Relatório da 19^a Campanha de Limnologia (Campanha Louriçal 19)

AHE - SIMPLÍCIO

Equipe:

Revisão 00 SETEMBRO/2014

SUMÁRIO

l -	INTRODUÇAO1
II -	OBJETIVO2
III -	CRONOGRAMA DE EXECUÇÃO
IV -	ÁREA DE ESTUDO6
IV.	1 - PRB 108
IV.	2 - PRB 209
IV.	3 - PRB 309
IV.	4 - PRB 4010
IV.	5 - PRB 5011
IV.	6 - PRB 6012
IV.	7 - PRB 7013
IV.	8 - PRB CEDAE14
IV.	9 - PRB 8015
IV.	10 - PRB 90
IV.	11 - PRB 100
IV.	12 - PRB 110
IV.	13 - TOC 10
IV.	14 - TOC 20
IV.	15 - ARE 1021
IV.	16 - ARE 20
IV.	17 - ARE 2522
IV.	18 - ARE 3023
IV.	19 - LOU 1024
IV.	20 - LOU 20
IV.	21 - LOU 25
IV.	22 - LOU 30
IV.	23 - CAL 20
IV.	24 - PRT 10
IV.	25 - PRT 20

IV.26 - PXE 10	29
IV.27 - PIA 10	30
IV.28 - PBU 10	
IV.29 - CNL 10	32
IV.30 - ANT 10	33
IV.31 - MCO 10	33
IV.32 - MCO 20	34
V - METODOLOGIA	35
V.1 - Metodologia de Campo	
V.2 - Metodologia Analítica	
VI - RESULTADOS	
VI.1 - Resultados Físico-Químicos e Bacteriológicos:	
VI.2 - Resultados Biológicos:	
VII - GRÁFICOS E DISCUSSÃO	
VII.1 - Temperatura Ambiente e da Água	
VII.2 - Transparência	
VII.3 - Turbidez	
VII.4 - Série de Sólidos	
VII.5 - Condutividade Elétrica	
VII.6 - pH	75
VII.7 - Oxigênio Dissolvido - OD	77
VII.8 - Demanda Bioquímica de Oxigênio - DBO	78
VII.9 - Demanda Química de Oxigênio - DQO	79
VII.10 - Parâmetros de Tamponamento (Alcalinidade Total)	81
VII.11 - Cálcio, Magnésio, Sódio, Potássio, Cloretos e Sulfato	82
VII.12 - Série Nitrogenada (Nitrato, Nitrogênio Amoniacal e Nitro	gênio
Total)	89
VII.13 - Formas Fosfatadas (Fósforo Total e Ortofosfato)	92
VII.14 - Sílica	
VII.15 - Fenóis	96
VII.16 - Óleos e Graxas	98
VII.17 - Cianetos	
VII.18 - Elementos de Traço – (Ferro total, Ferro dissolvido, Mang	anês,
Chumbo, Zinco, Cádmio, Cobre, Cromo hexavalente, Mercúrio e Alum	ıínio).
VII.19 - Clorofila-α	106
VII.20 - Perfil da Coluna D'Água	108
VII.21 - Coliformes Totais e Termotolerantes	
VII.22 - Fitoplâncton	120
VII.23 - Zooplâncton	

VIII - CONSIDERAÇÕES FINAIS13
IX - EQUIPE TÉCNICA13
X - REFERÊNCIAS BIBLIOGRÁFICAS13
XI - ANEXO I – LAUDOS ANALÍTICOS14
LISTA DE FIGURAS
Figura IV-1 – Imagem do complexo da AHE - Simplício
FiguralV-2 - Diagrama dos pontos de amostragem de Simplício7
Figura IV-3 – Estação PRB 10, no rio Paraíba do Sul, a montante do encontro dos três rios
Figura IV-4 – Estação PRB 20, no rio Paraíba do Sul, a montante do reservatório da AHE Anta.
Figura IV-5 – Estação PRB 30, no rio Paraíba do Sul, área de abrangência do reservatório da AHE Anta10
Figura IV-6 – Estação PRB 40, no rio Paraíba do Sul, a montante da barragem da AHE Anta.
Figura IV-7 – Estação PRB 50, no rio Paraíba do Sul, a montante do distrito de Anta/RJ
Figura IV-8 – Estação PRB 60, no rio Paraíba do Sul, a jusante do distrito de Anta/RJ
Figura IV-9 – Estação PRB 70, no rio Paraíba do Sul, a montante da cidade de Sapucaia/RJ14
Figura IV-10 – Estação PRB CEDAE, no rio Paraíba do Sul, estação de captação de água da cidade de Sapucaia/RJ
Figura IV-11 – Estação PRB 80, no rio Paraíba do Sul, cidade de Sapucaia/RJ 16
Figura IV-12 – Estação PRB 90, no rio Paraíba do Sul, a montante do canal de fuga da AHE - Simplício
Figura IV-13 – Estação PRB 100, no rio Paraíba do Sul, a jusante do canal de fuga da AHE - Simplício
Figura IV-14 – Estação PRB 110, no rio Paraíba do Sul, a montante do município de Além Paraíba19
Figura IV-15 – Estação TOC 10, no córrego Tocaia, a montante do reservatório

Figura IV-16 – Estação TOC 20 reservatório Tocaia.	. 21
Figura IV-17 – Estação ARE 10, montante do reservatório de Louriçal	. 21
Figura IV-18 – Estação ARE 20, montante do Dique Alga1 - reservatório Louriçal	
Figura IV-19 – Estação ARE 25, jusante do Dique Alga1 - reservatório de Louri	
Figura IV-20 – Estação ARE 30, a montante do Dique Louriçal - reservatório Louriçal.	
Figura IV-21 – Estação LOU 10, a montante do reservatório de Louriçal	. 25
Figura IV-22 – Estação LOU 20, a montante do Dique Alga2 - reservatório Louriçal	
Figura IV-23 – Estação LOU 25, a jusante do Dique Alga2 - reservatório Louriçal.	
Figura IV-24 – Estação LOU 30, no Canal Área 5 - reservatório de Louriçal	. 27
Figura IV-25 – Estação CAL 20, reservatório de Calçado	. 27
Figura IV-26 – Estação PTR 10, córrego do Prata	. 28
Figura IV-27 – Estação PTR 20, córrego do Prata	. 29
Figura IV-28 – Estação PXE 10, Ribeirão do Peixe.	. 30
Figura IV-29 – Estação PIA 10, Rio Piabanha	. 31
Figura IV-30 – Estação PBU 10, Rio Paraibuna	. 32
Figura IV-31 – Estação CNL 10, Canal entre os Reservatórios de Anta e Tocaia	. 32
Figura IV-32 – Estação ANT 10, Reservatório de Antonina.	. 33
Figura IV-33 – Estação MCO 10, Rio Macuco.	. 34
Figura IV-34 – Estação MCO 20, Rio Macuco.	. 35
Figura VII-1 - Resultados da Temperatura da Água – Paraíba do Sul	. 68
Figura VII-2 - Resultados da Temperatura da Água - Tributários	. 68
Figura VII-3 - Resultados da Temperatura Ambiente – Rio Paraíba do Sul	. 69
Figura VII-4 - Resultados da Temperatura Ambiente - Tributários	. 69
Figura VII-5 - Resultados de Transparência da coluna d'água – Rio Paraíba do	Sul

70
Figura VII-6 - Resultados de Transparência da coluna d'água - Tributários 70
Figura VII-7 - Resultados de Turbidez – Rio Paraíba do Sul71
Figura VII-8 - Resultados de Turbidez - Tributários71
Figura VII-9 - Resultados de Sólidos Suspensos Fixos – Rio Paraíba do Sul 72
Figura VII-10 - Resultados de Sólidos Suspensos Fixos - Tributários73
Figura VII-11 - Resultados de Sólidos Suspensos Voláteis - Rio Paraíba do Sul73
Figura VII-12 - Resultados de Sólidos Suspensos Voláteis - Tributários74
Figura VII-13 - Resultados de Condutividade Elétrica – Rio Paraíba do Sul 75
Figura VII-14 - Resultados de Condutividade Elétrica - Tributários75
Figura VII-15 - Resultados de pH – Rio Paraíba do Sul76
Figura VII-16 - Resultados de pH - Tributários
Figura VII-17 - Resultados de OD – Rio Paraíba do Sul77
Figura VII-18 - Resultados de OD - Tributários78
Figura VII-19 - Resultados da Demanda Bioquímica de Oxigênio - DBO - Rio Paraíba do Sul79
Figura VII-20 - Resultados da Demanda Bioquímica de Oxigênio – DBO - Tributários79
Figura VII-21 - Resultados da Demanda Química de Oxigênio – DQO – Rio Paraíba do Sul80
Figura VII-22 - Resultados da Demanda Química de Oxigênio – DQO - Tributários80
Figura VII-23 - Resultados da Alcalinidade Total – Rio Paraíba do Sul 81
Figura VII-24 - Resultados da Alcalinidade Total - Tributários 82
Figura VII-25 - Resultados de Cálcio - Rio Paraíba do Sul
Figura VII-26 - Resultados de Cálcio - Tributários 83
Figura VII-27 - Resultados de Magnésio – Rio Paraíba do Sul84
Figura VII-28 - Resultados de Magnésio - Tributários84
Figura VII-29 - Resultados de Sódio – Rio Paraíba do Sul

Figura VII-30 - Resultados de Sódio - Tributários	85
Figura VII-31 - Resultados de Potássio – Rio Paraíba do Sul	86
Figura VII-32 - Resultados de Potássio - Tributários	86
Figura VII-33 - Resultados de Teor de Cloretos – Rio Paraíba do Sul	87
Figura VII-34 - Resultados de Teor de Cloretos - Tributários	87
Figura VII-35 - Resultados de Sulfato – Rio Paraíba do Sul	88
Figura VII-36 - Resultados de Sulfato - Tributários	88
Figura VII-37 - Resultados de Nitrato – Rio Paraíba do Sul	89
Figura VII-38 - Resultados de Nitrato - Tributários	90
Figura VII-39 - Resultados de Nitrogênio Amoniacal – Rio Paraíba do Sul	90
Figura VII-40 - Resultados de Nitrogênio Amoniacal - Tributários	91
Figura VII-41 - Resultados de Nitrogênio Total – Rio Paraíba do Sul	92
Figura VII-42 - Resultados de Nitrogênio Total - Tributários	92
Figura VII-43 - Resultado de Fósforo Total – Rio Paraíba do Sul	93
Figura VII-44 - Resultado de Fósforo Total - Tributários	94
Figura VII-45 - Resultado de Ortofosfato – Rio Paraíba do Sul	95
Figura VII-46 - Resultado de Ortofosfato - Tributários	95
Figura VII-47 - Resultados de Sílica – Rio Paraíba do Sul	96
Figura VII-48 - Resultados de Sílica - Tributários	96
Figura VII-49 - Resultados de Fenóis – Rio Paraíba do Sul	97
Figura VII-50 - Resultados de Fenóis - Tributários	97
Figura VII-51 - Resultados de Ferro Total – Rio Paraíba do Sul	99
Figura VII-52 - Resultados de Ferro Total - Tributários	100
Figura VII-53 - Resultados de Ferro Dissolvido – Rio Paraíba do Sul	100
Figura VII-54 - Resultados de Ferro Dissolvido - Tributários	101
Figura VII-55 - Resultados de Manganês - Rio Paraíba do Sul	101

Figura VII-56 - Resultados de Manganês - Tributários	102
Figura VII-57 - Resultados de Chumbo – Rio Paraíba do Sul	102
Figura VII-58 - Resultados de Zinco – Rio Paraíba do Sul	103
Figura VII-59 - Resultados de Zinco - Tributários	103
Figura VII-60 - Resultados de Cobre – Rio Paraíba do Sul	104
Figura VII-61 - Resultados de Cobre - Tributários	104
Figura VII-62 - Resultados de Alumínio Total – Rio Paraíba do Sul	105
Figura VII-63 - Resultados de Alumínio Total - Tributários	105
Figura VII-64 - Resultados de Cádmio Total – Rio Paraíba do Sul	106
Figura VII-65 - Resultados de Clorofila-a – Rio Paraíba do Sul	107
Figura VII-66 - Resultados de Clorofila-a - Tributários	107
Figura VII-67 - Perfis ponto PRB 30	109
Figura VII-68 - Perfis ponto PRB 40	110
Figura VII-69 - Perfis ponto ARE 30	111
Figura VII-70 - Perfis ponto TOC 20	112
Figura VII-71 - Perfis ponto LOU 20	113
Figura VII-72 - Perfis ponto LOU 30	114
Figura VII-73 - Perfis ponto ANT 10	115
Figura VII-74 - Perfis ponto MCO 20	116
Figura VII-75 - Resultados de Coliformes Totais - Rio Paraíba do Sul	119
Figura VII-76 - Resultados de Coliformes Totais - Tributários	119
Figura VII-77 - Resultados de Coliformes Termotolerantes – Rio Paraíba do Su	ıl 120
Figura VII-78 - Resultados de Coliformes Termotolerantes - Tributários	120
Figura VII-79 – Riqueza de espécies – Fitoplâncton – Rio Paraíba do Sul	121
Figura VII-80 – Riqueza de espécies – Fitoplâncton - Tributários	121
Figura VII-81 – Porcentagem de contribuição, em número de táxon Fitoplâncton no rio Paraíba do Sul e Tributários.	s de 122

Figura VII-82 – Abundância de Fitoplâncton - Rio Paraíba do Sul	122
Figura VII-83 – Abundância de Fitoplâncton - Tributários.	123
Figura VII-84 – Abundância Relativa Fitoplanctônica – Rio Paraíba do Sul	123
Figura VII-85 – Abundância Relativa Fitoplanctônica - Tributários	124
Figura VII-86 – Densidade de Cianobactérias – Rio Paraíba do Sul	125
Figura VII-87 – Densidade de Cianobactérias - Tributários	125
Figura VII-88 – Riqueza de espécies – Zooplâncton – Rio Paraíba do Sul	126
Figura VII-89 – Riqueza de espécies – Zooplâncton - Tributários	126
Figura VII-90 – Porcentagem de contribuição, em número de táxons zooplâncton, no rio Paraíba do Sul e Tributários.	
Figura VII-91 – Abundância de Zooplâncton - Rio Paraíba do Sul	128
Figura VII-92 – Abundância de Zooplâncton - Tributários.	128
Figura VII-93 – Abundância Relativa de Zooplanctônica – Rio Paraíba do Sul	129
Figura VII-94 – Abundância Relativa de Zooplanctônica - Tributários	130
LISTA DE TABELAS	
Tabela V-1-Coordenadas e descrição das estações de coleta	36
Tabela V-2 - Parâmetros Físico-Químicos e Microbiológicos	38
Tabela VI-1 - Resultados do Rio Paraíba do Sul	40
Tabela VI-2 - Resultados Rio Paraíba do Sul (Continuação)	42
Tabela VI-3- Resultados dos Tributários	45
Tabela VI-4 - Resultados dos Tributários (continuação)	47
Tabela VI-5 - Resultados dos Tributários (continuação)	49
Tabela VI-6 - Resultados de Fitoplâncton – Rio Paraíba do Sul	53
Tabela VI-7 - Resultados de Fitoplâncton – Tributários	55
Tabela VI-8 - Resultados de Fitoplâncton – Tributários (continuação)	58
Tabola VI-0 - Posultados do Zoonlâncton — Pio Paraíba do Sul	60

Tabela VI-10 - Resultados de Zooplâncton – Tributários	62
Tabela VI-11 - Resultados de Zooplâncton – Tributários (continuação)	64
Tabela IX-1 - Equipe Técnica	135
A AQUALIT TECNOLOGIA EM SANEAMENTO LTDA - EPP, NÃO SE	
RESPONSABILIZA POR REPRODUÇÕES INTEGRAIS NÃO AUTORIZADA	S
DESTE DOCUMENTO. SUA REPRODUÇÃO PARCIAL É PROIBIDA.	

AS INFORMAÇÕES CONTIDAS NESTE RELATÓRIO TÊM VALIDADE RESTRITA ÀS AMOSTRAS ANALISADAS E ÀS CONDIÇÕES EM QUE OS ENSAIOS FORAM REALIZADOS.

I - INTRODUÇÃO

Este relatório consubstancia as atividades da 19ª campanha (campanha Louriçal + Bimestral + Trimestral + Pontos Relativos à Resolução ANA nº 713, de 11 de Junho de 2013 + Pontos extra do Ibama) realizado no mês de setembro de 2014, em atendimentos à empresa **FURNAS CENTRAIS ELÉTRICAS S.A.** na execução do monitoramento limnológico da AHE - Simplício.

O AHE Simplício está localizado entre as cidades de Três Rios (RJ) e Além Paraíba (MG). O sistema de reservatórios tem o rio Paraíba do Sul como corpo d'água principal, ao longo da divisa entre os dois estados. Esse rio nasce na serra da Bocaina, no estado de São Paulo, da confluência dos rios Paraitinga e Paraibuna. A bacia do rio Paraíba do Sul estende-se pelo território de três estados, São Paulo, Rio de Janeiro e Minas Gerais, e é considerada, em superfície, uma das três maiores bacias hidrográficas secundárias do Brasil, abrangendo uma área aproximada de 57.000 km². A bacia é limitada, ao norte, pelas serras da Mantiqueira, Caparaó e Santo Eduardo, ao sul, pela serra dos Órgãos e os trechos paulista e fluminense da Serra do Mar, que a separam das pequenas bacias independentes do litoral fluminenses e paulista, ao leste. A Oeste é limitada por áreas de altitudes pouco significativas nos arredores de Moji das Cruzes. A região do vale do Paraíba é caracterizada por um clima predominantemente tropical quente e úmido, com variações determinadas pelas diferenças de altitude e entradas de ventos marinhos.

A bacia do rio Paraíba do Sul encontra-se em território de Mata Atlântica completamente antrópico, com floresta original restrita a parques e reservas florestais. As principais atividades econômicas atualmente desenvolvidas na bacia são ligadas aos setores industrial e agropecuário, sendo o vale do Paraíba uma das maiores regiões industriais do país.

Na sua margem esquerda, os principais tributários do rio Paraíba do Sul são: Jaguari, Paraibuna, Pirapetinga, Pomba e Muriaé, enquanto que na margem direita os rios Una, Bananal, Piraí, Piabanha e Dois Rios são os principais afluentes. Os rios Piabanha e Paraibuna se unem ao rio Paraíba do Sul, no chamado encontro dos

três rios, a montante da área de instalação do AHE Simplício. O rio Piabanha nasce na Serra dos Órgãos, no município de Petrópolis (RJ) e percorre um percurso de 80 km, cruzando os municípios de Areal, Paraíba do Sul e Três Rios, antes de desaguar no rio Paraíba do Sul. A nascente do Paraibuna localiza-se no município de Antônio Carlos (MG). Esse rio recebe o mesmo nome daquele que dá origem ao rio Paraíba do Sul, no estado de São Paulo. Dentre os municípios banhados por este rio antes de desaguar no Paraíba do Sul, destaca-se Juiz de Fora (MG), importante pólo industrial do estado de Minas Gerais.

Desde sua nascente até sua foz em forma de delta em Atafona e São João da Barra, no norte fluminense, o rio Paraíba do Sul percorre um percurso total de 1120 km, passando por 180 municípios, sendo 53 no estado do Rio de Janeiro, 88 em Minas Gerais e 39 em São Paulo. Com uma população estimada em 5,5 milhões de habitantes e drenando uma das áreas mais desenvolvidas do país, a bacia do Paraíba do Sul constitui uma das principais bacias hidrográficas do Brasil.

II - OBJETIVO

Os Programas de Monitoramento Limnológico da AHE – Simplício tem como objetivo geral mensurar as condições limnológica, antevendo a implantação do empreendimento, e subsidiar a adoção de medidas de controle, caso sejam identificados problemas de qualidade de água.

Os objetivos específicos são:

- O detalhamento da dinâmica da estrutura térmica ao longo do corpo central dos reservatórios de Anta e do circuito hidráulico;
- A variação espacial e temporal da disponibilidade de nutrientes no corpo central dos reservatórios de Anta e do circuito hidráulico;
- III. A caracterização da qualidade da água proveniente de tributários e seu impacto no corpo central dos reservatórios de Anta e do circuito hidráulico;

- IV. A caracterização da comunidade planctônica no ambiente lacustre;
- V. A caracterização hidroquímica da água e a avaliação da presença de metais pesados;
- VI. A caracterização da comunidade zoobentônica nos tributários para fins de avaliação de sua qualidade ambiental;
- VII. A caracterização química do sedimento dos tributários para avaliação da presença de metais pesados e pesticidas organoclorados e organofosforados;
- VIII. A caracterização limnológica e da qualidade da água do trecho de vazão reduzida do rio Paraíba do Sul, entre as usinas de Anta e Simplício;
 - IX. A caracterização hidráulica de circulação da água no corpo central dos reservatórios de Anta e do circuito hidráulico.

III - CRONOGRAMA DE EXECUÇÃO

As campanhas foram realizadas seguindo o cronograma e plano de trabalho pré-estabelecido na assinatura do contrato, contudo, foi necessário realizar adequações para atendimento à Resolução ANA Nº 713, de 11 de junho de 2013 e Termo de Ajustamento de Conduta do Ministério Público Federal – MPF, sendo ocorridas da seguinte forma:

- 1ª Campanha (março/2013) Campanha piloto realizada contemplando os pontos do Rio Paraíba do Sul - seguindo o contrato (Termo de Referência CO.DAQ.G.00005.2012);
- 2ª Campanha (março/2013) Campanha realizada contemplando os pontos do Rio Paraíba do Sul e os Tributários seguindo o contrato (Termo de Referência CO.DAQ.G.00005.2012);

- 3ª Campanha (maio/2013) Campanha realizada contemplando os pontos do Rio Paraíba do Sul, Tributários e Sedimentos seguindo o contrato (Termo de Referência CO.DAQ.G.00005.2012);
- 4ª Campanha (junho/2013) Campanha realizada contemplando os pontos dos Tributários (seguindo o contrato Termo de Referência CO.DAQ.G.00005.2012) e os pontos contemplados na Resolução ANA Nº 713, de 11 de junho de 2013.
- 5ª Campanha (julho/2013) Campanha realizada contemplando os pontos do Rio Paraíba do Sul, Tributários e Sedimentos seguindo o contrato (Termo de Referência CO.DAQ.G.00005.2012).
- 6ª Campanha (agosto/2013) Campanha realizada contemplando os pontos dos Tributários (seguindo o contrato Termo de Referência CO.DAQ.G.00005.2012) e os pontos contemplados na Resolução ANA Nº 713, de 11 de junho de 2013.
- 7ª Campanha (setembro/2013) Campanha realizada contemplando os pontos dos Rio Paraíba do Sul, Tributários e (seguindo o contrato Termo de Referência CO.DAQ.G.00005.2012), os pontos contemplados na Resolução ANA Nº 713, de 11 de junho de 2013 e pontos extra determinados pelo Ibama.
- 8ª Campanha (outubro/2013) Campanha realizada contemplando os pontos dos Tributários (seguindo o contrato Termo de Referência CO.DAQ.G.00005.2012) e os pontos contemplados na Resolução ANA Nº 713, de 11 de junho de 2013.
- 9ª Campanha (novembro/2013) Campanha realizada contemplando os pontos dos Rio Paraíba do Sul, Tributários e (seguindo o contrato Termo de Referência CO.DAQ.G.00005.2012), os pontos contemplados na Resolução ANA Nº 713, de 11 de junho de 2013 e pontos extra determinados pelo Ibama.

10ª Campanha (dezembro/2013) - Campanha realizada contemplando os pontos dos Tributários (seguindo o contrato - Termo de Referência CO.DAQ.G.00005.2012) e os pontos contemplados na Resolução ANA Nº 713, de 11 de junho de 2013.

11ª Campanha (janeiro/2014) - Campanha realizada contemplando os pontos dos Rio Paraíba do Sul, Tributários e (seguindo o contrato - Termo de Referência CO.DAQ.G.00005.2012), os pontos contemplados na Resolução ANA Nº 713, de 11 de junho de 2013 e pontos extra determinados pelo Ibama.

12ª Campanha (fevereiro/2014) - Campanha realizada contemplando os pontos dos Tributários (seguindo o contrato - Termo de Referência CO.DAQ.G.00005.2012) e os pontos contemplados na Resolução ANA Nº 713, de 11 de junho de 2013.

13ª Campanha (março/2014) - Campanha realizada contemplando os pontos dos Rio Paraíba do Sul, Tributários e (seguindo o contrato - Termo de Referência CO.DAQ.G.00005.2012), os pontos contemplados na Resolução ANA Nº 713, de 11 de junho de 2013 e pontos extra determinados pelo Ibama.

14ª Campanha (abril/2014) - Campanha realizada contemplando os pontos dos Tributários (seguindo o contrato - Termo de Referência CO.DAQ.G.00005.2012) e os pontos contemplados na Resolução ANA Nº 713, de 11 de junho de 2013.

15ª Campanha (maio/2014) - Campanha realizada contemplando os pontos dos Rio Paraíba do Sul, Tributários e (seguindo o contrato - Termo de Referência CO.DAQ.G.00005.2012), os pontos contemplados na Resolução ANA Nº 713, de 11 de junho de 2013 e pontos extra determinados pelo Ibama.

16ª Campanha (junho/2014) - Campanha realizada contemplando os pontos dos Tributários (seguindo o contrato - Termo de Referência CO.DAQ.G.00005.2012) e os pontos contemplados na Resolução ANA Nº 713, de 11 de junho de 2013.

17ª Campanha (julho/2014) - Campanha realizada contemplando os pontos dos Rio Paraíba do Sul, Tributários e (seguindo o contrato - Termo de Referência CO.DAQ.G.00005.2012), os pontos contemplados na Resolução ANA Nº 713, de 11 de junho de 2013 e pontos extra determinados pelo Ibama.

18ª Campanha (agosto/2014) - Campanha realizada contemplando os pontos dos Tributários (seguindo o contrato - Termo de Referência CO.DAQ.G.00005.2012) e os pontos contemplados na Resolução ANA Nº 713, de 11 de junho de 2013.

19ª Campanha (setembro/2014) - Campanha realizada contemplando os pontos dos Rio Paraíba do Sul, Tributários e (seguindo o contrato - Termo de Referência CO.DAQ.G.00005.2012), os pontos contemplados na Resolução ANA Nº 713, de 11 de junho de 2013 e pontos extra determinados pelo Ibama.

IV - ÁREA DE ESTUDO

Para o monitoramento limnológico e da qualidade da água foi estruturada uma rede de estações de coleta que permite avaliar as alterações nos ecossistemas aquáticos decorrentes da implantação do empreendimento. Os pontos selecionados para a implantação estão posicionados, preferencialmente, de maneira a permitir comparações entre os diferentes períodos de amostragem. Outros ajustes também poderão ocorrer à medida que os resultados das campanhas forem sendo consolidados.

Durante a FASE OPERAÇÃO, ou seja, durante a operação do empreendimento, a rede de amostragem pretende cobrir os diversos compartimentos do complexo arranjo do AHE Simplício, na figura abaixo está ilustrado o complexo de Simplício:

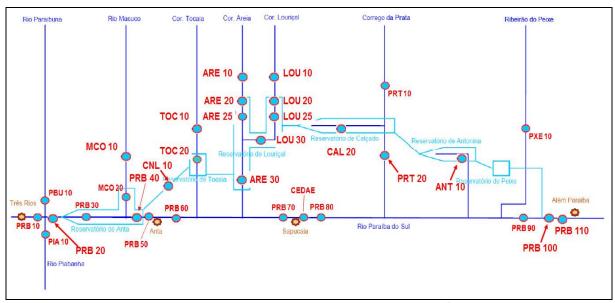


Figura IV-1 – Imagem do complexo da AHE - Simplício.

No quadro abaixo está diagrama com os respectivos pontos de coleta da 19^a Campanha (campanha Louriçal + Bimestral + Trimestral) realizados no mês de Setembro de 2014:

FiguralV-2 - Diagrama dos pontos de amostragem de Simplício.

