
Piranhas	1119	1133	1414	1209	1203	1100	1083	1253
Pão de Açúcar	1196	1210	1411	1262	1281	1210	1190	1268
Propriá	1272	1203	1256	1253	1256	1249	1147	1158

Temperatura

Os valores de temperatura da água registrados entre as estações refletem a temperatura do ar na região. Devido à elevada insolação em toda a região de monitoramento, a água acompanhou a mesma tendência, apresentando temperaturas tipicamente elevadas. A mais baixa ocorreu no trecho lótico inicial e a mais elevada no reservatório de Xingó, apresentando uma variação de 24,80°C em SOB 24 até 28,94°C em XIN 10, com média de temperatura de 26,69°C para todas as estações e, apresentando ainda um padrão espacial de incremento de temperatura em direção à foz (Tabela 3.2 e Figura 3.2). Analisando os dados médios por ambiente, o reservatório de Xingó apresentou a maior média de 27,45°C, seguido pelo trecho lótico final com 27,43°C, enquanto que a menor média ficou no trecho lótico inicial de 25,15°C.

Condutividade elétrica, Sólidos totais dissolvidos e Salinidade

As variáveis condutividade elétrica, concentração de sólidos totais dissolvidos (STD) e salinidade são intimamente correlacionadas entre si, tendo sido determinadas por método potenciométrico. Estas variáveis estão relacionadas à presença de íons em solução e, por esta razão, suas variações temporais e espaciais apresentam comportamento semelhante. Observa-se que os valores das três variáveis na estação BSF 16 apresentou-se mais elevados quando comparado com os demais, fato este, decorrente da coleta ocorrer na preamar e desta forma no momento da leitura houve forte influencia do ambiente marinho na variação dos valores dos parâmetros. A condutividade elétrica apresentou valores de 59 µS.cm⁻¹ em SOB 24 e SOB 25, no trecho lótico inicial, a 3244 µS.cm⁻¹ em BSF 16, no trecho lótico final, apresentando ainda um segundo pico de 74 µS.cm⁻¹ em MOX 03 no reservatório de Moxotó, apresentando ainda uma média de 64,20 µS.cm⁻¹ para todas as estações de amostragem, exceto a BSF 16 devido à discrepância ocasionada pela influência do ambiente marinho. Quanto à média dos valores de condutividade elétrica por ambiente, a mais elevada ficou com o reservatório de Moxotó com 68 µS.cm⁻¹ seguida do reservatório de Xingó com 66 μS.cm⁻¹ enguanto que a média mais baixa foi registradas no trecho lótico inicial com 60 μS.cm⁻¹. Os sólidos totais dissolvidos variaram de 0,039 g.L⁻¹ nas estações SOB 22 a SOB 29 e de ITA 01 a ITA 04, a 2,105 g.L⁻¹ em BSF 16 e um segundo pico em MOX 03 de 0,048 g.L⁻¹ e uma média para todas estações exceto a BSF 16 de 0,042 g.L⁻¹. Quanto às médias por 27

ambiente, novamente o reservatório de Moxotó apresentou-se com valor mais elevado de 0,044 g.L⁻¹ e o menor no trecho lótico inicial com 0,039 g.L⁻¹, enquanto que a salinidade apresentou valores de 0,03 em todas as estações, exceto em BSF 16 que foi registrado 1,67 (Tabela 3.2 e Figuras 3.4, 3.5 e 3.6). A salinidade da água nas diferentes estações está em conformidade com a Resolução CONAMA 357, no que se refere à água doce, com salinidade inferior a 0,5, exceto a estação BSF 16 durante a preamar que ultrapassou esse valor. Nos gráficos das três variáveis não é mostrada a estação BSF 16 por motivos de escala.

Oxigênio dissolvido

As concentrações mensuradas de oxigênio dissolvido, bem como seu percentual de saturação foram elevadas, apresentando valores que variaram de 6,47 mg.L⁻¹ e 84,6% a 9,85 mg.l⁻¹ e 126,10 % de concentração e saturação respectivamente. Apresentando ainda, uma média de concentração de oxigênio de 8,70 mg.L⁻¹ para todas as estações de amostragem (Tabela 3.2). Nas médias de concentração por ambiente se destaca o trecho lótico final com 9,07 mg.L⁻¹ seguido pelo reservatório de Xingó com 8,79 mg.L⁻¹, enquanto que a média mais baixa ficou com o reservatório de Moxotó com 8,32 mg.L⁻¹.

Na Figura 3.7 observa-se que nenhuma estação apresentou concentração de oxigênio dissolvido abaixo do limite mínimo recomendado pela Resolução nº. 357 do CONAMA, segundo a qual o oxigênio dissolvido em qualquer amostra não pode ser inferior a 5,0 mg.L⁻¹ O₂ para águas da classe 2.

рΗ

Os valores de pH apresentaram-se predominantemente alcalinos ao longo de todas as estações amostradas, com exceção apenas da estação BSF 16 que se apresentou levemente ácida, tendo variado de 6,59 em BSF 16 a 8,56 em XIN 10 e uma média de pH de 7,70 (Tabela 3.2 e Figura 3.3). Analisando os dados por ambiente, verificamos que a maior média de pH mostrou-se no reservatório de Xingó com 8,03 e a menor no trecho lótico final com 7,24. Deste modo, os valores mensurados são compatíveis com aqueles recomendados pela Resolução nº. 357/05 do CONAMA, cujo padrão para águas de classe 2 é de pH entre 6,0 e 9,0, em todas as estações de monitoramento.

Transparência

A transparência da água, expressa através da leitura da profundidade do disco de Secchi, apresentou valor igual e abaixo dos 2,00 m de profundidade no trecho lótico inicial e final (estações SOB e BSF), devendo salientar que na estação SOB 24 a transparência foi mensurada até o fundo do rio devido a pouca profundidade da estação no momento da coleta, enquanto que no reservatório de Itaparica chegou a 4,80 m em ITA 08 e a 4,70 m no reservatório de Moxotó em MOX 02. Em Xingó, o valor máximo chegou a 4,85 m em XIN 01 enquanto que no Baixo São Francisco ocorreram dois picos de 7,00 m em BSF 02 e BSF 06, provavelmente devido à baixa produtividade primária na região lótica a jusante (Tabela 3.2 e Figura 3.9). A média geral para todas as estações ficou em 3,90 m, enquanto que a média por ambiente foi mais elevada no reservatório de PA IV com 4,90 m, seguida de 4,75 m no trecho lótico final e a menor média foi registrada nas estações SOB no trecho lótico inicial.

Nitrato

As concentrações de nitrato apresentaram uma ampla variação entre as estações, dependendo de cada ambiente no qual foi mensurado. Variou de 0,033 µg.L⁻¹ em ITA 08, ITA 11 e XIN 04 até 34,285 µg.L⁻¹ em BSF 02 (Tabela 3.3). As concentrações mais elevadas ocorreram no trecho lótico final, entre BSF 02 e BSF 11, e as mais baixas nos reservatórios de Itaparica e Xingó com concentrações abaixo de 1,00 µg.L⁻¹ (Figura 3.10). Apresentou ainda uma média de 3,515 µg.L⁻¹ para todas as estações de amostragem e uma média por ambiente mais alta no trecho lótico final com 13,623 µg.L⁻¹ e uma mais baixa no reservatório de Itaparica com 0,166 µg.L⁻¹. Os valores mensurados de concentrações de nitrato para o período de novembro - dezembro/2013 estão dentro dos padrões estabelecidos pela Resolução 357/05 do CONAMA, que é de 10,0 mg.L⁻¹.

Fósforo total

As concentrações de fósforo total mensuradas no período variaram de 0,004 μ g.L⁻¹ em ITA 04 a 69,525 μ g.L⁻¹ em MOX 04 e uma concentração média de 24,401 μ g.L⁻¹ para todas as estações de amostragem (Tabela 3.3).

As concentrações de fósforo total de grande parte das estações do trecho monitorado estão abaixo do limite estabelecido pelo CONAMA, que é de 30 µg.L⁻¹ para ambientes lênticos e de 50 µg.L⁻¹ P para ambientes lóticos. No trecho lótico, nenhuma das estações ultrapassou o valor limite, e no trecho lêntico, as estações ITA 10 localizada no reservatório de Itaparica, e MOX 04 no reservatório de Moxotó apresentaram concentrações superiores ao limite recomendado. Observou-se, ainda, que as menores médias de concentração foram para o reservatório de PA IV e de Itaparica, da ordem de 15,450 µg.L⁻¹ e 15,451µg.L⁻¹ respectivamente, e o trecho lótico inicial com a mais alta, com 32,831 µg.L⁻¹ e uma grande variabilidade espacial das concentrações, mostrando vários incrementos e reduções nos diversos ambientes ao longo de todo trecho de monitoramento (Figura 3.11).

DBO

A demanda bioquímica de oxigênio nas estações de amostragem variou entre 0,70 e 1,90 mg.L⁻¹, valores inferiores ao limite de 3,0 mg.L⁻¹, estabelecido para águas da classe 2 pela Resolução no. 357/CONAMA, (Tabela 3.3, Figura 3.12). O nível mais elevado foi registrado no reservatório de Itaparica em ITA 01 e o mais baixo em XIN 10, BSF 06 e BSF 16. Apresentou uma média de 1,052 mg.L⁻¹ para todas as estações de amostragem, enquanto que avaliando-se por ambiente o reservatório de PA IV apresentou a DBO mais baixa e o reservatório de Itaparica a mais alta, com 0,900 mg.L⁻¹ e 1,380 mg.L⁻¹, respectivamente.

De acordo com os últimos dados de monitoramento realizado na área de estudo em outubro-novembro/13, foram registrados valores médios atuais mais elevados de oxigênio dissolvido e transparência, valores semelhantes de STD e de salinidade, e uma pequena redução da temperatura, condutividade e do pH. Analisando os ambientes distintos, observa-se que no trecho lótico inicial ocorreu uma redução dos valores atuais da temperatura, condutividade e STD, um pequeno aumento da concentração de oxigênio dissolvido, pH e da transparência e e valores semelhantes apenas da salinidade. Quanto ao reservatório de Itaparica ocorreu uma redução dos valores de temperatura, condutividade e STD e salinidade. Quanto ao reservatório da sestações do reservatório de Moxotó – MOX 02 a MO PI 09 – ocorreu uma semelhança apenas no valor de salinidade, um aumento do pH e da transparência e

uma redução dos valores de temperatura, condutividade, STD e oxigênio. Em PA IV, ocorreu um aumento no valor da temperatura e da transparência, uma semelhança nos valores de condutividade, STD e salinidade e uma redução em oxigênio dissolvido e pH.

Analisando os dados da última campanha do reservatório de Xingó, verifica-se que ocorreu um aumento dos valores médios de oxigênio dissolvido e na transparência, uma pequena redução dos valores de temperatura, condutividade e pH e uma semelhança nos valores de STD e salinidade. No Baixo São Francisco – BSF 02 a BSF 16, analisando os últimos dados mais próximos ao período de análise atual, verifica-se uma redução nos valores médios de condutividade elétrica, pH e da transparência, um aumento na temperatura e oxigênio dissolvido e uma semelhança nos valores de STD e na salinidade, excluindo a estação BSF 16 pelos motivos citados anteriormente.

Quanto às variáveis analisadas em laboratório, ocorreu uma redução dos valores médios de concentração de todas as estações da ordem de 1,973 μg.L⁻¹ para o nitrato, 12,998 μg.L⁻¹ para o fósforo total e de 0,529 mg.L⁻¹para o DBO. O nitrato apresentou concentrações médias diferente nos diferentes ambientes e quando comparadas com os dados obtidos na campanha anterior, observamos que ocorreu uma redução dos níveis de concentração média nos reservatórios e no trecho lótico final, sendo os mais expressivos em PA IV, da ordem de 12,641 μg.L⁻¹, enquanto que o pequeno aumento de concentração ocorreu apenas no trecho lótico inicial. Quanto ao fósforo total, ocorreu uma redução das concentrações médias no trecho lótico inicial, reservatório de Itaparica, reservatório de PA IV, reservatório de Xingó, sendo o mais expressivo em PA IV com 61,800 μg.L⁻¹ seguido do reservatório de Xingó com 22,317 μg.L⁻¹, um incremento de concentração no reservatório de Moxotó e uma semelhança de concentração no trecho lótico final

Com relação à demanda bioquímica do oxigênio (DBO), no período atual (novembrodezembro) ocorreu uma redução em todos os ambientes analisados em seus valores médios. A redução mais acentuada ocorreu no reservatório de PA IV com 1,400 mg.L⁻¹.

3.2 MONITORAMENTO MENSAL DA QUALIDADE DA ÁGUA NAS CAPTAÇÕES PARA ABASTECIMENTO PÚBLICO – DADOS SECUNDÁRIOS

Dados relativos ao monitoramento da qualidade da água do rio São Francisco têm sido obtidos junto às empresas operadoras e reguladoras do abastecimento público na área de abrangência, com captação de água bruta no rio, para aquisição dos dados mensais de monitoramento de qualidade de água.

As empresas contactadas são:

- Companhia de Saneamento de Alagoas (CASAL)
- Companhia de Saneamento de Sergipe (DESO)
- COMPESA Gerência de Unidade de Negócios Regional São Francisco
- EMBASA Empresa Baiana de Águas e Saneamento

Os laudos obtidos até o momento constam do Anexo 1 e a Tabela 3.5 resume os valores das variáveis analisadas no monitoramento da qualidade da água (item 3.1), conforme resultados constantes dos laudos obtidos da Companhia de Saneamento de Sergipe (DESO).

Tabela 3.5 – Resultados das variáveis de qualidade da água monitoradas no presente estudo, analisadas em estações de captação do submédio Rio São Francisco durante o mês de novembro/2013.

		Variável			
Local	Data	рН	Nitrato	Fósforo total	DBO
			(mg.L ⁻¹)	(mg.L ⁻¹)	$(mg.L^{-1})$
Porto da Folha#					
Amparo do São					
Francisco#					
Canal ADUSF	25/11/2013	7,63	<0,20	< 0,10	ausente

#Dados não disponibilizados até a data de entrega do relatório.

Os resultados disponíveis evidenciam valores de pH compatíveis com aqueles registrados ao longo das estações monitoradas e concentrações de nitrato superiores às registradas, sendo que aquelas de fósforo total não permitem uma comparação de valores.

4. MONITORAMENTO DA INTRODUÇÃO DA CUNHA SALINA

4.1 METODOLOGIA

O Monitoramento da Cunha Salina acompanhou o comportamento do ambiente estuarino do Rio São Francisco em dois picos mensais das marés de Sizígia. Os níveis de maré oceânica foram medidos no mês em maré de sizígia (lua nova e lua cheia), durante períodos de preamar e baixamar ao longo de 24 horas (2 ciclos inteiros de maré). O horário da maré foi ajustado em funcão dos dados da tábua de maré referente ao Porto de Aracaju. Foram mensuradas a velocidade e a direção do vento e a temperatura do ar em cada estação durante as coletas, empregando uma estação portátil Kestrel 5400 (Figura 4.1). Os perfis verticais de velocidade da corrente foram determinados a cada metro entre a superfície e o fundo, empregando um correntógrafo Aquadopp modelo AQD 5776 (Figura 4.1). As medições em cada profundidade foram determinadas a cada 20 segundos, com base no valor médio de 4 medidas com intervalo de 5 segundos entre elas. A temperatura, a salinidade e a condutividade elétrica específica da água em perfil vertical até o fundo foram determinadas com um mini-CTD YSI CastAway (Figura 4.1). As estações de monitoramento da cunha salina, num total de catorze (14) foram distribuídas na região da lótica do baixo Rio São Francisco distando entre 4,7 a 11,7 km da foz (Tabela 5.2). A Figura 4.2 apresenta a localização das estações para o acompanhamento da cunha salina. Todas as estações tiveram suas posições definitivas devidamente georreferenciadas, empregando-se um receptor GPS Garmin etrex, conforme Tabela 4.1.

Figura 4.1 – Instrumentos empregados na mensuração de variáveis meteorológicas e hidrológicas: mini-estação Kestrel (esquerda), mini-CTD YSI CAstAway (meio) e correntômetro Aquadopp modelo AQD 5776 (direita).

Figura 4.2 - Localização das estações de monitoramento da introdução da cunha salina.

Tabela 4.1 - Localização e características das estações utilizadas no Monitoramento da introdução da cunha salina.

Estação	Profundidade (m)	Latitude (Sul)	Longitude (Oeste)	Distância da foz (m)
ESF 09	5,5	10°27′40″	036°24′26″	4.793
ESF10	5,0	10°27′26″	036°24′34″	5.291
ESF11	6,5	10°27′11″	036°24′42″	5.794
ESF12	5,0	10°26′57″	036°24′50″	6.310
ESF13	4,5	10°26′43″	036°25′00″	6.814
ESF14	3,5	10°26′31″	036°25′11″	7.315
ESF15	3,0	10°26′18″	036°25′21″	7.814
ESF16	4,5	10°26′04″	036°25′27″	8.307
ESF17	6,5	10°25′48″	036°25′32″	8.810
ESF18	5,5	10°25'34"	036°25'42"	9.337
ESF19	5,5	10°25'17"	036°25'46"	9.864
ESF20	6,0	10°25'00"	036°25'50"	10.308
ESF21	11,0	10°24'46"	036°25'59"	10.828
ESF22	8,0	10°24'22"	036°26'20"	11.736

A coleta de campo na primeira campanha (lua cheia) foi realizada no período 16 a 17 de novembro e a segunda campanha (lua nova), entre os dias 30 de novembro e 01 de dezembro de 2013.

4.2 RESULTADOS

Ficha de Monitoramento dos Pontos de Controle

A) Mapa de localização das estações de monitoramento de cunha salina

B) Dados da estação de coleta

A Tabela 4.2 apresenta os valores de altura das marés de baixamar e preamar durante os dias de amostragem, nas duas fases lunares (cheia e nova) relativas às marés de sizígia. As Tabelas e Figuras apresentadas contêm Os dados relativos às variáveis meteorológicas (velocidade e direção do vento e temperatura do ar) de cada estação, nas marés e luas amostradas constam das Tabelas 4.3 a 4.6 (lua cheia) e 4.8 a 4.11 (lua nova), cujos valores médios são resumidos nas Tabelas 4.7 e 4.12.

Tabela 4.2 – Dados de altura da maré durante as fases de lua cheia (16 e 17/11/13) e lua nova (30/11 e 01/12/13), com indicação dos horários de realização das coletas (em azul). Dados relativos ao Porto de Aracaju (DHN).

Lua	Data	Hora	Altura maré (m)
Cheia -	SÁB 16/11/2013	03:06	2,0
		09:13	0,3
		15:19	2,0
		21:34	0,2
	DOM 17/11/2013	03:43	2,0
		09:51	0,3
		15:53	2,0
		22:08	0,2
Nova -	SÁB 30/11/2013	01:51	2,0
		08:11	0,3
		14:11	2,0
		20:36	0,2
	DOM 01/12/2013	02:38	2,1
		08:56	0,2
		14:54	2,1
		21:17	0,1

Tabela 4.3– Dados da direção e velocidade do vento e da temperatura do ar em cada estação de amostragem da cunha salina, durante a baixamar da maré de sizígia (lua cheia) do dia 16/11/2013, na foz do Rio São Francisco.

