

AHE Simplício

Programa de Monitoramento Limnológico e da Qualidade da Água do Aproveitamento Hidrelétrico (AHE) Simplício – Queda Única

Dados compilados da campanha de Dezembro/2017

Janeiro de 2018

SUMÁRIO

1.	INFORMAÇOES GERAIS	8
1.1.	IDENTIFICAÇÃO DO EMPREENDIMENTO	8
1.2.	IDENTIFICAÇÃO DA EMPRESA CONSULTORA RESPONSÁVEL	8
2.	EQUIPE TÉCNICA	9
3.	CONSIDERAÇÕES INICIAIS	. 10
4.	INTRODUÇÃO	. 11
5.	OBJETIVO GERAL	. 11
5.1.	Objetivos específicos	. 12
6.	METODOLOGIA	. 12
6.1.	Área de estudo	. 12
6.2.	Procedimentos metodológicos	. 33
6.2.	1. Métodos de campo	33
6.2.	2. Plano de amostragem da qualidade da água (parâmetros físico-químicos e	
	microbiológicos)	34
6.2.	3. Plano de amostragem das comunidades aquáticas (fitoplâncton, zooplâncton)	34
6.3.	Métodos de laboratório	. 36
6.3.	Determinação da comunidade fitoplanctônica	36
6.3.	Determinação da comunidade zooplanctônica	37
6.4.	Perfil dos parâmetros analisados	
6.5.	Análise dos dados	. 38
7.	RESULTADOS DISCUSSÃO	. 38
7.1.	Dados físico-químicos e microbiológicos	. 38
7.2.	Temperatura da água e do ambiente	. 46
7.3.	Turbidez (NTU)	. 47
7.4.	Condutividade Elétrica	. 48
7.5.	pH	. 49
7.6.	Oxigênio dissolvido	. 50
7.7.	Alcalinidade total	. 52
7.8.	Nutrientes: nitrogênio total e fósforo total	. 53
7.9.	Coliformes totais e Coliformes termotolerantes	. 56
7.10.	Perfis de pH, oxigênio dissolvido (OD), temperatura da água, turbidez	е
	condutividade	. 57

7.11.	Dad	dos biológicos	59
7.11	.1.	Comunidade de Fitoplâncton	. 59
7.11	.2.	Comunidade de Zooplâncton	65
7.11	.3.	Amostragens mensais no reservatório de Louriçal e no Trecho de Vazão Reduzio	da70
8.	CO	NSIDERAÇÕES FINAIS	73
9.	REI	FERÊNCIAS BIBLIOGRÁFICAS	75
10.	ANI	EXOS	77
10 1	Rel	atórios de Ensaios	77

LISTA DE FIGURAS

Figura 1. Estações de amostragem do Programa de Monitoramento Limnológico
e de Qualidade da água do Aproveitamento Hidrelétrico (AHE) Simplício –
Queda Única15
Figura 2. Estações de amostragem do Programa de Monitoramento Limnológico
e da Qualidade da água do Aproveitamento Hidrelétrico (AHE) Simplício –
Queda Única16
Figura 3. Ponto de amostragem PRB 40 na área de influência do AHE Simplício -
Queda Única17
Figura 4. Ponto de amostragem PRB 50 na área de influência do AHE Simplício -
Queda Única18
Figura 5. Ponto de amostragem PRB 60 na área de influência do AHE Simplício -
Queda Única19
Figura 6. Ponto de amostragem PRB 70 na área de influência do AHE Simplício -
Queda Única20
Figura 7. Ponto de amostragem PRB CEDAE na área de influência do AHE
Simplício – Queda Única21
Figura 8. Ponto de amostragem PRB 80 na área de influência do AHE Simplício –
Queda Única22
Figura 9. Pontos de amostragem PRB 90 na área de influência do AHE Simplício
- Queda Única23
Figura 10. Pontos de amostragem PRB 100 na área de influência do AHE
Simplício – Queda Única24
Figura 11. Ponto de amostragem ARE 10 na área de influência do AHE Simplício
- Queda Única25
Figura 12. Ponto de amostragem ARE 20 na área de influência do AHE Simplício
- Queda Única26
Figura 13. Ponto de amostragem ARE 25 na área de influência do AHE Simplício
- Queda Única27
Figura 14. Ponto de amostragem ARE 30 na área de influência do AHE Simplício
- Queda Única28
Figura 15. Ponto de amostragem LOU 10 na área de influência do AHE Simplício
- Queda Única29
Figura 16. Ponto de amostragem LOU 20 na área de influência do AHE Simplício
- Queda Única. Detalhe do banco de macrófitas que fechou o acesso ao
ponto 30
Figura 17. Ponto de amostragem LOU 25 na área de influência do AHE Simplício
– Queda Única31
Figura 18. Ponto de amostragem LOU 30 na área de influência do AHE Simplício
– Queda Única32
Figura 19. Coleta do material limnológico na área de influência do AHE Simplicio
– Queda Única

influência do AHE Simplício (dezembro/2017)47
Figura 21. Valores da Turbidez (NTU) encontrado na área de influência do AHE
Simplício (dezembro/2017)
Figura 22. Valores de Condutividade elétrica (μS/cm) encontrado na área de
influência do AHE Simplício (dezembro/2017)49
Figura 23. Valores de pH encontrado na área de influência do AHE Simplício
(dezembro/2017)50
Figura 24. Valores de Oxigênio dissolvido (mg/L) encontrado na área de
influência do AHE Simplício (dezembro/2017)51
Figura 25. Valores de Alcalinidade total (mg/L) encontrado na área de influência
do AHE Simplício (dezembro/2017)52
Figura 26. Valores de Nitrogênio total (mg/L) encontrado na área de influência do
AHE Simplício (dezembro/2017)54
Figura 27. Valores de Fósforo total (mg/L) encontrado na área de influência do
AHE Simplício (dezembro/2017)55
Figura 28. Valores de Coliformes termotolerantes (<i>E. coli</i>) (NMP/100mL)
encontrado na área de influência do AHE Simplício (dezembro/2017)56
Figura 29. Dados do perfil de OD (mg/L), temperatura (°C), turbidez (NTU) e
condutividade elétrica (µS/cm) no Ponto PRB40 durante a campanha
realizada em dezembro/2017 na área de influência da AHE Simplício – Queda
Única57
Figura 30. Dados do perfil de OD (mg/L), temperatura (°C), turbidez (NTU) e
condutividade elétrica (μS/cm) no Ponto LOU30 durante a campanha
realizada em dezembro/2017 na área de influência dao AHE Simplício –
Queda Única
Figura 31. Abundância relativa dos organismos do fitoplâncton encontrados nos
pontos de amostragem na área de influência do AHE Simplício – Queda
Única (Dezembro/2017)
Figura 32. Densidade total dos organismos do fitoplâncton encontrados nos
pontos de amostragem na área de influência do AHE Simplício – Queda
Única (Dezembro/2017)64 Figura 33. Densidade de cianobactérias na área de influência do AHE Simplício –
Queda Única65
Figura 34. Abundância relativa dos organismos do zooplâncton encontrados nos
pontos de amostragem na área de influência do AHE Simplício – Queda
Única (Dezembro/2017)69
Figura 35. Densidade dos organismos do zooplâncton (org/m³) encontrados nos
pontos de amostragem na área de influência do AHE Simplício – Queda
Única (Dezembro/2017)69

LISTA DE TABELAS

Tabela 1. Periodicidade dos pontos ao longo das campanhas na área de
influência da AHE Simplício10
Tabela 2. Descrição e coordenadas das estações de amostragem do Programa
de Monitoramento Limnológico e de Qualidade da água do Aproveitamento
Hidrelétrico (AHE) Simplício – Queda Única13
Tabela 3. Parâmetros físico-químicos da água avaliados no Ponto PRB 40 17
Tabela 4. Parâmetros físico-químicos da água avaliados no Ponto PRB 50 18
Tabela 5. Parâmetros físico-químicos da água avaliados no Ponto PRB 6019
Tabela 6. Parâmetros físico-químicos da água avaliados no Ponto PRB 7020
Tabela 7. Parâmetros físico-químicos da água avaliados no Ponto PRB CEDAE 21
Tabela 8. Parâmetros físico-químicos da água avaliados no Ponto PRB 8022
Tabela 9. Parâmetros físico-químicos da água avaliados no Ponto PRB 90 23
Tabela 10. Parâmetros físico-químicos da água avaliados no Ponto PRB 100 24
Tabela 11. Parâmetros físico-químicos da água avaliados no Ponto ARE 10 25
Tabela 12. Parâmetros físico-químicos da água avaliados no Ponto ARE 20 26
Tabela 13. Parâmetros físico-químicos da água avaliados no Ponto ARE 2527
Tabela 14. Parâmetros físico-químicos da água avaliados no Ponto ARE 30 28
Tabela 15. Parâmetros físico-químicos da água avaliados no Ponto LOU 10 29
Tabela 16. Parâmetros físico-químicos da água avaliados no Ponto LOU 25 31
Tabela 17. Parâmetros físico-químicos da água avaliados no Ponto LOU 30 32
Tabela 18. Dados determinados em campo durante a campanha realizada em
dezembro/2017 na área de influência do AHE Simplício – Queda Única.
Destacados em vermelho se encontram os parâmetros em não
conformidade com os limites do CONAMA 357/2005 para águas doces
Classe 2
Tabela 19. Dados físico-químicos determinados em laboratório durante a
campanha realizada em dezembro/2017 na área de influência do AHE
Simplício – Queda Única. Destacados em vermelho se encontram os
parâmetros em não conformidade com os limites do CONAMA 357/2005 para
águas doces Classe 2. Pontos localizados no reservatório de Anta e rio
Paraíba do sul42
Tabela 20. Dados físico-químicos determinados em laboratório durante a
campanha realizada em dezembro/2017 na área de influência do AHE
Simplício – Queda Única. Destacados em vermelho se encontram os
parâmetros em não conformidade com os limites do CONAMA 357/2005 para
águas doces Classe 2. Pontos localizados no reservatório de Louriçal e
córrego Areia44
Tabela 21. Densidade (ind./mL) da comunidade fitoplanctônica registrada nos
pontos de amostragem do rio Paraíba do Sul e tributários durante o
Programa de Monitoramento Limnológico e da Qualidade da Água na área
de influência do AHE Simplício – Queda Única (Dezembro/2017)60

Tabela 22. Densidade	(org/m³) dos	s táxons do	o zooplâncto	n reg	gistrad	los no rio
Paraíba do Sul e t	ributários no	Programa	de Monitora	mento	o Limr	nológico e
da Qualidade da	ı Água na	área de	influência	do	AHE	Simplício
(Dezembro/2017)						67
Tabela 23. Parâmetros	coletados me	ensalmente	nos pontos	de mo	onitora	amento do
reservatório Louriç	al – campani	ha de dezen	nbro de 2017	, 		71
Tabela 24. Parâmetros	coletados me	ensalmente	nos pontos	de mo	onitora	amento do
Trecho de Vazão R	eduzida – ca	mpanha de	dezembro de	e 2017	,	72

1. INFORMAÇÕES GERAIS

1.1. IDENTIFICAÇÃO DO EMPREENDIMENTO

Contratação sob regime de empreitada por preço global da prestação de serviços de execução dos Programas de Monitoramento da UHE Simplício – Queda Única – Programa de Monitoramento Limnológico e da Qualidade da Água do Aproveitamento Hidrelétrico (AHE) Simplício – Queda Única

1.2. IDENTIFICAÇÃO DA EMPRESA CONSULTORA RESPONSÁVEL

Empresa: ECOLOGIC CENTRO DE AVALIAÇÕES E PERICIAS AMBIENTAIS

PROMISSÃO LTDA – EPP

Endereço: Rua Coronel João Francisco Coelho, nº 210 – Sala 4 – Centro –

Promissão/SP

CNPJ: 11.458.622/0001-84

CTF IBAMA: 4945137

CRBIO-01: 00064/01

Telefone: (11) 2649-0208

E-mail: dir.adm@ecologicconsultoria.com.br

Site: www.ecologicconsultoria.com.br

Equipe Técnica

Coordenação geral:

Biól. Giulius Césare Teixeira Magina	CRBio 72.815/01-D
	CTF 1836237

Coordenação do Programa:

Riál Dra Corina V Sidagis Galli	CRBio 086833/01-D
Biól. Dra. Corina V. Sidagis Galli	CTF 3781165

Equipe de campo:

Dra. Corina V. Sidagis Galli	CRBio 086833/01-D		
Dia. Collila V. Sidagis Gaill	CTF 3781165		
Dr. Donato Seiji Abe	CRBio 06075/01-D		
Di. Donato Seiji Abe	CTF 311398		
Alexandre de Jesus Santos	RG 49.886.619-1		
Técnico em Meio Ambiente	CPF 356.244.808-22		
José Roberto dos Santos Silva	RG 33.009.350-2		
Auxiliar de Coleta	CPF 323.756.408-70		
André - Barqueiro	CPF 075.469.246-93		

Equipe de escritório:

Dra. Corina V. Sidagis Galli	CRBio 086833/01-D		
(elaboração de relatórios)	CTF 3781165		
Dr. Donato Seiji Abe –	CRBio 06075/01-D		
especialista em macrófitas aquáticas	CTF 311398		
Dra. Takako Matsumura Tundisi –	CRBio 033694/01-D		
especialista em zooplâncton	CTF 311387		
Dra. Rosa Antonia Romero Ferreira –	CTF 2255508		
especialista em fitoplâncton	011 2233300		
Biól. Ricardo Milanetti Degani –			
especialista em macroinvertebrados	CTF 4925742		
bentônicos			
Biól. Fernando Souza Soares	CRBio 033694/01-D		
Biol. Femando Souza Soares	CTF 3811199		

2. CONSIDERAÇÕES INICIAIS

O presente documento é um produto do Programa de Monitoramento Limnológico e da Qualidade da Água do Aproveitamento Hidrelétrico (AHE) Simplício – Queda Única. Neste se apresenta o relatório da campanha realizada em dezembro de 2017, e contempla a primeira campanha do monitoramento realizado pela empresa Ecologic Centro de Avaliações e Perícias Ambientais. Em dezembro foram realizadas as coletas de pontos e variáveis de periodicidade mensal, no período entre 27/12/2017 a 28/12/2017.