A rede amostral proposta foi formatada com o objetivo de abranger todas as recomendações do termo de referência, no que tange à diversidade de ambientes afluentes e formadores do reservatório e possíveis fontes poluidoras (urbanas e agrícolas).

Nesta segunda campanha, campanha de denominação "Louriçal 19 + Bimestral + Trimestral + Pontos Extra do Ibama", foi realizada amostragem nos pontos ao longo do Rio Paraíba do Sul e alguns Tributários.

IV.1 - PRB 10

Essa estação localiza-se no rio Paraíba do Sul, imediatamente a montante da confluência com os rios Paraibuna e Piabanha – o encontro dos três rios (Figura IV-3). Este é um local intensamente utilizado para a pesca, coletado no dia 20/09/2014.

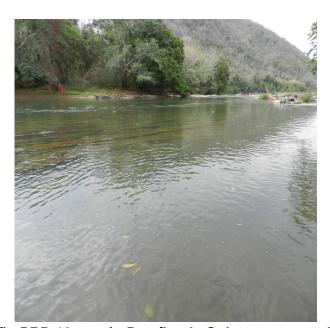


Figura IV-3 – Estação PRB 10, no rio Paraíba do Sul, a montante do encontro dos três rios.

IV.2 - PRB 20

Localizada entre as cidades de Três Rios e Anta (RJ), a estação PRB 20 (Figura IV-4) está a montante do Reservatório de Anta, coletado no dia 20/09/2014.

Figura IV-4 – Estação PRB 20, no rio Paraíba do Sul, a montante do reservatório da AHE Anta.

IV.3 - PRB 30

Localizada entre as cidades de Três Rios e Anta (RJ), a estação PRB 30 (Figura VI-5) é parte do trecho do rio Paraíba do Sul que será inundada para a formação reservatório da UHE Anta, a montante da confluência com o rio Macuco. Neste trecho o rio encontra-se dividido por uma pequena ilha, o que é provavelmente pouco representativo para o contexto local. É importante verificar que a presença de macrófitas aquáticas neste ponto reduziu drasticamente, provavelmente devido a redução de vazão, coletado no dia 21/09/2014.

Figura IV-5 – Estação PRB 30, no rio Paraíba do Sul, área de abrangência do reservatório da AHE Anta.

IV.4 - PRB 40

A estação PRB 40 (Figura IV-6) localiza-se no rio Paraíba do Sul, a montante da barragem da AHE-Anta. Neste ponto devemos ressaltar que também houve redução da quantidade de macrofitas aquaticas que havia crescido de forma exponencial nos últimos meses, coletado no dia 22/09/2014.

Figura IV-6 – Estação PRB 40, no rio Paraíba do Sul, a montante da barragem da AHE Anta.

IV.5 - PRB 50

A estação PRB 50 (Figura IV-7) localiza-se no rio Paraíba do Sul, a montante do distrito de Anta, município, de Sapucaia (RJ) e imediatamente após AHE – Anta, coletado no dia 22/09/2014. Podemos observar uma grande presença de espuma a jusante da barragem de AHE - Anta, provavelmente causado pela decomposição de matéria orgânica presente a montante.

Figura IV-7 – Estação PRB 50, no rio Paraíba do Sul, a montante do distrito de Anta/RJ.

IV.6 - PRB 60

Esta estação localiza-se no rio Paraíba do Sul, a jusante do distrito de Anta (RJ) (Figura IV-8), ainda apresentando algumas moradias à sua margem. O acesso a este ponto se deu através de uma residência, coletado no dia 20/09/2014.

Figura IV-8 – Estação PRB 60, no rio Paraíba do Sul, a jusante do distrito de Anta/RJ.

IV.7 - PRB 70

Localizada no rio Paraíba do Sul, a montante da cidade de Sapucaia (RJ) (Figura IV-9). Essa estação localiza-se a montante da captação de água para abastecimento da cidade de Sapucaia. É importante ressaltar que neste trecho já existem algumas casas à margem direita do rio, coletado no dia 20/09/2014

Figura IV-9 – Estação PRB 70, no rio Paraíba do Sul, a montante da cidade de Sapucaia/RJ.

IV.8 - PRB CEDAE

Esta estação localiza-se no rio Paraíba do Sul, na cidade de Sapucaia/RJ. Essa estação localiza-se imediatamente na captação de água para abastecimento humano da cidade de Sapucaia (Figura IV-10), podemos verificar presença de lixo no ponto de coleta e presença de macrófitas, coletado no dia 21/09/2014.

Figura IV-10 – Estação PRB CEDAE, no rio Paraíba do Sul, estação de captação de água da cidade de Sapucaia/RJ.

IV.9 - PRB 80

A estação PRB 80 (Figura IV-11) localiza-se no rio Paraíba do Sul, na cidade de Sapucaia (RJ), imediatamente a jusante da ponte que liga o município a cidade de Chiador. Este trecho do rio encontra-se sob intensa influência da cidade de Sapucaia, coletado no dia 22/09/2014.

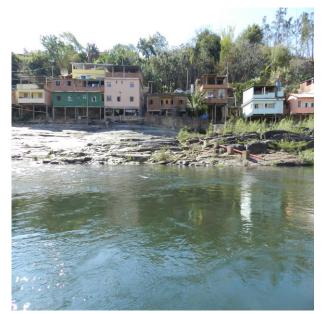


Figura IV-11 – Estação PRB 80, no rio Paraíba do Sul, cidade de Sapucaia/RJ.

IV.10 - PRB 90

Esta estação localiza-se no rio Paraíba do Sul, na cidade de Além Paraíba (MG), a montante do canal de fuga do AHE Simplício (Figura IV-12), coletado no dia 22/09/2014.

Figura IV-12 – Estação PRB 90, no rio Paraíba do Sul, a montante do canal de fuga da AHE - Simplício.

IV.11 - PRB 100

Esta estação localiza-se no rio Paraíba do Sul, na cidade de Além Paraíba (MG), a jusante do canal de fuga do AHE Simplício (Figura IV-13), foi verificada a presença de draga operando neste ponto, coletado no dia 22/09/2014.



Figura IV-13 – Estação PRB 100, no rio Paraíba do Sul, a jusante do canal de fuga da AHE - Simplício.

IV.12 - PRB 110

Esta estação localiza-se no rio Paraíba do Sul, na cidade de Além Paraíba (MG), a jusante do ponto PRB 100 (Figura IV-14), coletado no dia 22/09/2014.

Figura IV-14 – Estação PRB 110, no rio Paraíba do Sul, a montante do município de Além Paraíba.

IV.13 - TOC 10

Localizada no córrego Tocaia, a estação TOC 10 (Figura IV-17) encontra-se em um trecho a montante do reservatório de Tocaia, coletado no dia 21/09/2014.

Figura IV-15 – Estação TOC 10, no córrego Tocaia, a montante do reservatório Tocaia.

IV.14 - TOC 20

Localizada no córrego Tocaia, a estação TOC 20 (Figura IV-16) encontra-se em um trecho inundado para a formação do Reservatório de Tocaia, coletado no dia 21/09/2014.

Figura IV-16 – Estação TOC 20 reservatório Tocaia.

IV.15 - ARE 10

A estação ARE10 localiza-se no córrego Areia, à montante do reservatório de Louriçal (Figura IV-17), coletado no dia 21/09/2014.

Figura IV-17 – Estação ARE 10, montante do reservatório de Louriçal.

IV.16 - ARE 20

A estação ARE20 localiza-se no córrego Areia, à montante do Dique Alga1 reservatório de Louriçal (Figura IV-18), coletado no dia 21/09/2014.

Figura IV-18 – Estação ARE 20, montante do Dique Alga1 - reservatório de Louriçal.

IV.17 - ARE 25

A estação ARE25 localiza-se no córrego Areia, à jusante do Dique Alga1 reservatório de Louriçal (Figura IV-19), coletado no dia 21/09/2014.

Figura IV-19 – Estação ARE 25, jusante do Dique Alga1 - reservatório de Louriçal.

IV.18 - ARE 30

A estação ARE30 localiza-se no córrego Areia, à montante do Dique Louriçal reservatório de Louriçal (Figura IV-20), coletado no dia 21/09/2014.

Figura IV-20 – Estação ARE 30, a montante do Dique Louriçal - reservatório de Louriçal.

IV.19 - LOU 10

A estação LOU10 localiza-se no córrego Louriçal, à montante do reservatório de Louriçal (Figura IV-21), conforme mostra a imagem, ainda não havia enchido, coletado no dia 21/07/2014.

Figura IV-21 – Estação LOU 10, a montante do reservatório de Louriçal.

IV.20 - LOU 20

A estação LOU20 localiza-se no córrego Louriçal, à montante do Dique Alga2 reservatório de Louriçal (Figura IV-22), coletado no dia 21/09/2014.

Figura IV-22 – Estação LOU 20, a montante do Dique Alga2 - reservatório de Louriçal.

IV.21 - LOU 25

A estação LOU25 localiza-se no córrego Louriçal, à jusante do Dique Alga2 reservatório de Louriçal (Figura IV-23), coletado no dia 21/09/2014.

Figura IV-23 – Estação LOU 25, a jusante do Dique Alga2 - reservatório de Louriçal.

IV.22 - LOU 30

A estação LOU30 localiza-se no córrego Louriçal, no canal Área 5 reservatório de Louriçal (Figura IV-24), coletado no dia 21/09/2014.

Figura IV-24 – Estação LOU 30, no Canal Área 5 - reservatório de Louriçal.

IV.23 - CAL 20

A estação CAL20 localiza-se no córrego Calçado, no reservatório de Calçado (Figura IV-25), coletado no dia 21/09/2014.

Figura IV-25 – Estação CAL 20, reservatório de Calçado.

IV.24 - PRT 10

Localizada no córrego da Prata, a estação PRT 10 está imediatamente à jusante de um reservatório artificial (Figura IV-26), coletado no dia 22/09/2014.

Figura IV-26 - Estação PTR 10, córrego do Prata.

IV.25 - PRT 20

Localizada no córrego da Prata, a estação PRT 20 está imediatamente antes do córrego da Prata desaguar no Paraíba do Sul, ponto coletado no dia 21/09/2014.

Figura IV-27 – Estação PTR 20, córrego do Prata.

IV.26 - PXE 10

A estação PXE 10 localiza-se no ribeirão do Peixe, em um trecho de fluxo rápido da água, imediatamente anterior a uma região de remanso (Figura IV-28), coletado no dia 22/09/2014.

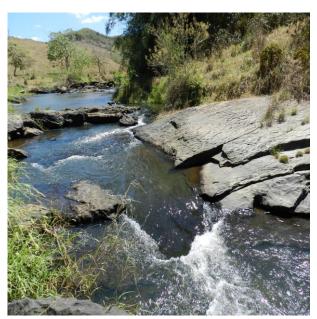


Figura IV-28 - Estação PXE 10, Ribeirão do Peixe.

IV.27 - PIA 10

A estação PIA 10 localiza-se no rio Piabanha, antes da confluência com os rios Paraibuna e Paraíba do Sul (encontro dos três rios). Esse ponto se destaca em relação às demais estações de amostragem por apresentar uma vegetação mais densa nas margens, e por não apresentar substrato rochoso, (Figura IV-29), coletado no dia 20/09/2014.

Figura IV-29 – Estação PIA 10, Rio Piabanha.

IV.28 - PBU 10

A estação PBU 10 localiza-se no rio Paraibuna, à montante do encontro dos três rios, na entrada da cidade de Chiador (MG), (Figura IV-30), coletado no dia 20/09/2014.

Figura IV-30 – Estação PBU 10, Rio Paraibuna.

IV.29 - CNL 10

A estação CNL 10 localiza-se no canal entre os reservatórios de Anta e Tocaia, (Figura IV-31), coletado no dia 21/09/2014.

Figura IV-31 – Estação CNL 10, Canal entre os Reservatórios de Anta e Tocaia.

IV.30 - ANT 10

A estação ANT 10 localiza-se no Reservatório de Antonina, (Figura IV-32), coletado no dia 22/09/2014.

Figura IV-32 – Estação ANT 10, Reservatório de Antonina.

IV.31 - MCO 10

A estação MCO 10 localiza-se no rio Macuco, esse trecho do rio está dentro da área de abrangência do Reservatório de Anta (Figura IV-33), coletado no dia 22/09/2014.

Figura IV-33 – Estação MCO 10, Rio Macuco.

IV.32 - MCO 20

A estação MCO 20 localiza-se no rio Macuco, esse trecho do rio está dentro da área de abrangência do Reservatório de Anta (Figura IV-34), coletado no dia 22/09/2014.

Figura IV-34 - Estação MCO 20, Rio Macuco.

V - METODOLOGIA

Para melhor compreensão dos dados amostrais e laboratoriais, foi estabelecida a divisão entre "Metodologia de Campo" e "Metodologia Analítica".

No subitem Metodologia de Campo estão apresentados os pontos de coleta bem como as normas técnicas de amostragem adotada, já na Metodologia Analítica estão descritas as metodologias analíticas empregadas neste trabalho.

V.1 - Metodologia de Campo

Para esta coleta que se refere à 19^a Campanha (campanha Louriçal + Bimestral + Trimestral), referente ao monitoramento limnológico da área de influência da AHE – Simplício, onde nesta campanha foi estabelecido 32 estações de coleta

distribuídas ao longo do rio Paraíba do Sul e seus Tributários.

O código, a descrição e a coordenada geográfica de cada uma das estações - ordenadas - são apresentados na Tabela V -1. A seguir, é feita uma descrição mais detalhada de cada estação.

Tabela V-1-Coordenadas e descrição das estações de coleta

PONTO	DESCRIÇÃO	UTM X	UTM Y
PRB 20	Rio Paraíba do Sul, a montante do Reservatório de Anta.	694571	7556653
PRB 30	Rio Paraíba do Sul, área de abrangência do Reservatório de Anta	699619	7555145
PRB 40	Rio Paraíba do Sul, Reservatório de Anta, a montante da barragem.	705686	7561278
PRB 50	Rio Paraíba do Sul, a montante da cidade de Anta/RJ	707363	7561278
PRB 60	Rio Paraíba do Sul, a jusante da cidade de Anta/RJ.	708080	7562733
PRB 70	Rio Paraíba do Sul, a montante da cidade de Sapucaia/RJ.	709919	7563477
PRB 80	Rio Paraíba do Sul, na cidade de Sapucaia/RJ.	717738	7566743
PRB 90	Rio Paraíba do Sul, a montante do canal de fuga da AHE – Simplício.	725760	7572181
PRB 100	Rio Paraíba do Sul, a jusante do canal de fuga da AHE – Simplício.	734603	7576270
PRB 110	Rio Paraíba do Sul, a montante do Município de Além Paraíba.		
PRB CEDAE	Rio Paraíba do Sul, ponto de captação de água para consumo humano da CEDAE na cidade de Sapucaia/RJ.	713773	7565603
MCO 10	Rio Macuco, a montante do Reservatório de Anta	704188	7563467
MCO 20	Rio Macuco, Reservatório de Anta	704459	7562707
TOC 10	Córrego Tocaia, a montante do Reservatório Tocaia	708570	7565795
TOC 20	Córrego Tocaia, Reservatório Tocaia	708837	7566007
ARE 10	Córrego Areia, a montante do reservatório Louriçal	711750	7572375
ARE 20	Córrego Areia, a montante do Dique 1 - reservatório Louriçal	712000	7568800
ARE 25	Córrego Areia, a jusante do Dique 1 - reservatório Louriçal	712000	7568400
ARE 30	Córrego Areia, a montante do Dique Louriçal - reservatório Louriçal	712055	7567105
LOU 10	Córrego Louriçal, a montante do reservatório de Louriçal	713849	7571253
LOU 20	Córrego Louriçal, a montante do Dique Alga2 - reservatório de Louriçal	713200	7569000
LOU 25	Córrego Louriçal, a jusante do Dique Alga2 - reservatório de Louriçal	713200	7268800
LOU 30	Córrego Louriçal, canal área 5 - reservatório de Louriçal	712436	7567925

PONTO	DESCRIÇÃO	итм х	UTM Y
CAL 20	Reservatório Calçado	717170	7569394
PRT 10	Córrego do Prata	718042	7571986
PRT 20	Córrego do Prata		
PXE 10	Ribeirão Peixe	727179	7575300
PIA 10	Rio Piabanha	690297	7550427
PBU 10	Rio Paraibuna	691262	7555862
CNL 10	Canal entre os Reservatórios de Anta e Tocaia		
ANT 10	Reservatório de Antonina		

As amostragens foram realizadas em subsuperfície na margem ou de barco, quando foi possível devido à correnteza, sendo as mesmas armazenadas em frascos previamente preparados, refrigeradas e enviadas para uma base de campo para processamento por meio de filtração ou fixação química. As amostras para análises microbiologias e DBO foram encaminhadas para o laboratório em menos de 24h após a amostragem, obedecendo-se os prazos de validade das amostras.

Em campo foram realizadas medições e temperatura do ar e da agua, oxigênio dissolvido, condutividade elétrica, pH e turbidez, por meio de sonda multiparâmetro, nas localidades que tiveram condições, foram feitos perfis dos parâmetros citados acima.

As amostras de sedimentos para determinações físico-químicas, granulometria e Zoobentos, foram realizadas com draga.

Toda amostragem e análises foram realizadas pela equipe técnica do **Laboratório Aqualit Tecnologia em Saneamento SS Ltda** situado em Goiânia/GO. As coletas e análises seguem as normas e recomendações do Standard Methods for the Examination of Water and Wastewater (SMWW – 22^a - 2012), do U.S. Environmental Protection Agency (U.S. EPA), da Associação Brasileira de Normas Técnicas (ABNT), Guia nacional de coleta e preservação de amostras: água,

sedimento, comunidades aquáticas e efluentes líquidos/Agência Nacional de Águas; Brasília: ANA, 2011 e da CETESB – Companhia de Tecnologia de Saneamento Ambiental.

V.2 - Metodologia Analítica

Os métodos de análise do laboratório baseiam-se no Standard Methods for the Examination of Water and Wastewater (SMWW – 22ª - 2012) e no U.S. Environmental Protection Agency (U.S. EPA), e são descritos em procedimentos analíticos pertencentes ao Sistema de Gestão da Qualidade – SGQ da Aqualit, tais parâmetros estão relacionados na tabela abaixo:

Tabela V-2 - Parâmetros Físico-Químicos e Microbiológicos

GRUPO	PARÂMETROS ÁGUA	MÉTODO
	Transparência (disco de Secchi)	SECCHI
	Temperatura da água	SMWW 2550
	рН	SMWW 4500 H+
1	Condutividade Elétrica	SMWW 2510 B
'	Oxigênio Dissolvido - OD	SMWW 4500 C
	Oxigênio Saturado – OD	SMWW 4500 C
	Turbidez	SMWW 2130. B.
	Temperatura do Ambiente	SMWW 2550
	Sólidos suspensos fixos	SMWW 2540 E
2	Sólidos suspensos voláteis	SMWW 2540 E
	Óleos e Graxas	SMWW 5520 D
	Fenóis	SMWW 5530 C
	Sílica	SMWW 4500-SiO ₂ D.
	Nitrogênio total	SMWW-4500 N - C
	Nitrogênio Amoniacal	SMWW 4500 NH ₃ - F
3	Nitrato	SMEWW 4500-NO ₂ B
	Fósforo total	SMWW 4500-P E.
	Ortofósfato	SMWW 4500-P E.
	Demanda Química de Oxigênio (DQO)	SMWW 5220 D - Modificado
4	AlcalinidadeTotal	SMWW 2320 - B.

GRUPO	PARÂMETROS ÁGUA	MÉTODO
	Teor de Cloretos	SMWW 4500 CI- B.
	Cianetos	SMWW 4500-CN- G
	Sulfato	SMWW 4500 SO ₄ .C
	Cálcio	SMWW 3120B
	Magnésio	SMWW 3120B
	Sódio	SMWW 3120B
	Potássio	SMWW 3120B
	Demanda Bioquímica de Oxigênio (DBO)	SMWW 5210 B
5	Coliformes Totais	SMWW 9221 B
	Coliformes Termotolerantes	SMWW 9221 E
	Ferro Total	SMWW 3120B
	Ferro Total Dissolvido	SMWW 3120B
	Mangânes	SMWW 3120B
	Chumbo	SMWW 3120B
6	Zinco	SMWW 3120B
0	Cádmio	SMWW 3120B
	Cobre	SMWW 3120B
	Cromo Hexavalente	SMWW 3125 B
	Mercúrio Total	USEPA SW 846-7470 A
	Alumínio Total	SMWW 3120B
	Zooplâncton	SMWW 10200 G
7	Fitoplâncton	SMWW 10200 F
,	Densidade de Cianobactéreas	SMWW 10200 F
	Clorofila-a	SMWW 10200 H
8	Zoobentos	SMWW 10500 C
	Granulometria	USGS - Chapter1

VI - RESULTADOS

Os resultados analíticos serão apresentados a seguir, primeiramente iremos apresentar os resultados Físico-químicos e bacteriológicos em seguida os resultados biológicos e por fim os resultados dos sedimentos.

Importante destacar que os resultados aqui apresentados se referem à amostragem realizada na sub-superfície da água e sedimentos:

VI.1 - Resultados Físico-Químicos e Bacteriológicos:

Tabela VI-1 - Resultados do Rio Paraíba do Sul

PARÂMETROS ÁGUA	Unidade	PRB 10	PRB 20	PRB 30	PRB 30 FUND	PRB40 SUP	PRB 40 MEIO	PRB 40 FUND	PRB 50	PRB 60	PRB 70
. 7.1.0 2 2	• · · · · · · · · · · · · · · · · · · ·	21632/14	21633/14	21634/14	21635/14	21636/14	21637/14	21638/14	21639/14	21640/14	21641/14
Data	-	20/09/14	20/09/14	21/09/14	21/09/14	22/09/14	22/09/14	22/09/14	22/09/14	20/09/14	20/09/14
Hora	-	14:50	16:00	13:50	13:50	7:30	7:30	7:30	8:20	16:30	16:55
Temperatura do Ambiente	°C	24,50	24,50	25,00	NA	23,20	NA	NA	24,50	24,50	24,00
Temperatura da água	°C	23,10	23,32	22,78	22,62	22,32	22,30	22,30	22,45	22,74	23,38
рН	-	7,25	6,98	8,34	7,23	8,41	7,43	7,02	7,85	6,80	6,87
Condutividade Elétrica	μS/cm	95,00	80,00	79,00	80,00	78,00	78,00	79,00	76,00	74,00	73,00
Turbidez	NTU	13,50	18,20	16,80	18,10	12,10	12,30	11,90	12,60	8,00	7,20
Oxigênio Dissolvido - OD	mg O ₂ /L	6,37	5,45	8,11	5,39	5,26	4,77	4,77	7,99	7,18	5,45
Saturação de Oxigênio	%	76,10	65,20	96,40	63,90	62,00	55,80	55,80	94,10	85,20	65,30
Transparência (disco de Secchi)	m	TOTAL	TOTAL	0,80	NA	1,80	NA	NA	0,90	TOTAL	TOTAL
Sólidos suspensos fixos	mg/L	<2,5	4,00	6,00	8,00	<2,5	4,00	4,00	<2,5	4,00	<2,5
Sólidos suspensos voláteis	mg/L	<2,5	6,00	6,00	8,00	6,00	<2,5	4,00	<2,5	6,00	<2,5
Óleos e Graxas	mg/L	< 0,1	< 0,1	< 0,1	< 0,1	<0,1	<0,1	<0,1	<0,1	<0,1	<0,1
Fenóis	mg/L	< 0,001	< 0,001	< 0,001	< 0,001	<0,001	<0,001	<0,001	< 0,001	< 0,001	< 0,001
Sílica	mg/L	4,40	5,60	4,70	7,10	4,30	4,40	4,50	4,30	4,90	6,20
Nitrogênio total	mg/L	1,26	1,90	1,46	1,69	1,79	1,70	1,47	1,46	1,40	2,09
Nitrogênio Amoniacal	mg/L	0,22	0,11	0,11	0,11	0,11	0,11	0,13	0,12	0,21	0,21

PARÂMETROS ÁGUA	Unidade	PRB 10	PRB 20	PRB 30	PRB 30 FUND	PRB40 SUP	PRB 40 MEIO	PRB 40 FUND	PRB 50	PRB 60	PRB 70
1740/4421100/10071		21632/14	21633/14	21634/14	21635/14	21636/14	21637/14	21638/14	21639/14	21640/14	21641/14
Nitrato	mg/L	0,70	1,30	0,90	1,10	1,20	1,10	0,90	0,90	0,80	0,90
Fósforo total	mg/L	0,115	0,046	0,035	0,035	0,069	0,069	0,081	0,092	0,023	0,023
Ortofósfato	mg/L	0,025	0,025	0,013	0,025	0,013	0,025	0,050	0,025	0,013	0,013
Demanda Química de Oxigênio (DQO)	mg O ₂ /L	13,42	8,57	3,89	3,82	4,00	4,49	5,10	4,34	5,10	1,27
AlcalinidadeTotal	mgCaCO₃L	25,00	18,00	18,00	18,00	18,00	16,50	19,00	17,00	16,50	18,00
Teor de Cloretos	mg/L	10,10	8,90	9,30	9,00	8,80	7,80	8,80	9,00	10,50	8,00
Cianetos	mg/L	< 0,001	< 0,001	< 0,001	< 0,001	<0,001	<0,001	<0,001	< 0,001	< 0,001	< 0,001
Sulfato	mg/L	5,46	3,67	1,18	0,55	1,961	0,746	0,609	1,727	0,70	0,957
Cálcio	mg/L	1,290	2,248	2,320	1,945	1,540	1,070	1,360	2,014	1,374	1,414
Magnésio	mg/L	1,35	1,42	1,24	1,28	1,23	0,98	1,28	1,35	1,23	1,21
Sódio	mg/L	9,12	7,23	6,31	6,90	7,98	4,74	6,93	6,77	6,41	6,17
Potássio	mg/L	3,48	3,24	3,02	3,23	3,06	2,24	3,19	3,26	2,93	2,93
Demanda Bioquímica de Oxigênio (DBO)	mg O ₂ /L	2,610	2,430	2,265	2,420	2,295	1,677	2,393	5,06	5,53	5,42
Coliformes Totais	NMP/100mL	1400,00	940,00	20,00	150,00	930,00	930,00	710,00	400,000	250,000	710,000
Coliformes Termotolerantes	NMP/100mL	36,00	940,00	20,00	93,00	890,00	92,00	92,00	70,000	120,00	440,00
Ferro Total	mg/L	0,140	0,012	-	-	0,210	0,176	0,218	0,119	0,163	0,138
Ferro Total Dissolvido	mg/L	0,070	0,006	-	-	0,100	0,088	0,109	0,059	0,081	0,069
Mangânes	mg/L	<0,007	0,011	-	-	0,025	0,019	0,015	<0,007	0,010	0,011
Chumbo	mg/L	< 0,001	< 0,001	-	-	< 0,001	< 0,001	< 0,001	0,01	< 0,001	< 0,001

PARÂMETROS ÁGUA	Unidade	PRB 10	PRB 20	PRB 30	PRB 30 FUND	PRB40 SUP	PRB 40 MEIO	PRB 40 FUND	PRB 50	PRB 60	PRB 70
. ,	oaaa	21632/14	21633/14	21634/14	21635/14	21636/14	21637/14	21638/14	21639/14	21640/14	21641/14
Zinco	mg/L	0,040	0,058	-	-	0,02	<0,001	<0,001	0,04	<0,001	<0,001
Cádmio	mg/L	< 0,001	< 0,001	-	-	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Cobre	mg/L	0,006	< 0,001	-	-	0,004	0,006	0,005	0,003	0,004	0,005
Cromo Hexavalente	mg/L	< 0,001	< 0,001	-	-	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Mercúrio Total	mg/L	< 0,0002	< 0,0002	-	-	< 0,0002	< 0,0002	< 0,0002	< 0,0002	< 0,0002	< 0,0002
Alumínio Total	mg/L	0,780	0,292	-	-	0,859	0,639	0,887	0,080	0,838	0,087
Densidade de Cianobactéreas	Ind/ml	3.152,10	252,70	7.022,40	NA	5.253,50	NA	NA	2.899,40	3.072,30	6.064,80
Clorofila-a	μg/L	1,419	1,486	0,736	< 0,001	1,089	0,008	< 0,001	0,924	20,375	2,425

