

2541-00-MLM-RL-0008-00

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

ÍNDICE

5 -	Resultados			
	5.1 -	Abióticos		1/62
		5.1.1 -	Físicas A e B	1/62
		5.1.1.1 -	Temperatura do ar e da água	1/62
		5.1.1.2 -	Profundidade, zona eufótica, cor e velocidade de corrente	5/62
		5.1.2 -	Físicas C	7/62
		5.1.2.1 -	Turbidez	7/62
		5.1.2.2 -	Sólidos	12/62
		5.1.3 -	Físico-químicas	14/62
		5.1.3.1 -	Condutividade elétrica	14/62
		5.1.3.2 -	Potencial hidrogeniônico (pH)	18/62
		5.1.4 -	Químicas I-A	22/62
		5.1.4.1 -	Oxigênio dissolvido	22/62
		5.1.4.2 -	Demanda bioquímica de oxigênio (DBO)	27/62
		5.1.4.3 -	Demanda química de oxigênio (DQO)	27/62
		5.1.4.4 -	Carbono	28/62
		5.1.5 -	Química II	31/62
		5.1.5.1 -	Alcalinidade	31/62
		5.1.6 -	Químicas III	32/62
		5.1.6.1 -	fons principais (Na $^+$, K $^+$, Ca $^{2+}$, Mg $^{2+}$, CI $^-$, SO $_4^{2-}$, HCO $_3^-$)	32/62
		5.1.7 -	Químicas IV	36/62
		5.1.7.1 -	Nitrogênio	36/62

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

5.1.	.7.2 -	Fósforo	40/62
5.1.	.7.3 -	Silicatos reativos	43/62
5.1.8 -	Q	uímicas V	44/62
5.1.	.8.1 -	Ferro	44/62
5.1.9 -	Q	uímicas VI	45/62
5.1.	.9.1 -	Elementos-traço	45/62
5.1.10	- B	iológicas	52/62
5.1.	.10.1 -	Coliformes totais e <i>Escherichia coli</i>	52/62
5.1.	.10.2 -	Clorofila <i>a</i> e pigmentos totais	54/62
5.1.	.10.3 -	Pontos de captação de água para abastecimento público: PCM e	
		PCT	55/62
5.1.	.10.4 -	Índice de estado trófico (IET)	56/62
5.1.	.10.5 -	Índice de qualidade da água (IQA)	56/62
5.1.	.10.6 -	Ordenação espacial das variáveis limnológicas	57/62
5.1.	.10.7 -	Comparação das diferentes fases do empreendimento	59/62

ANEXOS

Anexo 5-1 Laudos Abióticos

Anexo 5-2 Laudos Biológicos

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

5 - RESULTADOS

Os resultados de todos os parâmetros físicos, químicos e biológicos analisados foram apresentados na forma de gráficos, textos, tabelas e laudos (Anexo 5-1 - Laudos Abióticos e Anexo 5-2 - Laudos Biológicos).

5.1 - ABIÓTICOS

O rio Madeira apresenta períodos hidrológicos muito bem definidos durante o ano. A sazonalidade bem definida do regime hídrico monomodal possibilita o estabelecimento criterioso das datas dos trabalhos de campo trimestrais, em função das variações no nível do rio, em quatro períodos hidrológicos distintos: vazante, águas baixas, enchente e águas altas. A campanha atual foi realizada no período de vazante (julho de 2014). A variação do nível da água ao longo do tempo e o período em que foram realizada as campanhas de campo do Monitoramento Limnológico são mostrados na (Figura 5.1-1).

Outubro de 2014 | 5.1 - Abióticos | 1/62

UHE SANTO ANTÔNIO NO RIO MADEIRA 2541-00-MLM-RL-0008-00

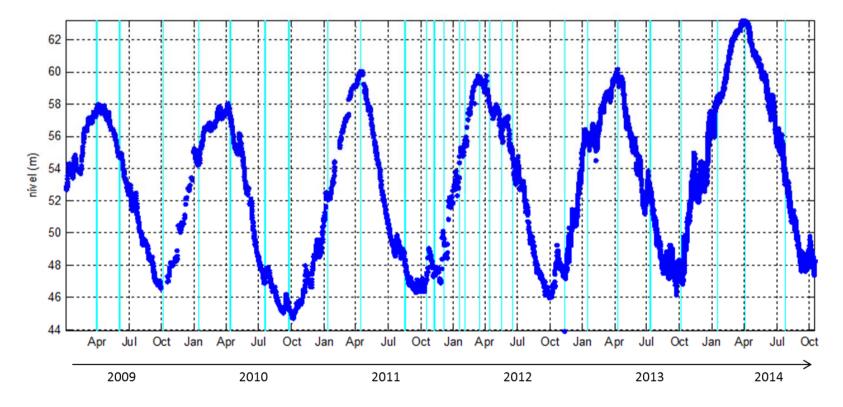


Figura 5.1-1 - Variação da cota no rio Madeira, medida na estação de Porto Velho-RO. A barra indica a campanha realizada em julho de 2014 (vazante).

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

5.1.1 - Físicas A e B

5.1.1.1 - Temperatura do ar e da água

As temperaturas médias do ar e da água na área de estudo foram de 27,2 ± 4,0 °C e 25,7 ± 0,2 °C, indicando temperaturas superiores e mais variáveis no ar do que na água (Figura 5.1-2). No rio Madeira, os perfis verticais de temperatura indicaram uniformidade térmica, tanto a montante quanto a jusante da barragem (Figura 5.1-3). Nos tributários de montante, de forma geral, houve estabelecimento de estratos com temperaturas diferente, ao contrário dos de jusante (Figura 5.1-4). A estação LC.01, no lago Cuniã, também apresentou estratificação térmica.

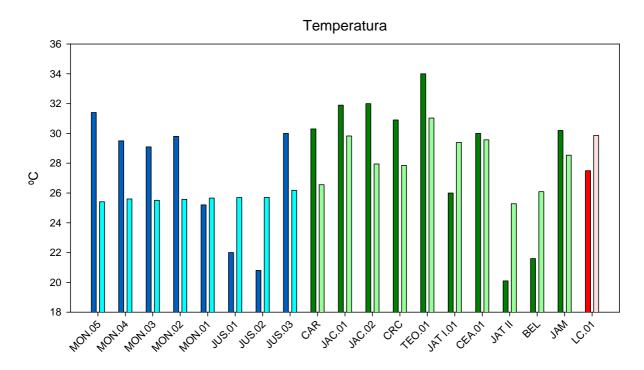


Figura 5.1-2 - Temperatura do ar e da água no rio Madeira (barra azul escuro = ar; barra azul clara = água), nos tributários (barra verde escuro = ar; barra verde claro = água) e no lago Cuniã (barra vermelho escuro = ar; barra vermelho claro = água) em julho de 2014 (vazante).

Outubro de 2014 | 5.1 - Abióticos | 1/62

2541-00-MLM-RL-0008-00

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

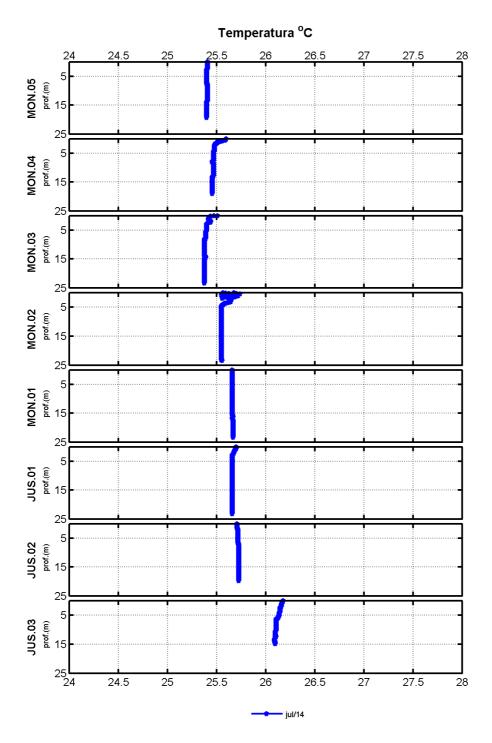
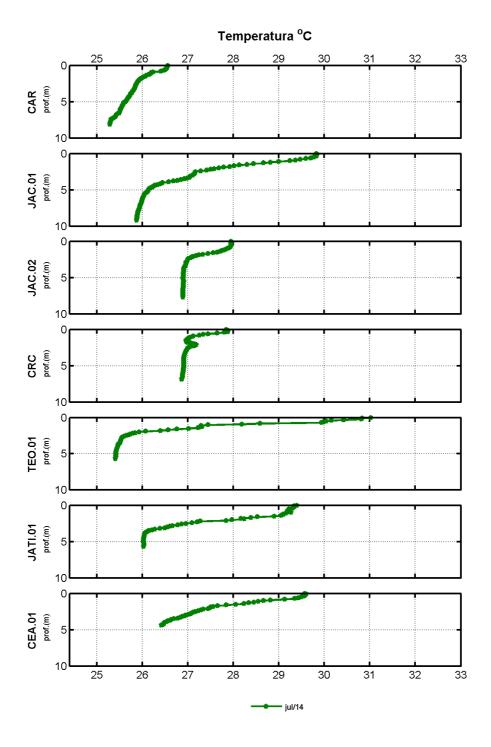



Figura 5.1-3 - Perfis verticais de temperatura da água no rio Madeira em julho de 2014 (vazante).

2/62

UHE SANTO ANTÔNIO NO RIO MADEIRA

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação 2541-00-MLM-RL-0008-00

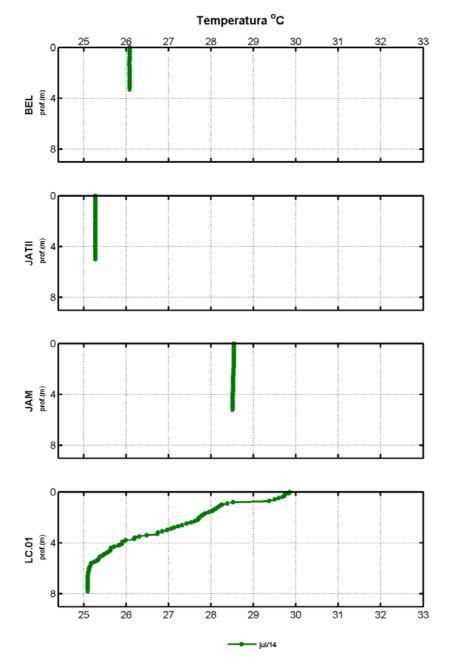


Figura 5.1-4 - Perfis verticais de temperatura da água nos tributários e no lago Cuniã (LC.01) em julho de 2014 (vazante).

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

5.1.1.2 - Profundidade, zona eufótica, cor e velocidade de corrente

A profundidade média foi de 27.4 ± 8 m nas estações do rio Madeira e 6.2 ± 2.1 m nas estações dos tributários. Ao comparar o padrão de variação da profundidade no rio Madeira, observou-se um aumento gradual da estação mais a montante do reservatório (MON.05) em direção à barragem (MON.01) (Figura 5.1-5).

Como o rio Madeira é um rio de águas brancas, com elevada carga de sólidos em suspensão, há baixa penetração de luz (Muntz, 1978). Isso explica a pequena zona eufótica registrada (0,3 m). Já nos tributários a zona eufótica foi maior (2,4 \pm 1,4 m) (Figura 5.1-5). No lago Cuniã, a zona eufótica foi de 4,8 m.

A cor da água apresentou valores médios de 58,7 ± 4,0 mg Pt/L nas estações do rio Madeira e 31,3 ± 14,4 mg Pt/L nos tributários. O limite de 75 mg/L preconizado para corpos de água doce classe 2, pela Resolução CONAMA 357/2005 não foi extrapolado nas estações do Madeira, dos tributários e no lago Cuniã (Figura 5.1-6).

A velocidade de corrente média no rio Madeira foi de 3.5 ± 0.9 km/h. Nos tributários apenas as estações JAM e JAC.02 apresentaram velocidade de corrente. A maior parte dos tributários não apresentou velocidade de corrente quantificável, assim como o lago Cuniã (Figura 5.1-7).

Outubro de 2014 | 5.1 - Abióticos | 5/62

Ecology Brasil

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

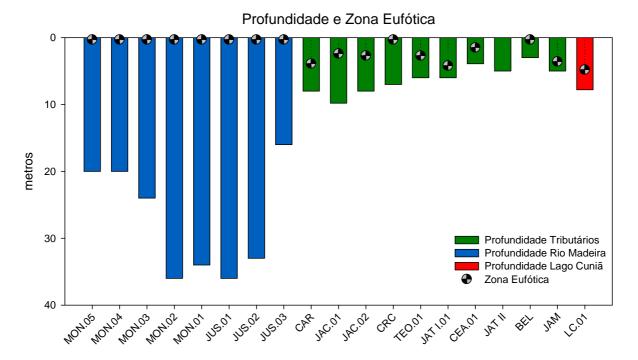


Figura 5.1-5 - Profundidade da coluna d'água (barras) e zona eufótica (círculos) no rio Madeira (azul), nos tributários (verde) e no lago Cuniã (vermelho) em julho de 2014 (vazante)

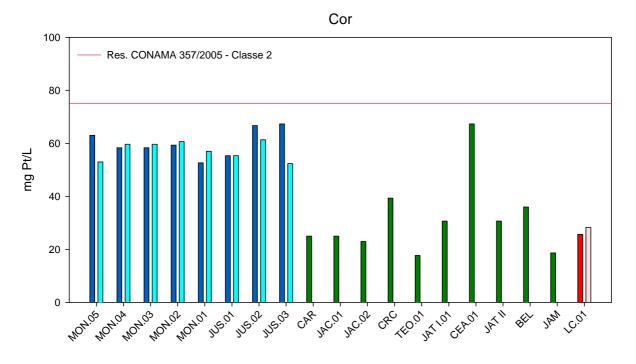


Figura 5.1-6 - Cor da água no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde = superfície) e no lago Cuniã (barra vermelha = superfície) em julho de 2014 (vazante) A cor não é amostrada no fundo dos tributários.

