

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas - Relatório 2/Fase de Operação

ÍNDICE

4 -	Meto	dologia		1/33
	4.1 -	Malha amos	tral	1/33
	4.2 -	Variáveis lir	nnológicas	6/33
	4.3 -	Coleta, Con	servação e análise das amostras	11/33
		4.3.1 -	Variáveis abióticas	15/33
		4.3.1.1 -	Elementos-traço	17/33
		4.3.1.2 -	Compostos orgânicos (Biocidas)	18/33
		4.3.1.3 -	Isótopos	18/33
		4.3.1.4 -	Sedimentos	19/33
		4.3.2 -	Variáveis bióticas	20/33
		4.3.2.1 -	Fitoplâncton	20/33
		4.3.2.2 -	Zooplâncton	23/33
		4.3.2.3 -	Invertebrados bentônicos	24/33
		4.3.2.4 -	Macrófitas aquáticas	25/33
	4.4 -	Análise dos	dados	27/33
		4.4.1 -	Análises biológicas	29/33
		4.4.1.1 -	Riqueza de espécies	29/33
		4.4.1.2 -	Densidade de organismos	30/33
		4.4.1.3 -	Índice de diversidade específica e equidade	30/33
		4.4.1.4 -	Diversidade alfa, beta e gama	31/33
		4.4.1.5 -	Dominância	31/33
		4.4.2 -	Análise estatística	32/33

ANEXOS

Anexo 4-1 - Mapa de Localização das Estações de Monitoramento Limnológico

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas - Relatório 2/Fase de Operação

4 - METODOLOGIA

4.1 - MALHA AMOSTRAL

Para execução do monitoramento limnológico foram estabelecidas 33 estações de coleta, sendo 8 estações distribuídas ao longo do rio Madeira, 14 nos tributários, 5 em lagos de jusante, 2 no canal do lago Cuniã, 2 em praias e 2 em pontos de captação de água para abastecimento público (Anexo 4-1 - Mapa de Localização das Estações de Monitoramento Limnológico).

O código, a descrição e a coordenada geográfica de cada uma das estações ordenadas de montante a jusante são apresentados no Quadro 4-1. A seguir, é feita uma descrição mais detalhada de cada estação.

Quadro 4-1 - Descrição das estações de coleta, com os códigos de identificação e as coordenadas geográficas.

Estações	Descrição	Coordenadas Geográficas		
		Datum SAD 69		
MON.05	Rio Madeira, cerca de 5 km a jusante do eixo da barragem da UHE Jirau	321899.17	8981428.58	
CAR	Rio Caripuna, cerca de 1 km a montante de sua foz	321606.33	8983199.06	
MON.04	Rio Madeira, cerca de 10 km a montante da foz do rio Jaci-Paraná	337644.21	8985604.16	
JAC.01	Rio Jaci-Paraná, cerca de 4 km a montante de sua foz	347854.51	8979745.40	
JAC.02	Rio Jaci-Paraná, cerca de 15 km a montante de sua foz	346436.81	8972899.74	
JAC.03	Rio Jaci-Paraná, cerca de 25 km a montante de sua foz	345909,55	8962428,5	
PJAC	Praia de Jaci localizada ao lado da BR 364	345529.69	8975747.60	
CRC	Rio Caracol, cerca de 1 km a montante de sua foz	348959.07	8983085.52	
MON.03	Rio Madeira, 24 km a jusante da desembocadura do rio Jaci-Paraná	359428.14	9001851.72	
CEA	Igarapé Ceará, cerca de 1 Km a montante de sua foz***	355055.98	8996406.94	
CEA.01	Igarapé Ceará, a montante da estação CEA	353334.00	8995132.00	
MON.02	Rio Madeira, cerca de 25 km a montante do eixo da barragem da UHE Santo Antônio	380990.09	9013074.41	
JAT I	Igarapé Jatuarana I, cerca de 1 km a montante de sua foz	384591.00	9023819.85	
JAT 1.01	Igarapé Jatuarana I, a montante da estação JAT I	385789.41	9031461.30	
TEO	Igarapé Teotônio, cerca de 1 km a montante de sua foz	386960.59	9020364.53	
TEO.01	Igarapé Teotônio, a montante da estação TEO	385124.41	9019646.30	
PTEO	Praia do Teotônio	384383.00	9019532.00	
MON.01	Rio Madeira, cerca de 8,5 km a montante do eixo da barragem da UHE Santo Antônio	390573.73	9022457.14	
JUS.01	Rio Madeira, cerca de 3 km a jusante do eixo da barragem da UHE Santo Antônio	397542.39	9028433.71	
PCM**	Rio Madeira, no ponto de captação da CAERD	395457	9026094	

Junho de 2013 4 - Metodologia

Monitoramento Limnológico e de Macrófitas Aquáticas - Relatório 2/Fase de Operação

2541-00-MLM-RL-0002-00

Estações	Descrição		Coordenadas Geográficas		
		Datum SAD 69			
PCT**	Igarapé Bate Estacas, no ponto de captação da CAERD	333295.64	8971589.24		
JAT II	Igarapé Jatuarana II, cerca de 500 m a montante de sua foz	398887.20	9044080.57		
BEL	Igarapé Belmont, cerca de 200 m a montante de sua foz	404580.13	9045164.89		
JUS.02	Rio Madeira, cerca de 25 km a jusante do eixo da barragem da UHE Santo Antônio	406449.74	9044504.15		
JAM	Rio Jamari, 10 km a montante de sua desembocadura no rio Madeira	411313.27	9049368.89		
MIG	Lago São Miguel, cerca de 33 km a jusante do eixo da barragem da UHE Santo Antônio	437489.78	9054141.67		
CN1	Lago Cujubim, cerca de 42 km a jusante do eixo da barragem da UHE Santo Antônio	421935.88	9051266.71		
JUS.03	Rio Madeira, cerca de 20 km a jusante da desembocadura do rio Jamari	456786.59	9081491.73		
CC.01	Canal do Cuniã, cerca de 10 km a montante da foz do canal do lago	456523.28	9094430.81		
CC.02	Canal do Cuniã, cerca de 42 km a montante da foz do canal do lago	446473.64	9081303.10		
LC.01	Lago do Cuniã, cerca de 2,5 km a montante de CC.02	444637.18	9080041.07		
LC.02	Lago do Cuniã, cerca de 6,5 km a montante de CC.02	450429.05	9082089.97		
LC.03	Lago do Cuniã, cerca de 1 km a montante de CC.02	450087.03	9057038.12		

^{*}antiga estação MUC, ** monitoramento mensal de cianobactérias e semestral da Série da Resolução CONAMA n° 357/05.

Rio Madeira

- Estação Montante 05 (MON.05) localizada no rio Madeira, a jusante da cachoeira de Jirau, sendo a estação mais a montante na área de influência do futuro reservatório da UHE de Santo Antônio.
- Estação Montante 04 (MON.04) localizada no rio Madeira, cerca de 10 km a montante da foz do rio Jaci-Paraná.
- Estação Montante 03 (MON.03) localizada no rio Madeira, cerca de 24 km a jusante da desembocadura do rio Jaci-Paraná.
- Estação Montante 02 (MON.02) localizada no rio Madeira, cerca de 25 km a montante do eixo da barragem da UHE Santo Antônio.
- Estação Montante 01 (MON.01) localizada no rio Madeira, cerca de 8,5 km a montante do eixo da barragem da UHE Santo Antônio.

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas - Relatório 2/Fase de Operação

- Estação Jusante 01 (JUS.01) localizada no rio Madeira, cerca de 3 km a jusante do eixo da barragem da UHE Santo Antônio. Nessa estação foi realizada a avaliação limnológica de toda a água vertida do reservatório da hidrelétrica. É também um ponto de forte mistura da coluna de água.
- Estação Jusante 02 (JUS.02) localizada no rio Madeira, cerca de 25 km a jusante do eixo da barragem da UHE Santo Antônio.
- Estação Jusante 03 (JUS.03) localizada no rio Madeira, cerca de 20 km a jusante da foz do rio Jamari e 113 km a jusante do eixo da barragem da UHE Santo Antônio.

Tributários

- Estação Caripuna (CAR) localizada no rio Caripuna, cerca de 1 quilômetro a montante da desembocadura desse rio na margem esquerda do rio Madeira. A foz desse rio está a cerca de 6 km a jusante do eixo da barragem da UHE Jirau.
- Estação Jaci-Paraná 01 (JAC.01) localizada no rio Jaci-Paraná, cerca de 4 km acima de sua desembocadura na margem direita do rio Madeira. A foz desse afluente está cerca de 81 km a montante do eixo da barragem da UHE Santo Antônio.
- Estação Jaci-Paraná 02 (JAC.02) localizada no rio Jaci-Paraná, cerca de 15 km a montante de sua foz.
- Estação Jaci-Paraná 03 (JAC.03) localizada no rio Jaci-Paraná, cerca de 25 km a montante de sua foz. Início do monitoramento a partir da 1ª etapa do enchimento do reservatório.
- Estação Caracol (CRC) localizada no rio Caracol, cerca de 1 quilômetro a montante de sua foz. A sua desembocadura, na margem direita do rio Madeira, está a cerca de 2 km a jusante da confluência do rio Jaci-Paraná.
- Estação Teotônio (TEO) localizada no igarapé Teotônio, cerca de 1 quilômetro a montante de sua foz na margem direita do rio Madeira.
- Estação Teotônio (TEO.01) localizada no igarapé Teotônio, a montante da estação TEO.
 Início do monitoramento foi a partir da 1ª etapa do enchimento do reservatório.