Tabela VI-2 - Resultados Rio Paraíba do Sul (Continuação)

PARÂMETROS ÁGUA	Unidade	PRB CEDAE	PRB 80	PRB 90	PRB 100	PRB 110
PARAMETROS AGUA	Onidade	21646/14	21642/14	21643/14	21644/14	21645/14
Data	-	21/09/14	22/09/14	22/09/14	22/09/14	22/09/14
Hora	-	14:40	14:50	9:25	9:46	10:20
Temperatura do Ambiente	°C	25,00	27,10	25,00	25,00	25,00
Temperatura da água	°C	22,97	23,71	22,42	22,38	22,31
рН	1	7,92	8,79	8,40	8,37	8,51
Condutividade Elétrica	μS/cm	76,00	76,00	75,00	75,00	75,00
Turbidez	NTU	11,20	5,70	8,70	8,40	15,30
Oxigênio Dissolvido - OD	mg O ₂ /L	4,06	5,73	6,97	7,28	5,62

PARÂMETROS ÁGUA	Unidade	PRB CEDAE	PRB 80	PRB 90	PRB 100	PRB 110
PARAMETROS AGUA	Unidade	21646/14	21642/14	21643/14	21644/14	21645/14
Saturação de Oxigênio	%	48,30	68,90	82,10	85,90	65,80
Transparência (disco de Secchi)	m	TOTAL	TOTAL	TOTAL	1,00	TOTAL
Sólidos suspensos fixos	mg/L	<2,5	<2,5	4,00	4,00	<2,5
Sólidos suspensos voláteis	mg/L	6,00	6,00	6	4,00	<2,5
Óleos e Graxas	mg/L	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1
Fenóis	mg/L	<0,001	<0,001	<0,001	<0,001	<0,001
Sílica	mg/L	5,00	5,20	4,00	4,10	4,80
Nitrogênio total	mg/L	1,67	1,62	1,57	1,16	1,48
Nitrogênio Amoniacal	mg/L	0,12	0,12	0,22	0,22	0,19
Nitrato	mg/L	1,10	1,00	1,00	0,60	0,90
Fósforo total	mg/L	0,023	0,035	0,012	0,023	0,069
Ortofósfato	mg/L	0,013	0,013	0,010	0,013	0,025
Demanda Química de Oxigênio (DQO)	mg O ₂ /L	2,55	2,55	6,37	6,37	6,37
AlcalinidadeTotal	mgCaCO₃L	21,00	18,00	16,50	18,00	18,00
Teor de Cloretos	mg/L	9,00	9,70	9,50	10,70	9,50
Cianetos	mg/L	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Sulfato	mg/L	3,660	1,199	0,75	0,67	0,629
Cálcio	mg/L	1,376	2,175	1,768	2,093	2,000
Magnésio	mg/L	1,30	1,41	1,20	1,41	1,30
Sódio	mg/L	6,68	6,55	5,65	6,82	6,41

DADÂMETROS ÁSUA		PRB CEDAE	PRB 80	PRB 90	PRB 100	PRB 110
PARÂMETROS ÁGUA	Unidade	21646/14	21642/14	21643/14	21644/14	21645/14
Potássio	mg/L	3,11	3,23	2,86	3,39	2,55
Demanda Bioquímica de Oxigênio (DBO)	mg O ₂ /L	3,83	2,94	5,28	3,56	4,780
Coliformes Totais	NMP/100mL	2600,000	400,000	220,000	150,000	790,00
Coliformes Termotolerantes	NMP/100mL	1.100,00	90,00	40,000	70,000	220,00
Ferro Total	mg/L	0,156	0,198	=	=	-
Ferro Total Dissolvido	mg/L	0,078	0,099	=	=	=
Mangânes	mg/L	0,013	0,024	-	-	-
Chumbo	mg/L	< 0,001	< 0,001	=	=	=
Zinco	mg/L	0,02	0,058	=	=	=
Cádmio	mg/L	< 0,001	< 0,001	-	-	-
Cobre	mg/L	0,014	0,006	-	-	-
Cromo Hexavalente	mg/L	< 0,001	< 0,001	=	=	=
Mercúrio Total	mg/L	< 0,0002	< 0,0002	-	-	-
Alumínio Total	mg/L	0,868	0,087	-	-	-
Densidade de Cianobactéreas	Ind/ml	8.405,60	4.495,40	10.799,60	997,50	1.649,20
Clorofila-a	μg/L	6,704	0,255	0,736	0,729	0,571

Tabela VI-3- Resultados dos Tributários

PARÂMETROS ÁGUA	Unidade	MCO 10	MC20	TOC 10	TOC 20 SUP	TOC 20 FUN	ARE 10	ARE 20	ARE 25	ARE 30 SUP	ARE 30 MEIO
		21669/14	21670/14	21666/14	21667/14	21668/14	21647/14	21648/14	21649/14	21650/14	21651/14
Data	-	22/09/14	22/09/14	21/09/14	21/09/14	21/09/14	21/09/14	21/09/14	21/09/14	21/09/14	21/09/14
Hora	-	13:40	13:30	11:50	12:05	12:05	7:10	7:30	9:45	9:15	9:15
Temperatura do Ambiente	°C	27,00	27,00	24,50	25,00	NA	22,70	22,70	23,00	23,20	NA
Temperatura da água	°C	23,61	24,14	22,59	23,45	22,31	21,34	22,88	23,10	22,90	21,72
pH	-	9,31	8,48	8,28	9,05	8,49	7,75	7,87	8,93	9,83	7,24
Condutividade Elétrica	μS/cm	74,00	75,00	90,00	74,00	73,00	49,00	53,00	68,00	73,00	73,00
Turbidez	NTU	30,10	9,10	5,10	15,00	12,00	7,10	25,90	9,80	31,50	8,00
Oxigênio Dissolvido - OD	mg O ₂ /L	7,70	6,60	5,36	7,91	8,03	5,93	5,62	7,95	8,36	4,86
Saturação de Oxigênio	%	92,80	49,30	63,30	95,10	96,50	68,60	66,70	94,60	99,60	57,10
Transparência (disco de Secchi)	m	0,50	0,90	TOTAL	1,00	NA	TOTAL	TOTAL	1,00	1,00	NA
Sólidos suspensos fixos	mg/L	<2,5	<2,5	<2,5	<2,5	4,00	<2,5	<2,5	4,00	<2,5	<2,5
Sólidos suspensos voláteis	mg/L	<2,5	<2,5	<2,5	6,00	<2,5	4,00	<2,5	8,00	<2,5	<2,5
Óleos e Graxas	mg/L	<0,1	<0,1	<0,1	< 0,1	< 0,1	< 0,1	<0,1	< 0,1	< 0,1	< 0,1
Fenóis	mg/L	<0,001	<0,001	<0,001	< 0,001	<0,001	<0,001	0,001	<0,001	<0,001	<0,001
Sílica	mg/L	5,10	5,00	4,80	4,90	4,40	5,00	4,10	4,90	4,70	5,40
Nitrogênio total	mg/L	1,76	1,56	1,28	1,46	1,27	1,76	1,30	0,98	1,16	1,36
Nitrogênio Amoniacal	mg/L	0,13	0,11	0,11	0,11	0,22	0,11	0,26	0,12	0,11	0,13
Nitrato	mg/L	1,20	1,00	0,70	0,90	0,70	1,20	0,70	0,60	0,60	0,80
Fósforo total	mg/L	0,035	0,046	0,035	0,046	0,023	0,046	0,058	0,115	0,069	0,046

PARÂMETROS ÁGUA	Unidade	MCO 10	MC20	TOC 10	TOC 20 SUP	TOC 20 FUN	ARE 10	ARE 20	ARE 25	ARE 30 SUP	ARE 30 MEIO
. 7.11.7.11.12.11.12.07.12.07.1	• · · · · · · · · · · · · · · · · · · ·	21669/14	21670/14	21666/14	21667/14	21668/14	21647/14	21648/14	21649/14	21650/14	21651/14
Ortofósfato	mg/L	0,025	0,025	0,025	0,038	0,013	0,025	0,025	0,075	0,025	0,025
Demanda Química de Oxigênio (DQO)	mg O ₂ /L	14,57	2,11	2,94	4,22	2,66	2,11	4,22	1,06	4,22	2,11
AlcalinidadeTotal	mgCaCO₃L	24,00	16,00	43,00	20,00	20,00	26,00	25,50	19,50	20,00	17,00
Teor de Cloretos	mg/L	22,60	9,50	8,10	7,6	10,50	3,60	6,20	8,10	8,3	9,00
Cianetos	mg/L	<0,001	<0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Sulfato	mg/L	1,311	0,83	< 0,001	< 0,001	< 0,001	0,06	< 0,001!	1,17	0,820	0,696
Cálcio	mg/L	1,544	1,696	1,779	1,378	1,616	1,860	3,495	1,070	1,540	1,419
Magnésio	mg/L	1,37	1,29	2,36	1,34	1,39	1,56	1,83	1,25	1,29	1,21
Sódio	mg/L	6,50	6,35	7,26	6,24	6,34	3,22	3,21	5,25	5,94	6,07
Potássio	mg/L	3,49	3,29	4,63	3,38	3,24	2,94	2,94	2,92	3,20	3,11
Demanda Bioquímica de Oxigênio (DBO)	mg O ₂ /L	10,929	1,584	2,203	3,167	1,992	1,584	3,167	0,792	3,167	1,584
Coliformes Totais	NMP/100mL	790,000	150,000	90,00	< 1,8	< 1,8	150,00	< 1,8	90,00	150,00	90,00
Coliformes Termotolerantes	NMP/100mL	220,000	< 1,8	40,00	< 1,8	< 1,8	90,00	< 1,8	40,00	90,00	40,00
Ferro Total	mg/L	0,130	=	0,230	=	-	=	=	-	=	-
Ferro Total Dissolvido	mg/L	0,015	-	0,011	-	-	-	-	-	-	-
Mangânes	mg/L	<0,007	-	0,009	-	-	-	-	-	-	-
Chumbo	mg/L	< 0,001	-	< 0,001	-	-	-	-	-	-	-
Zinco	mg/L	<0,001	=	<0,001	=		=	-	-	=	-
Cádmio	mg/L	< 0,001	-	< 0,001	-	-	-	-	-	-	-

PARÂMETROS ÁGUA	Unidade	MCO 10	MC20	TOC 10	TOC 20 SUP	TOC 20 FUN	ARE 10	ARE 20	ARE 25	ARE 30 SUP	ARE 30 MEIO
TARAMETROS ASSA	Omaaac	21669/14	21670/14	21666/14	21667/14	21668/14	21647/14	21648/14	21649/14	21650/14	21651/14
Cobre	mg/L	< 0,001	-	< 0,001	-	-	=	-	-	-	=
Cromo Hexavalente	mg/L	< 0,001	-	< 0,001	-	-	-	-	-	-	=
Mercúrio Total	mg/L	< 0,0002	-	< 0,0002	-	-	-	-	-	-	=
Alumínio Total	mg/L	0,036	-	0,104	-	-	=	-	-	-	=
Densidade de Cianobactéreas	Ind/ml	4.428,90	2.473,80	3.085,60	2.487,10	NA	2.154,60	9.336,60	3.577,70	1.768,90	NA
Clorofila-a	μg/L	1,486	1,801	0,976	0,924	< 0,001	0,131	0,123	0,920	10,70	1,95

Tabela VI-4 - Resultados dos Tributários (continuação)

PARÂMETROS ÁGUA	Unidade	ARE 30 FUN	LOU 10	LOU 20	LOU 25	LOU 30 SUP	LOU 30 MEIO	LOU 30 FUN	CAL 20	PRT 10	PXE 10
	oaaa	21652/14	21653/14	21654/14	21655/14	21663/14	21664/14	21665/14	21678/14	21671/14	21674/14
Data	-	21/09/14	21/09/14	21/09/14	21/09/14	21/09/14	21/09/14	21/09/14	21/09/14	22/09/14	22/09/14
Hora	-	9:15	8:10	8:25	10:15	9:55	9:55	9:55	15:30	12:00	11:10
Temperatura do Ambiente	°C	NA	22,70	23,00	25,00	23,00	NA	NA	23,00	27,00	26,50
Temperatura da água	°C	21,54	22,29	23,18	22,85	22,87	21,80	21,52	23,03	19,95	22,20
рН	-	6,77	7,14	6,93	8,18	9,44	7,85	6,98	9,51	8,61	8,19
Condutividade Elétrica	μS/cm	73,00	49,00	48,00	70,00	71,00	72,00	73,00	71,00	44,00	40,00
Turbidez	NTU	10,90	9,70	16,70	9,70	16,80	7,70	8,00	16,60	7,50	13,30
Oxigênio Dissolvido – OD	mg O ₂ /L	3,83	7,26	8,15	8,02	8,10	4,27	2,86	9,56	7,69	7,29
Saturação de Oxigênio	%	44,80	86,90	97,10	95,40	96,40	49,80	33,30	115,90	86,70	85,80
Transparência (disco de Secchi)	m	NA	0,80	0,90	1,10	1,15	NA	NA	1,00	TOTAL	TOTAL

PARÂMETROS ÁGUA	Unidade	ARE 30 FUN	LOU 10	LOU 20	LOU 25	LOU 30 SUP	LOU 30 MEIO	LOU 30 FUN	CAL 20	PRT 10	PXE 10
1 7 tt V tt m = 1 tt G G 7 t G G 7 t	• maaa	21652/14	21653/14	21654/14	21655/14	21663/14	21664/14	21665/14	21678/14	21671/14	21674/14
Sólidos suspensos fixos	mg/L	4,00	<2,5	<2,5	<2,5	<2,5	<2,5	<2,5	<2,5	<2,5	<2,5
Sólidos suspensos voláteis	mg/L	<2,5	<2,5	<2,5	<2,5	<2,5	4,00	<2,5	<2,5	<2,5	<2,5
Óleos e Graxas	mg/L	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	< 0,1	<0,1	< 0,1
Fenóis	mg/L	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	< 0,001	<0,001
Sílica	mg/L	5,10	4,90	4,10	4,10	5,10	4,10	4,20	4,10	5,00	4,60
Nitrogênio total	mg/L	1,56	1,48	1,30	1,77	1,78	1,56	0,88	0,89	1,28	1,60
Nitrogênio Amoniacal	mg/L	0,23	0,22	0,13	0,20	0,22	0,11	0,11	0,11	0,11	0,22
Nitrato	mg/L	1,00	0,90	0,70	1,20	1,20	1,00	0,60	0,60	1,00	1,00
Fósforo total	mg/L	0,058	0,012	0,023	0,069	0,092	0,104	0,012	0,023	0,023	0,104
Ortofósfato	mg/L	0,025	0,009	0,013	0,025	0,013	0,075	0,013	0,013	0,013	0,050
Demanda Química de Oxigênio (DQO)	mg O₂/L	5,28	4,22	2,11	1,06	3,17	4,22	3,17	4,22	1,06	1,74
AlcalinidadeTotal	mgCaCO₃L	17,50	28,00	24,50	18,00	20,00	18,50	19,00	16,00	20,50	17,50
Teor de Cloretos	mg/L	10,70	5,00	8,30	8,30	8,00	9,50	9,50	10,7	4,80	2,40
Cianetos	mg/L	<0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Sulfato	mg/L	0,609	< 0,001	< 0,001	1,727	1,783	2,473	1,311	1,361	0,143	0,07
Cálcio	mg/L	1,365	1,280	1,229	1,128	4,100	1,187	1,534	1,360	1,118	2,100
Magnésio	mg/L	1,21	1,49	1,56	1,14	1,62	1,23	1,29	1,17	1,35	1,40
Sódio	mg/L	5,87	2,89	3,03	5,56	6,32	5,91	6,31	6,29	2,89	2,11
Potássio	mg/L	3,06	3,04	3,25	2,84	3,55	3,09	3,35	3,11	2,61	2,41
Demanda Bioquímica de	mg O ₂ /L	3,959	3,167	1,584	0,792	2,375	3,167	2,375	3,167	0,792	1,305

PARÂMETROS ÁGUA	Unidade	ARE 30 FUN	LOU 10	LOU 20	LOU 25	LOU 30 SUP	LOU 30 MEIO	LOU 30 FUN	CAL 20	PRT 10	PXE 10
PARAMETROS AGOA	Omade	21652/14	21653/14	21654/14	21655/14	21663/14	21664/14	21665/14	21678/14	21671/14	21674/14
Oxigênio (DBO)											
Coliformes Totais	NMP/100mL	230,00	90,00	90,00	40,00	90,00	90,00	90,00	710,00	710,00	710,00
Coliformes Termotolerantes	NMP/100mL	< 1,8	40,00	40,00	< 1,8	< 1,8	20,00	20,00	40,00	250,00	250,00
Ferro Total	mg/L	=	0,260	=	=	-	-	-	-	=	=
Ferro Total Dissolvido	mg/L	=	0,090	=	=	=	-	-	-	-	=
Mangânes	mg/L	-	0,090	-	-	ı	-	-	-	-	-
Chumbo	mg/L	-	< 0,001	-	-	-	-	-	-	-	-
Zinco	mg/L	-	<0,001	-	-	ı	-	-	-	-	-
Cádmio	mg/L	-	< 0,001	-	-	-	-	-	-	-	-
Cobre	mg/L	-	< 0,001	-	-	-	-	-	-	-	-
Cromo Hexavalente	mg/L	=	< 0,001	-	=	-	-	-	-	-	=
Mercúrio Total	mg/L	-	< 0,0002	-	-	-	-	-	-	-	-
Alumínio Total	mg/L	-	0,119	-	-	-	-	-	-	-	-
Densidade de Cianobactéreas	Ind/ml	NA	5.506,20	2.154,60	17.888,50	2.660,00	NA	NA	27.092,10	1.330,00	7.368,20
Clorofila-a	μg/L	< 0,001	0,700	0,098	0,083	0,849	< 0,001	< 0,001	8,950	2,778	2,590

Tabela VI-5 - Resultados dos Tributários (continuação)

PARÂMETROS ÁGUA	Unidade	PIA 10	PBU 10	PBU 10 CNL 10		PRT 20
PARAMETROS AGUA	Officiace	21683/14	21681/14	21679/14	21673/14	21672/14
Data	-	20/09/14	20/09/14	21/09/14	22/09/14	21/09/14

PARÂMETROS ÁGUA	Hadada da	PIA 10	PBU 10	CNL 10	ANT 10	PRT 20
PARAMETROS AGUA	Unidade	21683/14	21681/14	21679/14	21673/14	21672/14
Hora	-	14:30	15:20	11:20	10:50	16:05
Temperatura do Ambiente	°C	24,50	24,50	25,00	26,20	23,00
Temperatura da água	°C	22,01	22,65	23,58	22,28	22,80
рН	-	7,29	6,66	8,46	9,07	8,69
Condutividade Elétrica	μS/cm	99,00	57,00	76,00	71,00	90,00
Turbidez	NTU	43,20	18,20	9,20	22,50	25,30
Oxigênio Dissolvido - OD	mg O ₂ /L	7,48	6,58	5,31	7,30	6,93
Saturação de Oxigênio	%	87,40	77,50	63,40	86,00	82,20
Transparência (disco de Secchi)	m	0,50	TOTAL	1,00	1,10	TOTAL
Sólidos suspensos fixos	mg/L	<2,5	12,00	6,00	<2,5	<2,5
Sólidos suspensos voláteis	mg/L	<2,5	4,00	<2,5	<2,5	<2,5
Óleos e Graxas	mg/L	< 0,1	< 0,1	<0,1	<0,1	< 0,1
Fenóis	mg/L	<0,001	<0,001	< 0,001	< 0,001	<0,001
Sílica	mg/L	4,90	5,00	4,00	4,60	4,20
Nitrogênio total	mg/L	1,00	0,88	1,18	1,28	1,47
Nitrogênio Amoniacal	mg/L	0,11	0,22	0,13	0,12	0,13
Nitrato	mg/L	0,70	0,60	0,90	0,70	0,90
Fósforo total	mg/L	0,092	0,035	0,023	0,012	0,069
Ortofósfato	mg/L	0,025	0,013	0,011	0,010	0,025
Demanda Química de Oxigênio (DQO)	mg O ₂ /L	11,00	13,33	2,11	1,84	1,73

PARÂMETROS ÁGUA	Hadada	PIA 10	PBU 10	CNL 10	ANT 10	PRT 20
PARAMETROS AGUA	Unidade	21683/14	21681/14	21679/14	21673/14	21672/14
AlcalinidadeTotal	mgCaCO₃L	19,00	18,00	12,50	19,00	16,00
Teor de Cloretos	mg/L	2,40	11,90	6,7	9,3	9,00
Cianetos	mg/L	< 0,001	< 0,001	< 0,001	< 0,001	< 0,001
Sulfato	mg/L	1,659	2,28	1,796	0,579	0,603
Cálcio	mg/L	1,029	2,396	1,416	1,421	1,208
Magnésio	mg/L	1,12	1,32	1,07	1,21	1,35
Sódio	mg/L	2,80	9,48	3,71	5,95	5,40
Potássio	mg/L	2,60	5,00	2,67	3,32	2,61
Demanda Bioquímica de Oxigênio (DBO)	mg O ₂ /L	8,252	9,996	1,584	1,378	1,298
Coliformes Totais	NMP/100mL	< 1,8	1.700,00	< 1,8	< 1,8	710,00
Coliformes Termotolerantes	NMP/100mL	< 1,8	1.100,00	< 1,8	< 1,8	90,00
Ferro Total	mg/L	0,240	0,325	1	-	0,080
Ferro Total Dissolvido	mg/L	0,009	0,053	1	-	<0,01
Mangânes	mg/L	0,007	0,007	-	-	0,007
Chumbo	mg/L	< 0,001	< 0,001	-	-	< 0,001
Zinco	mg/L	<0,001	<0,001	-	-	<0,001
Cádmio	mg/L	< 0,001	< 0,001	-	-	< 0,001
Cobre	mg/L	< 0,001	< 0,001	1	-	< 0,001
Cromo Hexavalente	mg/L	< 0,001	< 0,001	=	=	< 0,001
Mercúrio Total	mg/L	< 0,0002	< 0,0002	-	-	< 0,0002

PARÂMETROS ÁGUA	Unidade	PIA 10	PBU 10	CNL 10	ANT 10	PRT 20
PARAMETROS AGUA	Onidade	21683/14	21681/14	21679/14	21673/14	21672/14
Alumínio Total	mg/L	0,190	0,161	-	=	0,171
Densidade de Cianobactéreas	Ind/ml	1.702,40	1.529,50	571,90	997,50	598,50
Clorofila-a	μg/L	13,250	1,276	0,924	1,006	1,591

VI.2 - Resultados Biológicos:

Resultados de Fitoplâncton:

Tabela VI-6 - Resultados de Fitoplâncton - Rio Paraíba do Sul

TAXONS – FITOPLÂNCTON QUANTITATIVO	PRB 10	PRB 20	PRB 30	PRB40 SUP	PRB 50	PRB 60	PRB 70	PRB CEDAE	PRB 80	PRB 90	PRB 100
(ind/m³)	21632/14	21633/14	21634/14	21636/14	21639/14	21640/14	21641/14	21646/14	21642/14	21643/14	21644/14
Cyanophyceae											
Dolichospermum planctonicum (Brunnth.) Wacklin, L.Hoffm.& Komárek	101		122	93		12	362	166		64	
Geitlerinema amphibium (C.Agardh ex Gomont)											23
Raphydiopsis sp.		5	214	136		45		107	35	27	23
Aphanocapsa elachista West & G.S.West	101	14	42		39		42	234			
Microcystis aeruginosa (Kützing) Kützing				166		71	34		47		29
Raphydiopsis sp.	35		150		179	103	18	125	256	721	
Bacillariophyceae											
Aulacoseira granulata (Ehr.)Simonsen		6	6								
Navicula sp.		17		17	35						
Stauroneis borrichii (J.B.Petersen) J.W.G.Lund	6	85			76	399	14	27			94
Dinophyceae											
Ceratium hirundinella (Müller) Dujardin	6			9	23	5		16	39		
Glochidinium penardiforme (Lemmermann) Boltovskoy											

TAXONS – FITOPLÂNCTON QUANTITATIVO	PRB 10	PRB 20	PRB 30	PRB40 SUP	PRB 50	PRB 60	PRB 70	PRB CEDAE	PRB 80	PRB 90	PRB 100
(ind/m³)	21632/14	21633/14	21634/14	21636/14	21639/14	21640/14	21641/14	21646/14	21642/14	21643/14	21644/14
Euglenophyceae											
Euglena acus Ehrn.	6										
Euglena agilis H.J.Carter	6										
Euglena polimorpha PADangeard	101		137	105			27	52		64	
Euglena proxima P.A.Dangeard		28	14	9							
Euglena texta (Dujardin) Hübner		14			36						
Trachelomonas bacillifera var. minima Playfair											39
Trachelomonas cervicula Stokes		27	96	13							
Trachelomonas nigra Svirenko											
Chlorophyceae											
Ankistrodesmus fusiformis Corda ex Korshikov					72			12			
Coenocystis subcylindrica Korshikov				32							
Monoraphidium arcuatum (Korshikov) Hindák								12	71		39
Monoraphidium caribeum Hindák	14		23	2							
Monoraphidium circinale (Nygaard) Nygaard	34										
Monoraphidium contortum (Thuret) Komárková- Legnerová in Fott					96					76	
Monoraphidium indicum Hindak	28							12			
Monoraphidium komarkovae Nygaard											
Monoraphidium tortile (West & G.S.West) Komárková-Legnerová								23			
Pediastrum angulosum Ehrenberg ex					28		29		16		

TAXONS – FITOPLÂNCTON QUANTITATIVO	PRB 10	PRB 20	PRB 30	PRB40 SUP	PRB 50	PRB 60	PRB 70	PRB CEDAE	PRB 80	PRB 90	PRB 100
(ind/m³)	21632/14	21633/14	21634/14	21636/14	21639/14	21640/14	21641/14	21646/14	21642/14	21643/14	21644/14
Meneghini											
Planktosphaeria gelatinosa G.M.Smith	17	17		90							
Tetraëdron triangulare Korshikov	14										
Westella botryoides (West) De Wildeman							9	39	10	27	
Zygnemaphyceae											
Closterium acutum Brébisson in Ralfs	10	39	39		58		39	292	17		39
Closterium closterioides (Ralfs) A.Louis & F.Peeters		28									
Closterium jenneri Ralfs							16	28			
Charophyceae											
Staurastrum johnsonii West & G.S.West											
Hyalotheca dissiliens Brébisson ex Ralfs											
TOTAL DE INDIVÍDUOS AMOSTRAIS/m³	479	280	843	672	642	635	590	1.145	491	979	286

Tabela VI-7 - Resultados de Fitoplâncton - Tributários

1 4 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			~								
TAXONS – FITOPLÂNCTON QUANTITATIVO	PRB 110	MCO 10	MC20	TOC 10	TOC 20 SUP	ARE 10	ARE 20	ARE 25	ARE 30 SUP	LOU 10	LOU 20
(ind/m³)	21645/14	21669/14	21670/14	21666/14	21667/14	21647/14	21648/14	21649/14	21650/14	21653/14	21654/14
Cyanophyceae											
Dolichospermum planctonicum (Brunnth.) Wacklin, L.Hoffm.& Komárek	9	45		42	39		656	58	39		9
Geitlerinema amphibium (C.Agardh ex Gomont)			78			23					
Raphydiopsis sp.	14		108	17		14				47	