Tabela 1. Periodicidade dos pontos ao longo das campanhas na área de influência da AHE Simplício

Campanhas	Pontos de amostragem				
	PRB40	PRB50	PRB60	PRB70	CEDAE
Campanha	PRB80	PRB90	PRB100	ARE10	ARE20
mensal	ARE20	ARE30	LOU10	LOU20	LOU25
	LOU30				
	PRB20	PRB30	PRB50	PRB70	PRB60
Campanha	CEDAE	PRB80	PRB90	PRB100	PRB110
bimestral	MCO10	MCO20	CNL10	TOC10	TOC20
	CAL20	PRT20	ANT10	PXE10	
Campanha trimestral	PRB10	PBU10	PIA10	PRT10	

3. INTRODUÇÃO

A transformação de um rio em reservatório, através de seu barramento, tem como consequência o aumento do tempo de residência da água, o qual vai se refletir em uma série de alterações das características limnológicas do corpo d'água, tanto nas áreas represadas quanto no trecho fluvial a jusante (THOMAZ et al., 1997). Entre os fatores mais afetados estão os padrões de circulação de massas d'água, o comportamento térmico, o transporte de sedimentos, e a dinâmica de gases e nutrientes (TUNDISI et al., 1993 apud THOMAZ et al., 1997).

As características originais da água, aliadas à configuração do reservatório, ao seu tempo de residência, ao percentual da cobertura de vegetação inundada e, ainda, às características da barragem e ao tipo de operação, definirão as condições limnológicas do ambiente. Tais modificações constituem um forte impacto sobre os corpos aquáticos e, dependendo dos usos da bacia de drenagem, essas alterações podem levar a um alto grau de degradação desses reservatórios. Desta forma, reservatórios construídos em áreas urbanas ou de intensa atividade agroindustriais têm sofrido um acelerado processo de eutrofização. Portanto, programas de caracterização e monitoramento limnológicos tornam-se ferramentas fundamentais para identificação dessas novas condições e, se necessário, para o controle dos problemas delas decorrentes (ESTEVES, 1998).

4. OBJETIVO GERAL

O Programa de Monitoramento Limnológico e de Qualidade da Água do Aproveitamento Hidrelétrico (AHE) Simplício – Queda Única tem como objetivo geral mensurar as condições limnológicas do sistema visando a identificação de possíveis impactos resultantes da implantação do empreendimento e subsidiar a adoção de medidas de controle.

4.1. Objetivos específicos

- Avaliar a dinâmica da estrutura térmica ao longo do corpo central dos reservatórios de Anta e do circuito hidráulico;
- Avaliar a variação espacial e temporal da disponibilidade de nutrientes no corpo central dos reservatórios de Anta e do circuito hidráulico;
- Caracterizar a qualidade da água proveniente de tributários e seu impacto no corpo central dos reservatórios de Anta e do circuito hidráulico;
- Caracterizar a comunidade planctônica no ambiente lacustre;
- Caracterizar a hidroquímica da água e avaliar a presença de metais pesados;
- Caracterizar a comunidade zoobentônica nos tributários para fins de avaliação de sua qualidade ambiental;
- Caracterizar a limnologia e a qualidade da água do trecho de vazão reduzida do rio Paraíba do Sul, entre as usinas de Anta e Simplício;
- Caracterização hidráulica de circulação da água no corpo central dos reservatórios de Anta e do circuito hidráulico.

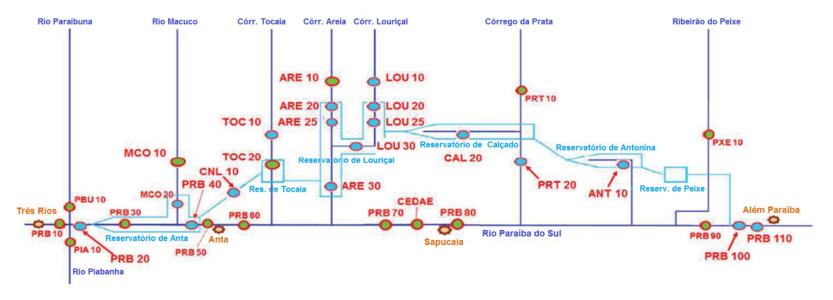
5. METODOLOGIA

5.1. Área de estudo

Para realização do Programa de Monitoramento Limnológico e de Qualidade da Água, foram selecionados 32 pontos de amostragem ao longo da área de influência da AHE Simplício, abrangendo o rio Paraíba do Sul e principais tributários (Tabela 2 e Figuras 1 e 2). A rede amostral proposta foi formatada com o objetivo de abranger todas as recomendações do Termo de Referência, no que tange a diversidade de ambientes afluentes e formadores do reservatório e possíveis fontes poluidoras (urbanas e agrícolas). Na atual campanha foram realizadas coletas de variáveis de periodicidade mensal nos pontos ao longo do rio Paraíba do Sul e em alguns de seus tributários.

Tabela 2. Descrição e coordenadas das estações de amostragem do Programa de Monitoramento Limnológico e de Qualidade da água do Aproveitamento Hidrelétrico (AHE) Simplício – Queda Única

Hidrelétrico (AHE) Sin	Nome	Localização dos pontos de	Coordenadas Geográficas		
Compartimento		Amostragem	Latitude S	Longitude O	
	PRB 10	Montante do encontro dos três rios	22° 6'37.51" S	43° 9'6.45" O	
	PRB 20	Montante do reservatório de Anta	22° 6'20.47" S	43° 7'44.66" O	
	PRB 30	Região do remanso do reservatório de Anta	22° 4'56.85" S	43° 3'10.43" O	
	PRB 40	Região do reservatório de Anta próximo à barragem	22° 1'57.05" S	43° 0'9.10" O	
	PRB 50	TVR entre a barragem e a cidade de Anta	22° 2'11.28" S	42° 59'49.49" O	
Rio Paraíba do Sul	PRB 60	TVR a jusante da cidade de Anta	22° 1'22.62" S	42° 58'41.28" O	
NIO Palaiba do Sui	PRB 70	TVR a montante da captação de água de Sapucaia	21° 59'45.22" S	42° 55'21.29" O	
	CEDAE	TVR na captação de água da CEDAE em Sapucaia	21° 59'46.44" S	42° 55'6.55" O	
	PRB 80	TVR a jusante da cidade de Sapucaia	21° 50'27.01" S	42° 54'34.97" O	
	PRB 90	TVR a montante do canal de fuga	21° 55'48.88" S	42° 47'39.05" O	
	PRB 100	Jusante do canal de fuga em Simplício	21° 54'48.96" S	42° 45'6.81" O	
	PRB 110	Montante de Além Paraíba	21° 53'59.54" S	42° 43'25.16" O	
Grandes Tributários a	PIA 10	Rio Piabanha	22° 7'4.01" S	43° 8'45.02" O	
Montante	PBU 10	Rio Paraibuna	22° 6'1.70" S	43° 8'40.53" O	
	MCO 20	Rio Macuco dentro do reservatório de Anta	22° 1'43.31" S	43° 1'7.51" O	
	MCO 10	Rio Macuco a montante do reservatório de Anta	22° 0'41.38" S	43° 1'33.28" O	
	CNL 10	Canal de adução	22° 1'12.34" S	42° 59'29.20" O	
	TOC 20	Córrego da Tocaia dentro do reservatório de Tocaia	22° 0'13.16" S	42°58'27.25" O	
	TOC 10	Córrego da Tocaia a montante do reservatório de Tocaia	21° 59'47.24" S	42° 59'0.74" O	
Pequenos Tributários na	ARE 20	Córrego Areia montante do dique ALGA1	21° 58'28.78" S	42° 56'51.12" O	
margem esquerda	ARE 10	Córrego Areia	21° 56'56.54" S	42° 56'58.79" O	
	ARE 25	Córrego Areia Jusante do dique ALGA1	21° 58'36.49" S	42° 56'51.16" O	
	ARE 30	Córrego Areia montante do dique Louriçal	21° 58'46.04" S	42° 56'51.20" O	
	LOU 10	Córrego Louriçal a montante do reservatório de Louriçal	21° 57'43.54" S	42° 55'58.64" O	
	LOU 20	Córrego Louriçal montante do dique ALGA2	21° 58'16.50" S	42° 56'10.88" O	
	LOU 25	Córrego Louriçal jusante do dique ALGA2	21° 58'23.31" S	42° 56'14.29" O	



Compositionanta	Nome	Localização dos pontos de	Coordenadas	s Geográficas
Compartimento	Nome	Amostragem	Latitude S	Longitude O
	LOU 30	Ligação entre o Areia e o Louriçal a jusante do dique ALGA2	21° 58'50.24" S	42° 56'36.30" O
	CAL 20	Córrego Estaca dentro do reservatório de Calçado	21° 57'10.13" S	42° 53'0.08" O
	PRT 10	Córrego da Prata a Jusante do reservatório de Calçado	21° 56'27.21" S	42° 53'21.66" O
	PRT 20	Córrego da Prata a Jusante do reservatório de Calçado	21° 57'25.91" S	42° 52'52.04" O
	ANT 10	Dentro do reservatório de Antonina	21° 55'42.35" S	42° 49'38.81" O
	PXE 10	Ribeirão do Peixe a montante do canal de fuga	21° 54'53.80" S	42° 47'43.54" O

DIAGRAMA COM O POSICIONAMENTO DOS 32 PONTOS DE AMOSTRAGEM

- PONTOS DE COLETA NAS FASES RIO E DE OPERAÇÃO
- O PONTOS DE COLETA NA FASE DE OPERAÇÃO

Figura 1. Estações de amostragem do Programa de Monitoramento Limnológico e de Qualidade da água do Aproveitamento Hidrelétrico (AHE) Simplício – Queda Única

RELATÓRIO DE COORDENAÇÃO

EletrobrasFurnas

PROGRAMAS DE MONITORAMENTO DA UHE SIMPLÍCIO – QUEDA ÚNICA

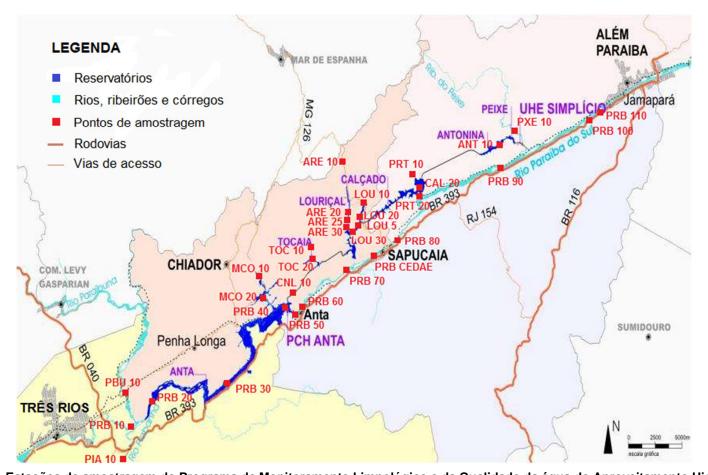


Figura 2. Estações de amostragem do Programa de Monitoramento Limnológico e da Qualidade da água do Aproveitamento Hidrelétrico (AHE) Simplício – Queda Única. Fonte: Furnas Centrais Elétricas S.A.

Pontos localizados no rio Paraíba do Sul

Ponto PRB 40

Ponto localizado a montante do eixo da barragem da UHE Anta; ambiente lêntico com presença de algumas macrófitas flutuantes isoladas (Figura 3).

Tabela 3. Parâmetros físico-químicos da água avaliados no Ponto PRB 40

PARÂMETRO	Unidade	Dez/17		
PARAMETRO	Unidade	S	M	F
Profundidade	m	0,2	9,0	17,0
Temp. Ambiente[campo]	Ĵ	38,9	-	-
Temp. Amostra[campo]	°C	32,1	28,9	27,5
Transparência	m	1,10	-	-
Turbidez (ac)	UTN	1,18	0,48	1,10
Oxigênio dissolvido (ac)	mg/L	5,80	5,10	3,56
Condutividade elétrica (ac)	μS/cm	76,60	69,90	68,20
pH (ac)	-	7,74	7,23	6,88
DBO	mg/L	0	0	0

Figura 3. Ponto de amostragem PRB 40 na área de influência do AHE Simplício – Queda Única

Programa de Monitoramento Limnológico e de Qualidade da Água do Aproveitamento Hidrelétrico (AHE) Simplício – Queda Única

Ponto PRB 50

Localizado no rio Paraíba do Sul a jusante da barragem da UHE Anta; ambiente rochoso com margens pouco preservadas. Local frequentado por pescadores locais (Figura 4).

Tabela 4.Parâmetros físico-químicos da água avaliados no Ponto PRB 50

PARÂMETRO	Unidade	Dez/17
Temp. Ambiente[campo]	°C	30,1
Temp. Amostra[campo]	°C	27,4
Transparência	m	0,74
Turbidez (ac)	NTU	2,40
Oxigênio dissolvido (ac)	mg/L	6,80
Condutividade elétrica (ac)	μS/cm	79,90
pH (ac)	-	6,96
DBO	mg/L	0

Figura 4. Ponto de amostragem PRB 50 na área de influência do AHE Simplício – Queda Única

Ponto PRB 60

Ponto localizado no rio Paraíba do Sul, no município de Anta (RJ). Presença de moradias na margem direita; margens pouco preservadas, leito do rio rochoso (Figura5).

Tabela 5. Parâmetros físico-químicos da água avaliados no Ponto PRB 60

PARÂMETRO	Unidade	Dez/17
Temp. Ambiente[campo]	°C	36,7
Temp. Amostra[campo]	°C	30,4
Transparência	m	0,38
Turbidez (ac)	NTU	1,02
Oxigênio dissolvido (ac)	mg/L	7,56
Condutividade elétrica (ac)	μS/cm	77,70
pH (ac)	-	6,86
DBO	mg/L	0

Figura 5. Ponto de amostragem PRB 60 na área de influência do AHE Simplício – Queda Única

Ponto PRB 70

Ponto localizado no rio Paraíba do Sul, a montante da captação de água para abastecimento da cidade de Sapucaia (RJ). Ponto localizado na área urbana na margem direita, nas proximidades da rodovia (Figura 6).