Data	Hora	Estação	Direção (°)	Velocidade (m.s ⁻¹)	Temp. ar (°C)
	08:13	ESF 09	80	4,50	27,70
	08:37	ESF 10	114	4,20	27,50
	08:45	ESF 11	115	4,50	27,90
	08:53	ESF 12	110	3,20	27,90
	09:00	ESF 13	112	4,90	27,20
3	09:08	ESF 14	105	5,40	27,10
/20	09:15	ESF 15	110	4,40	27,40
6/11	09:20	ESF 16	70	2,20	27,70
、	09:30	ESF 17	95	1,90	28,50
	09:40	ESF 18	114	6,30	27,20
	09:50	ESF 19	90	2,80	27,10
	09:57	ESF 20	62	5,30	28,10
	10:09	ESF 21	110	6,20	27,30
	10:20	ESF 22	120	3,40	27,70
Média			100,50	4,23	27,59

Tabela 4.4 – Dados da direção e velocidade do vento e da temperatura do ar em cada estação de amostragem da cunha salina, durante a preamar da maré de sizígia (lua cheia) do dia 16/11/2013, na foz do Rio São Francisco.

Data	Hora	Estação	Direção (°)	Velocidade (m.s ⁻¹)	Temp. ar (°C)
	14:20	ESF 09	105	3,00	26,90
	14:25	ESF 10	71	2,90	27,00
	15:30	ESF 11	76	2,20	27,40
	14:38	ESF 12	80	2,00	27,50
	14:45	ESF 13	105	1,80	27,10
13	14:53	ESF 14	100	2,20	27,30
/20	15:00	ESF 15	105	3,00	27,20
6/11	15:05	ESF 16	90	4,30	27,20
~	15:11	ESF 17	63	1,80	27,30
	15:20	ESF 18	77	3,00	27,20
	15:27	ESF 19	75	1,90	26,90
	15:35	ESF 20	55	2,80	27,10
	15:45	ESF 21	62	2,40	27,00
	15:55	ESF 22	70	2,80	27,00
Média			81,00	2,58	27,15

Tabela 4.5 – Dados da direção e velocidade do vento e da temperatura do ar em cada estação de amostragem da cunha salina, durante a baixamar da maré de sizígia (lua cheia) do dia 17/11/2013, na foz do Rio São Francisco.

Data	Hora	Estação	Direção (°)	Velocidade (m.s ⁻¹)	Temp. ar (°C)
	08:51	ESF 09	95	3,60	28,60
	09:01	ESF 10	85	1,50	29,00
	09:10	ESF 11	54	4,90	28,30
	09:18	ESF 12	67	3,10	28,30
	09:30	ESF 13	55	3,00	27,90
13	09:37	ESF 14	53	2,80	27,90
/20	09:45	ESF 15	49	3,70	27,50
7/11	09:50	ESF 16	55	4,70	27,10
-	10:00	ESF 17	40	2,00	28,60
	10:10	ESF 18	65	4,70	27,60
	10:17	ESF 19	50	4,00	27,70
	10:25	ESF 20	63	4,00	27,60
	10:35	ESF 21	75	4,50	27,30
	10:50	ESF 22	56	3,00	28,00
Média			61,57	3,54	27,96

Tabela 4.6 – Dados da direção e velocidade do vento e da temperatura do ar em cada estação de amostragem da cunha salina, durante a preamar da maré de sizígia (lua cheia) do dia 17/11/2013, na foz do Rio São Francisco.

Data	Hora	Estação	Direção (°)	Velocidade (m.s ⁻¹)	Temp. ar (°C)
	14:53	ESF 09	72	3,40	28,10
	15:03	ESF 10	75	2,30	28,50
	15:10	ESF 11	60	4,00	28,10
	15:16	ESF 12	78	3,60	27,80
	15:25	ESF 13	72	3,60	27,10
13	15:34	ESF 14	50	3,00	26,90
/20	15:40	ESF 15	74	5,30	27,10
7/11	15:48	ESF 16	80	5,60	27,10
~	15:55	ESF 17	88	2,00	27,00
	16:02	ESF 18	89	4,00	27,10
	16:10	ESF 19	78	2,60	26,80
	16:20	ESF 20	60	4,00	26,80
	16:26	ESF 21	71	3,90	26,80
	16:40	ESF 22	60	2,20	26,90
Média			71,93	3,54	27,29

Tabela 4.7 – Valores médios da direção e velocidade do vento e da temperatura do ar durante as coletas nas estações de monitoramento da cunha salina nas diferentes marés de sizígia (lua cheia) dos dias 16 e 17/11/2013.

Data	Maré	Direção (°)	Velocidade (m.s ⁻¹)	Temp. ar (°C)
16/11/2013	8 Baixamar	100,50	4,23	27,59
16/11/2013	Preamar	81,00	2,58	27,15
17/11/2013	Baixamar	61,57	3,54	27,96
17/11/2013	Preamar	71,93	3,54	27,29

Tabela 4.8 – Dados da direção e velocidade do vento e da temperatura do ar em cada estação de amostragem da cunha salina, durante a baixamar da maré de sizígia (lua nova) do dia 30/11/2013, na foz do Rio São Francisco.

Data	Hora	Estação	Direção (°)	Velocidade (m.s ⁻¹)	Temp. ar (°C)
	07:00	ESF 09	100	1,00	26,60
	07:10	ESF 10	110	1,10	27,50
	07:20	ESF 11	140	3,50	27,10
	07:30	ESF 12	135	3,80	27,40
	07:40	ESF 13	120	4,20	27,10
13	07:48	ESF 14	130	4,20	27,40
/20	07:55	ESF 15	100	4,80	27,20
0/11	08:00	ESF 16	120	5,00	27,40
õ	08:10	ESF 17	90	3,40	27,50
	08:18	ESF 18	90	4,10	27,80
	08:21	ESF 19	100	4,10	27,40
	08:35	ESF 20	85	5,20	27,40
	8:46	ESF 21	90	5,10	27,70
	09:00	ESF 22	90	5,00	28,00
Média			107,14	3,89	27,39

Tabela 4.9 – Dados da direção e velocidade do vento e da temperatura do ar em cada estação de amostragem da cunha salina, durante a preamar da maré de sizígia (lua nova) do dia 30/11/2013, na foz do Rio São Francisco.

Data	Hora	Estação	Direção (°)	Velocidade (m.s ⁻¹)	Temp. ar (°C)
	13:06	ESF 09	150	3,00	27,70
	13:13	ESF 10	135	4,50	28,20
	13:20	ESF 11	150	4,50	28,70
	13:30	ESF 12	135	3,10	29,10
	13:38	ESF 13	135	6,20	27,50
<u>.</u>	13:45	ESF 14	135	3,50	27,90
/20′	13:51	ESF 15	120	5,40	27,70
0/11	13:40	ESF 16	110	4,50	27,60
ñ	14:05	ESF 17	90	1,60	29,10
	14:12	ESF 18	135	5,50	27,60
	14:22	ESF 19	90	3,00	28,10
	14:25	ESF 20	150	3,50	27,40
	14:35	ESF 21	90	4,50	27,60
	14:47	ESF 22	110	5,50	27,80
Média			123,93	4,16	28,00

Tabela 4.10 – Dados da direção e velocidade do vento e da temperatura do ar em cada estação de amostragem da cunha salina, durante a baixamar da maré de sizígia (lua nova) do dia 01/12/2013, na foz do Rio São Francisco.

Data	Hora	Estação	Direção (°)	Velocidade (m.s ⁻¹)	Temp. ar (°C)
	07:58	ESF 09	135	3,10	27,50
	08:11	ESF 10	170	2,50	28,00
	08:30	ESF 11	135	3,50	28,20
	08:43	ESF 12	170	4,50	27,80
	08:50	ESF 13	180	4,10	27,50
13	09:00	ESF 14	150	3,50	28,00
2/20	09:07	ESF 15	180	5,50	27,00
1/12	09:20	ESF 16	180	4,80	27,00
0	09:27	ESF 17	180	6,00	27,10
	09:45	ESF 18	180	5,20	27,50
	10:00	ESF 19	180	4,50	27,70
	10:10	ESF 20	150	2,10	28,60
	10:22	ESF 21	180	5,40	27,70
	10:47	ESF 22	135	5,00	26,60
Média			164,64	4,26	27,59

Tabela 4.11 – Dados da direção e velocidade do vento e da temperatura do ar em cada estação de amostragem da cunha salina, durante a preamar da maré de sizígia (lua nova) do dia 01/12/2013, na foz do Rio São Francisco.

Data	Hora	Estação	Direção (°)	Velocidade (m.s ⁻¹)	Temp. ar (°C)
	13:54	ESF 09	-	-	27,90
	14:03	ESF 10	180	0,50	26,40
	14:13	ESF 11	180	0,50	27,20
	14:23	ESF 12	180	0,80	26,80
	14:35	ESF 13	215	1,10	26,50
13	14:43	ESF 14	180	1,10	29,70
120	14:55	ESF 15	180	1,20	27,60
1/12	15:00	ESF 16	110	3,60	25,70
0	15:10	ESF 17	90	1,00	25,50
	15:20	ESF 18	110	1,60	25,70
	15:31	ESF 19	110	1,30	26,10
	15:40	ESF 20	120	1,90	26,70
	15:50	ESF 21	130	2,90	26,30
	16:00	ESF 22	135	1,40	26,60
Média			147,69	1,45	26,76

Tabela 4.12 – Valores médios da direção e velocidade do vento e da temperatura do ar durante as coletas nas estações de monitoramento da cunha salina nas diferentes marés de sizígia (lua nova) dos dias 30/11 e 01/12/2013.

Data	Maré	Direção (°)	Velocidade (m.s ⁻¹)	Temp. ar (°C)
30/11/2013	8 Baixamar	107,14	3,89	27,39
30/11/2013	Preamar	123,93	4,16	28,00
01/12/2013	Baixamar	164,64	4,26	27,59
01/12/2013	Preamar	147,69	1,45	26,76

Durante as marés de sizígia analisadas no presente relatório, a vazão média do Rio São Francisco (com base nos dados da estação de Propriá) foi de 1237 m³.s⁻¹ (lua cheia) e de 1152 m³.s⁻¹ (lua nova) (Tabela 3.4). Nos dias de lua cheia a altura da baixamar e preamar foi de, respectivamente, 0,2-03 e 2,0 m, e naqueles de lua nova, de 0,1-0,2 e 2,0-2,1 m (Tabela 4.2).

Na fase de lua cheia, a direção predominante do vento foi leste-nordeste (78,86), com velocidade média de 3,5 m.s⁻¹ e temperatura média do ar de 27,5°C (27,15 a 27,96°C) (Tabela 4.7). Na fase de lua nova, o vento apresentou direção predominante sudeste (135,9°), com velocidade média de 3,4 m.s⁻¹ e temperatura média do ar de 27,4°C (26,76 a $28,0^{\circ}$ C) (Tabela 4.12).

C) Dados do perfil vertical

As Tabelas 4.13 a 4.20 contêm os valores médios de velocidade e direção da água na coluna d'água de cada estação de monitoramento da cunha salina nas duas marés de baixamar e duas de preamar amostradas nas luas cheia e nova. A variação espacial dos valores da velocidade média da água na coluna consta das Figuras 4.3, 4.5, 4.7, 4.9, 4.14, 4.16, 4.18 e 4.20, enquanto as Figuras 4.4, 4.6, 4.8, 4.10, 4.15, 4.17, 4.19 e 4.21 apresentam a variação espacial da direção média da água na coluna. As Figuras 4.11, 4,12 e 4.13 apresentam, respectivamente, a variação espacial dos valores da profundidade da estação, da velocidade média da coluna d'água e da direção média da coluna d'água nas marés de baixamar e preamar da fase de lua cheia, enquanto a correspondente variação destas variáveis para a fase de lua nova consta das Figuras 4.22, 4.23 e 4. 24.

Tabela 4.13 – Dados da profundidade, velocidade média e direção média da água na coluna em cada estação de amostragem da cunha salina, durante a baixamar da maré de sizígia (lua cheia) do dia 16/11/2013, na foz do Rio São Francisco.

Data	Hora	Estação	Prof. (m)	Vel. água (m.s ⁻¹)	Direção (°)
	08:13	ESF 09	2,50	0,571	163,83
	08:37	ESF 10	4,00	0,991	177,18
	08:27	ESF 11	5,60	0,658	174,88
	08:53	ESF 12	5,70	0,420	175,22
	09:00	ESF 13	3,80	0,155	128,30
13	09:08	ESF 14	2,70	0,574	192,28
/20	09:15	ESF 15	1,90	0,565	203,77
11,	09:20	ESF 16	3,80	0,714	198,24
16/	09:30	ESF 17	6,00	0,749	184,31
	09:40	ESF 18	5,20	0,568	183,68
	09:50	ESF 19	4,80	0,689	188,10
	09:57	ESF 20	6,00	0,701	187,80
	10:09	ESF 21	9,90	0,606	168,72
	10:20	ESF 22	7,30	0,710	166,23

Figura 4.3 – Variação da velocidade média da água na coluna entre as estações de amostragem da cunha salina da foz do Rio São Francisco, durante a baixamar da maré de sizígia (lua cheia) do dia 16/11/2013.

Figura 4.4 – Direção média da água na coluna em cada estação de amostragem da cunha salina da foz do Rio São Francisco, durante a baixamar da maré de sizígia (lua cheia) do dia 16/11/2013.

Tabela 4.14– Dados da profundidade, velocidade média e direção média da água na coluna em cada estação de amostragem da cunha salina, durante a preamar da maré de sizígia (lua cheia) do dia 16/11/2013, na foz do Rio São Francisco.

Data	Hora	Estação	Prof. (m)	Vel. água (m.s ⁻¹)	Direção (°)
	14:20	ESF 09	4,30	0,409	349,66
	14:25	ESF 10	4,90	0,319	358,53
	14:30	ESF 11	6,70	0,455	359,00
	14:38	ESF 12	7,10	0,540	351,30
	14:45	ESF 13	4,70	0,409	342,05
13	14:53	ESF 14	3,70	0,315	302,76
/20	15:00	ESF 15	3,30	0,263	20,88
11,	15:05	ESF 16	4,90	0,356	15,84
16/	15:11	ESF 17	7,90	0,181	358,61
	15:20	ESF 18	5,80	0,265	4,43
	15:27	ESF 19	6,40	0,250	12,87
	15:35	ESF 20	7,70	0,196	5,98
	15:45	ESF 21	11,80	0,178	341,47
	15:55	ESF 22	9,00	0,241	348,09

Figura 4.5 – Variação da velocidade média da água na coluna entre as estações de amostragem da cunha salina da foz do Rio São Francisco, durante a preamar da maré de sizígia (lua cheia) do dia 16/11/2013.

Figura 4.6 – Direção média da água na coluna em cada estação de amostragem da cunha salina da foz do Rio São Francisco, durante a preamar da maré de sizígia (lua cheia) do dia 16/11/2013.

Tabela 4.15 – Dados da profundidade, velocidade média e direção média da água na coluna em cada estação de amostragem da cunha salina, durante a baixamar da maré de sizígia (lua cheia) do dia 17/11/2013, na foz do Rio São Francisco.

Data	Hora	Estação	Prof. (m)	Vel. água (m.s ⁻¹)	Direção (°)
	08:51	ESF 09	2,70	0,571	166,73
	09:01	ESF 10	3,60	0,790	175,96
	09:10	ESF 11	5,60	0,623	177,73
	09:18	ESF 12	5,70	0,370	174,20
	09:30	ESF 13	3,50	0,242	158,38
13	09:37	ESF 14	2,90	0,575	190,30
/20	09:45	ESF 15	1,60	0,586	208,27
11,	09:50	ESF 16	3,70	0,672	190,04
17	10:00	ESF 17	5,80	0,737	182,21
	10:10	ESF 18	5,00	0,553	192,53
	10:17	ESF 19	4,40	0,579	189,32
	10:25	ESF 20	5,70	0,533	188,68
	10:35	ESF 21	9,90	0,415	151,00
	10:50	ESF 22	7,60	0,760	169,48

Figura 4.7 – Variação da velocidade média da água na coluna entre as estações de amostragem da cunha salina da foz do Rio São Francisco, durante a baixamar da maré de sizígia (lua cheia) do dia 17/11/2013.

Figura 4.8 – Direção média da água na coluna em cada estação de amostragem da cunha salina da foz do Rio São Francisco, durante a baixamar da maré de sizígia (lua cheia) do dia 17/11/2013.

Tabela 4.16 – Dados da profundidade, velocidade média e direção média da água na coluna em cada estação de amostragem da cunha salina, durante a preamar da maré de sizígia (lua cheia) do dia 17/11/2013, na foz do Rio São Francisco.

Data	Hora	Estação	Prof. (m)	Vel. água (m.s ⁻¹)	Direção (°)
	14:53	ESF 09	4,50	0,384	349,80
	15:03	ESF 10	4,80	0,325	0,24
	15:10	ESF 11	6,80	0,568	353,53
	15:16	ESF 12	7,00	0,533	353,20
	15:25	ESF 13	4,70	0,442	345,97
17/11/2013	15:34	ESF 14	3,90	0,319	310,76
	15:40	ESF 15	3,40	0,328	14,55
	15:48	ESF 16	5,00	0,323	1,37
	15:55	ESF 17	7,90	0,216	2,14
	16:02	ESF 18	5,60	0,330	3,35
	16:10	ESF 19	6,50	0,272	3,80
	16:20	ESF 20	7,80	0,272	1,91
	16:26	ESF 21	12,10	0,253	339,15
	16:40	ESF 22	7,20	0,246	338,90

Figura 4.9 – Variação da velocidade média da água na coluna entre as estações de amostragem da cunha salina da foz do Rio São Francisco, durante a preamar da maré de sizígia (lua cheia) do dia 17/11/2013.

Figura 4.10 – Direção média da água na coluna em cada estação de amostragem da cunha salina da foz do Rio São Francisco, durante a preamar da maré de sizígia (lua cheia) do dia 17/11/2013.

Figura 4.11 – Variação da profundidade das estações de amostragem da cunha salina na foz do Rio São Francisco, durante a preamar (PM) e a baixamar (BM) da maré de sizígia (lua cheia) dos dias 16 e 17/11/2013.

Figura 4.12 – Variação da velocidade média da coluna d´água nas estações de amostragem da cunha salina na foz do Rio São Francisco, durante a preamar (PM) e a baixamar (BM) da maré de sizígia (lua cheia) dos dias 16 e 17/11/2013.

Figura 4.13 – Variação da direção média da coluna d'água nas estações de amostragem da cunha salina na foz do Rio São Francisco, durante a preamar (PM) e a baixamar (BM) da maré de sizígia (lua cheia) dos dias 16 e 17/11/2013.

Tabela 4.17 – Dados da profundidade, velocidade média e direção média da água na coluna em cada estação de amostragem da cunha salina, durante a baixamar da maré de sizígia (lua nova) do dia 30/11/2013, na foz do Rio São Francisco.

Data	Hora	Estação	Prof. (m)	Vel. água (m.s ⁻¹)	Direção (°)
	07:00	ESF 09	2,70	0,607	165,40
	07:10	ESF 10	3,60	0,756	182,34
	07:20	ESF 11	5,30	0,604	174,20
	07:30	ESF 12	5,70	0,361	171,65
30/11/2013	07:40	ESF 13	3,30	0,223	157,48
	07:48	ESF 14	2,60	0,621	189,67
	07:55	ESF 15	1,80	0,552	198,07
	08:00	ESF 16	3,70	0,705	187,85
	08:10	ESF 17	6,10	0,717	182,10
	08:18	ESF 18	4,00	0,678	186,94
	08:21	ESF 19	4,50	0,658	190,32
	08:35	ESF 20	5,80	0,643	178,49
	08:46	ESF 21	10,30	0,392	169,70
	09:00	ESF 22	6,70	0,689	168,00

Figura 4.14 – Variação da velocidade média da água na coluna entre as estações de amostragem da cunha salina da foz do Rio São Francisco, durante a baixamar da maré de sizígia (lua nova) do dia 30/11/2013.