TAXONS – FITOPLÂNCTON QUANTITATIVO	PRB 110	MCO 10	MC20	TOC 10	TOC 20 SUP	ARE 10	ARE 20	ARE 25	ARE 30 SUP	LOU 10	LOU 20
(ind/m³)	21645/14	21669/14	21670/14	21666/14	21667/14	21647/14	21648/14	21649/14	21650/14	21653/14	21654/14
Aphanocapsa elachista West & G.S.West		122			23		11	125			28
Microcystis aeruginosa (Kützing) Kützing		166		150				12		5	
Raphydiopsis sp.	101			23	125	125	35	74	94	362	125
Bacillariophyceae											
Aulacoseira granulata (Ehr.)Simonsen	23	16			21		23				
Navicula sp.	18		12					21			
Stauroneis borrichii (J.B.Petersen) J.W.G.Lund				36						27	134
Dinophyceae											
Ceratium hirundinella (Müller) Dujardin			31			39	39			58	
Glochidinium penardiforme (Lemmermann) Boltovskoy		32									11
Euglenophyceae											
Euglena acus Ehrn.											
Euglena agilis H.J.Carter			13					28			
Euglena polimorpha PADangeard	9			42	39		29	58	39		9
Euglena proxima P.A.Dangeard				64	58						
Euglena texta (Dujardin) Hübner				9	58						9
Trachelomonas bacillifera var. minima Playfair	64					39	39				
Trachelomonas cervicula Stokes											
Trachelomonas nigra Svirenko											
Chlorophyceae											

TAXONS – FITOPLÂNCTON QUANTITATIVO	PRB 110	MCO 10	MC20	TOC 10	TOC 20 SUP	ARE 10	ARE 20	ARE 25	ARE 30 SUP	LOU 10	LOU 20
(ind/m³)	21645/14	21669/14	21670/14	21666/14	21667/14	21647/14	21648/14	21649/14	21650/14	21653/14	21654/14
Ankistrodesmus fusiformis Corda ex Korshikov									120		
Coenocystis subcylindrica Korshikov									450		
Monoraphidium arcuatum (Korshikov) Hindák					12			9			
Monoraphidium caribeum Hindák			27					9	320	39	
Monoraphidium circinale (Nygaard) Nygaard		45								14	
Monoraphidium contortum (Thuret) Komárková- Legnerová in Fott						21			120	39	43
Monoraphidium indicum Hindak							92				18
Monoraphidium komarkovae Nygaard			47				261	28	360	293	
Monoraphidium tortile (West & G.S.West) Komárková-Legnerová		63				11			90		
Pediastrum angulosum Ehrenberg ex Meneghini			29		11						
Planktosphaeria gelatinosa G.M.Smith									75		
Tetraëdron triangulare Korshikov				36					99		
Westella botryoides (West) De Wildeman	9								80		
Zygnemaphyceae											
Closterium acutum Brébisson in Ralfs						58		23			6
Closterium closterioides (Ralfs) A.Louis & F.Peeters							28				
Closterium jenneri Ralfs						71					
Charophyceae											
Staurastrum johnsonii West & G.S.West										14	39

TAXONS – FITOPLÂNCTON QUANTITATIVO (ind/m³)	PRB 110	MCO 10	MC20	TOC 10	TOC 20 SUP	ARE 10	ARE 20	ARE 25	ARE 30 SUP	LOU 10	LOU 20
	21645/14	21669/14	21670/14	21666/14	21667/14	21647/14	21648/14	21649/14	21650/14	21653/14	21654/14
Hyalotheca dissiliens Brébisson ex Ralfs				96			39	23	39		39
TOTAL DE INDIVÍDUOS AMOSTRAIS/m³	247	489	345	515	386	401	1.252	468	1.925	898	470

Tabela VI-8 - Resultados de Fitoplâncton - Tributários (continuação)

TAXONS – FITOPLÂNCTON QUANTITATIVO	LOU 25	LOU 30 SUP	CAL 20	PRT 10	PXE 10	PIA 10	PBU 10	CNL 10	ANT 10	PRT 20
(ind/m³)	21655/14	21663/14	21678/14	21671/14	21674/14	21683/14	21681/14	21679/14	21673/14	21672/14
Cyanophyceae										
Dolichospermum planctonicum (Brunnth.) Wacklin, L.Hoffm.& Komárek			39	14	108	42				27
Geitlerinema amphibium (C.Agardh ex Gomont)						86	54	23		
Raphydiopsis sp.	1.313	29	570	21	23		-		32	12
Aphanocapsa elachista West & G.S.West	5	144	1.393				61	6	43	
Microcystis aeruginosa (Kützing) Kützing										
Raphydiopsis sp.	27	27	35	65	423			14		6
Bacillariophyceae										
Aulacoseira granulata (Ehr.)Simonsen						16				
Navicula sp.										
Stauroneis borrichii (J.B.Petersen) J.W.G.Lund				35	118			36		23
Dinophyceae										
Ceratium hirundinella (Müller) Dujardin		12	6			10			10	98

TAXONS – FITOPLÂNCTON QUANTITATIVO	LOU 25	LOU 30 SUP	CAL 20	PRT 10	PXE 10	PIA 10	PBU 10	CNL 10	ANT 10	PRT 20
(ind/m³)	21655/14	21663/14	21678/14	21671/14	21674/14	21683/14	21681/14	21679/14	21673/14	21672/14
Glochidinium penardiforme (Lemmermann) Boltovskoy								11		
Euglenophyceae										
Euglena acus Ehrn.							23			
Euglena agilis H.J.Carter	9	39	14	9					9	
Euglena polimorpha PADangeard			39	14	47	42				27
Euglena proxima P.A.Dangeard	9	101	9		65					
Euglena texta (Dujardin) Hübner	39	39	6	9			39		61	18
Trachelomonas bacillifera var. minima Playfair			9			27				
Trachelomonas cervicula Stokes							47			
Trachelomonas nigra Svirenko		6	71							
Chlorophyceae										
Ankistrodesmus fusiformis Corda ex Korshikov			120		17					
Coenocystis subcylindrica Korshikov					35					
Monoraphidium arcuatum (Korshikov) Hindák										14
Monoraphidium caribeum Hindák	23		99						74	
Monoraphidium circinale (Nygaard) Nygaard							6			36
Monoraphidium contortum (Thuret) Komárková- Legnerová in Fott		78	32		16	58	10			
Monoraphidium indicum Hindak				9					74	18
Monoraphidium komarkovae Nygaard										
Monoraphidium tortile (West & G.S.West)						18				

TAXONS – FITOPLÂNCTON QUANTITATIVO	LOU 25	LOU 30 SUP	CAL 20	PRT 10	PXE 10	PIA 10	PBU 10	CNL 10	ANT 10	PRT 20
(ind/m³)	21655/14	21663/14	21678/14	21671/14	21674/14	21683/14	21681/14	21679/14	21673/14	21672/14
Komárková-Legnerová										
Pediastrum angulosum Ehrenberg ex Meneghini										
Planktosphaeria gelatinosa G.M.Smith			360							
Tetraëdron triangulare Korshikov			270		27					
Westella botryoides (West) De Wildeman	9		120			6		14		
Zygnemaphyceae										
Closterium acutum Brébisson in Ralfs		74		58	94					6
Closterium closterioides (Ralfs) A.Louis & F.Peeters										
Closterium jenneri Ralfs										
Charophyceae										
Staurastrum johnsonii West & G.S.West	14	14		18	14					27
Hyalotheca dissiliens Brébisson ex Ralfs										
TOTAL DE INDIVÍDUOS AMOSTRAIS/m³	1.448	563	3.192	252	987	305	240	104	303	312

Resultados de Zooplâncton:

Tabela VI-9 - Resultados de Zooplâncton - Rio Paraíba do Sul

1 440 514 11 5 11 5 5 4 11 4 4 5 4 5	p										
TAXONS – ZOOPLÂNCTON QUANTITATIVO (ind/m³)	PRB 10	PRB 20	PRB 30	PRB40 SUP	PRB 50	PRB 60	PRB 70	PRB CEDAE	PRB 80	PRB 90	PRB 100
	21632/14	21633/14	21634/14	21636/14	21639/14	21640/14	21641/14	21646/14	21642/14	21643/14	21644/14
Testaceos											

				PRB40	1			PRB	1	1	
TAXONS – ZOOPLÂNCTON	PRB 10	PRB 20	PRB 30	SUP	PRB 50	PRB 60	PRB 70	CEDAE	PRB 80	PRB 90	PRB 100
QUANTITATIVO (ind/m³)	21632/14	21633/14	21634/14	21636/14	21639/14	21640/14	21641/14	21646/14	21642/14	21643/14	21644/14
Arcella vulgaris		28.866,00			2.004,00	1.982,00	14.553,00	14.450,00	8.354,00	27.940,00	6.912,00
Arcella hemisphaerica undulata	38.453,00	14.437,00	2.671,00	179,00		14.446,00		28.856,00	12.920,00	6.310,00	13.520,00
Centropyxis aculeata	30.042,00	14.434,00					2.004,00				
Difflugia acuminate	40.557,00		5.119,00	4.095,00	10.015,00					362,00	
Rotifera											
Brachiarus dolabrotus									2.044,00	12.920,00	
Brachionus falcatus	214,00		268,00	144,00			268,00		968,00		
Brachiarus quadridentatus					214,00						
Filinia longiseta			268,00	179,00	232,00			12.920,00			1.023,00
Keratella cochlearis	268,00					224,00		7.813,00			
Keratella procurva		374,00									
Kellicottia longispina							446,00				
Manfredium eudactylota	2.671,00									7.512,00	
Lecane curvicornis	426,00	14.434,00			224,00			410,00		10.217,00	
Otostephanus annulatus											7.181,00
Polyarthra vulgaris				214,00					2.375,00		
Trichocerca braziliensis											
Chladocera											
Bosmina SP			179,00								
Cladocera SP		1.586,00									

TAXONS – ZOOPLÂNCTON	PRB 10	PRB 20	PRB 30	PRB40 SUP	PRB 50	PRB 60	PRB 70	PRB CEDAE	PRB 80	PRB 90	PRB 100
QUANTITATIVO (ind/m³)	21632/14	21633/14	21634/14	21636/14	21639/14	21640/14	21641/14	21646/14	21642/14	21643/14	21644/14
Cladocera sp1		214,00									179,00
Copepoda											
Euciclopis ensifer							14.426,00		2.587,00		9.887,00
Mesochra sancarlensis	794,00		14.435,00		72.158,00	14.434,00					
Diaptomus furcatus	46.731,00		28.866,00		43.294,00						
Nauplius de Cyclopoida											
Thermocyclops decipiens							10.217,00			6.912,00	
Tecameba											
Arcella vulgaris		2.137,00									
Centropyxis aculeata	179,00				357,00			214,00			
Lesquereusia minor					6.053,00					1.425,00	
Larva de Nematoda	870,00	446,00				616,00		6.912,00			
Larva de Quironomideo	2.671,00					14.450,00			14.434,00		14.434,00
TOTAL DE ind/m ³	163.876,00	76.928,00	51.806,00	4.811,00	134.551,00	46.152,00	41.914,00	71.575,00	43.682,00	73.598,00	53.136,00

Tabela VI-10 - Resultados de Zooplâncton - Tributários

TAXONS – ZOOPLÂNCTON QUANTITATIVO (ind/m³)	PRB 110	MCO 10	MC20	TOC 10	TOC 20 SUP	ARE 10	ARE 20	ARE 25	ARE 30 SUP	LOU 10	LOU 20
	21645/14	21669/14	21670/14	21666/14	21667/14	21647/14	21648/14	21649/14	21650/14	21653/14	21654/14
Testaceos											
Arcella vulgaris	27.639,00			36.351,00	17.727,00		22.609,00	20.205,00	14.435,00	43.294,00	

TAXONS – ZOOPLÂNCTON	PRB 110	MCO 10	MC20	TOC 10	TOC 20 SUP	ARE 10	ARE 20	ARE 25	ARE 30 SUP	LOU 10	LOU 20
QUANTITATIVO (ind/m³)	21645/14	21669/14	21670/14	21666/14	21667/14	21647/14	21648/14	21649/14	21650/14	21653/14	21654/14
Arcella hemisphaerica undulata	9.913,00		2.849,00		14.122,00	606,00					
Centropyxis aculeata											268,00
Difflugia acuminate		482,00		3.606,00		962,00	362,00		19.548,00		
Rotifera											
Brachiarus dolabrotus			3.205,00			130.681,00	52.533,00				144.317,00
Brachionus falcatus	12.619,00			109.051,00		29.142,00		72.158,00	86.590,00		
Brachiarus quadridentatus	29.443,00					85.018,00	230.908,00			152.973,00	216.473,00
Filinia longiseta		4.095,00									
Keratella cochlearis					2.945,00	74.503,00	6.912,00				
Keratella procurva	1.200,00		2.137,00					29.112,00	14.435,00	43.294,00	109.679,00
Kellicottia longispina				18.176,00		6.912,00	21.931,00				
Manfredium eudactylota				13.821,00						69.272,00	
Lecane curvicornis											
Otostephanus annulatus			1.405,00			21.631,00			10.095,00		
Polyarthra vulgaris											115.453,00
Trichocerca braziliensis		1.746,00		36.351,00							
Chladocera											
Bosmina SP			1.390,00	1.100,00		8.011,00					
Cladocera SP		428,00					5.697,00			1.425,00	
Cladocera sp1				2.493,00					1.603,00		

TAXONS – ZOOPLÂNCTON	PRB 110	MCO 10	MC20	TOC 10	TOC 20 SUP	ARE 10	ARE 20	ARE 25	ARE 30 SUP	LOU 10	LOU 20
QUANTITATIVO (ind/m³)	21645/14	21669/14	21670/14	21666/14	21667/14	21647/14	21648/14	21649/14	21650/14	21653/14	21654/14
Copepoda											
Euciclopis ensifer				163.575,00		693.557,00	346.356,00	43.294,00	28.866,00	138.541,00	207.813,00
Mesochra sancarlensis				36.351,00	6.912,00	58.881,00		14.434,00	57.730,00	150.089,00	138.541,00
Diaptomus furcatus	29.142,00		7.655,00			95.833,00	109.679,00	72.158,00	129.885,00	60.036,00	41.852,00
Nauplius de Cyclopoida					9.614,00						
Thermocyclops decipiens							21.631,00				392,00
Tecameba											
Arcella vulgaris				8.545,00	5.697,00						
Centropyxis aculeata			1.746,00	5.697,00	2.137,00					802,00	
Lesquereusia minor						357,00					
Larva de Nematoda								362,00			
Larva de Quironomideo											
TOTAL DE ind/m ³	109.956,00	6.751,00	20.387,00	435.117,00	59.154,00	1.206.094,00	818.618,00	251.723,00	363.187,00	659.726,00	974.788,00

Tabela VI-11 - Resultados de Zooplâncton - Tributários (continuação)

. 40014 11 11 11004114400 40 1			(.uuşuo,						
TAXONS – ZOOPLÂNCTON QUANTITATIVO (ind/m³)	LOU 25	LOU 30 SUP	CAL 20	PRT 10	PXE 10	PIA 10	PBU 10	CNL 10	ANT 10	PRT 20
	21655/14	21663/14	21678/14	21671/14	21674/14	21683/14	21681/14	21679/14	21673/14	21672/14
Testaceos										
Arcella vulgaris	1.956,00	14.434,00	3.606,00	20.131,00	12.920,00	10.439,00	14.615,00	17.125,00		7.211,00
Arcella hemisphaerica undulata				29.052,00	23.434,00		20.880,00	6.912,00		10.217,00

TAXONS – ZOOPLÂNCTON	LOU 25	LOU 30 SUP	CAL 20	PRT 10	PXE 10	PIA 10	PBU 10	CNL 10	ANT 10	PRT 20
QUANTITATIVO (ind/m³)	21655/14	21663/14	21678/14	21671/14	21674/14	21683/14	21681/14	21679/14	21673/14	21672/14
Centropyxis aculeata				12.379,00	3.606,00		10.439,00	4.043,00		
Difflugia acuminate	362,00									
Rotifera										
Brachiarus dolabrotus	124.111,00							3.606,00	3.907,00	
Brachionus falcatus										
Brachiarus quadridentatus	375.220,00		30.643,00			20.881,00				3.907,00
Filinia longiseta					4.451,00		4.273,00	3.606,00		
Keratella cochlearis	259.766,00			3.027,00						
Keratella procurva						6.587,00	9.970,00		3.526,00	
Kellicottia longispina										
Manfredium eudactylota		268,00				22.431,00		3.606,00	6.231,00	
Lecane curvicornis			22.965,00	26.138,00	4.359,00		20.880,00	33.646,00		
Otostephanus annulatus				16.224,00			10.439,00			
Polyarthra vulgaris										
Trichocerca braziliensis										
Chladocera										
Bosmina SP						606,00				
Cladocera SP		214,00				500,00	573,00			2.671,00
Cladocera sp1										1.746,00
Copepoda										

TAXONS – ZOOPLÂNCTON	LOU 25	LOU 30 SUP	CAL 20	PRT 10	PXE 10	PIA 10	PBU 10	CNL 10	ANT 10	PRT 20
QUANTITATIVO (ind/m³)	21655/14	21663/14	21678/14	21671/14	21674/14	21683/14	21681/14	21679/14	21673/14	21672/14
Euciclopis ensifer	167.406,00		23.434,00			10.439,00				392,00
Mesochra sancarlensis	129.885,00	138.541,00						6.053,00	12.920,00	
Diaptomus furcatus	222.245,00				2.945,00		10.309,00			
Nauplius de Cyclopoida					10.217,00				32.744,00	
Thermocyclops decipiens	303,00						6.231,00			2.918,00
Tecameba										
Arcella vulgaris										
Centropyxis aculeata	1.200,00							179,00	179,00	
Lesquereusia minor										
Larva de Nematoda		12.619,00		3.606,00		10.504,00		3.606,00	8.011,00	3.606,00
Larva de Quironomideo			16.824,00	2.918,00	3.398,00			2.918,00		-
TOTAL DE ind/m ³	1.282.454,00	166.076,00	97.472,00	113.475,00	65.330,00	82.387,00	108.609,00	85.300,00	67.518,00	32.668,00

VII - GRÁFICOS E DISCUSSÃO

Abaixo está a apresentação gráfica dos resultados obtidas nas análises de campo e laboratoriais, bem como um breve comentário de alguns resultados apresentados.

Os resultados serão apresentados na forma gráfica com a compilação da Primeira com a Segunda Campanha para os pontos ao longo do Rio Paraíba do Sul e um segundo gráfico com os resultados dos Tributários apenas da segunda campanha.

VII.1 - Temperatura Ambiente e da Água

A temperatura do ar é um dos fatores que influenciam processos físicos, químicos e, indiretamente, biológicos em ecossistemas aquáticos. As trocas de gases (especialmente gás carbônico e oxigênio) na interface água-ar são exemplos de processos cujas taxas dependem da temperatura atmosférica

Em sistemas lóticos, em que a coluna d'água permanece constantemente em processo de mistura, especialmente em sistemas rasos, como é o caso dos ambientes amostrados, a temperatura medida em sub-superfície é representativa de todo o perfil vertical. Ao longo do rio Paraíba do Sul e Tributários a temperatura da água variou pouco durante as coletas.

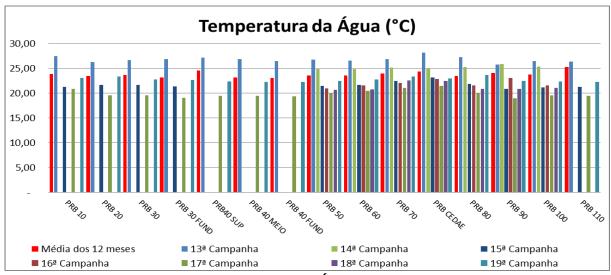


Figura VII-1 - Resultados da Temperatura da Água – Paraíba do Sul

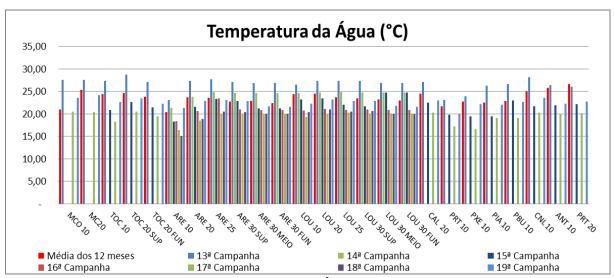


Figura VII-2 - Resultados da Temperatura da Água - Tributários

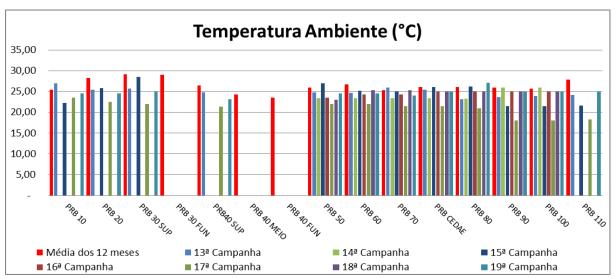


Figura VII-3 - Resultados da Temperatura Ambiente – Rio Paraíba do Sul

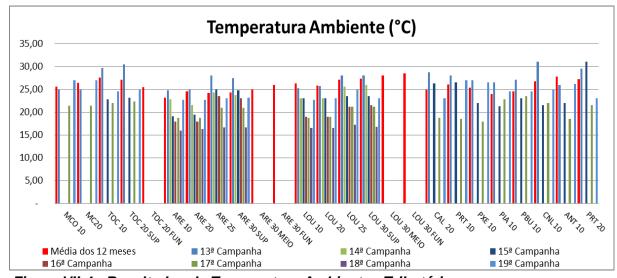


Figura VII-4 - Resultados da Temperatura Ambiente - Tributários

VII.2 - Transparência

A transparência da água está inversamente relacionada com os valores de turbidez e aponta a região na coluna d'água em que ocorre fotossíntese. Ambientes com turbidez mais elevada apresentam menor transparência da água. As medidas de transparência, no rio Paraíba do Sul e dos Tributários, acompanharam os valores de turbidez da água.

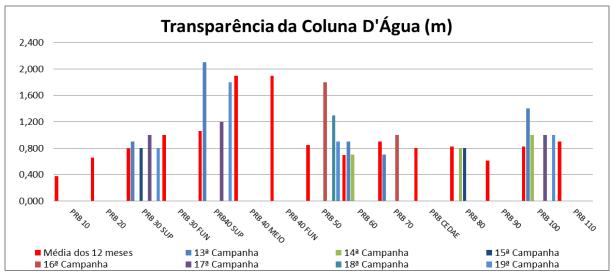


Figura VII-5 - Resultados de Transparência da coluna d'água – Rio Paraíba do Sul

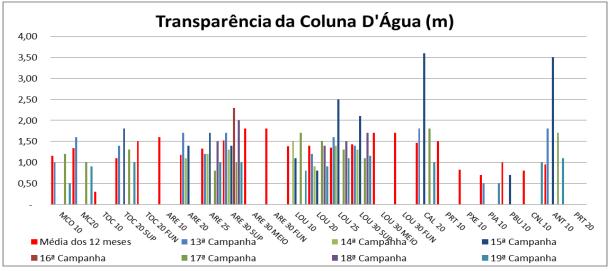


Figura VII-6 - Resultados de Transparência da coluna d'água - Tributários

VII.3 - Turbidez

A turbidez em corpos de água é resultado da quantidade de partículas em suspensão, sejam elas orgânicas ou inorgânicas, e em menor proporção dos compostos dissolvidos. Na coleta realizada, no rio Paraíba do Sul e Tributários, como o a coleta já foi realizada em período de seca, os valores de turbidez foram

baixos, em nenhum ponto ultrapassando o valor máximo estabelecido pela resolução CONAMA 357/05 para corpos d'água de Classe 2 que é de 100NTU.

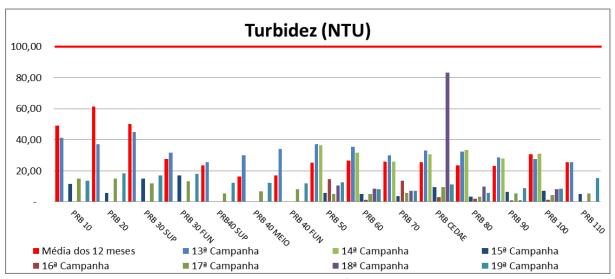


Figura VII-7 - Resultados de Turbidez - Rio Paraíba do Sul

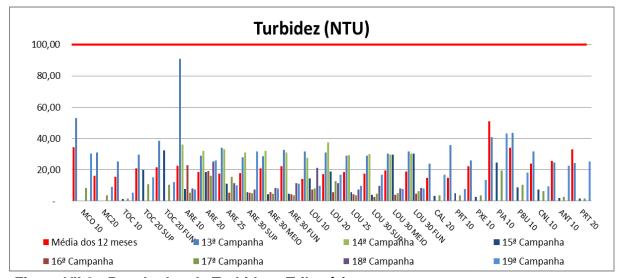


Figura VII-8 - Resultados de Turbidez - Tributários

VII.4 - Série de Sólidos

Os sólidos suspensos indicam a quantidade de material particulado em suspensão na água, sendo representados por coloides e partículas menos densas que a água, inclusive os microrganismos planctônicos.

Os sólidos suspensos fixos variaram de <1,0 a 8,0mg/L no rio Paraíba do sul e os Tributários entre <1,0 e 12,0mg/L, as concentrações de sólidos suspensos voláteis, no rio Paraíba do Sul, variaram entre <1,0mg/L e 4,0mg/L e nos Tributários variaram de <1,0 a 8,0mg/L. Em relação à resolução CONAMA 357/05 para os corpos d'água de Classe 2, apenas para o parâmetros sólidos totais dissolvidos que estabelece valores de limite, que no caso é de no máximo 500 mg/L de sólidos totais dissolvidos.

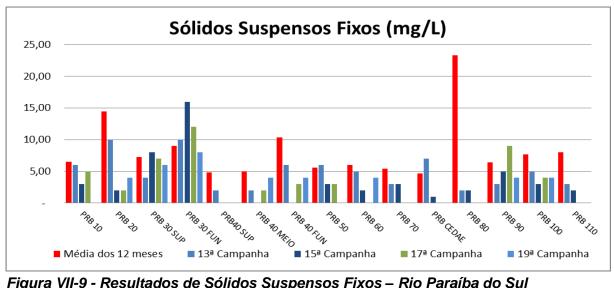


Figura VII-9 - Resultados de Sólidos Suspensos Fixos – Rio Paraíba do Sul

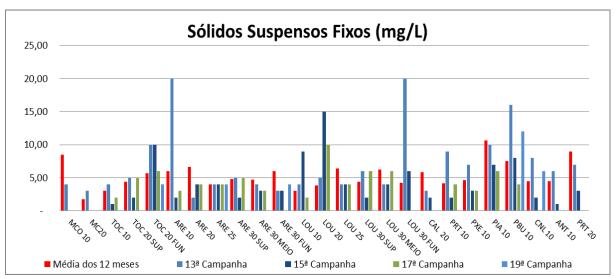


Figura VII-10 - Resultados de Sólidos Suspensos Fixos - Tributários

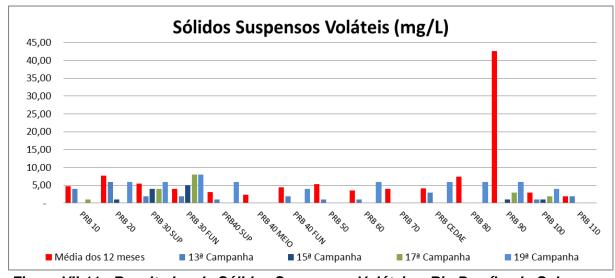


Figura VII-11 - Resultados de Sólidos Suspensos Voláteis - Rio Paraíba do Sul

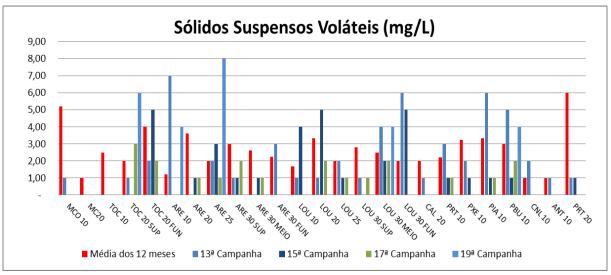


Figura VII-12 - Resultados de Sólidos Suspensos Voláteis - Tributários

VII.5 - Condutividade Elétrica

A condutividade elétrica de um corpo d'água corresponde à capacidade deste de conduzir corrente elétrica, sendo que a condução está diretamente relacionada à concentração de íons. Os resultados nas amostras do Rio Paraíba do Sul variaram entre de 73,0 μS/cm à 95,0 μS/cm nos Tributários (Circuito do Louriçal) variaram entre 40,0μS/cm a 99,0 μS/cm. A resolução CONAMA 357/05 para os corpos d'água de Classe 2 não apresenta valores máximos ou mínimos para condutividade elétrica.