Tabela 6.Parâmetros físico-químicos da água avaliados no Ponto PRB 70

PARÂMETRO	Unidade	Dez/17
Temp. Ambiente[campo]	°C	37,6
Temp. Amostra[campo]	°C	31,2
Transparência	m	0,38
Turbidez (ac)	NTU	2,01
Oxigênio dissolvido (ac)	mg/L	7,06
Condutividade elétrica (ac)	μS/cm	79,00
pH (ac)	-	6,97
DBO	mg/L	0

Figura 6.Ponto de amostragem PRB 70 na área de influência do AHE Simplício – Queda Única

Ponto PRBCEDAE

Ponto localizado no rio Paraíba do Sul, no município de Sapucaia (RJ). Localizado na nova captação de água para abastecimento no município de Sapucaia. A nova captação de água da CEDAE está localizada na margem direita do rio, próximo a área urbana, porém em um trecho do rio mais amplo e com maior circulação (Figura 7).

Tabela 7. Parâmetros físico-químicos da água avaliados no Ponto PRB CEDAE

PARÂMETRO	Unidade	Dez/17
Temp. Ambiente[campo]	°C	33,2
Temp. Amostra[campo]	°C	28,9
Transparência	m	0,44
Turbidez (ac)	NTU	2,00
Oxigênio dissolvido (ac)	mg/L	8,10
Condutividade elétrica (ac)	μS/cm	68,20
pH (ac)	-	6,65
DBO	mg/L	57,6

Figura 7. Ponto de amostragem PRB CEDAE na área de influência do AHE Simplício – Queda Única

Ponto PRB 80

Ponto localizado no rio Paraíba do Sul no município de Sapucaia (RJ), a montante da estação de tratamento de efluentes de Sapucaia. Margens do rio com moradias, vegetação pouco preservada, leito do rio rochoso e aportes difusos de efluentes vindos da área urbana (Figura 8).

Tabela 8. Parâmetros físico-químicos da água avaliados no Ponto PRB 80

PARÂMETRO	Unidade	Dez/17
Temp. Ambiente[campo]	°C	31,4
Temp. Amostra[campo]	°C	28,7
Transparência	m	0,40
Turbidez (ac)	NTU	5,04
Oxigênio dissolvido (ac)	mg/L	8,90
Condutividade elétrica (ac)	μS/cm	68,40
pH (ac)	-	6,51
DBO	mg/L	25,35

Figura 8. Ponto de amostragem PRB 80 na área de influência do AHE Simplício – Queda Única

Ponto PRB 90

Ponto localizado no município de Além Paraíba (MG) a montante do canal de fuga do AHE Simplício em um do rio Paraíba do Sul próximo à rodovia. O local apresenta características lóticas, com forte correnteza, margens pouco preservadas e leito rochoso (Figura 9).

Tabela 9. Parâmetros físico-químicos da água avaliados no Ponto PRB 90

PARÂMETRO	Unidade	Dez/17
Temp. Ambiente[campo]	°C	31,6
Temp. Amostra[campo]	°C	28,4
Transparência	m	0,81
Turbidez (ac)	NTU	6,49
Oxigênio dissolvido (ac)	mg/L	8,74
Condutividade elétrica (ac)	μS/cm	68,10
pH (ac)	-	6,60
DBO	mg/L	0

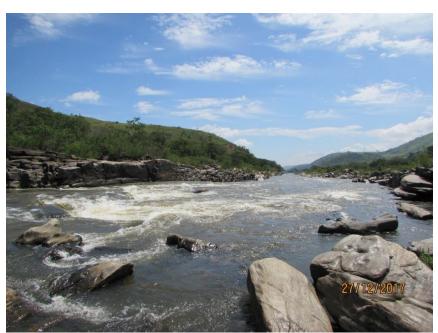


Figura 9. Pontos de amostragem PRB 90 na área de influência do AHE Simplício – Queda Única

Ponto PRB 100

Ponto localizado no rio Paraíba do Sul, ambiente com característica lótica com forte correnteza. Apresenta influência de efluentes difusos devido à criação de animais domésticos na margem. A margem esquerda se encontra mais preservada que a margem direita que se encontra mais próxima da rodovia (Figura 10).

Tabela 10.Parâmetros físico-químicos da água avaliados no PontoPRB 100

PARÂMETRO	Unidade	Dez/17
Temp. Ambiente[campo]	°C	27,8
Temp. Amostra[campo]	°C	28,6
Transparência	m	0,87
Turbidez (ac)	NTU	10,60
Oxigênio dissolvido (ac)	mg/L	7,41
Condutividade elétrica (ac)	μS/cm	65,90
pH (ac)	-	6,68
DBO	mg/L	0

Figura 10. Pontos de amostragem PRB 100 na área de influência do AHE Simplício – Queda Única

Pontos localizados nos tributários

Ponto ARE 10

Ponto localizado no córrego Areia, localizado dentro de uma propriedade rural, trata-se de um ambiente com características lóticas e leito arenoso, com aportes difusos provenientes dos dejetos dos animais que ficam no pasto à montante (Figura 11).

Tabela 11. Parâmetros físico-químicos da água avaliados no PontoARE 10

PARÂMETRO	Unidade	Dez/17
Temp. Ambiente[campo]	°C	28,4
Temp. Amostra[campo]	°C	25,0
Transparência	m	0,42
Turbidez (ac)	NTU	10,94
Oxigênio dissolvido (ac)	mg/L	6,48
Condutividade elétrica (ac)	μS/cm	38,20
pH (ac)	-	7,26
DBO	mg/L	0

Figura 11. Ponto de amostragem ARE 10 na área de influência do AHE Simplício – Queda Única

Programa de Monitoramento Limnológico e de Qualidade da Água do Aproveitamento Hidrelétrico (AHE) Simplício – Queda Única

Ponto ARE 20

Localizado no córrego Areia, a montante do Dique ALGA 1; ambiente com características semilênticas (Figura 12).

Tabela 12. Parâmetros físico-químicos da água avaliados no PontoARE 20

PARÂMETRO	Unidade	Dez/17
Temp. Ambiente[campo]	°C	30,4
Temp. Amostra[campo]	°C	28,6
Transparência	m	0,42
Turbidez (ac)	NTU	0,10
Oxigênio dissolvido (ac)	mg/L	5,01
Condutividade elétrica (ac)	μS/cm	58,20
pH (ac)	-	6,82
DBO	mg/L	0

Figura 12. Ponto de amostragem ARE 20 na área de influência do AHE Simplício – Queda Única

Ponto ARE 25

Ponto localizado no córrego Areia, à jusante do Dique ALGA1, em um braço do reservatório de Louriçal, com características lóticas (Figura 13).

Tabela 13. Parâmetros físico-químicos da água avaliados no Ponto ARE 25

PARÂMETRO	Unidade	Dez/17
Temp. Ambiente[campo]	°C	35,6
Temp. Amostra[campo]	°C	32,1
Transparência	m	1,30
Turbidez (ac)	NTU	6,03
Oxigênio dissolvido (ac)	mg/L	7,50
Condutividade elétrica (ac)	μS/cm	68,50
pH (ac)	-	7,57
DBO	mg/L	0

Figura 13. Ponto de amostragem ARE 25 na área de influência do AHE Simplício – Queda Única

Ponto ARE 30

Ponto localizado no córrego Areia, à montante do Dique do reservatório de Louriçal (Figura 14). No local foram observadas macrófitas flutuantes isoladas, material particulado sendo arrastado pela correnteza e presença de algas na superfície.

Tabela 14. Parâmetros físico-químicos da água avaliados no Ponto ARE 30

PARÂMETRO	Unidade	Dez/17		
Temp. Ambiente[campo]	°C	35,2		
Temp. Amostra[campo]	°C	29,4		
Transparência	m	1,50		
Turbidez (ac)	NTU	8,33		
Oxigênio dissolvido (ac)	mg/L	7,40		
Condutividade elétrica (ac)	μS/cm	69,50		
pH (ac)	-	6,29		
DBO	mg/L	0		

Figura 14. Ponto de amostragem ARE 30 na área de influência do AHE Simplício – Queda Única

Ponto LOU 10

Ponto localizado no córrego Louriçal. Ambiente com características lóticas com presença de grandes bancos de macrófitas flutuantes. A área é utilizada para pesca recreativa pela população local (Figura 15).

Tabela 15.Parâmetros físico-químicos da água avaliados no Ponto LOU 10

PARÂMETRO	Unidade	Dez/17		
Temp. Ambiente[campo]	°C	33,4		
Temp. Amostra[campo]	°C	30,9		
Transparência	m	1,56		
Turbidez (ac)	NTU	0,74		
Oxigênio dissolvido (ac)	mg/L	4,07		
Condutividade elétrica (ac)	μS/cm	48,90		
pH (ac)	-	6,38		
DBO	mg/L	0		

Figura 15. Ponto de amostragem LOU 10 na área de influência do AHE Simplício – Queda Única

Ponto LOU 20

Ponto localizado no córrego Louriçal, no braço do reservatório Louriçal, a montante do Dique ALGA 2. Ambiente com características predominantemente lênticas, com presença de grandes bancos de macrófitas flutuantes. A área é utilizada para pesca recreativa pela população local (Figura 16). Nesta campanha não foi possível acessar o ponto de coleta devido à existência de um extenso banco de macrófitas que fechou o acesso por água ao ponto de coleta. Pela margem o acesso ao ponto também não foi possível.

Figura 16. Ponto de amostragem LOU 20 na área de influência do AHE Simplício – Queda Única. Detalhe do banco de macrófitas que fechou o acesso ao ponto

Ponto LOU 25

Ponto localizado no córrego Louriçal, no braço do reservatório, à jusante do Dique ALGA 2. Ambiente com características predominantemente lênticas (Figura 17).

Tabela 16.Parâmetros físico-químicos da água avaliados no Ponto LOU 25

PARÂMETRO	Unidade	Dez/17		
Temp. Ambiente[campo]	°C	36,0		
Temp. Amostra[campo]	°C	30,8		
Transparência	m	1,40		
Turbidez (ac)	NTU	0,94		
Oxigênio dissolvido (ac)	mg/L	6,06		
Condutividade elétrica (ac)	μS/cm	69,30		
pH (ac)	-	6,26		
DBO	mg/L	0		

Figura 17. Ponto de amostragem LOU 25 na área de influência do AHE Simplício – Queda Única

Ponto LOU 30

Ponto localizado no reservatório Louriçal, no braço do córrego Louriçal fazendo a ligação como córrego Areia. Ambiente com características predominantemente lênticas (Figura 18).

Tabela 17.Parâmetros físico-químicos da água avaliados no Ponto LOU 30

PARÂMETRO	Unidade	Dez/17	
		S	F
Profundidade	m	0,2	11,0
Temp. Ambiente[campo]	°C	35,1	-
Temp. Amostra[campo]	°C	29,2	27,1
Transparência	m	1,60	-
Turbidez (ac)	NTU	2,97	6,62
Oxigênio dissolvido (ac)	mg/L	6,98	4,90
Condutividade elétrica (ac)	μS/cm	69,40	70,90
pH (ac)	-	6,27	6,47
DBO	mg/L	0	0

Figura 18. Ponto de amostragem LOU 30 na área de influência do AHE Simplício – Queda Única

5.2. Procedimentos metodológicos

Para esta campanha de dezembro de 2017 foram utilizados os serviços do laboratório Controle Analítico – Análises Técnica Ltda.,o qual possui os procedimentos de coleta de águas superficiais e ensaios de campo e laboratório acreditados pelo INMETRO sob o nº CRL 0353, tendo nesta certificação uma garantia dos dados que são fornecidos para avaliação da qualidade da água do AHE Simplício – Queda Única.

5.2.1. Métodos de campo

Os procedimentos para a realização da coleta, armazenamento, transporte e análise das amostras de água seguem as recomendações do *Standard Methods* 22ª edição e do guia CETESB/ANA (2011) e as Instruções de Trabalho específicas do laboratório contratado.

As amostras coletadas foram protegidas da luz solar e do calor durante seu transporte e manuseio (mantidos em isopor com gelo). Todos os frascos foram mantidos refrigerados e ficaram a uma temperatura de aproximadamente 4°C até o momento da análise. As amostras para análises microbiologias e DBO foram encaminhadas para o laboratório em menos de 24 e 48h, respectivamente, após a amostragem, obedecendo-se os prazos de validade das amostras.

Os parâmetros medidos com sonda multiparamétrica, devidamente calibrada em campo, estão abaixo discriminados:

- 1. Temperatura (°C);
- pH;
- Condutividade elétrica (μS/cm);
- 4. Oxigênio dissolvido (mg/L);
- 5. Turbidez (NTU).

A transparência da água foi obtida através do disco de Secchi. A profundidade do disco de Secchi, na ausência de outros equipamentos, foi

utilizada na avaliação da extensão da zona eufótica, o que possibilitou orientar a profundidade das coletas de fitoplâncton e zooplâncton.

As coletas de amostras para determinação da concentração de bactérias coliformes totais e termotolerantes (*Escherichia coli*) foram realizadas em frascos estéreis e essas foram as primeiras a serem realizadas, a fim de se evitar contaminação. As amostras obtidas na superfície foram coletadas no próprio frasco de amostragem e as de fundo usando uma garrafa de Van Dorn vertical de 5 litros de capacidade.

Todos os frascos utilizados na coleta de amostras já foram para o campo com rótulo identificador, minimizando, assim, a possibilidade de troca de amostras e agilizando a operação de coleta.

5.2.2. Plano de amostragem da qualidade da água (parâmetros físicoquímicos e microbiológicos)

Para a coleta de amostras superficiais (S), as amostras de água foram coletadas subsuperficialmente (0 – 30 cm de profundidade) e armazenadas em frascos de vidro de 1 litro cor âmbar, ou em frascos plásticos de 1000 mL, 500 mL e 50 mL, dependendo do tipo de análise. No caso de amostragens em profundidade (superfície-meio SM, meio M, meio-fundo MF e fundo F), foi utilizada a garrafa de Van Dorn vertical e armazenadas nos frascos correspondentes.

5.2.3. Plano de amostragem das comunidades aquáticas (fitoplâncton, zooplâncton)

Os procedimentos de coletas, armazenamento e transporte das amostras seguem as normas internacionais e nacionais reconhecidas (*Standard Methods* 22^a ed. 2005, CETESB/ANA, 2011).