6/62

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

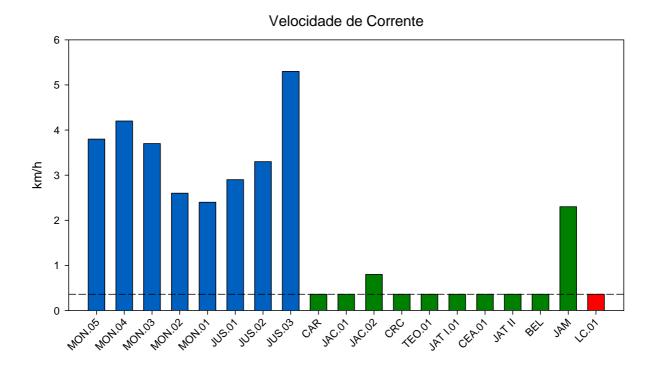


Figura 5.1-7 - Velocidade de corrente no rio Madeira (azul), nos tributários (verde) e no lago Cuniã (vermelho) em julho de 2014 (vazante) A linha pontilhada indica o limite de detecção (0,36 km/h).

5.1.2 - Físicas C

5.1.2.1 - Turbidez

A média da turbidez registrada no rio Madeira foi de 121,0 ± 10,1 NTU para este período de vazante. A maior parte dos tributários apresentou valores baixos de turbidez, de modo que a média foi 32,7 ± 29,3 NTU (Figura 5.1-8). O limite de 100 NTU preconizado para corpos de água doce da classe 2 pela Resolução CONAMA 357/2005 foi extrapolado pora todas as estações do rio Madeira. Altos valores de turbidez no rio Madeira -é uma característica natural.

Os perfis de turbidez indicaram tendência de aumento dos valores em direção ao fundo nas estações do rio Madeira (Figura 5.1-9). Nos tributários e no lago Cuniã os perfis apresentaram maior variação vertical, mas também com tendência de aumento em direção ao fundo, principalmente a montante (Figura 5.1-10).

Outubro de 2014 | 5.1 - Abióticos 7/62

UHE SANTO ANTÔNIO NO RIO MADEIRA

2541-00-MLM-RL-0008-00

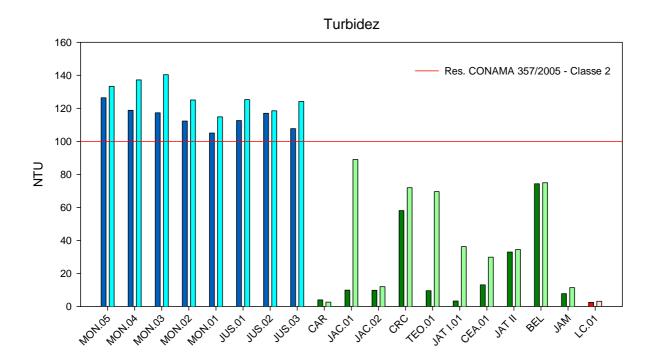


Figura 5.1-8 - Valores de turbidez no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde = superfície; barra verde claro = fundo) e no lago Cuniã (barra vermelha = superfície; barra vermelho claro=fundo) em julho de 2014 (vazante)

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

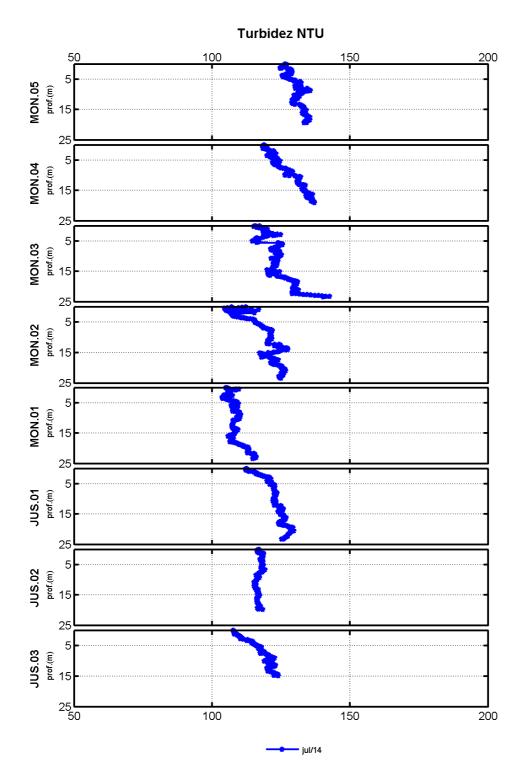
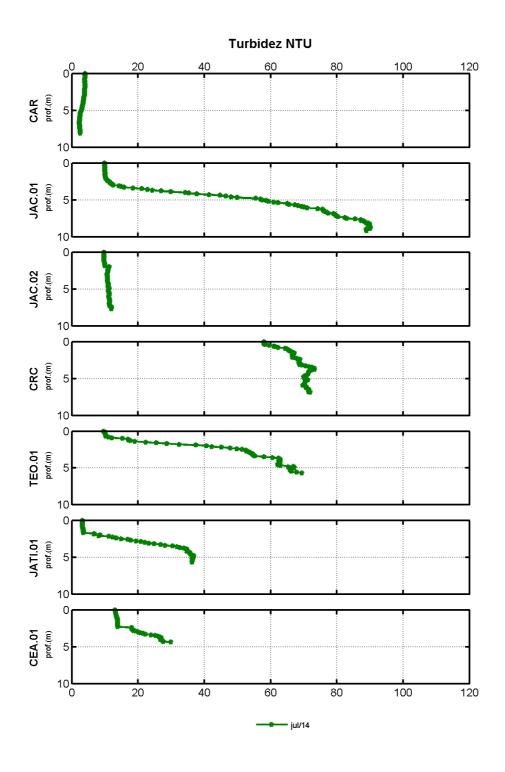


Figura 5.1-9 - Perfis verticais de turbidez no rio Madeira em julho de 2014 (vazante)


 Outubro de 2014
 5.1 - Abióticos
 9/62

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação 2541-00-MLM-RL-0008-00

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

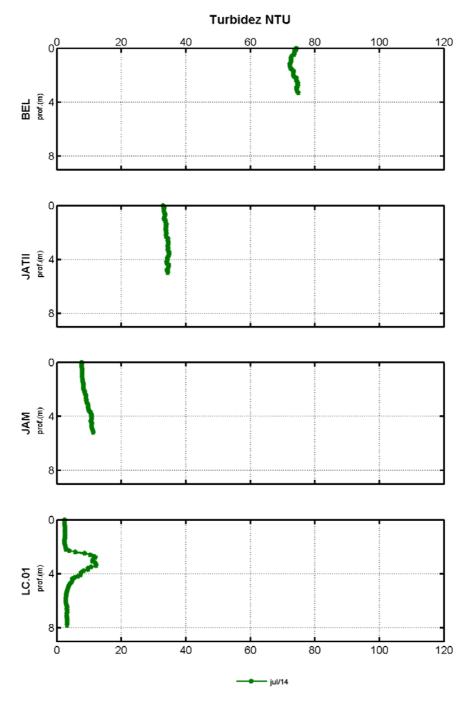


Figura 5.1-10 - Perfis verticais de turbidez nos tributários e no lago Cuniã (LC.01) em julho de 2014 (vazante)

 Outubro de 2014
 5.1 - Abióticos
 11/62

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

2541-00-MLM-RL-0008-00

5.1.2.2 - Sólidos

Os rios de água branca, como o rio Madeira, apresentam elevado teor de sólidos, especialmente em suspensão (McClain & Naiman, 2008). As elevadas concentrações de sólidos são provenientes da erosão do flanco dos barrancos e carreamento de sedimentos suspensos, principalmente na parte andina da bacia.

A concentração média de sólidos totais foi de 143,1 ± 19,2 mg/L nas estações do rio Madeira e 39,5 ± 29,2 mg/L nas estações dos tributários (Figura 5.1-11). A estação do lago Cuniã apresentou baixa concentração, como a maior parte dos tributários.

A concentração de sólidos em suspensão no rio Madeira foi de 122,3 \pm 15,39 mg/L, contra uma média de 18,9 \pm 23,4 mg/L nos tributários (Figura 5.1-12).

A concentração média de sólidos dissolvidos foi de $20.8 \pm 13.9 \, \text{mg/L}$ no rio Madeira e $20.5 \pm 12.55 \, \text{mg/L}$ nos tributários (Figura 5.1-13). Todas as concentrações de sólidos dissolvidos foram inferiores ao limite de $500 \, \text{mg/L}$ preconizado para corpos de água doce da classe 2 pela Resolução CONAMA 357/2005.

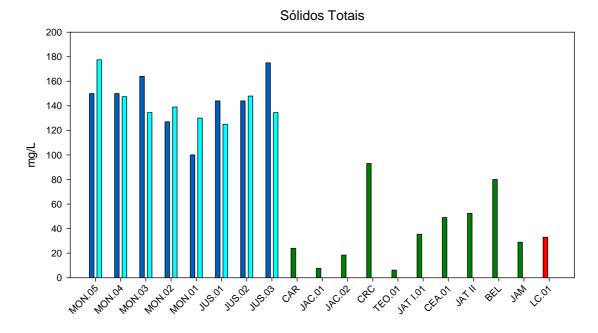


Figura 5.1-11 - Concentrações de sólidos totais no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde = superfície) e no lago Cuniã (barra vermelho = superfície) em julho de 2014 (vazante) Os sólidos totais não são amostrados no fundo dos tributários e do lago Cuniã.

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

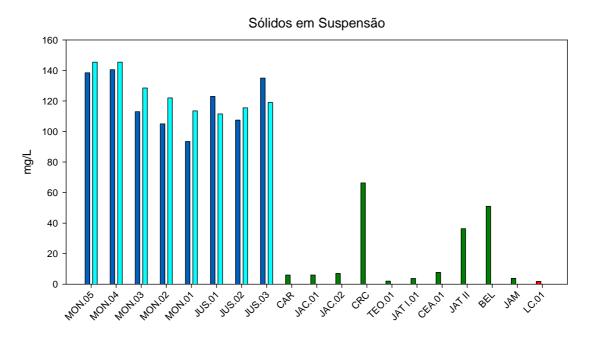


Figura 5.1-12 - Concentrações de sólidos em suspensão no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde = superfície) e no lago Cuniã (barra vermelha = superfície) em julho de 2014 (vazante) Os sólidos em suspensão não são amostrados no fundo dos tributários e do lago Cuniã.

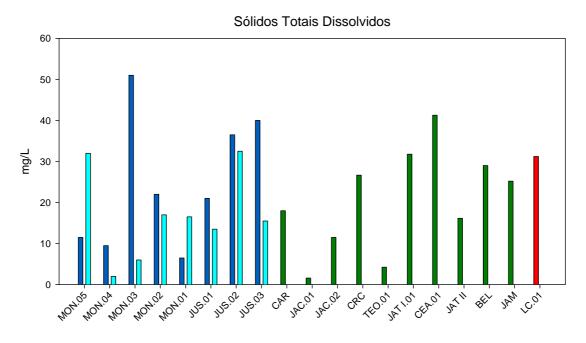


Figura 5.1-13 - Concentrações de sólidos totais dissolvidos no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde = superfície) e no lago Cuniã (barra vermelha = superfície) em julho de 2014 (vazante) Os sólidos totais dissolvidos não são amostrados no fundo dos tributários e no lago Cuniã.

Outubro de 2014 | 5.1 - Abióticos | 13/62

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação 2541-00-MLM-RL-0008-00

5.1.3 - Físico-químicas

5.1.3.1 - Condutividade elétrica

A condutividade elétrica apresentou média de 74 \pm 2 μ S/cm no rio Madeira e 35 \pm 24 μ S/cm nos tributários (Figura 5.1-14). Não houve variação espacial nos valores registrados no rio Madeira, indicando que o barramento não criou gradientes espaciais na condutividade. Nos tributários os valores oscilaram bastante, uma vez que se tratam de ambientes distintos. O valor registrado no lago Cuniã foi próximo à média encontrada nos tributários. Os perfis de condutividade ao longo da coluna d'água indicaram que não há diferença entre superfície e fundo no rio Madeira, com exceção das estações MON.05 e MON.01 (Figura 5.1-15). Nos tributários, em contrapartida, houve maior variação vertical, com uma tendência geral de aumento em direção ao fundo nas estações de montante (Figura 5.1-16).

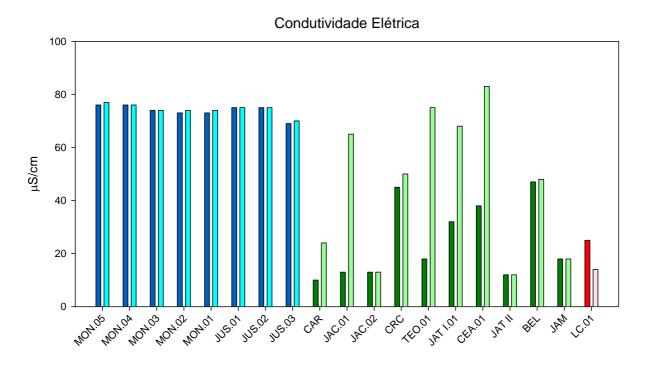
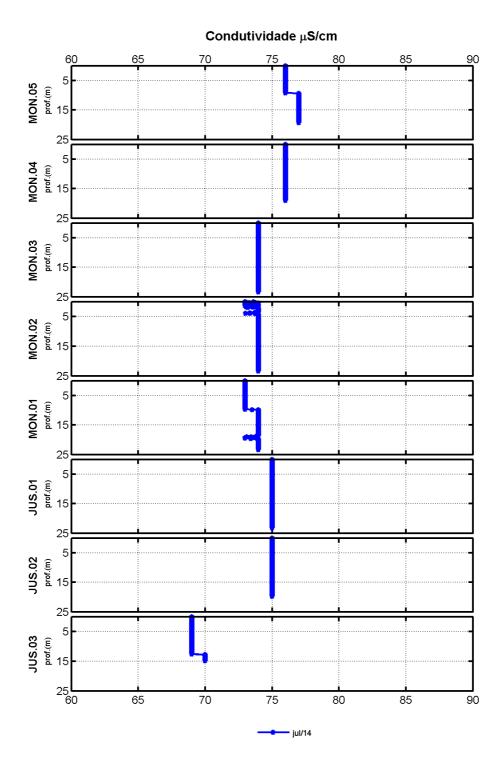


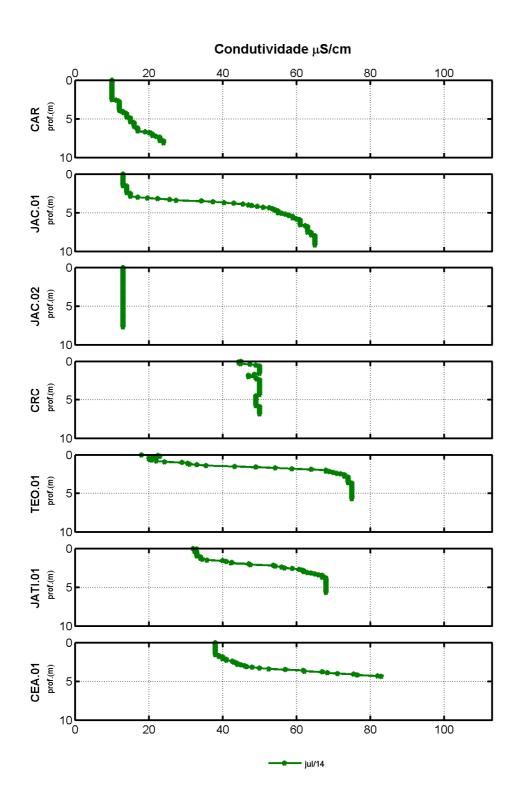
Figura 5.1-14 - Valores superficiais de condutividade elétrica no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde = superfície; barra verde claro = fundo) e no lago Cuniã (barra vermelha = superfície; barra vermelho claro = fundo) em julho de 2014 (vazante).