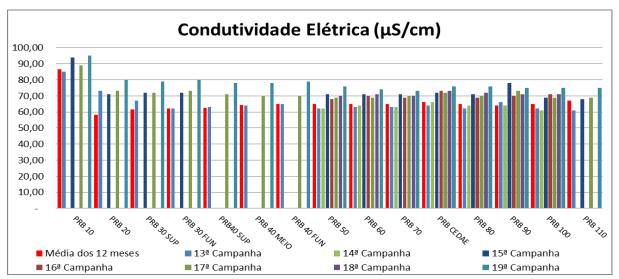


Figura VII-13 - Resultados de Condutividade Elétrica - Rio Paraíba do Sul

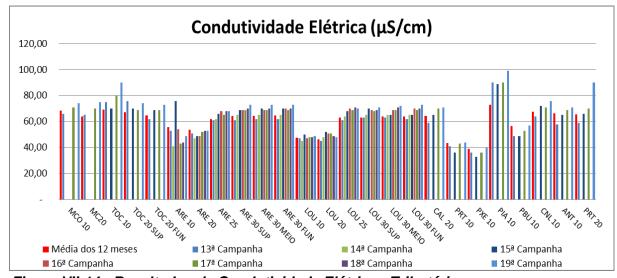


Figura VII-14 - Resultados de Condutividade Elétrica - Tributários

VII.6 - pH

Medida da concentração relativa dos íons de hidrogênio numa solução; esse valor indica a acidez ou alcalinidade da solução. É calculado como o logaritmo negativo de base 10 da concentração de íons de hidrogênio em moles por litro. Um valor de pH 7 indica uma solução neutra: índice de pH maiores de 7 são básico, e os abaixo de 7 são ácidos

As amostras dos pontos LOU30MEIO e LOU30FUNDO apresentaram valores abaixo de 6, as demais amostras coletadas e analisadas apresentaram valores de pH dentro do intervalo de 6 a 9 previsto na resolução CONAMA 357/05 para corpos d'água de Classe 2.

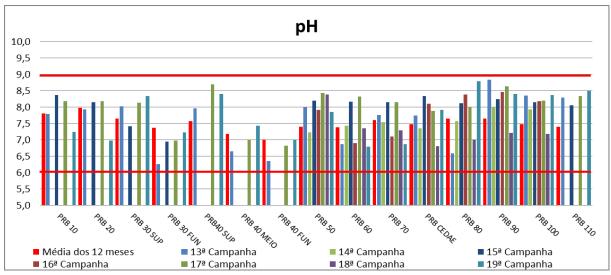


Figura VII-15 - Resultados de pH - Rio Paraíba do Sul

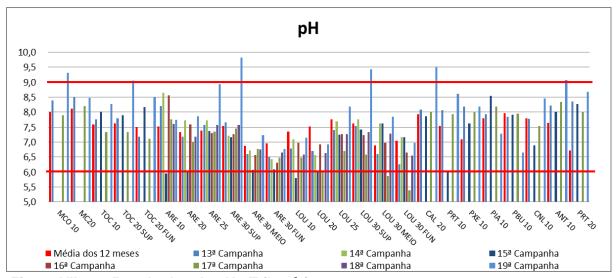


Figura VII-16 - Resultados de pH - Tributários

VII.7 - Oxigênio Dissolvido - OD

As principais fontes de oxigênio para os ecossistemas aquáticos são a atmosfera e a fotossíntese realizada por algas e por macrófitas. Para rios, em geral, a atmosfera constitui-se em uma importante fonte de oxigênio, porquanto a dinâmica fluvial é caracterizada por exercer turbulência suficiente para permitir constante troca de gases na interface água-atmosfera.

Nas amostras coletadas no Rio Paraíba do Sul, os pontos PRB 40MEIO, PRB 40FUNDO e PRB CEDAE apresentaram resultados insatisfatórios em relação ao CONAMA 357/05, nos tributários os pontos ARE 30MEIO, ARE 30FUNDO, LOU 30MEIO e LOU 30FUNDO apresentaram resultados insatisfatórios em relação ao CONAMA 357/05, uma vez que o valor mínimo estabelecido pelo CONAMA 357/05 estabelece mínima de OD para corpos d'água de Classe 2 é de 5 mg/L.

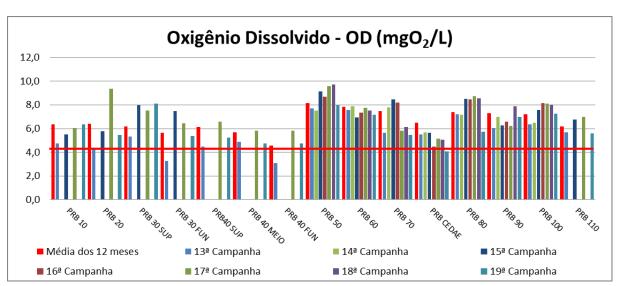


Figura VII-17 - Resultados de OD – Rio Paraíba do Sul

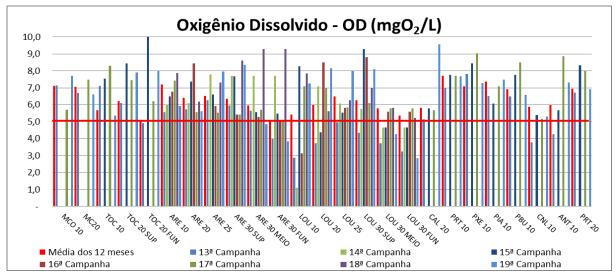


Figura VII-18 - Resultados de OD - Tributários

VII.8 - Demanda Bioquímica de Oxigênio - DBO

A DBO₅ é o parâmetro fundamental para o controle da poluição das águas por matéria orgânica. Nas águas naturais a DBO₅ representa a demanda potencial de oxigênio dissolvido que poderá ocorrer devido à estabilização dos compostos orgânicos biodegradáveis, o que poderá trazer os níveis de oxigênio nas águas abaixo dos exigidos pelos peixes, levando-os à morte. É, portanto importante padrão de classificação das águas naturais. A DBO₅ é também ferramenta imprescindível nos estudos de auto-depuração dos cursos d'água. Além disso, a DBO₅ constitui-se em importante parâmetro na composição dos índices de qualidade das águas.

A DBO₅ das amostras coletadas no rio Paraíba do Sul (Trecho de Baixa Vazão), apresentaram valores insatisfatórios nos pontos PRB50, PRB60, PRB70 e PRB90, nos Tributários, os valores insatisfatórios apresentaram no ponto MCO10, PIA10 e PBU10, os demais pontos atenderam à resolução CONAMA 357/05 para corpos d'água de Classe 2 em todos os pontos coletados que é de 5mg/L.

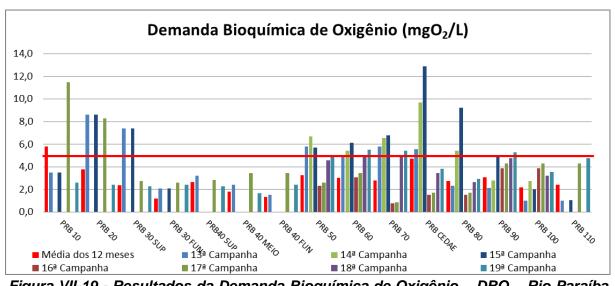


Figura VII-19 - Resultados da Demanda Bioquímica de Oxigênio - DBO - Rio Paraíba do Sul

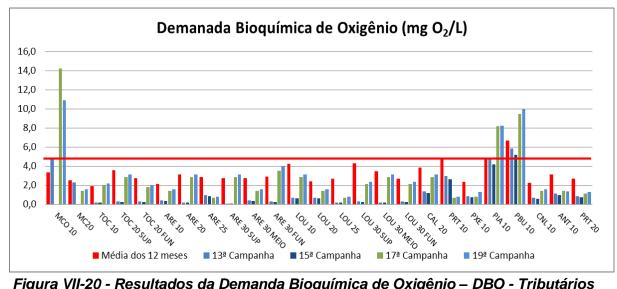


Figura VII-20 - Resultados da Demanda Bioquímica de Oxigênio - DBO - Tributários

VII.9 - Demanda Química de Oxigênio - DQO

A DQO é uma medida da quantidade de oxidantes fortes necessária para a oxidação completa de todas as espécies reduzidas presentes na água. O volume de oxidante consumido expressa a concentração de toda a matéria orgânica, biodegradável ou não, além de outras espécies como o Fe (II), Mn (II), etc.,

passíveis de sofrer oxidação. Os fortes agentes químicos oxidantes utilizados na DQO conseguem quebrar todas as cadeias de carbono existentes.

No rio Paraíba do Sul e os Tributários, apresentaram valores obedecendo a relação de DQO/DBO. A resolução CONAMA 357/05 para os corpos d'água de Classe 2 não apresenta valores máximos ou mínimos para DQO.

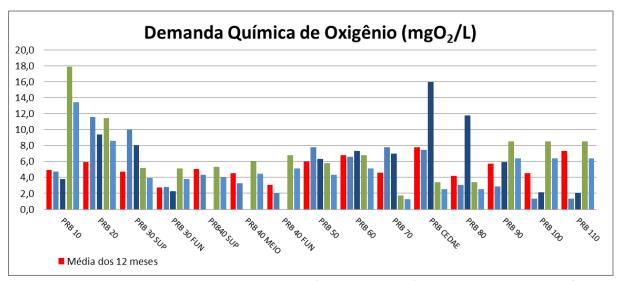


Figura VII-21 - Resultados da Demanda Química de Oxigênio – DQO – Rio Paraíba do Sul

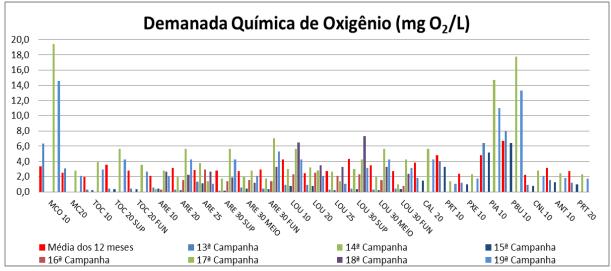


Figura VII-22 - Resultados da Demanda Química de Oxigênio - DQO - Tributários

VII.10 - Parâmetros de Tamponamento (Alcalinidade Total)

A alcalinidade mede o total de substâncias presentes na água capazes de neutralizar ácidos, ou seja, é uma medida da capacidade tamponante do sistema. Desta forma, uma alcalinidade alta indica uma grande resistência do sistema à mudança do pH perante a adição de substâncias ácidas. Uma das principais substâncias responsáveis por tamponar os ecossistemas aquáticos são os bicarbonatos, uma vez que são relativamente abundantes nos corpos d'água.

Quando um ambiente apresenta pH ligeiramente ácido, a alcalinidade presente é basicamente a Alcalinidade a Bicarbonato. A Alcalinidade a Carbonato ocorrem em ambientes com maiores concentrações Cálcio e Magnésio na forma de óxido ou sal e com pH alcalino. A resolução CONAMA 357/05 para os corpos d'água de Classe 2 não apresenta valores máximos ou mínimos para Alcalinidade Total.

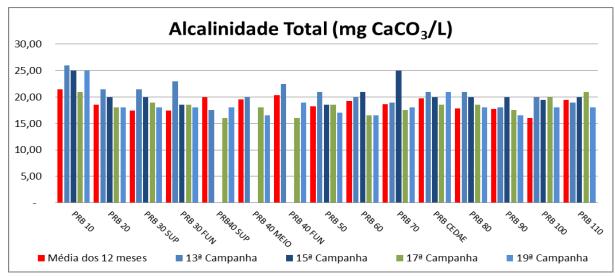


Figura VII-23 - Resultados da Alcalinidade Total – Rio Paraíba do Sul

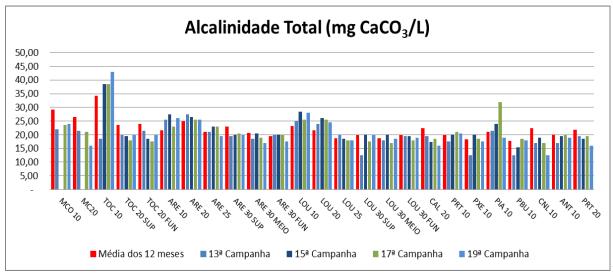


Figura VII-24 - Resultados da Alcalinidade Total - Tributários

VII.11 - Cálcio, Magnésio, Sódio, Potássio, Cloretos e Sulfato

Os íons cálcio, magnésio, sódio, potássio, cloretos e sulfatos são os principais responsáveis pela dureza e salinidade da água, além de desempenharem importante papel na produtividade global dos ecossistemas aquáticos. Comumente abundantes na coluna d'água, estes íons são raramente limitantes para a produção primária. Vários fatores podem influenciar a composição iônica dos corpos, tais como a geologia da bacia de drenagem e o regime de chuvas, além da influência antrópica.

O cálcio é encontrado no meio aquático principalmente nas formas de carbonato e bicarbonato de cálcio. Esse sal é essencial para o crescimento de algas, macrófitas aquáticas e muitos animais, em especial os moluscos. No rio Paraíba do Sul as concentrações de cálcio variaram entre 1,07 e 2,32 mg/L, já os tributários variaram 1,03 e 4,10 mg/L.

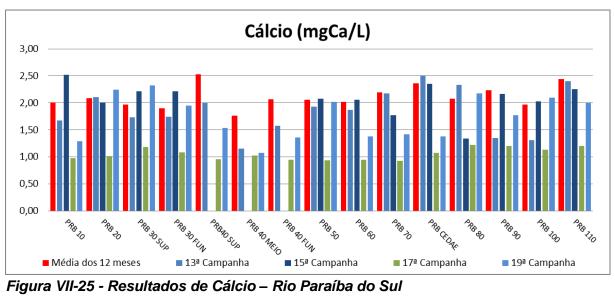


Figura VII-25 - Resultados de Cálcio - Rio Paraíba do Sul

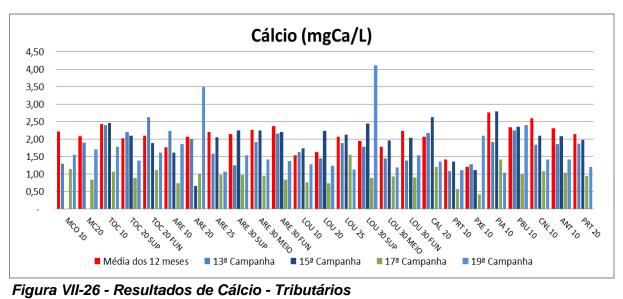


Figura VII-26 - Resultados de Cálcio - Tributários

O magnésio destaca-se por participar da formação da molécula de clorofila. As concentrações de magnésio foram baixas no tanto no rio Paraíba do Sul quanto nos Tributários.

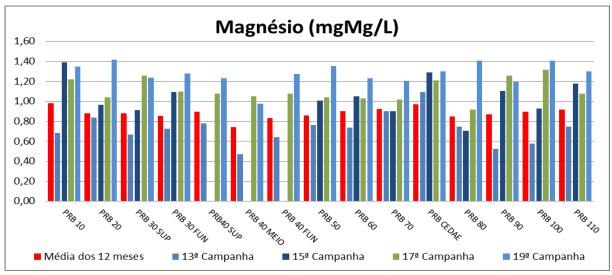


Figura VII-27 - Resultados de Magnésio - Rio Paraíba do Sul

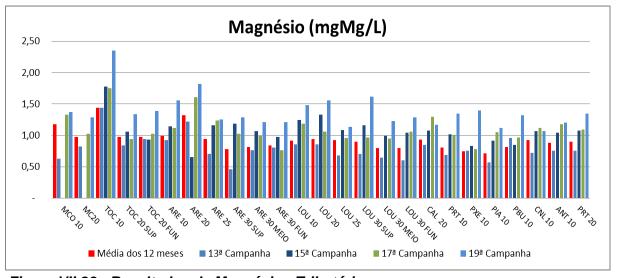


Figura VII-28 - Resultados de Magnésio - Tributários

As concentrações de sódio variaram no rio Paraíba do Sul entre 0,98 e 1,42 mg/L, já nos tributários variaram entre 1,07 e 2,36 mg/L.

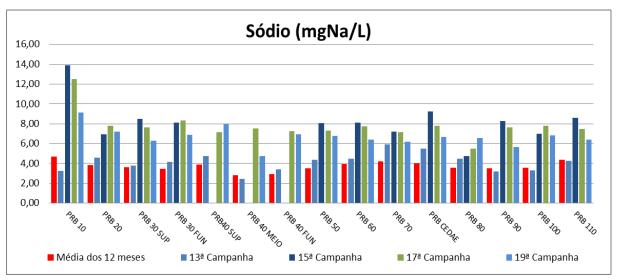


Figura VII-29 - Resultados de Sódio - Rio Paraíba do Sul

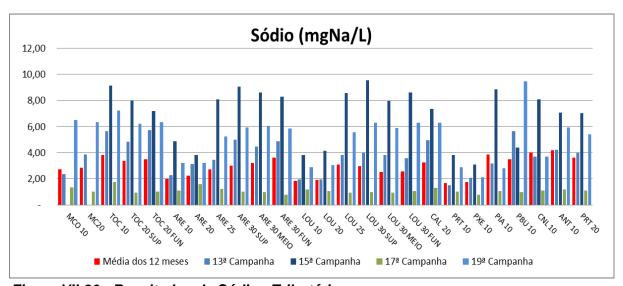


Figura VII-30 - Resultados de Sódio - Tributários

As concentrações de potássio variaram no rio Paraíba do Sul entre 4,74 a 9,12 mg/L. Já nos tributários variaram entre 2,11 e 9,48 mg/L.

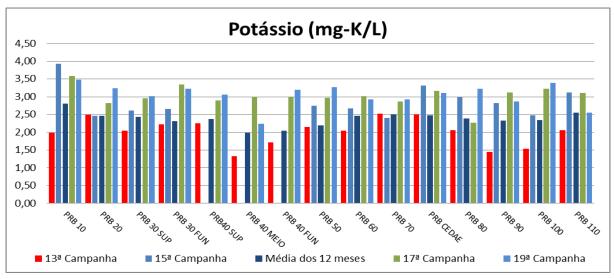


Figura VII-31 - Resultados de Potássio - Rio Paraíba do Sul

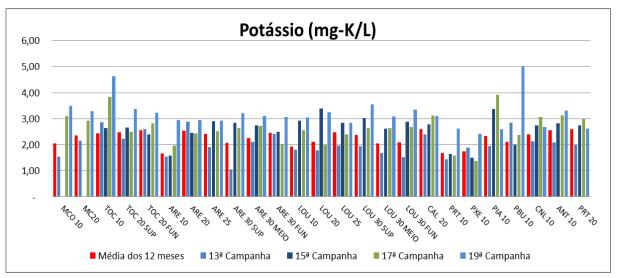


Figura VII-32 - Resultados de Potássio - Tributários

Os cloretos podem estar presentes em quase todas as águas naturais, sendo originários de infiltrações de água do mar, do subsolo contendo cloreto, de práticas agrícolas, de despejos domésticos ou industriais, de dejetos animais, de resíduos industriais (galvanização, fábricas de papel), de instalações de abrandamento de água, de poços e ainda de refinarias de petróleo.

De acordo com a Resolução Nº 357/2005 do CONAMA a concentração máxima de cloretos permitida para águas de Classe 2 é 250 mg/L. Todas as estações amostradas apresentaram concentrações abaixo do limite permitido por esta resolução. No rio Paraíba do Sul, a concentração máxima de cloretos foi 10,70 mg/L, já nos tributários o máximo alcançado também foi de 22,60mg/L.

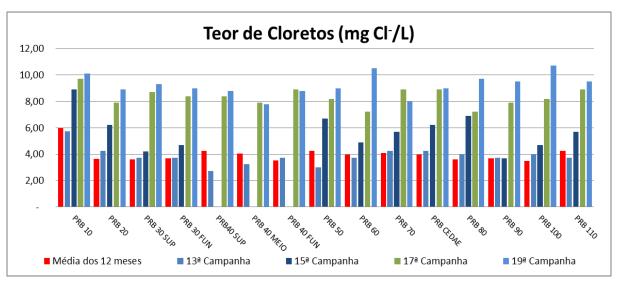


Figura VII-33 - Resultados de Teor de Cloretos - Rio Paraíba do Sul

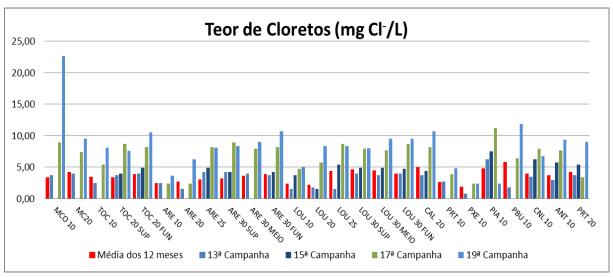


Figura VII-34 - Resultados de Teor de Cloretos - Tributários

As principais origens dos íons sulfato para o meio aquático são os depósitos minerais (especialmente gipsita e anidrita), a oxidação de matéria orgânica e despejos industriais. De acordo com a Resolução Nº 357/2005 do CONAMA, as concentrações de sulfato não podem exceder 250 mg/L para águas de Classe 2, as amostras coletadas tanto no Paraíba do Sul quanto nos tributários, apresentaram valores muito abaixo ao que está preconizado na resolução.

Figura VII-35 - Resultados de Sulfato - Rio Paraíba do Sul

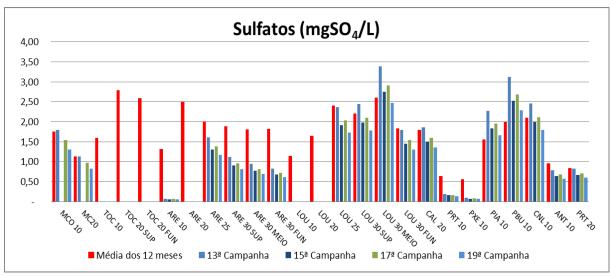


Figura VII-36 - Resultados de Sulfato - Tributários

VII.12 - Série Nitrogenada (Nitrato, Nitrogênio Amoniacal e Nitrogênio Total).

O nitrogênio é um elemento importante para assegurar a produtividade de ambientes aquáticos e, em baixas concentrações, pode tornar-se um fator limitante. O nitrogênio amoniacal (amônia), o nitrato e o nitrito constituem-se nas principais formas inorgânicas de nitrogênio presentes na água. O Nitrogênio orgânico inclui matéria natural (proteínas, peptídeos, ácidos nucléicos, uréia) além de numerosos compostos orgânicos sintéticos.

No rio Paraíba do Sul as concentrações de nitrato apresentaram valores entre 0,60 e 1,30mg/L apresentando aumento em comparação às campanhas anteriores, apesar de não ter sido observado situações de não conformidade com a Resolução Nº 357/2005 do CONAMA, que estabelece, para águas de Classe 2, a concentração máxima de 10 mg/L, já os Tributários apresentaram valores entre 0,60 e 1,2mg/L apresentando redução em relação a campanha anterior.

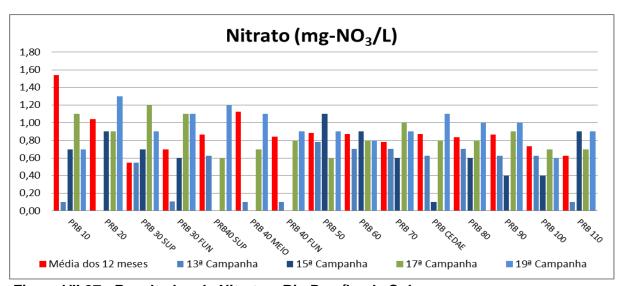


Figura VII-37 - Resultados de Nitrato - Rio Paraíba do Sul

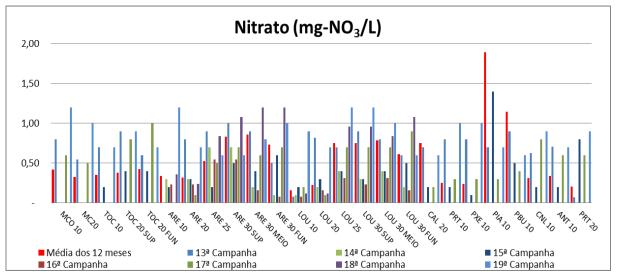


Figura VII-38 - Resultados de Nitrato - Tributários

Os resultados de nitrogênio amoniacal tanto no Paraíba do sul, quanto nos Tributários apresentaram redução e estabilização dos resultados em relação ao histórico, apresentando valores máximo no Paraíba do Sul de 0,22mg/L já nos tributários podemos observar no máximo 0,26mg/L, os mesmos permaneceram abaixo dos limite máximo permitido pela resolução CONAMA 357/05 para corpos d'água de classe 2 que é de 3,7mg/L para amostras com valor de pH abaixo de 7,5.

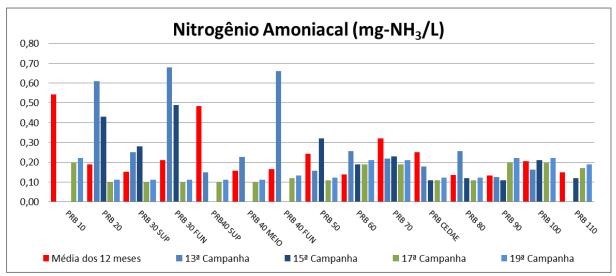


Figura VII-39 - Resultados de Nitrogênio Amoniacal - Rio Paraíba do Sul

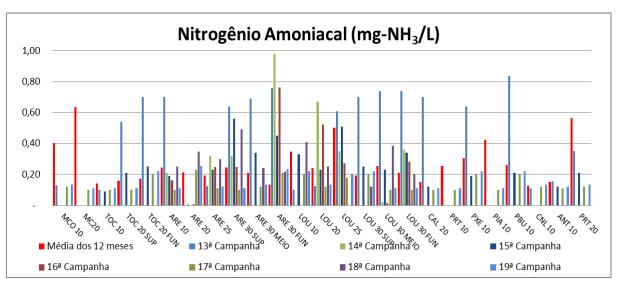


Figura VII-40 - Resultados de Nitrogênio Amoniacal - Tributários

O nitrogênio total é dado pela soma das frações orgânica e inorgânica dissolvidas na água. Em ambientes aquáticos o nitrogênio total é um dos principais indicadores de eutrofização, juntamente com o fósforo e a clorofila-a. A concentração de nitrogênio variou ente 1,16mg/L e 2,09mg/L nos pontos ao longo do Paraíba do Sul, já para os Tributários, os valores variaram entre 0,88 e 1,78mg/L, valores esses que corroboram a redução dos valores de Nitrato e Nitrogênio Amoniacal.

Para o Nitrogênio Total, a resolução CONAMA 357/05 para corpos d'água de classe 2 não apresenta valores de referência.