Coleta da comunidade fitoplanctônica

As amostras destinadas a qualificação da comunidade fitoplanctônica foram obtidas com rede tipo Apstein de 20 µm de abertura de malha, fazendo uso de arraste horizontal nos ambientes lóticos e arraste vertical nos ambientes lênticos, considerando a profundidade da zona eufótica da coluna d'água (profundidade do disco de Secchi vezes 3). O material coletado foi fixado com solução de lugol acético e sua contagem realizada com microscópio invertido, pelo método de Utermöhl (UTERMÖHL, 1958).

As amostras destinadas à análise quantitativa do fitoplâncton foram obtidas com um frasco de vidro âmbar, com volume de 1000 mL, por meio de amostragem na superfície. A amostra foi fixada com solução de lugol acético.

Coleta da comunidade zooplanctônica

Para ambientes lóticosfoi coletado um volume mínimo de água de 100 litros e filtrado por uma rede de plâncton de 68 µm de abertura de malha. Em ambientes lênticos foram realizados arrastos verticais da coluna de água. As amostras do zooplâncton coletadas foram acondicionadas em frascos com capacidade de 250 mL e fixadas com solução de formaldeído a 4% com adição de açúcar (HANNEY & HALL, 1973) imediatamente após a coleta.

Figura 19. Coleta do material limnológico na área de influência do AHE Simplicio – Queda Única

5.3. Métodos de laboratório

Os métodos analíticos adotados foram os que o laboratório contratado segue de acordo ao escopo acreditado no INMETRO para a Norma ISO 17.025.

As considerações sobre o clima no momento da coleta, a presença de gado, máquinas, embarcações ou outras alterações observadas no momento da coleta foram registradas na ficha de campo.

5.3.1. Determinação da comunidade fitoplanctônica

O volume de amostra sedimentado para contagem de organismos fitoplanctônicos foi de 10 mL e, eventualmente, usado o volume de 2 mL para amostras mais concentradas, por, aproximadamente, 6 horas. A quantificação dos organismos (cenóbios, colônias, filamentos e células) foi providenciada até alcançar 100 indivíduos da espécie mais frequente; quando este procedimento não foi possível, foram contadas as algas de tantos campos aleatórios quantos foram necessários para estabilizar o número de espécies. As amostras para

determinação do fitoplâncton foram quantificadas através de microscópio invertido marca Zeiss modelo Axiovert, utilizando aumento de 400 vezes, de acordo com o método de Utermöhl (UTERMÖHL, 1958). A contagem foi feita em campos distribuídos aleatoriamente (UHELINGER, 1964), sendo sorteadas abscissas e ordenadas a cada novo campo.

5.3.2. Determinação da comunidade zooplanctônica

No laboratório, as amostras foram contadas na sua totalidade, sendo utilizadas placas de acrílico quadriculadas, sob um estéreo microscópio Carl Zeiss, modelo Stemi SV6, em aumento máximo de 500 vezes para Cladocera e Copepoda e câmara de Sedgwick-Rafter para Rotífera. Os organismos foram identificados utilizando literatura especializada (KOSTE, 1978; ELMOOR-LOUREIRO, 1997; SMIRNOV, 1996).

5.4. Perfil dos parâmetros analisados

Nos pontos localizados nos reservatórios (pontos terminados com a numeração 20, 30, 40), os parâmetros do Grupo 1 (temperatura da água, pH, turbidez, condutividade e oxigênio dissolvido) foram medidos como perfil a cada metro com a utilização da sonda multi-parâmetro. Nesses mesmos pontos os demais grupos analisados (grupo 2 a 6 que corresponde aos demais parâmetros), as amostras foram coletadas na superfície e a cada 10 metros, quando assim a profundidade o permitiu.

Nos pontos que foram realizados perfil, para a superfície foi utilizada a nomenclatura S, para meio a nomenclatura M e para fundo a nomenclatura F. No ponto PRB40 foram realizadas coletas em 5 profundidades (S = superfície; MS = meio da superfície; M = meio; MF meio do fundo e F = fundo).

5.5. Análise dos dados

Para avaliação da qualidade da água foi empregada a Resolução CONAMA N° 357/05, Classe 2¹ (CONAMA, 2005), cujos dados serão explicados através de tabelas e recursos gráficos.

6. RESULTADOS DISCUSSÃO

6.1. Dados físico-químicos e microbiológicos

A Tabela 18 apresenta os dados físicos e químicos quantificados em campo durante a campanha realizada em dezembro de 2017. Ao longo do relatório, esses dados são apresentados em forma de gráficos.

Foram observadas inconformidades dos dados coletados em campo em relação aos limites estabelecidos pela Resolução CONAMA 357/2005 para águas doces de classe 2 para o oxigênio dissolvido no ponto LOU 10 em superfície (4,07 mg/L) e nos pontos de fundo dos reservatórios de Anta, ponto PRB 40-F (3,56 mg/L) e Louriçal, LOU 30-F com 4,90 mg/L. Os demais parâmetros, mesmo nas camadas mais profundas do reservatório estiveram em conformidade com os valores determinados pela legislação.

_

¹Classe II: Águas que podem ser destinadas: a) ao abastecimento para consumo humano, após tratamento convencional; b) à proteção das comunidades aquáticas; c) à recreação de contato primário, tais como natação, esqui aquático e mergulho, conforme Resolução CONAMA № 274/2000; d) à irrigação de hortaliças, plantas frutíferas e de parques, jardins, campos de esporte e lazer, com os quais o público possa vir a ter contato direto; e à aqüicultura e à atividade de pesca.

PROGRAMAS DE MONITORAMENTO DA UHE SIMPLÍCIO – QUEDA ÚNICA

Tabela 18. Dados determinados em campo durante a campanha realizada em dezembro/2017 na área de influência do AHE Simplício – Queda Única. Destacados em vermelho se encontram os parâmetros em não conformidade com os limites do CONAMA 357/2005 para águas doces Classe 2

PARÂMETRO	Unidade	VMP	PRB 40-S	PRB 40-M	PRB 40-F	PRB 50	PRB 60	PRB 70	PRB CEDAE	PRB 80	PRB 90	PRB 100
Data			27/12/2017	27/12/2017	27/12/2017	27/12/2017	27/12/2017	27/12/2017	27/12/2017	27/12/2017	27/12/2017	27/12/2017
Hora			16:10	16:40	16:26	18:40	14:27	13:56	12:17	11:46	10:57	10:20
Matriz			água bruta	água bruta	água bruta	água bruta						
Chuvas nas últimas 24 h			sim	sim	sim	sim						
Condição do tempo			bom	bom	bom	bom						
Profundidade	m	n.a.	0,2	9,0	17,0	0,2	0,2	0,2	0,2	0,2	0,2	0,2
Temp. Ambiente [campo]	°C	n.a.	38,9	-	-	30,1	36,7	37,6	33,2	31,4	31,6	27,8
Temp. Amostra [campo]	°C	n.a.	32,1	28,9	27,5	27,4	30,4	31,2	28,9	28,7	28,4	28,6
Transparência	m	n.a.	1,10	-	-	0,74	0,38	0,38	0,44	0,40	0,81	0,87
Turbidez	NTU	100	1,18	0,48	1,10	2,40	1,02	2,01	2,00	5,04	6,49	10,60
Oxigênio dissolvido	mg/L	> 5,0	5,80	5,10	3,56	6,80	7,56	7,06	8,10	8,90	8,74	7,41
Condutividade elétrica	μS/cm	n.a.	76,60	69,90	68,20	79,90	77,70	79,00	68,20	68,40	68,10	65,90
рН	-	6,0 - 9,0	7,74	7,23	6,88	6,96	6,86	6,97	6,65	6,51	6,60	6,68

Legenda: n.a.: não se aplica; n.c.: não coletado; VMP: Valor máximo Permitido pela Legislação CONAMA 357 para águas doces Classe 2. S: superfície, M: meio, F: fundo

PROGRAMAS DE MONITORAMENTO DA UHE SIMPLÍCIO – QUEDA ÚNICA

PARÂMETRO	Unidade	VMP	LOU 10	LOU 20	LOU 25	LOU 30-S	LOU 30-F	ARE 10	ARE 20	ARE 25	ARE 30
Data			28/12/2017	28/12/2017	28/12/2017	28/12/2017	28/12/2017	28/12/2017	28/12/2017	28/12/2017	28/12/2017
Hora			11:54	n.c.	14:40	15:10	15:40	09:52	10:43	16:20	15:55
Matriz			água bruta	n.c.	água bruta						
Chuvas nas últimas 24 h			sim	n.c.	sim						
Condição do tempo			bom	n.c.	bom						
Profundidade	m	n.a.	0,2	n.c.	0,2	0,2	11,0	0,2	0,2	0,2	0,2
Temp. Ambiente [campo]	°C	n.a.	33,4	n.c.	36,0	35,1	n.c.	28,4	30,4	35,6	35,2
Temp. Amostra [campo]	°C	n.a.	30,9	n.c.	30,8	29,2	27,1	25,0	28,6	32,1	29,4
Transparência	m	n.a.	1,56	n.c.	1,40	1,60	n.c.	0,42	0,42	1,30	1,50
Turbidez	NTU	100	0,74	n.c.	0,94	2,97	6,62	10,94	0,10	6,03	8,33
Oxigênio dissolvido	mg/L	> 5,0	4,07	n.c.	6,06	6,98	4,90	6,48	5,01	7,50	7,40
Condutividade elétrica	μS/cm	n.a.	48,90	n.c.	69,30	69,40	70,90	38,20	58,20	68,50	69,50
рН	-	6,0 - 9,0	6,38	n.c.	6,26	6,27	6,47	7,26	6,82	7,57	6,29

Legenda: n.a.: não se aplica; n.c.: não coletado; VMP: Valor máximo Permitido pela Legislação CONAMA 357 para águas doces Classe 2. S: superfície, M: meio, F: fundo

Nas Tabelas 19 e 20 se apresentam os resultados dos parâmetros físico-químicos e microbiológicos analisados durante a campanha realizada em dezembro de 2017. As variáveis que apresentaram concentrações em não conformidade com os valores de enquadramento para águas Classe 2 da Resolução CONAMA 357/2005foram: alumínio dissolvido, ferro dissolvido, manganês total, óleos e graxas, fósforo total, DBO e coliformes termotolerantes (*E. coli*).

As inconformidades em relação ao alumínio dissolvido, ferro dissolvido e manganês total estão relacionadas às características geológicas da bacia de contribuição do rio Paraíba do Sul e de seus tributários, os quais apresentam rochas e solos ricos em alumínio e ferro e que resultam na elevada concentração deste metal na água.

As concentrações de óleos e graxas observadas nos pontos PRB 40-F e LOU 30-F e ARE 20 estão relacionadas principalmente, com produtos da decomposição da matéria orgânica vegetal e as mesmas foram muito baixas.

As concentrações de fósforo total em não conformidade com os valores de enquadramento para águas doces Classe 2 do CONAMA 357/2005 foram observadas nos pontos PRB 40-M (0,03 mg/L) e ARE 30 (0,15 mg/L), sendo este último devido a uma maior concentração de material particulado na superfície do reservatório e a influência das águas do rio Paraíba do Sul.

As concentrações de DBO observadas nos pontos do Trecho de Vazão Reduzida não são compatíveis com a série histórica do local e os mesmos ficarão sob observação nos próximos monitoramentos para determinar se o fato ocorrido foi pontual.

O único valor de *E. coli* em não conformidade com a legislação CONAMA 357/2005 para águas doces Classe 2 foi o registrado no ponto ARE 10, localizado dentro de um sítio, com presença de gado bovino que frequenta o córrego Areia para beber água, podendo contaminar o mesmo com dejetos.

PROGRAMAS DE MONITORAMENTO DA UHE SIMPLÍCIO – QUEDA ÚNICA

Tabela 19. Dados físico-químicos determinados em laboratório durante a campanha realizada em dezembro/2017 na área de influência do AHE Simplício – Queda Única.Destacados em vermelho se encontram os parâmetros em não conformidade com os limites do CONAMA 357/2005 para águas doces Classe 2. Pontos localizados no reservatório de Anta e rio Paraíba do Sul

Parâmetros	Unidade	VMP	PRB 40-S	PRB 40-M	PRB 40-F	PRB 50	PRB 60	PRB 70	PRB CEDAE	PRB 80	PRB 90	PRB 100
Sólidos Suspenso Fixos	mg/L	n.a.	0,00	0,00	0,00	n.a.	n.a.	0,00	n.a.	n.a.	n.a.	n.a.
Sólidos Suspensos Voláteis	mg/L	n.a.	0,00	44,00	0,00	n.a.	n.a.	0,00	n.a.	n.a.	n.a.	n.a.
Óleos e graxas	mg/L	VA	0,00	0,00	0,20	n.a.	n.a.	0,00	n.a.	n.a.	n.a.	n.a.
Fenóis	mg/L	0,003	0,00	0,00	0,00	n.a.	n.a.	0,00	n.a.	n.a.	n.a.	n.a.
Sílica total	mg/L	n.a.	9,04	10,48	11,03	n.a.	n.a.	11,24	n.a.	n.a.	n.a.	n.a.
Nitrogênio total	mg/L	n.a.	1,64	1,24	1,45	n.a.	n.a.	1,61	n.a.	n.a.	n.a.	n.a.
Amônia	mg/L		0,00	0,00	0,00	n.a.	n.a.	0,00	n.a.	n.a.	n.a.	n.a.
Nitrato	mg/L	10	1,52	1,16	1,23	n.a.	n.a.	1,53	n.a.	n.a.	n.a.	n.a.
Fósforo total	mg/L	*	0,00	0,04	0,03	n.a.	n.a.	0,04	n.a.	n.a.	n.a.	n.a.
Ortofosfato	μg/L	n.a.	0,00	0,21	0,29	n.a.	n.a.	0,26	n.a.	n.a.	n.a.	n.a.
DQO	mg/L	n.a.	0,00	0,00	0,00	n.a.	n.a.	0,00	n.a.	n.a.	n.a.	n.a.
Alcalinidade total	mg/L	n.a.	17,30	15,05	19,56	n.a.	n.a.	16,05	n.a.	n.a.	n.a.	n.a.
Cloreto total	μg/L	250	4,41	3,44	3,09	n.a.	n.a.	3,26	n.a.	n.a.	n.a.	n.a.
Cianeto livre	mg/L	0,005	0,00	0,00	0,00	n.a.	n.a.	0,00	n.a.	n.a.	n.a.	n.a.
Sulfato total	mg/L	250	9,18	9,08	7,90	n.a.	n.a.	8,60	n.a.	n.a.	n.a.	n.a.
Cálcio total	mg/L	n.a.	3,09	3,70	4,13	n.a.	n.a.	4,86	n.a.	n.a.	n.a.	n.a.
Magnésio total	mg/L	n.a.	0,92	1,10	1,18	n.a.	n.a.	1,40	n.a.	n.a.	n.a.	n.a.
Sódio total	mg/L	n.a.	2,98	3,24	3,49	n.a.	n.a.	4,21	n.a.	n.a.	n.a.	n.a.
Potássio total	mg/L	n.a.	2,50	2,70	3,00	n.a.	n.a.	3,17	n.a.	n.a.	n.a.	n.a.
DBO	mg/L	5	0,00	0,00	0,00	0,00	0,00	0,00	57,60	25,35	0,00	0,00