Junho de 2013 4 - Metodologia 3/33

Monitoramento Limnológico e de Macrófitas Aquáticas - Relatório 2/Fase de Operação

2541-00-MLM-RL-0002-00

- Estação Jatuarana I (JAT I) localizada no igarapé Jaturana I, cerca de 1 quilômetro a montante de sua foz. A sua desembocadura, na margem esquerda do rio Madeira, está a cerca de 2,5 km a jusante da Vila Nova do Teotônio.
- Estação Jatuarana I 01 (JAT I.01) localizada no igarapé Jaturana I, cerca de 10 km a montante de sua foz. O monitoramento nesta estação teve início a partir da 1ª etapa do enchimento do reservatório.
- Estação Jatuarana II (JAT II) localizada no igarapé Jatuarana II, cerca de 500 m a montante de sua desembocadura na margem esquerda do rio Madeira. A foz desse igarapé está a cerca de 5,5 km a montante da estação Jusante 02 (JUS.02).
- Estação Belmont (BEL) localizada no igarapé Belmont, cerca de 200 m a montante de sua foz na margem direita do rio Madeira. A foz desse igarapé está a cerca de 2 km a jusante da estação JUS.02.
- Estação Jamari (JAM) localizada no rio Jamari, cerca de 10 km a montante de sua desembocadura no rio Madeira. O Jamari desemboca na margem direita do rio Madeira, cerca de 93 km a jusante do eixo da barragem da UHE Santo Antônio.

Lagos e canais

- Estação Lago São Miguel (MIG) Lago São Miguel, localizado próximo à margem esquerda do rio Madeira, a cerca de 33 km a jusante do eixo da barragem da UHE Santo Antônio e 10 km da estação JUS.02.
- Estação Lago Cujubim (CUJ) Lago Cujubim, localizado próximo à margem direita do rio Madeira, a cerca de 42 km a jusante do eixo da barragem da UHE Santo Antônio a 19 km da estação JUS.02.
- Estação Canal do Cuniã 01 (CC.01) localizada no canal do lago do Cuniã, cerca de 10 km a montante da foz do canal do lago. A foz do canal, na margem esquerda do rio Madeira, está cerca de 36 km a jusante da foz do rio Jamari, 16 km abaixo da estação JUS.03 e cerca de 130 km a jusante do eixo da barragem da UHE Santo Antônio.
- Estação Canal do Cuniã 02 (CC.02) localizada no canal do lago, cerca de 42 km a montante da foz do canal do lago. Essa estação corresponde ao início do canal, que dá acesso do lago ao rio Madeira.

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas - Relatório 2/Fase de Operação

- Estação Lago do Cuniã 01 (LC.01) localizada na região mais profunda do principal lagoabastecedor do Cuniã, cerca de 2,5 km a montante de CC.02.
- Estação Lago do Cuniã 02 (LC.02) localizada na região central do lago do Cuniã, cerca de 6,5 km a montante da estação CC.02.
- Estação Lago Cuniã 03 (LC.03) localizado na margem do lago do Cuniã, cerca de 1,0 km a montante da estação CC.02.

Captação de Água

- Ponto de Captação CAERD rio Madeira (PCM) localizada na margem direita do rio Madeira, cerca de 3 km a jusante do eixo da barragem da UHE Santo Antônio.
- Ponto de Captação CAERD igarapé Bate Estacas (PCT) localizada no igarapé Bate Estacas, afluente da margem direita do rio Madeira.

Praias

- Praia de Jaci (PJAC) localizada na margem esquerda do rio Jaci-Paraná, próximo à estação JAC.01, ao lado da BR 364.
- Praia do Teotônio (PTEO) localizada na margem direita do rio Madeira, no assentamento Vila Nova do Teotônio, cerca de 1 Km a montante da estação TEO.

Junho de 2013 4 - Metodologia 5/33

Ecology Brasil

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas - Relatório 2/Fase de Operação

2541-00-MLM-RL-0002-00

4.2 - VARIÁVEIS LIMNOLÓGICAS

Para caracterização da qualidade da água foram selecionadas as variáveis físicas, físico-químicas, químicas e biológicas. Estas variáveis foram agrupadas em categorias de natureza Físicas (A, B, C), Físico-Química, Química (1 A-D, 2, 3, 4, 5, 6), Biológica, Sedimentos Superficiais e Macrófitas Aquáticas (Quadro 4-2).

Quadro 4-2 - Frequência e variáveis limnológicas monitoradas, agrupadas por categorias.

Quadro 4-2 - Frequência e variáveis limnológicas monitoradas,	agrupadas por categorias.
Físicas - <i>A (7)</i>	Frequência amostral durante a operação
Temperatura do ar	Trimestral
Profundidade	Trimestral
Transparência	Trimestral
Coeficiente atenuação vertical	-
Zona eufótica	-
Cor	Trimestral
Velocidade de corrente	Trimestral
Físicas - B (1)	
Temperatura da água	Diária
Físicas - C (6)	
Turbidez	Diária
Sólidos em suspensão	Trimestral
Sólidos totais dissolvidos	Trimestral
Sólidos totais	Trimestral
Sólidos fixos	Trimestral
Sólidos voláteis	Trimestral
Físico-químicas (3)	
Condutividade elétrica	Diária
Potencial hidrogeniônico (pH)	Diária
Concentração molar [H+]	-
Químicas	
Oxigênio, demandas e relações de consumo	
Químicas I -A (2)	
Oxigênio -percentagem de saturação	-
Oxigênio -concentração	Diária
Químicas I -B (4)	
O ₂ .inicial -percentagem de saturação	-
O₂ inicial -concentração	-
O ₂ 5 dias	-
Demanda bioquímica de oxigênio -DBO₅	Trimestral
Químicas I -C (2)	
Demanda química de oxigênio -DQO	Trimestral
Carbono bioquimicamente oxidado (C.DBO)	-
	i

Ecology Brasil

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas - Relatório 2/Fase de Operação

Físicas - <i>A (7)</i>	Frequência amostral durante a operação
Químicas I -D (8)	
DBO.100/O ₂ -consumo de O ₂ pela DBO ₅	-
O ₂ .100/DQO -o O ₂ presente é x% da DQO	-
DBO.100/DQO -a DBO₅ é x% da DQO	-
O ₂ .100/(DBO+DQO) -o O ₂ é x% das demandas	-
Carbono inorgânico	Trimestral
Carbono orgânico total (quimicamente oxidado)	Trimestral
Carbono total	Trimestral
Carbono orgânico dissolvido	Trimestral
Q Químicas II (6)	
Sistema tampão	
Gás carbônico livre	-
Gás carbônico total	-
Alcalinidade	Trimestral
Alcalinidade de bicarbonatos	-
Dureza	Trimestral
Dureza devido ao cálcio e magnésio	Trimestral
Químicas III (7)	
lons principais	
Na^+ , K^+ , Ca^{2+} , Mg^{2+}	Trimestral
Cl ⁻ , SO ₄ [#] ,HCO ₃ ⁻	Trimestral
Químicas IV (16)	
Nutrientes inorgânicos e suas frações	
Nitrogênio amoniacal	Trimestral
Nitrito	Trimestral
Nitrato	Trimestral
Nitrogênio inorgânico dissolvido	Trimestral
Nitrogênio total dissolvido	Trimestral
Nitrogênio total	Trimestral
Nitrogênio orgânico dissolvido	Trimestral
Nitrogênio orgânico total	Trimestral
Nitrogênio particulado	Trimestral
Ortofosfato	Trimestral
Fósforo total dissolvido	Trimestral
Fósforo total	Trimestral
Fósforo orgânico dissolvido	Trimestral
Fósforo orgânico total	Trimestral
Fósforo particulado	Trimestral
Silicatos reativos	Trimestral
Químicas V (3)	
Ferro dissolvido	Trimestral
Ferro total	Trimestral
Óleos e graxas	Trimestral

Junho de 2013 | 4 - Metodologia 7/33

Monitoramento Limnológico e de Macrófitas Aquáticas - Relatório 2/Fase de Operação

2541-00-MLM-RL-0002-00

Físicas - <i>A (7)</i>	Frequência amostral durante a operação
Químicas VI (13)	
Elementos-traço e Compostos Orgânicos	
Al e Cu dissolvidos	Trimestral
Ba, Cd, Co , Cr , Hg, Mn, Ni, Pb, Si, Sn, Zn totais	Trimestrat
Compostos Orgânicos : Alaclor; Aldrin e Dieldrin; Atrazina; Benzo(a)antraceno; Benzo(a) pireno; Benzo (b) fluoranteno; Benzo (k) fluoranteno; Carbaril; Clordano (cis e trans); 2-Clorofenol; Criseno; 2,4-D; Demeton (Demeton-O e Demeton-S); Dibenzo(a,h)antraceno; 2,4-Diclorofenol; DDT (p,p´-DDT, p,p´-DDE e p,p´-DDD); Dodecacloropentaciclodecano; Endossulfan (a, b e sulfato); Endrin; Heptacloro e Heptacloro Epóxido; Indeno(1,2,3,cd)pireno; Lindano (g-HCH); Malation; Metoxicloro; Metolacloro; Paration; PCB´s - Bifenilas Policloradas; Pentaclorofenol; Simazina; 2,4,5-T; 2,4,5-TP; 2,4,6-Triclorofenol; Trifluralina e Hexaclorobenzeno	Anual
Biológicas (9)	
Clorofila a (Chla)	Trimestral
Pigmentos totais (Pig tots)	Trimestral
Densidade de Cianobactérias	Trimestral
Fitoplâncton	Trimestral
Zooplâncton	Trimestral
Coliformes totais	Trimestral
Escherichia coli	Trimestral
Fracionamento isotópico 13C e 15N	-
Cianotoxinas	Dependente da densidade de cianobactérias
Sedimentos Superficiais (27)	
Invertebrados bentônicos	Trimestral
Granulometria (areia grossa, areia fina, silte, argila)	Trimestral
Cinzas	Trimestral
Matéria orgânica	Trimestral
Carbono orgânico	Trimestral
Nitrogênio	Trimestral
Fósforo	Trimestral
Sódio	Trimestral
Potássio	Trimestral
Cálcio	Trimestral
Magnésio	Trimestral
Al, Ba, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Si, Sn, Zn	Trimestral
Compostos Orgânicos - (Alaclor; Aldrin e Dieldrin; Atrazina; Carbaril; Clordano (cis e trans); 2-Clorofenol; 2,4-D; Demeton (Demeton-O e Demeton-S); 2,4-Diclorofenol; DDT (p,p´-DDT, p,p´-DDE e p,p´-DDD); Dodecacloropentaciclodecano; Endossulfan (a, b e sulfato); Endrin; Heptacloro e Heptacloro Epóxido; Lindano (g-HCH); Malation; Metoxicloro; Metolacloro; Paration; PCB´s - Bifenilas Policloradas; Pentaclorofenol; Simazina; 2,4,5-T; 2,4,5-TP; 2,4,6-Triclorofenol; Trifluralina e Hexaclorobenzeno)	Anual (enchente)