Figura 4.15 – Direção média da água na coluna em cada estação de amostragem da cunha salina da foz do Rio São Francisco, durante a baixamar da maré de sizígia (lua nova) do dia 30/11/2013.

Tabela 4.18 – Dados da profundidade, velocidade média e direção média da água na coluna em cada estação de amostragem da cunha salina, durante a preamar da maré de sizígia (lua nova) do dia 30/11/2013, na foz do Rio São Francisco.

Data	Hora	Estação	Prof. (m)	Vel. água (m.s ⁻¹)	Direção (°)
	13:06	ESF 09	3,90	0,330	344,28
	13:13	ESF 10	4,60	0,333	358,36
	13:20	ESF 11	6,60	0,463	354,56
	13:30	ESF 12	6,90	0,513	353,19
	13:35	ESF 13	4,70	0,470	343,88
13	13:45	ESF 14	3,90	0,260	288,84
/20	13:51	ESF 15	3,20	0,350	11,23
11,	13:57	ESF 16	4,90	0,342	5,06
30/	14:05	ESF 17	7,50	0,212	7,28
	14:12	ESF 18	5,50	0,333	13,93
	14:22	ESF 19	6,30	0,224	18,46
	14:25	ESF 20	7,50	0,241	3,26
	14:35	ESF 21	12,00	0,269	345,68
	14:47	ESF 22	6,10	0,321	338,23

Figura 4.16 – Variação da velocidade média da água na coluna entre as estações de amostragem da cunha salina da foz do Rio São Francisco, durante a preamar da maré de sizígia (lua nova) do dia 30/11/2013.

Figura 4.17 – Direção média da água na coluna em cada estação de amostragem da cunha salina da foz do Rio São Francisco, durante a preamar da maré de sizígia (lua nova) do dia 30/11/2013.

Tabela 4.19 – Dados da profundidade, velocidade média e direção média da água na coluna em cada estação de amostragem da cunha salina, durante a baixamar da maré de sizígia (lua nova) do dia 01/12/2013, na foz do Rio São Francisco.

Data	Hora	Estação	Prof. (m)	Vel. água (m.s ⁻¹)	Direção (°)
	07:58	ESF 09	2,70	0,560	168,60
	08:11	ESF 10	3,50	0,832	178,53
	08:30	ESF 11	5,20	0,606	170,15
	08:43	ESF 12	5,60	0,350	174,77
	08:50	ESF 13	3,30	0,129	125,75
13	09:00	ESF 14	2,70	0,542	194,97
'12/20	09:07	ESF 15	2,20	0,459	205,87
	09:20	ESF 16	3,70	0,613	193,32
01/	09:27	ESF 17	5,90	0,728	184,81
	09:45	ESF 18	4,00	0,569	189,04
	10:00	ESF 19	4,60	0,532	188,38
	10:10	ESF 20	6,00	0,582	181,66
	10:22	ESF 21	10,20	0,528	171,48
	10:47	ESF 22	5,80	0,430	144,57

Figura 4.18 – Variação da velocidade média da água na coluna entre as estações de amostragem da cunha salina da foz do Rio São Francisco, durante a baixamar da maré de sizígia (lua nova) do dia 01/12/2013.

Figura 4.19 – Direção média da água na coluna em cada estação de amostragem da cunha salina da foz do Rio São Francisco, durante a baixamar da maré de sizígia (lua nova) do dia 01/12/2013.

Tabela 4.20 – Dados da profundidade, velocidade média e direção média da água na coluna em cada estação de amostragem da cunha salina, durante a preamar da maré de sizígia (lua nova) do dia 01/12/2013, na foz do Rio São Francisco.

Data	Hora	Estação	Prof. (m)	Vel. água (m.s ⁻¹)	Direção (°)
	13:54	ESF 09	4,50	0,516	349,50
	14:03	ESF 10	4,70	0,345	358,15
	14:13	ESF 11	6,80	0,423	355,66
	14:23	ESF 12	7,10	0,488	350,49
	14:35	ESF 13	4,50	0,380	341,86
13	14:43	ESF 14	3,60	0,442	7,80
01/12/20	14:55	ESF 15	3,70	0,427	8,38
	15:00	ESF 16	4,90	0,345	2,88
	15:10	ESF 17	7,00	0,222	354,04
	15:20	ESF 18	5,80	0,240	11,07
	15:31	ESF 19	6,20	0,237	11,83
	15:40	ESF 20	7,80	0,205	355,08
	15:50	ESF 21	12,00	0,278	320,05
	16:00	ESF 22	10,20	0,188	5,42

Figura 4.20 – Variação da velocidade média da água na coluna entre as estações de amostragem da cunha salina da foz do Rio São Francisco, durante a preamar da maré de sizígia (lua nova) do dia 01/12/2013.

Figura 4.21 – Direção média da água na coluna em cada estação de amostragem da cunha salina da foz do Rio São Francisco, durante a preamar da maré de sizígia (lua nova) do dia 01/12/2013.

Figura 4.22 - Variação da profundidade das estações de amostragem da cunha salina na foz do Rio São Francisco, durante a preamar (PM) e a baixamar (BM) da maré de sizígia (lua nova) dos dias 30/11 e 01/12/2013.

Figura 4.23 – Variação da velocidade média da coluna d'água nas estações de amostragem da cunha salina na foz do Rio São Francisco, durante a preamar (PM) e a baixamar (BM) da maré de sizígia (lua nova) dos dias 30/11 e 01/12/2013.

Figura 4.24 – Variação da direção média da coluna d´água nas estações de amostragem da cunha salina na foz do Rio São Francisco, durante a preamar (PM) e a baixamar (BM) da maré de sizígia (lua nova) dos dias 30/11 e 01/12/2013.

Na fase de lua cheia, a velocidade média da coluna d'água entre todas as estações foi maior na baixamar (0,60 m.s⁻¹) que na preamar (0,33 m.s⁻¹), com tendência de declividade para o sul-sudeste (178,8°) na baixamar e sul-sudoeste (199,6°) na preamar. A direção da água na coluna apresentou boa estabilidade entre as estações nas marés de baixamar e nas de preamar, considerando 0°=360°, (Figura 4.13). Foi observada uma redução de velocidade da água entre as estações ESF 10 e ESF 13 (mais próximas à foz) e um aumento até a estação ESF 22 (mais interna no rio) com uma redução em ESF 21 na baixamar, enquanto que na preamar ocorre um aumento de velocidade nas estações iniciais, até ESF 12 seguida de uma redução gradual até o final do trecho monitorado (Figura 4.12).

Na fase de lua nova, a velocidade média da coluna d'água entre todas as estações foi maior na baixamar do que na preamar (0,56 m.s⁻¹ e 0,34 m.s⁻¹), com tendência de declividade para o sul na baixamar (177,6°) e sul-sudoeste na preamar (200,7°). De modo semelhante à fase de lua cheia, a direção da água na coluna apresentou boa estabilidade entre as estações nas marés de baixamar e nas de preamar (Figura 4.24). O padrão de variação da velocidade ao longo das estações apresentou um aumento de velocidade da água entre as estações ESF 09 e ESF 10, seguida de uma redução até ESF 13 (mais próximas à foz) e um aumento da velocidade até ESF 17, quando novamente volta a reduzir até o final do trecho, na baixamar, enquanto que na preamar ocorre um pequeno aumento de velocidade até a estação ESF 12, seguida de uma redução gradual até ESF 22 (Figura 4.23).

As Figuras 4.25 a 4.32 apresentam um diagrama comparativo dos perfis verticais de temperatura, condutividade elétrica específica e salinidade da água de todas as estações de monitoramento da cunha salina, evidenciando a amplitude de variação destas variáveis entre as estações e a coluna d'água em cada maré e fase da lua amostradas. A temperatura da água na coluna apresentou perfis com menor variação entre as profundidades e valores mais próximos entre as estações nas marés de baixamar (Figuras 4.25, 4.28, 4.29 e 4.32) que nas de preamar (Figuras 4.26, 4.27, 4.30 e 4.31), com uma amplitude geral de variação entre 27,1 e 28,7°C. Nas marés de baixamar (Figuras 4.25, 4.28, 4.29 e 4.32), a amplitude de variação da salinidade foi menor (0 a 2,2) que nas de preamar, entre 0 e 24,5 (Figuras 4.26, 4.27, 4.30 e 4.31).

A variação dos perfis verticais de temperatura e salinidade da água durante as marés de baixamar e preamar na fase de lua cheia, separadamente para cada estação, constam das Figuras 4.33 e 4.34. Os respectivos perfis para os dados relativos à fase de lua nova constam das Figuras 4.35 e 4.36.

Figura 4.25 – Diagramas da dispersão comparativa dos perfis verticais da temperatura (esquerda), condutividade elétrica específica (centro) e salinidade (direita) da água nas diferentes estações de monitoramento da cunha salina da foz do Rio São Francisco, durante a baixamar da maré de sizígia (lua cheia), do dia 16 de novembro de 2013. Gráficos gerados pelo Programa CTD-CastAway.

Figura 4.26 – Diagramas da dispersão comparativa dos perfis verticais da temperatura (esquerda), condutividade elétrica específica (centro) e salinidade (direita) da água nas diferentes estações de monitoramento da cunha salina da foz do Rio São Francisco, durante a preamar da maré de sizígia (lua cheia), do dia 16 de novembro de 2013. Gráficos gerados pelo Programa CTD-CastAway.

Figura 4.27 – Diagramas da dispersão comparativa dos perfis verticais da temperatura (esquerda), condutividade elétrica específica (centro) e salinidade (direita) da água nas diferentes estações de monitoramento da cunha salina da foz do Rio São Francisco, durante a baixamar da maré de sizígia (lua cheia), do dia 17 de novembro de 2013. Gráficos gerados pelo Programa CTD-CastAway.

Figura 4.28 – Diagramas da dispersão comparativa dos perfis verticais da temperatura (esquerda), condutividade elétrica específica (centro) e salinidade (direita) da água nas diferentes estações de monitoramento da cunha salina da foz do Rio São Francisco, durante a preamar da maré de sizígia (lua cheia), do dia 17 de novembro de 2013. Gráficos gerados pelo Programa CTD-CastAway.

Figura 4.29 – Diagramas da dispersão comparativa dos perfis verticais da temperatura (esquerda), condutividade elétrica específica (centro) e salinidade (direita) da água nas diferentes estações de monitoramento da cunha salina da foz do Rio São Francisco, durante a baixamar da maré de sizígia (lua nova), do dia 30 de novembro de 2013. Gráficos gerados pelo Programa CTD-CastAway.

Figura 4.30 – Diagramas da dispersão comparativa dos perfis verticais da temperatura (esquerda), condutividade elétrica específica (centro) e salinidade (direita) da água nas diferentes estações de monitoramento da cunha salina da foz do Rio São Francisco, durante a preamar da maré de sizígia (lua nova), do dia 30 de novembro de 2013. Gráficos gerados pelo Programa CTD-CastAway.

Figura 4.31 – Diagramas da dispersão comparativa dos perfis verticais da temperatura (esquerda), condutividade elétrica específica (centro) e salinidade (direita) da água nas diferentes estações de monitoramento da cunha salina da foz do Rio São Francisco, durante a baixamar da maré de sizígia (lua nova), do dia 01 de dezembro de 2013. Gráficos gerados pelo Programa CTD-CastAway.

Figura 4.32 – Diagramas da dispersão comparativa dos perfis verticais da temperatura (esquerda), condutividade elétrica específica (centro) e salinidade (direita) da água nas diferentes estações de monitoramento da cunha salina da foz do Rio São Francisco, durante a preamar da maré de sizígia (lua nova), do dia 01 de dezembro de 2013. Gráficos gerados pelo Programa CTD-CastAway.

Figura 4.33 – Perfis verticais da temperatura da água nas duas marés de baixamar (BM1 e BM2) e preamar (PM1 e PM2) durante a fase de lua cheia nas diferentes estações de monitoramento da cunha salina da foz do Rio São Francisco, durante as coletas de novembro-dezembro/2013.

Figura 4.33 (continuação) – Perfis verticais da temperatura da água nas duas marés de baixamar (BM1 e BM2) e preamar (PM1 e PM2) durante a fase de lua cheia nas diferentes estações de monitoramento da cunha salina da foz do Rio São Francisco, durante as coletas de novembro-dezembro/2013.

Figura 4.33 (continuação) – Perfis verticais da temperatura da água nas duas marés de baixamar (BM1 e BM2) e preamar (PM1 e PM2) durante a fase de lua cheia nas diferentes estações de monitoramento da cunha salina da foz do Rio São Francisco, durante as coletas de novembro-dezembro/2013.

Figura 4.33 (continuação) – Perfis verticais da temperatura da água nas duas marés de baixamar (BM1 e BM2) e preamar (PM1 e PM2) durante a fase de lua cheia nas diferentes estações de monitoramento da cunha salina da foz do Rio São Francisco, durante as coletas de novembro-dezembro/2013.

Figura 4.34 – Perfis verticais da salinidade da água nas duas marés de baixamar (BM1 e BM2) e preamar (PM1 e PM2) durante a fase de lua cheia nas diferentes estações de monitoramento da cunha salina da foz do Rio São Francisco, durante as coletas de novembro-dezembro/2013.

Figura 4.34 (continuação) – Perfis verticais da salinidade da água nas duas marés de baixamar (BM1 e BM2) e preamar (PM1 e PM2) durante a fase de lua cheia nas diferentes estações de monitoramento da cunha salina da foz do Rio São Francisco, durante as coletas de novembro-dezembro/2013.

Figura 4.34 (continuação) – Perfis verticais da salinidade da água nas duas marés de baixamar (BM1 e BM2) e preamar (PM1 e PM2) durante a fase de lua cheia nas diferentes estações de monitoramento da cunha salina da foz do Rio São Francisco, durante as coletas de novembro-dezembro/2013.

Figura 4.34 (continuação) – Perfis verticais da salinidade da água nas duas marés de baixamar (BM1 e BM2) e preamar (PM1 e PM2) durante a fase de lua cheia nas diferentes estações de monitoramento da cunha salina da foz do Rio São Francisco, durante as coletas de novembro-dezembro/2013.

Figura 4.35 – Perfis verticais da temperatura da água nas duas marés de baixamar (BM1 e BM2) e preamar (PM1 e PM2) durante a fase de lua nova nas diferentes estações de monitoramento da cunha salina da foz do Rio São Francisco, durante as coletas de novembro-dezembro/2013.

Figura 4.35 (continuação) – Perfis verticais da temperatura da água nas duas marés de baixamar (BM1 e BM2) e preamar (PM1 e PM2) durante a fase de lua nova nas diferentes estações de monitoramento da cunha salina da foz do Rio São Francisco, durante as coletas de novembro-dezembro/2013.

Figura 4.35 (continuação) – Perfis verticais da temperatura da água nas duas marés de baixamar (BM1 e BM2) e preamar (PM1 e PM2) durante a fase de lua nova nas diferentes estações de monitoramento da cunha salina da foz do Rio São Francisco, durante as coletas de novembro-dezembro/2013.

Figura 4.35 (continuação) – Perfis verticais da temperatura da água nas duas marés de baixamar (BM1 e BM2) e preamar (PM1 e PM2) durante a fase de lua nova nas diferentes estações de monitoramento da cunha salina da foz do Rio São Francisco, durante as coletas de novembro-dezembro/2013.

Figura 4.36 – Perfis verticais da salinidade da água nas duas marés de baixamar (BM1 e BM2) e preamar (PM1 e PM2) durante a fase de lua nova nas diferentes estações de monitoramento da cunha salina da foz do Rio São Francisco, durante as coletas de novembro-dezembro/2013.

Figura 4.36 (continuação) – Perfis verticais da salinidade da água nas duas marés de baixamar (BM1 e BM2) e preamar (PM1 e PM2) durante a fase de lua nova nas diferentes estações de monitoramento da cunha salina da foz do Rio São Francisco, durante as coletas de novembro-dezembro/2013.

Figura 4.36 (continuação) – Perfis verticais da salinidade da água nas duas marés de baixamar (BM1 e BM2) e preamar (PM1 e PM2) durante a fase de lua nova nas diferentes estações de monitoramento da cunha salina da foz do Rio São Francisco, durante as coletas de novembro-dezembro/2013.

Figura 4.36 (continuação) – Perfis verticais da salinidade da água nas duas marés de baixamar (BM1 e BM2) e preamar (PM1 e PM2) durante a fase de lua nova nas diferentes estações de monitoramento da cunha salina da foz do Rio São Francisco, durante as coletas de novembro-dezembro/2013.

A temperatura da água apresentou uma estreita faixa de variação entre profundidades e estações ao longo das diferentes marés e fases da lua, com uma amplitude ligeiramente menor (0,9°C) na lua cheia (27,1 a 28°C) que na lua nova (2,2 °C), entre 26,5 a 28,7 °C. Seus perfis foram predominantemente ortogrados nas marés de baixamar e com tendência clinograda nas marés de preamar em ambas as fases da lua. Diferenças nos valores de temperatura e grau clinogrado dos perfis entre as marés de baixamar e preamar estiveram mais associados à hora do dia que a maré, com menores valores na baixamar matinal (linhas azul e verde nas Figuras 4.33 e 4.35) em todas as estações de amostragem e nas duas fases da lua.

A salinidade apresentou valores mais elevados e perfis acentuadamente clinogrados e evidentes da cunha salina em todas as marés de preamar (linhas vermelha e roxa das Figuras 4.34 e 4.36), nas duas fases da lua, embora as faixas de variação tenham diferido ao longo

das estações, com nítida redução entre as estações extremas do trecho analisado (ESF 09 mais próxima à foz e ESF 22 a montante de Piaçabuçu). Na fase de lua cheia, os valores mais elevados de salinidade foram inferiores a 24 nas marés de preamar entre ESF 09 e ESF 12 (Figura 4.34), tendo variado entre 24 e 25 nas mesmas estações na fase de lua nova (Figura 4.36). Entre as estações ESF 15 e ESF 18, os valores foram inferiores a 3,5 na lua cheia e variaram entre 2,0 e 5,5 na lua nova. No trecho entre as estações ESF 18 e ESF 22, os valores foram inferiores a 2,5 em ambas as luas (cheia e nova).

Figura 4.37 – Perfis verticais da salinidade da água nas duas marés de baixamar (BM1 e BM2) e preamar (PM1 e PM2) durante as fases de lua cheia (1^a. coleta) e nova (2^a. coleta) nas estações ESF 20, ESF 21 e ESF 22 de monitoramento da cunha salina da foz do Rio São Francisco, localizadas respectivamente a jusante, à frente e a montante, da cidade de Piaçabuçu (AL), com dados relativos às coletas de novembro-dezembro/2013.

Os níveis de salinidade nas estações próximas à foz foram comparativamente semelhantes na lua nova (0 a 25) e na lua cheia (0 a 24), possivelmente refletindo níveis também semelhantes de maré nas duas fases da lua neste período de monitoramento cheia (2,0 m na lua cheia e 2,0 a 2,1 m na lua nova). A redução da vazão entre os períodos da lua cheia (média de 1237 m³.s⁻¹) para a lua nova (média de 1152 m³.s⁻¹) pode ter contribuído para os valores mais elevados na lua nova em estações mais internas no estuário, como salinidade até 18 em ESF 14. Apesar de não ter sido observada diferença na velocidade média dos ventos entre as duas luas – 3,4 m³.s⁻¹ em ambas -, na última preamar vespertina da lua nova, registrou-se uma baixa velocidade dos ventos (1,4 m.s⁻¹), o que pode ter contribuído para essa maior penetração da água do mar (Tabelas 4.1.7 e 4.12).