PROGRAMAS DE MONITORAMENTO DA UHE SIMPLÍCIO – QUEDA ÚNICA

Parâmetros	Unidade	VMP	PRB 40-S	PRB 40-M	PRB 40-F	PRB 50	PRB 60	PRB 70	PRB CEDAE	PRB 80	PRB 90	PRB 100
Coliformes totais	NMP/100mL	n.a.	410,60	866,40	1299,70	980,40	488,40	224,70	1986,30	2500,00	1203,30	2419,60
E. coli	NMP/100mL	1000	19,70	77,30	225,40	24,60	27,20	30,80	80,20	146,40	272,30	260,30
Ferro total	mg/L	n.a.	0,46	0,67	0,82	n.a.	n.a.	0,72	n.a.	n.a.	n.a.	n.a.
Ferro dissolvido	mg/L	0,3	0,28	0,30	0,29	n.a.	n.a.	0,30	n.a.	n.a.	n.a.	n.a.
Manganês total	mg/L	0,1	0,92	0,03	0,50	n.a.	n.a.	0,04	n.a.	n.a.	n.a.	n.a.
Chumbo total	mg/L	0,01	0,00	0,00	0,00	n.a.	n.a.	0,00	n.a.	n.a.	n.a.	n.a.
Zinco total	mg/L	0,18	0,00	0,00	0,00	n.a.	n.a.	0,00	n.a.	n.a.	n.a.	n.a.
Cádmio total	mg/L	0,001	0,00	0,00	0,00	n.a.	n.a.	0,00	n.a.	n.a.	n.a.	n.a.
Cobre dissolvido	mg/L	0,009	0,00	0,00	0,00	n.a.	n.a.	0,00	n.a.	n.a.	n.a.	n.a.
Cromo hexavalente	mg/L	0,01	0,00	0,00	0,00	n.a.	n.a.	0,00	n.a.	n.a.	n.a.	n.a.
Mercúrio total	mg/L	0,0002	0,00	0,00	0,00	n.a.	n.a.	0,00	n.a.	n.a.	n.a.	n.a.
Alumínio dissolvido	mg/L	0,1	0,19	0,31	0,24	n.a.	n.a.	0,33	n.a.	n.a.	n.a.	n.a.
Clorofila-a	μg/L	30	8,35	n.a.	n.a.	n.a.	n.a.	0,00	n.a.	n.a.	n.a.	n.a.

Legenda: VMP: Valor Máximo Permitido pela legislação CONAMA 357/2005 para águas doces Classe 2; n.a.: não se aplica; n.c.: nào coletado; *: até 0,03 mg/L para ambientes lênticos; até 0,05 mg/L para ambientes intermediários, com tempo de residência entre 2 e 40 dias, e tributários diretos de ambientes lênticos; até 0,10 mg/L para ambientes lóticos; VA.: virtualmente ausente. S: superfície; M: meio; F: fundo.

PROGRAMAS DE MONITORAMENTO DA UHE SIMPLÍCIO – QUEDA ÚNICA

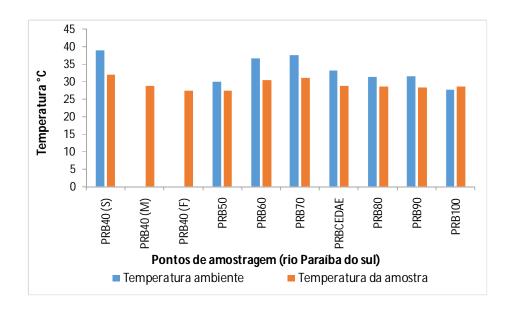
Tabela 20. Dados físico-químicos determinados em laboratório durante a campanha realizada em dezembro/2017 na área de influência do AHE Simplício – Queda Única. Destacados em vermelho se encontram os parâmetros em não conformidade com os limites do CONAMA 357/2005 para águas doces Classe 2. Pontos localizados no reservatório de Louriçal e córrego Areia

Parâmetros	Unidade	VMP	LOU 10	LOU 20	LOU 25	LOU 30-S	LOU 30-F	ARE 10	ARE 20	ARE 25	ARE 30
Sólidos Suspenso Fixos	mg/L	n.a.	0,00	n.c.	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Sólidos Suspensos Voláteis	mg/L	n.a.	0,00	n.c.	0,00	0,00	44,00	0,00	0,00	0,00	0,00
Óleos e graxas	mg/L	VA	0,00	n.c.	0,00	0,00	0,20	0,00	0,00	0,80	0,00
Fenóis	mg/L	0,003	0,00	n.c.	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Sílica total	mg/L	n.a.	12,28	n.c.	10,08	10,50	10,37	15,24	15,24	10,87	9,69
Nitrogênio total	mg/L	n.a.	1,02	n.c.	1,32	1,37	2,17	1,85	1,58	1,19	1,33
Amônia	mg/L		0,00	n.c.	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Nitrato	mg/L	10	0,95	n.c.	1,24	1,23	1,81	1,78	1,45	1,12	1,26
Fósforo total	mg/L	*	0,04	n.c.	0,00	0,00	0,00	0,00	0,00	0,00	0,15
Ortofosfato	μg/L	n.a.	0,10	n.c.	0,26	0,19	0,19	0,00	0,10	0,00	0,05
DQO	mg/L	n.a.	0,00	n.c.	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Alcalinidade total	mg/L	n.a.	20,56	n.c.	15,55	16,05	14,04	17,05	27,58	20,06	16,55
Cloreto total	μg/L	250	0,35	n.c.	3,44	3,53	3,61	0,00	1,06	2,73	3,35
Cianeto livre	mg/L	0,005	0,00	n.c.	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Sulfato total	mg/L	250	1,64	n.c.	10,09	9,30	9,56	3,41	2,44	5,09	9,43
Cálcio total	mg/L	n.a.	3,12	n.c.	3,26	4,21	3,53	3,08	3,41	2,92	4,18
Magnésio total	mg/L	n.a.	1,64	n.c.	1,03	1,19	1,07	1,46	1,72	1,21	1,35
Sódio total	mg/L	n.a.	2,67	n.c.	3,15	3,63	3,29	1,85	2,21	2,49	4,81
Potássio total	mg/L	n.a.	2,67	n.c.	2,62	2,85	2,86	1,88	3,35	2,81	3,61

PROGRAMAS DE MONITORAMENTO DA UHE SIMPLÍCIO – QUEDA ÚNICA

Parâmetros	Unidade	VMP	LOU 10	LOU 20	LOU 25	LOU 30-S	LOU 30-F	ARE 10	ARE 20	ARE 25	ARE 30
DBO	mg/L	5	0,00	n.c.	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Coliformes totais	NMP/100mL	n.a.	173,29	n.c.	1299,70	1203,30	2419,60	2419,60	2419,60	1553,10	980,40
E. coli	NMP/100mL	1000	62,90	n.c.	148,30	33,30	76,80	1986,30	308,80	686,70	70,00
Ferro total	mg/L	n.a.	1,10	n.c.	0,53	0,60	0,62	3,96	0,92	0,62	0,67
Ferro dissolvido	mg/L	0,3	0,55	n.c.	0,25	0,26	0,28	0,50	0,44	0,36	0,28
Manganês total	mg/L	0,1	0,13	n.c.	0,03	0,03	0,00	0,25	0,00	0,00	0,00
Chumbo total	mg/L	0,01	0,00	n.c.	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Zinco total	mg/L	0,18	0,00	n.c.	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Cádmio total	mg/L	0,001	0,00	n.c.	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Cobre dissolvido	mg/L	0,009	0,00	n.c.	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Cromo hexavalente	mg/L	0,01	0,00	n.c.	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Mercúrio total	mg/L	0,0002	0,00	n.c.	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Alumínio dissolvido	mg/L	0,1	0,06	n.c.	0,19	0,25	0,28	1,54	0,12	0,15	0,24
Clorofila-a	μg/L	30	4,54	n.c.	11,93	3,68	n.a.	0,76	5,68	6,99	3,29

Legenda: VMP: Valor Máximo Permitido pela legislação CONAMA 357/2005 para águas doces Classe 2; n.a.: não se aplica; n.c.: não coletado; *: até 0,03 mg/L para ambientes lênticos; até 0,05 mg/L para ambientes intermediários, com tempo de residência entre 2 e 40 dias, e tributários diretos de ambientes lênticos; até 0,10 mg/L para ambientes lóticos; VA.: virtualmente ausente. S: superfície; M: meio; F: fundo.



6.2. Temperatura da água e do ambiente

A temperatura da água apresentou valores típicos de ambientes tropicais. Nos pontos localizados no rio Paraíba do Sul, a temperatura do ambiente variou de 27,8°C a 38,9°C e a temperatura da água apresentou valores variando de 27,4°C a 32,1°C. As menores temperaturas da água foram observadas nas amostras de fundo coletadas no ponto do reservatório da UHE Anta (PRB 40-F), haja vista que estes pontos apresentaram estratificação térmica na coluna de água. Já a temperatura do ambiente encontrada nos tributários variou de 28,4°C a 36,0°C e a temperatura da água variou de 25,0°C a 32,1°C (Figura 20). Nos tributários a menor temperatura da amostra registrada ocorreu no ponto ARE 10.

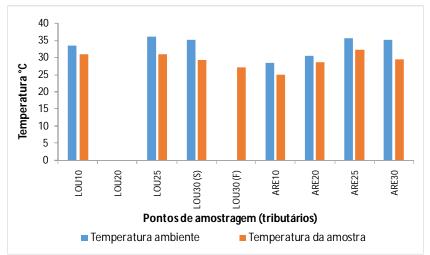


Figura 200. Valores da temperatura do Ambiente e da Água encontrado na área de influência do AHE Simplício (dezembro/2017)

6.3. Turbidez (NTU)

Todos os pontos amostrados apresentaram valores de turbidez abaixo dos limites estabelecidos na legislação na campanha realizada em dezembro de 2017. Nos pontos localizados no rio Paraíba do Sul, apenas o ponto PRB 100 apresentou valor ligeiramente mais elevado, com 10,6 NTU. Foi observado um incremento na turbidez ao longo do curso do rio Paraíba do Sul. Nos pontos localizados nos tributários, os valores variaram de 10,94 NTU no ponto ARE 10, no córrego Areia, a 0,1 NTU no ARE 20, no córrego Areia e braço do reservatório Louriçal (Figura 21).

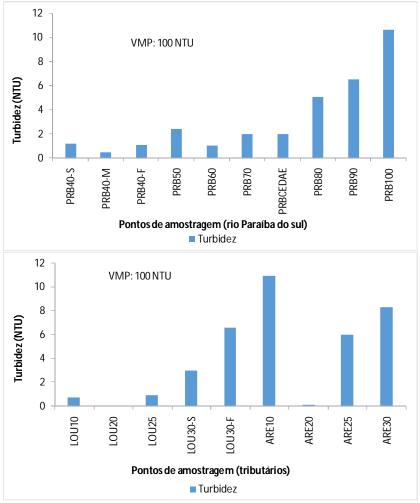


Figura 21. Valores da Turbidez (NTU) encontrado na área de influência do AHE Simplício (dezembro/2017)

6.4. Condutividade Elétrica

Os valores de condutividade elétrica nos pontos localizados no rio Paraíba do Sul variaram de 65,9 μ S/cm (PRB 100) a 79,9 μ S/cm (PRB 50), sendo que nos pontos localizados nos tributários os valores variaram de 38,2 μ S/cm (ARE 10) a 70,9 μ S/cm (LOU 30-F; Figura 22). Os valores de condutividade nos trechos do rio Paraíba do Sul foram similares, diminuindo progressivamente à jusante. Nos tributários os valores foram similares, com maiores concentrações no corpo central do reservatório e principais braços.

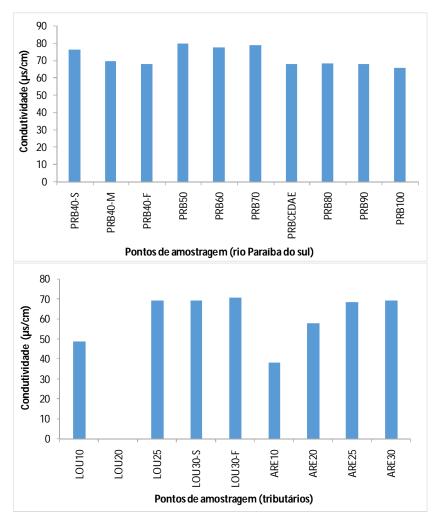


Figura 22. Valores de Condutividade elétrica (µS/cm) encontrado na área de influência do AHE Simplício (dezembro/2017)

6.5. pH

Nos pontos localizados no rio Paraíba do Sul os valores de pH variaram de 6,51 (PRB 80) a 7,74 (PRB 40-S), sendo que nos pontos localizados nos tributários os valores variaram de 6,26 (LOU25) a 7,57 (ARE 25). No rio Paraíba do Sul se observa um leve gradiente de acidificação à jusante, conforme aumenta a influência do entorno sobre o rio (Figura 23).