UHE SANTO ANTÔNIO NO RIO MADEIRA
Monitoramento Limnológico e de Macrófitas Aquáticas - Relatório 2/Fase de Operação

Físicas - <i>A (7)</i>	Frequência amostral durante a operação
Compostos Orgânicos - HPAs (Benzo(a)antraceno; Benzo(a)pireno; Benzo(b)fluoranteno; Benzo(k)fluoranteno; Dibenzo(a,h)antraceno; Indeno(1,2,3,cd)pireno);Criseno e PCBs (Bifenilas Policloradas)	Trimestral
Macrófitas Aquáticas (21)	
Identificação	Trimestral
Cinzas	Trimestral
Matéria orgânica	Trimestral
Carbono orgânico	Trimestral
Sódio	Trimestral
Potássio	Trimestral
Cálcio	Trimestral
Magnésio	Trimestral
Al, Ba, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Si, Sn, Zn	Trimestral

As variáveis do grupo Físicas-A (temperatura do ar, profundidade, transparência, coeficiente de atenuação vertical, zona eufótica e cor) foram medidas uma vez em cada uma das estações de coleta. As variáveis limnológicas agrupadas em Físicas-B, Física C, Físico-Químicas e Químicas I-A (temperatura da água, turbidez, condutividade elétrica, potencial hidrogeniônico, concentração molar, concentração e saturação de oxigênio dissolvido) foram mensuradas a cada 30 cm desde a superfície até próximo à profundidade máxima de cada estação de coleta, para obtenção do perfil vertical da coluna d'água.

As variáveis limnológicas agrupadas em Físicas-C (sólidos em suspensão, sólidos totais dissolvidos, sólidos totais, sólidos fixos e sólidos voláteis) foram analisadas na subsuperfície e na profundidade máxima das estações no centro da calha do rio Madeira e no canal do lago Cuniã e somente na subsuperfície das estações nos tributários e nos lagos de jusante. As variáveis limnológicas agrupadas em Química IB (DBO), Química IC (DQO), Químicas ID (formas de carbono), Química II (gás carbônico, alcalinidade e dureza), Química III (íons) e Química V (ferro total e ferro dissolvido) e Elementos traço (Al, Ba, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Si, Sn e Zn) foram analisadas na subsuperfície e na profundidade máxima das estações no centro da calha do rio Madeira e somente na subsuperfície das estações nos tributários, nos lagos de jusante e no canal do lago Cuniã. Os óleos e graxas e as variáveis biológicas, incluindo coliformes, foram analisados somente na subsuperfície.

No lago Cuniã, todas as variáveis dos grupos Química I-B a D foram analisadas na subsuperfície, e dos grupos Físicas-C, Química II, III, V e Elementos-traço foram analisadas na subsuperfície e na profundidade máxima das estações do lago Cuniã (LC.01 e LC.02), quando possível.

Junho de 2013 4 - Metodologia 9/33

UHE SANTO ANTÔNIO NO RIO MADEIRA Monitoramento Limnológico e de Macrófitas Aquáticas - Relatório 2/Fase de Operação 2541-00-MLM-RL-0002-00

As variáveis do grupo Química IV (nitrogênio, fósforo e suas frações) foram analisadas na subsuperfície e na profundidade máxima das estações no centro da calha do rio Madeira. As Biológicas foram analisadas na subsuperfície das estações no centro da calha do rio Madeira. As variáveis do grupo Químicas IV (nitrogênio, fósforo e suas frações), clorofila a, fitoplâncton e zooplâncton foram analisadas em mais de uma profundidade, sempre que possível, seguindo o tratamento diferenciado apresentado a seguir. Nos tributários, as variáveis do grupo Químicas IV (nitrogênio, fósforo e suas frações), clorofila a, fitoplâncton e zooplâncton foram analisadas em diferentes profundidades:

- Até 4 m de profundidade foram coletadas amostras apenas na superfície;
- De 4 m a 8 m de profundidade foram coletadas amostras na superfície e fundo;
- Acima de 8 m de profundidade foram coletadas amostras na superfície, meio e fundo.

No lago Cuniã (LC.01 e LC.02), as variáveis do grupo Químicas IV (nitrogênio, fósforo e suas frações), clorofila a, fitoplâncton e zooplâncton foram analisadas em diferentes profundidades:

- Até 2 m de profundidade foram coletadas amostras apenas na superfície;
- Até 4 m de profundidade foram coletadas amostras na superfície e fundo;
- Até 6 m de profundidade foram coletadas amostras na superfície, meio e fundo;
- Até 8 m de profundidade foram coletadas amostras em quatro profundidades, distribuídas equitativamente;
- Acima de 8 m de profundidade foram coletadas amostras em cinco profundidades no máximo, distribuídas equitativamente.

As estações de coleta definidas para as análises de HPAs, PCBs, sedimentos e invertebrados bentônicos são coincidentes: Caripuna (CAR), Jaci-Paraná 01 (JAC.01), Caracol (CRC), Teotônio (TEO), Montante 03 (MON.03), Jatuarana I (JAT I), Montante 01 (MON.01), Jusante 01 (JUS.01) e Jusante 02 (JUS.02). Além destas, foi adicionada a estação CEA. Na região a montante do eixo da barragem, as estações selecionadas para realização destas análises são representativas das áreas mais favoráveis a ocorrência de organismos bentônicos, por se tratar da confluência dos tributários com o leito principal.

UHE SANTO ANTÔNIO NO RIO MADEIRA
Monitoramento Limnológico e de Macrófitas Aquáticas - Relatório 2/Fase de Operação

O grupo Química VI contempla elementos-traço e compostos orgânicos (biocidas), porém os compostos orgânicos serão amostrados uma vez ao ano, na campanha de enchente, dessa forma, foram analisados em janeiro de 2013. Para determinação da presença de elementos-traço em água, foram analisadas as concentrações de Al, Ba, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Si, Sn e Zn em amostras coletadas nas 24 estações de amostragem.

Para avaliar a balneabilidade nas praias de Jaci e Teotônio foi avaliado o número mais provável de coliformes totais e *Escherichia coli*, de acordo com os critérios estabelecidos pela Resolução CONAMA n⁰ 274/2000.

Para monitorar a qualidade da água bruta nos pontos de captação, foi considerado o Artigo 40 da Portaria nº 2914/2011 do Ministério da Saúde, que estabelece o monitoramento semestral das variáveis indicadas pela Resolução CONAMA nº 357/2005 para águas doces de classe 2; mensal para as cianobactérias, quando a densidade não exceder 10.000 cel/mL; e semanal, quando o número de cianobactérias exceder este valor.

4.3 - COLETA, CONSERVAÇÃO E ANÁLISE DAS AMOSTRAS

Em cada estação de coleta foram feitas anotações a respeito do ambiente de entorno e da área de drenagem das estações amostradas. As variáveis Físicas A, Físicas B, Físico-Químicas e Química 1A foram determinados em campo, com auxílio de equipamentos portáteis. Para determinação dos demais grupos de variáveis, as amostras de água foram coletadas, preservadas e enviadas para os respectivos laboratórios especializados para análise posterior. Para coleta de amostras em diferentes profundidades foi utilizada uma garrafa de Van Dorn. As amostras foram transportadas em frascos de polietileno ou vidro e devidamente preservadas até o momento da análise seguindo os procedimentos descritos no Quadro 4-3.

Junho de 2013 4 - Metodologia 11/33

Monitoramento Limnológico e de Macrófitas Aquáticas - Relatório 2/Fase de Operação

Quadro 4-3 - Procedimentos de preservação, armazenamento e tempo de estocagem de amostras para as análises das variáveis limnológicas.

Variáveis	Frasco	Mínimo de amostra coletada (mL)	Preservação	Estocagem máxima recomendada	Tolerável
Físicas - A					
Temperatura do ar Profundidade Transparência Coeficiente atenuação vertical Zona eufótica			Imediatamente		
Cor	P,V	500	Refrigerar a 4 <u>+</u> 2 °C	48h	48h
Velocidade de corrente			imediatamente		
Físicas - B					
Temperatura da água			imediatamente		
Físicas - C					
Turbidez	P,V	100	Analisar no mesmo dia; estocar no escuro após 24h	24h	48h
Sólidos em suspensão Sólidos totais dissolvidos Sólidos totais Sólidos fixos Sólidos voláteis	P,V	200	Refrigerar a 4±2 °C	2dias	7dias
Físico-químicas					
Condutividade elétrica			Refrigerar a 4 <u>+</u> 2 °C caso não seja medido imediatamente	Imediatamente	28dias
Potencial hidrogeniônico (pH) Concentração molar [H+]			Imediatamente	0.2h	0.2h

Ecology Brasil

2541-00-MLM-RL-0002-00

Junho de 2013

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas - Relatório 2/Fase de Operação

Variáveis	Frasco	Mínimo de amostra coletada (mL)	Preservação	Estocagem máxima recomendada	Tolerável
Químicas					
Oxigênio, demandas e relações de consumo					
Químicas I - A					
Oxigênio - percentagem de saturação Oxigênio - concentração			Imediatamente	Imediatamente	0.2h
Químicas I - B					
O_1 , inicial - percentagem de saturação O_2 inicial - concentração O_2 5 dias Demanda bioquímica de oxigênio -DBO $_5$	V, frasco para DBO	300	Fixar com 1 mL de sulfato manganoso e 1 mL de álcali-iodeto. Refrigerar a 4 <u>+</u> 2 °C	6h	48horas
Químicas I - C					
Demanda química de oxigênio -DQO Carbono bioquimicamente oxidado (C.DBO)	P,V	100	Analisar o mais breve possível, ou adicionar H₂SO₄ até pH<2; Refrigerar a 4 <u>+</u> 2 °C.	7dias	28dias
Químicas I - D					
DBO.100/O $_2$ -consumo de O $_2$ pela DBO $_5$ O $_2$.100/DQO -o O $_2$ presente é x% da DQO DBO.100/DQO -a DBO $_5$ é x% da DQO O $_2$.100/(DBO+DQO) -o O $_2$ é x% das demandas	N.R.	N.R.	N.R.	N.R.	N.R.
Carbono inorgânico Carbono orgânico total (quimicamente oxidado) Carbono total Carbono orgânico refratário	V(B)	100	Analisar imediatamente; ou refrigerar e adicionar HCl, H_3PO_4 ou H_2SO_4 para pH<2	7dias	28dias
Químicas II					
Sistema tampão					
Gás carbônico livre Gás carbônico total	P,V	100	Refrigerar a 4 <u>+</u> 2 °C	N.R.	N.R.

