UHE SANTO ANTÔNIO

2ª ETAPA DO PROGRAMA DE LEVANTAMENTOS E MONITORAMENTO HIDROSSEDIMENTOLÓGICO DO RIO MADEIRA E DO FUTURO RESERVATÓRIO DA UHE SANTO ANTÔNIO

CONSOLIDAÇÃO E ANÁLISE DOS DADOS
HIDROSSEDIMENTOLÓGICOS DO RIO MADEIRA SEM RESERVATÓRIO
– JANEIRO DE 2008 A SETEMBRO DE 2011 –

RELATÓRIO FINAL - R8

PJ0777-X-H41-GR-RL-0008-0A

NOVEMBRO/2011

UHE SANTO ANTÔNIO

2ª ETAPA DO PROGRAMA DE LEVANTAMENTOS E MONITORAMENTO HIDROSSEDIMENTOLÓGICO DO RIO MADEIRA E DO FUTURO RESERVATÓRIO DA UHE SANTO ANTÔNIO

CONSOLIDAÇÃO E ANÁLISE DOS DADOS HIDROSSEDIMENTOLÓGICOS DO RIO MADEIRA SEM RESERVATÓRIO – JANEIRO DE 2008 A SETEMBRO DE 2011 –

RELATÓRIO FINAL – R8

PJ0777-X-H41-GR-RL-0008-0A

NOVEMBRO/2011

0A	30/112011	EMISSÃO INICIAL	MAS / FBM	EFM	JCS
REV.	DATA	DESCRIÇÃO	ELAB.	VISTO	APROV.

i

2ª Etapa do Programa de Levantamentos e Monitoramento Hidrossedimentológico do Rio Madeira e do Futuro Reservatório da UHE Santo Antônio

ÍNDICE

Item	Assunto	Página
1.	CONSIDERAÇÕES INICIAIS	1
2.	DADOS UTILIZADOS	4
3.	SERVIÇOS DE CAMPO E LABORATÓRIO	11
3.1. 3.2. 3.3. 3.4. 3.5.	Instalações do Escritório, Laboratório e Salas de Hidrometria Contratação de Pessoal Equipamentos de Hidrossedimentometria Instrumental para o Laboratório de Sedimentometria Viaturas e Embarcações	12 14 14 14 14
4.	PROCEDIMENTOS E CONSISTÊNCIA DE DADOS	16
4.1.2. 4.1.3. 4.1.4. 4.1.5. 4.1.6. 4.1.7.	OPERAÇÃO DAS ESTAÇÕES Leitura de Níveis d'água Medições e Cálculos da Descarga Líquida com Molinete Hidrométrico Medições da Descarga Líquida com ADCP Medição da Descarga Sólida em Suspensão Medições de Sedimentos do Leito Determinação da Descarga Sólida em Suspensão Determinação da Descarga Sólida Total Distribuição Granulométrica do Material do Leito	17 17 17 18 18 21 22 23 24
4.2.	ANÁLISES DE LABORATÓRIO	24
4.3.2.	Consistência de Dados Leitura de Níveis d'água Medições da Descarga Sólida Medições da Descarga Líquida com ADCP	25 25 27 27
5.	RESULTADOS DAS MEDIÇÕES DE DESCARGA LÍQUIDA	29
5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7.	Estação Fluviométrica ABUNÃ Estação Fluviométrica JUSANTE CALDEIRÃO DO INFERNO Estação Fluviométrica PORTO VELHO Estação Fluviométrica SÃO CARLOS Estação Fluviométrica HUMAITÁ Estação Fluviométrica JACIPARANÁ VILA Estação Fluviométrica Montamte JACIPARANÁ	31 33 36 40 43 45 45
6.	RESULTADOS DAS MEDIÇÕES DE DESCARGA SÓLIDA	46
6.1. 6.1.1.	RESULTADOS DAS ANÁLISES LABORATORIAIS Análises do Sedimento em Suspensão e do Leito	47 47