Em função de sua posição próxima à foz do rio São Francisco no Oceano Atlântico (cerca de 8 km), a cidade de Piaçabuçu está localizada na área de influência da cunha salina. Neste sentido, a avaliação do comportamento da salinidade da água do rio próximo a esta cidade é relevante, face o eventual uso da água para o abastecimento urbano ou outras atividades que necessitem água doce. A análise detalhada nas três estações de monitoramento localizadas próximo a esta cidade (ESF 20 a ESF 22) evidenciou uma redução longitudinal dos valores de salinidade entre elas (Figura 4.37), de um valor máximo de 1,9 no fundo em ESF20 e 0,65 no fundo em ESF21 numa preamar da lua cheia, até valores inferiores a 0,05 em marés de baixamar. Valores médios e uniformes ao longo de toda a coluna d'água inferiores a 0,4 foram registrados em todas as marés em ESF 22, exceto naguela preamar acima referida, quando foram registrados valores superiores a 0,5, a partir de 4,7 m de profundidade. Deste modo, considerando o limite inferior de 0,5 para a salinidade de águas salobras, estabelecido pela Resolução no. 357/CONAMA, salinidades superiores a este valor foram registradas em toda a coluna d'água nas duas preamares da lua nova e uma da lua cheia na estação ESF 20; a partir de 5,7 m de profundidade nestas mesmas marés em ESF 21, e abaixo de 4,5 m na preamar vespertina da lua nova em ESF 22 (Figura 4,37).

5. MONITORAMENTO DE MACRÓFITAS AQUÁTICAS

5.1 METODOLOGIA

Os prados constantes na Tabela 5.1 tiveram seus limites georreferenciados com o objetivo de delimitação da área ocupada. O limite externo de cada banco (parte úmida) foi demarcado através de uma trilha levantada com GPS, mediante o deslocamento com uma embarcação ao longo da borda da área, e o limite externo (parte seca) através da reconstituição de imagem de satélite disponível no aplicativo GoogleEarth. Os limites de cada área coberta com macrófitas foram transformados em arquivo kml, a partir dos quais foi calculado o perímetro e a área respectiva empregando o aplicativo GE Path 1.4.6.

A quantificação da biomassa foi realizada através do uso de quadrados de 50 cm x 50 cm, escolhidos de forma aleatória e hierárquica, em triplicata em cada região amostrada, de acordo com o descrito em Pompêo e Moschini-Carlos (2003). As estações de monitoramento dos prados de macrófitas num total de três (3) foram apresentadas na Tabela 5.3. Todas as estações tiveram suas posições definitivas devidamente georreferenciadas, empregando-se um receptor GPS Garmin etrex.

Coordenadas de Referência
Itaparica, 08°59'12.54"S 038°13'39.53"O
se 500 m a 09°17'41.91"S 0 038°11'22.22"O
reservatório da 09°18'41.33"S ante e a 038°13'15.00"O
r

Tabela 5.1 - Localização dos prados para o Monitoramento de Macrófitas.

(#) devido à ausência de bancos nesta área, foi levantada uma área a montante da ponte sobre o rio Moxotó.

A coleta de campo foi realizada no período de 22 a 23 de novembro de 2013.

5.2 RESULTADOS

Ficha de Monitoramento dos Pontos de Controle

A) Mapa de localização das áreas de monitoramento de macrófitas aquáticas

Figura 5.1 – Mapa de localização das áreas de monitoramento de macrófitas aquáticas. As setas pretas indicam as áreas de macrófitas aquáticas selecionadas preliminarmente e amostradas, com exceção daquela próxima à confluência do rio Moxotó com o corpo do reservatório, substituída pela área indicada pela seta vermelha.

Figura 5.2 – Delimitação do perímetro reconstituído da área IT PTL 01, coberta com macrófitas na região de Petrolândia (acima), indicando a delimitação da área pela CHESF (linha verde) e do perímetro e colonização com *Eichhornia crassipes* (linha vermelha). A figura inferior indica o limite externo da área ocupada por vegetação submersa, predominantemente *Egerea densa* (cercada por linha branca), com o limite externo em outubro-novembro/2013 (linha azul), em relação a novembro-dezembro/2013 (linha amarela), com redução da área de cobertura entre os dois períodos.

Figura 5.3 – Delimitação do perímetro reconstituído da área MO RM Inter, coberta com macrófitas na região de Moxotó (acima), indicando a delimitação da área pela CHESF (linha verde) e do perímetro inicial ocupado por *Eichhornia crassipes* (linha vermelha). A figura inferior indica o limite da área ocupada por macrófitas em outubro-novembro/2013 (linha azul) em relação ao limite externo em novembro-dezembro (linha amarela), com ampliação da área coberta por *Eichhornia* (margeada pela linha vermelha) entre os dois períodos.

Figura 5.4 – Delimitação do perímetro reconstituído da área MO RM Final, coberta com macrófitas na região de Moxotó (acima), indicando a delimitação total da área (linha vermelha fina) e do perímetro livre de macrófitas (linha vermelha grossa) em maio-junho/2013. A figura inferior indica os limites da área ocupada com macrófitas nas coletas de outubro-novembro (linha azul), em relação a novembro-dezembro/2013 (linha amarela), sem alteração de área entre os dois períodos.

B) Dados da coleta

Tabela 5.2 – Espécies de macrófitas aquáticas com ocorrência em cada região amostrada nos reservatórios de Itaparica e Moxotó. Em negrito, as espécies com ocorrência nos quadrados amostrados na campanha de novembro-dezembro/2013.

Ecnócio		Local	
Especie	Petrolândia	MOX 03	MOX 04
Acrostichum danaeifolium		Х	
Azolla spp.	Х	Х	
Ceratopteris pteridoides		Х	
<i>Cyperus</i> spp.			Х
Egerea densa	Х	Х	Х
Eichhornia crassipes	Х	Х	Х
Hydrocotyle verticillata		Х	
Ipomea carmea		Х	Х
Ludwigia leptocarpa	Х	Х	Х
Oxicaryum spp.		Х	Х
Panicum sp.	Х		
Paspalum repens		Х	Х
Polygonum ferrugineum	Х		
Salvinia auriculata	Х	Х	Х
Salvinia minima		Х	
Typha domingensis		Х	Х
Wolphia sp.		Х	
Riqueza	7	14	9

O Quadro 5.1 apresenta os dados de área de cobertura com macrófitas e estimativas de biomassas úmida e seca referentes às coletas de maio-junho, junho-julho, julho-agosto, agosto-setembro, setembro-outubro, outubro-novembro e novembro-dezembro/2013. Estes resultados são apresentados detalhadamente para cada quadrado amostrado na coleta de novembro-dezembro/2013 nas diferentes regiões nos Quadros 5.2 a 5.4.

As áreas de cobertura com macrófitas apresentaram pequena variação em relação à coleta anterior (outubro-novembro/2013), com exceção de MOX-03, que apresentou expressiva expansão da área coberta. Em Petrolândia, a área ocupada pelos bancos dominados por *Eichhornia crassipes* não variou em relação ao período anterior (Figuras 5.5), pois sua expansão em direção ao corpo do reservatório continua sendo limitada pelo afloramento de densos bancos submersos de *Egerea densa* (Figura 5.6). Como já mencionado, a área coberta por este afloramento corresponde a aproximadamente 128.000 m². Constatou-se uma

pequena redução do limite externo ocupado por tais bancos em novembro-dezembro/2013, da ordem de 5.475 m², em relação a outubro-novembro/2013. No presente período, a vazão afluente ao reservatório de Itaparica durante os dias de coleta (média de 1.327 m³.s⁻¹), foi ligeiramente inferior àquela durante os dias de amostragem de macrófitas em outubro-novembro/2013 (média de 1.420 m³.s⁻¹), com um ligeira elevação de nível do reservatório (cerca de 10 cm, de 300,5 para 300,6 m), o que pode não pace ter influenciado na estabilidade da área dos bancos entre os dois períodos. Na região de MOX 04, não foi evidenciada qualquer alteração da área de cobertura, tendo sido considerada a mesma área coberta da etapa anterior nas estimativas de biomassa (Figura 5.3). Na região de MOX 03, houve uma considerável expansão da área de cobertura com *Eichhornia* (Figura 5.7), da ordem de aproximadamente 74.500 m². Este aumento da área coberta pode estar associado a movimentos locais dos bancos em direção ao corpo central do reservatório, favorecido pela redução de cota em relação ao período anterior (de 251,7 para 251,4 m), ou ainda ao processo de dispersão por ventos.

Quadro 5.1 – Dados da extensão de cada banco de macrófitas nas regiões amostradas e respectivas estimativas de biomassa úmida e seca total ao longo das coletas realizadas em maio-junho, junho-julho, junho-agosto, agosto-setembro e setembro-outubro/2013.

Dadas	Campanhas				
Dados	maio-junho/2013	junho-julho/2013	julho-agosto/2013	agosto-setembro/2013	setembro-outubro/2013
Data:	01/06/2013	04/07/2013	30/07/2013	30/08/2013	26/09/2013
Região:	IT PTL 01				
Hora:	10:00	09:30	09:00	09:00	14:00
Cond. Tempo:	boas	boas	boas	boas	boas
Perímetro banco (m):	3212,13	3212,13	3212,13	3212,13	3295,03
Extensão banco (m ²):	121575,3	121575,3	121575,3	121575,3	128452,3
Biomassa úmida estimada (ton):	2075	2330	2010	2278	3089
Biomassa seca estimada (ton):	279	458	367	468	548
Data:	31/05/2013	03/07/2013	31/07/2013	31/08/2013	27/09/2013
Região:	MO RM Final (direita)				
Hora:	12:30	11:30	12:00	08:00	09:00
Cond. Tempo:	boas	boas	boas	boas	boas
Perímetro banco (m):	6694,67	6694,67	6694,67	6694,67	6694,67
Extensão banco (m ²):	213670,83	213670,83	213670,83	213670,83	213670,83
Biomassa úmida estimada (ton):	10165	6137	3799	6414	5988
Biomassa seca estimada (ton):	1225	1414	546	1182	847
				W	
Data:	31/05/2013	03/07/2013	31/07/2013	31/08/2013	27/09/2013
Região:	MO RM Final (esquerda)				
Hora:	14:30	13:00	14:00	09:00	10:00
Cond. Tempo:	boas	boas	boas	boas	boas
Perímetro banco (m):	3550,3	3550,3	3550,3	3550,3	3550,3
Extensão banco (m ²):	62451,73	62451,73	62451,73	62451,73	62451,73
Biomassa úmida estimada (ton):	2971	1794	1110	1875	1750
Biomassa seca estimada (ton):	358	413	160	345	247
Data:	31/05/2013	03/07/2013	31/07/2013	31/08/2013	27/09/2013
Região:	MO RM Inter				
Hora:	09:30	08:00	09:00	12:00	13:00
Cond. Tempo:	boas	boas	boas	boas	boas
Perímetro banco (m):	4582,67	4582,67	4788,47	4788,47	5082,5
Extensão banco (m ²):	229804,4	229804,4	204915,39	204915,4	214578,4
Biomassa úmida estimada (ton):	7139	4557	5284	4338	7277
Biomassa seca estimada (ton):	792	567	1062	606	1019

Quadro 5.1 (continuação) - Dados da extensão de cada banco de macrófitas nas regiões amostradas e respectivas estimativas de biomassa úmida e seca total ao longo da coleta realizada em outubro-novembro e novembro-dezembro/2013.

Dados	Campanhas	
	outubro-novembro/2013	novembro-dezembro/2013
Data:	26/10/2013	23/11/2013
Região:	IT PTL 01	IT PTL 01
Hora:	13:00	08:30
Cond. Tempo:	boas	boas
Perímetro banco (m):	3295,03	3095
Extensão banco (m ²):	128452,3	122977,3
Biomassa úmida estimada (ton):	3181,164027	3950,522785
Biomassa seca estimada (ton):	521,1825422	509,025276

Data:	25/10/2013	23/11/2013
Região:	MO RM Final (direita)	MO RM Final (direita)
Hora:	09:20	11:00
Cond. Tempo:	boas	boas
Perímetro banco (m):	213670,8	213670,8
Extensão banco (m ²):	174570,83	174570,83
Biomassa úmida estimada (ton):	5420	5250
Biomassa seca estimada (ton):	816	634

Data:	25/10/2013	23/11/2013
Região:	MO RM Final (esquerda)	MO RM Final (esquerda)
Hora:	09:50	11:40
Cond. Tempo:	boas	boas
Perímetro banco (m):	3550,3	3550,3
Extensão banco (m ²):	62451,73	62451,73
Biomassa úmida estimada (ton):	1939	1878
Biomassa seca estimada (ton):	292	227

Data:	25/10/2013	23/11/2013
Região:	MO RM Inter	MO RM Inter
Hora:	12:00	13:30
Cond. Tempo:	boas	boas
Perímetro banco (m):	4270,3	5770,5
Extensão banco (m ²):	175478,39	304320,60
Biomassa úmida estimada (ton):	5857	13637
Biomassa seca estimada (ton):	979	1930

Quadro 5.2 – Dados da composição e biomassa (g) das espécies de macrófitas nos quadrados amostrados na região de Petrolândia (IT PTL 01), na amostragem de novembro-dezembro/2013.

Quadrado 1	Peso úmido	Peso seco
Macrófitas	Amostra	Amostra
Egerea densa	96	12
Azolla sp.	5000	760
Biomassa (g)	5096	772

Quadrado 2	Peso úmido	Peso seco
Macrófitas	Amostra	Amostra
Azolla sp.	115	13
Egerea densa	7500	858
Eichhornia crassipes	3000	284
Biomassa (g)	10615	1155

Quadrado 3	Peso úmido	Peso seco
Macrófitas	Amostra	Amostra
Azolla sp.	42	10
Egerea densa	8000	1137
Eichhornia crassipes	340	31
Biomassa (g)	8382	1178

Macrófitas	Peso úmido	Peso seco
Biomassa total	24093	3104
Desvio padrão	2776	228
%Azolla sp.	1,1	1,1
% Egerea densa	85,1	88,7
% Eichhornia crassipes	13,9	10,1

Macrófitas	Biomassa (g.m ²)	Biomassa (g.m²)
	Peso úmido	Peso seco
Biomassa total	32124,0	4139,2
Desvio padrão	11104,8	912,5
Azolla sp.	337,3	46,7
Egerea densa	27333,3	3672,8
Eichhornia crassipes	4453,3	419,7

Quadro 5.3 – Dados da composição e biomassa (g) das espécies de macrófitas nos quadrados amostrados na região de Moxotó (MO RM Final – MOX 04), na amostragem de novembro-dezembro/2013.

Quadrado 1	Peso úmido	Peso seco
Macrófitas	Amostra	Amostra
Egerea densa	329	46
Eichhornia crassipes	8000	898
Oxycaryum sp.	1000	240
Salvinia auriculata	22	10
Biomassa (g)	9351	1194
Quadrado 2	Peso úmido	Peso seco
Macrófitas	Amostra	Amostra
Egerea densa	188	18
Eichhornia crassipes	9000	1038
Oxycaryum sp.	35	8
Biomassa (g)	9223	1064
Quadrado 3	Peso úmido	Peso seco
Macrófitas	Amostra	Amostra
Egerea densa	973	124
Eichhornia crassipes	3000	336
Salvinia auriculata	8	5
Biomassa (g)	3981	465
Macrófitas	Peso úmido	Peso seco
Biomassa total	22555,0	2723,4
Desvio padrão	3064,1	389,2
% Egerea densa	6,6	6,9
% Eichhornia crassipes	88,7	83,4
% Oxicaryum sp.	4,6	9,1
%Salvinia auriculata	0,1	0,6
	Biomassa	Biomassa
Macrófitas	(g.m²)	(g.m²)
	Peso úmido	Peso seco
Biomassa total	30073,3	3631,1
Desvio padrão	12256,4	1557,0
Egerea densa	1986,7	250,7
Eichornia crassipes	26666,7	3029,8
Oxycaryum sp	1380,0	330,7
Salvinia auriculata	40,0	20,0

Quadro 5.4 – Dados da composição e biomassa (g) das espécies de macrófitas nos quadrados amostrados na região de Moxotó (MO RM Inter – MOX 03), na amostragem de novembro-dezembro/2013.

Quadrado 1	Peso úmido	Peso seco
Macrófitas	Amostra	Amostra
Egerea densa	18	11
Eichhornia crassipes	12000	1561
Hydrocotyle verticillata	17	9
Oxycaryum sp.	2000	437,5
Salvinia auriculata	45	13
Biomassa (g)	14080	2031
Quadrado 2	Peso úmido	Peso seco
Macrófitas	Amostra	Amostra
Egerea densa	22	10
Eichhornia crassipes	9000	1173
Salvinia auriculata	121	21
Biomassa (g)	9143	1204
Quadrado 3	Peso úmido	Peso seco
Macrófitas	Amostra	Amostra
Egerea densa	303	38
Eichhornia crassipes	10000	1460
Oxycaryum sp.	56	15
Salvinia auriculata	27	9
Biomassa (g)	10386	1522
Macrófitas	Peso úmido	Peso seco
Biomassa total	33609	4758
Desvio padrão	2567,9	417,2
%Egerea densa	1,0	1,2
%Eichhornia crassipes	92,2	88,2
%Hydrocotyle verticillata	0,1	0,2
%Oxycaryum sp.	6,1	9,5
%Salvinia auriculata	0,6	0,9
Macrófitas	Biomassa	Biomassa
	(g.m²)	(g.m²)
	Peso úmido	Peso seco
Biomassa total	44812,0	6343,6
Desvio padrão	10271,6	1669,0
Egerea densa	457,3	78,7
Eichhornia crassipes	41333,3	5592,2
Hydrocotyle verticillata	22,7	12,0
Oxycaryum sp		-
enjearjannep:	2741,3	603,3

A composição taxonômica da assembleia de macrófitas aquáticas nas três regiões (bancos) amostradas não diferiu daquela registrada em períodos anteriores, tendo sido composta por dezessete táxons (Tabela 5.2), embora nas áreas amostradas no período tenha sido registrado apenas seis. Dentre elas, *Eichhornia crassipes* foi a dominante, sendo responsável por 89 a 92% da biomassa úmida, exceto em Petrolândia, onde *Egerea densa* dominou (85%). As regiões apresentaram riquezas distintas, com sete táxons em Petrolândia, catorze em Moxotó MOX 03 e nove em Moxotó MOX 04. Quanto à riqueza nos quadrados amostrados, Petrolândia apresentou 3 táxons, enquanto MOX 03 e MOX 04 apresentaram 5 e 4 táxons, respectivamente cada (Quadros 5.2 a 5.4).

A biomassa úmida variou entre as áreas, sendo de aproximadamente 32,1 kg.m² em Petrolândia, 44,8 kg.m² em MOX 03 e 30,0 kg.m² em MOX 04 (Quadros 5.2 a 5.4). Com base nestes valores, as estimativas para as biomassas vivas em cada área foram de 3.950 ton em Petrolândia, 7.128 ton em MOX 04 e 13.637 ton em MOX 03. Deve ser lembrado que a despeito do aumento da área coberta na região de Canafístula (MOX 03 ou MOX RM Inter), a estimativa refere-se apenas à área do polígono delimitado pela CHESF acrescido da área expandida a jusante neste período de monitoramento, mas aquela coberta com macrófitas se estende a montante, até acima da ponte no povoado de Volta do Moxotó.