14/62 5.1 - Abióticos Outubro de 2014

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação




Figura 5.1-15 - Perfis verticais de condutividade elétrica no rio Madeira em julho de 2014 (vazante)

 Outubro de 2014
 5.1 - Abióticos
 15/62

2541-00-MLM-RL-0008-00

UHE SANTO ANTÔNIO NO RIO MADEIRA

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

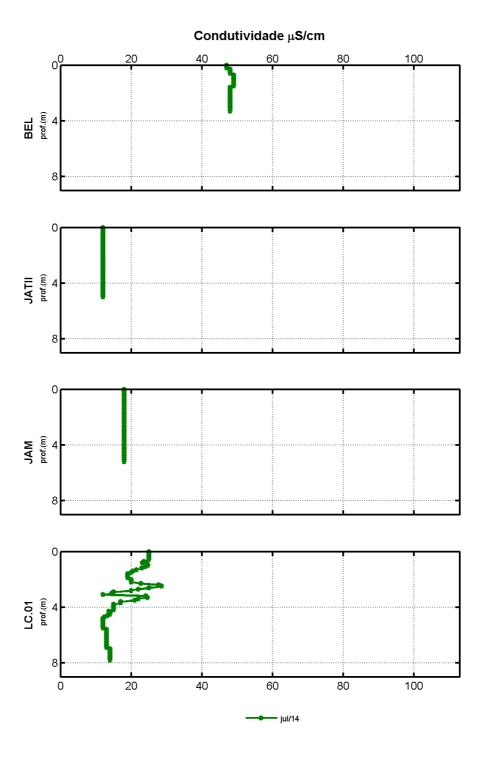


Figura 5.1-16 - Perfis verticais de condutividade elétrica nos tributários e no lago Cuniã (LC.01) em julho de 2014 (vazante).

 Outubro de 2014
 5.1 - Abióticos
 17/62

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação 2541-00-MLM-RL-0008-00

5.1.3.2 - Potencial hidrogeniônico (pH)

O pH médio dos tributários (6,5 ± 0,41) foi mais baixo do que nas estações no rio Madeira (7,13 ± 0,17) (Figura 5.1-17). Houve maior variação espacial nos tributários. A maior parte das estações do rio Madeira e dos tributários apresentou pH dentro do intervalo determinado para corpos de água doce da classe 2 pela Resolução CONAMA 357/2005, exceto o fundo de LC.01, CAR e JAT II.

Os perfis de pH do rio Madeira não indicaram padrão de variação vertical claro - em algumas estações houve aumento em direção ao fundo; em outras houve decréscimo (Figura 5.1-18). Nos tributários e no lago Cuniã, a tendência geral foi de diminuição em direção ao fundo (Figura 5.1-19).

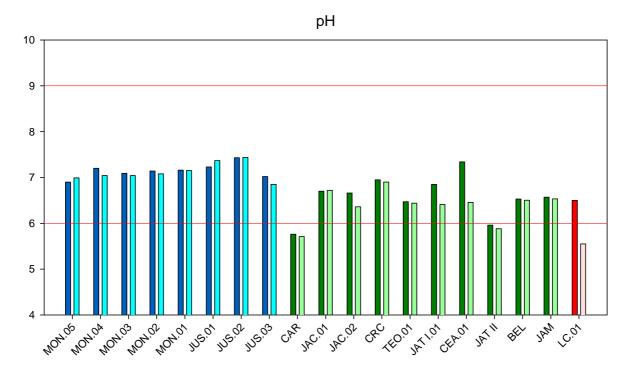


Figura 5.1-17 - Valores de pH no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde = superfície; barra verde claro = fundo) e no lago Cuniã (barra vermelha = superfície; barra vermelho claro = fundo) em julho de 2014 (vazante)

As linhas vermelhas indicam o intervalo preconizado para corpos de água doce da classe 2 pela Resolução CONAMA 357/2005.

18/62 5.1 - Abióticos Outubro de 2014

2541-00-MLM-RL-0008-00

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

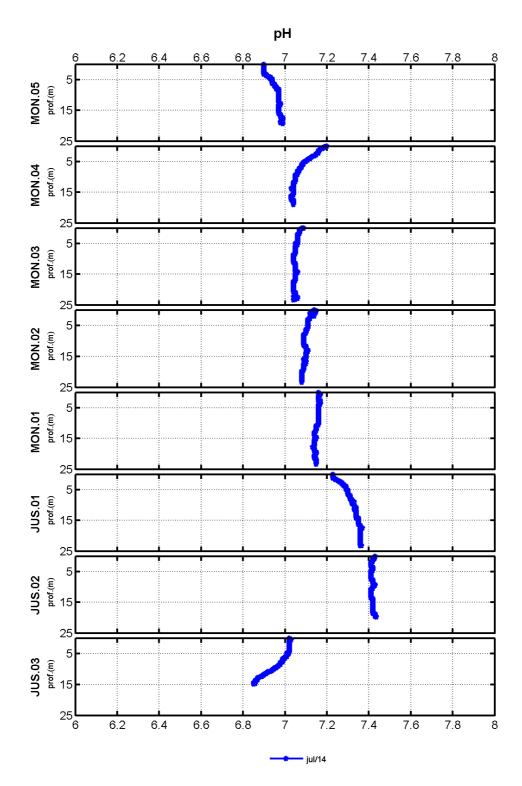
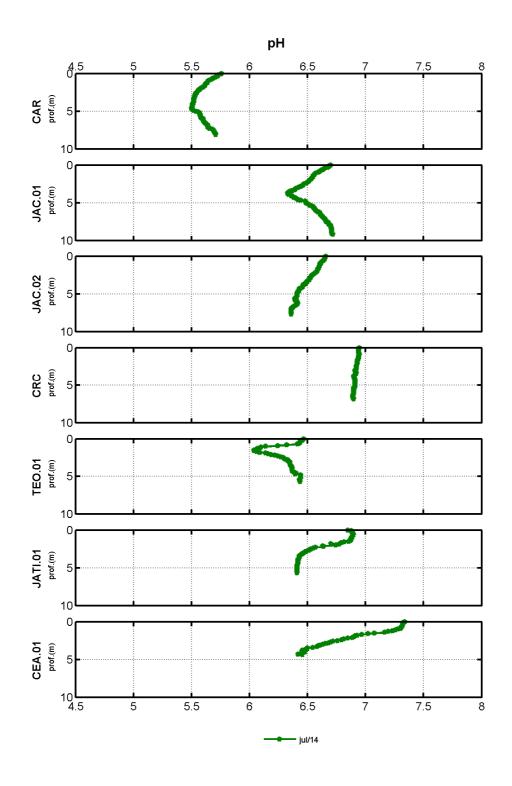


Figura 5.1-18 - Perfis de pH no rio Madeira em julho de 2014 (vazante)


 Outubro de 2014
 5.1 - Abióticos
 19/62

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação 2541-00-MLM-RL-0008-00

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

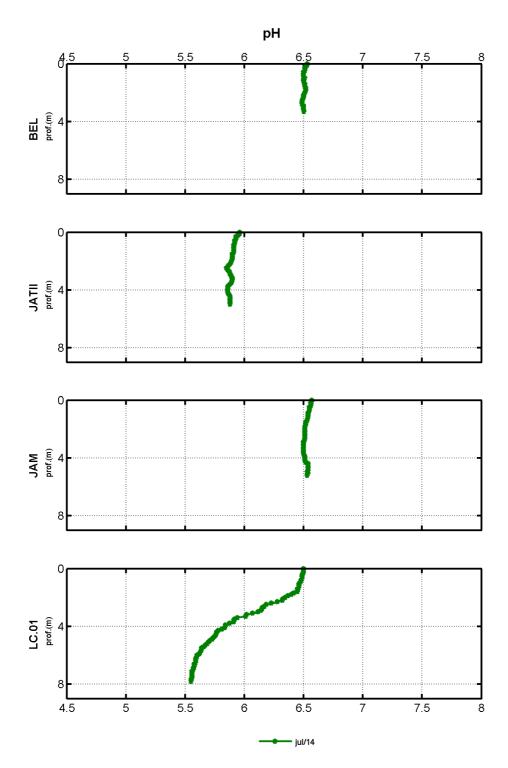


Figura 5.1-19 - Perfis de pH nos tributários e no lago Cuniã (LC.01) em julho de 2014 (vazante)

 Outubro de 2014
 5.1 - Abióticos
 21/62

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação 2541-00-MLM-RL-0008-00

5.1.4 - Químicas I-A

5.1.4.1 - Oxigênio dissolvido

As concentrações médias de oxigênio dissolvido foram de 8,8 ± 0,35 mg/L no rio Madeira e 4,4 ± 3,06 mg/L nos tributários (Figura 5.1-20). Maiores concentrações no rio Madeira são explicadas possivelmente pelo fato de que nas estações do rio Madeira, embora a produção primária seja baixa em razão da pequena zona eufótica, a turbulência é maior, o que favorece a difusão de oxigênio para a água. No rio Madeira, as concentrações aumentam após a passagem da água pelos vertedouros e turbinas, que favorece a difusão de oxigênio. Baixas concentrações no fundo de TEO.01, JAT I.01 e CEA são reflexo da estratificação térmica, já que esses ambientes originalmente lóticos foram transformados em ambientes menos lóticos com o barramento. Tanto o Madeira como os tributários apresentou concentrações superiores a 5 mg/L, limite mínimo preconizado pela Resolução CONAMA 357/2005, com excessão CAR, JAT II e BEL. Vale ressaltar que as estações JAT II e BEL estão situadas a jusante do eixo da barragem.

Essa dinâmica é bastante comum em ambientes aquáticos amazônicos, em decorrência da entrada de matéria orgânica alóctone e maior tempo de residência da água.

Os perfis de oxigênio das estações do rio Madeira indicaram leve decréscimo em direção ao fundo (Figura 5.1-21). O mesmo padrão foi observado nos tributários de montante e no lago Cuniã, mas nesses ambientes o decréscimo foi mais acentuado - especialmente em CEA.01, JAT I.01 e LC.01, onde os valores hipolimnéticos indicaram hipoxia (Figura 5.1-22).

22/62 5.1 - Abióticos Outubro de 2014

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

Oxigênio Dissolvido 12 Valor Mínimo Res. CONAMA 357/2005 - Classe 2 10 8 6 4 2 JAT 1.01 JAC.OT JAC.OZ 4 KOO1 CEA.O1 MONOS N202 115.03 CAR MON-01 115.01

Figura 5.1-20 - Concentrações de oxigênio dissolvido no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde = superfície; barra verde claro = fundo) e no lago Cuniã (barra vermelha = superfície; barra vermelho claro = fundo) em julho de 2014 (vazante)

Outubro de 2014 | 5.1 - Abióticos | 23/62

Ecology Brasil

UHE SANTO ANTÔNIO NO RIO MADEIRA

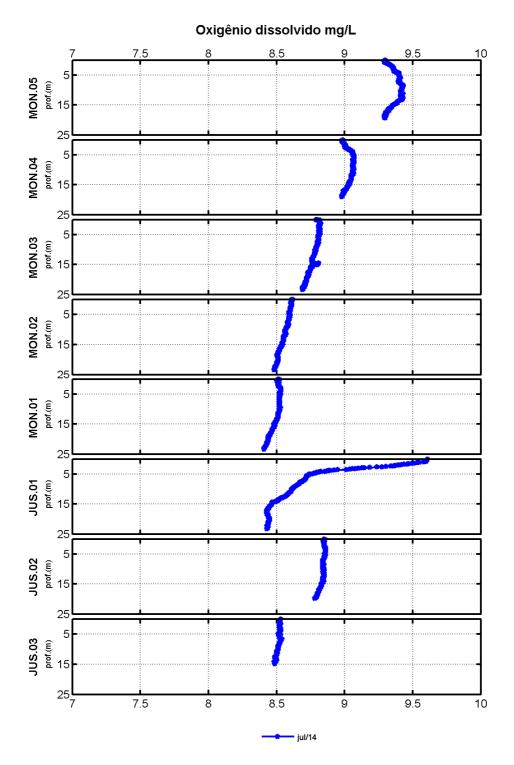
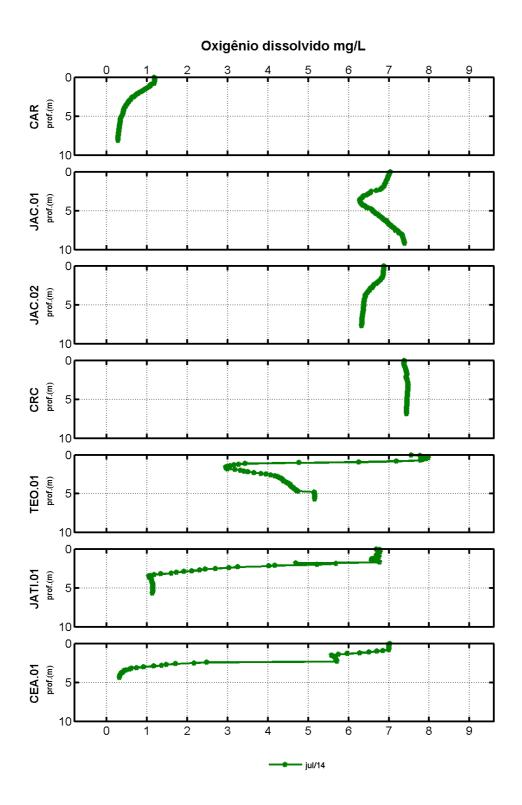