4 - Metodologia

UHE SANTO ANTÔNIO NO RIO MADEIRA 2541-00-MLM-RL-0002-00

Monitoramento Limnológico e de Macrófitas Aquáticas - Relatório 2/Fase de Operação

Variáveis	Frasco	Mínimo de amostra coletada (mL)	Preservação	Estocagem máxima recomendada	Tolerável	
Alcalinidade Alcalinidade de bicarbonatos	P,V	200	Refrigerar a 4 <u>+</u> 2 °C	24h	14dias	
Dureza Dureza devido ao cálcio e magnésio	P,V	100	Adicionar HNO $_3$ ou H $_2$ SO $_4$ ajustando o para pH<2; Refrigerar a 4 \pm 2 °C	N.R.	N.R.	
Químicas III						
fons principais						
Na ⁺ , K ⁺ , Ca ²⁺ , Mg ²⁺	P,V	100	Refrigerar a 4 <u>+</u> 2 °C	N.R.	N.R.	
Cl ⁻ , SO ₄ ⁼ ,HCO ₃ ⁻	P,V	100	Refrigerar a 4 <u>+</u> 2 °C	N.R.	N.R.	
Químicas IV						
Nutrientes inorgânicos e suas frações	Nutrientes inorgânicos e suas frações					
Nitrogênio amoniacal	P,V	500	Analisar o mais breve possível; Refrigerar a 4 <u>+</u> 2 °C	7dias	28dias	
Nitrito	P,V	100	Analisar o mais breve possível; refrigerar a 4 <u>+</u> 2 °C	48h	48h	
Nitrato	P,V	100	Analisar o mais breve possível; refrigerar a 4 <u>+</u> 2 °C	48h	48h	

Legenda: P = Plástico; V(B) = vidro borosilicato; V = vidro; N.R. = não referenciada

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas - Relatório 2/Fase de Operação

4.3.1 - Variáveis abióticas

As técnicas de análise de amostras de água para as variáveis físicas e químicas seguiram os protocolos padronizados internacionalmente reconhecidos, preferencialmente as determinações contidas no "STANDARD METHODS FOR THE EXAMINATION OF WATER AND WASTEWATER" da APHA (1998) 21ª edição. As técnicas analíticas tiveram como base as recomendações do programa biológico internacional para ambientes aquáticos (Golterman *et al.* 1978). Foram considerados, entre outros, os fundamentos técnicos descritos por Strickland & Parsons (1972), Rodier (1978), Mackereth *et al.* (1978), e Wetzel & Likens (2000). O Quadro 4-4 apresenta uma síntese dos métodos e respectivos equipamentos utilizados para realização das análises, assim como a unidade de medida e o limite de detecção do método para cada variável a ser analisada. Metodologias similares, com reconhecidas eficiências analíticas, poderão ser utilizadas como alternativas caso necessário.

Quadro 4-4 - Grupos de variáveis limnológicas, unidades de medida, equipamentos utilizados e limites de detecção.

VARIÁVEIS	Unidade	Método/Equipamento	Detecção
Físicas - A			
Temperatura do ar	°C	termômetro digital	0,1
Profundidade	m	ecobatímetro	0,1
Transparência	m	disco de Secchi	0,05
Coeficiente atenuação vertical	m ⁻¹	calculado	0,01
Zona eufótica	m	calculado	0,01
Cor	mg Pt/L	espectrofotométrico	0,1
Velocidade de corrente	m/s	fluxômetro	0,1
Físicas - B			
Temperatura da água	°C	potenciométrico / sonda YSI 6600	0,1
Físicas - C			
Turbidez	NTU	nefelométrico turbidímetro / sonda YSI 6600	0,01
Sólidos em suspensão	mg/L	gravimétrico entre 103- 105 ° C	0,1
Sólidos totais dissolvidos	mg/L	gravimétrico a 180° C	0,1
Sólidos totais	mg/L	calculado	0,1
Sólidos fixos	mg/L	evaporação / gravimétrico	0,1
Sólidos voláteis	mg/L	evaporação / gravimétrico	0,1
Físico-químicas			
Condutividade elétrica	μS/cm	potenciométrico / sonda YSI 6600	0,1
Potencial hidrogeniônico (pH)	рН	potenciométrico / sonda YSI 6600	0,001
Concentração molar [H+]	μmol/L	calculado	0,001

Junho de 2013 4 - Metodología 15/33

Monitoramento Limnológico e de Macrófitas Aquáticas - Relatório 2/Fase de Operação

2541-00-MLM-RL-0002-00

VARIÁVEIS	Unidade	Método/Equipamento	Detecção
Químicas			
Oxigênio, demandas e relações de consu	mo		
Químicas I -A			
Oxigênio - porcentagem de saturação	%	oximetro / sonda YSI 6600	0,1
Oxigênio - concentração	mg/L	oximetro / sonda YSI 6600	0,01
Químicas I -B			
O ₂ .inicial (DBO) - porcentagem de saturação	% saturação	oximetro luminescente (LDO)	0,1
O ₂ inicial (DBO) - concentração	mg/L	oximetro luminescente (LDO)	0,01
O ₂ 5 dias	mg/L	oximetro luminescente (LDO)	0,01
Demanda bioquímica de oxigênio -DBO₅	mg/L	incubação por 5 dias	1
Químicas I -C			
Demanda química de oxigênio - DQO	mg/L	método do refluxo fechado / oxidação com o KMnO₄	1
Carbono bioquimicamente oxidado (C.DBO)	mg/L	calculado a partir da DBO	1
Químicas I -D			
DBO.100/O ₂	%	calculado a partir do O₂ inicial e da DBO₅	0,1
O ₂ .100/DQO	%	calculado a partir do O₂ inicial e da DQO	0,1
DBO.100/DQO	%	calculado a partir do O₂ inicial e da DBO₅ e da DQO	0,1
O ₂ .100/(DBO+DQO)	%	calculado a partir do ${\rm O_2}$ inicial e da DBO $_{\rm 5}$ e da DQO	0,1
Carbono inorgânico	mg/L	calculado a partir do CO ₂ total	0,05
Carbono orgânico total (quimicamente oxidado)	mg/L	calculado a partir da DQO	0,05
Carbono total	mg/L	calculado a partir do C orgânico e inorgânico	0,05
Carbono orgânico refratário	mg/L	C orgânico subtraído do C bioquimicamente oxidado	0,05
Químicas II			
Sistema tampão			
Gás carbônico livre	mg/L	titulação potenciométrica com NaOH	0,05
Gás carbônico total	mg/L	titulação potenciométrica com HCl	0,05
Alcalinidade	meq	titulação potenciométrica com NaOH e HCl	0,001
Alcalinidade de bicarbonatos	HCO ₃ -/L	titulação potenciométrica com NaOH e HCl	0,05
Dureza	CaCO₃mg/L	calculado a partir das concentrações de Ca e Mg	0,05
Dureza devido ao cálcio e magnésio	d°Ca,Mg	calculado a partir das concentrações de Ca e Mg	0,05
Químicas			
fons principais			
Na ⁺ , K ⁺ , Ca ²⁺ , Mg ²⁺	mg/L	espectroscopia / absorção atômica	0,01
Cl ⁻ , SO ₄ ⁼ ,HCO ₃ ⁻	mg/L	espectroscopia / absorção atômica	0,01

Ecology Brasil

2541-00-MLM-RL-0002-00

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas - Relatório 2/Fase de Operação

VARIÁVEIS	Unidade	M é t o d o / E q u i p a m e n t o	Detecção
Químicas IV			
Nutrientes inorgânicos e suas frações			
Nitrogênio amoniacal	mg/L	espectrofotometria por Nessler	0,001
Nitrito	mg/L	espectrofotométrico por Diazotação	0,001
Nitrato	mg/L	coluna Cd/espectrofotométrico	0,001
Nitrogênio inorgânico dissolvido	mg/L	espectrofotométrico	0,001
Nitrogênio total dissolvido	mg/L	digestão com persulfato / espectrofotométrico	0,001
Nitrogênio total	mg/L	digestão com persulfato / espectrofotométrico	0,001
Nitrogênio orgânico dissolvido	mg/L	espectrofotométrico	0,001
Nitrogênio orgânico total	mg/L	digestão com persulfato / espectrofotométrico	0,001
Nitrogênio particulado	mg/L	digestão com persulfato / espectrofotométrico	0,001
Ortofosfato	mg/L	espectrofotométrico	0,001
Fósforo total dissolvido	mg/L	digestão com persulfato / espectrofotométrico	0,001
Fósforo total	mg/L	digestão com persulfato / espectrofotométrico	0,001
Fósforo orgânico dissolvido	mg/L	espectrofotométrico	0,001
Fósforo orgânico total	mg/L	espectrofotométrico	0,001
Fósforo particulado	mg/L	digestão com persulfato / espectrofotométrico	0,001
Silicatos reativos	mg/L	molibdato de amônio / espectrofotométrico	0,001
Químicas V			
Ferro dissolvido	mg/L	fenantrolina / espectrofotométrico	0,0005
Ferro total	mg/L	fenantrolina / espectrofotométrico	0,001
Óleos e graxas	mg/L	gravimétrico: extração com n-hexano em Soxhlet	2
Químicas VI			
Elementos-traço e Biocidas			
Al, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, Si,	μg/L	espectrometria de massa com fonte de plasma	0,0001