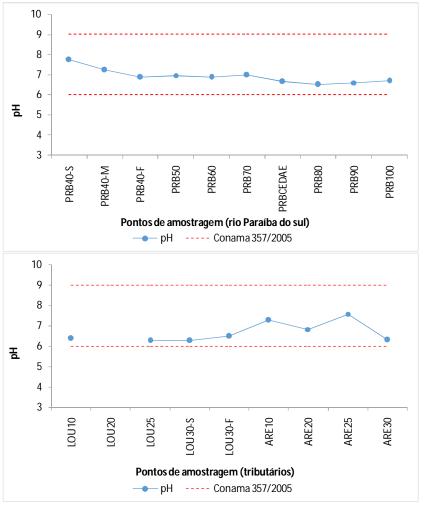


Figura 23. Valores de pH encontrado na área de influência do AHE Simplício (dezembro/2017)

6.6. Oxigênio dissolvido

Na campanha realizada em dezembro 2017, os valores de oxigênio dissolvido nos pontos localizados no rio Paraíba do Sul variaram de 3,56 mg/L (PRB 40–F) a 8,90 mg/L (PRB 80). Nos pontos localizados nos tributários os valores de OD variaram de 4,07 mg/L (LOU 10) a 7,50 mg/L (ARE 25). O ponto LOU10 e os pontos localizados no fundo dos reservatórios de Anta (PRB 40-F) e Louriçal (LOU 30-F) apresentaram concentrações em não conformidade com os valores de enquadramento para águas doces Classe 2 da Resolução

CONAMA 357/2005, que determina valores não inferiores a 5 mg/L (Figura 24). A baixa concentração de oxigênio dissolvido no ponto LOU 10 se deve a baixa profundidade do local e presença de macrófitas que aportam matéria orgânica em decomposição e restringem a circulação da água. Os valores menores em profundidade nos pontos dos reservatórios se devem ao maior consumo de oxigênio dissolvido na decomposição da matéria orgânica acumulada sobre os sedimentos. Em alguns pontos houve a formação de estratificação térmica, cuja condição dificulta a circulação na coluna de água e a oxigenação das camadas mais profundas.

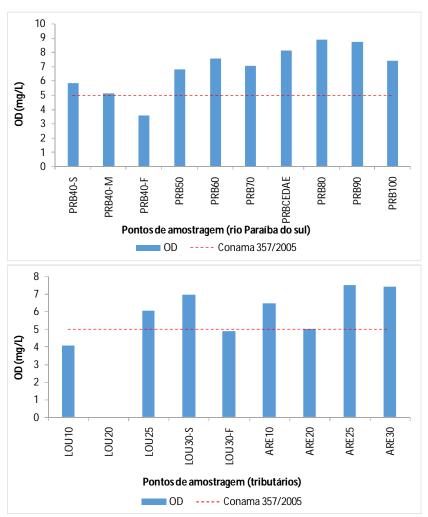


Figura 24. Valores de Oxigênio dissolvido (mg/L) encontrado na área de influência do AHE Simplício (dezembro/2017)

Programa de Monitoramento Limnológico e de Qualidade da Água do Aproveitamento Hidrelétrico (AHE) Simplício – Queda Única

6.7. Alcalinidade total

Nos pontos localizados no rio Paraíba do Sul os valores variaram de 17,30 mg/L (valor médio do ponto PRB 40) a 16,05 mg/L (PRB 70), ou seja, a alcalinidade total apresentou pouca variação ao longo do seu curso, sendo que nos pontos localizados nos tributários os valores variaram de 14,04 mg/L a 27,58 mg/L (Figura 25).

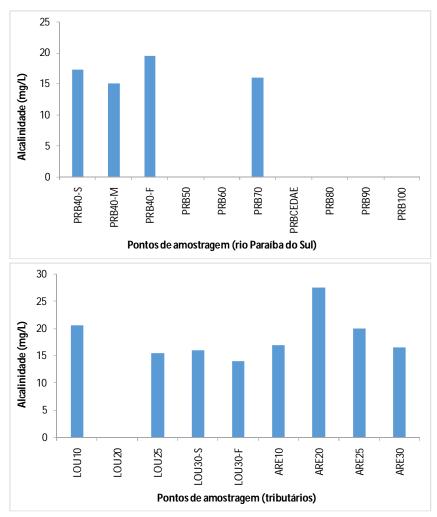


Figura 25. Valores de Alcalinidade total (mg/L) encontrado na área de influência do AHE Simplício (dezembro/2017)

6.8. Nutrientes: nitrogênio total e fósforo total

Os valores encontrados para o nitrogênio total no rio Paraíba do Sul variaram de 1,64 mg/L (PRB 40-S) a 1,24 (PRB 40-M). Já nos pontos localizados nos tributários os valores variaram de 2,17 mg/L (LOU 30-F) a 1,02 mg/L (LOU 10; Figura 26).

Para o fósforo total, os valores detectados no reservatório de Anta (ponto PRB 40) foram acima do limite estabelecido pela legislação CONAMA 357/2005 para águas Classe 2. Nos pontos localizados nos tributários foi observada a mesma situação, sendo que o ponto ARE 30 foi o que apresentou as maiores concentrações devido a que o mesmo recebe as águas do Paraíba do Sul, com uma maior concentração de fósforo. Dessa forma, a maioria dos pontos avaliados apresentaram concentrações de fósforo total em não conformidade com os valores de enquadramento para águas Classe 2 da Resolução CONAMA 357/2005, que estabelece valores até 0,03 mg/L em ambientes lênticos, até 0,05 mg/L, para ambientes intermediários, com tempo de residência entre 2 e 40 dias, e até 0,1 mg/L para ambientes lóticos. A presença de material particulado como restos vegetais, lixo e lançamento de efluentes difusos na bacia podem ser responsáveis por estas concentrações de nitrogênio e fósforo.

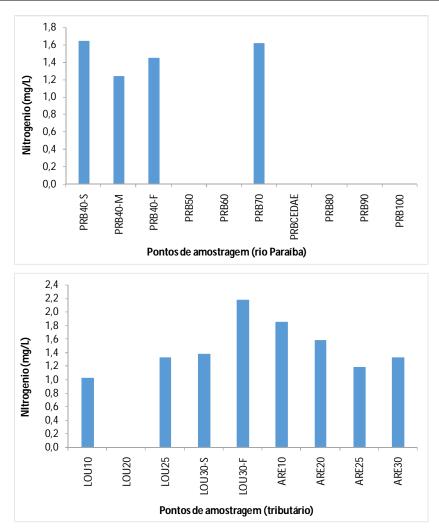


Figura 26. Valores de nitrogênio total (mg/L) encontrado na área de influência do AHE Simplício (dezembro/2017)

51

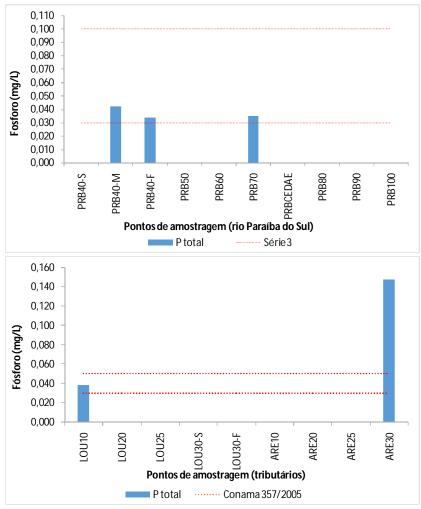


Figura 27. Valores de fósforo total (mg/L) encontrado na área de influência do AHE Simplício (dezembro/2017)

6.9. Coliformes totais e Coliformes termotolerantes

Ao longo da campanha realizada em dezembro de 2017, os valores de coliformes termotolerantes, quantificados como bactérias *E. coli*, variaram de 19,7 NMP/100mL a 272,3 NMP/100mL, no rio Paraíba do Sul, sendo que o maior valor foi encontrado no ponto PRB 90. Já nos pontos localizados nos tributários, os valores variaram de 33,3 NMP/100mL no ponto LOU 30-S a 1.986,3 NMP/100mL no ponto ARE 10, local com presença de gado solto no pasto nas áreas à montante do ponto de coleta e com acesso ao córrego, o que provavelmente pode ter influenciado neste resultado (Figura 28).

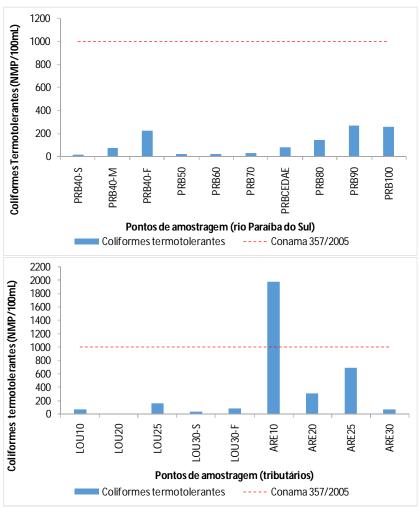


Figura 28. Valores de coliformes termotolerantes (*E. coli*) (NMP/100mL) encontrado na área de influência do AHE Simplício (dezembro/2017)

Programa de Monitoramento Limnológico e de Qualidade da Água do Aproveitamento Hidrelétrico (AHE) Simplício – Queda Única

6.10. Perfis de pH, oxigênio dissolvido (OD), temperatura da água, turbidez e condutividade

Nesta primeira campanha de monitoramento realizada pela empresa Ecologic, somente foram realizadas leituras em profundidade nos pontos PRB 40 no reservatório de Anta e no ponto LOU 30 no reservatório Louriçal. Ambos os locais apresentaram leves estratificações térmicas e ocorrência de termoclina na coluna de água, com diminuição dos valores de temperatura com o aumento da profundidade, com aumento da condutividade no caso do PRB 40 e diminuição da concentração de oxigênio dissolvido, aumento da turbidez e diminuição do pH, muito em função das condições mais redutoras nas camadas mais próximas ao sedimento nos pontos avaliados. Não se verificou anoxia no hipolímnio dos reservatórios (Figuras 29 e 30).

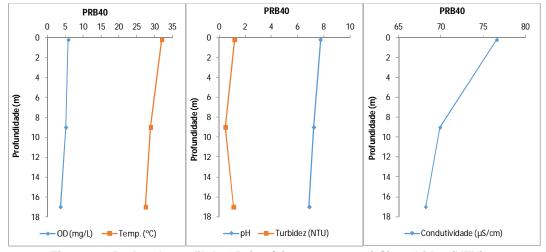


Figura 29. Dados do perfil de OD (mg/L), temperatura (°C), turbidez (NTU) e condutividade elétrica (μS/cm) no Ponto PRB 40 durante a campanha realizada em dezembro/2017 na área de influência da AHE Simplício – Queda Única

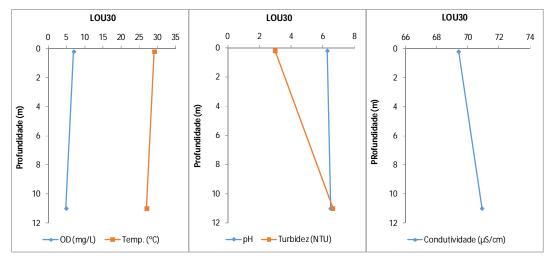


Figura 30. Dados do perfilde OD (mg/L), temperatura (°C), turbidez (NTU) e condutividade elétrica (μS/cm) no Ponto LOU 30 durante a campanha realizada em dezembro/2017 na área de influência dao AHE Simplício – Queda Única

6.11. Dados biológicos

6.11.1. Comunidade de Fitoplâncton

A comunidade fitoplanctônica foi constituída por 205 táxons (Tabela 21), distribuídos entre as classes Bacillariophyceae (68 táxons), Zygnemaphyceae (29 táxons), Chlorophyceae (57 táxons), Oedogoniophyceae (1), Cyanophyceae (21 táxons), Cryptophyceae (6 táxons), Euglenophyceae (15 táxons), Chrysophyceae (4 táxons), Dinophyceae (3 táxons) e Xanthophyceae (1 táxon). Em termos de abundância relativa, a classe Cryptophyceae foi dominante na maioria dos pontos monitorados, com exceção dos pontos ARE 20 e ARE 25, nos quais a classe dominante foi Chlorophyceae (Figura 31). A espécie mais abundante foi *Cryptomonas* sp.

Na Figura 32 se encontram representadas as densidades totais para cada ponto de coleta da campanha de dezembro de 2017, sendo que os pontos com maiores densidades foram ARE 20 e ARE 25. Nestes pontos houve uma maior densidade das algas clorofíceas, a maioria indicadora de boa qualidade ambiental.