Figura 5.1-21 - Perfis de concentração de oxigênio dissolvido no rio Madeira em julho de 2014 (vazante)

UHE SANTO ANTÔNIO NO RIO MADEIRA

Ecology Brasil

UHE SANTO ANTÔNIO NO RIO MADEIRA

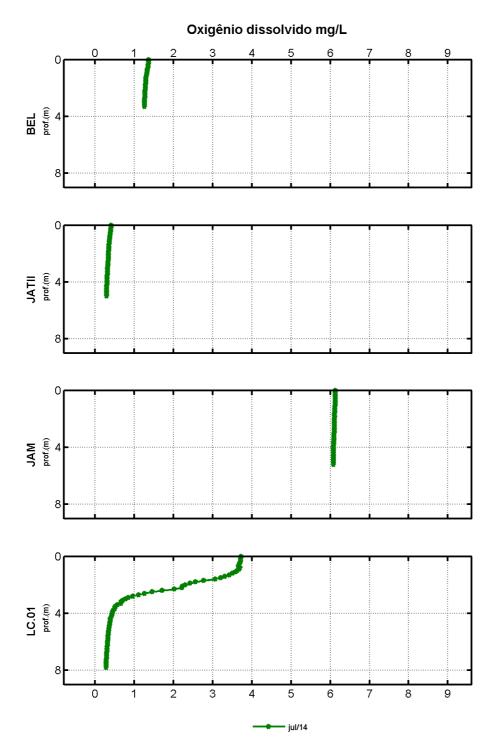


Figura 5.1-22 - Perfis de oxigênio nos tributários e no lago Cuniã (LC.01) em julho de 2014 (vazante)

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

5.1.4.2 - Demanda bioquímica de oxigênio (DBO)

A DBO média foi de 0.5 ± 0.1 mg/L nas estações do rio Madeira e 1.3 ± 0.7 mg/L nas estações dos tributários (Figura 5.1-23). Nenhuma estação extrapolou o limite de 5 mg/L preconizado para corpos de água doce da classe 2 pela Resolução CONAMA 357/2005.

Figura 5.1-23 - Demanda bioquímica de oxigênio (DBO) no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde = superfície) e no lago Cuniã (barra vermelha = superfície) em julho de 2014 (vazante) A DBO não é amostrada no fundo dos tributários e do lago Cuniã.

5.1.4.3 - Demanda química de oxigênio (DQO)

A DQO média foi de $363\pm$ 197 mg/L nas estações do rio Madeira e 374 \pm 194 mg/L nas estações dos tributários (Figura 5.1-24), mostrando haver variação espacial expressiva.

Outubro de 2014 | 5.1 - Abióticos | 27/62

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação 2541-00-MLM-RL-0008-00

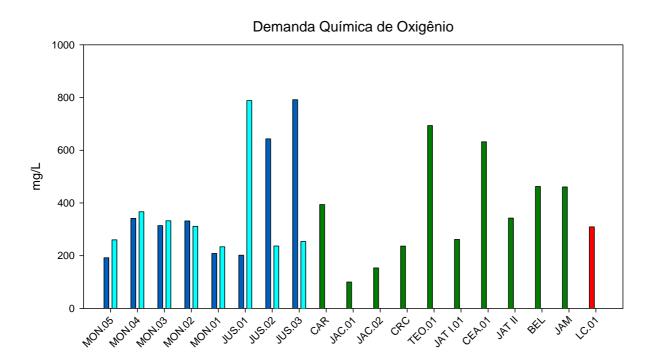


Figura 5.1-24 - Demanda química de oxigênio (DQO) no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde = superfície) e no lago Cuniã (barra vermelha = superfície) em julho de 2014 (vazante) A DQO não é amostrada no fundo dos tributários e do lago Cuniã.

5.1.4.4 - Carbono

As concentrações médias de carbono inorgânico foram de 5,3 \pm 0,2 mg/L nas estações do rio Madeira e 2,9 \pm 1,3 mg/L nas estações dos tributários (Figura 5.1-25). A concentração média de carbono orgânico total foi de 4,6 \pm 0,2 mg/L nas estações do rio Madeira e 2,7 \pm 1 mg/L nas estações dos tributários (Figura 5.1-26). O carbono orgânico dissolvido compôs em média 82% do carbono orgânico total no rio Madeira (4,4 \pm 0,3 mg/L) e 87% nos tributários (2,4 \pm 0,96 mg/L) (Figura 5.1-27). Os valores registrados estiveram um pouco abaixo da mediana dos lagos do mundo, especialmente nos tributários (5,71 mg/L; Sobek *et al.*, 2007). Existe uma grande sazonalidade nas concentrações de carbono orgânico em ecossistemas amazônicos – nas águas altas, as concentrações podem superar os 10 mg/L, como registrado em outras ocasiões durante esse monitoramento, ao passo que nas águas baixas os valores podem ficar perto dos 3 mg/L.

Em relação ao carbono total, as concentrações médias foram de 9,9 \pm 0,9 mg/L nas estações do rio Madeira e 5,6 \pm 1,9 mg/L nas estações dos tributários (Figura 5.1-28).

28/62 5.1 - Abióticos Outubro de 2014

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

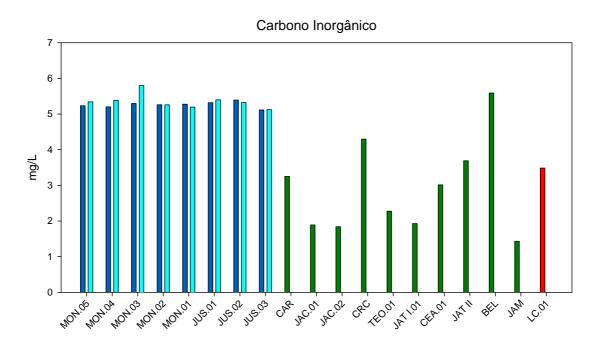


Figura 5.1-25 - Concentrações de carbono inorgânico no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde = superfície) e no lago Cuniã (barra vermelha = superfície) em julho de 2014 (vazante). O carbono inorgânico não é amostrado no fundo dos tributários e do lago Cuniã.

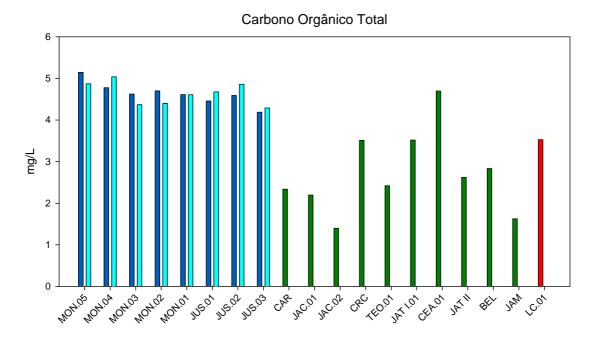


Figura 5.1-26 - Concentrações de carbono orgânico total no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde = superfície) e no lago Cuniã (barra vermelha = superfície) em julho de 2014 (vazante) O carbono orgânico total não é amostrado no fundo dos tributários e do lago Cuniã.

Outubro de 2014 | 5.1 - Abióticos | 29/62

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

Carbono Orgânico Dissolvido

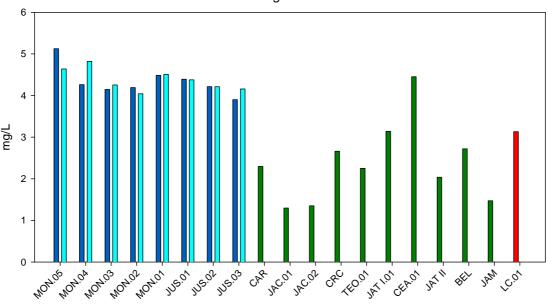


Figura 5.1-27 - Concentrações de carbono orgânico dissolvido no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde = superfície) e no lago Cuniã (barra vermelha = superfície) em julho de 2014 (vazante) O carbono orgânico dissolvido não é amostrado no fundo dos tributários e do lago Cuniã.

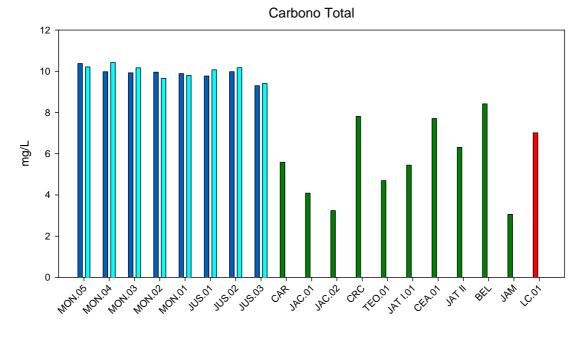


Figura 5.1-28 - Concentrações de carbono total no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde = superfície) e no lago Cuniã (barra vermelha = superfície) em julho de 2014 (vazante) O carbono total não é amostrado no fundo dos tributários e do lago Cuniã.

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

5.1.5 - Química II

5.1.5.1 - Alcalinidade

A alcalinidade média foi de 31,5 \pm 3 mg/L no rio Madeira e 12,5 \pm 8,5 mg/L nos tributários (Figura 5.1-29). As principais substâncias responsáveis por conferir alcalinidade aos ecossistemas aquáticos são os bicarbonatos, os carbonatos e os hidróxidos. A distribuição entre as três formas ocorre em função do pH: 4,4 < pH < 8,3 (bicarbonatos); 8,3 < pH < 9,4 (carbonatos); pH > 9,4 (hidróxidos e carbonatos).

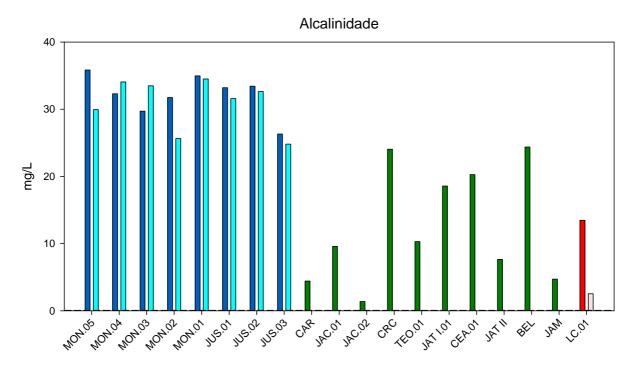


Figura 5.1-29 - Valores de alcalnidade no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde = superfície) e no lago Cuniã (barra vermelha = superfície; barra vermelho claro=fundo) em julho de 2014 (vazante) A linha tracejada indica o limite de quantificação. A alcalinidade não é amostrada no fundo dos tributários.

Outubro de 2014 | 5.1 - Abióticos | 31/62

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

2541-00-MLM-RL-0008-00

5.1.6 - Químicas III

5.1.6.1 - Íons principais (Na⁺, K⁺, Ca²⁺, Mg²⁺, Cl⁻, SO_4^{2-} , HCO₃⁻)

A composição iônica de rios e lagos é regida pelos quatro principais cátions (cálcio, magnésio, sódio e potássio) e pelos quatro principais ânions (bicarbonato, carbonato, cloreto e sulfato) (Wetzel, 2001). Os ecossistemas de água doce são marcados por possuírem baixa concentração iônica. A precipitação atmosférica e a composição das rochas da bacia de drenagem são as principais variáveis que determinam a concentração iônica de ambientes aquáticos (Esteves, 1998). Segundo Esteves (1998), a principal fonte de íons para águas amazônicas é o intemperismo das rochas da cordilheira dos Andes, que por ser uma cadeia montanhosa recente, fornece grande quantidade de cátions e ânions.

As concentrações médias de sódio foram de 2.5 ± 0.3 mg/L no rio Madeira e 1.2 ± 0.9 mg/L nos tributários (Figura 5.1-30). As concentrações encontradas nos tributários foram geralmente mais baixas. As concentrações médias de potássio foram de 1.9 ± 0.2 mg/L no rio Madeira e 1.4 ± 0.5 mg/L nos tributários (Figura 5.1-31). A concentração do lago Cuniã foi semelhante à dos tributários. As concentrações médias de cálcio, cátion mais abundante na área de estudo, foram de 5.7 ± 0.6 mg/L no rio Madeira e 1.7 ± 1.1 mg/L nos tributários (Figura 5.1-32). Já as concentrações de magnésio foram de 2.5 ± 0.3 mg/L no rio Madeira e 0.7 ± 0.1 mg/L nos tributários (Figura 5.1-33). As concentrações de todos os cátions foram maiores no rio Madeira, o que é esperado, tendo em vista a origem andina desse rio. Nos tributários, a variação espacial foi bem maior que no Madeira. A estação do lago Cuniã apresentou concentrações catiônicas geralmente mais baixas, como os tributários.

O cloreto só foi quantificável somente no fundo das estações amostradas, tendo ficado abaixo do limite de quantificação do método nas estações superficiais (Figura 5.1-35). No rio Madeira, o sulfato apresentou média de 7,5 \pm 0,8 mg/, sendo de 6,1 \pm 16,3 mg/L nos tributários. A concentração de sulfato em JAT I.01 foi muito mais elevada do que nas demais estações. As concentrações médias de bicarbonatos também foram maiores no rio Madeira (7,5 \pm 0,8 mg/L) do que nos tributários (3,0 \pm 2,4 mg/L) (Figura 5.1-36).

Nenhum íon amostrado apresentou concentração superior aos seus respectivos limites para corpos de água doce da classe 2 preconizados pela Resolução CONAMA 357/2005.