4.3.1.1 -Elementos-traço

Sn, Zn, Hg

Para determinação da presença de elementos-traço, foram analisadas nas matrizes água, sedimento e macrófitas as concentrações de Al, Ba, Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb, Si, Sn e Zn. Para a análise em água, em cada estação foram coletados 500 mL de água em frascos de polietileno. Para a preservação foi adicionado ácido nítrico concentrado PA até atingir pH inferior a 2. As amostras de sedimentos foram mantidas refrigeradas e as macrófitas foram lavadas e secas até o momento da análise. As amostras foram enviadas ao laboratório analítico no prazo de 10 dias. As análises foram feitas por Espectrofotometria de absorção atômica por chama (AA-400 Perkin Elmer) e Espectrometria de Massa com Fonte de Plasma Indutivamente Acoplado (ICP/MS). A quantificação de Mercúrio em sedimentos e macrófitas foram feitas por Espectrometria de Absorção Atômica por geração de vapor frio com sistema de injeção em fluxo (Flow Injection Mercury System - FIMS 400 - Perkin Elmer). Os elementos cádmio e arsênio, nas macrófitas foram analisados por ICP-OES: POP PA 035 / SMWW 3120 B, USEPA 6010.

indutivamente acoplado (ICP/OES)

µg/L

17/33 Junho de 2013 4 - Metodologia

Ecology Brasil

UHE SANTO ANTÔNIO NO RIO MADEIRA Monitoramento Limnológico e de Macrófitas Aquáticas - Relatório 2/Fase de Operação 2541-00-MLM-RL-0002-00

4.3.1.2 - Compostos orgânicos (Biocidas)

No sedimento e na água foram analisadas as concentrações de HPAs e PCBs (Quadro 4-5) em 10 estações de coleta: Caripuna (CAR), Jaci-paraná 01 (JAC.01), Caracol (CRC), Teotônio (TEO), Montante 03 (MON.03), Ceará (CEA), Jatuarana I (JAT I), Montante 01 (MON.01), Jusante 01 (JUS.01) e Jusante 02 (JUS.02). Para análise em sedimentos foram amostrados 250g em frascos com septo, com capacidade de 500 ml. As amostras foram mantidas refrigeradas até o momento da extração.

Quadro 4-5 - Lista de Compostos Orgânicos (biocidas) analisados no sedimento e na água, com os respectivos limites de detecção e da Legislação CONAMA 357/2005 e 454/2012.

		Água			Sedimento			
Lista de Compostos Orgânicos	Unidade	LQ	Limite CONAMA 357/05	Unidade	LQ	Limite CONAMA 344/04		
			Classe 2			Nível 1	Nível 2	
HPAs								
Benzo(a)antraceno	μg/L	0,05	0,05	μg/kg	0,38	31,7	385	
Benzo(a)pireno	μg/L	0,05	0,05	μg/kg	0,38	31,9	782	
Benzo(b)fluoranteno	μg/L	0,05	0,05	μg/kg	0,38			
Benzo(k)fluoranteno	μg/L	0,05	0,05	μg/kg	0,38			
Criseno	μg/L	0,05	0,05	μg/kg	0,38	57,1	862	
Dibenzo(a,h)antraceno	μg/L	0,05	0,05	μg/kg	0,38	6,22	135	
Indeno (1, 2, 3, cd) pireno	μg/L	0,05	0,05	μg/kg	0,38			
PCBs								
PCBs - Bifenilas Policlorados	μg/L	0,001	0,001	μg/kg	2,61	34,1	277	

As análises seguiram o protocolo extração líquido/líquido para cromatografia gasosa (SMEWW 6410B-Extraction Liquid/Liquid GC). As amostras de sedimento foram analisadas por Cromatografia gasosa acoplada à espectrometria de massa (CG/EM).

4.3.1.3 - Isótopos

As coletas para o fracionamento isotópico de ¹³C e ¹⁵N foram realizadas para a fração particulada da coluna d'água em 10 estações de amostragem: Caripuna (CAR), Jaciparaná 01 (JAC.01), Caracol (CRC), Teotônio (TEO), Montante 03 (MON.03), Ceará (CEA), Jatuarana I (JAT I 01), Montante 01 (MON.01), Jusante 01 (JUS.01) e Jusante 02 (JUS.02).

As amostras foram mantidas refrigeradas até o momento da análise. As análises foram feitas a partir da combustão das amostras sob fluxo contínuo de hélio em um analisador elementar (CHN) acoplado a espectrômetro de massa.

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas - Relatório 2/Fase de Operação

4.3.1.4 - Sedimentos

Os sedimentos superficiais foram coletados em 10 estações de amostragem: Caripuna (CAR), Jaciparaná 01 (JAC.01), Caracol (CRC), Teotônio (TEO), Ceará (CEA), Montante 03 (MON.03), Jatuarana I (JAT I), Montante 01 (MON.01), Jusante 01 (JUS.01) e Jusante 02 (JUS.02). As amostras de sedimentos superficiais foram coletadas com um amostrador de Van Veen modificado, com área de 0,37 m². Após a coleta, o material foi acondicionado em sacos de polietileno e mantido resfriado até o momento de preparação e análise das amostras em laboratório. Nas amostras de sedimento foi analisada granulometria em 7 frações (areia muito grossa, areia grossa, areia média, areia fina, areia muito fina, silte, argila), cinzas, matéria orgânica, carbono orgânico, fósforo total, nitrogênio total, sódio, potássio, cálcio, magnésio, elementos-traço (Al, As, Ba, Cd, Co, Cr, Cu, Hg, Fe, Mn, Ni, Pb, Si, Sn, Zn), HPAs e PCBs, além dos invertebrados bentônicos (detalhados no item 4.3.2.3 - Invertebrados bentônicos). O Quadro 4-6 apresenta uma síntese dos métodos e respectivos equipamentos necessários para realização das análises de sedimentos superficiais, assim como a unidade de medida e limite de detecção do método para cada variável a ser analisada.

Quadro 4-6 - Variáveis analisadas em sedimentos superficiais, unidades de medida, equipamentos utilizados e limites de detecção.

Variáveis	Unidade	Método/Equipamento	Detecção
Invertebrados bentônicos	ind/m²	draga / contagem	SP
Granulometria (areia grossa, areia fina, silte, argila)	g/kg	difração a laser	0,01
Cinzas	% p/p	calcinação / gravimétrico	0,05
Matéria orgânica	% p/p	digestão / calcinação	0,05
Carbono orgânico	% p/p	combustão em forno IAC	0,05
Nitrogênio	mg/kg	digestão / absorção atômica	0,5
Fósforo	mg/kg	digestão / absorção atômica	0,5
Sódio	mg/kg	digestão / absorção atômica	0,5
Potássio	mg/kg	digestão / absorção atômica	0,5
Cálcio	mg/kg	digestão / absorção atômica	0,5
Magnésio	mg/kg	digestão / absorção atômica	0,5
Al, Ba, Si, Sn	mg/kg	espectrômetro de massa	0,5
Cd	mg/Kg	ICP-OES	0,1
Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn	mg/kg	espectrômetro de absorção atômica por chama	0,5
Hg	mg/kg	Espectrofotometria de absorção atômica com gerador de vapor frio	0,004
HPAs e PCBs	μg/kg	cromatografia gasosa/espectrometria de massa	0,5

Devido à ausência de legislação ambiental específica para análise da qualidade de sedimento, optou-se por utilizar como referência os valores preconizados pela Resolução CONAMA n⁰ 454/2012, que *estabelece as diretrizes gerais e os procedimentos referenciais para o gerenciamento do material a ser dragado em águas sob jurisdição nacional.* Para efeito de

Junho de 2013 4 - Metodologia 19/33

UHE SANTO ANTÔNIO NO RIO MADEIRA
Monitoramento Limnológico e de Macrófitas Aquáticas - Relatório 2/Fase de Operação

2541-00-MLM-RL-0002-00

comparação foram considerados os limites máximos estabelecidos pelo Nível 2, critério de qualidade definido pelo limiar acima do qual há maior probabilidade de efeitos adversos a biota.

4.3.2 - Variáveis bióticas

As técnicas de análise de amostras de água para análises biológicas seguiram os protocolos padronizados internacionalmente reconhecidos. O Quadro 4-7 apresenta uma síntese dos métodos e respectivos equipamentos necessários para realização das análises biológicas, assim como a unidade de medida e o limite de detecção do método para cada variável a ser analisada.

Quadro 4-7 - Variáveis biológicas, unidades de medida, equipamentos utilizados e limites de detecção.

VARIÁVEIS	Unidade	Método/Equipamento	Detecção
Biológicas			
Clorofila a (Chla)	μg/L	filtração / maceração / espectrofotométrico	0,1
Pigmentos totais	μg/L	filtração / maceração / espectrofotométrico	0,1
Fitoplâncton	ind/mL	coleta direta / rede de plâncton 20 µm / contagem	Sp
Zooplâncton	ind/L	Bomba elétrica / rede de plâncton 68 μm / contagem	Sp
Coliformes totais	NMP/100 mL	colimétrico - colilert / cultura	1,0
Escherichia coli	NMP/100 mL	colimétrico - colilert / cultura	1,0
Cianotoxinas	μg/L	filtração / extração / cromatografia	0,001

4.3.2.1 - Fitoplâncton

A estrutura da comunidade fitoplanctônica foi avaliada a partir da composição, abundância e biovolume, através de amostras quantitativas e qualitativas coletadas na subsuperfície da coluna d'água e demais profundidades. Para análises quantitativas as amostras foram coletadas diretamente na subsuperfície com o uso de um frasco de volume fixo ou a partir da garrafa de Van Dorn, nas profundidades determinadas, utilizando a mesma metodologia. A não filtração possibilita a análise integral da fração fitoplanctônica, não sendo eliminada qualquer fração menor que um tamanho estabelecido de malha de rede de coleta. Para análises qualitativas, as amostras foram coletadas por meio de rede de plâncton de 20 µm a partir de arrastos verticais e horizontais na coluna d'água. As amostras foram preservadas em solução transeau e solução de lugol para as análises qualitativas e quantitativas, respectivamente. A quantificação das populações foi feita pelo método de sedimentação de Uthermöl (1958) com aumento de 400x ou 1000x em microscópio invertido. A identificação sistemática foi feita sempre que possível em nível de espécie, por análise comparativa com a literatura especializada e atualizada, com base nas características morfológicas e morfométricas das vidas vegetativa e reprodutiva. Com relação

UHE SANTO ANTÔNIO NO RIO MADEIRA
Monitoramento Limnológico e de Macrófitas Aquáticas - Relatório 2/Fase de Operação

ao sistema de classificação das classes, foi adotado aquele estabelecido por Hoek (1997), exceto para diatomáceas (Round, 1990) e cianobactérias (Komárek e Anagnostidis, 1998).