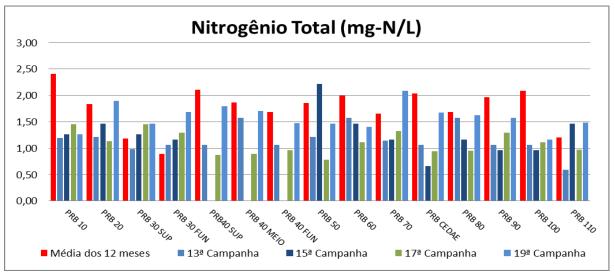


Figura VII-41 - Resultados de Nitrogênio Total - Rio Paraíba do Sul

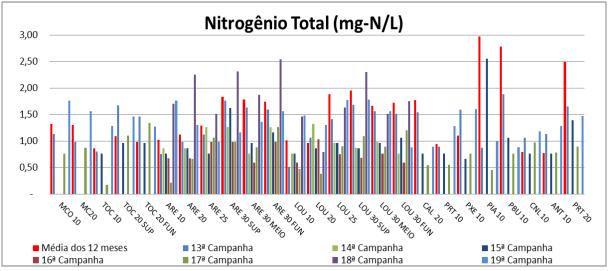


Figura VII-42 - Resultados de Nitrogênio Total - Tributários

VII.13 - Formas Fosfatadas (Fósforo Total e Ortofosfato)

O fósforo é o principal limitante da produção primária no ambiente aquático, sendo também o principal responsável pelo processo de eutrofização artificial. Esse nutriente participa de processos fundamentais ao metabolismo dos seres vivos, tais como armazenamento de energia (molécula de ATP) e estruturação da membrana celular (fosfolipídios). A fonte primária de fósforo para o ambiente aquático está nas

rochas da bacia de drenagem. No entanto, outras fontes, tais como decomposição de matéria orgânica terrestre, lançamento de esgotos, fertilizantes agrícolas, dentre outras, podem representar contribuições superiores em alguns ecossistemas.

O fósforo pode se apresentar nas águas sob três formas diferentes. Os fosfatos orgânicos são a forma em que o fósforo compõe moléculas orgânicas. Os ortofosfatos, por outro lado são representados pelos radicais PO₄-3, HPO₄-2 e H₂PO₄-4, que se combina com cátions formando sais inorgânicos nas águas.

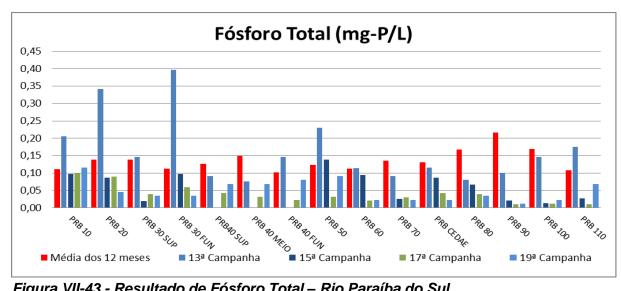


Figura VII-43 - Resultado de Fósforo Total - Rio Paraíba do Sul

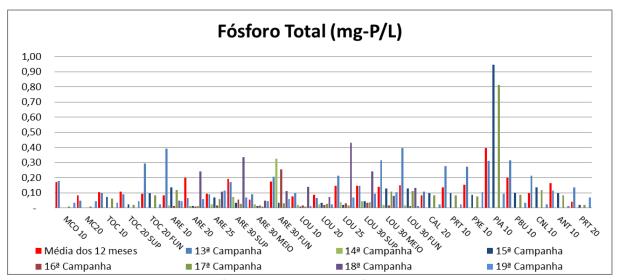


Figura VII-44 - Resultado de Fósforo Total - Tributários

As concentrações de Fósforo para todas as amostras coletadas variaram entre 0,01mg/L e 0,12mg/L sendo que a resolução CONAMA 357/05 para corpos d'água de classe 2 estabelece valores até 0,030 mg/L, em ambientes lênticos e, até 0,050 mg/L, para ambientes intermediários, com tempo de residência entre 2 e 40 dias, e tributários diretos de ambiente lêntico em ambiente lótico e tributários de ambientes intermediários até 0,1 mg/L. De maneira geral todos os pontos estiveram em não conformidade com a Resolução CONAMA, acompanhando o histórico das amostras.

A fração de fósforo mais importante aos organismos aquáticos é ortofosfato, por ser a principal forma assimilada. No rio Paraíba do Sul as concentrações de ortofosfato, ou fósforo solúvel reativo variaram entre 0,01 a 0,05mg/L, já nos tributários os valores variaram entre 0,01 a 0,08 mg/L valores que demonstram o aumento em relação a alguns pontos amostrados.

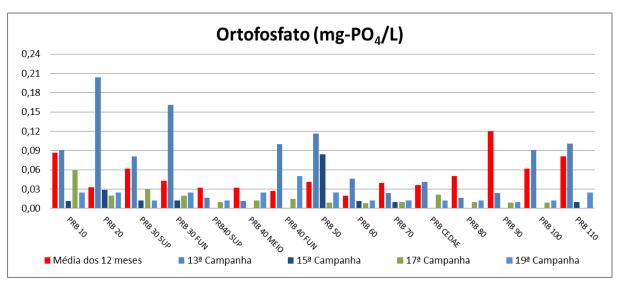


Figura VII-45 - Resultado de Ortofosfato - Rio Paraíba do Sul

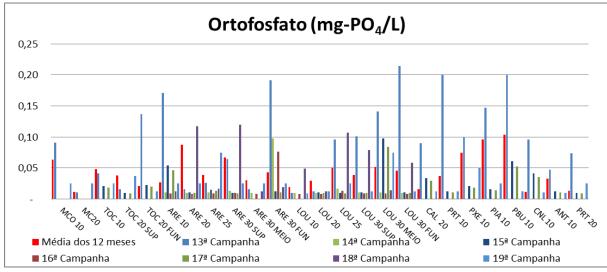


Figura VII-46 - Resultado de Ortofosfato - Tributários

VII.14 - Sílica

A sílica presente no ambiente aquático é proveniente, principalmente, da decomposição de minerais de silicato (Esteves, 1998). É de fundamental importância para a formação de carapaças de diatomáceas, podendo ser um fator limitante ao crescimento destes organismos. No rio Paraíba do Sul a concentração variou de 4,0mg/L e 7,1mg/L já nos Tributários os valore variaram entre 4,0mg/L e 5,4mg/L

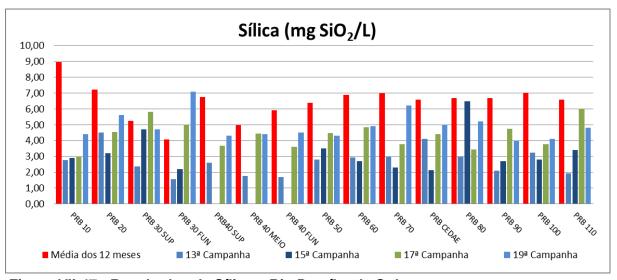


Figura VII-47 - Resultados de Sílica - Rio Paraíba do Sul

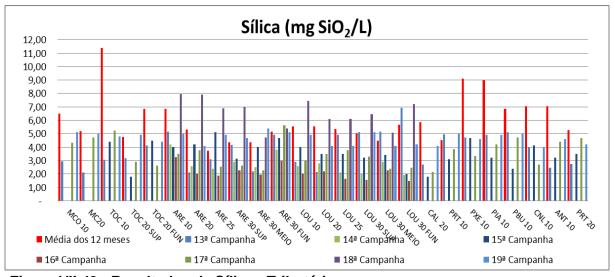


Figura VII-48 - Resultados de Sílica - Tributários

VII.15 - Fenóis

Os fenóis são compostos altamente tóxicos a organismos aquáticos e ao homem, que atingem o ambiente aquático principalmente através de descargas de efluentes industriais. A Resolução Nº 357/2005 do CONAMA estabelece o limite de (0,003 mg/L) como sendo o limite permitido para águas de Classe 2.

A presença de fenóis acima deste limite não foi detectada no rio Paraíba do Sul tão pouco nos tributários, com valores abaixo do limite máximo estabelecido pelo Conama. Nos tributários, em alguns pontos foram detectados traços de fenóis, contudo, estiveram abaixo do limite de detecção do método.

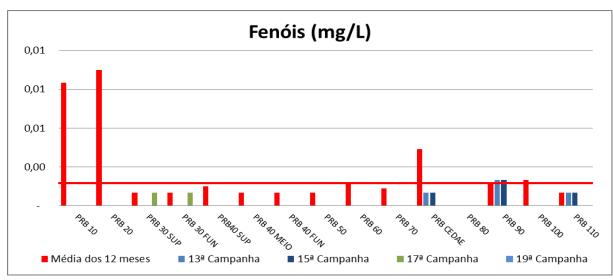


Figura VII-49 - Resultados de Fenóis - Rio Paraíba do Sul

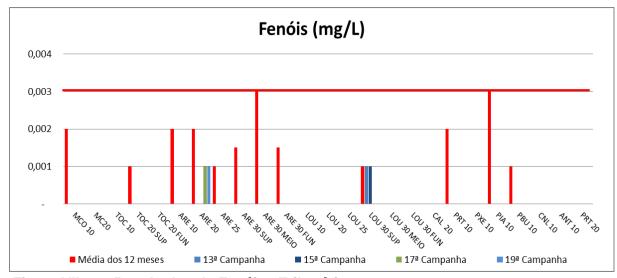


Figura VII-50 - Resultados de Fenóis - Tributários

VII.16 - Óleos e Graxas

Os óleos e graxas são substâncias de origem mineral, vegetal ou animal, solúveis em n-hexano. Compreendem principalmente ácidos graxos, gorduras animais, sabões, óleos, graxas e ceras. As principais fontes destas substâncias para o meio aquático são despejos de resíduos industriais, esgotos domésticos e efluentes oriundos de oficinas mecânicas e postos de gasolina. De acordo com a Resolução Nº 357/2005 do CONAMA, os óleos e graxas devem ser visualmente ausentes em corpos d'água. Todos os pontos de coleta ao longo do Paraíba do Sul nas três campanhas e nos tributários apresentaram valores abaixo ao limite de detecção do método.

VII.17 - Cianetos

Os cianetos são substâncias extremamente tóxicas aos organismos aquáticos e ao homem. Geralmente são incorporados à água através de despejos industriais ou de atividades agrícolas, de garimpo ou mineração. As concentrações de cianetos foram menores que o limite de detecção do método adotado em todas as estações ao longo do rio Paraíba do Sul nas três campanhas e nos tributários.

VII.18 - Elementos de Traço – (Ferro total, Ferro dissolvido, Manganês, Chumbo, Zinco, Cádmio, Cobre, Cromo hexavalente, Mercúrio e Alumínio).

Estes elementos, que são chamados 'elementos-traço', 'metais pesados' ou 'micronutrientes', ocorrem na natureza, de modo geral, em pequenas concentrações. O ferro, o manganês, o zinco e o cobre têm importante papel no metabolismo dos organismos aquáticos, uma vez que participam de um grande número de processos fisiológicos, tais como fotossíntese, cadeia respiratória, fixação de nitrogênio, entre outros. No entanto, quando em altas concentrações esses elementos podem ser

tóxicos. O chumbo, o cádmio, o cromo, o mercúrio e o alumínio não apresentam função biológica conhecida e são geralmente tóxicos a muitos organismos.

As principais fontes naturais de elementos-traço para ecossistemas aquáticos são o intemperismo de rochas e a erosão de solos ricos nestes elementos. As fontes antrópicas são o lançamento de efluentes domésticos e de efluentes provenientes de atividades industriais, atividades de mineração e atividades agrícolas, além da poluição atmosférica.

Alguns elementos-traço, como o manganês, o cobre, o zinco e o cobalto, tomam parte de vários processos no metabolismo de ecossistemas aquáticos. Em contrapartida, outros elementos, como mercúrio, chumbo, níquel, cádmio, cromo e estanho, não têm função biológica conhecida e são tóxicos a uma vasta gama de organismos.

Os parâmetros Cromo Hexavalente e Mercúrio total, apresentaram concentrações de inferiores ao limite de detecção dos respectivos métodos adotados.

As concentrações de ferro total, no rio Paraíba do Sul variaram entre 0,01 e 0,22mg/L, já nos tributários os valores variaram entre 0,08 e 0,33mg/L.

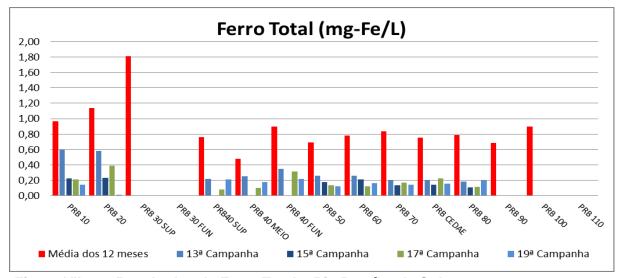


Figura VII-51 - Resultados de Ferro Total – Rio Paraíba do Sul

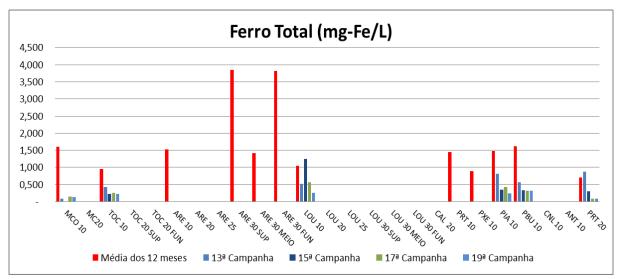


Figura VII-52 - Resultados de Ferro Total - Tributários

A Resolução Nº 357/2005 do CONAMA não estabelece um limite para ferro total, mas estabelece a concentração máxima de 0,30mg/L de ferro dissolvido para águas de Classe 2. No rio Paraíba do Sul os resultados variaram entre 0,01 e 0,11mg/L, já nos tributários os resultados variaram entre <0,01 e 0,09mg/L, desta forma não há valores acima do limite máximo estabelecido pela Resolução Conama.

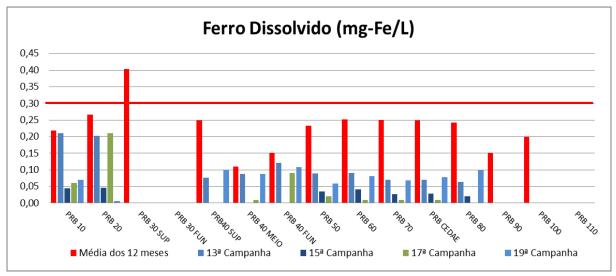


Figura VII-53 - Resultados de Ferro Dissolvido - Rio Paraíba do Sul

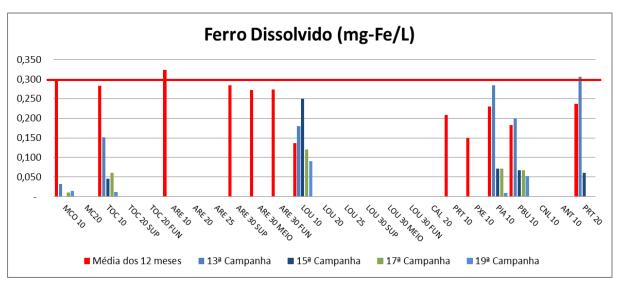


Figura VII-54 - Resultados de Ferro Dissolvido - Tributários

As concentrações de manganês em todos os pontos coletados se mantiveram dentro do valor máximo estabelecido pela Resolução Nº 357/2005 do CONAMA, que estabelece um limite máximo de 0,10 mg/L para águas de Classe 2.

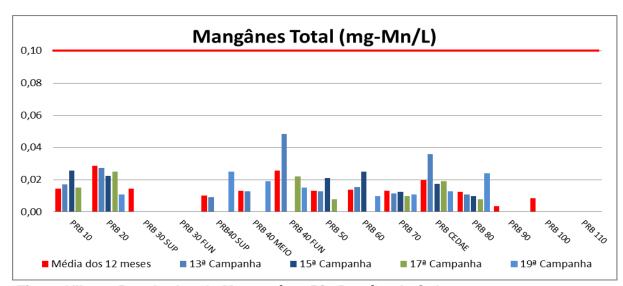


Figura VII-55 - Resultados de Manganês - Rio Paraíba do Sul

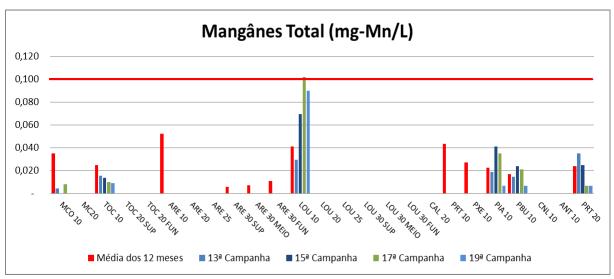


Figura VII-56 - Resultados de Manganês - Tributários

As concentrações de chumbo se mantiveram abaixo do limite máximo estabelecido pela Resolução nº 357/2005 do CONAMA, que estabelece um limite máximo de 0,01mg/L para águas de Classe 2.

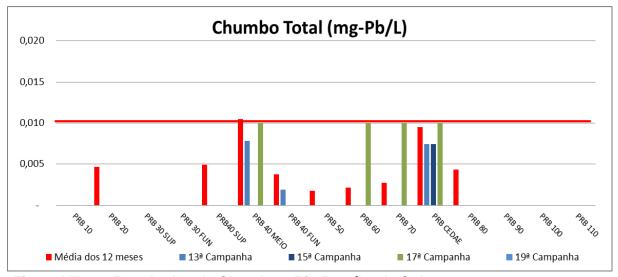


Figura VII-57 - Resultados de Chumbo - Rio Paraíba do Sul

As concentrações de Zinco no Paraíba do Sul variaram entre <0,001 e 0,06mg/L, já nos tributários todos os valores ficaram <0,001 e 0,07mg/L, contudo

também baixo. Não foram detectadas situações de não conformidade com a Resolução Nº 357/2005 do CONAMA, que estabelece um limite máximo de 0,18mg/L para águas de Classe 2.

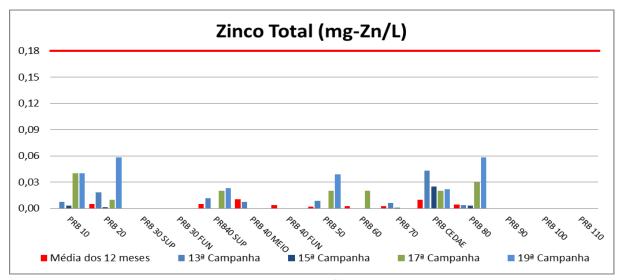


Figura VII-58 - Resultados de Zinco - Rio Paraíba do Sul

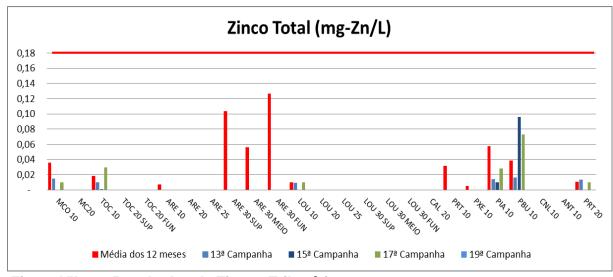


Figura VII-59 - Resultados de Zinco - Tributários

As concentrações de Cobre Total em todos os pontos do Paraíba do Sul e dos tributários, variaram entre de <0,001 e 0,01. Não foram detectadas situações de não

conformidade com a Resolução Nº 357/2005 do CONAMA, que estabelece um limite máximo de 0,009mg/L para águas de Classe 2 para Cobre Dissolvido e não Cobre Total.

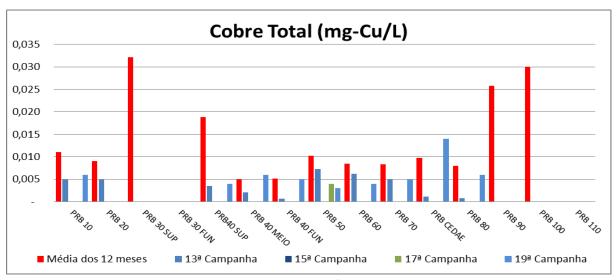


Figura VII-60 - Resultados de Cobre - Rio Paraíba do Sul

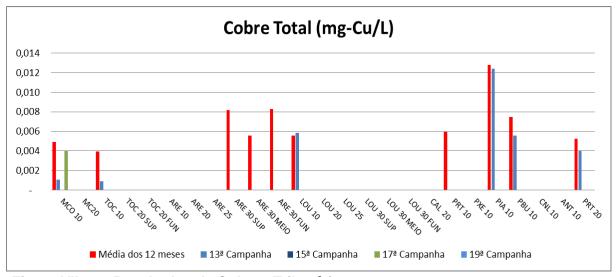


Figura VII-61 - Resultados de Cobre - Tributários

As concentrações de Alumínio Total no Paraíba do Sul variaram entre 0,08 e 0,89mg/L, já nos tributários variaram entre 0,04 e 0,19mg/L. Não foram detectadas

situações de não conformidade com a Resolução Nº 357/2005 do CONAMA, que estabelece um limite máximo de 0,1mg/L para águas de Classe 2 para Alumínio Dissolvido e não Alumínio Total.

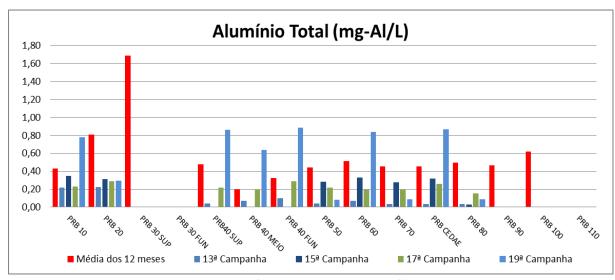


Figura VII-62 - Resultados de Alumínio Total - Rio Paraíba do Sul

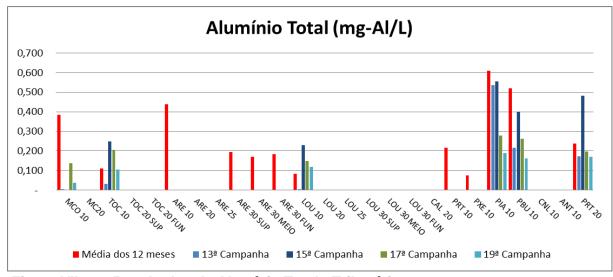


Figura VII-63 - Resultados de Alumínio Total - Tributários

As concentrações de Cádmio Total no Paraíba do Sul e Tributários apresentaram valores <0,0001 (menor que o limite de detecção do método). Não

foram detectadas situações de não conformidade com a Resolução Nº 357/2005 do CONAMA, que estabelece um limite máximo de 0,001mg/L para águas de Classe 2. Nos tributários todas as amostras apresentaram valores menores que o limite de detecção do método.

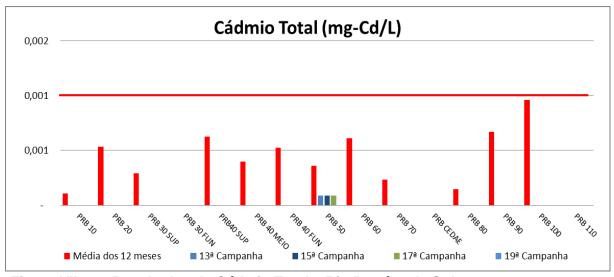


Figura VII-64 - Resultados de Cádmio Total - Rio Paraíba do Sul

VII.19 - Clorofila-α

A clorofila é um dos pigmentos responsáveis pelo processo fotossintético. A clorofila a é a mais comum das clorofilas (a, b, c, e d) e representa, aproximadamente, de 1 a 2% do peso seco do material orgânico em todas as algas planctônicas. Desta maneira clorofila a é um indicador da biomassa algal, sendo considerada a principal variável indicadora de estado trófico dos ambientes aquáticos. Nem sempre o resultado da biomassa algal através da análise da clorofila-a expressa a realidade. Existem algas que apresentam outros tipos de pigmentos sintetizantes em quantidades significativas, que se não forem analisados não traduzem a real situação da comunidade fitoplanctônica. Além disso, como as moléculas de clorofila não são estáveis, dependendo das condições do meio, tais como mudanças de pH, temperatura e luminosidade excessiva, elas podem sofrer degradação, originando produtos conhecidos como feo-pigmentos. A feofitina é o

produto de degradação da clorofila-a e pode interferir nas medidas deste pigmento, pois absorve a luz na mesma faixa do espectro da luz visível que a clorofila-a.

Foram detectadas situações de não conformidade com a Resolução Nº 357/2005 do CONAMA, nos pontos PRB60, ARE 30SUP e PIA10, que estabelece um limite máximo de 10μg/L para águas de Classe 2.

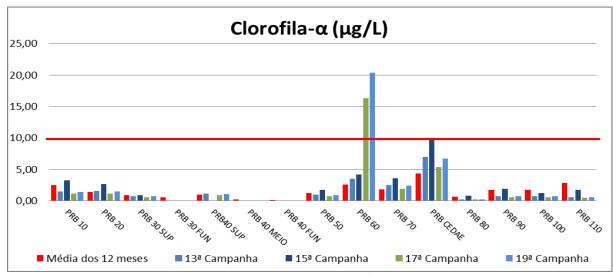


Figura VII-65 - Resultados de Clorofila-a - Rio Paraíba do Sul

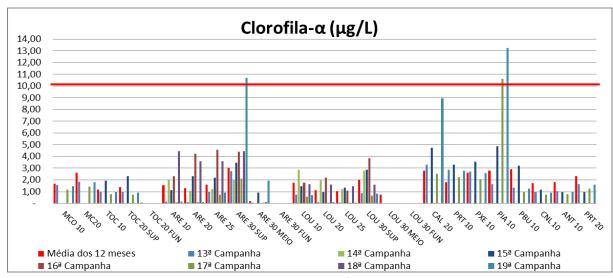
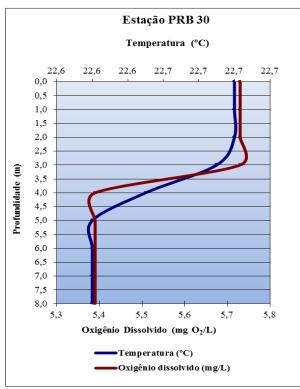
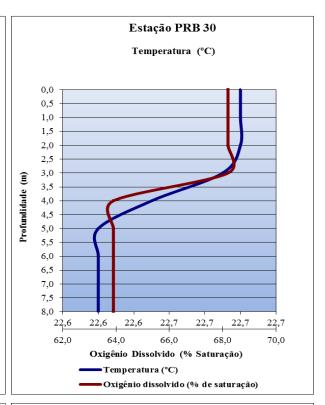


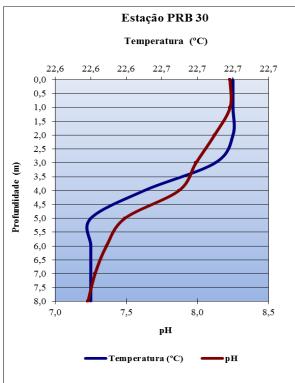
Figura VII-66 - Resultados de Clorofila-a - Tributários

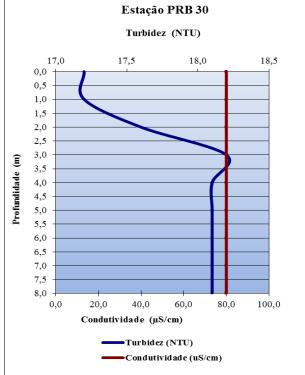
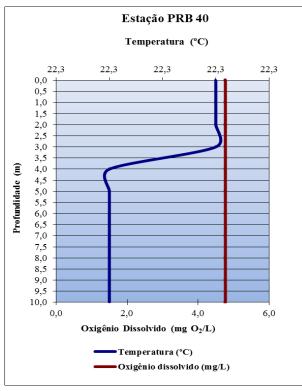
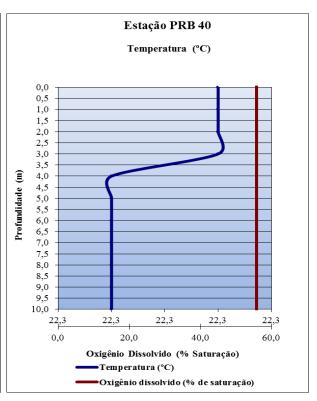
VII.20 - Perfil da Coluna D'Água

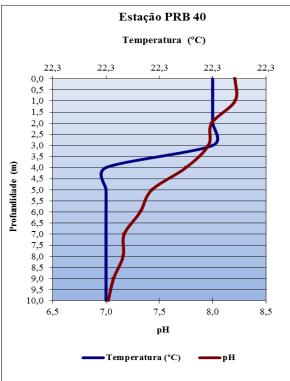
Não é raro encontrar ao mesmo tempo condições aeróbicas e anaeróbicas em partes diferentes do mesmo lago, particularmente no verão, devido à ocorrência de uma estratificação estável em camadas de água diferenciadas. A água próxima da superfície do lago é aquecida através da absorção de luz solar por materiais biológicos, enquanto a parte que está abaixo do nível de penetração da luz solar permanece fria. Como a água morna é menos densa que a água fria, a camada superior "flutua" sobre a camada inferior, ocorrendo pouca transferência de massa entre elas.