32/62 5.1 - Abióticos Outubro de 2014

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

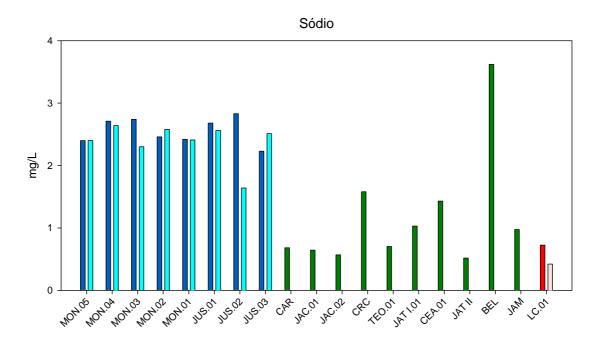


Figura 5.1-30 - Concentrações de sódio no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde = superfície) e no lago Cuniã (barra vermelha = superfície; barra vermelho claro=fundo) em julho de 2014 (vazante)

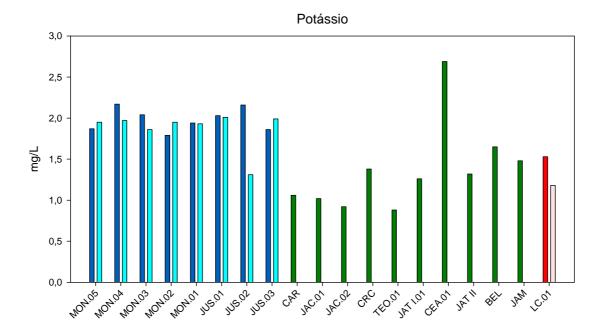


Figura 5.1-31 - Concentrações de potássio no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde = superfície) e no lago Cuniã (barra vermelha = superfície; barra vermelho claro=fundo) em julho de 2014 (vazante)

Outubro de 2014 | 5.1 - Abióticos | 33/62

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

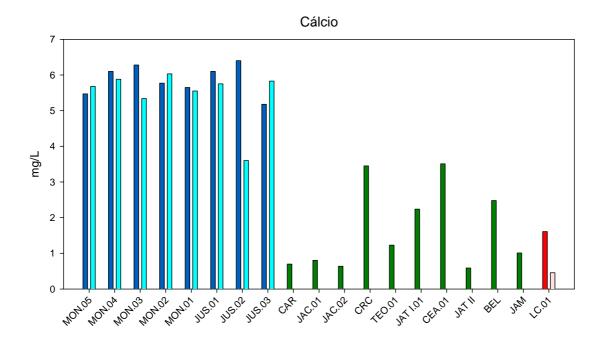


Figura 5.1-32 - Concentrações de cálcio no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde = superfície) e no lago Cuniã (barra vermelha = superfície; barra vermelho claro=fundo) em julho de 2014 (vazante)

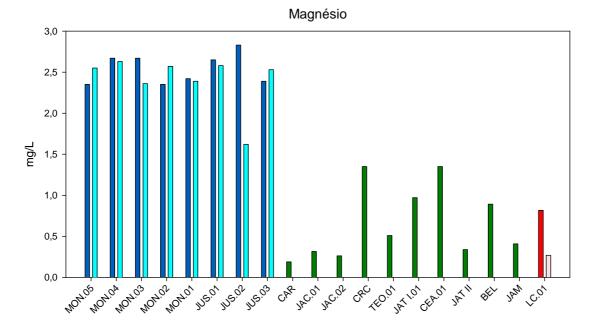


Figura 5.1-33 - Concentrações de magnésio no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde = superfície) e no lago Cuniã (barra vermelha = superfície; barra vermelho claro=fundo) em julho de 2014 (vazante),

34/62

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

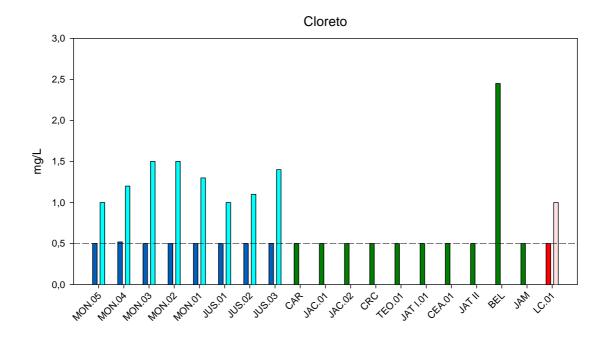


Figura 5.1-34 - Concentrações de cloreto no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde = superfície) e no lago Cuniã (barra vermelha = superfície; barra vermelho claro=fundo) em julho de 2014 (vazante), A linha tracejada indica o limite de quantificação.

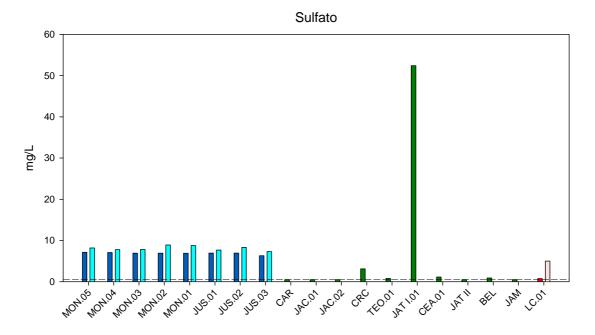


Figura 5.1-35 - Concentrações de sulfato no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde = superfície) e no lago Cuniã (barra vermelha = superfície; barra vermelho claro=fundo) em julho de 2014 (vazante) A linha tracejada indica o limite de quantificação.

Outubro de 2014 | 5.1 - Abióticos | 35/62

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação 2541-00-MLM-RL-0008-00

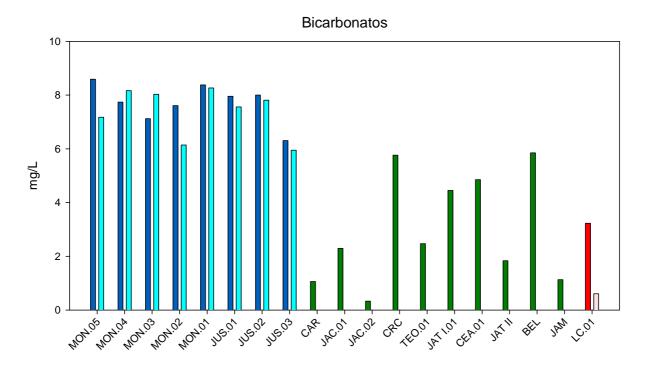


Figura 5.1-36 - Concentrações de bicarbonato no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde = superfície) e no lago Cuniã (barra vermelha = superfície; barra vermelho claro=fundo) em julho de 2014 (vazante)

5.1.7 - Químicas IV

5.1.7.1 - Nitrogênio

Em todas as estações amostradas, o nitrato foi a fração inorgânica de nitrogênio mais abundante, o que era esperado considerando a boa oxigenação geralmente encontrada. As concentrações médias foram de 1246 ± 64 μg/L no rio Madeira e 667 ± 301 μg/L nos tributários (Figura 5.1-37). Os tributários e o lago Cuniã apresentaram teores inferiores. As concentrações de nitrato ficaram abaixo do limite máximo estabelecido para corpos de água doce da classe 2 pela Resolução CONAMA 357/2005.

As concentrações médias de nitrogênio amoniacal foram de $43,3 \pm 6,7 \,\mu\text{g/L}$ no rio Madeira e $113,8 \pm 165,6 \,\mu\text{g/L}$ nos tributários (**Figura 5.1-38**) As concentrações foram semelhantes em todos os sistemas, exceto para CAR, JAT II e BEL, onde foram registrados valores um pouco superiores. Entretanto, as concentrações de nitrogênio amoniacal foram inferiores ao limite máximo estabelecido para corpos de água doce da classe 2 pela Resolução CONAMA 357/2005.

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

As concentrações de nitrito foram baixas em todos ambientes amostrados. As médias foram de $3.7 \pm 0.5 \,\mu\text{g/L}$ no rio Madeira e $4.6 \pm 2.0 \,\mu\text{g/L}$ nos tributários (**Figura 5.1-39**). As concentrações de nitrito foram inferiores ao limite máximo estabelecido para corpos de água doce da classe 2 pela Resolução CONAMA 357/2005.

Em relação ao nitrogênio orgânico total, as concentrações médias foram de 310,6 \pm 108,1 μ g/L nas estações do rio Madeira e 489,2 \pm 139,6 μ g/L nas estações dos tributários (**Figura 5.1-40**). Essa fração apresentou maior variação espacial do que as demais. A concentração medida no lago Cuniã foi mais parecida com as medidas nos tributários, sendo mais alta do que as medidas no rio Madeira.

O nitrogênio total apresentou concentrações médias de $1604,2 \pm 90 \,\mu\text{g/L}$ no rio Madeira e $1258,4 \pm 341 \,\mu\text{g/L}$ nos tributários (Figura 5.1-41).

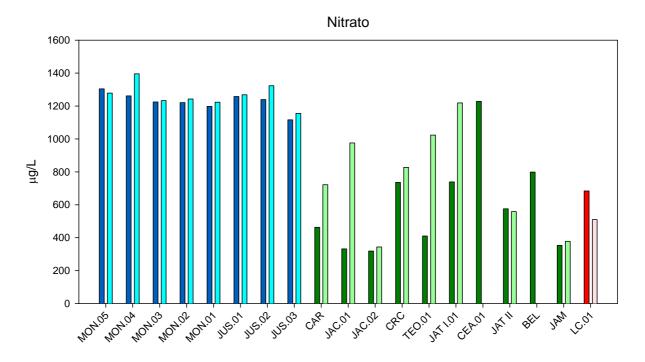


Figura 5.1-37 - Concentrações de nitrato no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde escuro = superfície; barra verde claro = fundo) e no lago Cuniã (barra vermelho escuro = superfície; barra vermelho claro=fundo) em julho de 2014 (vazante)

Outubro de 2014 | 5.1 - Abióticos | 37/62

UHE SANTO ANTÔNIO NO RIO MADEIRA 2541-00-MLM-RL-0008-00

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

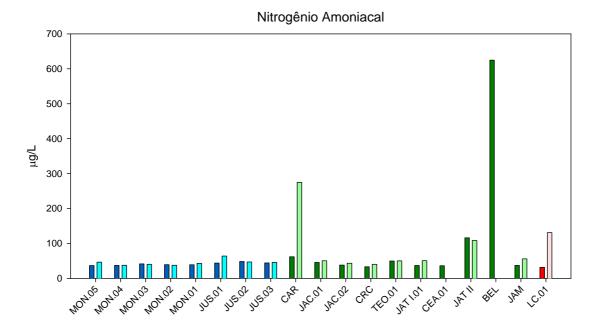


Figura 5.1-38 - Concentrações de nitrogênio amoniacal no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde escuro = superfície; barra verde claro = fundo) e no lago Cuniã (barra vermelho escuro = superfície; barra vermelho claro=fundo) em julho de 2014 (vazante)

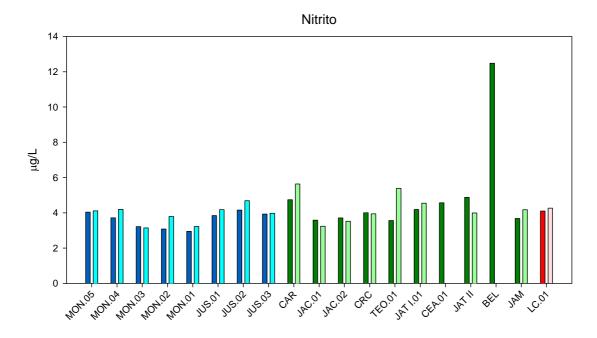


Figura 5.1-39 - Concentrações de nitrito no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde escuro = superfície; barra verde claro = fundo) e no lago Cuniã (barra vermelho escuro = superfície; barra vermelho claro=fundo) em julho de 2014 (vazante)

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

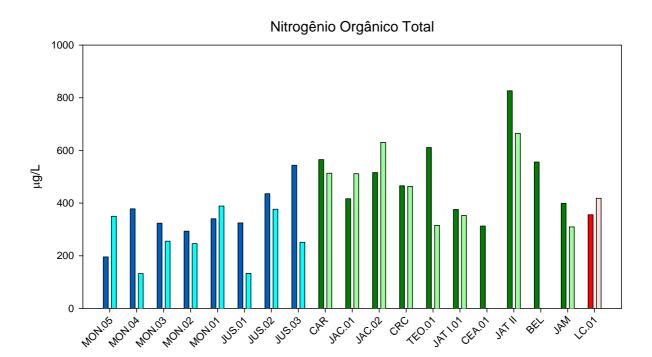


Figura 5.1-40 - Concentrações de nitrogênio orgânico total no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde escuro = superfície; barra verde claro = fundo) e no lago Cuniã (barra vermelho escuro = superfície; barra vermelho claro=fundo) em julho de 2014 (vazante)

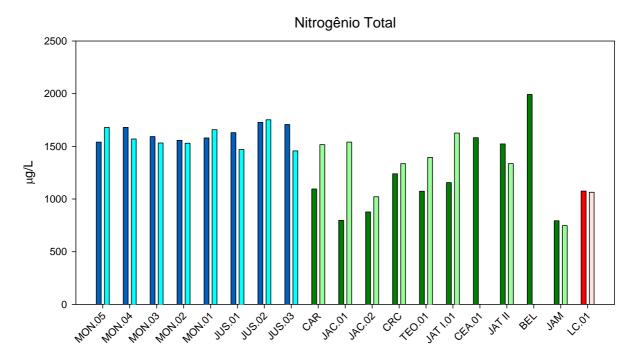


Figura 5.1-41 - Concentrações de nitrogênio total no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde escuro = superfície; barra verde claro = fundo) e no lago Cuniã (barra vermelho escuro = superfície; barra vermelho claro=fundo) em julho de 2014 (vazante)

Outubro de 2014 | 5.1 - Abióticos | 39/62

Ecology Brasil

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação 2541-00-MLM-RL-0008-00

5.1.7.2 - Fósforo

O ortofosfato, fração de fósforo mais importante do ponto de vista ecológico, apresentou concentrações médias de $19 \pm 4.3 \,\mu\text{g/L}$ no rio Madeira e $6.9 \pm 3.4 \,\mu\text{g/L}$ nos tributários (Figura 5.1-42). A concentração do lago Cuniã assemelhou-se às encontradas nos tributários. Em um estudo sobre os fatores que controlam as concentrações de nutrientes em alguns ambientes amazônicos, Forsberg *et al.* (1988) registraram concentrações de ortofosfato de $18.6 \,\mu\text{g/L}$, valor próximo aos registrados no rio Madeira, mas superior ao dos tribnutários e lago Cuniã.