PROGRAMAS DE MONITORAMENTO DA UHE SIMPLÍCIO – QUEDA ÚNICA

Tabela 21. Densidade (ind./mL) da comunidade fitoplanctônica registradanospontos de amostragem do rio Paraíba do Sul e tributários durante o Programa de Monitoramento Limnológico e da Qualidade da Água na área de influência do AHE Simplício – Queda Única (Dezembro/2017)

	•		,						
Fitoplâncton - Táxons Dezembro 2017	PRB 40	PRB 70	ARE 30	ARE 25	ARE 20	ARE 10	LOU 30	LOU 25	LOU 10
BACILLARIOPHYCEAE									
Achnanthidium minutissimum (Kütz.) Czarn.	0	0	0	0	0	8	0	0	0
Aulacoseira granulata (Ehr.) Sim. var. granulata	8	8	7	0	0	8	0	8	0
Aulacoseira herzogii (Lemm.) Sim.	0	0	15	0	0	0	15	0	0
Cocconeis placentula Ehr. var. placentula	0	0	0	0	0	8	0	0	0
Cyclotella meneghiniana Kütz.	0	0	0	0	0	0	8	0	0
Cyclotella stelligera Cleve & Grun.	39	16	0	39	86	24	54	0	0
Eunotia spp	0	0	0	0	0	8	0	0	0
Fragilaria crotonensis Kitt.	0	0	0	0	0	8	0	0	0
Gomphonema parvulum (Kütz.) var. parvulum	0	0	0	0	0	8	0	0	0
Navicula spp	0	0	7	0	0	24	0	0	0
Nitzschia acicularis (Kütz.) W.Sm.	8	0	0	0	0	0	0	0	0
Nitzschia intermedia Hantz.	0	0	0	0	0	8	0	0	0
Nitzschia palea (Kütz.) W.Sm.	0	0	0	0	0	16	0	8	0
Pleurosira laevis (Ehr.) Comp.	0	24	0	0	0	0	0	0	0
Synedra goulardii Bréb.	0	0	0	0	0	8	0	0	0
Thalassiosira sp	0	0	7	0	0	0	0	0	0
Total	55	47	37	39	86	126	77	15	0
ZYGNEMAPHYCEAE									
Closterium aciculare West	0	16	0	0	0	0	0	0	0
Spyrogyra spp	0	0	0	0	0	8	0	0	0
Staurastrum spp	0	0	0	0	31	0	0	0	0
Total	0	16	0	0	31	8	0	0	0

PROGRAMAS DE MONITORAMENTO DA UHE SIMPLÍCIO – QUEDA ÚNICA

Fitoplâncton - Táxons Dezembro 2017	PRB 40	PRB 70	ARE 30	ARE 25	ARE 20	ARE 10	LOU 30	LOU 25	LOU 10
CHLOROPHYCEAE						•			
Actinastrum hantzschii (Lager.)	8	0	15	16	0	0	0	15	0
Ankistrodesmus fusiformis Corda sensu Kors.	0	0	0	8	0	0	0	0	0
Schroederia judayi Smith	55	0	0	24	0	0	0	23	0
Botryococcus braunii Kütz.	0	0	0	0	0	0	0	0	10
Carteria sp	0	0	0	126	0	0	0	0	0
Chlamydomonas spp	39	0	0	16	0	0	8	0	5
Closteriopsis acicularis (Sm.)	0	0	7	8	47	0	0	15	0
Coelastrum cambricum Archer	0	0	0	16	0	0	0	15	5
Coelastrum microporum Näg.	0	16	0	0	0	0	0	0	0
Coelastrum reticulatum Dang.	0	0	0	385	620	0	0	0	10
Crucigenia quadrata Morren	0	0	0	8	8	0	0	8	26
Dictyosphaerium ehrenbergianum Nägaeli	0	0	0	118	0	0	8	15	0
Dictyosphaerium pulchellum Wood	16	0	7	86	0	0	8	0	0
Dictyosphaerium sp	0	0	0	0	24	0	0	15	0
Elakatotrhix gelatinosa Wille	0	0	0	24	39	0	0	8	21
Eudorina elegans Ehr.	39	0	0	0	0	0	0	0	0
Eutetramorus fottii (Hind.) Kom.	0	0	0	188	613	0	0	31	37
Kircheneriella lunaris (Kirch.) Möb.	0	0	0	0	0	0	0	15	0
Micractinium bornhemiense (W. Conrad) Kors.	0	0	0	0	0	0	8	0	0
Monoraphidium contortum (Thuret) KomLeg.	16	0	0	0	0	0	0	15	0
Nephrocytium agardhianum Näg.	0	0	0	448	730	0	0	38	0
Nephrocytium lunatum West	0	0	0	126	94	0	0	0	0
Oocystis borgei Snow	0	0	0	24	0	0	0	0	0
Oocystis lacustris Chodat	0	0	7	16	0	0	0	0	0
Oocystis pusilla Hangs.	0	0	0	24	8	0	0	0	0

PROGRAMAS DE MONITORAMENTO DA UHE SIMPLÍCIO – QUEDA ÚNICA

Fitoplâncton - Táxons Dezembro 2017	PRB 40	PRB 70	ARE 30	ARE 25	ARE 20	ARE 10	LOU 30	LOU 25	LOU 10
Pandorina morum (Müll.) Bory	0	8	0	0	0	0	38	0	0
Pleodorina sp	0	0	0	0	0	0	15	0	0
Quadrigula lacustris (Chod.) Smith	0	0	0	0	0	0	0	0	52
Scenedesmus acuminatus (Lag.) Chod.	0	0	0	0	0	0	0	0	5
Scenedesmus arcuatus (Lemm.) Lemm.	0	0	15	0	0	0	0	0	0
Scenedesmus bijugus (Turp.) Kütz.	0	0	0	0	0	0	0	15	0
Scenedesmus ecornis Chodat	0	8	0	0	0	0	8	0	0
S. quadricauda (Turp.) Bred. sensu Chod.	0	8	0	0	0	0	8	0	0
Schroederia setigera (Schr.) Lemm.	16	0	0	31	0	0	0	0	0
Tetraedron caudatum (Corda) Hans.	0	8	0	0	0	0	0	0	0
Tetraedron gracile (Reinsch) Hans.	0	0	0	0	8	0	0	0	0
Volvox aureus Ehr.	86	0	0	0	0	0	0	0	0
Total	275	47	51	1.689	2.191	0	100	230	173
CYANOPHYCEAE									
Anabaena spiroides Kleb.	71	39	132	16	0	0	199	23	0
Aphanizomenon sp	16	0	44	8	0	0	0	31	0
Aphanocapsa elachista West & West	0	8	0	0	0	0	0	0	0
Cylindropermopsis raciborskii (Wol.) See. & Raju	16	8	66	0	0	0	23	15	0
Chroococcus limneticus Lemm.	0	8	0	0	0	0	0	0	0
Chroococcus sp	0	8	7	0	0	0	0	0	0
Microcystis aeruginosa (Kütz.) Kütz.	0	8	117	0	0	0	23	0	0
Microcystis wesenbergii (Kom.) Kom.	16	24	0	0	0	0	77	0	0
Oscillatoria spp	0	0	0	0	0	0	0	8	0
Planktothrix cf. agardhii (Gom.) Anag. and Kom.	0	0	0	16	0	0	0	0	0
Total	118	102	365	39	0	0	322	77	0

CRYPTOPHYCEAE

PROGRAMAS DE MONITORAMENTO DA UHE SIMPLÍCIO – QUEDA ÚNICA

Fitoplâncton - Táxons Dezembro 2017	PRB 40	PRB 70	ARE 30	ARE 25	ARE 20	ARE 10	LOU 30	LOU 25	LOU 10
Chroomonas acuta Utermöhl	0	0	0	0	0	0	0	23	0
Chroomonas spp	408	275	314	188	0	196	230	291	199
Cryptomonas marsonii Skuja	8	8	0	0	0	0	31	0	0
Cryptomonas ovata Ehr.	291	16	44	39	0	8	23	169	5
Cryptomonas pyrenoidifera Geitler	39	0	0	0	0	0	0	0	0
Cryptomonas sp	817	456	482	298	0	298	429	506	298
Total	1.563	754	840	526	0	503	713	988	503
EUGLENOPHYCEAE									
Euglena spp	0	0	0	8	0	0	0	0	5
Lepocinclis ovum (Ehren.) Lemm.	0	0	0	0	8	0	0	0	0
Lepocinclis sp	0	0	0	0	8	0	0	0	0
Trachelomonas volvocina Ehr.	0	16	0	47	63	0	15	0	0
Trachelomonas sp	8	8	0	47	31	0	0	0	10
Total	8	24	0	102	110	0	15	0	16
CHRYSOPHYCEAE									
Dinobryon bavaricum (Scütt) Lemm.	0	0	0	71	275	0	0	8	0
Dinobryon sertularia Ehr.	0	0	0	31	0	0	0	0	0
Mallomonas sp	0	0	15	0	0	0	8	8	5
Total	0	0	15	102	275	0	8	15	5
DINOPHYCEAE									
Ceratium cf. furcoides (Levander) Langhans	0	0	0	0	0	0	31	0	0
Peridinium sp	0	0	0	16	0	0	15	0	0
Total	0	0	0	16	0	0	46	0	0
DENSIDADE TOTAL (ind./mL)	2.018	990	1.308	2.513	2.694	636	1.280	1.326	696
Riqueza de gêneros	85	77	63	73	76	66	77	92	65
Índice de diversidade de Shannon	2,82	2,61	2,80	4,00	2,80	2,30	3,21	3,06	2,47

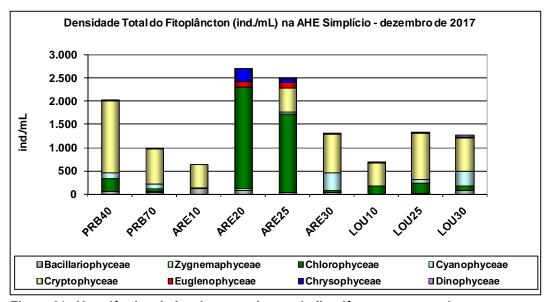


Figura 31. Abundância relativa dos organismos do fitoplâncton encontrados nos pontos de amostragem na área de influência do AHE Simplício – Queda Única (Dezembro/2017).

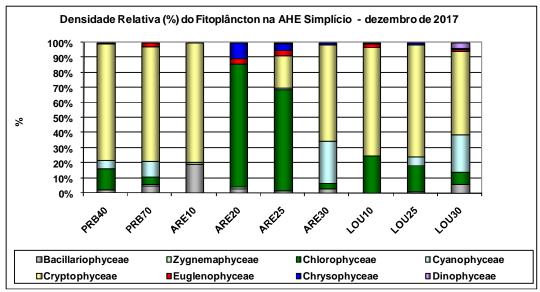


Figura 32. Densidade total dos organismos do fitoplâncton encontrados nos pontos de amostragem na área de influência do AHE Simplício – Queda Única (Dezembro/2017).

Também foi avaliada a densidade de cianobactérias nos pontos amostrados em dezembro de 2017. As maiores densidades foram observadas no ponto ARE 30 com 365,3 células/mL, e no ponto LOU 30 com 321,8

células/mL. Nos pontos de amostragem no rio Paraíba do Sul, as densidades foram muito baixas, assim como nos demais pontos localizados nos tributários (Figura 33). Portanto, as densidades de cianobactérias observadas em todos os pontos estiveram sempre em conformidade com os valores de enquadramento para águas doces de Classe 2 da Resolução CONAMA 357/2005.

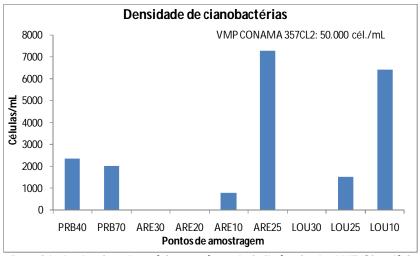


Figura 33. Densidade de cianobactérias na área de influência do AHE Simplício – Queda Única

6.11.2. Comunidade de Zooplâncton

Na campanha realizada em dezembro de 2017 foram identificados 6grupos de organismos zooplanctônicos com 43 táxons identificados (Tabela 22). Os Rotifera foram os organismos mais abundantes, seguidos dos Copepoda Calanoida. As espécies mais representativas foram *Conochilus coenobasis, Conochilus unicornis, Polyarthra vulgaris, Brachionus dolabratus,* Copepodito de Calanoida, nauplio de Calanoida (Figura 34). De uma forma geral, os organismos zooplanctônicos estiveram em maior abundância nos tributários, sendo que poucos organismos foram registrados nos pontos localizados no rio Paraíba do Sul, com exceção do ponto de reservatório, o PRB 40. As menores densidades de organismos zooplanctônicos foram

observadas no rio Paraíba do Sul (PRB 70) e no corpo principal do reservatório Louriçal (Figura 35), o que pode estar relacionado com a correnteza dos locais de coleta e, no caso do reservatório, com predação por parte de peixes e larvas.

Tabela 22. Densidade (org/m³) dos táxons do zooplâncton registrados no rio Paraíba do Sul e tributários no Programa de Monitoramento Limnológico e da Qualidade da Água na área de influência do AHE Simplício (Dezembro/2017)

Quandade da Agua na	a ai ca u	c iiiiiuc	,,,oia c		Ompile	,,0 (502		<i>312</i> 011 <i>)</i>	
Zooplâncton - táxons Dezembro 2017	PRB 40	PRB 70	ARE 30	ARE 25	ARE 20	ARE 10	LOU 30	LOU 25	LOU 10
ROTIFERA									
Ascomorpha ecaudis	0	0	121	141	265	0	0	168	0
Asplanchna sieboldi	283	0	24	0	0	0	0	21	0
Bdelloidea	0	463	73	0	0	0	0	42	352
Brachionus sp.	0	0	146	0	0	0	0	42	0
Brachionus caudatus	141	0	0	0	0	0	36	0	0
Brachionus dolabratus	0	0	0	453	11052	0	0	21	0
Brachionus falcatus	1132	0	97	28	0	0	18	232	0
Collotheca sp.	0	0	0	0	1149	0	0	21	0
Conochilus coenobasis	6649	0	49	255	0	0	54	84	0
Conochilus unicornis	5659	0	558	1896	0	0	397	1979	0
Dipleuchlanis propatula	0	0	0	0	0	0	0	0	39
Filinia limnetica	141	0	0	0	0	0	0	0	0
Hexarthra intermedia	566	0	0	113	0	0	0	0	0
Keratella cochlearis	141	0	73	566	0	0	0	21	0
Keratella lenzi	141	0	0	28	0	0	0	0	0
Keratella tropica	0	0	0	28	0	0	0	0	0
Lecane bulla	141	0	0	0	0	0	18	0	0
Lecane leontina	0	0	0	28	0	0	0	0	0
Lecane papuana	0	0	0	0	0	0	0	0	78
Platyias quadricornis	0	0	0	0	0	0	0	0	39
Polyarthra vulgaris	1839	93	2110	2094	0	0	18	3642	0
Trichocerca cylindrica chattoni	0	0	0	0	0	0	0	21	0
Total	16835	556	3250	5631	12467	0	541	6295	508
CLADOCERA									
Bosmina hagmanni	990	0	71	627	0	0	37	172	0
Bosminopsis deitersi	5234	0	156	215	0	213	104	80	0
Ceriodaphnia cornuta	990	0	0	0	0	0	0	11	0
Ceriodaphnia sivestrii	0	0	85	1089	3183	0	15	46	68
Daphnia guessneri	2546	93	184	1007	0	0	97	241	456
Diaphanosoma brevireme	849	0	0	17	0	0	0	0	0
Diaphanosoma polyspina	0	0	0	0	0	0	0	0	68
Diaphanosoma spinulosum	0	0	0	0	0	0	15	0	0
llyocryptus spinifer	0	0	0	0	0	0	7	0	0
Moina minuta	8913	0	57	264	0	0	45	195	0
Moina micrura	7922	0	0	0	0	0	30	149	0