Em relação à coleta anterior (outubro-novembro/2013), em Petrolândia, as estimativas de biomassa úmida indicam um aumento de 24% e redução da biomassa seca de 2,4% (Quadro 5.1 e 5.2), a despeito da redução da área coberta com *Egerea densa*, da ordem de 4,3%. Em MOX 04, foi registrada uma redução nas biomassas úmida (3,2%) e seca (em torno de 22,4%). Em MOX 03, por sua vez, além do incremento de área em cerca de 73%, observou-se um aumento das biomassas úmida (132%) e seca (97%). O expressivo aumento nesta estação pode estar relacionado ao adensamento das plantas, predominantemente representadas por *Eichhornia*. Além disso, nesta e nas demais estações, as variações de biomassa estão associadas ao estado fenológico da planta dominante em cada uma delas e/ou à redução da participação das demais espécies em cada local (Quadros 5.1, 5.3 e 5.4). Conforme anteriormente observado, estas diferenças também refletem as diferentes etapas do desenvolvimento, aspectos fenológicos ou senescência de cada espécie nos diversos bancos monitorados.

Figura 5.5 – Vistas do meandro da estação IT PTL 01, no reservatório de Itaparica, em Petrolândia (PE). Nas imagens superiores, limite de ocupação dos bancos de *Eichhornia crassipes*, evidenciando o afloramento dos bancos imersos de *Egerea densa* (imagens do meio), cuja exposição está associada ao rebaixamento do nível da água do reservatório (imagens inferiores).

Figura 5.6 – Vistas do meandro da estação IT PTL 01, no reservatório de Itaparica, em Petrolândia (PE). Nas imagens superiores, limite de ocupação dos bancos de *Eichhornia crassipes*, evidenciando o afloramento dos bancos imersos de *Egerea densa* (imagens do meio), cuja exposição está associada ao rebaixamento do nível da água do reservatório (imagens inferiores).

Figura 5.7 – Vistas do meandro da estação MOX 03 (MO RM Inter), no reservatório de Moxotó, em novembro/2013. Nas imagens superiores, limite da área ocupada pelos bancos de *Eichhornia crassipes*, na porção a jusante da área limite do monitoramento. evidenciando o afloramento dos bancos imersos de *Egerea densa* (imagens do meio), cuja exposição está associada ao rebaixamento do nível da água do reservatório (imagens inferiores).

6. MONITORAMENTO DE PROCESSOS EROSIVOS

6.1 METODOLOGIA

O Programa de Controle e Monitoramento de Processos Erosivos objetiva monitorar alterações temporais e a evolução dos escorregamentos, desmoronamentos e erosão laminar nos pontos amostrais definidos, durante o período de redução da vazão do rio São Francisco.

Com base nos objetivos e nos estudos da área de abrangência, a metodologia foi concebida para ser executada em três etapas:

- Primeira Etapa

A primeira etapa foi dedicada à identificação das diversas situações em que se encontram as áreas objeto deste trabalho. Foi dada prioridade à coleta e análise das informações disponíveis para a área em estudo, como mapas, imagens e estudos semelhantes realizados em áreas de usinas hidrelétricas (UHE) em outras regiões submetidas a processos de degradação. Em seguida, a equipe da FADURPE realizou o reconhecimento das diferentes características morfológicas da área de análise, durante o qual foram observadas as condições das margens direita e esquerda do Rio São Francisco, nos trechos entre Sobradinho e Itaparica, e a jusante da UHE Xingó, onde foram implantadas as 8 (oito) estações de monitoramento.

Simultaneamente, foram efetuados trabalhos destinados à confirmação dos trechos para implantação das estações de monitoramento ao longo da área de análise, sendo: a) quatro estações entre Sobradinho e Itaparica, duas delas distribuídas na margem esquerda e duas na margem direita, e b) quatro estações localizadas no trecho a jusante da UHE Xingó, sendo duas na margem esquerda e duas na margem direita, (Figuras 6.1 e 6.2).

- Segunda Etapa

Esta etapa se constituiu na implantação das 08 (oito) estações de monitoramento. Todas as estações tiveram suas coordenadas obtidas a partir de receptores GPS de navegação. As informações foram armazenadas em um banco de dados geográfico. Para cada estação, foram adotados os seguintes procedimentos:

Figura 6.1 - Localização das estações de monitoramento ao longo do rio São Francisco, entre os reservatórios de Itaparica e Sobradinho.

Figura 6.2 - Localização das estações de monitoramento ao longo do rio São Francisco, a jusante do reservatório de Xingó.

I. implantação de dois marcos de concreto (M1 e M2), totalmente enterrados, revestidos de tubo PVC de 3" (Figura 6.3), georreferenciados por GPS de Navegação, sistema UTM Sirgas 2000, servindo como apoio planimétrico e altimétrico (RN).

II. estabelecimento de uma distância de 30 m de M1 para M2, com sentido mais ou menos

paralelo à margem do rio. Com o objetivo de facilitar a tomada de leitura no mesmo local nas próximas medições, os pontos foram materializados com hastes de ferro. formando uma malha retangular de 7,50 m por 5,00 m, cinco metros após a linha base M1 - M2, dando origem a cinco perfis a cada 7,50 m, denominados de EF1, EF1A, EF2, EF2B e EF3.

Figura 6.3 – Marcos de concreto utilizados na demarcação das áreas de monitoramento dos Processos Erosivos.

Figura 6.4 – Hastes de ferro utilizadas para facilitar as leituras em cada transecto por estação...

Os perfis têm como função principal permitir a comparação das leituras efetuadas em dois períodos distintos, ou seja, na primeira campanha e medições subsequentes, bem como identificar eventuais variações nas leituras, que venham a caracterizar e mensurar processos erosivos e ou assoreadores (Figura 6.5).

Foi também realizada a planialtimetria da escarpa (barranco) e a planimetria do limite do corpo d'água e da vegetação.

Figura 6.5 - Exemplo de perfil de seção de uma estação de monitoramento de processos erosivos.

III. Em cada estação de monitoramento, foram levantados pontos adicionais para a geração de um Modelo Digital do Terreno (MDT). Foram gerados, também, mapas de localização, que facilitarão o acesso e a análise espacial dos dados obtidos durante todo o monitoramento (Figura 6.6).

- Terceira Etapa

A terceira etapa corresponde ao monitoramento mensal dos processos erosivos. As áreas serão visitadas mensalmente para avaliação, coleta de dados e registro fotográfico. Em cada ocasião, será acompanhada sistematicamente a evolução dos escorregamentos/ desmoronamentos/erosão laminar que porventura venham a ocorrer nas estações localizadas nos trechos definidos do Rio São Francisco. Em cada ocasião, são efetuados os seguintes procedimentos:

i. Formação de um banco de dados para armazenar as leituras e demais informações coletadas mensalmente, de modo a permitir a análise e avaliação das características e a evolução de cada ponto de monitoramento. Considerando a importância das chuvas na formação e evolução da erosão, dados coletados a partir de postos pluviométricos instalados na região, próximo aos pontos de monitoramento, poderão ser incluídos no processo de análise. Essa hipótese só será adotada quando a precipitação pluviométrica assim o justificar.

Figura 6.6 – Exemplo da representação do Modelo Digital do Terreno(MDT) e dos perfis transversais à margem do rio numa estação de monitoramento.

II. Trabalhos de campo – Todas as medições obedeceram ao referencial dos marcos M1 e M2, tanto para planimetria como para altimetria. Foram efetuadas as leituras dos cinco perfis (EF1, EF1A, EF2, EF2B e EF3), para obter a configuração do terreno no momento da leitura. A partir do segundo mês, serão efetuadas as análises comparativas dos cinco perfis, em relação ao período anterior, o que possibilitará definir as eventuais alterações sofridas pelo terreno no período monitorado.

III. Trabalhos de laboratório – O processamento dos dados de campo foi efetuado utilizando programas de topografia, CAD e GIS, com geração de mapas, gráficos, diagramas, desenhos planialtimétricos e Modelos Digitais do Terreno – MDTs.

6.1.1 EQUIPAMENTOS UTILIZADOS

Foram utilizados equipamentos de última geração, com a precisão adequada e maior autonomia de trabalho para o tipo de serviço proposto, caracterizados a seguir.

• GPS de Navegação Garmim map 76Sx

O GPS MAP 76 é um receptor GPS manual de 12 canais (Figura 6.7). Possui uma antena do tipo Quad Helix GPS embutida e nove botões acessíveis ao usuário.

Figura 6.7 – GPS de Navegação Garmim map 76Sx utilizado na determinação das coordenadas de partida das estações de monitoramento.

• Estação Total Pentax R425VN

A Estação Total Pentax R425VN (Figura 6.8) é um instrumento indicado para trabalhos que

requerem alta precisão e confiabilidade. Possui precisão angular de 5 segundos e precisão linear de 2 mm + 2 ppm. Quanto às leituras, realiza leitura nominal de 1"; com prisma até 7000 m, com três prismas até 9.000 m, sem prisma até 400 m, com fita refletiva maior que 800 m e com mini prisma até 2000 m. Possui duplo compensador (horizontal e vertical) e memória interna para 45.000 pontos e gerenciamento de 50 obras.

Figura 6.8 – Estação Total Pentax R425VN: utilizada na determinação do plano cotado e dos perfis, bem como nas leituras resultantes do levantamento planialtimétrico.

6.1.2 REGISTRO FOTOGRAFICO

Figura 6.9 – Vistas das Estações de Monitoramento 1.1 (acima) e 1.3 (abaixo), bem como de sua localização na área monitorada (centro).

Figura 6.10 - Vistas das Estações de Monitoramento 2.1 (acima) e 2.5 (abaixo), bem como de sua localização na área monitorada (centro).

Figura 6.11 – Vistas das Estações de Monitoramento 4.2 (acima) e 4.3 (abaixo), bem como de sua localização na área monitorada (centro).

Figura 6.12 – Vistas das Estações de Monitoramento 5.1 (acima) e 5.2 (abaixo), bem como de sua localização na área monitorada (centro).

6.2 IMPLANTAÇÃO DAS ESTAÇÕES

A localização das estações seguiu as orientações da Chesf, considerando os resultados dos trabalhos anteriormente efetuados no trecho com os mesmos objetivos. As estações receberam as seguintes denominações:

a) quatro estações entre Sobradinho e Itaparica, sendo duas delas distribuídas na margem esquerda - EM 1.1 e EM 1.3 - e duas na margem direita - EM.1 e EM 2.5 -, e

b) quatro estações localizadas no trecho a jusante da UHE Xingó, sendo duas na margem esquerda - EM 4.2 e EM 5.2 - e duas na margem direita - EM 4.3 e 5.1.

Figura 6.13 – Localização das Estações de Monitoramento situadas entre os reservatórios de Sobradinho e Itaparica.

Figura 6.14 – Localização das Estações de Monitoramento situadas a jusante da Barragem de Xingó.

6.2.1 CARACTERISTICAS DE CADA ESTAÇÃO

6.2.1.1 ESTAÇÕES DE MONITORAMENTO SITUADAS ENTRE SOBRADINHO E ITAPARICA

ESTAÇÃO DE MONITORAMENTO 1.1

A estação EM 1.1 (Figuras 6.15 e 6.16) se localiza na margem norte do rio, distante 16 km a jusante da Barragem de Sobradinho. Apresenta solo argilo-arenoso, com vegetação arbustiva em boa parte do terreno e presença de algumas árvores de grande porte. O solo próximo à margem do rio é coberto por gramíneas, e com vegetação arbustiva nas demais áreas. No local, existe um barranco bem exposto, com vegetação rarefeita, com incidência de erosão. Em frente ao barranco está presente uma praia fluvial arenosa. A mata ciliar foi parcial ou totalmente reduzida com exposição dos solos às intempéries. Está localizada em propriedade de terceiros, usada para a exploração pecuária.

Figura 6.15 – Vistas da estação de monitoramento EM 1.1, com vista detalhada do barranco (abaixo).

Figura 6.16 – Imagem de satélite com a localização da Estação de Monitoramento EM 1.1.

ESTAÇÃO DE MONITORAMENTO 1.3

A estação EM 1.3 (Figuras 6.17 e 6.18) está localizada na margem sul do rio, distante 21 km a jusante da Barragem de Sobradinho. A situação morfológica da área é muito semelhante àquela da estação EM 1.1. Os solos são argilosos com pontos de voçoroca. A vegetação é do tipo arbustiva em boa parte do terreno. Há presença de algumas árvores de grande porte. A cobertura vegetal é ainda mais reduzida e a praia fluvial mais estreita que naquela estação. O barranco apresenta evidências de erosão ativa (Figura 6.17).

Figura 6.17– Vistas do barranco à beira do rio São Francisco, na estação de monitoramento EM 1.3.

Figura 6.18- Imagem de satélite com a localização da Estação de Monitoramento EM 1.3.

ESTAÇÃO DE MONITORAMENTO 2.1

A estação EM 2.1 (Figuras 6.19 e 6.20) está situada a aproximadamente 37 km (em linha reta) a jusante de Petrolina. No local, predominam solos argilosos. O terreno das proximidades é utilizado para pastagens, com presença de algumas árvores de grande porte. O local está situado próximo a áreas com lavouras. Apresenta poucos barrancos sem vegetação, visto que as margens do Rio São Francisco são bem vegetadas no trecho. Identifica-se a presença de uma praia fluvial.

Figura 6.19 – Vistas da estação EM 2.1, com evidência de erosão por ação antrópica num ponto de ancoragem de barcos de serviços (esquerda) e presença de certa cobertura vegetal (direita).

Figura 6.20 – Imagem de satélite com a localização da Estação de Monitoramento EM 2.1.

ESTAÇÃO DE MONITORAMENTO 2.5

A estação EM 2.5 (Figuras 6.21 e 6.23) está situada aproximadamente 41 km (em linha reta) a jusante de Petrolina. Predominam solos de natureza argilo-arenosos no local, sendo a superfície do solo caracterizada por pouca cobertura vegetal rasteira. A mata ciliar apresenta algumas árvores de grande porte. Localiza-se próximo a lavouras. O barranco é recoberto por uma pouca vegetação arbórea-arbustiva densa.

Figura 6.21 – Vistas com detalhes da área de monitoramento da estação EM 2.5.

Figura 6.22 – Imagem de satélite com a localização da Estação de Monitoramento EM 2.5.

6.2.1.2 ESTAÇÕES DE MONITORAMENTO SITUADAS À JUSANTE DA BARRAGEM DE XINGÓ ESTAÇÃO DE MONITORAMENTO 4.2

A estação EM 4.2 (Figuras 6.23 e 6.24) se situa na margem direita do rio, 4 km a jusante do ancoradouro de barcos do município de Porto da Folha (SE), que se localiza no final da rodovia SE-108 e em frente da cidade de Pão-de-Açúcar (AL). No local, predominam solos de natureza arenosos. Superfície aberta, com vegetação rasteira e plantações de milho nas proximidades. Criação de gado bovino na vizinhança.

Figura 6.23 – Vista da estação EM 4.2, evidenciando detalhe com solo franco arenoso, sem cobertura vegetal, usado para a criação de gado bovino.

Figura 6.24 – Imagem de satélite com a localização da Estação de Monitoramento EM 4.2.

ESTAÇÃO DE MONITORAMENTO 4.3

A estação EM 4.3 (Figuras 6.25 a 6.27) está localizada na margem esquerda do rio, 2.5 km a jusante do ancoradouro de barcos do município de Pão-de-Açúcar (AL). Predominam solos argilo-arenosos. Vegetação rasteira, tendo parte do terreno recoberto por pastagem, e o restante sem vegetação. Apresenta um barranco arenoso alto e muito íngreme, com uma praia fluvial muito estreita.

Figura 6.25 – Vistas da estação de monitoramento EM 4.3.

Figura 6.26 – Vistas da estação EM 4.3, com detalhes da vegetação rala e a presença de pasto e gado bovino.

Figura 6.27 - Imagem de satélite com a localização da Estação de Monitoramento EM 4.3.

ESTAÇÃO DE MONITORAMENTO 5.1

A estação EM 5.1 (Figuras 6.28 e 6.29) está localizada aproximadamente 3 km (em linha reta) a jusante da localidade de Ilha das Flores (SE). Predominam solos arenoso no local, com presença de vegetação rasteira. Identifica-se um barranco arenoso alto e muito íngreme, sem praia fluvial. A superfície do terreno é recoberta por pastagem. Verifica-se a presença de área de agricultura próxima.

Figura 6.28 - Vistas do barranco (esquerda) e da área de pastagem (direita) na estação de monitoramento EM 5.1.

Figura 6.29 – Imagem de satélite com a localização da Estação de Monitoramento EM 5.1.

ESTAÇÃO DE MONITORAMENTO 5.2

A estação EM 5.2 (Figuras 6.30 a 6.31) se encontra localizada na margem sul do rio, distante 7.5 km a jusante da ponte da BR-101, na cidade de Propriá (SE). A área é composta por um terreno arenoso recoberto por uma vegetação densa. É a única estação de monitoramento de todo o trecho que não tem barranco. Para os trabalhos de monitoramento, foi secionada uma área com talude de gradiente constante.

Figura 6.30 - Vistas do talude na estação M 5.2, constituído por solo arenoso.

Figura 6.31 – Imagem de satélite com a localização da Estação de Monitoramento EM 5.2.

6.3 RESULTADOS DO MONITORAMENTO MENSAL (dezembro/2013)

A presente campanha correspondente à 7^a. campanha de monitoramento desde o início do período da Autorização Especial Nº 1/2013 (IBAMA) e à 3^a. Campanha do contrato CTNI-92.2013.2490.00.

Durante a primeira campanha (outubro/2013), foram feitas as leituras em todas as Estações de Monitoramento para a elaboração do Modelo Digital do Terreno - MDT para cada uma delas. A partir do MDT, foram gerados os 5 perfis em cada estação, com uma distância de 7,50 m (sete metros e cinquenta centímetros) entre eles, tendo seu início sempre acima dos barrancos, quando da sua existência, e levantamento de cotas a cada 5,00 m (cinco metros) e em pontos notáveis, quando existentes, até a linha d'água. Visou-se, dessa forma, determinar também o nível do rio, no momento de cada medição realizada.

A partir das medições feitas na primeira campanha e das medições subsequentes em cada perfil de cada estação foi possível detectar eventuais variações nas leituras, que venham a caracterizar e mensurar processos erosivos e ou assoreadores.

Os valores das cotas de cada perfil estão armazenados no banco de dados, para serem utilizados nas leituras mensais posteriores.

A seguir, são apresentados os resultados da 3ª. campanha (C3), cujos dados são confrontados com aqueles das campanhas anteriores (C1 eC2).

6.3.1 ESTAÇAO DE MONITORAMENTO EM 1.1 (Petrolina 1) FICHA DE MONITORAMENTO DOS PERFIS DE CONTROLE

NOME DA ESTAÇÃO	EM 1.1
MUNICÍPIO / ESTADO	PETROLINA /PE
DISTRITO/POVOADO	CATINGUINHA
LONGITUDE	40°40'53 W
LATITUDE	9°27'23 W
ALTITUDE	[378m, 384m]

PERFIS

A estação de monitoramento em 1.1 foi descrita com a utilização de 5 (cinco) perfis: EM1.1 EF-1, EM1.1 EF-1A, EM1.1 EF-2, EM1.1 EF-2A e EM1.1 EF-3.