	Análises do Sedimento em Suspensão na Superfície do Escoamento Análises do Sedimento em Suspensão das Amostras Pontuais	60 63
6.2.	RESULTADOS DE CÁLCULOS DA DESCARGA SÓLIDA	66
7.	ESTUDOS HIDROSSEDIMENTOLÓGICOS BÁSICOS	80
7.1.2. 7.1.3. 7.1.4. 7.1.5. 7.1.6.	Curvas-chave de Descarga Líquida Estação Fluviométrica Abunã Estação Fluviométrica Jusante Caldeirão do Inferno Estação Fluviométrica Porto Velho - ANA Estação Fluviométrica São Carlos Estação Fluviométrica Humaitá Estação Fluviométrica Jaciparaná Vila Estação Fluviométrica Montante Jaciparaná	81 83 85 86 88 89
7.2.2. 7.2.3. 7.2.4. 7.2.5. 7.2.6.	CURVAS-CHAVE DE DESCARGA SÓLIDA ESTAÇÃO FLUVIOMÉTRICA Abunã ESTAÇÃO FLUVIOMÉTRICA Jusante Caldeirão do Inferno ESTAÇÃO FLUVIOMÉTRICA Porto Velho - ANA ESTAÇÃO FLUVIOMÉTRICA São Carlos ESTAÇÃO FLUVIOMÉTRICA Humaitá ESTAÇÃO FLUVIOMÉTRICA Jaciparaná Vila ESTAÇÃO FLUVIOMÉTRICA MONTANTE JACIPARANÁ	92 93 94 96 97 99 101 102
7.3. 7.4. 7.5. 7.6.	SÉRIES DE DESCARGAS SÓLIDAS GRANULOMETRIA DOS SEDIMENTOS EM SUSPENSÃO E DO LEITO ANÁLISE DO CONTEÚDO DE AREIA NA DESCARGA SÓLIDA EM SUSPENSÃO CONCENTRAÇÃO DE SEDIMENTOS EM SUSPENSÃO NA SUPERFÍCIE DO ESCOAMENTO	104 115 119 120
7.7.2.	DETALHAMENTO DAS CURVAS DE DESCARGA SÓLIDA CARACTERIZAÇÃO DAS CURVAS-CHAVE DE SEDIMENTOS POR FAIXA GRANULOMÉTRICA CARACTERIZAÇÃO DOS PERÍODOS DE ENCHENTE E VAZANTE NAS CURVAS DE DESCARGA SÓLIDA AVALIAÇÃO COMPARATIVA DAS CURVAS-CHAVE DE DESCARGA SÓLIDA EM SUSPENSÃO	122 122 124 122
7.8.	CURVA DE PERMANÊNCIA DA DESCARGA SÓLIDA EM SUSPENSÃO	130
7.9.	AVALIAÇÃO DO DESEMPENHO DOS MOLINETES E ADCP DURANTE AS MEDIÇÕES DE VAZÃO	132
8.	REFERÊNCIAS BIBLIOGRÁFICAS	135
9.	ANEXOS	138
ANEX	O I – Mapa de Localização das Estações Fluviométricas do Programa de Monitoramento Hidrossedimentológico	
ANEX	O II – LEITURAS DE RÉGUA DAS ESTAÇÕES FLUVIOMÉTRICAS	

ANEXO III - ENSAIOS DE LABORATÓRIO DAS AMOSTRAS DE SEDIMENTO EM SUSPENSÃO

ANEXO IV – ENSAIOS DE LABORATÓRIO DAS AMOSTRAS DE SEDIMENTO DO LEITO

ANEXO V - CÁLCULO DA DESCARGA SÓLIDA SEGUNDO O MÉTODO DE EINSTEIN MODIFICADO

LISTA DE TABELAS

- Tabela 2.1.

Estações fluviométricas com medição de descarga líquida e sólida do Programa de Monitoramento Hidrossedimentológico do Rio Madeira

- Tabela 2.2.

Estações fluviométricas com leitura de régua do Programa de Monitoramento Hidrossedimentológico do Rio Madeira

- Tabela 2.3.

Medições de descarga líquida e descarga sólida realizadas no contexto do Programa de Monitoramento Hidrossedimentológico do Rio Madeira (1ª e 2ª Etapas)

- Tabela 2.4.

Disponibilidade de dados de leituras de réguas nas estações fluviométricas do Programa de Monitoramento Hidrossedimentológico do Rio Madeira

- Tabela 5.1.

Resumo das medições com molinete em Abunã

- Tabela 5.2.

Resumo das medições com ADCP em Abunã

- Tabela 5.3.

Resumo das medições com molinete em Jusante Caldeirão do Inferno

- Tabela 5.4.

Resumo das medições com ADCP em Jusante Caldeirão do Inferno

- Tabela 5.5.

Resumo das medições com molinete em Porto Velho

- Tabela 5.6.

Resumo das medições com ADCP em Porto Velho

- Tabela 5.7.

Resumo das medições com molinete em São Carlos

- Tabela 5.8.

Resumo das medições com ADCP em São Carlos

- Tabela 5.9.

Resumo das medições com molinete em Humaitá

- Tabela 5.10.