Amostras qualitativas foram examinadas em microscópio Olympus BH2 equipado com câmera digital para captura de imagem (Image Pro Plus) a fim de observar características morfológicas necessárias à identificação das espécies e de documentar os táxons mais importantes. Com a finalidade de obter uma lista mais detalhada da biodiversidade fitoplanctônica, sobretudo das algas maiores, geralmente mais raras, as amostras qualitativas foram observadas em câmaras de sedimentação de 2 mL em microscópio invertido em dois transectos (longitudinal e transversal) em um aumento de 200x. As identificações foram feitas sempre que possível em nível de espécie, com base nas características morfológicas e morfométricas das vidas vegetativa e reprodutiva das populações, utilizando-se bibliografia atualizada e específica.

Os grandes grupos taxonômicos (cianobactérias= Cyanobacteria; criptofíceas= Cryptophyceae; dinoflagelados = Dinophyceae, diatomáceas = Bacillariophyceae, crisofíceas = Chrysophyceae; xantofíceas= Xanthophyceae; rafidofíceas = Raphidophyceae; euglenóides = Euglenophyceae; clorofíceas = Chlorophyceae; zignematofíceas = Zygnematophyceae e Oedogoniofíceas = Oedogoniophyceae) foram identificados de acordo com os critérios estabelecidos por Hoek 1993, exceto para cianobactérias (Komárek & Anagnostidis 1999) e diatomáceas (Round et al. 1993).

Densidade Fitoplanctônica (ind.mL⁻¹)

Para determinação da abundância das populações fitoplanctônicas (ind mL⁻¹) as amostras foram colocadas em câmaras de sedimentação de 2 ou 10 mL, dependendo das concentrações de abioseston em relação às algas. O tempo de sedimentação foi de pelo menos três horas para cada centímetro de altura da câmara (Margalef, 1983). A enumeração dos organismos (células, colônias, filamentos) foi feita em campos aleatórios (Uhelinger, 1964) em microscópio invertido, marca Zeiss Oberkochen, modelo Axiovert. Os organismos foram enumerados, sempre que possível, em número suficiente para alcançar 100 indivíduos da espécie mais frequente, sendo o erro inferior a 20% (Lund *et al.* 1958). Quando não foi possível utilizar esse critério (amostras com algas escassas e detrito abundante), foram enumerados indivíduos em tantos campos aleatórios quantos os necessários para que se estabilizasse o número de espécies adicionadas por campo (método da área mínima), a fim de garantir uma representatividade qualitativa mínima das espécies.

Junho de 2013 4 - Metodologia 21/33

UHE SANTO ANTÔNIO NO RIO MADEIRA Monitoramento Limnológico e de Macrófitas Aquáticas - Relatório 2/Fase de Operação 2541-00-MLM-RL-0002-00

Biomassa Fitoplanctônica (mm³.L⁻¹)

A biomassa pode ser considerada uma medida mais eficiente de abundância, uma vez que existe uma grande variação de tamanho entre os organismos fitoplanctônicos e muitas vezes amostras com grande densidade de algas de pequenas dimensões apresentam menor biomassa, que amostras com reduzidas densidades de grandes algas. Além disso, ao contrário da análise de concentração de clorofila-a (estimativa de biomassa fitoplanctônica), a utilização do biovolume permite identificar as espécies ou grupos taxonômicos mais importantes em termos de biomassa.

A biomassa fitoplanctônica foi estimada através do cálculo do biovolume, multiplicando-se as densidades de cada espécie pelo volume das algas, considerando-se as dimensões médias das espécies abundantes. O volume de cada célula foi calculado a partir de modelos geométricos aproximados à forma dos indivíduos como, esferas, cilindros, cones, paralelepípedos, pirâmides, elipsóides e outros (Wetzel & Linkens, 1991). Considerando a equivalência entre biovolume e biomassa, no presente relatório os resultados estão expressos em biovolume.

Análise de cianotoxinas

O monitoramento de cianotoxinas ocorreu quando a densidade de cianobactérias foi superior a 50.000 células/ml nas áreas de recreação de contato primário e dessedentação de animais, pois não houve densidade de cianobactérias superior a 20.000 células/ml nas estações localizadas próximas aos pontos de captação de água para abastecimento doméstico, seguindo o critério estabelecido pelo item d, da condicionante 2.1 da LI n° 540/2008. Para esta análise foi coletado um litro de água bruta, a qual foi refrigerada até o momento da análise. As microcistinas, saxitoxinas foram analisadas de acordo cilindrospermopsinas e internacionalmente reconhecidos. Cilindrospermopsinas por HPLC, microcistinas por método imunoenzimático (ELISA) Kit Microcistinas Beacon Analytical Systems e saxitoxinas por cromatografia, de acordo com Oshima (1995).

UHE SANTO ANTÔNIO NO RIO MADEIRA
Monitoramento Limnológico e de Macrófitas Aquáticas - Relatório 2/Fase de Operação

4.3.2.2 - Zooplâncton

Para análise da comunidade zooplanctônica, as amostras foram coletadas na subsuperfície e nas profundidades determinadas com o auxílio de uma bomba elétrica. Duzentos litros de água foram filtrados em uma rede de plâncton de 68 µm de abertura de malha utilizando bomba elétrica. O material coletado foi mantido em frascos de polietileno e fixado em solução de formaldeído a 4%, tamponado com carbonato de cálcio. No laboratório, as amostras foram concentradas em um volume conhecido.

A composição da comunidade zooplanctônica foi feita utilizando lâminas e lamínulas comuns, microscópio estereoscópico e microscópio óptico. Inicialmente, os espécimes de Cladocera e Copepoda foram fotografados em microscópio Zeiss Axiovert Plus 2, acoplados a um sistema de aquisição de imagens (AxioCam), dissecados e identificados até o menor nível taxonômico possível (a maioria em nível de espécies).

As densidades das espécies foram estimadas e expressas em indivíduos por metros cúbicos (ind.m⁻³) por meio de contagem numérica em câmara de Sedgwick-Rafter, de alíquotas de 1,0 mL, obtidas com pipeta do tipo Hensel-Stempell.

Para as espécies pouco abundantes, que não ocorreram nas alíquotas ou ocorreram em densidades muito baixas, foi realizada a contagem de toda a amostra para obtenção de resultados acurados da riqueza de espécies. A riqueza de espécies foi dada pelo número de espécies presentes em cada amostra.

Biomassa Zooplanctônica

A biomassa zooplanctônica foi determinada a partir das equações de relação peso-comprimento dos indivíduos de acordo com as fórmulas de Bottrell et al. (2006). O peso seco foi obtido mediante as fórmulas disponíveis para os táxons específicos ou mais próximos, com base nas dimensões lineares obtidas para cada espécie presente nas amostras. Estes dados foram utilizados para o cálculo da biomassa, para os Cladocera e os Copepoda. No caso dos Rotifera, para algumas espécies em que não havia indivíduos suficientes para as determinações de peso seco, o biovolume foi calculado utilizando-se as dimensões lineares e a equação para a forma geométrica mais adequada (cilindro, esfera, cone, oval, etc.).

A biomassa de cada espécie (B) foi estimada combinando-se o número de indivíduos (N) de uma classe de tamanho e sua massa média $(\overline{\mathbb{M}})$ (Winberg e Duncan, 1971):

Junho de 2013 4 - Metodologia 23/33

Monitoramento Limnológico e de Macrófitas Aquáticas - Relatório 2/Fase de Operação

2541-00-MLM-RL-0002-00

As equações da relação peso seco-comprimento foram elaboradas a partir das transformações dos valores do comprimento (variável independente) e peso (variável dependente), em logaritmo natural, expressas a partir da seguinte equação (Mc Cauley, 1984):

Para estimar a precisão do calculado da biomassa de uma população foi necessário calcular o coeficiente de variação. Como a biomassa (B) foi estimada a partir das duas variáveis, número de indivíduos (N) e a massa média $(\overline{\mathbb{M}})$, esta precisão pode ser estimada pelo coeficiente de variação (CVB=S/B), onde S: desvio padrão e $\overline{\mathbb{B}}$: biomassa média, a partir da seguinte equação:

É importante trabalhar com réplicas suficientes a fim de obter um CVB de 0,15 quando possível (Mc Cauley, 1984). Dessa maneira, foi possível ainda usar esta equação para discutir e decidir sobre os relativos méritos das diferentes técnicas de pesagem e contagem de organismos, de acordo com o CVN e CVM de cada técnica, e foi possível decidir qual destas técnicas usar para um CVB pretendido.

4.3.2.3 - Invertebrados bentônicos

Para caracterização dos invertebrados bentônicos foram analisadas as amostras de sedimentos coletadas, em triplicata, em 10 estações: Caripuna (CAR), Jaciparaná 01 (JAC.01), Caracol (CRC), Ceará (CEA), Montante 03 (MON.03), Teotônio (TEO), Jatuarana I (JAT I), Montante 01 (MON.01), Jusante 01 (JUS.01) e Jusante 02 (JUS.02). As amostras de sedimentos superficiais foram coletadas com amostrador tipo Van Veen de 0,37 m² de área amostral. O material coletado foi fixado em formol a 4%, acondicionado em recipientes plásticos e transportado para o laboratório, onde foi lavado em água sobre peneira com malha de 0,21 mm. Os animais retidos na peneira foram separados e fixados em álcool 70% para posterior identificação.