As concentrações médias de fósforo total dissolvido foram de $44 \pm 7.2 \,\mu\text{g/L}$ nas estações do rio Madeira e $24.4 \pm 10.2 \,\mu\text{g/L}$ nas estações dos tributários (Figura 5.1-43).

No rio Madeira, o fósforo particulado foi a fração predominante do fósforo total (71%), ao passo que nos tributários houve equivalência entre as frações (~50% para cada). No lago Cuniã, o fósforo particulado representou 63% do total. As médias de fósforo particulado foram de 104,6 \pm 24,4 μ g/L no rio Madeira e 27 \pm 25,6 μ g/L nos tributários (**Figura 5.1-44**). As concentrações médias de fósforo total foram de 148,7 \pm 22 μ g/L no rio Madeira e 51,5 \pm 30,7 μ g/L nos tributários (**Figura 5.1-45**). No lago Cuniã, as concentrações foram próximas às dos tributários, e menores do que no Madeira. Todas as estações do rio Madeira e algumas dos tributários apresentaram concentrações de fósforo total maior que 100 μ g/L, que é o limite preconizado para corpos de água doce da classe 2 pela Resolução CONAMA 357/2005 para ambientes lóticos e tributários de ambientes intermediários. Essa é uma condição natural do rio Madeira, que é muito rico em fósforo (Almeida, 2013).

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

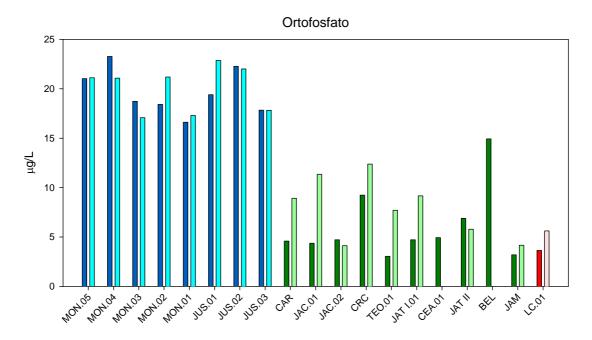


Figura 5.1-42 - Concentrações de ortofosfato no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde escuro = superfície; barra verde claro = fundo) e no lago Cuniã (barra vermelho escuro = superfície; barra vermelho claro=fundo) em julho de 2014 (vazante).

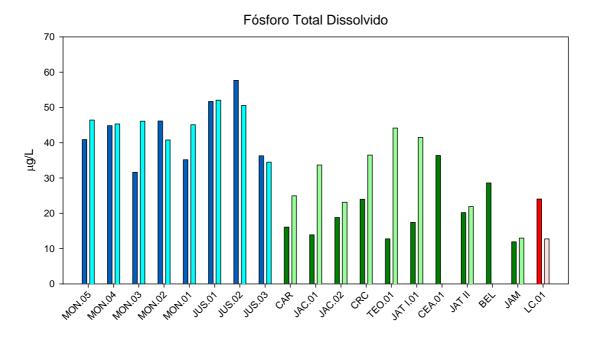


Figura 5.1-43 - Concentrações de fósforo total dissolvido no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde escuro = superfície; barra verde claro = fundo) e no lago Cuniã (barra vermelho escuro = superfície; barra vermelho claro=fundo) em julho de 2014 (vazante).

Outubro de 2014 | 5.1 - Abióticos 41/62

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação 2541-00-MLM-RL-0008-00

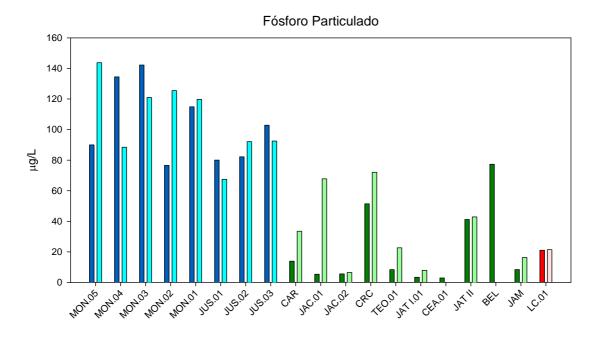


Figura 5.1-44 - Concentrações de fósforo particulado no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde escuro = superfície; barra verde claro = fundo) e no lago Cuniã (barra vermelho escuro = superfície; barra vermelho claro=fundo) em julho de 2014 (vazante)

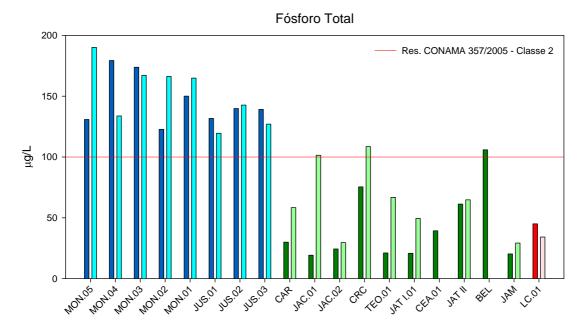


Figura 5.1-45 - Concentrações de fósforo total no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde escuro = superfície; barra verde claro = fundo) e no lago Cuniã (barra vermelho escuro = superfície; barra vermelho claro=fundo) em julho de 2014 (vazante)

42/62

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

5.1.7.3 - Silicatos reativos

A sílica é um nutriente importante para alguns organismos aquáticos, mais notadamente para as algas diatomáceas (Wetzel, 2001). No rio Madeira, a concentração de silicatos apesentou média de 8.5 ± 0.4 mg/L, contra 3.8 ± 2.3 mg/L nos tributários (Figura 5.1-46).

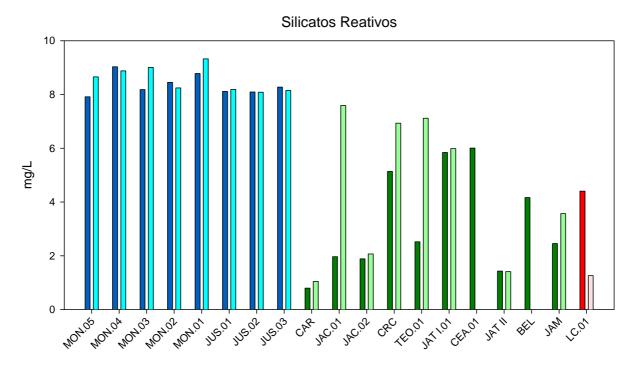


Figura 5.1-46 - Concentrações de silicatos reativos no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde escuro = superfície; barra verde claro = fundo) e no lago Cuniã (barra vermelho escuro = superfície; barra vermelho claro=fundo) em julho de 2014 (vazante)

Outubro de 2014 | 5.1 - Abióticos | 43/62

Ecology Brasil

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação 2541-00-MLM-RL-0008-00

5.1.8 - Químicas V

5.1.8.1 - Ferro

No rio Madeira, o ferro total apresentou média de 3567,5 \pm 542 μ g/L, enquanto que nos tributários a média foi menor (1352,9 \pm 1150,7 μ g/L) (Figura 5.1-47). A concentração do lago Cuniã foi menor, semelhante à dos tributários.

No rio Madeira, somente cerca de 10% do ferro total esteve na fração dissolvida, mostrando que a maior parte do ferro no rio Madeira está aderido a partículas. Já nos tributários e no lago Cuniã, a contribuição média da fração dissolvida foi maior, ficando em torno dos 25%. As concentrações médias de ferro dissolvido foram de 302,4 ± 155,4 μg/L no rio Madeira e 374,5 ± 245 μg/L nos tributários (Figura 5.1-48). MON.03, MON.02, CAR, CEA, JAT II, BEL e o lago Cuniã apresentaram concentrações de ferro dissolvido superiores a 300 μg/L, valor máximo preconizado para corpos de água doce da classe 2 pela Resolução CONAMA 357/2005.



Figura 5.1-47 - Concentrações de ferro total no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde escuro = superfície) e no lago Cuniã (barra vermelho escuro = superfície; barra vermelho claro=fundo) em julho de 2014 (vazante)

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

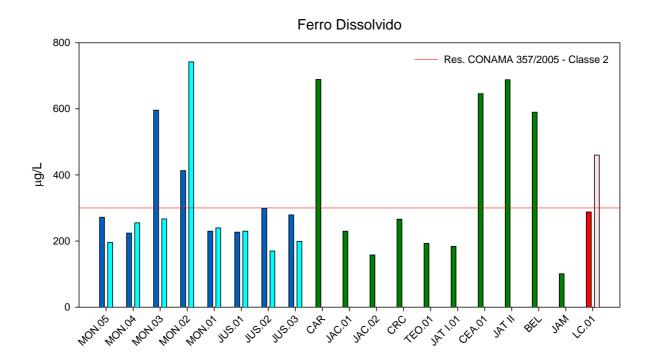


Figura 5.1-48 - Concentrações de ferro dissolvido no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde escuro = superfície) e no lago Cuniã (barra vermelho escuro = superfície; barra vermelho claro=fundo) em julho de 2 014 (vazante)

5.1.9 - Químicas VI

5.1.9.1 - Elementos-traço

Alguns elementos-traço, como o manganês, o cobre, o zinco e o cobalto, tomam parte de vários processos no metabolismo de ecossistemas aquáticos. Em contrapartida, outros elementos, como mercúrio, chumbo, níquel, cádmio, cromo e estanho, não têm função biológica conhecida, além de serem tóxicos a uma vasta gama de organismos (Esteves, 1998). Apesar disso, mesmo os elementos-traço importantes para processos metabólicos podem ser tóxicos se encontrados em altas concentrações. As concentrações de elementos-traços são influenciadas pelo intemperismo de rochas e erosão do solo da bacia de drenagem. Rios amazônicos que drenam regiões andinas, geologicamente jovens, são responsáveis por altas concentrações de elementos-traço. Além disso, as ativididades humanas, a destacar as atividades industriais, são responsáveis pelo aporte de elementos-traço em ecosisstemas aquáticos (Esteves, 1998).

Outubro de 2014 | 5.1 - Abióticos | 45/62

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação 2541-00-MLM-RL-0008-00

As concentrações de cádmio e mercúrio foram inferiores ao limite de quantificação do método em todas as estações amostradas na campanha de vazante de 2014. O cobalto só foi quantificável (>1 μ g/L) em oito estações, sendo a maioria encontrada no rio Madeira: superfície de JUS.02 (1,56 μ g/L) e JUS.02 (3,8 μ g/L) e fundo de MON.05 (2 μ g/L), JUS.01 (2 μ g/L) e JUS.02 (2,9 μ g/L). O cobre dissolvido só foi quantificável em duas estações, ambas no rio Madeira: superfície de MON.05 (1 μ g/L) e de MON.03 (1,3 μ g/L). Já o estanho só foi detectável na estação CEA.01 (3 μ g/L).

As concentrações médias de alumínio dissolvido foram de 32,5 \pm 18,6 μ g/L nas estações do rio Madeira e 28,9 \pm 18,7 μ g/L nas estações dos tributários (**Figura 5.1-49**). A concentração mais alta dentre todas os ambientes foi na superficie de JUS.02, entretanto todos os resultados foram inferiores aos 100 μ g/L preconizados para corpos de água doce da classe 2 pela Resolução CONAMA 357/2005.

As concentrações médias de bário total foram de 17,5 \pm 6,9 μ g/L nas estações do rio Madeira e 35 \pm 3 μ g/L nas estações dos tributários (**Figura 5.1-50**). Todos os valores registrados foram inferiores ao limite de 700 μ g/L preconizado para corpos de água doce da classe 2 pela Resolução CONAMA 357/2005.

As concentrações de cromo total só foram quantificáveis no rio Madeira (1,9 \pm 0,4 μ g/L), tendo ficado abaixo do limite de quantificação em todos os tributários e no lago Cuniã (**Figura 5.1-51**). Todos os valores registrados foram inferiores ao limite de 50 μ g/L preconizado para corpos de água doce da classe 2 pela Resolução CONAMA 357/2005.

As concentrações de níquel total só foram quantificáveis no rio Madeira (2,3 \pm 0,9 μ g/L), tendo ficado abaixo do limite de quantificação em todos os tributários e no lago Cuniã (**Figura 5.1-52**). Nenhum valor registrado foi superior ao limite de 25 μ g/L preconizado para corpos de água doce da classe 2 pela Resolução CONAMA 357/2005.

As concentrações de chumbo total só foram quantificáveis no rio Madeira $(2,3\pm0,4\ \mu g/L)$, tendo ficado abaixo do limite de quantificação em todos os tributários e no lago Cuniã (**Figura 5.1-53**). Todos os valores registrados no rio Madeira foram inferiores ao limite de 10 μ g/L preconizado para corpos de água doce da classe 2 pela Resolução CONAMA 357/2005.

As concentrações médias de silício foram maiores no rio Madeira, que teve média de 5281,9 \pm 559,6 μ g/L, contra 4242 \pm 1240 μ g/L nos tributários (**Figura 5.1-54**). A concentração do lago Cuniã assemelhou-se às registradas nos tributários.

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

As concentrações médias de zinco total foram de $16.7 \pm 5 \,\mu\text{g/L}$ nas estações do rio Madeira e $7 \pm 6 \,\mu\text{g/L}$ nas estações dos tributários (Figura 5.1-55). A concentração medida no lago Cuniã foi maior do que os tributários. Todos os valores registrados foram inferiores ao limite de $180 \,\mu\text{g/L}$ preconizado para corpos de água doce da classe 2 pela Resolução CONAMA 357/2005.

As concentrações médias de manganês total foram de $60,6 \pm 11,4 \,\mu\text{g/L}$ nas estações do rio Madeira e $66,5 \pm 99 \,\mu\text{g/L}$ nas estações dos tributários (**Figura 5.1-56**). Apenas a estação BEL apresentou concentração superior ao limite de $100 \,\mu\text{g/L}$ preconizado para corpos de água doce da classe 2 pela Resolução CONAMA 357/2005.

