UHE SANTO ANTÔNIO

MODELAGEM MATEMÁTICA DO COMPORTAMENTO SEDIMENTOLÓGICO DO RIO MADEIRA E DO FUTURO RESERVATÓRIO DA UHE SANTO ANTÔNIO

RELATÓRIO DE ANDAMENTO – RA 11

PJ0696-Z-H41-GR-RL-109-0A

DEZEMBRO/2009

UHE SANTO ANTÔNIO

MODELAGEM MATEMÁTICA DO COMPORTAMENTO SEDIMENTOLÓGICO DO RIO MADEIRA E DO FUTURO RESERVATÓRIO DA UHE SANTO ANTONIO

RELATÓRIO DE ANDAMENTO - RA 11

PJ0696-Z-H41-GR-RL-109-0A

DEZEMBRO/2009

0	22/12/2009	EMISSÃO INICIAL	MAS/FBM	EFM	JCS
REV.	DATA	DESCRIÇÃO	ELAB.	VISTO	APROV.

ÍNDICE

Item	Assunto	Página
1.	INTRODUÇÃO	03
2.	ANDAMENTO DOS SERVIÇOS	06
	MODELO UNIDIMENSIONAL NO TRECHO DO RESERVATÓRIO DA UHE SANTO ANTÔNIO	07
	. <u>Implantação Final do Modelo</u> . <u>Calibração</u>	07 08
2.1.3	. <u>Produção de Resultados Preliminares</u>	80
	Modelo Bidimensional no Trecho Junto à Barragem Seleção e Aquisição dos Modelos	08 08
	Geração Inicial da Malha do Modelo de Jusante	08
	. <u>Definição dos Cenários a Modelar</u>	09
	. <u>Incorporação da Batimetria aos Modelos de Montante e Jusante</u> . Calibração dos Modelos	09 09
2.2.5	. <u>Calibração dos Modelos</u>	09

1. INTRODUÇÃO

Conforme citado no Programa de Levantamentos e Monitoramento Hidrossedimentológico do Rio Madeira e do Futuro Reservatório da UHE Santo Antônio, parte integrante do Projeto Básico Ambiental, a ampliação da base de dados hidrossedimentológicos obtida com a continuidade das campanhas hidrométricas realizadas após o EVTE e o EIA, determina uma revisão ampla dos Estudos Hidrossedimentológicos então realizados. Esta revisão se aplica fundamentalmente sobre a determinação e estabelecimento da curva de descarga líquida e curva de descarga sólida, além da distribuição granulométrica dos sedimentos nas principais estações fluviométricas do trecho em estudo.

Dessa forma, a nova análise deverá conter, entre outros:

- Modelagem matemática uni-dimensional do transporte de sedimentos do rio Madeira em condições atuais e com reservatório através da aplicação do modelo HEC-6, incluindo o trecho a jusante do aproveitamento, avaliando a evolução temporal das condições de assoreamento do reservatório e de erosão a jusante;
- Modelagem matemática bi-dimensional do transporte de sedimento do rio Madeira que deverá se restringir às regiões próximas ao barramento da UHE Santo Antônio (5 km a montante e 9 km a jusante), onde as maiores profundidades e o alargamento proporcionado pela barragem, a montante, e os efeitos das estruturas de descargas, a jusante, têm influências significativas sobre o comportamento sedimentológico.

Esses estudos, propostos no relatório Modelagem Matemática do Comportamento Sedimentológico do Rio Madeira e dos Futuros Reservatórios, de janeiro de 2008, têm por objetivos:

- Aprofundar o conhecimento sobre o comportamento sedimentológico do rio Madeira nas condições atuais, anteriores à construção do aproveitamento de Santo Antônio, considerando todas as informações disponíveis até o presente;
- Prognosticar a evolução do comportamento do rio Madeira ao longo de todo o estirão afetado pela implantação do reservatório, ampliando a base de dados disponível e empregando as melhores técnicas de modelagem existentes e compatíveis com essa base;
- Detalhar o prognóstico do comportamento hidrossedimentológico das porções do reservatório próximas à barragem da UHE Santo Antônio, com auxílio de modelos bidimensionais;
- Deixar implantada ferramenta de análise sedimentológica (modelo unidimensional) que permita o acompanhamento dos processos prognosticados, após a entrada em operação do aproveitamento.