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas - Relatório 2/Fase de Operação

Os invertebrados bentônicos foram identificados sob microscópio estereoscópico composto, com o auxílio de literatura especializada: McCafferty (1981); Brinkhurst & Marchese (1989); Trivinho-Strixino & Strixino (1995); Merritt & Cummins (1996); Simone (2006), além de consultas a especialistas.

A identificação dos organismos foi feita no menor nível taxonômico possível. Ocorre que boa parte dos organismos bentônicos estão presentes no sedimento somente em sua fase larval (e.g.: Diptera, Chironomidae, Coleoptera, Ephemeroptera, Trichoptera), mas as estruturas para identificação desses invertebrados ao nível taxonômico de espécie são encontradas somente na fase adulta. A identificação ao nível de gênero é a mais detalhada que se pode chegar para a maioria dos grupos presentes na fauna bentônica, com indisponibilidade na literatura sequer de chaves de identificação para o nível de espécie. Amostras de organismos triados foram enviadas para especialistas, no Brasil e exterior, para detalhamento taxonômico de alguns grupos. No presente relatório a maior parte dos organismos foi identificada ao nível de gênero.

Os organismos coletados, depois de identificados ao menor nível taxonômico possível, foram classificados de acordo com o grupo trófico funcional (GTF) e hábitos de vida baseando-se em Resh & Rosenberg (1984), Merritt & Cummins (1988), Hauer & Lamberti (1996), Baptista *et al.* (1998), Callisto *et al.* (2000) e Baptista *et al.* (2001). Os Grupos de alimentação funcional e hábitos dos organismos (GAF) a serem considerados são: predador (perfurador ou engolfador), coletor (filtrador ou reunidor), triturador e raspador. Os hábitos são: escavador (vive em tocas ou semi-enterrado), agarrador (aderido a folhas ou rochas), nadador (organismos nécto-bentônicos) e caminhador (percorre o sedimento ou as rochas sem escavá-las).

Quanto ao uso potencial dos invertebrados bentônicos como bioindicadores, segundo Barbosa e colaboradores (2001), esses organismos podem ser classificados em três grupos: sensíveis (altamente suscetíveis a qualquer tipo de impacto); tolerantes (suportam impactos em níveis não tão altos, são capazes de se adaptarem às novas condições e refletem a resiliência do ecossistema) e resistentes (suportam grandes impactos).

4.3.2.4 - Macrófitas aquáticas

A análise da composição e estrutura da comunidade de macrófitas foi feita através do rastreamento em campo dos estandes nas localidades próximas às estabelecidas pelo Programa de Monitoramento Limnológico. Uma vez detectada a ocorrência dos estandes, foi determinada a área ocupada pelas macrófitas por meio de telêmetro e estimativa visual. As amostras

Junho de 2013 4 - Metodologia 25/33

UHE SANTO ANTÔNIO NO RIO MADEIRA
Monitoramento Limnológico e de Macrófitas Aquáticas - Relatório 2/Fase de Operação

2541-00-MLM-RL-0002-00

quantitativas de macrófitas aquáticas foram coletadas em triplicata através de um quadrado de 1 m² de área (1 m x 1 m). Foram coletadas amostras qualitativas para identificação e herborização, além de alíquotas para a determinação da composição e de elementos traço. No laboratório as amostras quantitativas foram secas em estufa para a determinação do peso seco.

Para execução do monitoramento da macrófitas aquáticas foram mensuradas a composição das comunidades de macrófitas (lista de espécies por estande), a frequência de ocorrência de cada espécie na comunidade (% de parcelas em que cada espécie ocorreu), a biomassa de cada espécie presente na comunidade e sua dominância.

O Quadro 4-8 apresenta uma síntese dos métodos e respectivos equipamentos necessários para realização das análises em macrófitas aquáticas, assim como a unidade de medida e limite de detecção do método para cada variável analisada.

Quadro 4-8 - Variáveis analisadas em macrófitas aquáticas, unidades de medida, equipamentos utilizados e limites de detecção.

VARIÁVEIS	Unidade	Método/Equipamento	Detecção
Macrófitas Aquáticas			
Identificação	sp	Chaves	1
Cinzas	% p/p	Calcinação	0,05
Matéria orgânica	% p/p	digestão / calcinação	0,05
Carbono orgânico	% p/p	combustão em forno- IAC	0,05
Sódio	mg/kg	digestão / espectrometria de massa	0,5
Potássio	mg/kg	digestão / espectrometria de massa	0,5
Cálcio	mg/kg	digestão / espectrometria de massa	0,5
Magnésio	mg/kg	digestão / espectrometria de massa	25
Al, Ba, Cd, Si, Sn		ICP-OES	0,04
Co, Cr, Cu, Fe, Mn, Ni, Pb, Zn	mg/kg	digestão / espectrômetro de absorção atômica por chama/ ICP-OES	
Hg		digestão / espectrômetro de absorção atômica com gerador vapor a frio/	0,005

A escala de abundância de Domin-Krajina foi utilizada para estimativa de cobertura de macrófitas (1=<20; 2= 21-40; 3=31-60; 4=61-80; 5=81-100% cobertura). A riqueza de espécies de macrófitas aquáticas foi estimada através dos índices não-paramétricos Jackknife e Chao 2 através do programa EtimateS (Colwell, 1997). Estes índices levam em consideração a ausência/presença das espécies e o número de espécies observado nos sítios de amostragem.

UHE SANTO ANTÔNIO NO RIO MADEIRA
Monitoramento Limnológico e de Macrófitas Aquáticas - Relatório 2/Fase de Operação

As equações utilizadas são descritas a seguir:

Estimador Jackknife de primeira ordem

$$Sjack1 = Sobs + Q1 \left(\frac{m-1}{m}\right)$$
 Onde: Sobs = número de espécies observado em todos os sítios de amostragem; número de espécies amostrado em apenas um sítio de amostragem (espécies raras)
$$m = número total de sítios de amostragem$$

Estimador Chao2

$$Schao2 = Sobs + \frac{Q12}{2Q2}$$
 Onde: Q2 = número de espécies amostradas em dois pontos

4.4 - ANÁLISE DOS DADOS

Os resultados de todos os parâmetros físicos, químicos e biológicos analisados foram apresentados na forma de gráficos, textos e tabelas. Foram feitas discussões em torno da variação espaço-temporal das estações do rio Madeira, dos tributários e dos lagos e canais. Além disso, foi feita a média e o desvio padrão para cada variável nessas três categorias de ambientes, e, quando cabível, todos os parâmetros foram comparados com seus respectivos limites estabelecidos pela Resolução CONAMA nº 357/2005, para água doce de Classe 2, destacando as estações que apresentarem valores fora dos valores previstos nesta resolução.

O estado trófico de cada uma das estações foi definido usando-se o Índice de Estado Trófico (IET) proposto por Carlson (1977) e modificado por Lamparelli (2004). Neste índice, são levadas em consideração as concentrações de clorofila a e de fósforo total, havendo distinção na fórmula para calcular o IET para rios e para reservatórios. Dentre as estações amostradas, as do rio Madeira e dos tributários foram enquadradas dentro de rios, ao passo que as estações dos lagos e dos canais marginais foram enquadradas em reservatórios. As fórmulas usadas estão expressas a seguir:

Junho de 2013 4 - Metodologia 27/33

Ecology Brasil

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas - Relatório 2/Fase de Operação

2541-00-MLM-RL-0002-00

Rios

$$IET(CL) = 10 \times \left(6 - \frac{0.7 - 0.6 \times (\ln CL)}{\ln 2}\right) - 20$$

$$IET(PT) = 10 \times \left(6 - \frac{0.42 - 0.36 \times (\ln CL)}{\ln 2}\right) - 20$$

Reservatórios

$$IET(CL) = 10 \times \left(6 - \frac{0.92 - 0.34 \times (\ln CL)}{\ln 2}\right)$$
$$IET(PT) = 10 \times \left(6 - \frac{1.77 - 0.42 \times (\ln PT)}{\ln 2}\right)$$

Onde:

PT = concentração de fósforo total em µg.L⁻¹

CL = concentração de clorofila em µg.L⁻¹

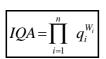
Ln = logaritmo natural

O resultado do IET é a média aritmética simples dos índices relativos ao fósforo total e à clorofila a, segundo a equação:

$$IET = \left\lceil \frac{IET(PT) + IET(CL)}{2} \right\rceil$$

O critério usado para a classificação da trofia dos ambientes amostrados foi o seguinte:

Estado Trófico	Critério	P-total (mg PO ₄ -3 .m ⁻³)	Clorofila a – (mg.m ⁻³)
Ultraoligotrófico	IET <47	$P \leq 8$	$CL \leq 1,17$
Oligotrófico	47< IET <52	$8 < P \le 19$	$1,17 < CL \le 3,24$
Mesotrófico	52< IET <59	19 < P ≤ 52	$3,24 < CL \le 11,03$
Eutrófico	59< IET <63	$52 < P \le 120$	$11,\!03 < CL \leq 30,\!55$
Supereutrófico	63< IET <67	$120 < P \le 233$	$30,\!55 < CL \le 69,\!05$
Hipereutrófico	IET>67	233< P	69,05 < CL


28/33

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas - Relatório 2/Fase de Operação

Para classificação da qualidade da água das estações amostradas foi utilizado o Índice de Qualidade da Água (IQA), desenvolvido pela American National Sanitation Foundation e adaptado pela CETESB. O IQA é determinado pelo produto ponderado das qualidades de água correspondentes aos seguintes parâmetros: oxigênio dissolvido, coliformes fecais, pH, turbidez, sólidos totais, nitrogênio total, fósforo total, demanda bioquímica de oxigênio (DBO) e temperatura. Vale destacar que, para efeito de cálculo do IQA para as estações amostradas, os coliformes fecais da fórmula foram substituídos pelos dados de Escherichia coli. Cada parâmetro possui um peso e um valor de qualidade correspondente, definido a partir de uma curva média de variação de qualidade. Os cálculos usados para calcular o IQA estão explicitados a seguir:

- gi = qualidade do i-ésimo parâmetro, um número entre 0 e 100, obtido da curva
- média de variação de qualidade, em função de sua concentração ou medida; wi = peso correspondente ao i-ésimo parâmetro, um número entre 0 e 1, atribuído em função da sua importância para a conformação global de qualidade, sendo que o somatório de todos os wi é igual a 1.