Zooplâncton - táxons Dezembro 2017	PRB 40	PRB 70	ARE 30	ARE 25	ARE 20	ARE 10	LOU 30	LOU 25	LOU 10
Total	27445	93	552	3218	3183	213	349	896	593
COPEPODA									
Cyclopoida									
Adulto de cyclopoida	283	0	28	429	442	0	52	23	23
Copepodito de cyclopoida	4103	0	269	1254	2210	426	193	276	433
Nauplio de cyclopoida	2688	0	146	2886	4509	0	18	611	664
Total Cyclopoida	7074	0	443	4570	7162	426	263	909	1120
Calanoida			I	·	·	·			
Adulto de Calanoida	1698	0	71	0	0	213	401	92	410
Copepodito de calanoida	11742	0	382	231	133	0	409	207	2348
Nauplio de calanoida	5517	0	291	368	531	0	271	611	1563
Total Calanoida	18957	0	744	599	663	213	1081	909	4321
Total	26031	0	1186	5168	7825	640	1344	1818	5441
PROTOZOARIA			•						
Arcella sp.	0	0	0	0	0	1036	0	0	78
Centorpyxis aculeata	0	463	0	0	88	3625	0	0	0
Total	0	463	0	0	88	4661	0	0	78
OUTROS ORGANISMOS									
Larva de inseto	424	0	0	17	44	7250	0	0	23
Ostracoda	0	0	28	50	221	213	0	0	0
Total	424	0	28	66	265	7463	0	0	23
DENSIDADE TOTAL (ind/m³)	70736	1111	5016	14083	23829	12977	2234	9008	6642
Riqueza de gêneros	25	4	21	24	12	7	20	25	15
Índice de diversidade de Shannon	2,63	1,15	2,22	2,51	1,62	1,20	2,36	2,05	1,93

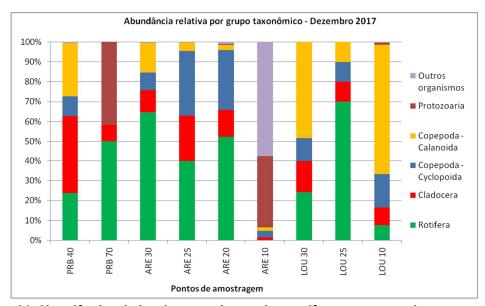


Figura 34. Abundância relativa dos organismos do zooplâncton encontrados nos pontos de amostragem na área de influência do AHE Simplício – Queda Única (Dezembro/2017)

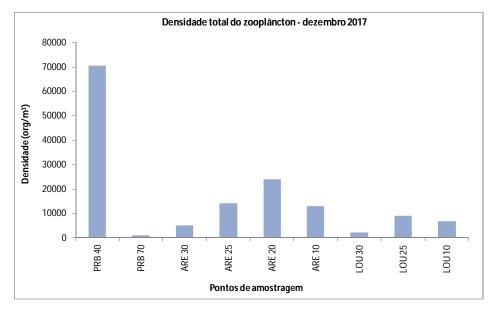


Figura 35. Densidade dos organismos do zooplâncton (org/m³) encontrados nos pontos de amostragem na área de influência do AHE Simplício – Queda Única (Dezembro/2017)

6.11.3. Amostragens mensais no reservatório de Louriçal e no Trecho de Vazão Reduzida

Nas Tabelas 23 e 24 se encontram em destaque algumas das variáveis monitoradas mensalmente no reservatório Louriçal e no Trecho de Vazão Reduzida. As mesmas já se encontram discutidas ao longo do presente relatório.

PROGRAMAS DE MONITORAMENTO DA UHE SIMPLÍCIO – QUEDA ÚNICA

Tabela 23. Parâmetros coletados mensalmente nos pontos de monitoramento do reservatório Louriçal – campanha de dezembro de 2017

PARÂMETRO	Unidade	VMP	LOU10	LOU20	LOU25	LOU30 (S)	LOU30 (F)	ARE10	ARE20	ARE25	ARE30
Data			28/12/2017	28/12/2017	28/12/2017	28/12/2017	28/12/2017	28/12/2017	28/12/2017	28/12/2017	28/12/2017
Hora			11:54	n.c.	14:40	15:10	15:40	09:52	10:43	16:20	15:55
Matriz			água bruta	n.c.	água bruta						
Profundidade	m	n.a.	0,2	n.c.	0,2	0,2	11,0	0,2	0,2	0,2	0,2
Oxigênio dissolvido (ac)	mg/L	> 5,0	4,07	n.c.	6,06	6,98	4,90	6,48	5,01	7,50	7,40
pH (ac)	-	6,0 - 9,0	6,38	n.c.	6,26	6,27	6,47	7,26	6,82	7,57	6,29
Nitrogênio total	mg/L	n.a.	1,02	n.c.	1,32	1,37	2,17	1,85	1,58	1,19	1,33
Fósforo total	mg/L	*	0,04	n.c.	0,00	0,00	0,00	0,00	0,00	0,00	0,15
Ortofosfato	μg/L	n.a.	0,10	n.c.	0,26	0,19	0,19	0,00	0,10	0,00	0,05
Cianobactérias	ind/mL	50.000	0	n.c.	77	322	n.a.	0	0	39	365

Legenda: VMP: Valor Máximo Permitido pela legislação CONAMA 357/2005 para águas doces Classe 2; n.a.: não se aplica; n.c.: não coletado; *: até 0,03 mg/L para ambientes lênticos; até 0,05 mg/L para ambientes intermediários, com tempo de residência entre 2 e 40 dias, e tributários diretos de ambientes lênticos; até 0,10 mg/L para ambientes lóticos; VA.: virtualmente ausente. S: superfície; M: meio; F: fundo.

PROGRAMAS DE MONITORAMENTO DA UHE SIMPLÍCIO – QUEDA ÚNICA

Tabela 24. Parâmetros coletados mensalmente nos pontos de monitoramento do Trecho de Vazão Reduzida – campanha de dezembro de 2017

PARÂMETRO	Unidade	VMP	PRB40-S	PRB40-M	PRB40-F	PRB50	PRB60	PRB70	PRBCEDAE	PRB80	PRB90	PRB100
Data			27/12/2017	27/12/2017	27/12/2017	27/12/2017	27/12/2017	27/12/2017	27/12/2017	27/12/2017	27/12/2017	27/12/2017
Hora			16:10	16:40	16:26	18:40	14:27	13:56	12:17	11:46	10:57	10:20
Profundidade	m	n.a.	0,2	9,0	17,0	0,2	0,2	0,2	0,2	0,2	0,2	0,2
Temp. Amostra	°C	n.a.	32,1	28,9	27,5	27,4	30,4	31,2	28,9	28,7	28,4	28,6
Turbidez	NTU	100	1,18	0,48	1,10	2,40	1,02	2,01	2,00	5,04	6,49	10,60
Oxigênio dissolvido	mg/L	> 5,0	5,80	5,10	3,56	6,80	7,56	7,06	8,10	8,90	8,74	7,41
Condutividade elétrica	μS/cm	n.a.	76,60	69,90	68,20	79,90	77,70	79,00	68,20	68,40	68,10	65,90
рН	-	6,0 - 9,0	7,74	7,23	6,88	6,96	6,86	6,97	6,65	6,51	6,60	6,68
DBO	mg/L	5	0,00	0,00	0,00	0,00	0,00	0,00	57,60	25,35	0,00	0,00
Coliformes totais	NMP/100mL	n.a.	410,60	866,40	1299,70	980,40	488,40	224,70	1986,30	2500,00	1203,30	2419,60
E. coli	NMP/100mL	1000	19,70	77,30	225,40	24,60	27,20	30,80	80,20	146,40	272,30	260,30
Nitrogênio total	mg/L	n.a.	1,64	1,24	1,45	n.a.	n.a.	1,61	n.a.	n.a.	n.a.	n.a.
Amônia	mg/L		0,00	0,00	0,00	n.a.	n.a.	0,00	n.a.	n.a.	n.a.	n.a.
Nitrato	mg/L	10	1,52	1,16	1,23	n.a.	n.a.	1,53	n.a.	n.a.	n.a.	n.a.
Fósforo total	mg/L	*	0,00	0,04	0,03	n.a.	n.a.	0,04	n.a.	n.a.	n.a.	n.a.
Ortofosfato	μg/L	n.a.	0,00	0,21	0,29	n.a.	n.a.	0,26	n.a.	n.a.	n.a.	n.a.
Clorofila-a	μg/L	30	8,35	n.a.	n.a.	n.a.	n.a.	0,00	n.a.	n.a.	n.a.	n.a.

Legenda: VMP: Valor Máximo Permitido pela legislação CONAMA 357/2005 para águas doces Classe 2; n.a.: não se aplica; n.c.: não coletado; *: até 0,03 mg/L para ambientes lênticos; até 0,05 mg/L para ambientes intermediários, com tempo de residência entre 2 e 40 dias, e tributários diretos de ambientes lênticos; até 0,10 mg/L para ambientes lóticos; VA.: virtualmente ausente. S: superfície; M: meio; F: fundo.

7. CONSIDERAÇÕES FINAIS

Os resultados da campanha realizada em dezembro de 2017 no AHE Simplício-Queda Única apresentam um diagnóstico preliminar desses corpos hídricos no período estudado.

- Foi observada, em geral, boa oxigenação nas águas do rio Paraíba do Sul e tributários em todos dos pontos avaliados, mesmo nas camadas mais profundas;
- As concentrações de nutrientes nitrogenados como o nitrato estiveram dentro dos limites preconizados na legislação. Foram observados valores de fósforo total em não conformidade com a legislação em dois pontos, no reservatório de Anta, no meio (PRB 40-M) e no ponto ARE 30 no reservatório de Louriçal, onde chegam as águas do rio Paraíba do Sul. A presença de fósforo na água pode ser proveniente de fontes difusas, como uma maior concentração de material particulado na superfície do reservatório;
- Foram observadas algumas inconformidades em relação ao alumínio dissolvido e ferro dissolvido, que podem estar relacionadas às características geológicas da bacia do rio Paraíba do Sul e de seus tributários;
- As concentrações de DBO observadas nos pontos do Trecho de Vazão Reduzida não são compatíveis com a série histórica do local e os mesmos ficarão sob observação nos próximos monitoramentos para determinar se o fato ocorrido foi pontual.
- A comunidade fitoplanctônica foi constituída por 205 táxons (Tabela 22), distribuídos entre as classes Bacillariophyceae (68 táxons), Zygnemaphyceae (29 táxons), Chlorophyceae (57 táxons), Oedogoniophyceae (1), Cyanophyceae (21 táxons), Cryptophyceae (6 táxons), Euglenophyceae (15 táxons), Chrysophyceae (4 táxons), Dinophyceae (3 táxons) e Xanthophyceae (1 táxon). Em termos de abundância relativa, a classe Cryptophyceae foi

dominante na maioria dos pontos monitorados, com exceção dos pontos ARE 20 e ARE 25 onde a classe dominante foi Chlorophyceae. A espécie mais abundante foi *Cryptomonas* sp.

- As maiores densidades de cianobactérias foram observadas no ponto ARE 30 com 365,3 células/mL, e todos os pontos amostrados se encontravam em conformidade com os valores de enquadramento para águas doces de Classe 2 da Resolução Conama 357/2005.
- Foram identificados 6 grupos de organismos zooplanctônicos com 43 táxons identificados. Os Rotifera foram os organismos mais abundantes, seguidos dos Copepoda Calanoida. As espécies mais representativas foram Conochilus coenobasis, Conochilus unicornis, Polyarthra vulgaris, Brachionus dolabratus, Copepodito de Calanoida, nauplio de Calanoida.
- De uma forma geral, pode-se concluir que a qualidade ambiental do sistema AHE Simplício-Queda Única, nesta primeira campanha de avaliação, foi boa.

8. REFERÊNCIAS BIBLIOGRÁFICAS

APHA Standard Methods for the Examination of Water and Wastewater 22ed. 2012.

BRANCO, S. M. Hidrobiologia Aplicada À Engenharia Sanitária. 3ª Ed. São Paulo, CETESB/ASCETESB, 640p. 1978.

CETESB/ANA. Guia nacional de coleta e preservação de amostras: água, sedimento, comunidades aquáticas e efluentes líquidos. Companhia Ambiental do Estado de São Paulo; Organizadores: Carlos de Jesus Brandão...[et al.] São Paulo: CETESB; Brasília: ANA, 2011. 326 p.

CONAMA, Resolução. 357/2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências, 2005.

EL MOOR-LOUREIRO, L.M.A. *Manual de identificação de cladóceros límnicos do Brasil.* Editora Universa - UCB, 1997.

ESTEVES, F.A. Fundamentos de Limnologia. Rio de Janeiro: Interciência, 2011

HANEY, J.F. and HALL, D.J. Sugar-coated Daphnia: a preservation technique for Cladocerans. Limnology and Oceanography, 18(2), 331-333. 1973.

KALFF, J. Limnology. New Jersey: Prentice Hall, 2002.

KOSTE, W. Rotatoria. Die Radertiere Mittleuropas. Bestimmungswerk begrundet von Max Voit. Uberordnung Monogononta. vol 1-2, 643 p + 234 p, 1978.

STRASKRABA, M.; TUNDISI, J.G. Diretrizes para o Gerenciamento de Lagos: Gerenciamento da Qualidade da Água de Represas. São Carlos, SP, Brasil: ILEC, IIE, 2ª ed., v.9, 2008.

THOMAZ, S. M., ROBERTO, M.C. & BINI, L.M., Limnologia do reservatório de Segredo: padrões de variação espacial e temporal. In: AGOSTINHO, A.A. &

GOMES, L.C. (Eds.). Reservatório de Segredo: bases ecológicas para o manejo. Maringá: EDUEM, p. 19-37. 1997.

TUNDISI, J. G., MATSUMARA-TUNDISI, T. & CALIJURI, M.C. Limnology an management of reservoirs in Brazil. In: Straskraba, M., Tundisi, J.G. & Duncan, A. (eds.). Comparative reservoir limnology and water quality management. Kluwer Academic Publishers: Dordrecht. pp. 25-55. 1993.

UHELINGER, V., Étude statistique des methods de dénombrement planctonique. Arch. Sci., 17(2): 121-223. 1964.

WETZEL, R. G., LINKENS, G.E. Limnological analyses. New York: Springer-Verlag. 2002.

- 9. ANEXOS
- 9.1. Relatórios de Ensaios

Corius Sidogis

Corina V. Sidagis Galli – 086833/01-D CTF 3781165