Resumo das medições com ADCP em Humaitá

- Tabela 5.11.

Resumo das medições com molinete em Jaciparaná Vila

- Tabela 5.12.

Resumo das medições com molinete em Montante Jaciparaná

ngº Jose Eduardo Moreira CREA: 21112-D/RJ

- Tabela 6.1.

Resumo das análises do sedimento em suspensão e do leito em Abunã

- Tabela 6.2.

Resumo das análises do sedimento em suspensão e do leito em Jusante Caldeirão do Inferno

- Tabela 6.3.

Resumo das análises do sedimento em suspensão e do leito em Porto Velho

- Tabela 6.4.

Resumo das análises do sedimento em suspensão e do leito em São Carlos

- Tabela 6.5.

Resumo das análises do sedimento em suspensão e do leito em Humaitá

- Tabela 6.6.

Resumo das análises do sedimento em suspensão e do leito em Jaciparaná Vila

- Tabela 6.7.

Resumo das análises do sedimento em suspensão e do leito em Montante Jaciparaná

- Tabela 6.8.

Análises da Concentração do Sedimento em Suspensão na Superfície do Escoamento em Abunã

- Tabela 6.9.

Análises da Concentração do Sedimento em Suspensão na Superfície do Escoamento em Jusante Caldeirão do Inferno

- Tabela 6.10.

Análises da Concentração do Sedimento em Suspensão na Superfície do Escoamento em Porto Velho

- Tabela 6.11.

Análises da Concentração do Sedimento em Suspensão na Superfície do Escoamento em São Carlos

- Tabela 6.12.

Análises da Concentração do Sedimento em Suspensão na Superfície do Escoamento em Humaitá

- Tabela 6.13.

Concentração Pontual do Sedimento em Suspensão em Jusante Caldeirão do Inferno – 02/08/2011

- Tabela 6.14.

Concentração Pontual do Sedimento em Suspensão em Porto velho - 20/07/2011

Tabela 6.15.

Concentração Pontual do Sedimento em Suspensão em Humaitá - 30/07/2011

- Tabela 6.16.

Resumo do cálculo da descarga sólida em Abunã pelo Método Modificado de Einstein

Eng^o José Eduardo Moreira CREA: 21112-D/RJ

- Tabela 6.17.

Resumo do cálculo da descarga sólida em Jusante Caldeirão do Inferno pelo Método Modificado de Einstein

- Tabela 6.18.

Resumo do cálculo da descarga sólida em Porto Velho pelo Método Modificado de Einstein

- Tabela 6.19.

Resumo do cálculo da descarga sólida em São Carlos pelo Método Modificado de Einstein

- Tabela 6.20.

Resumo do cálculo da descarga sólida em Humaitá pelo Método Modificado de Einstein

- Tabela 6.21.

Resumo do cálculo da descarga sólida em Jaciparaná Vila pelo Método Modificado de Einstein

- Tabela 6.22.

Resumo do cálculo da descarga sólida em Montante Jaciparaná pelo Método Modificado de Einstein

- Tabela 7.1.

Série de descarga sólida em suspensão em Abunã (t/dia)

- Tabela 7.2.

Série de descarga sólida total em Abunã (t/dia)

- Tabela 7.3.

Série de descarga sólida em suspensão em Jusante Caldeirão do Inferno (t/dia)

- Tabela 7.4.

Série de descarga sólida total em Jusante Caldeirão do Inferno (t/dia)

- Tabela 7.5.

Série de descarga sólida em suspensão em Porto Velho (t/dia)

- Tabela 7 6

Série de descarga sólida total em Porto Velho (t/dia)

- Tabela 7.7.

Série de descarga sólida em suspensão em São Carlos (t/dia)

- Tabela 7.8.

Série de descarga sólida total em São Carlos (t/dia)

- Tabela 7.9.

Série de descarga sólida em suspensão em Humaitá (t/dia)

- Tabela 7.10.

Série de descarga sólida total em Humaitá (t/dia)

- Tabela 7.11.

Granulometria média dos sedimentos em suspensão no Rio Madeira

vii

2ª Etapa do Programa de Levantamentos e Monitoramento Hidrossedimentológico do Rio Madeira e do Futuro Reservatório da UHE Santo Antônio

- Tabela 7.12. Granulometria média dos sedimentos do leito no Rio Madeira
- Tabela 7.13. Diâmetros característicos médios dos sedimentos do leito
- Tabela 7.14. Amostras Coletadas na Superfície do Escoamento nas Estações do Rio Madeira

Eng^o José Eduardo Moreira CREA: 21112-D/RJ

LISTA DE FIGURAS

- Figura 2.1.