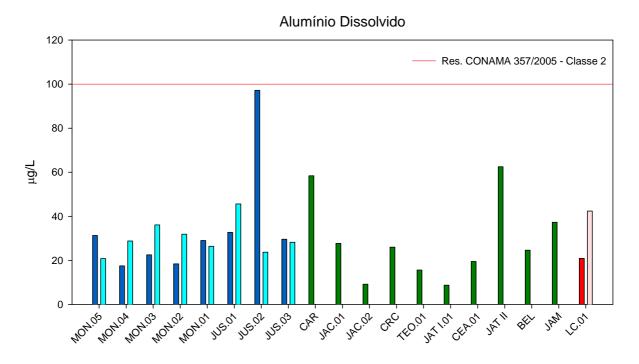


Figura 5.1-49 - Concentrações de alumínio dissolvido no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde = superfície) e no lago Cuniã (barra vermelho escuro = superfície; barra vermelho claro = fundo) em julho de 2014 (vazante)

Outubro de 2014 | 5.1 - Abióticos 47/62

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação 2541-00-MLM-RL-0008-00

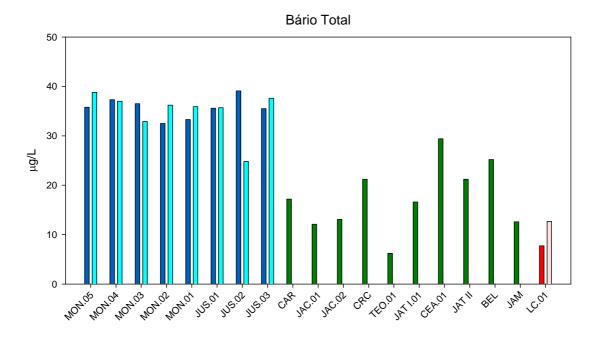


Figura 5.1-50 - Concentrações de bário total no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde = superfície) e no lago Cuniã (barra vermelho escuro = superfície; barra vermelho claro = fundo) em julho de 2014 (vazante).

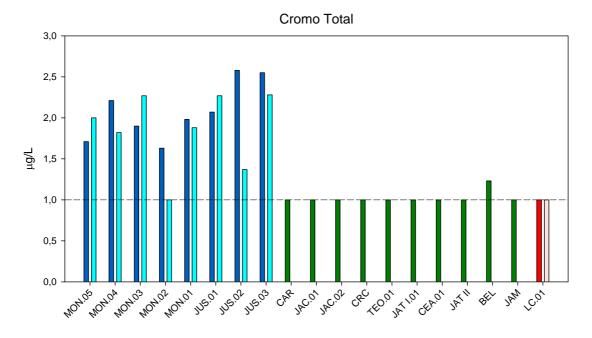


Figura 5.1-51 - Concentrações de cromo total no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde = superfície) e no lago Cuniã (barra vermelho escuro = superfície; barra vermelho claro = fundo) em julho de 2014 (vazante). A linha tracejada indica o limite de quantificação.

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

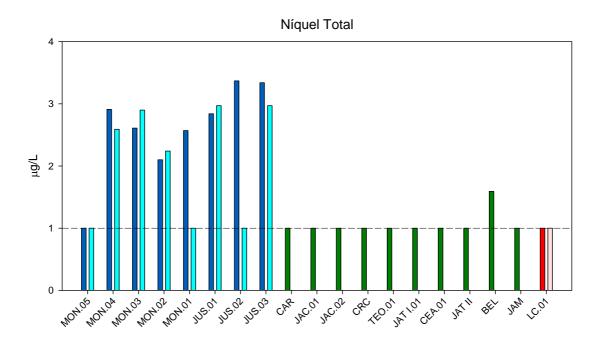


Figura 5.1-52 - Concentrações de níquel total no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde = superfície) e no lago Cuniã (barra vermelho escuro = superfície; barra vermelho claro = fundo) em julho de 2014 (vazante).

A linha tracejada indica o limite de quantificação.

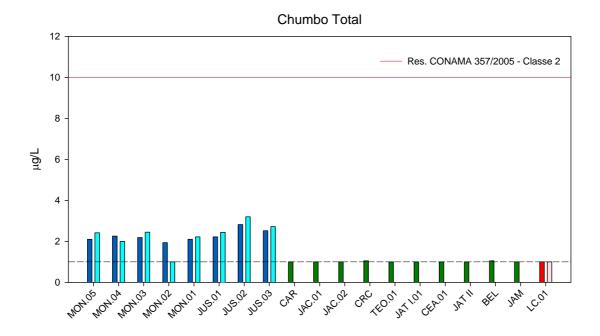


Figura 5.1-53 - Figura x4 - Concentrações de chumbo total no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde = superfície) e no lago Cuniã (barra vermelho escuro = superfície; barra vermelho claro = fundo) em julho de 2014 (vazante).

A linha tracejada indica o limite de quantificação.

Outubro de 2014 5.1 - Abióticos 49/62

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

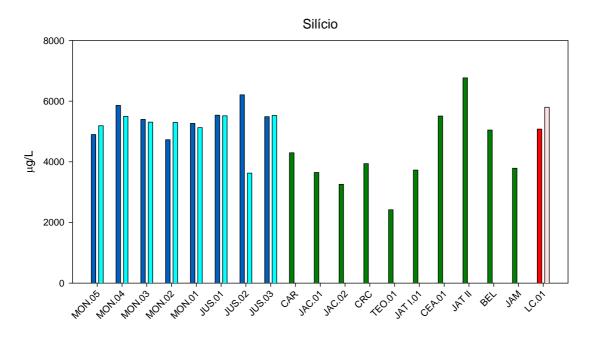


Figura 5.1-54 - Concentrações de silício no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde = superfície) e no lago Cuniã (barra vermelho escuro = superfície; barra vermelho claro = fundo) em julho de 2014 (vazante).

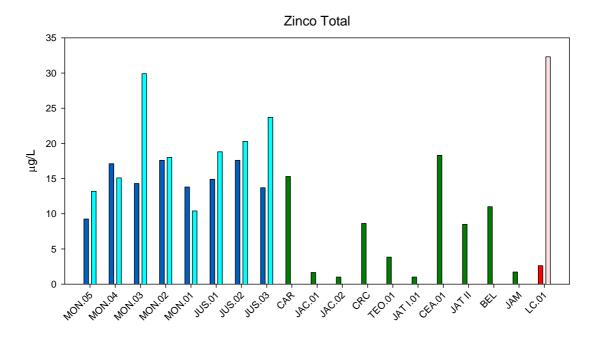


Figura 5.1-55 - Concentrações de zinco total no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde = superfície) e no lago Cuniã (barra vermelho escuro = superfície; barra vermelho claro = fundo) em julho de 2014 (vazante).

50/62

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

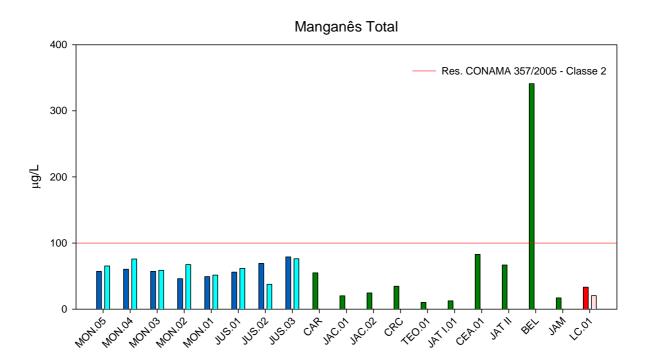


Figura 5.1-56 - Concentrações de manganês total no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde = superfície) e no lago Cuniã (barra vermelho escuro = superfície; barra vermelho claro = fundo) em julho de 2014 (vazante).

 Outubro de 2014
 5.1 - Abióticos
 51/62

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação 2541-00-MLM-RL-0008-00

5.1.10 - Biológicas

5.1.10.1 - Coliformes totais e Escherichia coli

Os índices médios de coliformes totais foram de 1470 ± 773 NMP/100mL nas estações do rio Madeira e 2071 ± 611 NMP/100mL nas estações dos tributários (**Figura 5.1-57**). O valor registrado no lago Cuniã foi o mais baixo registrado dentre todas as estações de coleta.

Os índices de *E. coli* foram baixos em geral, com média de 12 ± 15 NMP/100mL no rio Madeira e 88 ± 185 NMP/100 mL nos tributários (**Figura 5.1-58**). Isso sugere que os coliformes de origem estritamente fecal compõem somente uma pequena parcela dos coliformes totais. As estações JAT II e BEL, ambas a jusante da barragem, apresentaram valores mais elevados que as demais. A estação BEL recebe, em suas porções mais a montante, efluentes da cidade de Porto Velho. Apesar disso, todos os valores foram inferiores ao limite de 1000 NMP/100mL estipulado para corpos de água doce da classe 2 pela Resolução CONAMA 357/2005.

Nas praias de Jaci e Teotônio, os teores de coliformes foram satisfatórios. Os valores de coliformes totais foram de 1414 e 345 NMP/100ml, respectivamente. Com relação à *E. coli*, os valores foram de 1 e 2 NMP/100ml nas praias de Jaci e Teotônio, respectivamente. Esses resultados sugerem que, de acordo com a Resolução CONAMA 274/2000, as águas amostradas enquadram-se na categoria "excelente" para este parâmetro.

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

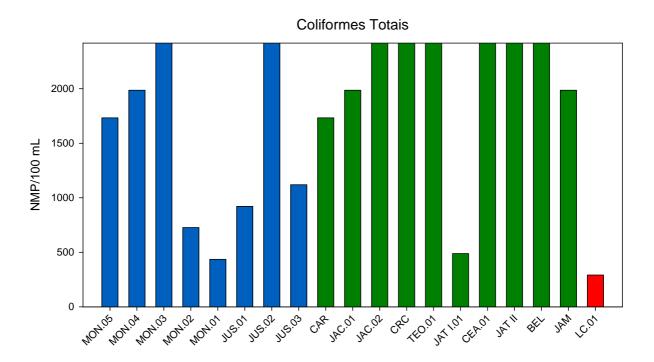


Figura 5.1-57 - Coliformes totais no rio Madeira (barra azul), nos tributários (barra verde) e no lago Cuniã (barra vermelha) em julho de 2014 (vazante).

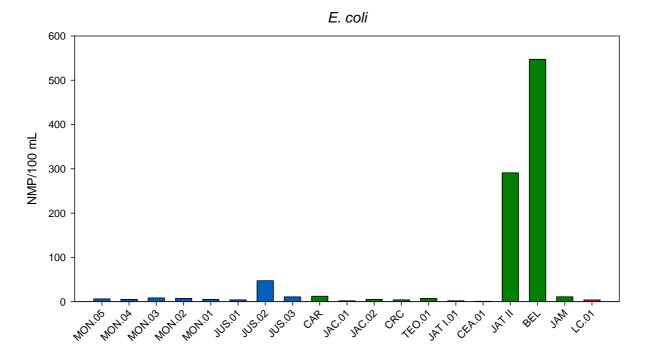


Figura 5.1-58 - *Escherichia coli* no rio Madeira (barra azul), nos tributários (barra verde) e no lago Cuniã (barra vermelha) em julho de 2014 (vazante).

Outubro de 2014 | 5.1 - Abióticos | 53/62

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

2541-00-MLM-RL-0008-00

5.1.10.2 - Clorofila a e pigmentos totais

A clorofila a apresentou concentrações médias mais baixas no rio Madeira (2 ± 1,9 µg/L) do que nos tributários (5,6 ± 2,9 µg/L). O lago Cuniã apresentou a concentração mais alta dentre todas as estações, o que é esperado, visto que a condição lêntica favorece o crescimento fitoplanctônico (**Figura 5.1-59**). Concentrações menores no rio Madeira ocorrem em consequência da pequena zona eufótica desse rio, o que limita a produção fitoplanctônica. A superfície de LC.01 excedeu o limite de 30 µg/L estipulado para corpos de água doce da classe 2 pela Resolução CONAMA 357/2005.

Em relação aos pigmentos totais, as médias foram de 3,8 \pm 2,9 μ g/L no rio Madeira e 12,3 \pm 7,2 μ g/L nos tributários (Figura 5.1-60).

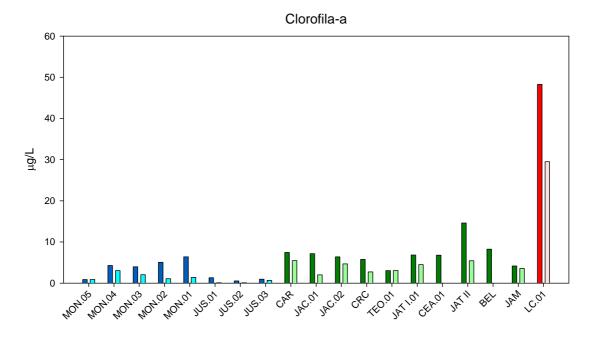


Figura 5.1-59 - Concentrações de clorofila-a no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde escuro = superfície; barra verde claro = fundo) e no lago Cuniã barra vermelho escuro = superfície; barra vermelho claro = fundo) em julho de 2014 (vazante).

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

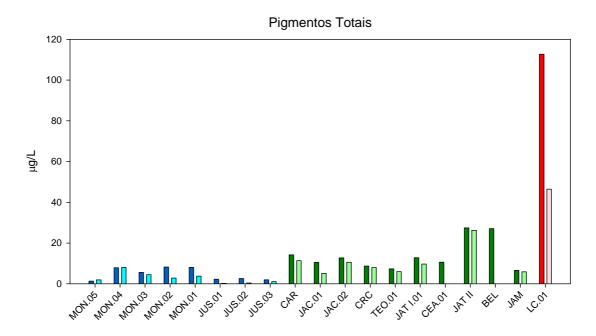


Figura 5.1-60 - Concentrações de pigmentos totais no rio Madeira (barra azul escuro = superfície; barra azul clara = fundo), nos tributários (barra verde escuro = superfície; barra verde claro = fundo) e no lago Cuniã (barra vermelho escuro = superfície; barra vermelho claro = fundo) em julho de 2014 (vazante).