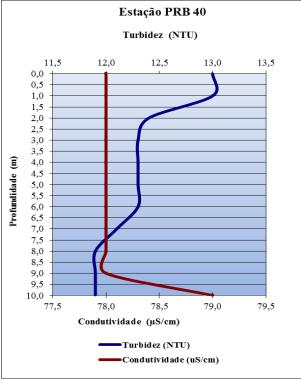
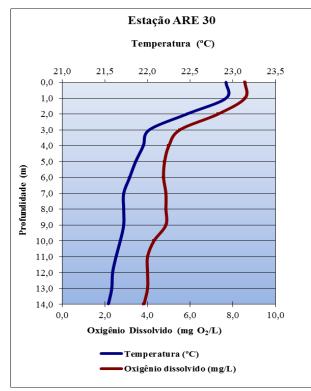
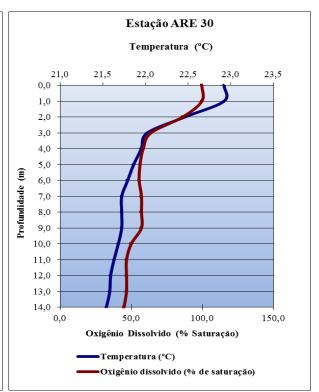

A camada superior geralmente contém níveis de oxigênio dissolvido próximos à saturação (solubilidade), condição que se deve tanto ao seu contato com o ar quanto à presença de O₂ produzido na fotossíntese das algas e plantas aquáticas. As condições da camada superior são aeróbicas e, consequentemente, os elementos dessa região existem em suas formas mais oxidadas.

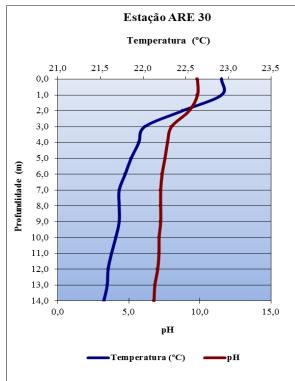

Perto do fundo ocorre depleção do oxigênio, visto que não existe contato com o ar e que o O₂ é consumido na decomposição de material biológico abundante. Sob tais condições anaeróbicas, os elementos químicos existem em suas formas mais reduzidas.

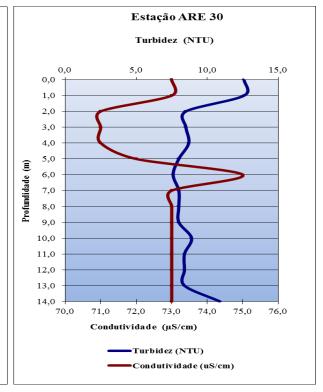
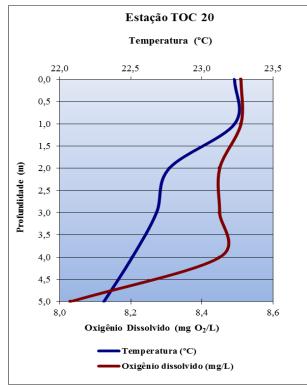
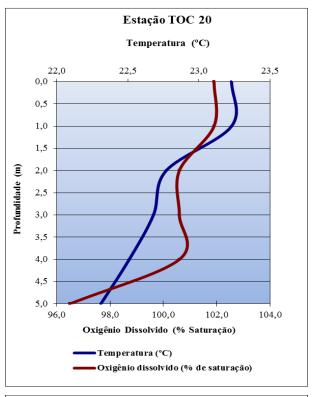

Outros fatores como pH, Turbidez e Condutividade Elétrica são importantes para verificação da estratificação do meio, revelando-se como importantes para verificação das condições do ambiente. Abaixo estão os perfis dos pontos de coleta PRB30, PRB40, ARE30, TOC20, LOU30, LOU20, MCO20 e ANT10.

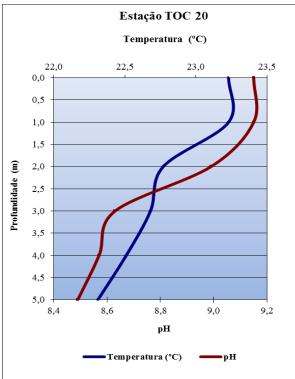




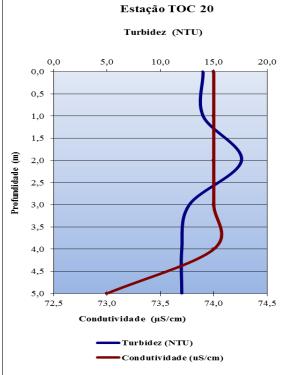
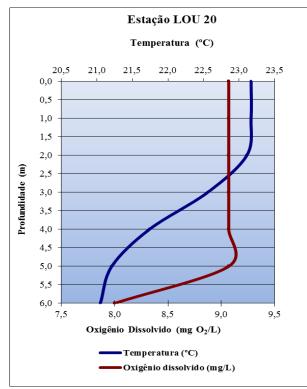
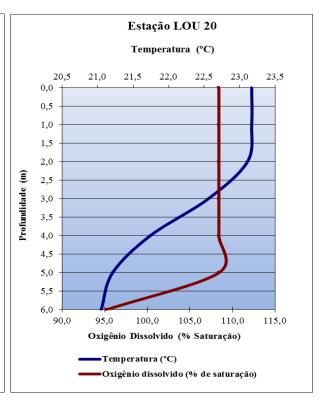

Figura VII-67 - Perfis ponto PRB 30

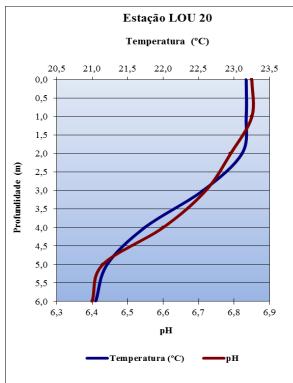




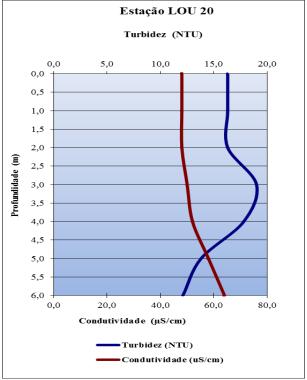
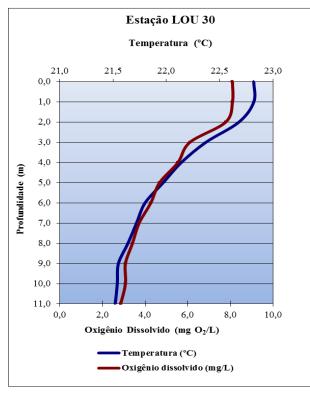
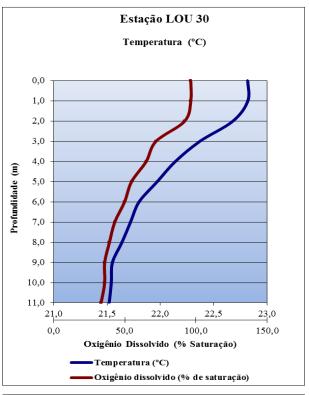

Figura VII-68 - Perfis ponto PRB 40

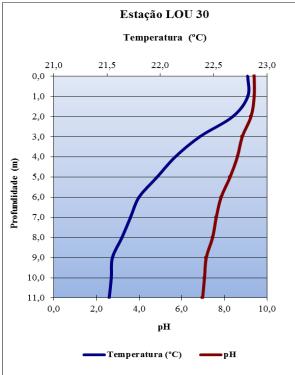




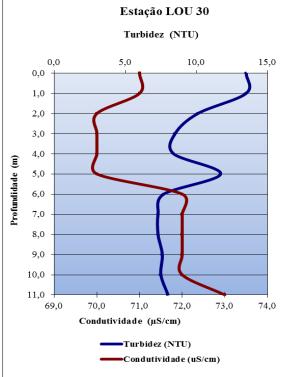
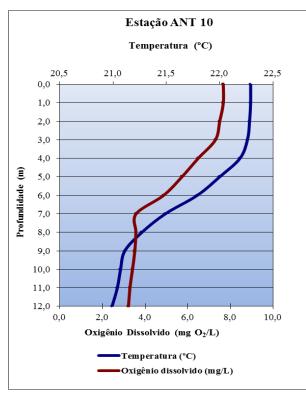
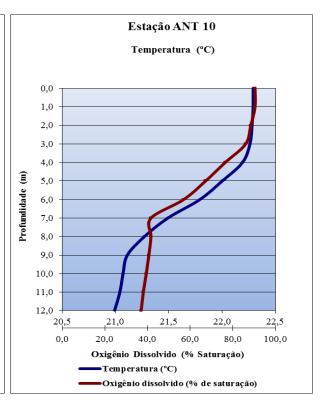

Figura VII-69 - Perfis ponto ARE 30

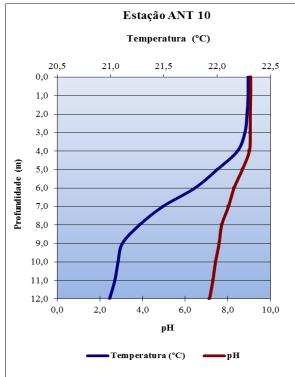




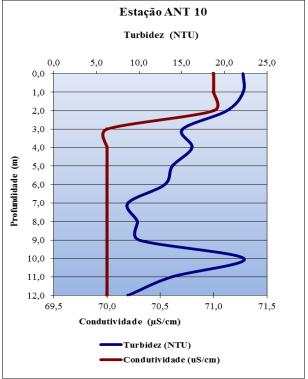
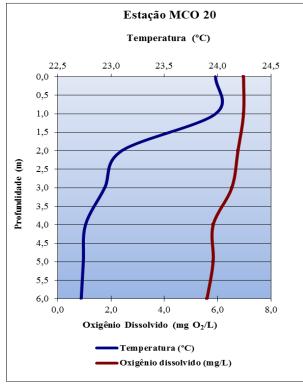
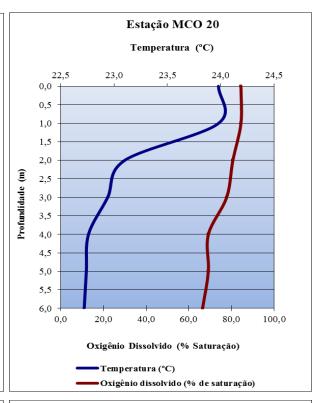

Figura VII-70 - Perfis ponto TOC 20

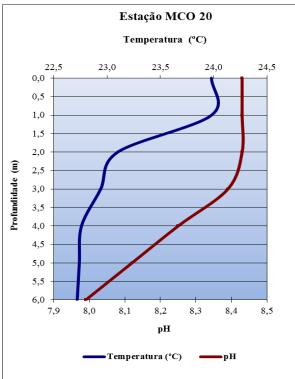





Figura VII-71 - Perfis ponto LOU 20


Figura VII-72 - Perfis ponto LOU 30


Figura VII-73 - Perfis ponto ANT 10

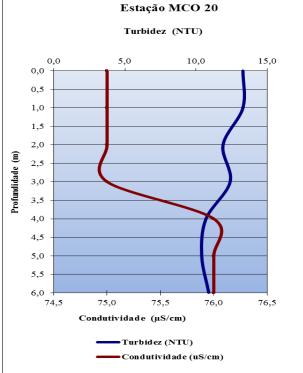


Figura VII-74 - Perfis ponto MCO 20

VII.21 - Coliformes Totais e Termotolerantes

O grupo dos coliformes é formado por diversos géneros de bactérias que pertencem à família *Enterobacteriaceae*. A definição histórica deste grupo foi baseada no método utilizado para a sua detecção, fermentação da lactose, e não sobre os princípios da bacteriologia sistemática. Por conseguinte, quando a técnica de fermentação é utilizada, este grupo é definido como sendo todos anaeróbios facultativos, gram negativos, em forma de bastonetes e não formadores de esporos.

O grupo dos coliformes totais incluem as bactérias na forma de bastonetes Gram negativos, não esporogênicos, aeróbios ou anaeróbios facultativos, que fermentam a lactose com formação de gás e ácido durante 48 horas a 35°C. O grupo inclui cerca de 20 espécies, dentre as quais encontram-se tanto bactérias originárias do trato gastrintestinal de humanos e outros animais de sangue quente, como também diversos gêneros e espécies de bactérias não entéricas, como *Serratia* e *Aeromonas*, por exemplo.

Na técnica de fermentação de tubos múltiplos, o grupo dos coliformes termotolerantes, que foram tradicionalmente chamados de **coliformes fecais**, é identificado pela sua capacidade de fermentar a lactose para produzir gás a 44,5 °C, sendo este também pertencente ao grupo dos Coliformes Totais. A definição é a mesma de coliformes totais, porém, restringindo-se aos membros capazes de fermentar a lactose com produção de gás, em 24 horas a 44,5 °C. Esta definição objetivou, em princípio, selecionar apenas os coliformes originários do trato gastrintestinal. Atualmente sabe-se, entretanto, que o grupo dos coliformes fecais inclui pelo menos três gêneros, *Escherichia, Enterobacter* e *Klebsiella*, dos quais dois (*Enterobacter* e *Klebsiella*) incluem cepas de origem não fecal.

Cerca de 95% dos coliformes existentes nas fezes humanas e de outros animais são *E. coli* e, dentre as bactérias de habitat reconhecidamente fecal, dentro do grupo dos coliformes fecais, *E. coli* é a mais conhecida e a mais facilmente diferenciada dos membros não fecais. Todos os demais membros do grupo têm uma associação

duvidosa com a contaminação fecal e *E. coli*, embora também possa ser introduzida a partir de fontes não fecais, é o melhor indicador de contaminação fecal conhecido até o momento. Por esse motivo, as tendências atuais se direcionam no sentido da detecção especifica de *E. coli*, com o desenvolvimento de diversos métodos que permitem a enumeração rápida dessa espécie diretamente.

Quando os tubos múltiplos são utilizados na técnica da fermentação, a densidade de coliformes pode ser estimada utilizando a tabela do número mais provável (NMP). Este número é baseado em fórmulas de probabilidade, sendo uma estimativa da densidade média de coliformes na amostra. Dessa forma o número de coliformes totais, coliformes termotolerantes e *E. coli* podem ser diferentes quanto ao resulta final ou podem ser iguais, pois a *E. coli* está dentro do grupo dos Coliformes Termotolerantes e este se encontra dentro do grupo dos Coliformes Totais. Sendo assim quando os resultados são iguais é devido ao fato da contaminação ser estritamente fecal.

Apesar de ter apresentado resultados de coliformes tanto totais quanto termotolerantes, para todos os valores de atenderam à resolução CONAMA 357/05 para corpos d'água de Classe 2, que estabelece como limite máximo permitido 1.000NMP/100mL. Das amostras coletadas e analisadas que apresentaram valores superiores ao limite máximo estabelecido pela resolução foram apenas os pontos PRB CEDAE e PBU10.

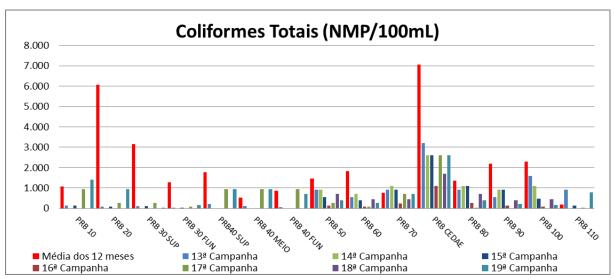


Figura VII-75 - Resultados de Coliformes Totais – Rio Paraíba do Sul

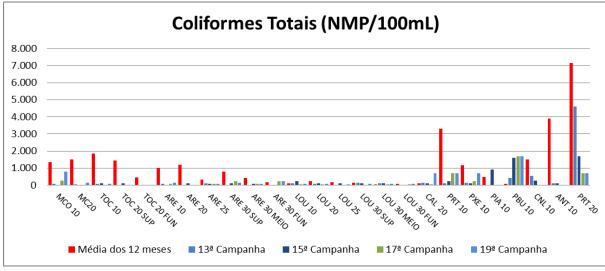


Figura VII-76 - Resultados de Coliformes Totais - Tributários

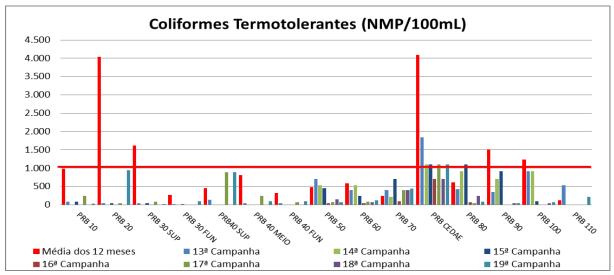


Figura VII-77 - Resultados de Coliformes Termotolerantes – Rio Paraíba do Sul

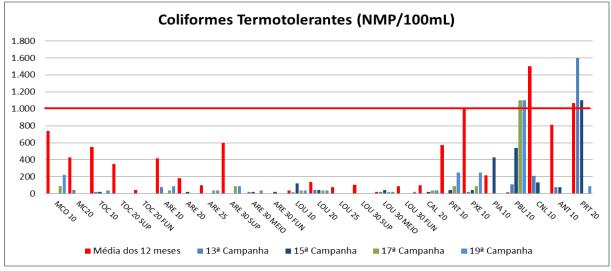


Figura VII-78 - Resultados de Coliformes Termotolerantes - Tributários

VII.22 - Fitoplâncton

Nas amostras coletadas, foi registrado um total de 37 táxons, presentes nas seguintes classes:

Cyanophyceae (6); Bacillariophyceae (3); Dinophyceae (2); Euglenophyceae (8); Chlorophyceae (13); Zygnemaphyceae (3); Charophyceae (2).

Em termos de riqueza, as cianobactérias foram os principais táxons encontrados, abaixo está apresentado o gráfico da Riqueza de espécies:

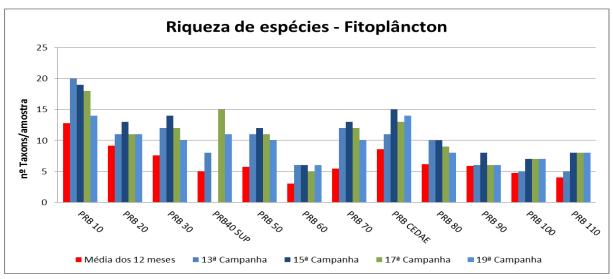


Figura VII-79 - Riqueza de espécies - Fitoplâncton - Rio Paraíba do Sul

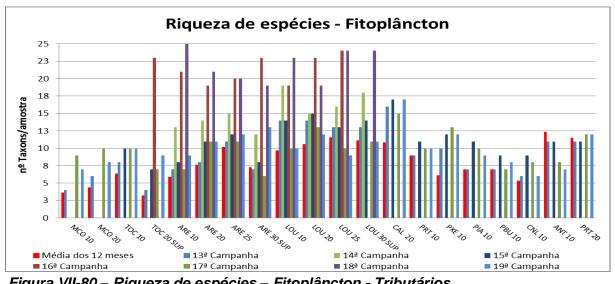


Figura VII-80 – Riqueza de espécies – Fitoplâncton - Tributários

O gráfico abaixo apresenta de forma mais clara a contribuição e a ocorrência de cada grupo no total de amostras coletadas no Rio Paraíba do Sul e Tributários.

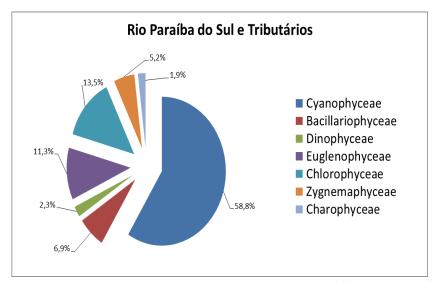


Figura VII-81 – Porcentagem de contribuição, em número de táxons de Fitoplâncton no rio Paraíba do Sul e Tributários.

A abundância das populações de algas registradas ao longo do Rio Paraíba do Sul não variou significativamente entre as campanhas, havendo maior população no ponto PRBCEDAE, já nos tributários houve predominância no ponto Calçado (CAL20), abaixo estão apresentados os gráficos de abundância total e relativa:

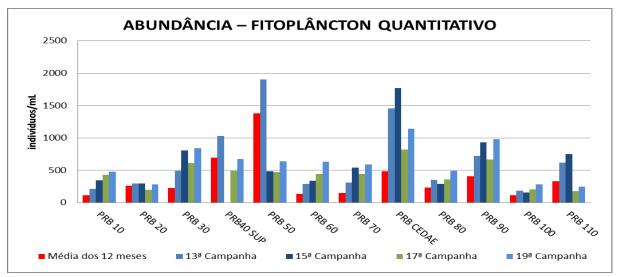


Figura VII-82 – Abundância de Fitoplâncton - Rio Paraíba do Sul.

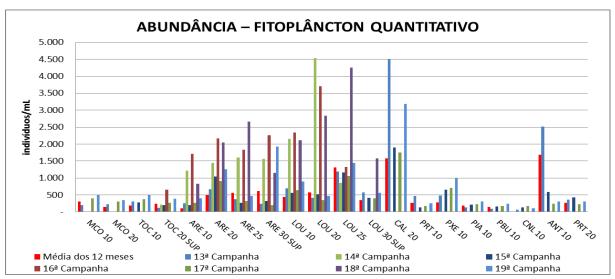


Figura VII-83 – Abundância de Fitoplâncton - Tributários.

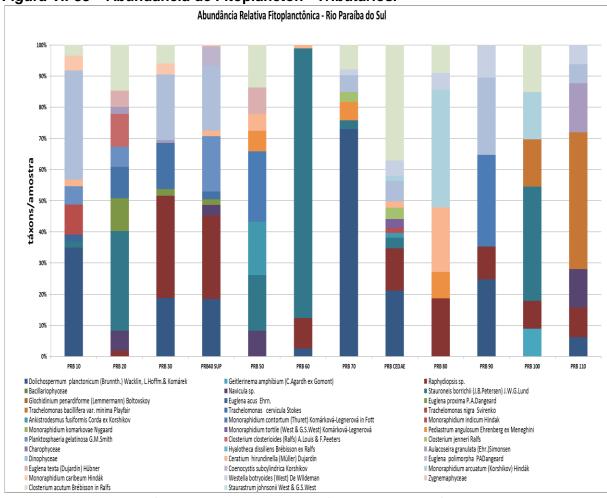


Figura VII-84 – Abundância Relativa Fitoplanctônica – Rio Paraíba do Sul.

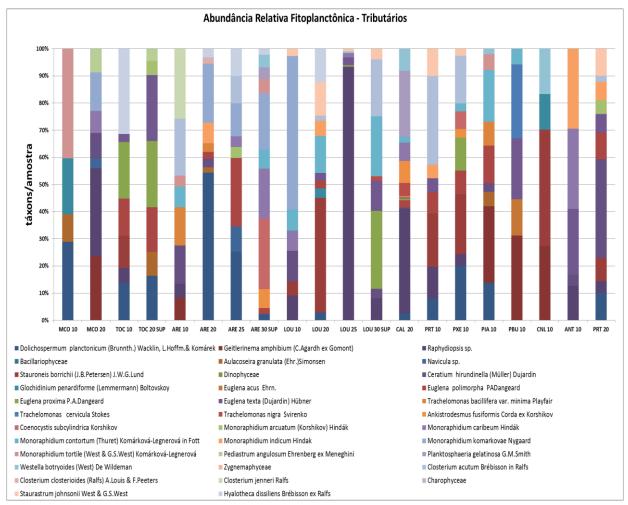


Figura VII-85 – Abundância Relativa Fitoplanctônica - Tributários.

Na análise quantitativa ocorreu presença de Cyanophyceae (cianobactérias) potencialmente tóxicas representando as espécies com maior n° de cel/mL, onde que nenhuma das amostras apresentou valores superiores ao valor máximo permitido para águas de Classe II.

De acordo com a Resolução CONAMA 357/2005 (Brasil 2005), 20.000 células /mL é o valor máximo permitido para cianobactérias em águas de abastecimento para consumo humano, após tratamento convencional, irrigação e recreação (classe II). Enquanto que 50.000 células/mL é o limite em águas para consumo humano, após tratamento convencional, irrigação e recreação de contato primário (classe III).

Além disto, como muitas cianobactérias são potencialmente produtoras de toxinas (cianotoxinas) é necessário à verificação de efeito tóxico agudo a outros organismos quando a densidade células ultrapassa os valores estabelecidos.

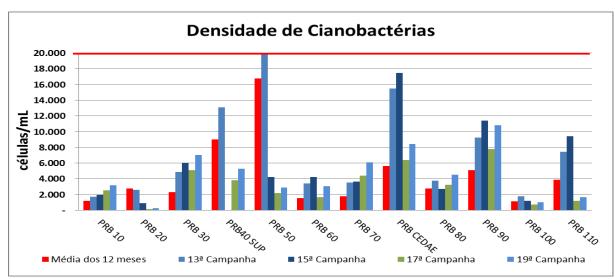


Figura VII-86 - Densidade de Cianobactérias - Rio Paraíba do Sul.

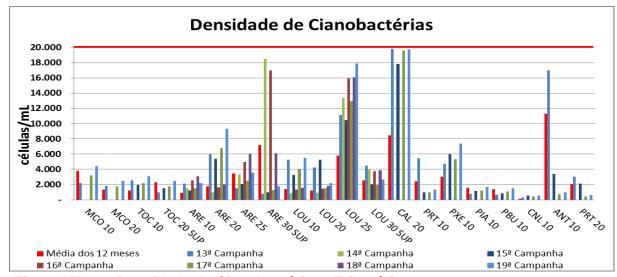


Figura VII-87 - Densidade de Cianobactérias - Tributários.

VII.23 - Zooplâncton

A quantidade de zooplâncton para o período amostral foi de 29 táxons, sendo Testáceos (4), Rotíferos (12), Chladocera (3), Copépodos (5), Tecameba (3), Larva de Nematoda (Vida Livre) e Larva de Quironomídeo.

Em termos de riqueza, os Rotíferos foram os principais táxons encontrados, abaixo está apresentado o gráfico da Riqueza de espécies:

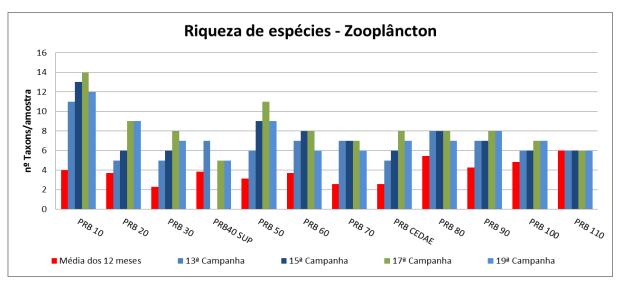


Figura VII-88 - Riqueza de espécies - Zooplâncton - Rio Paraíba do Sul

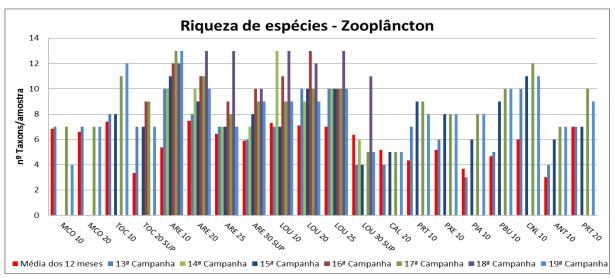


Figura VII-89 - Riqueza de espécies - Zooplâncton - Tributários

O gráfico abaixo apresenta de forma mais clara a contribuição e a ocorrência de cada táxon no total de amostras coletadas no Rio Paraíba do Sul.

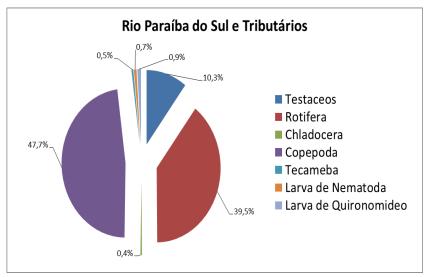


Figura VII-90 — Porcentagem de contribuição, em número de táxons de zooplâncton, no rio Paraíba do Sul e Tributários.