A empresa Hicon Engenharia Ltda foi contratada para a realização do trabalho de modelagem matemática.

Em julho de 2008, foi emitido o Relatório de Andamento – RA 1 - PJ0696-B-R00-ZZ-RL-001-0, com a descrição dos serviços de modelagem matemática do comportamento sedimentológico do rio Madeira e do futuro reservatório da UHE Santo Antônio realizados

CREA: 21112-D/RJ

até então. Considerando que o Contrato de Prestação de Serviços para a realização desses trabalhos foi celebrado entre Santo Antônio Energia S.A. – SAESA e PCE – Projetos e Consultorias de Engenharia Ltda, em 15 de janeiro de 2009 e teve o início efetivo dos trabalhos em 15 de fevereiro, o relatório RA 02, de março de 2009, apresentou o andamento dos serviços realizados no período de julho de 2008 a 15 de março de 2009. A partir de então, os demais Relatórios de Andamento vem sendo emitidos mensalmente, sempre contendo as atividades desenvolvidas entre os dias 16 do mês anterior e 15 do mês subseqüente.

Este relatório, o RA 11, apresenta os serviços realizados no período de 16 de novembro a 15 de dezembro de 2009.

2. ANDAMENTO DOS SERVIÇOS

7

Modelagem Matemática do Comportamento Sedimentológico do Rio Madeira e do Futuro Reservatório da UHE Santo Antônio

O trabalho realizado no período de 16 de novembro a 15 de dezembro de 2009 contemplou diversas atividades de ambas as etapas de modelagem, incluindo a recalibração do modelo unidimensional e construção dos modelos bidimensionais com transporte de sedimentos. Segue uma descrição das atividades mais relevantes realizadas no período.

2.1. MODELO UNIDIMENSIONAL

Os trabalhos da modelagem unidimensional levaram em consideração, até o momento, a construção, calibração, simulação e análise de dois modelos sedimentológicos: HEC-RAS 4.0 e SRH-1D.

No entanto, após cuidadosa análise de ambos os modelos e seus resultados, optou-se por concentrar os esforços na construção do modelo SRH-1D, por ter apresentado mais coerência com a realidade e resultados mais consistentes com os dados de campo. Este modelo, diferentemente do módulo sedimentológico do modelo HEC-RAS, apresenta um longo histórico de aplicações práticas.

O módulo sedimentológico do modelo HEC-RAS (versão 4.0), que é de desenvolvimento muito recente (maio de 2008), com poucas aplicações práticas na literatura, apresentou possíveis pontos de inconsistências no que se refere ao módulo de transporte de sedimentos. Como até o presente momento o suporte do fornecedor do modelo não apresentou solução para os problemas verificados, optou-se por não continuar com a utilização do mesmo no presente estudo.

Por outro lado, o módulo de cálculo hidráulico do modelo HEC-RAS vem sendo utilizado com sucesso, há décadas, em diversos estudos e projetos no Brasil e no exterior. Assim, considera-se que o modelo HEC-RAS é o mais indicado para a construção da modelagem hidráulica, visto que apresenta resultados robustos, além de uma gama enorme de funcionalidades e ferramentas que o modelo SRH-1D ainda não possuiu para este tipo de análise.

Um exemplo de uma dessas funcionalidades diz respeito a possibilidade de simulação do escoamento com variação do coeficiente de Manning variando com o nível d'água ou vazão em trânsito.

Finalmente, com o intuito de eliminar quaisquer dúvidas que possam surgir em relação a compatibilidade entre os cálculo hidráulicos de ambos os modelos, foram realizados testes que demonstraram coerência dos resultados encontrados com os mesmos.