DATA DAS CAMPANHAS

CAMPANHA 1 – 15/10/2013

CAMPANHA 2 - 07/11/2013

CAMPANHA 3 - 02/12/2013

VAZÃO MÉDIA NO DIA DO LEVANTAMENTO

Posto Hidrométrico de Juazeiro

EM 1.1 PETROLINA 1	Campanha 1	Campanha 2	Campanha 3	
VAZÃO MÉDIA (m ³ /s)	1445	1499	1407	

PERFIL EM 1.1 EF-1 COMPARATIVO DAS CAMPANHAS C1, C2 e C3

C1 Perfil 1.1 EF-1 Altitude (m)	Distância acumulada (m)	C2 Perfil 1.1 EF-1 Altitude (m)	Distância acumulada (m)	C3 Perfil 1.1 EF-1 Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
384,114	0,00	384,142	0,00	384,134	0,00	0,020
384,205	5,00	384,207	5,00	384,197	5,00	-0,008
384,124	7,53	384,121	7,53	384,13	7,53	0,006
382,343	10,00	382,35	10,00	382,349	10,00	0,006
381,841	11,05	381,841	11,05	381,866	11,05	0,025
381,028	11,34	381,028	11,34	381,004	11,34	-0,024
379,894	15,00	379,875	15,00	379,927	15,00	0,033
379,316	20,00	379,32	20,00	379,322	20,00	0,006
379,121	25,00	379,12	25,00	379,155	25,00	0,034
379,028	30,00	379,028	30,00	379,029	30,00	0,001
378,663	35,00	378,68	35,00	378,702	35,00	0,039
378,531	40,00	378,517	40,00	378,531	40,00	0,000
378,441	41,93	378,517	40,20	378,476	41,20	0,035

PERFIL EM 1.1 EF-1A

COMPARATIVO DAS CAMPANHAS C1, C2 e C3

C1 Perfil 1.1 EF-1A Altitude (m)	Distância acumulada (m)	C2 Perfil 1.1 EF-1A Altitude (m)	Distância acumulada (m)	C3 Perfil 1.1 EF-1A Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
383,965	0,00	383,964	0,00	383,978	0,00	0,013
383,913	5,00	383,892	5,00	383,919	5,00	0,006
383,748	10,00	383,722	10,00	383,723	10,00	-0,025
383,52	11,93	383,537	11,93	383,545	11,93	0,025
381,224	12,39	381,224	12,39	381,21	12,39	-0,014
380,107	15,00	380,087	15,00	380,11	15,00	0,003
379,722	16,51	379,722	16,51	379,739	16,51	0,017
379,293	20,00	379,282	20,00	379,313	20,00	0,02
379,038	25,00	379,009	25,00	379,008	25,00	-0,03
378,781	30,00	378,795	30,00	378,816	30,00	0,035
378,609	35,00	378,597	35,00	378,615	35,00	0,006
378,564	40,00	378,564	40,00	378,535	40,00	-0,029
378,45	41,75	378,535	40,32	378,492	40,98	0,042

PERFIL EM 1.1 EF-2

COMPARATIVO DAS CAMPANHAS C1, C2 e C3

C1 Perfil 1.1 EF-2 Altitude (m)	Distância acumulada (m)	C2 Perfil 1.1 EF-2 Altitude (m)	Distância acumulada (m)	C3 Perfil 1.1 EF-2 Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
383,691	0,00	383,688	0,00	383,686	0,00	-0,005
383,634	5,00	383,633	5,00	383,613	5,00	-0,021
383,464	10,00	383,474	10,00	383,479	10,00	0,015
383,21	13,48	383,21	13,48	383,222	13,48	0,012
380,682	14,23	380,677	14,23	380,644	14,23	-0,038
380,221	15,00	380,149	15,00	380,165	15,00	-0,056
379,675	16,94	379,675	16,94	379,67	16,94	-0,005
379,27	20,00	379,258	20,00	379,289	20,00	0,019
379,031	25,00	379,023	25,00	379,042	25,00	0,011
378,86	30,00	378,846	30,00	378,849	30,00	-0,011
378,674	35,00	378,663	35,00	378,686	35,00	0,012
378,508	40,00	378,508	39,88	378,473	39,88	-0,035
378,437	41,72					-378,437

126

PERFIL EM 1.1 EF-2A

COMPARATIVO DAS CAMPANHAS C1, C2 e C3

C1 Perfil EF-1,1 2A Altitude (m)	Distância acumulada (m)	C2 Perfil 1.1 EF-2A Altitude (m)	Distância acumulada (m)	C3 Perfil 1.1 EF-2A Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
383,46	0,00	383,447	0,00	383,461	0,00	0,001
383,468	5,00	383,456	5,00	383,462	5,00	-0,006
383,455	10,00	383,456	10,00	383,458	10,00	0,003
383,19	13,38	383,19	13,38	383,18	13,38	-0,01
383,044	13,64	383,044	13,64	383,04	13,64	-0,004
382,152	15,00	382,152	14,41	382,15	14,41	-0,002
380,78	15,54	380,94	15,54	380,77	15,54	-0,01
379,802	17,39	379,802	17,39	379,8	17,39	-0,002
379,286	20,00	379,272	20,00	379,356	20,00	0,07
379,007	25,00	379,009	25,00	379,076	25,00	0,069
378,852	30,00	378,869	30,00	378,889	30,00	0,037
378,577	35,00	378,552	35,00	378,583	35,00	0,006
378,288	40,00	378,553	35,73	378,499	36,71	0,211

COMPARATIVO DAS CAMPANHAS C1, C2 e C3

C1 Perfil 1,1 EF-3 Altitude (m)	Distância acumulada (m)	C2 Perfil 1.1 EF-3 Altitude (m)	Distância acumulada (m)	C3 Perfil 1.1 EF-3 Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
383,385	0,00	383,389	0,00	383,391	0,00	0,006
383,211	5,00	383,219	5,00	383,237	5,00	0,026
382,975	6,61	382,955	6,61	382,99	6,61	0,015
382,829	7,12	382,829	7,12	382,771	7,12	-0,058
382,447	8,53	382,447	8,53	382,447	8,53	0,000
382,227	10,00	382,193	10,00	382,142	10,00	-0,085
382,027	10,87	382,027	10,87	382,051	10,87	0,024
381,532	15,00	381,524	15,00	381,513	15,00	-0,019
381,006	15,43	381,006	15,43	381,066	15,43	0,06
380,037	18,36	380,037	18,36	380,027	18,36	-0,01
379,78	20,00	379,794	20,00	379,81	20,00	0,03
379,291	25,00	379,276	25,00	379,323	25,00	0,032
379,127	30,00	379,099	30,00	379,128	30,00	0,001
379,325	33,30	379,325	33,30	379,316	33,30	-0,009
378,785	35,00	378,752	35,00	378,752	35,00	-0,033
378,372	40,00	378,539	40,00	378,482	38,68	0,11

ESTAÇÃO DE MONITORAMENTO EM 1.1 (Petrolina 1)

AVALIAÇÃO DOS RESULTADOS

COTA MÉDIA

EM 1.1 PETROLINA 1	Campanha 1	Campanha 2	Campanha 3
COTA MÉDIA (m)	1,63	1,68	1,59

A cota média subiu de 1,63 m para 1,68 m da primeira para a segunda campanha, reduzindo para 1,59 m na terceira campanha.

Não houve variações significativas nas medições realizadas para todos os perfis estudados.

6.3.2 ESTAÇÃO DE MONITORAMENTO 1.3 Juazeiro 1 FICHA DE MONITORAMENTO DOS PERFIS DE CONTROLE

NOME DA ESTAÇÃO	EM 1.3
MUNICIPIO / ESTADO	JUAZEIRO / BA
DISTRITU/POVOADO	SABIA
	40° 20/ 00// \N/
LONGITUDE	40 38 08 VV
	00° 20' 58" S
LATITUDE	07 27 30 3
	[375.4m, 378.5m]
ALITODE	[373.411, 376.511]

PERFIS

A estação de monitoramento EM 1.3 foi descrita com a utilização de 5 (cinco) perfis: EF-1,

EF-1A, EF-2, EF-2A e EF-3.

CAMPANHA 1 – 16/10/2013

CAMPANHA 2 – 06/11/2013

CAMPANHA 3 – 02/12/2013

EM 1.3 JUAZEIRO 1	EM 1.3 JUAZEIRO 1 Campanha 1		Campanha 3	
VAZÃO MÉDIA (m ³ /s)	1445	1436	1407	

6.3.2 ESTAÇÃO DE MONITORAMENTO EM 1.3 (Juazeiro 1)

PERFIL EM 1.3 EF-1 COMPARATIVO CAMPANHAS C1, C2 e C3

C1 Perfil 1.3 EF-1 Altitude (m)	Distancia acumulada (m)	C2 1.3 Perfil EF-1 Altitude (m)	Distancia acumulada (m)	C3 1.3 Perfil EF- 1 Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
378,421	0,00	378,434	0,00	378,439	0,00	0,018
377,824	5,00	377,825	5,00	377,8	5,00	-0,024
377,193	10,00	377,209	10,00	377,183	10,00	-0,01
376,964	11,67	376,964	11,67	376,959	11,67	-0,005
376,616	12,08	376,616	12,08	376,604	12,08	-0,012
376,097	15,00	376,099	15,00	376,093	15,00	-0,004
375,548	20,00	375,55	20,00	375,555	20,00	0,007
374,934	24,53	374,776	<mark>26</mark> ,05	374,842	24,69	-0,092

PERFIL EM 1.3 EF-1A COMPARATIVO CAMPANHAS C1, C2 e C3

C1 Perfil 1.3 EF-1A Altitude (m)	Distância acumulada (m)	C2 Perfil 1.3 EF-1A Altitude (m)	Distância acumulada (m)	C3 Perfil 1.3 EF-1A Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
378,429	0,00	378,46	0,00	378,433	0,00	0,004
378,017	5,00	377,988	5,00	377,983	5,00	-0,034
377,414	10,00	377,399	10,00	377,402	10,00	-0,012
377	12,89	377,029	12,89	377,016	12,89	0,016
376,764	13,32	377,001	13,32	377,011	13,32	0,247
376,604	13,86	376,604	13,86	376,58	13,86	-0,024
376,408	15,00	376,401	15,00	376,4	15,00	-0,008
375,713	20,00	375,708	20,00	375,717	20,00	0,004
374,936	24,82	374,761	26,12	374,816	25 <mark>,19</mark>	-0 <mark>,12</mark>

PERFIL EM 1.3 -EF2 COMPARATIVO CAMPANHAS C1, C2 e C3

C1 Perfil 1.3 E-F2 Altitude (m)	Distância acumulada (m)	C2 Perfil 1.3 E-F2 Altitude (m)	Distância acumulada (m)	C3 Perfil 1.3 E-F2 Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
378,471	0,00	378,464	0,00	378,448	0,00	-0,023
377,901	5,00	377,885	5,00	377,881	5,00	-0,02
377,24	10,00	377,231	10,00	377,238	10,00	-0,002
377,168	10,42	377,163	10,42	377,175	10,42	0,007
376,664	11,13	376,664	11,13	376,661	11,13	-0,003
376,124	15,00	376,094	15,00	376,113	15,00	-0,011
375,537	20,00	375,542	20,00	375,558	20,00	0,021
374,934	24,25	374,747	26,05	374,82	24,52	-0,114

PERFIL EM 1.3 EF-2A COMPARATIVO CAMPANHAS C1, C2 e C3

C1 Perfil 1.3 E-F2A Altitude (m)	Distância acumulada	C2 Perfil 1.3 E-F2A Altitude (m)	Distância acumulada	C3 Perfil 1.3 E-F2A Altitude (m)	Distância acumulada	Variação da Altitude (m)
378,577	0,00	378,573	0,00	378,567	0,00	-0,01
377,963	5,00	377,936	5,00	377,907	5,00	-0,056
377,406	9,45	377,4	9,45	377,403	9,45	-0,003
376,803	10,00	376,795	10,00	376,728	10,00	-0,075
375,937	15,00	375,918	15,00	375,942	15,00	0,005
375,462	20,00	375,446	20,00	375,436	20,00	-0,026
374,932	24,88	374,75	25,50	374,847	24,99	-0,085

PERFIL EM 1.3-EF3 COMPARATIVO CAMPANHAS C1, C2 e C3

C1 Perfil 1.3 EF3 Altitude (m)	Distância acumulada (m)	C2 Perfil 1.3 EF3 Altitude (m)	Distância acumulada (m)	C3 Perfil 1.3 EF3 Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
378,482	0,00	378,48	0,00	378,467	0,00	-0,015
377,913	5,00	377,916	5,00	377,923	5,00	0,01
377,349	9,35	377,349	9,35	377,351	9,35	0,002
376,93	10,00	376,94	10,00	376,896	10,00	-0,034
375,856	15,00	375,855	15,00	375,876	15,00	0,02
375,315	20,00	375,301	20,00	375,291	20,00	-0,024
374,926	22,60	374,735	20,05	374,828	24.27	-0,098

ESTAÇAO DE MONITORAMENTO EM 1.3 (Juazeiro 1)

AVALIAÇÃO DOS RESULTADOS

COTA MÉDIA

EM 1.3 JUAZEIRO 1	Campanha 1	Campanha 2	Campanha 3
COTA MÉDIA (m)	1,63	1,62	1,59

A cota média baixou de 1,63 m na primeira campanha para 1,58 m na terceira campanha. Não houve variações significativas nas medições realizadas em todos os perfis estudados.

6.3.3 ESTAÇÃO DE MONITORAMENTO 2.1 (Petrolina 2)

FICHA DE MONITORAMENTO DOS PERFIS DE CONTROLE

NOME DA ESTAÇÃO	EM 2.1
MUNICÍPIO / ESTADO	Petrolina/ Pe
DISTRITO/POVOADO	
LONGITUDE	40° 17′ 10″ W
LATITUDE	09° 06′ 16″ S
ALTITUDE	[384.6m, 390.1m]

A estação de monitoramento em 2.1 foi descrita com a utilização de 5 (cinco) perfis: EM2.1

EF-1, EM2.1 1.1 EF-1A, EM2.1 1.1 EF-2, EM2.1 1.1 EF-2A e EM2.1 1.1 EF-3.

DATA DAS CAMPANHAS

CAMPANHA 1 – 16/10/2013 CAMPANHA 2 – 07/11/2013 CAMPANHA 3 – 03/12/2013

VAZÃO MÉDIA NO DIA DO LEVANTAMENTO

Posto Hidrométrico de Juazeiro

EM 2.1 PETROLINA 2	Campanha 1	Campanha 2	Campanha 3
VAZÃO MÉDIA (m ³ /s)	1436	1499	1416

PERFIL EM 2.1 EF-1 COMPARATIVO CAMPANHAS C1, C2 e C3

C1 Perfil 2.1 EF-1 Altitude (m)	Distância acumulada (m)	C2 Perfil 2.1 EF-1 Altitude (m)	Distância acumulada (m)	C3 Perfil 2.1 EF-1 Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
389,986	0,00	389,979	0,00	389,989	0,00	0,003
389,803	2,65	389,803	2,65	389,861	2,65	0,058
389,098	4,48	389,098	4,48	389,071	4,48	-0,027
388,822	5,00	388,754	5,00	388,787	5,00	-0,035
387,304	10,00	387,281	10,00	387,262	10,00	-0,042
386,479	15,00	386,440	15,00	386,496	15,00	0,017
386,421	18,46	386,421	18,46	386,411	18,46	-0,01
385,402	20,62	385,402	20 <mark>,62</mark>	385,363	20,62	-0,039
384,678	22,60	384,678	22,60	384,650	22,14	-0,028

PERFIL EM 2.1 EF1A COMPARATIVO CAMPANHAS C1, C2 e C3

C1 Perfil 2.1 EF-1A Altitude (m)	Distância acumulada (m)	C2 Perfil 2.1 EF-1A Altitude (m)	Distância acumulada (m)	C3 Perfil 2.1 EF-1A Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
390,030	0,00	389,988	0,00	390,013	0,00	-0,017
390,036	3,63	390,036	3,63	390,097	3,63	0,061
389,504	5,00	389,514	5,00	389,513	5,00	0,009
387,344	10,00	387,326	10,00	387,320	10,00	-0,024
386,421	15,00	386,387	15,00	386,414	15,00	-0,007
385,590	19,06	385,590	19,06	385,610	19,06	0,020
384,868	19,34	384,868	19,34	384,865	19,34	-0,003
384,714	20,72	384,678	20,37	384,624	21,05	-0,090

PERFIL EM 2.1 EF-2 COMPARATIVO CAMPANHAS C1, C2 e C3

C1 Perfil 2.1 EF-2 Altitude (m)	Distância acumulada (m)	C2 Perfil 2.1 EF-2 Altitude (m)	Distância acumulada (m)	C3 Perfil 2.1 EF-2 Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
389,908	0,00	389,893	0,00	389,899	0,00	-0,009
389,819	4,44	389,819	4,44	389,819	4,44	0,000
389,655	5,00	389,616	5,00	389,637	5,00	-0,018
389,169	5,50	389,169	5,50	389,159	5,50	-0,010
388,182	6,85	388,182	6,85	388,225	<mark>6,8</mark> 5	0,043
387,104	10,00	387,056	10,00	387,061	10,00	-0,043
386,134	12,35	386,134	12,35	386,136	12,35	0,002
385,500	14,57	385,500	14,57	385,490	14,57	-0,010
385,420	15,00	385,410	15,00	385,424	15,00	0,004
385,046	18,01	385,046	18,01	385,016	18,01	-0,030
384,687	20,30	384,687	20,30	384,645	21,70	-0,042

PERFIL EM 2.1 EF-2A COMPARATIVO CAMPANHAS C1, C2 e C3

C1 Perfil 2.1 EF-2A Altitude (m)	Distância acumulada (m)	C2 Perfil 2.1 EF-2A Altitude (m)	Distância acumulada (m)	C3 Perfil 2.1 EF-2A Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
389,448	0,00	389,441	0,00	389,453	0,00	0,005
389,392	3,39	389,392	3,39	389,394	3,39	0,002
388,768	3,66	388,768	3,66	388,758	3,66	-0,010
388,096	5,00	388,049	5,00	388,089	5,00	-0,007
387,460	6,65	387,460	6,65	387,450	<mark>6,6</mark> 5	-0,010
386,711	10,00	386,69	10,00	386,691	10,00	-0,020
386,399	12,67	386,399	12,67	386,38	12,67	-0,019
385,433	15,00	385,38	15,00	385,405	15, <mark>00</mark>	-0,028
385,047	16,58	385,047	16 <mark>,58</mark>	385,037	16,58	-0,010
384,687	18,37	384,687	18,37	384,815	19,17	0,128

PERFIL EM 2.1 EF-3 COMPARATIVO CAMPANHAS C1, C2 e C3

C1 Perfil 2.1 EF-3 Altitude (m)	Distância acumulada (m)	C2 2.1 Perfil EF-3 Altitude (m)	Distância acumulada (m)	C3 Perfil 2.1 EF-3 Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
389,891	0,00	389,872	0,00	389,881	0,00	-0,010
389,821	1,53	389,821	1,53	389,818	1,53	-0,003
389,681	2,00	389,681	2,00	389,671	2,00	-0,01
388,088	4,64	388,088	4,64	388,082	4,64	-0,006
387,921	5,00	387,885	5,00	387,906	5,00	-0,015
387,069	7,05	387,069	7,05	387,056	7,05	-0,013
385,352	10,00	385,332	10,00	385,356	10,00	0,004
384,684	16,04	384,684	16,04	384,66	17,60	-0,024

ESTAÇÃO DE MONITORAMENTO EM 2.1 (Petrolina 2)

AVALIAÇO DOS RESULTADOS

COTA MÉDIA NO DIA DO LEVANTAMENTO

EM 1.2 PETROLINA 2	Campanha 1	Campanha 2	Campanha 3
COTA MÉDIA (m)	1,62	1,68	1,60

A cota média subiu de 1,62 m para 1,68 m da primeira para a segunda campanha, reduzindo para 1,60 m na terceira campanha.