5.1.10.3 - Pontos de captação de água para abastecimento público: PCM e PCT

Foi realizada a avaliação da densidade de cianobactérias nas estações PCM (ponto de captação de água no rio Madeira) e PCT (ponto de captação de água no ribeirão Bate Estacas) nos meses de em maio a agosto de 2014. A densidade foi inferior ao limite de quantificação em ambas as estações (<3 cel/mL), estando portanto bem abaixo do limite estipulado para corpos de água doce da classe 2 pela Resolução CONAMA 357/2005 (50.000 cel/mL).

No mês de setembro, a qualidade da água destas estações foi avaliada de acordo com os parâmetros definidos no artigo 15 da Resolução CONAMA 357/2005. De maneira geral, os parâmetros estiveram de acordo com os limites preconizados na referida legislação (Laudos 5.A - Coluna d'água).

Outubro de 2014 | 5.1 - Abióticos | 55/62

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação 2541-00-MLM-RL-0008-00

Índices

5.1.10.4 - Índice de estado trófico (IET)

Conforme deferimento do Parecer 282/2013 do IBAMA, não foi calculado o IET das estações situadas no rio Madeira. A ocorrência de eutrofia predominou nos tributários. O estado trófico variou entre mesotrófico na maior parte das estações e eutrófico em CAR, CEA.01 e CRC (Quadro 5.1-1).

Quadro 5.1-1 - Índice de Estado Trófico (IET) nas estações dos tributáriose do lago Cuniã em julho de 2014 (vazante)

IET	Estado Trófico	Estação
60	EUTRÓFICO	CAR
58	MESOTRÓFICO	JAC.01
58	MESOTRÓFICO	JAC.02
61	EUTRÓFICO	CRC
55	MESOTRÓFICO	TEO.01
58	MESOTRÓFICO	JAT I.01
60	EUTRÓFICO	CEA.01
64	SUPEREUTRÓFICO	JAT II
63	SUPEREUTRÓFICO	BEL
56	MESOTRÓFICO	JAM
69	HIPEREUTRÓFICO	LC.01

5.1.10.5 - Índice de qualidade da água (IQA)

A qualidade da água das estações avaliadas foi classificada geralmente como BOA ou ÓTIMA (Quadro 5.1-2). Apesar dos elevados valores de turbidez, sólidos totais e fósforo total, os baixos teores de coliformes fecais e DBO, o bom nível de oxigenação da água e um intervalo de pH adequado contribuíram para o prevalecimento de uma boa qualidade da água no rio Madeira. Nas estações BEL e JAT II a qualidade da água foi ACEITÁVEL, tendo em vista o elevado teor de coliformes.

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

Quadro 5.1-2 - Índice de Qualidade da Água (IQA) no rio Madeira, nos tributários e no lago Cuniã em julho de 2014 (vazante).

IQA	Qualidade da água	Estação
70	BOA	MON.05
70	BOA	MON.04
69	BOA	MON.03
70	BOA	MON.02
71	BOA	MON.01
70	BOA	JUS.01
66	BOA	JUS.02
69	BOA	JUS.03
55	BOA	CAR
90	ÓTIMA	JAC.01
87	ÓTIMA	JAC.02
84	ÓTIMA	CRC
85	ÓTIMA	TEO.01
93	ÓTIMA	JAT I.01
54	BOA	CEA.01
40	ACEITÁVEL	JAT II
48	ACEITÁVEL	BEL
85	ÓTIMA	JAM
78	BOA	LC.01

5.1.10.6 - Ordenação espacial das variáveis limnológicas

A fim de caracterizar e identificar as estações de coleta de acordo com as variáveis limnológicas, foi utilizada uma análise de componentes principais (ACP). As estações dos três compartimentos (rio Madeira, tributários e lago Cuniã) foram analisadas conjuntamente (Figura 5.1-61).

Os dois primeiros eixos da ACP explicaram 85,5% da variabilidade dos dados. As estações do rio Madeira foram as que mais se assemelharam entre si, ficando agrupadas no terceiro quadrante. A ACP não indicou distinção entre as estações de montante e jusante do rio Madeira, o que reforça que a formação do reservatório pouco impactou a variação espacial do rio Madeira. As estações do

Outubro de 2014 | 5.1 - Abióticos | 57/62

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação 2541-00-MLM-RL-0008-00

rio Madeira ficaram caracteristicamente distinguidas em função de valores mais altos valores de fósforo total, sólidos totais, oxigênio dissolvido, turbidez, condutividade, alcalinidade, profundidade e ortofosfato. Em relação aos tributários, observou-se maior heterogeneidade espacial, uma vez que eles são ambientes diferentes. As estações JAT II e BEL agruparam-se em função da DBO e *E.coli*. De modo geral, tributários e lago Cuniã apresentaram maior zona eufótica e clorofila-a.

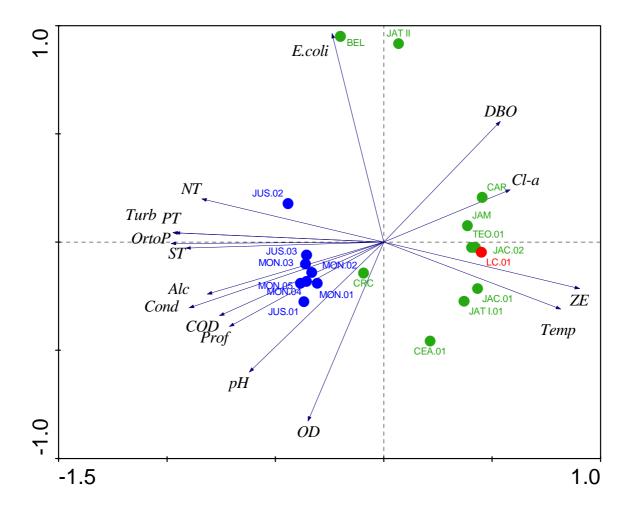


Figura 5.1-61 - Posição das estações de coleta do rio Madeira (bolas azuis), dos tributários (bolas verdes) e do lago Cuniã (bola vermelha) ordenadas de acordo com os dois primeiros eixos da ACP durante a vazante de 2014. A explicabilidade dos dois primeiros eixos foi de 85,5% (Eixo 1: 58,3%; Eixo 2: 27,2%). As siglas significam: Temp: temperatura da água, ZE: zona eufótica, Prof: profundidade, Cond: condutividade elétrica, pH: potencial hidrogeniônico, Turb: turbidez, OD: oxigênio dissolvido, ST: sólidos totais, DBO: demanda bioquímica de oxigênio, COD: carbono orgânico dissolvido, Alc: alcalinidade, NT: nitrogênio total, PT: fósforo total, OrtoP: ortofosfato, Cl-a: clorofila a, E.coli: Escherichia coli.

58/62

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

5.1.10.7 - Comparação das diferentes fases do empreendimento

Para as variáveis mais relevantes da coluna d'água, foi feita uma comparação dos valores obtidos nas campanhas de vazante amostradas durante a operação com os valores obtidos durante o préenchimento (2009 e 2010) e o enchimento/estabilização (2011). Há de se ressaltar que o préenchimento e a operação compreendem duas campanhas, ao passo que o enchimento/estabilização engloba somente uma campanha. Para as variáveis que apresentaram distribuição normal (i.e., oxigênio dissolvido e fósforo total no Madeira; pH nos tributários) foi realizado uma ANOVA, seguida de um pós-teste de Tukey. Para as demais variáveis, foi aplicado o teste não-paramétrico de Kruskal-Wallis, seguido de uma comparação múltipla por ranks médios.

Os tributários não apresentaram distinção no pH entre as três fases analisadas. No rio Madeira, as vazantes após o início da operação apresentaram valores de pH mais ácidos (Figura 5.1-62).

Com relação à turbidez, as três fases foram estatisticamente semelhantes, tanto nos tributários quanto no rio Madeira (Figura 5.1-63).

As concentrações de oxigênio dissolvido foram semelhantes entre as diferentes fases do empreendimento nos tributários. Nas estações do rio Madeira, a fase de operação apresentou valores mais altos que as demais, que foram semelhantes entre si (Figura 5.1-64). O aumento durante a operação, que é contrário ao esperado, pode ser reflexo do aumento nas concentrações a jusante, o que aconteceu como resultado do aumento da difusão de oxigênio da atmosfera para a água no momento da passagem da água pelos vertedouros e turbinas.

Os valores de DBO do pré-enchimento se assemelharam aos registrados nas outras duas fases, que foram diferentes entre si. Nos tributários, a operação se assemelhou às duas outras fases, que diferiram entre si (Figura 5.1-65). Os valores estiveram geralmente abaixo de 5 mg/L, que é o máximo permitido para corpos de água doce da classe 2 segundo a Resolução CONAMA 357/2005.

As concentrações de nitrogênio foram diferentes entre as três fases no rio Madeira e nos tributários, com pico no enchimento/estabilização (Figura 5.1-66).

Já com relação ao fósforo, as concentrações do rio Madeira foram maiores no enchimento, que diferiu das outras duas fases (Figura 5.1-67). Nos tributários, por outro lado, o enchimento assemelhou-se às duas outras fases, que diferiram entre si.

Outubro de 2014 | 5.1 - Abióticos | 59/62

2541-00-MLM-RL-0008-00

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

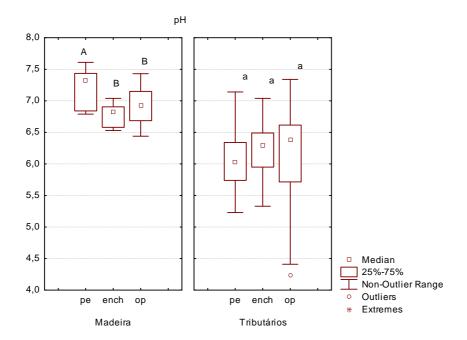


Figura 5.1-62 - Box-plots dos valores de pH registradas nos períodos de vazante amostrados nas fases de pré-enchimento, enchimento/estabilização e operação. Para avaliar diferença entre os grupos foi feito um teste de Tukey (nível de significância = 0,05).

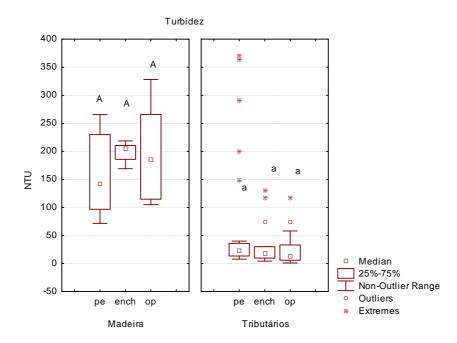


Figura 5.1-63 - Box-plots dos valores de turbidez registradas nos períodos de vazante amostrados nas fases de pré-enchimento, enchimento/estabilização e operação. Para avaliar diferença entre os grupos foi feito um teste de Tukey (nível de significância = 0,05).

Ecology Brasil

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

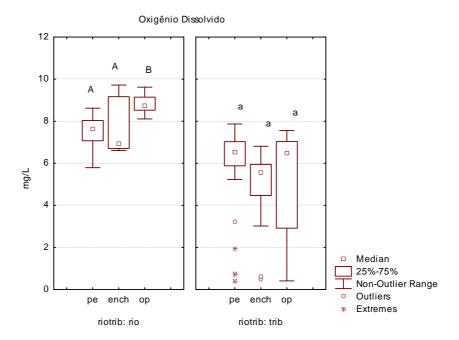


Figura 5.1-64 - Box-plots das concentrações de oxigênio dissolvido registradas nos períodos de vazante amostrados nas fases de pré-enchimento, enchimento/estabilização e operação. Para avaliar diferença entre os grupos foi feito um teste de Tukey (nível de significância = 0,05).

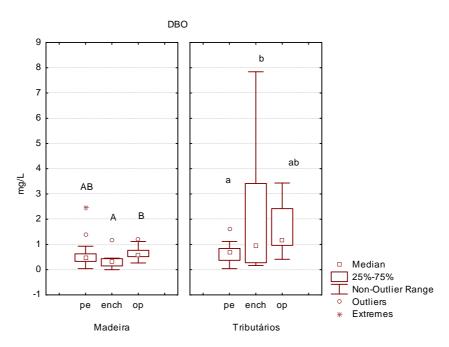


Figura 5.1-65 - Box-plots dos valores de DBO registradas nos períodos de vazante amostrados nas fases de pré-enchimento, enchimento/estabilização e operação.

Para avaliar diferença entre os grupos foi feito um teste de Tukey (nível de significância = 0,05).

Outubro de 2014 | 5.1 - Abióticos | 61/62

UHE SANTO ANTÔNIO NO RIO MADEIRA 2541-00-MLM-RL-0008-00

Monitoramento Limnológico e de Macrófitas Aquáticas -Relatório 8 / Fase de Operação

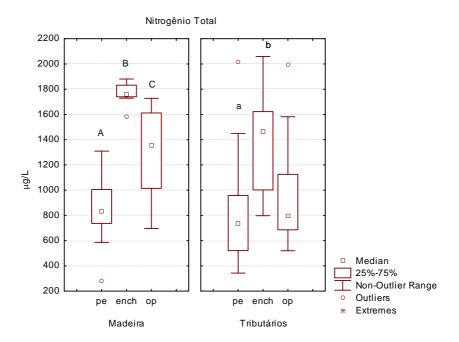


Figura 5.1-66 - Box-plots das concentrações de nitrogênio total registradas nos períodos de vazante amostrados nas fases de pré-enchimento, enchimento/estabilização e operação. Para avaliar diferença entre os grupos foi feito um teste de Tukey (nível de significância = 0,05).

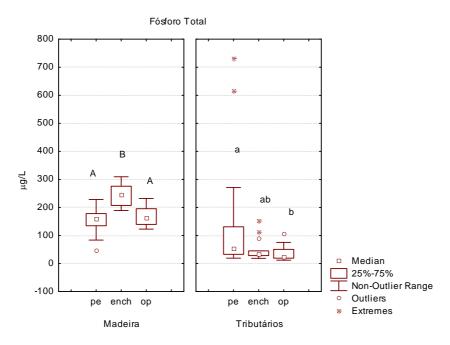


Figura 5.1-67 - Box-plots das concentrações de fósforo total registradas nos períodos de vazante amostrados nas fases de pré-enchimento, enchimento/estabilização e operação. Para avaliar diferença entre os grupos foi feito um teste de Tukey (nível de significância = 0,05).