Localização da Nova Seção de Medição de Descarga Líquida e Sólida em Porto Velho

- Figura 3.1.

Situação do Laboratório de Hidrossedimentologia após Vendaval

- Figura 3.2.

Sala de Recepção de Amostras do Novo Laboratório de Hidrossedimentologia

- Figura 3.3.

Instalações do Novo Laboratório de Hidrossedimentologia

- Figura 3.4.

Equipamentos, viaturas e embarcações adquiridos para os serviços do Programa de Monitoramento Hidrossedimentológico

- Figura 4.1.

Amostrador de sedimento em suspensão, modelo AMS-8 (saca)

- Figura 4.2.

Amostrador de sedimento em suspensão, modelo DH-49

- Figura 4.3.

Primeiro Protótipo do Amostrador Pontual de Sedimentos em Suspensão

- Figura 4.4.

Segundo Protótipo do Amostrador Pontual de Sedimentos em Suspensão

- Figura 4.5.

Amostrado Pontual de Sedimentos em Suspensão Desenvolvido no Âmbito do Programa de Monitoramento Hidrossedimentológico do Rio Madeira

- Figura 4.6.

Amostrador de sedimentos do leito US BM-54

- Figura 4.7.

Amostrador de sedimentos do leito do tipo de raspagem horizontal

- Figura 4.8.

Desenho Esquemático das Regiões de Amostragem em um Curso d'Água em Relação ao Perfil Vertical de Velocidades e Concentrações (Edwards & Glysson, 1998)

- Figura 4.9.

Avaliação da Descarga Sólida Total Calculada Mediante a Fórmula de Einstein Modificada em relação à Descarga Sólida em Suspensão Medida em Porto Velho

- Figura 4.10.

Correlação da Leitura de Réguas de Jus. Caldeirão do Inferno e Foz do Jaciparaná

- Figura 4.11.

Correlação da Leitura de Réguas de Porto Velho e São Carlos

CREA: 21112-D/RJ

- Figura 6.1.

Desenho Esquemático dos Pontos de Amostragem da CSS em Jusante Caldeirão do Inferno

- Figura 6.2.

Desenho Esquemático dos Pontos de Amostragem da CSS em Porto Velho

- Figura 6.3.

Desenho Esquemático dos Pontos de Amostragem da CSS em Humaitá

- Figura 7.1.

Distribuição temporal das medições de descarga líquida em Abunã

- Figura 7.2.

Medições de descarga líquida em Abunã

- Figura 7.3.

Distribuição temporal das medições de descarga líquida em Jusante Caldeirão do Inferno

- Figura 7.4.

Medições de descarga líquida em Jusante Caldeirão do Inferno

- Figura 7.5.

Distribuição temporal das medições de descarga líquida em Porto Velho

- Figura 7.6.

Medições de descarga líquida em Porto Velho

- Figura 7.7.

Distribuição temporal das medições de descarga líquida em São Carlos

- Figura 7.8.

Medições de descarga líquida em São Carlos

- Figura 7.9.

Distribuição temporal das medições de descarga líquida em Humaitá

- Figura 7.10.

Medições de descarga líquida em Humaitá

- Figura 7.11.

Distribuição temporal das medições de descarga líquida em Jaciparaná Vila

- Figura 7.12.

Medições de Descarga Líquida em Jaciparaná Vila

- Figura 7.13.

Distribuição temporal das medições de descarga líquida em Montante Jaciparaná

- Figura 7.14.

Medições de Descarga Líquida em Montante Jaciparaná

- Figura 7.15.

Curva-chave de descarga sólida em suspensão em Abunã

CREA: 21112-D/RJ

Х

2ª Etapa do Programa de Levantamentos e Monitoramento Hidrossedimentológico do Rio Madeira e do Futuro Reservatório da UHE Santo Antônio

- Figura 7.16.

Curva-chave de descarga sólida total em Abunã

- Figura 7.17.

Curva-chave de descarga sólida em suspensão em Jusante Caldeirão do Inferno

- Figura 7.18.

Curva-chave de descarga sólida total em Jusante Caldeirão do Inferno

- Figura 7.19.

Curva-chave de descarga sólida em suspensão em Porto Velho

- Figura 7.20.

Curva-chave de descarga sólida total em Porto Velho

- Figura 7.21.

Curva-chave de descarga sólida em suspensão em São Carlos

- Figura 7.22.

Curva-chave de descarga sólida total em São Carlos

- Figura 7.23.

Avaliação Comparativa dos Dados Coletados pela ANA e PCE em Humaitá

- Figura 7.24.