Não houve variações significativas nas medições realizadas para todos os perfis estudados.

6.3.4 ESTAÇÃO DE MONITORAMENTO 2.5 (Juazeiro 2) FICHA DE MONITORAMENTO DOS PERFIS DE CONTROLE

NOME DA ESTAÇÃO	EM 2.5	
ESTADO/MUNICÍPIO	JUAZEIRO / BA	
DISTRITO/POVOADO	BEBEDOURO	
LONGITUDE	40° 17′ 24″ W	
LATITUDE	09° 09′ 17″ S	
ALTITUDE	[371.6m, 374m]	

DATA DAS CAMPANHAS

CAMPANHA 1 – 16/10/2013

- CAMPANHA 2 06/11/2013
- CAMPANHA 3 03/12/2013

VAZÃO MÉDIA NO DIA DO LEVANTAMENTO

Posto Hidrométrico de Juazeiro

EM 2.1 JUAZEIRO 2	Campanha 1	Campanha 2	Campanha 3
VAZÃO MÉDIA (m ³ /s)	1436	1436	1416

PERFIL EM 2.5 EF-1 COMPARATIVO DAS CAMPANHAS C1, C2 e C3

C1 Perfil 2.5 EF1 Altitude (m)	Distância acumulada (m)	C2 Perfil 2.5 EF1Altitude (m)	Distância acumulada (m)	C3 Perfil 2.5 EF1Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
372,926	0,00	372,906	0,00	372,929	0,00	0,003
372,839	1,61	372,839	1,61	372,828	1,61	-0,011
372,583	5,00	372,581	5,00	372,589	5,00	0,006
371,901	10,00	371,885	10,00	371,879	10,00	-0,022
371,670	11,63	371,547	11,60	371,62	11, <mark>58</mark>	-0,05

PERFIL EM 2.5 EF-1A COMPARATIVO DAS CAMPANHAS C1,C2 e C3

C1 Perfil 2.5 EF-1A Altitude (m)	Distância acumulada (m)	C2 Perfil 2.5 EF-1A Altitude (m)	Distância acumulada (m)	C3 Perfil 2.5 EF-1A Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
373,800	0,00	373,802	0,00	373,824	0,00	0,024
373,533	5,00	373,517	5,00	373,520	5,00	-0,013
372,765	5,84	372,764	5,84	372,752	5,84	-0,013
372,362	7,29	372,362	7,29	372,351	7,29	-0,011
371,911	10,00	371,921	10,00	371,908	10,00	-0,003
371,707	11,53	371,584	11,73	371,583	11,65	-0,124

PERFIL EM 2.5 EF-2

C1 Perfil 2.5 EF-2 Altitude (m)	Distância acumulada (m)	C2 Perfil 2.5 EF-2 Altitude (m)	Distância acumulada (m)	C3 Perfil 2.5 EF-2 Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
373,817	0,00	373,847	0,00	373,821	0,00	0,004
373,893	5,00	373,897	5,00	373,906	5,00	0,013
373,805	5,28	373,805	5,28	373,801	5,28	-0,004
372,873	6,52	372,882	6,52	372,871	6,52	-0,002
372,119	10,00	372,129	10,00	372,135	10,00	0,016
371,678	12,22	371,576	12,10	371,633	11,97	-0,045

PERFIL EM 2.5 EF-2A

C1 Perfil 2.5 EF-2A Altitude (m)	Distância acumulada (m)	C2 Perfil 2.5 EF-2A Altitude (m)	Distância acumulada (m)	C3 Perfil 2.5 EF-2A Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
373,866	0,00	373,887	0,00	373,881	0,00	0,015
374,008	5,00	374,022	5,00	374,02	5,00	0,012
373,786	6,12	373,795	6,12	373,785	6,12	-0,001
373,039	6,85	372,900	6,85	372,91	6,85	-0,129
372,116	10,00	372,127	10,00	372,121	10,00	0,005
371,685	12,78	371,568	12,87	371,597	12,93	-0,088

PERFIL EM 2.5 EF-3

C1 Perfil 2.5 EF- 3 Altitude (m)	Distância acumulada (m)	C2 Perfil 2.5 EF-3 Altitude (m)	Distância acumulada (m)	C3 Perfil 2.5 EF-3 Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
373,88	0,00	373,878	0,00	373,873	0,00	-0,007
373,987	5,00	374,006	5,00	373,999	5,00	0,012
373,870	6,62	373,827	6,62	373,842	6,62	-0,028
372,795	7,92	372,795	7,92	372,808	7,92	0,013
372,241	10,00	372,256	10,00	372,254	10,00	0,013
371,698	12,36	371,588	12,36	371,661	12,46	-0,037

ESTAÇÃO DE MONITORAMENTO EM 2.5 (Juazeiro 2)

AVALIAÇO DOS RESULTADOS

COTA MÉDIA NO DIA DO LEVANTAMENTO

Posto Hidrométrico de Juazeiro

EM 2.5 JUAZEIRO 2	Campanha 1	Campanha 2	Campanha 3
COTA MÉDIA (m)	1,62	1,62	1,60

Não houve variações significativas nas medições realizadas em todos os perfis estudados.

6.3.5 ESTAÇÃO DE MONITORAMENTO 4.2 (Sergipe 1) FICHA DE MONITORAMENTO DOS PERFIS DE CONTROLE

NOME DA ESTAÇÃO	EM 4.2
MUNICÍPIO / ESTADO	Porto da folha / se
DISTRITO/POVOADO	QUILOMBO MUCAMBO
LONGITUDE	37° 24′ 00″ W
LATITUDE	09° 46′ 46″ S
ALTITUDE	[25.3m, 29.0m]

A estação de monitoramento em 4.2 foi descrita com a utilização de 5 (cinco) perfis: EM4.2 EF-1, EM4.2 EF-1A, EM4.2 EF-2, EM4.2 EF-2A e EM4.2 EF-3.

CAMPANHA 1 – 18/10/2013 CAMPANHA 2 – 05/11/2013 CAMPANHA 3 – 04/12/2013

VAZÃO MÉDIA NO DIA DO LEVANTAMENTO

Posto Hidrométrico de Pão de Açúcar

EM 4.2 SERGIPE 1	Campanha 1	Campanha 2	Campanha 3
VAZÃO MÉDIA (m ³ /s)	1430	1372	1359

PERFIL EM 4.2 EF-1

C1 Perfil 4.2 EF- 1 Altitude (m)	Distância acumulada (m)	C2 Perfil 4.2 EF-1 Altitude (m)	Distância acumulada (m)	C3 Perfil 4.2 EF-1 Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
28,873	0,00	28,861	0,00	28,890	0,00	0,017
28,932	4,49	28,923	4,49	28,931	4,49	-0,001
27,466	5,00	27,476	5,00	27,433	5,00	-0,033
26,553	7,49	26,493	7,49	26,536	7,49	-0,017
25,704	7,68	25,600	7,68	25,308	7,68	-0,396
25,336	8,81	25,263	9,11			

PERFIL EM 4.2 EF-1A

COMPARATIVO DAS CAMPANHAS C1,C2 e C3

C1 Perfil 4.2 EF- 1A Altitude (m)	Distância acumulada (m)	C2 Perfil 4.2 EF-1A Altitude (m)	Distância acumulada (m)	C3 Perfil 4.2 EF-1A Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
28,814	0,00	28,814	0,00	28,815	0,00	0,001
28,964	5,00	28,859	5,00	28,882	5,00	-0,082
27,187	5,52	27,179	5,52	27,173	5,52	-0,014
26,729	6,49	26,742	6,49	26,757	6,49	0,028
25,780	6,64	25,780	6,64	25,470	6,64	-0,31
25,343	7,86	25,238	8,41	25,289	7,01	-0,054

Observado neste perfil efeito erosivo na distância 0+6,60m.

PERFIL EM 4.2 EF-2

C1 Perfil 4.2 EF- 2 Altitude (m)	Distância acumulada (m)	C2 Perfil 4.2 EF-2 Altitude (m)	Distância acumulada (m)	C3 Perfil 4.2 EF-2 Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
28,790	0,00	28,766	0,00	28,795	0,00	0,005
28,811	4,34	28,813	4,34	28,824	4,34	0,013
27,311	4,63	27,313	4,63	27,284	4,63	-0,027
26,100	5,00	26,100	5,00	26,093	5,00	-0,007
25,925	5,62	25,925	5,62	25,958	5,62	0,033
25,558	5,78	25,558	5,78	25,538	5,78	-0,02
25,338	7,00	25,242	7,15	25,308	6, <mark>50</mark>	-0,03

PERFIL EM 4.2 EF-2A

C1 Perfil 4.2 EF- 2A Altitude (m)	Distância acumulada (m)	C2 Perfil 4.2 EF-2A Altitude (m)	Distância acumulada (m)	C3 Perfil 4.2 EF-2A Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
28,758	0,00	28,740	0,00	28,751	0,00	-0,007
28,747	1,09	28,747	1,09	28,735	1,09	-0,012
28,727	1,29	28,727	1,29	28,714	1,29	-0,013
27,187	1,62	27,032	1,62	27,030	1,62	-0,157
26,617	5,00	26,591	5,00	26,602	5,00	-0,015
26,600	5,40	26,572	5,40	26,573	5,40	-0,027
25,532	5,52	25,505	5,52	25,488	5,52	-0,044
25,323	6,88	25,274	6,78	25,321	6,44	-0,002

PERFIL EM 4.2 EF-3 COMPARATIVO DAS CAMPANHAS C1, C2 e C3

C1 Perfil 4.2 EF- 3 Altitude (m)	Distância acumulada (m)	C2 Perfil 4.2 EF-3 Altitude (m)	Distância acumulada (m)	C3 Perfil 4.2 EF-3 Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
28,836	0,00	28,836	0,00	28,858	0,00	0,022
28,849	3,03	28,872	3,03	28,864	3,03	0,015
27,201	3,25	27,209	3,25	27,200	3,25	-0,001
26,701	5,00	26,710	5,00	26,719	5,00	0,018
26,611	6,05	26,614	6,05	26,602	6,05	-0,009
25,446	6,29	25,394	6,29	25,392	6,29	-0,054
25,332	7,03	25,224	7,34	25,313	6,48	-0,019

ESTAÇÃO DE MONITORAMENTO 4.2 (SERGIPE 1)

AVALIAÇÃO DOS RESULTADOS

COTA MÉDIA NO DIA DO LEVANTAMENTO

Posto Hidrométrico de Pão de Açúcar

EM 4.2 SERGIPE 1	Campanha 1	Campanha 2	Campanha 3
COTA MÉDIA (m)	1,24	1.15	1,13

A cota média baixou de 1,24 m na primeira campanha para 1,15 m na segunda campanha e em seguida, para 1,13 m na terceira campanha.

Foi observado no perfil EF-!A um efeito erosivo na distância 0+6,60m. Nos demais perfis estudados não houve variações significativas nas medições realizadas.

6.3.6 ESTAÇÃO DE MONITORAMENTO 4.3 (Alagoas 1)

FICHA DE MONITORAMENTO DOS PERFIS DE CONTROLE

NOME DA ESTAÇÃO	EM 4.3
MUNICÍPIO / ESTADO	PÃO DE AÇÚCAR / AL
DISTRITO/POVOADO	TORORÓ
LONGITUDE	37° 24′ 48″ W
LATITUDE	09° 45′ 30″ S
ALTITUDE	[28.5m, 32.6m]

A estação de monitoramento em 4.3 foi descrita com a utilização de 5 (cinco) perfis: EM 4.3 EF-1, EM 4.3 EF-1A, EM 4.3 EF-2, EM 4.3 EF-2A e EM 4.3 EF-3.

DATA DAS CAMPANHAS

CAMPANHA 1 – 18/10/2013

CAMPANHA 2 – 05/11/2013

CAMPANHA 3 - 04/12/2013

VAZÃO MÉDIA NO DIA DO LEVANTAMENTO

Posto Hidrométrico de Pão de Açúcar

EM 4.3 (ALAGOAS 1)	Campanha 1	Campanha 2	Campanha 3
VAZÃO MÉDIA (m ³ /s)	1.430	1.372	1.359

ESTAÇÃO DE MONITORAMENTO EM 4.3 (Alagoas 1)

PERFIL EM 4.3 EF-1

C1 Perfil 4.3 EF- 1 Altitude (m)	Distância acumulada (m)	C2 Perfil 4.3 EF-1 Altitude (m)	Distância acumulada (m)	C3 Perfil 4.3 EF-1 Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
32,105	0,00	32,113	0,00	32,106	0,00	0,001
32,089	4,10	32,083	4,10	32,085	4,10	-0,004
30,399	4,44	30,399	4,44	30,426	4,44	0,027
30,097	5,00	30,11	5,00	30,115	5,00	0,018
29,687	10,00	29,713	10,00	29,719	10,00	0,032
29,248	15,00	29,279	15,00	29,26	15,00	0,012
28,988	20,00	29,02	20,00	29,012	20,00	0,024
28,527	25,08	28,461	25,67	28,443	25,24	-0,084

PERFIL EM 4.3 EF-1A

C1 Perfil 4.3 EF- 1A Altitude (m)	Distância acumulada (m)	C2 Perfil 4.3 EF-1A Altitude (m)	Distância acumulada (m)	C3 Perfil 4.3 EF-1A Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
32,307	0,00	32,293	0,00	32,311	0,00	0,004
32,154	4,43	32,164	4,43	32,157	4,40	0,003
30,537	5,00	30,558	5,00	30,607	5,00	0,07
29,652	10,00	29,679	10,00	29,687	10,00	0,035
29,248	15,00	29,281	15,00	29,271	15,00	0,023
28,973	20,00	28,984	20,00	28,981	20,00	0,008
28,523	25,01	28,456	26,35	28,438	25,36	-0,085

PERFIL EM 4.3 EF-2

C1 Perfil 4.3 EF- 2 Altitude (m)	Distância acumulada (m)	C2 Perfil 4.3 EF-2 Altitude (m)	Distância acumulada (m)	C3 Perfil 4.3 EF-2 Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
32,385	0,00	32,369	0,00	32,373	0,00	-0,012
32,262	5,00	32,254	5,00	32,248	5,00	-0,014
32,241	5,60	32,22	5,60	32,234	5,60	-0,007
31,145	5,90	31,167	5,90	31,164	5,90	0,019
29,745	10,00	29,756	10,00	29,766	10,00	0,021
29,224	15,00	29,263	15,00	29,25	15,00	0,026
28,956	20,00	28,974	20,00	28,94	20,00	-0,016
28,565	23,76	28,444	25,41	28,454	24,48	-0,111

PERFIL EM 4.3 EF-2A

C1 Perfil 4.3 EF- 2A Altitude (m)	Distância acumulada (m)	C2 Perfil 4.3 EF-2A Altitude (m)	Distância acumulada (m)	C3 Perfil 4.3 EF-2A Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
32,449	0,00	32,443	0,00	32,455	0,00	0,006
32,369	5,00	32,375	5,00	32,378	5,00	0,009
32,289	6,40	32,285	6,40	32,299	6,40	0,010
31,255	6,60	31,241	6,60	31,245	6,60	-0,010
29,965	10,00	29,975	10,00	29,961	10,00	-0,004
29,333	15,00	29,336	15,00	29,333	15,00	0,000
28,990	20,00	29,012	20,00	29	20,00	0,010
28,498	26,65	28,431	25,34	28,451	25,51	-0,047

PERFIL EM 4.3 EF-3

C1 Perfil 4.3 EF- 3 Altitude (m)	Distância acumulada (m)	C2 Perfil 4.3 EF-3 Altitude (m)	Distância acumulada (m)	C3 Perfil 4.3 EF-3 Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
32,572	0,00	32,571	0,00	32,578	0,00	0,006
32,493	5,00	32,495	5,00	32,497	5,00	0,004
32,307	7,78	32,307	7,78	32,307	7,78	0,000
31,224	7,95	31,224	7,95	31,205	7,95	-0,019
30,423	10,00	30,424	10,00	30,447	10,00	0,024
29,891	11,79	29,891	11,79	29,891	11,79	0,000
29,409	15,00	29,4	15,00	29,427	15,00	0,018
28,936	20,00	28,959	20,00	28,976	20,00	0,040
28,584	21,92	28,43	24,29	28,435	24,31	-0,149

ESTAÇÃO DE MONITORAMENTO EM 4.3 (Alagoas 1)

AVALIAÇO DOS RESULTADOS

COTA MÉDIA NO DIA DO LEVANTAMENTO

Posto Hidrométrico de Pão de Açúcar

EM 4.3 (ALAGOAS 1)	Campanha 1	Campanha 2	Campanha 3
COTA MÉDIA (m)	1,24	1,15	1,13

A cota média baixou de 1,24 m na primeira campanha para 1,15 m na segunda campanha e em seguida, para 1,13 m na terceira campanha.

Não houve variações significativas nas medições realizadas em todos os perfis estudados.

6.3.7 ESTAÇÃO DE MONITORAMENTO EM 5.1 (ALAGOAS 2) FICHA DE MONITORAMENTO DOS PERFIS DE CONTROLE

NOME DA ESTAÇÃO	EM 5.1	
MUNICÍPIO / ESTADO	Porto Real do Colégio / AL	
DISTRITO/POVOADO	Porto Real do Colégio	
LONGITUDE	36° 45′ 14″ W	
LATITUDE	10° 13′ 12″ S	
ALTITUDE	[12.4m, 16.1m]	

A estação de monitoramento em 5.1 foi descrita com a utilização de 5 (cinco) perfis: EM 5.1 EF-1, EM 5.1 EF-1A, EM 5.1 EF-2, EM 5.1 EF-2A e EM 5.1 EF-3.

CAMPANHA 1 – 19/10/2013

CAMPANHA 2 – 04/11/2013

CAMPANHA 3 – 05/12/2013

VAZÃO MÉDIA NO DIA DO LEVANTAMENTO

Posto Hidrométrico de Propriá

EM 5.1 ALAGOAS 2	Campanha 1	Campanha 2	Campanha 3
VAZÃO MÉDIA	1479	1237	1370

PERFIL EM 5.1 EF-1

C1 Perfil 5.1 EF- 1 Altitude (m)	Distância acumulada (m)	C2 Perfil 5.1 EF-1 Altitude (m)	Distância acumulada (m)	C3 Perfil 5.1 EF-1 Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
16,113	0,00	16,092	0,00	16,116	0,00	0,003
16,215	2,78	16,191	2,78	16,221	2,78	0,006
14,395	3,25	14,395	3,25	14,377	3,25	-0,018
14,336	4,63	14,339	4,63	14,340	4,63	0,004
12,665	6,41	12,433	7,29	12,547	7,29	-0,118

PERFIL EM 5.1 EF-1A

C1 Perfil 5.1 EF- 1A Altitude (m)	Distância acumulada (m)	C2 Perfil 5.1 EF-1A Altitude (m)	Distância acumulada (m)	C3 Perfil 5.1 EF-1A Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
15,980	0,00	15,946	0,00	15,982	0,00	0,002
15,892	3,67	15,859	3,67	15,852	3,67	-0,040
14,402	4,16	14,402	4,16	14,401	4,16	-0,001
14,257	5,00	14,246	5, <mark>00</mark>	14,265	5,00	0,008
12,604	8,59	12,589	8,90	12,590	8.66	-0,014

PERFIL EM 5.1 EF-2

C1 Perfil 5.1 EF- 2 Altitude (m)	Distância acumulada (m)	C2 Perfil 5.1 EF-2 Altitude (m)	Distância acumulada (m)	C3 Perfil 5.1 EF-2 Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
16,056	0,00	16,050	0,00	16,050	0,00	-0,006
16,148	3,84	16,179	3,84	16,162	3,84	0,014
14,470	4,14	14,524	4,14	14,472	4,14	0,002
14,204	5,00	14,223	5,00	12,525	6,90	-1,679

PERFIL EM 5.1 EF-2A

C1 Perfil 5.1 EF- 2A Altitude (m)	Distância acumulada (m)	C2 Perfil 5.1 EF-2A Altitude (m)	Distância acumulada (m)	C3 Perfil 5.1 EF-2A Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
16,039	0,00	16,026	0,00	16,018	0,00	-0,021
16,218	3,74	16,216	3,74	16,224	3,74	0,006
14,285	4,18	14,285	4,18	14,248	4,18	-0,037
12,823	5,00	12,823	5,00	12,811	5,00	-0,012
12,399	5,76	12,399	<mark>6,</mark> 42	12,522	5,75	0,123

PERFIL EM 5.1 EF-3

COMPARATIVO DAS CAMPANHAS C1,C2 e C3

C1 Perfil 5.1 EF- 3 Altitude (m)	Distância acumulada (m)	C2 Perfil 5.1 EF-3 Altitude (m)	Distância acumulada (m)	C3 Perfil 5.1 EF-3 Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
15,988	0,00	15,943	0,00	15,968	0,00	-0,020
16,228	2,15	16,229	2,15	16,218	2,15	-0,010
14,593	2,56	14,643	2,56	14,628	2,56	0,035
13,154	5,00	12,975	5,00	12,955	5,00	-0,199
12,612	5,76	12,392	5,80	12,533	5,40	-0,079

Detecção de erosão na distância de 5m neste perfil.