A abundância das populações de algas registradas ao longo do Rio Paraíba do Sul variou entre 4.811 (PRB 40SUP) e 163.876ind/m³ (PRB 10) e nos tributários variaram de 6.751 (MCO 10) e 1.282.454ind/m³ (LOU 25), abaixo estão apresentados os gráficos de Abundancia total e relativa:

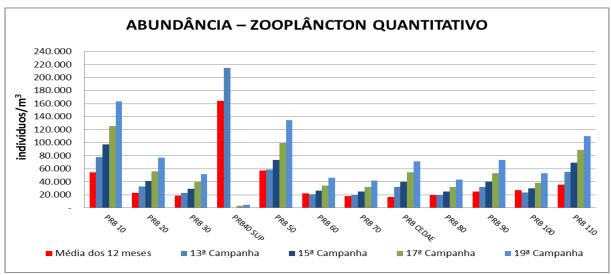


Figura VII-91 – Abundância de Zooplâncton - Rio Paraíba do Sul.

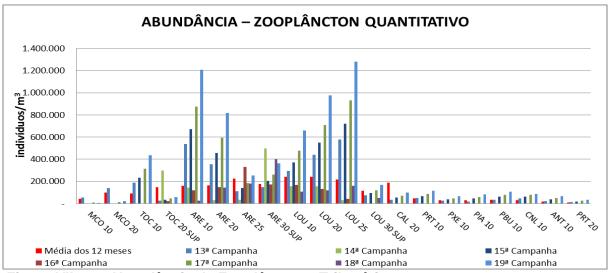


Figura VII-92 – Abundância de Zooplâncton - Tributários.

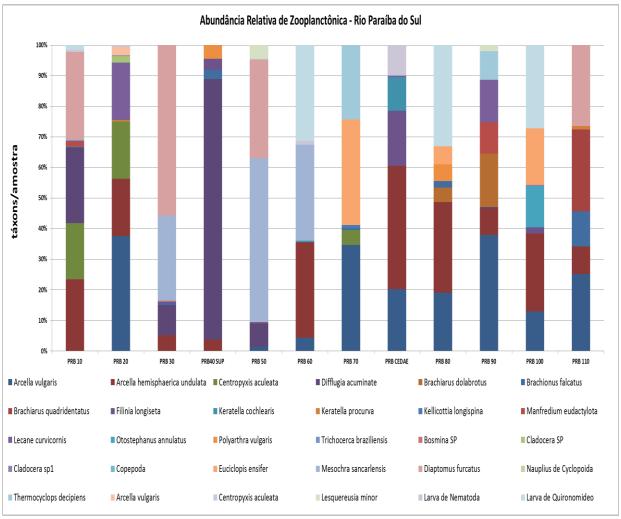


Figura VII-93 – Abundância Relativa de Zooplanctônica – Rio Paraíba do Sul.

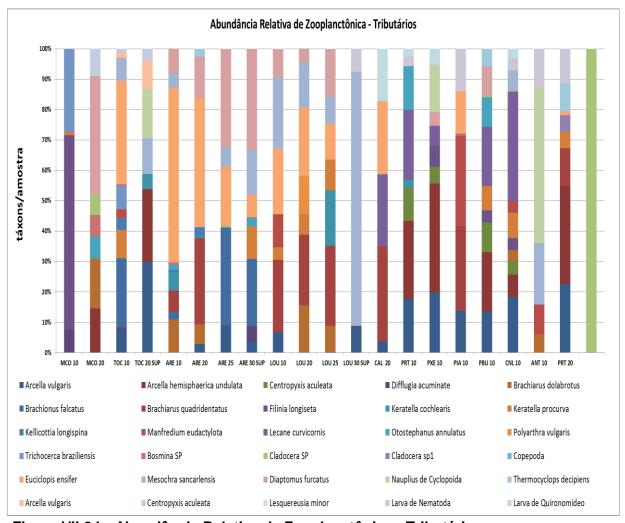


Figura VII-94 – Abundância Relativa de Zooplanctônica - Tributários.

A comunidade zooplanctônica é controlada por uma série de fatores físicos (luz), químicos (concentrações de nutrientes), hidrológicos e biológicos. Em rios, o efeito de fatores hidrológicos como descarga e tempo de residência é de fundamental importância, além da quantidade de material em suspensão (Thorp & Casper 2003). O plâncton de rios é somente abundante quando o tempo de residência permite tempo suficiente para crescimento e reprodução (Lair & Reys-Marchant 1997). Entretanto, vários estudos têm sugerido que o zooplâncton de rios ocupa um importante papel nas cadeias tróficas, contribuindo para a produção secundária e possibilitando o fluxo de energia do fitoplâncton para níveis tróficos mais elevados

(Mwebaza-Ndawula et al. 2005). A densidade de organismos zooplanctônicos em ambientes lóticos é bem menor quando comparada a sistemas lênticos com concentrações semelhantes de nutrientes e clorofila (Pace et al. 1992; Thorp et al. 1994).

VIII - CONSIDERAÇÕES FINAIS

Este relatório é referente à campanha 19^a campanha (campanha Louriçal 19 + Bimestral + Trimestral, mais pontos para atendimento à Resolução ANA nº 713, de 11 de Junho de 2013 e os pontos extra determinados pelo Ibama) do Monitoramento Limnológico e da Qualidade da Água do AHE Simplício. Este programa é a segunda fase desse monitoramento, chamada de Fase Enchimento dos reservatórios que formam o AHE Simplício. O esforço amostral e de análises envolvidos neste relatório encontra-se em conformidade com o documento Termo de Referência do Edital CO.DAQ.G.00005.2012.

Foram amostradas 32 estações programadas originalmente nos Tributários (Circuito do Louriçal) e Paraíba do Sul, com os 7 pontos destinados ao atendimento da Resolução ANA nº 713, de 11 de Junho de 2013, referentes ao TVR - Trecho de Vazão Reduzida e 2 pontos estabelecidos pelo Ibama. Os resultados físico-químicos e biológicos obtidos nas campanhas foram comparados com as diretrizes ambientais do Ministério do Meio Ambiente para enquadramento dos corpos d'água (Resolução Nº 357/2005 do CONAMA).

Situações de não conformidade com a Resolução Nº 357/2005 do CONAMA foram observadas para o parâmetro DBO nos pontos PRB50, PRB60, PRB70, PRB90, MCO10, PIA10 e PBU10.

Nas amostras coletadas no Rio Paraíba do Sul, os pontos PRB 40MEIO, PRB 40FUNDO e PRB CEDAE apresentaram resultados insatisfatórios em relação ao CONAMA 357/05, nos tributários os pontos ARE 30MEIO, ARE 30FUNDO, LOU 30MEIO e LOU 30FUNDO apresentaram resultados insatisfatórios em relação ao

CONAMA 357/05, uma vez que o valor mínimo estabelecido pelo CONAMA 357/05 estabelece mínima de OD para corpos d'água de Classe 2 é de 5 mg/L

Os valores de Fósforo Total em todos os pontos coletados apresentaram resultados mais baixo que a coleta anterior, onde estamos observando alternâncias de situações de concentrações mais elevadas com reduções bruscas nas concentrações, fato esse que está ocorrendo de forma repetitiva este parâmetro bem como os parâmetros Nitrogenados.

Com relação aos resultados de metais, em nenhum momento observamos valores acima do limite máximo permitido.

Nesta campanha pudemos observar um aumento nas concentrações de Clorofila-α, resultando uma situação de não conformidade com a Resolução Nº 357/2005 do CONAMA nos pontos PRB60, ARE 30SUP e PIA10, resultados este que corrobora com os resultados de fitoplâncton, devendo ser observado se este evento se repetirá nas proximas campanhas.

Outro parâmetro importante e que merece esclarecimentos são os Coliformes Totais e Termotolerantes que em diversas campanhas apresentaram resultados iguais, sendo este fato extremamente normal tecnicamente uma vez que quando tubos múltiplos são utilizados na técnica da fermentação, a densidade de coliformes é estimada utilizando a tabela do Número Mais Provável (NMP). Este número é baseado em fórmulas de probabilidade, sendo uma estimativa da densidade média de coliformes na amostra. Dessa forma o número de coliformes totais, coliformes termotolerantes e *E. coli* podem ser diferentes quanto ao resulta final ou podem ser iguais, pois a *E. coli* está dentro do grupo dos Coliformes Termotolerantes e este se encontra dentro do grupo dos Coliformes Totais. Sendo assim quando os resultados são iguais é devido ao fato da contaminação ser estritamente fecal.

Para coliformes termotolerantes, pudemos observar resultado acima do limite nos pontos PRBCEDAE e PBU10.

Ao longo do período do monitoramento, a comunidade fitoplanctônica dos pontos amostrados foi formada por cianobactérias (Cyanobacteria), diatomáceas (Bacillariophyceae), dinoflagelados (Dinophyceae), protistas (Euglenophyceae),

algas verdes (Chlorophyceae e Charophyceae) e desmídias (Zygnematophyceae), onde as Cyanophyceae representam 51,9% de todos os organismos encontrados nesta amostragem, tendo como ponto de maior concentração o CAL20.

Cianobactérias têm sido registradas em rios, especialmente em períodos de reduzida descarga ou sendo favorecidas pela presença de reservatórios ou lagos ao longo dos rios e tributários, que criam ambientes mais favoráveis ao seu desenvolvimento. De maneira geral, não houve muita variação entre as espécies dominantes ao longo da coleta. Devido à elevada turbulência e pouca luminosidade (causada pela grande quantidade de material em suspensão), ambientes lóticos tendem a selecionar espécies pequenas e de crescimento rápido, bem como aquelas com elevada tolerância a pouca disponibilidade luminosa.

A comunidade zooplanctônica dos pontos amostrados foi formada por testaceos, rotíferos, chladocera, copépodos, tecameba, larvas de nematoda e larvas de quironomideo, onde os copépodos representaram 47,7% do total de indivíduos das amostras coletadas. O desenvolvimento e a reprodução dos copépodos de água doce são influenciados por fatores intrínsecos, inerentes a cada espécie, e por fatores externos, dentre os quais se destacam a temperatura e o alimento.

A comunidade zooplanctônica é controlada por uma série de fatores físicos (luz), químicos (concentrações de nutrientes), hidrológicos e biológicos. Em rios, o efeito de fatores hidrológicos como descarga e tempo de residência é de fundamental importância, além da quantidade de material em suspensão. O plâncton de rios é somente abundante quando o tempo de residência permite tempo suficiente para crescimento e reprodução. Entretanto, vários estudos têm sugerido que o zooplâncto de rios ocupa um importante papel nas cadeias tróficas, contribuindo para a produção secundária e possibilitando o fluxo de energia do fitoplâncton para níveis tróficos mais elevados. A densidade de organismos zooplanctônicos em ambientes lóticos é bem menor quando comparada a sistemas lênticos com concentrações semelhantes de nutrientes e clorofila.

IX - EQUIPE TÉCNICA

Para a realização dos serviços de coleta de amostras e análises laboratoriais, objeto deste relatório, a AQUALIT teve à sua disposição uma equipe altamente qualificada e com notória experiência, conforme exige o caráter técnico do trabalho.

A Coordenação Geral do projeto está a cargo do Biólogo Mestre em Ecologia e Recursos Naturais Rodrigo De Filippo (CRBIO-1 - 003783/01-D), que possui vasta experiência em monitoramentos ambientais, as amostragens serão supervisionadas pelos biólogos Dr^o Nathan Oliveira Barros e/ou Dr^a. Raquel Fernandes Mendonça, ambos Doutores em Ecologia com ampla experiência comprovada não gerando ônus à Contratante.

As análises de Fitoplâncton foram realizadas pela Bióloga Mestre em Ecologia a Srª Maria Regina R. Nascimento Bessa, as análises de Zooplâncton foram realizadas pela Doutoranda em Ciências Ambientais a Srª Geórgia Ribeiro Silveira de Sant'Ana e para as análises de Zoobentos ficam a cargo do Mestre em Ecologia do Srº Carlos Roberto Alves dos Santos.

O Coordenador de Equipe de Coleta e Gerente Técnico, Químico Industrial o Srº Cassiano Pacheco da Silva, Mestrando em Engenharia do Meio Ambiente, será responsável pela conduta técnica dos trabalhos, dando ênfase aos conceitos, procedimentos e critérios a serem adotados, atuando em estreita sintonia com as demandas das equipes/coordenações das coletas e análises laboratoriais e confecção do relatório.

A Responsabilidade Técnica pelas atividades ficará a cargo da Bioquímica e Farmacêutica Cláudia Emília Pereira Martins CRF/GO n° 2413 e Wanderlei Elias Perez CRF/GO n° 1250 (Mestre em Engenharia do Meio Ambiente pela Universidade Federal de Goiás), cuja atuação ao longo de mais de 35 anos na área de análises e ensaios físico-químicos e microbiológicos, tanto em atuação quanto em coordenação, garantem a plena qualidade dos serviços realizados.

A Gerência da Qualidade fica sob a Eng^a de Alimentos Thaíssa Machado Elias (pós graduada em Gestão da Qualidade e Segurança Alimentar – FEA/UNICAMP),

respondendo pela manutenção do Reconhecimento da Rede Metrológica Goiás na norma ABNT NBR ISO/IEC 17025:2005 – Requisitos Gerais para Competência de Laboratórios de Ensaio e Calibração e Acreditação junto ao INMETRO.

Toda a equipe é composta por um grupo com sólida experiência em análises laboratoriais e atividades correlatas, abrangendo profissionais tanto de nível técnico quanto de nível superior, conforme apresentado Tabela VIII - 1 seguir.

Tabela IX-1 - Equipe Técnica

Profissional	Formação	Atuação
Rodrigo De Filippo (CRBIO-1 - 003783/01-D)	Biólogo Mestre em Ecologia e Recursos Naturais	Coordenador Geral do Projeto
Drº Nathan Oliveira Barros	Biólogo Doutor	Coordenador de Campo
Dr ^a . Raquel Fernandes Mendonça	Biólogo Doutor	Coordenador Campo
Maria Regina R. Nascimento Bessa (CRBIO 4 – 03489/04-D)	Biólogo Mestrado em Ecologia	Especialista em Fitoplâncton
Geórgia Ribeiro Silveira de Sant'Ana (CRBIO 4 – 049685/04-D)	Biólogo Doutorado em andamento em Ciências Ambientais	Especialista em Zooplâncton
Carlos Roberto Alves dos Santos (CRBIO 4 – 037308/04- D)	Biólogo Mestrado em Biologia- Ecologia	Especialista em Zoobentos
Cassiano Pacheco da Silva (CRQ XII – 12200174)	Nível Superior Química Industrial (com pós-graduação)	Gerente Técnico e Coordenador
EQUIPE COMPLEMENTAR		
Wanderlei Elias Perez (CRF/GO n° 1250)	Nível Superior em Farmacêutico Bioquímico (com mestrado em Engenharia do Meio Ambiente UFG)	Responsável Técnico
Claudia Emília Pereira Martins (CRF/GO n° 2413)	Nível Superior em Farmacêutico Bioquímico (com pós-graduação)	Responsável Técnico

Profissional	Formação	Atuação
Thaíssa Machado Elias (CREA 12685/DGO)	Nível Superior em Eng ^a de Alimentos (com pós-graduação)	Gerente da Qualidade
Luiz Antônio Rocha Pinto (CRQ XII 12400101)	Nível Técnico em Química	Gerente de Relacionamentos
Fabrício Faria Costa (CRQ XII 121/10)	Nível Superior em Tecnologia em Saneamento Ambiental	Laboratório Físico- Químico de Água
Helen de Los Angeles Batista Nunes	Nível Superior Química Industrial (em fase de conclusão)	Laboratório Físico- Químico de Efluentes
Lee Anderson Gomes Viana (CRQ XII 12400983)	Técnico em Saneamento	Laboratório Microbiológico

X - REFERÊNCIAS BIBLIOGRÁFICAS

APHA – American Public Health Association, AWWA – American Water Works Association, WPCF – Water Polution Control Federation. 2012. Standard Methods for the Examination of Water and Wastewater. 22^a Ed. Washington, DC.

ABNT. Planejamento de Amostragem de Efluentes Líquidos e Corpos Receptores. NBR 9897. JUN. 1987.

ABNT. Preservação e Técnicas de Amostragem de Efluentes Líquidos e Corpos Receptores – Procedimentos. NBR 9898. JUN. 1987.

ASTRO, CARMEN MARIA BARROS DE. Aspectos Qualitativos das Águas Naturais 1.ed. São Paulo, 1997. 203p.

BASU BK & Pick FR. 1996. Factors regulating phytoplankton and zooplankton biomass in temperate rivers. Limnol. Oceanogr. 41(7): 1772-1777.

BICUDO, CARLOS E. DE M.; BICUDO, DENISE DE C. *Amostragem em Limnologia;* 1.ed. São Carlos: Editora Rima, 2004. 351p.

Brasil. 2005. Ministério do Meio Ambiente. Resolução no. 357 de 17 de março de 2005. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Disponível em:

http://www.mma.gov.br/port/conama/res/res05/res35705.pdf. Acessado em 10/01/2012.

BRANCO, C. W. C. & SENNA, P. A. C. The taxonomic elucidation of the Paranoá Lake (Brasília, Brazil) problem: Cylindrospermopsis raciborskii. Bulletin du Jardin Botanique. National de Belgique.1991. 61:85-91p.

CABELLI, V.J. 1978. Microbial indicators system for assessing water quality. Antonie van Leeuwenhock, n.48, p.613-617.

CAMARGO, A. F. M. & Esteves, F. A. Influence of water level variation on fertilisation of oxbow lake of Rio Mogi-Guaçu, State of São Paulo, Brazil. Hydrobiologia. Dordrecht, v. 299, p. 185-193, 1995.

CHAMBERS, P. A. Nearshore occurrence of submersed aquatic macrophytes in relation to wave action. Can. J. Fish. aquat. Sci 44: 1666–1669, 1987.

CLESCERI, LENORE S.; GREENBERG, ARNOLD E.; EATON, ANDREW D. Standard Methods for the Examination of Water and Wastewater; 22.ed. 2012.

DUARTE, C. M., J. Kalff & R. H. Peters. Patterns in biomass and cover of aquatic macrophytes in lakes. Can. J. Fish. aquat. Sci. 43: 1900–1908, 1986.

ESPINDOLA, EVALDO LUIZ GAETA ET AL. Recursos Hidroenergéticos: Usos, Impactos e Planejamento Integrado; 1.ed. 2002. 230p.

ESTEVES, FRANCISCO DE ASSIS. *Fundamentos de Limnologia;* 2.ed. Rio de Janeiro: Editora Interciência, 1998. 601p.

Guia nacional de coleta e preservação de amostras: água, sedimento, comunidades aquáticas e efluentes líquidos/Agência Nacional de Águas; Brasília: ANA, 2011;

GUIMARÃES, CELSO; LEOPOLDO, PAULO RODOLFO. Caracterização Limnológica do Reservatório de Ibitinga-SP: Parâmetros Físicos. Botucatu, 1996. 14f. Parte da Dissertação de Mestrado - Setor de Energia e Agricultura, Universidade Estadual de São Paulo;

HENRY, RAOUL. Ecótonos nas Interfaces dos Ecossistemas Aquáticos; 1.ed. São Carlos: Editora Rima, 2003. 349p.

HUDON, C., S. Lalonde & P. Gagnon. Ranking the effects of site exposure, plant growth form, water depth, and transparency on aquatic plant biomass. Can. J. Fish. aquat. Sci. 57: 31–42, 2000.

IRGANG, B. E. & Gastal JR., C. V. S. Plantas aquáticas da planície costeira do Rio Grande do Sul. Porto Alegre: [s. N.] 290 p. il. (edição dos autores), 1996.

JUNIOR, I. B. Modelos de crescimento e decomposição de macrófitas aquáticas. In: Thomaz, S. M. & Bini, L. M. (Ed.). Ecologia e manejo de macrófitas aquáticas. Maringá: EDUEM. cap. 4, p.85-126, 2003.

JUNK, W. J. & Howard-Willians, C. Ecology of aquatic macrophytes in Amazonia. In: Sioli, H. (Ed.) The Amazon: limnology and landscape ecology of a mighty tropical river and its basin. Dordrecht: Dr. W. Junk Publishers, cap. 10, p. 269-293, 1984.

KOMAREK, J. & ANAGNOSTIDIS, K. 1986. Modern approach to the classification system of cyanophytes. 2 - Chroococcales. Algol. Stud. 43:177-226.

KOMÁREK, J. & FOTT, B. Chlorophyceae (Grünalgen). 1983. Chlorococcales. In. Huber-Pestalozzi, G. (Ed.). Das Phytoplankton desüssqassers; Systematik und Biologie. 1993. v.7, tomo 1. Suttgart, E. Schewizerbat'sche Verlagebuchhandlung. 1044p.

KRAMMER, K. & LANGE-BERTALOT. 1991.Bacillariophyceae 2(3). Centrales, Fragilariaceae, kEunotiaceae. In: Ettl, H., Gerloff, J., Heynig, H., Mollenhauder, D. (Eds.). Susswasserflora von Mitteleuropa. Stuttgart. Gustav. Ficher Verlag. 576p

LANGE-BERTALOT, H. 1979. Pollution tolerance of diatoms as a criterion for water quality estimation. Nova Hedwigia, no 64, p.285–304.

LEWIS JR., W.M. 1978. Spatial Distribution of the Phytoplankton in a Tropical Lake. Int. Revue ge. Hydrogr. 63(5):619-635.

Lund JWH, Kipling C, Lecren ED. 1958. The inverted microscope method of estimating algal number and statistical basis of estimating by counting. Hydrobiologia 11:143-170.

MACAN, T.T. Fresh-Water Invertebrates Animals. London, Tenth impression 1977. 118p.

MACEDO, JORGE ANTONIO BARROS DE. Águas & Águas; 1.ed. 1999. 532p. MACEDO, JORGE ANTONIO BARROS DE. Métodos Laboratoriais de Análise Físico-Químicas e Microbiológicas; 1.ed. Belo Horizonte, 2003. 420p.

MATSUMARA-TUNDISI, T. & MORENO, I.H.. Efeitos da Dinâmica Hidrológica do Sistema Pantanal Matogrossense sobre a Estrutura da Comunidade de Zooplancton da Lagoa Albuquerque. Acta Limnológica Brasiliensia,1996.183-194.

MOTA, SUETONIO. *Preservação e Conservação de Recursos Hídricos;* 1.ed. Rio de Janeiro, 1995. 135p.

Moretti MS & Callisto M. 2005. Biomonitoring of benthic macroinvertebrates in the middle Doce River watershed. Acta Limnologica Brasiliensia, 17(3): 267-281.

NEIFF, J. J.; Poi de Neiff, A. S. G.; Patiño, C. A. E. & Bastera de Chiozzi, I. Prediction of colonization by macrophytes in the Yaciretá Reservior of the Paraná River (Argentina and Paraguay). Brazilian Journal of Biology, São Carlos, v. 60, no. 4, p. 615-626, Nov. 2000.

NOGUEIRA, I. S. et al. Cyanobactérias potencialmente tóxicas em diferentes mananciais do estado de Goiás – Brasil. In: VIEIRA, J.M.P.; RODRIGUES, A.C.; SILVA, A. C. C. (Org.). Uso sustentável da água. Anais do 10ºSimpósio Luso-Brasileiro de Engenharia Sanitária e ambiental. Tema 5 – Gestão Ambiental e Saúde Pública. 14p. Universidade do Minho/APESB/APRH/ABES. Braga, Portugal, 2002.

ODUM, E. P. Ecologia. Rio de Janeiro: Guanabara Koogan, 1988 OLIVEIRA, M. do C. B.; OLIVEIRA M. C de; YUNES. João Sarkis. Cianobactérias Tóxicas. Revista Biotecnologia ano IV, n. 23, p. 44-47, nov./ dez. 2001.

PARANHOS, RODOLFO. Alguns Métodos Para Análise de Água 1.ed. Rio de Janeiro: 1996. 253p.

Pace ML, Findlay SEG & Lints D. 1992. Zooplankton in advective environments: The Hudson River community and a comparative analysis. Can. J. Fish. Aquat. Sci. 49: 1060-1069.

PENNAK, R.W. Fresh-Water invertebrates of the United states. 2^a ed. Colorado: John Willey & Sons. 1978.

POTT, J. V. & Pott, A. Plantas aquáticas do Pantanal. Brasília: Embrapa Comunicação para a Transferência de Tecnologia, 2000.

REDDY, K. R. & Debusk, W. F. Growth characteristics of aquatic macrophytes culture in nutrient enriched water: I. Water Hyacinthm Water Lettuce and Pennywort. Economic Botany. New York, v. 38, no. 2, p. 229-239, 1984.

RESOLUÇÃO CONAMA Nº 357, DE 17 DE MARÇO DE 2005. Dispõe sobre classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes e dá outras providências.

Reynolds CS, Descy J-P, Padisák J. 1994. Are phytoplankton dynamic in rivers so different from those in shallow lakes? Hydrobiologia 285:1–7.

Rojo C, Colbelas MA, Arauzo M. 1994. An elementary structure analysis of the river phytoplakton. Hydrobiologia 285:43–55.

ROMEIRO, ADEMAR RIBEIRO. Avaliação e Contabilização de Impactos Ambientais; 1.ed. Rio de Janeiro, 2004. 250p.

SANT'ANNA, C. L.; AZEVEDO, M. T. de P. Contribution to the Knowledge of potentially toxic Cyanobacteria from Brazil. Nova Hedwigia, Stuttgart, v. 71, n. 3-4, p. 359-385, Nov. 2000.

SENNA. P. A. C. Estudo das Mostocophyceae (Cyanophyceae) do Distrito Federal: Lagoa Joaquim Medeiros e Dos Carás, 1. Revista Brasil. Biol., v. 52, n. 2, p. 259-274, [20__].

Shannon CE & Weaver W. 1963. The Mathematical Theory of Communication. Illinois University Press: Urbana, USA.

Soares MCS, Huszar V, Roland F. 2007. Phytoplankton dynamics in two tropical rivers with different degrees of human impact (Southeast Brazil). River. Res. Applic. 23: 698–714.

SPELING, EDUARDO VON. *Morfologia de Lagos e Represas;* 2.ed. Rio de Janeiro, 1999, 183p.

Thorp JH, Black AR, Lack KH, Hagg KH & Wehr JD. 1994. Zooplankton assemblages in Ontario River: Sea-seasonal, tributary and navigation dam effects. Can. J. Fish. Aquat. Sci. 51: 1634-1643.

TORGAN, L. C. Floração de algas: Composição, causas e conseqüências, brasil, Insulta, Supl., v. 19, p. 17-33, 1989.

Turekian, K.K. and Wedepohl, K.H. 1961. Distribution of elements in some major units of the earth's crust. Geological Society of American Bulletin, 72: 175-192.

Utermöhl H. Zur Vervolkomnung der quantitativen Phytoplankton-methodik. Mitt Int Verein Limnol 9:1-38.

VAN DEN HOEK, C., MANN, D. G. & JAHNS, H. M., 1997, Algae na introduction to phycology. Cambridge University Press. Cambridge,623p

VESTERGAARD, O. & K. Sand-Jensen. Aquatic macrophyte richness in Danish lakes in relation to alkalinity, transparency, and lake area. Can. J. Fish. aquat. Sci. 57: 2022–2031, 2000.

VOLLENWEIDER, R. A. A manual on Methods for Measuring Primary Production. Aquatic Environments, IBP, n. 12., 2nd, 1974.

VOLLENWEIDER, R. A.; KEREKES, J. The loading concept as basis for controlling eutrophication philosophy and preliminary results of the OECD programme on eutrophication. Prog. Wat. Tech., v. 12, p. 5-38, 1982.

WETZEL, ROBERT G.; LINKENS, GENE E. Limnological Analyses; 2.ed. New York: Springer-Velag, 1991. 391p.

XI - ANEXO I - LAUDOS ANALÍTICOS