2.1.1. Implantação Final do Modelo

Foi identificada a necessidade de reavaliar a topologia do modelo para o trecho do reservatório de Jirau. Assim, foram identificados pontos de acidentes topográficos (quedas) para os quais houve a necessidade de elaboração de seções auxiliares com o intuito de melhorar a representação dos controles hidráulicos existentes nesse trecho.

CREA: 21112-D/RJ

2.1.2. Recalibração e Verificação

O processo de calibração do modelo sedimentológico foi realizado considerando-se tanto aspectos qualitativos, quanto quantitativos. A avaliação do desempenho do modelo consistiu da análise dos resultados da simulação para um período de 4 anos, compreendido entre janeiro de 2003 a dezembro de 2006, devido à maior disponibilidade de dados.

Os critérios de desempenho para avaliação dos resultados do modelo e, assim, a definição do melhor grupo de parâmetros a serem adotados, compreendeu três pontos:

- Balanço sedimentológico em trechos longos estáveis e em equilíbrio;
- Variação do fundo para o período simulado compatível com as condições esperadas, ou seja, fundo dinâmico, porém apresentando baixa amplitude de variação;
- Compatibilidade entre as descargas sólidas observadas e as simuladas para diversas faixas granulométricas.

Finalmente, sobre o processo de calibração, pode-se concluir que os parâmetros do modelo aparentam estar adequadamente definidos, sendo as equações de transporte de Engelund-Hansen e Yang (1984) as que mais se destacaram. Os resultados indicaram, ainda, que esses métodos tendem a representar melhor as características naturais do sistema modelado, sobretudo no que diz respeito à simulação das curvas de descarga sólida.

FIGURA – Descargas Sólidas Totais Observadas x Simuladas Com Diferentes Equações de Transporte para a Seção de Porto Velho (251,9 km) para 4 Anos de Simulação

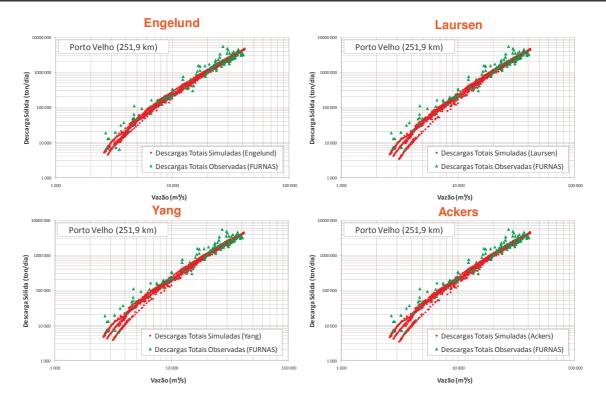
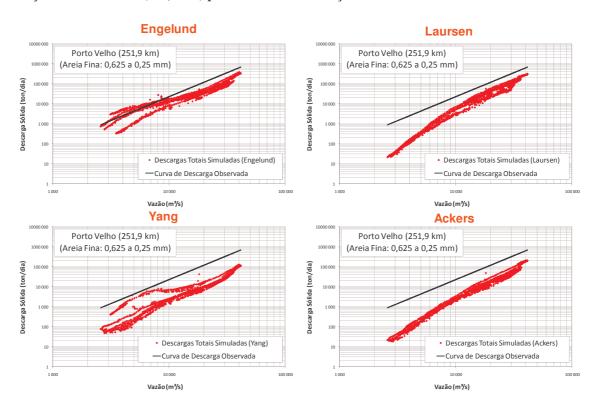
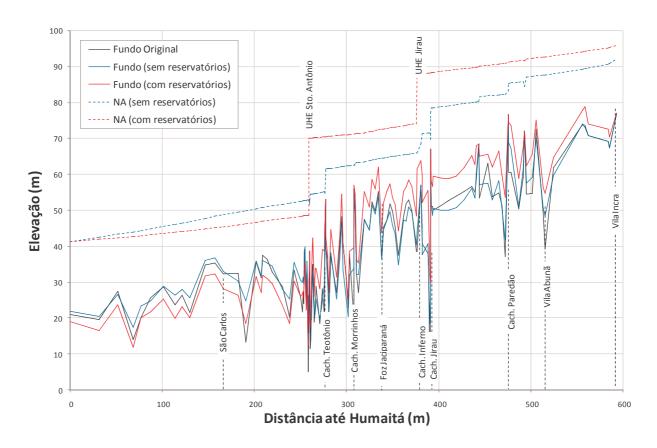