ESTAÇÃO DE MONITORAMENTO EM 5.1 (ALAGOAS 2) COTA MÉDIA NO DIA DO LEVANTAMENTO

Posto Hidrométrico de Propriá

EM 5.1 ALAGOAS 2	Campanha 1	Campanha 2	Campanha 3
COTA MÉDIA	1,38	1,08	1,24

A cota média baixou de 1,38 m na primeira campanha para 1,08 m na segunda campanha e, em seguida, subiu para 1,24 m na terceira campanha

Detecção de erosão na distância de 5m no perfil EM 5.1 EF-3. Nos demais perfis não houve variações significativas nas medições realizadas

6.3.8 ESTAÇÃO DE MONITORAMENTO 5.2 (SERGIPE 2) FICHA DE MONITORAMENTO DOS PERFIS DE CONTROLE

NOME DA ESTAÇÃO	EM 5.2
ESTADO/MUNICÍPIO	Propriá / SE
DISTRITO/POVOADO	Propriá
LONGITUDE	36° 45′ 21″ W
LATITUDE	10° 13′ 49″ S
ALTITUDE	[11.6m, 13.1m]

A estação de monitoramento em 5.2 foi descrita com a utilização de 5 (cinco) perfis: EM 5.2 EF-1, EM 5.2 EF-1A, EM 5.2 EF-2, EM 5.2 EF-2A e EM 5.2 EF-3.

CAMPANHA 1 – 19/10/2013

CAMPANHA 2 – 04/11/2013

CAMPANHA 2 – 05/12/2013

VAZÃO MÉDIA NO DIA DO LEVANTAMENTO

Posto Hidrométrico de Propriá

EM 5.2 SERGIPE 2	Campanha 1	Campanha 2	Campanha 3
VAZÃO MÉDIA	1479	1237	1370

PERFIL EM 5.2 EF-1

C1 Perfil 5.2 EF- 1 Altitude (m)	Distância acumulada (m)	C2 Perfil 5.2 EF-1 Altitude (m)	Distância acumulada (m)	C3 Perfil 5.2 EF-1 Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
13,152	0,00	13,160	0,00	13,172	0,00	0,020
12,552	5,00	12,540	5,00	12,557	5,00	0,005
11,890	10,00	11,860	10,00	11,857	10,00	-0,033
11,811	15,00	11,812	15,00	11,811	15,00	0,000
11,702	15 <mark>,94</mark>	11,435	17,75	11,505	17,20	-0,197

PERFIL EM 5.2 EF-1A COMPARATIVO DAS CAMPANHAS C1, C2 e C3

C1 Perfil 5.2 EF- 1A Altitude (m)	Distância acumulada (m)	C2 Perfil 5.2 EF-1A Altitude (m)	Distância acumulada (m)	C3 Perfil 5.2 EF-1A Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
13,047	0,00	13,044	0,00	13,072	0,00	0,025
12,780	5,00	12,790	5,00	12,754	5,00	-0,026
12,001	10,00	12,015	10,00	12,020	10,00	0,019
11,794	15,00	11,788	15,00	11,794	15,00	0,000
11,693	<u>16,24</u>	11,459	17,75	11,516	17,42	-0,177

PERFIL EM 5.2 EF-2 COMPARATIVO DAS CAMPANHAS C1, C2 e C3

C1 Perfil 5.2 EF- 2 Altitude (m)	Distância acumulada (m)	C2 Perfil 5.2 EF-2 Altitude (m)	Distância acumulada (m)	C3 Perfil 5.2 EF-2 Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
12,874	0,00	12,864	0,00	12,885	0,00	0,011
12,894	5,00	12,901	5,00	12,903	5,00	0,009
12,137	10,00	12,175	10,00	12,137	10,00	0,000
11,818	15,00	11,804	15,00	11,804	15,00	-0,014
11,703	15,55	11,444	17,15	11,531	16,73	-0,172

PERFIL EM 5.2 EF-2A COMPARATIVO DAS CAMPANHAS C1, C2 e C3

C1 Perfil 52. EF- 2A Altitude (m)	Distância acumulada (m)	C2 Perfil 5.2 EF-2A Altitude (m)	Distância acumulada (m)	C3 Perfil 5.2 EF-2A Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
12,790	0,00	12,782	0,00	12,804	0,00	0,014
13,092	5,00	13,093	5,00	13,102	5,00	0,010
12,293	10,00	12,284	10,00	12,277	10,00	-0,016
11,675	15,00	11,677	15,00	11,645	15,00	-0,030
		11,440	15,95	11,543	15,51	0,103

PERFIL EM 5.2 EF-3 COMPARATIVO DAS CAMPANHAS C1,C2 e C3

C1 Perfil 5.2 EF- 3 Altitude (m)	Distância acumulada (m)	C2 Perfil 5.2 EF-3 Altitude (m)	Distância acumulada (m)	C3 Perfil 5.2 EF-3 Altitude (m)	Distância acumulada (m)	Variação da Altitude (m)
12,795	0,00	12,801	0,00	12,801	0,00	0,006
12,881	5,00	12,865	5,00	12,893	5,00	0,012
12,416	10,00	12,447	10,00	12,461	10,00	0,045
11,722	15,00	11,723	15,00	11,717	15,00	-0,005
				11,579	15,85	

ESTAÇÃO DE MONITORAMENTO 5.2 (SERGIPE 2)

COTA MÉDIA NO DIA DO LEVANTAMENTO

Posto Hidrométrico de Propriá

EM 5.2 SERGIPE 2	Campanha 1	Campanha 2	Campanha 3
COTA MÉDIA	1,38	1,08	1,24

A cota média baixou de 1,38 m na primeira campanha para 1,08 m na segunda campanha e, em seguida, subiu para 1,24 m na terceira campanha

Não houve variações significativas nas medições realizadas nos perfis estudados.

SINTESE DOS RESULTADOS

RESULTADOS DO MONITORAMENTO MENSAL

Vazão média m³ /seg

Posto Hidrométrico	Estação de Monitoramento	Campanha 1	Campanha 2	Campanha 3
Juazeiro	EM 1.1 Petrolina 1	1445	1499	1407
Juazeiro	EM 1.3 Juazeiro 1	1445	1436	1407
Juazeiro	EM 1.2 Petrolina 2	1436	1499	1416
Juazeiro	RM 2.5 Juazeiro 2	1436	1436	1416
Pão de Açúcar	EM 4.2 Sergipe 1	1430	1372	1359
Pão de Açúcar	EM 4.3 Alagoas 1	1430	1372	1359
Propriá	EM 5.1 Alagoas 2	1479	1237	1370
Propriá	EM 5.2 Sergipe 2	1479	1237	1370

Observa-se que ocorreu um decréscimo da vazão entre os levantamentos das campanhas 2 e 3 nas estações EM 1.1 Petrolina 1, EM 1.3 Juazeiro 1, EM 1.2 Petrolina 2, RM 2.5 Juazeiro 2, EM 4.2 Sergipe 1 e EM 4.3 Alagoas 1.

Para as estações EM 5.1 Alagoas 2 e EM 5.2 Sergipe 2 houve aumento na vazão entre os levantamentos das Campanhas 2 e 3.

A figura abaixo mostra os valores da descarga do rio São Francisco durante as Campanhas 1, 2 e 3.

Não foi observada correlação entre a variação de nível e os eventos de erosão leve detectado em EM4.4 e EM 5.1, que decorreram do trânsito local de pessoas e animais.

7. CONSIDERAÇÕES FINAIS

As variáveis limnológicas e de qualidade da água monitoradas apresentaram valores semelhantes àqueles registrados anteriormente nos trechos analisados e em períodos semelhantes do ano, tendo sido compatíveis com os limites estabelecidos pela Resolução no, 357/CONAMA para águas da classe 2.

A variável fósforo total apresentou valores superiores aos limites estabelecidos pelo CONAMA, exclusivamente numa estação dos reservatórios de Itaparica (ITA 10) e Moxotó (MOX 04), respectivamente correspondentes às localidades de Petrolândia e Moxotó. Nos trechos lóticos a montante de Itaparica e a jusante de Xingó, as concentrações mantiveramse abaixo do limite do CONAMA, Os valores registrados no presente monitoramento são compatíveis com aqueles registrados em monitoramentos anteriores efetuados pela CHESF na região, sendo inclusive inferiores em diferentes estações e reservatórios.

A penetração de água salgada (salinidade superior a 30, segundo a Resolução no. 357 CONAMA) não ocorreu em estação alguma do trecho monitorada, em nenhuma das marés (baixamar e preamar) das duas luas (cheia e nova).

Conforme mencionado em relatórios anteriores, para evitar o risco de tomada de água salobra (salinidades entre 0,5 e 1,0) em Piaçabuçu, a eventual utilização de água do Rio São Francisco deve ser efetuada com bombeamento entre a superfície e em profundidades menores que 2,0 m, durante as marés de preamar. Entretanto, no período analisado, salinidades superiores a 0,5 só foram registradas numa maré de preamar da lua nova em ESF 22, e em duas preamares da lua nova e uma da lua cheia nas estações ESF 20 e ESF 21.

A espécie dominante nos bancos de macrófitas monitorados foi a baronesa *Eichhornia crassipes*, cujas biomassas variaram entre as regiões, com valores mais elevados em Moxotó, sobretudo na porção mais interna do braço do rio Moxotó (MOX 03). A maior densidade dos bancos nesta área é responsável por sua biomassa específica mais elevada nesta região. A evolução das áreas de seus bancos é mais influenciada pela variação sazonal de vazão do rio Moxotó e, sobretudo, pela direção e intensidade dos ventos, com possível influência da redução de nível desse reservatório no período atual em relação ao anterior. Foi constatada ligeira redução da área coberta por bancos da macrófita submersa *Egerea densa* em

Petrolândia, além de uma variação significativa da extensão dos bancos em Moxotó em relação ao período anterior.

No tocante aos perfis superpostos das estações de monitoramento de processos erosivos da primeira (outubro/2013), segunda (novembro/2013) e terceira (dezembro/2013) campanhas não apresentaram variações significativas entre os dois períodos, na maioria dos perfis comparados. Entretanto, as principais mudanças foram registradas na Estação de Monitoramento em 5.1 (Alagoas 2), através de erosão na distância de 5 m no perfil EM 5.1 EF-3, e na Estação de Monitoramento 4.2 (Sergipe 1), no perfil EF-1A um efeito erosivo na distância 0+6,60 m. Estas alterações decorreram de eventos locais, relacionados ao trânsito de pessoas e animais, não tendo sido estabelecida qualquer correlação com a variação do nível fluviométrico.

8. REFERÊNCIAS CONSULTADAS

APHA. 1995. **Standard methods**. 19th Edition. American Public Health Association, Washington, DC.

FERNANDEZ, O.V.Q. O método dos pinos na quantificação da erosão marginal em rios reservatórios. In: SIMPÓSIO NACIONAL DE GEOMORFOLOGIA, 1., 1996, Uberlândia. Anais. Uberlândia, Universidade Federal de Uberlândia, 1996. p.160-163.

GUERRA, A. J. T. **Experimentos e monitoramentos em erosão dos solos**. Revista do Departamento de Geografia da Universidade de São Paulo, v.1, n.16, p.32-37, 2005.

GUERRA, A. J. T. **Processos erosivos nas encostas**. In: CUNHA, S. B.; GUERRA, A. J. T. (orgs.) Geomorfologia: exercícios, técnicas e aplicações. Rio de Janeiro: Bertrand Brasil, p.139-155. 1996.

MACKERETH, F. J. H.; HERON, J.; TALLING, J. F. Water analysis: some revised methods for limnologists. Freshwater Biology, v.36, p.1-121, 1978.

POMPÊO, M. L. M.; MOSCHINI-CARLOS, V. Macrófitas aquáticas e perifiton: aspectos ecológicos e metodológicos. São Carlos: RiMa, 134 p. 2003.

STRICKLAND, J. D. & PARSONS, T. R. **A manual of seawater analysis**. Bulletin of the Fisheries Research Board of Canada, v.125, p.1-185. 1960.

WOLMAN M.G. Factors influencing erosion of a cohesive river bank. American Journal of Science, n.257, p.204-216. 1959.

ANEXOS

Anexo 1 –Laudo de qualidade da água na estação de monitoramento da DESO no Canal da ADUSF, com amostra coletada em 25/1/2013.

GESTÃO DO SISTEMA DE CONTROLE OPERACIONAL

				NIKOLE	DEQUI	LIDADE			
BOLETIM DE ANÁLISE			Categoria:		Número CCQ - nnnn/aaaa: 1166/2013		Concluída - dd/mm/aaaa: 16/12/2013		
Interessado:			Endereço:	0 1100/.		00/2013	Cidade:		
3.0.09.00/GCVQ				Rua Campo do Brito, 331 – Praia 13 de Julho				Aracaju	
Amostra: Água	Bruta Super	Rio Sã	Estação de Tratamento (nome): O Francisco Não				I		
Local da col	eta:	140 04	Endereço:				Localidade:		
Canal da	ADUSF		Rodovia Pedro Medeiros Chaves, S/N				Telha		
Geo-referencia: Coleta (data e hora): 25/11/2013 12.00			Amostra refrige	erada: Não	25/11/2013		16:25		
Aspecto: Chuvas (últimas 24 hs):			Odor:		Temperatura da Amostra:		Temperatura do Ar:		
Transparente Não				Nao		25 °C		25 °C	
Agni Tava	ares Argolo / 305	6.1				CONA	MA nº 357/04	Portaria 2.91	4/2011 - MS
Parâm	etros Físico-quím	icos	Resultado	Unidade	Para	ametros Fís	ico-químicos	Resultado	Unidade
Alcalinidade	total		29,68	mg/L CaCO ₃	рH			7,63	unidades
Alcalinidade HO ⁻			0,00	mg/L CaCO ₃	o, Turbidez			2,20	NTU
Alcalinidade CO3-			0,00	mg/L CaCO ₃	. CaCO ₃ Cor Aparente			10,10	UH
Alcalinidade HCO,			36,18	mg/L CaCO ₃	Condutividade Específica a 25°C			83,80	µS/cm
Dureza total			24,44	mg/L CaCO ₃	Sólidos Totais a 105°C			40.00	mg/L
Dureza de Carbonato			24,44	mg/L CaCO ₃	Sólidos Totais Dissolvidos (Calculado)			42,74	mg/L
Dureza de não carbonato 0			0,00	mg/L CaCO ₃	Sólidos em Suspensão				mg/L
Acidez 1.4			mg/L CaCO,	ng/L CaCO _a Ferro Total			0.00	mg/L Fe	
Amônia < 0.1			mg/L NH	NH ₄ Cálcio			6.92	mg/L Ca	
Nitrato < 0.2			mg/L NO	^{IO} ₃Magnésio (Calculado)			1.71	mg/L Mg	
Nitrito <			< 0.10	mg/L NO	mg/L NO, Manganês			N.A.	mg/L Mn
Fósforo total			< 0,10	mg/L P	/L P Potássio			1,47	mg/L K
Cloreto			6,23	mg/L CI	CISódio			5,78	mg/L Na
Fluoreto			< 0.04	mg/L F	ng/L F Alumínio			< 0.03	mg/L Al
Sulfato 1.61				mg/L SO	mg/L SO, Cloro Residual Total				mg/L
Oxigênio Consumido				mg/L O	^{IL O} 2Cloro Residual Livre mg/				
Gás Carbônico Livre (calculado) 1,41				mg/L CO,	mg/L CO, Oxigênio Dissolvido mg/L O,				
Demanda Bioguimica de Oxigênio				mg/L	mg/L Demanda Química de Oxigênio mg/L				
Nitrogênio Amoniacal				mg/L N	mg/L N Nitrogênio Orgânico mg/L N				
Óleo e Graxa				mg/L Sólidos Sedimentáveis				ml/L	
Clorito < 0,10				mg/L	mg/L Carbono Orgânico Total			1,91	mg/L NPOC
Bromato			< 0,01	mg/L	Glifosato			< 100	µg/L
Parâmetros Microbiológicos			Resultado	Unidade	Parâmetros Microbiológicos			Resultado	Unidade
Coliformes Totais 2.500				UFC/100mL	Coliformes Termotolerantes				UFC/100ml
Bactérias Heterotróficas				UFC/mL	Escherichia Coli			50	UFC/100ml
Parâmetros Hidrobiológicos Resultado				Unidade	Parâmetros Hidrobiológicos			Resultado	Unidade
Clorofila a				µg/L	Microcistin	as	ě		µg/L
Densidade de Cianobactérias				cel/mL					
				Organismos	Predomin	nantes:			
Organismos	em 100 % dos cam	pos							
Organismos	em 75 % dos campo	OS							
Organismos	em 50 % dos campo	os							
				Parâmetro	s Econôr	nicos			
Indice Langel	ier (LSI): -1.	,31	pH de saturação (pH:	s):	8	3,82	1		
Índice de Sat	uração (IS): -1,	,19	Cla	assificação			AGUA COM TEI	NDENCIA A SER (ORROSIVA
				Obs	ervações				
NÃO CO	NFORMIDADE COM A	PORTARI	A 2.914/11 - MS						
NOTA:	1. Os resultados	das an	álises realizadas	referem-se	somente	à amostra	apresentada		
	2. AUS - Ausênc	ia; PRS	- Presenca: NA	- Não Analis	sado, ND	- Não Dete	ctado, NO - Não	Ocorrido.	
Data									
e								1	
visto:									
matricula: Técnicos:	Análise Físico-Qu	úmica	Análise Microl	piológica	Análise H	idrobiológica	Giovani Silva Gestor - 3.05.01/CCQ	Nilton Olive Gestor - 3.0	ara Matos 5.00 /GSO

Rua Campo do Brito, 331 – Praia 13 de Julho – Aracajú – CEP: 49.020-380 – Telefone (79) 3226-1131 – Fax (79) 3226-1071 Site: www.deso-se.com.br – e-mail: giovani@deso-se.com.br – CNPJ: 13.018.171/0001-90 – INSC. ESTADUAL: 27.051.036-2