O IQA varia em uma escala de 0 a 100, como é mostrado a seguir:

•	Ótima	$.79 < IQA \le 100$	0
•	Boa	51 < IQA ≤ 79	9
•	Regular	36 < IQA ≤ 5°	1
•	Ruim	19 < IQA ≤ 30	6
•	Péssima	IQA ≤ 19	9

4.4.1 -Análises biológicas

Todos os organismos coletados, zooplâncton, fitoplâncton, bentos e macrófitas aquáticas foram objeto das análises descritas a seguir.

Riqueza de espécies 4.4.1.1 -

Foi considerada a riqueza simples (S), ou seja, o número de taxa por campanha por estação de coleta.

29/33 Junho de 2013 4 - Metodologia

Monitoramento Limnológico e de Macrófitas Aquáticas - Relatório 2/Fase de Operação

2541-00-MLM-RL-0002-00

4.4.1.2 - Densidade de organismos

As densidades de organismos foram calculadas em relação ao volume (fitoplâncton - ind/mL; zooplâncton - ind/L) ou área (invertebrados bentônicos e macrófitas - ind/m²) nas estações de coleta.

4.4.1.3 - Índice de diversidade específica e equidade

Diversidade de espécies é uma função do número de espécies de uma amostra, coleção ou comunidade (riqueza) e da distribuição dos indivíduos entre essas espécies (equidade, equitabilidade ou evenness). O índice utilizado para calcular a diversidade de espécies foi o de Shannon (Shannon & Weaver, 1949) através da fórmula:

$$\boxed{H^{'} = -\sum p_i \log_2 P_i} \begin{tabular}{l} Onde: \\ p_i = n_i \ / \ N \\ n_i = n^o \ total \ de \ indivíduos \ por \ espécie \\ N = n^o \ total \ de \ indivíduos \end{tabular}$$

O resultado é dado em bit/ind, considerando:

Diversidade alta	H > 3,0
Diversidade média	2,0 < H ≤ 3,0
Diversidade baixa	1,0 < H ≤ 2,0
Diversidade muito baixa	H ≤ 1,0

A equidade foi calculada através da fórmula:

$$E = \frac{H'}{InS}$$
 Onde:
H'= indice de Shannon
S = número total de espécies

O resultado varia entre 0 e 1, sendo os valores >0,5 aqueles em que indivíduos estão bem distribuídos nas espécies.

30/33

UHE SANTO ANTÔNIO NO RIO MADEIRA

Monitoramento Limnológico e de Macrófitas Aquáticas - Relatório 2/Fase de Operação

4.4.1.4 - Diversidade alfa, beta e gama

Para avaliar as diversidades alfa, beta e gama foram consideradas somente as amostras quantitativas, devido à comparabilidade metodológica no esforço de quantificação e identificação das comunidades. Para diversidade beta foi apresentada análise espacial em todos os relatórios. A análise sazonal foi feita nos relatórios consolidados e a interanual após o segundo ano de monitoramento. A diversidade regional (diversidade gama) foi avaliada através da composição (total de táxons presentes em todas as amostras). A diversidade local (diversidade alfa) foi estimada através da riqueza específica em cada estação, da diversidade específica e da equitabilidade.

A diversidade beta, que informa quão heterogêneo é o grupo de estações amostradas em relação à riqueza de espécies, foi estimada a partir do índice β-1 de Harrinson *et al.* (1982) conforme expresso a seguir:

$$\beta - 1 = \left[\frac{\left(\frac{Y}{amed}\right) - 1}{N - 1} \right] \times 100$$

Onde:

B-1= taxa de intercâmbio de espécies

 γ = diversidade gama

α med = riqueza de espécies média entre os sistemas

N = número de sistemas

4.4.1.5 - Dominância

Índice de dominância (Rosemberg & Resh, 1993) foi representado pelo maior valor de abundância relativa (ni/N) da amostra.

$$DOM = \frac{ni}{N}$$
 Onde:
 $ni =$ densidade do táxon i
 $N =$ densidade total

Junho de 2013 4 - Metodologia 31/33

Ecology Brasil

UHE SANTO ANTÔNIO NO RIO MADEIRA
Monitoramento Limnológico e de Macrófitas Aquáticas - Relatório 2/Fase de Operação

2541-00-MLM-RL-0002-00

4.4.2 - Análise estatística

Os dados abióticos e bióticos obtidos neste monitoramento foram analisados por meio de testes estatísticos com análises multivariadas. Análises de Componentes Principais (ACP) foram usadas com a finalidade de identificar gradientes nas variações espaciais e/ou temporais das variáveis físicas e químicas da água em relação às amostras de cada compartimento (PC-Ord 5.1, Mc Cune & Mefford 1999). As variáveis zona eufótica (Zeu), temperatura da água (T. água), turbidez (turb.), condutividade (Cond.), pH, dióxido de carbono livre (CO_2), sólidos totais dissolvidos (STD), demanda bioquímica de oxigênio em 5 dias (DBO5), demanda química de oxigênio (DQO), sódio (Na), potássio (K), cálcio (Ca), magnésio (Mg), nitrogênio total (NT), fósforo total (PF), ferro dissolvido (FeD) e clorofila-a (Chl-a) foram consideradas nessas análises. Todas as variáveis foram transformadas em Log10(x+1) com exceção do pH. A significância das variáveis foi determinada pela distância de cada variável ao centro do eixo: $d \ge J2/n$, onde n é o número de variáveis (Legendre & Legendre, 1998) e no caso do presente relatório $d \ge a \pm 0.34$. A significância dos eixos foi estimada de acordo com critério de Kaiser Gutham (autovalores >1.0) (Jackson, 1993).

Para a comunidade fitoplanctônica, diferenças entre mais de dois grupos de sistemas foram determinadas usando um teste de análise de variância (ANOVA).. Todas as análises estatísticas foram realizadas usando o programa Statview 5.0. Análises de Componentes Principais (ACP) foram usadas com a finalidade de identificar gradientes nas variações espaciais e/ou temporais das condições físicas e químicas da água e do fitoplâncton em relação às amostras de cada compartimento (PC-Ord 5.1, Mc Cune & Mefford 1999). Biovolume total fitoplanctônico (biovolume), temperatura da água (T. água), oxigênio dissolvido (OD), condutividade (Cond), dióxido de carbono livre (CO2), nitrato (NO-3), ion amônio (NNH+4), sólidos em suspensão (SS), profundidade máxima (zmáx) fósforo solúvel reativo (SRP) e DBO5 = demanda bioquímica de oxigênio em 5 dias, foram as variáveis consideradas nessas análises. Todas as variáveis foram transformadas em Log10(x+1) com exceção do pH. A significância das variáveis foi determinada pela distância de cada variável ao centro do eixo: d≥/2/n, onde n é o número de variáveis (Legendre & Legendre, 1998) e no caso do presente relatório: d=0,42. A significância dos eixos foi estimada de acordo com critério de Kaiser Gutham (autovalores >1.0) (Jackson 1993).

As comunidades de zooplâncton, invertebrados bentônicos e macrófitas aquáticas foram submetidas a testes estatísticos de Análise de Correspondência Canônica (CCA). O zooplâncton foi analisado em relação às variáveis ambientais medidas na água, em todas as estações amostradas; os invertebrados bentônicos com as variáveis medidas no sedimento e as macrófitas com as variáveis limnológicas medidas na água e os metais quantificados nas plantas.

UHE SANTO ANTÔNIO NO RIO MADEIRA
Monitoramento Limnológico e de Macrófitas Aquáticas - Relatório 2/Fase de Operação

Para a maioria dos testes estatísticos utilizados o nível de significância foi de 5% e portanto, efeitos significativos foram considerados quando p < 0.05. O valor de p pode ser definido como: a probabilidade de uma métrica de um teste estatístico qualquer ser maior que o valor observado

assumindo que a hipótese nula do teste estatístico empregado (H0) é verdadeira. Monitoramento

em tempo real e variação nictemeral

Duas estações de monitoramento da qualidade da água em tempo real foram instaladas próximas às margens do rio Madeira a montante e a jusante do eixo da barragem da UHE Santo Antônio, atualmente local do canteiro de obras da Usina Hidroelétrica de Santo Antônio. A estação de montante fica baseada em uma plataforma localizada próxima a margem direita, no limite do canteiro de obras (393541,22 / 9023663,13 UTM/SAD69) e a de jusante fica na plataforma da estação de captação de água do canteiro, próximo à margem esquerda (398033.13 / 9029280.18 UTM/SAD69).

As varáveis analisadas na subsuperfície foram temperatura, condutividade, pH, oxigênio dissolvido e turbidez. Os resultados obtidos a cada 30 minutos foram armazenados em "datalogger" e acessados por telefonia celular a partir de um computador portátil.

Foram utilizadas alternadamente quatro sondas multiparâmetros nas estações de montante e jusante, sendo duas utilizadas no monitoramento e duas em manutenção e calibração. Os modelos utilizados foram YSI 6820 v2 e YSI 6920 v2 com sensor ótico de oxigênio dissolvido e YSI 6820 v1 e YSI 6600 com sensor de oxigênio polarográfico de pulso rápido. As aferições e calibrações foram feitas em média com frequência quinzenal.

Foram apresentados os resultados de 94 dias de monitoramento, compreendendo o período de 01/01/13 a 04/04/13. No final do mês de janeiro e início de fevereiro de 2013 foi detectado problema no sensor de pH da estação de montante. Os ruídos das leituras ("outliers") de condutividade, oxigênio, pH e turbidez foram suprimidos com base no critério de variação de 4 vezes superior ao desvio padrão. Para as variáveis que, após a remoção dos "outliers", continuaram apresentando ruído elevado durante alguns períodos foi utilizado filtro da média móvel de 2 horas, para supressão dos sinais não relacionados às leituras reais.

Junho de 2013 4 - Metodologia 33/33