FIGURA – Descargas Sólidas de Areia Fina Observadas x Simuladas Com Diferentes Equações de Transporte para a Seção de Porto Velho (251,9 km) para 4 Anos de Simulação



2.1.3. Produção e Discussão de Resultados Definitivos

Após a incorporação das modificações necessárias, o modelo sedimentológico foi recalibrado e novas simulações foram realizadas. Esses resultados foram discutidos com a equipe da PCE e NHC e estão sendo incorporados ao relatório final.

FIGURA – Perfis de Fundo (Talvegue) Simulados nas Condições Sem e Com os Reservatórios no Trecho entre Humaitá e Vila Incra Após 90 Anos de Simulação

2.2. MODELO BIDIMENSIONAL

2.2.1. Seleção e Aquisição dos Modelos

Esta atividade encontra-se concluída.

2.2.2. Geração Inicial das Malhas dos Modelo de Jusante e Montante

Esta atividade encontra-se concluída.

2.2.3. Definição dos Cenários a modelar

Esta atividade ainda se encontra em andamento, não apresentando modificação no período que trata este relatório.

2.2.4. Incorporação da Batimetria aos Modelos de Montante e Jusante

Esta atividade encontra-se concluída.

Ambos os modelos já estão incorporando a batimetria detalhada e estão funcionando, incluindo o módulo de transporte de sedimentos. Dificuldades encontradas inicialmente foram resolvidas, sobretudo, nas regiões junto as estruturas do aproveitamento.

Figura: Resultados Ilustrativos do Funcionamento dos Módulos Hidráulico (Velocidades do Escoamento) e Transporte de Sedimentos (Regiões de Depósito/Erosão), Respectivamente, Para o Modelo de Montante

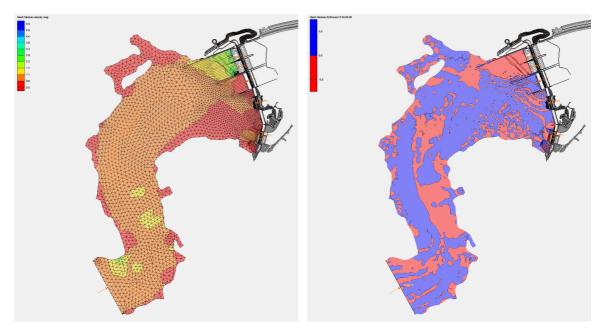
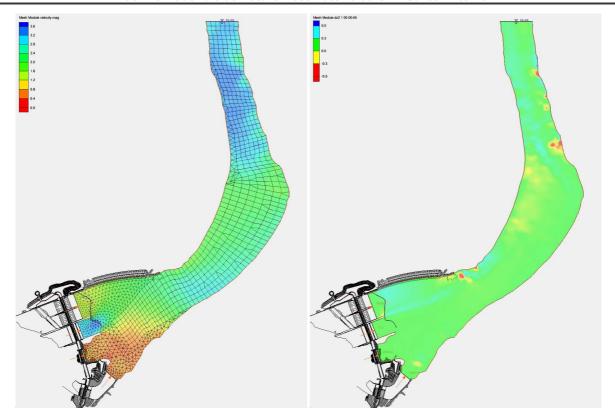



Figura: Resultados Ilustrativos do Funcionamento dos Módulos Hidráulico (Velocidades do Escoamento) e Transporte de Sedimentos (Regiões de Depósito/Erosão), Respectivamente, Para o Modelo de Jusante

2.2.5 Calibração dos Modelos

Está atividade foi iniciada, sendo que primeiramente serão calibrados os parâmetros de natureza hidráulica do modelo.