Curva-chave de descarga sólida em suspensão em Humaitá

- Figura 7.25.

Curva-chave de descarga sólida total em Humaitá

- Figura 7.26.

Curva-chave de descarga sólida em suspensão em Jaciparaná Vila

- Figura 7.27.

Curva-chave de descarga sólida total em Jaciparaná Vila

- Figura 7.28.

Descarga Sólida em Suspensão em Montante Jaciparaná

- Figura 7.29.

Descarga Sólida Total em Montante Jaciparaná

- Figura 7.30.

Variação mensal da descarga sólida total em Abunã, Porto Velho e Humaitá Período 1977-1989, 1995-1997, 2002, 2005-2010

- Figura 7.31.

Variação anual da descarga sólida total em Abunã, Porto Velho e Humaitá

- Figura 7.32.

Granulometria média dos sedimentos em suspensão no Rio Madeira

- Figura 7.33.

Granulometria média dos sedimentos do leito no Rio Madeira

Eng^o José Eduardo Moreira CREA: 21112-D/RJ

- Figura 7.34.

Granulometria Média do Sedimento em Suspensão no Rio Jaciparaná

- Figura 7.35.

Granulometria média dos sedimentos do leito no Rio Jaciparaná

- Figura 7.36.

Variação Temporal do Conteúdo de Areia na Descarga Sólida em Suspensão nas Estações Abunã, Jusante Caldeirão do Inferno, Porto Velho, São Carlos e Humaitá

- Figura 7.37.

Variação Temporal da Concentração de Sedimentos em Suspensão na Superfície do Escoamento nas Estações ao Longo do Rio Madeira

- Figura 7.38.

Relação entre a Concentração de Sedimentos em Suspensão na Superfície do Escoamento e a Concentração Média de Sedimentos em Suspensão em Porto Velho

- Figura 7.39.

Relação entre a Concentração de Sedimentos em Suspensão na Superfície do Escoamento e a Concentração Média de Sedimentos em Suspensão nas Estações Abunã, Jusante Caldeirão do Inferno, São Carlos e Humaitá

- Figura 7.40.

Curvas-Chave de Descarga Sólida em Suspensão por Faixa Granulométrica na Estação Porto Velho

- Figura 7.41.

Curvas-Chave de Descarga Sólida em Suspensão por Faixa Granulométrica nas Estações Abunã, Jusante Caldeirão do Inferno, São Carlos, Humaitá, Jaciparaná Vila e Montante Jaciparaná

- Figura 7.42.

Curvas-chave de Descarga Líquida e Sólida em Suspensão para os Períodos de Enchente e Vazante em Abunã

- Figura 7.43.

Curvas-chave de Descarga Sólida em Suspensão para os Períodos de Enchente e Vazante do Rio Madeira em Jusante Caldeirão do Inferno

- Figura 7.44.

Curvas-chave de Descarga Sólida em Suspensão para os Períodos de Enchente e Vazante do Rio Madeira em Porto Velho

- Figura 7.45.

Curvas-chave de Descarga Sólida em Suspensão para os Períodos de Enchente e Vazante do Rio Madeira em São Carlos

- Figura 7.46.

Curvas-chave de Descarga Sólida em Suspensão para os Períodos de Enchente e Vazante do Rio Madeira em Humaitá

- Figura 7.47.

Avaliação do Desempenho da Curva de Descarga Sólida em Suspensão (curva única) na Estação Porto Velho

CREA: 21112-D/RJ

- Figura 7.48.

Avaliação do Desempenho das Curvas de Descarga Sólida em Suspensão para os Períodos de Enchente e Vazante na Estação Porto Velho

- Figura 7.49.

Avaliação Comparativa das Curvas-chave de Descarga Sólida em Suspensão nas Estações do Rio Madeira

- Figura 7.50.

Curva de Permanência da Descarga Sólida em Suspensão do Rio Madeira nas Estações de Abunã, Porto Velho e Humaitá

- Figura 7.51.

Freqüência Acumulada da Descarga Sólida em Suspensão do Rio Madeira nas Estações de Abunã, Porto Velho e Humaitá

- Figura 7.52.

Avaliação das Medições de Descarga Líquida com Molinete e ADCP nas Estações de Monitoramento Hidrossedimentológico do Rio Madeira

- Figura 7.53.

Avaliação da Área Calculada durante as Medições de Vazão com Molinete e ADCP

- Figura 7.54.

Avaliação da Velocidade Média do Escoamento durante as Medições de Vazão com Molinete e ADCP

1. CONSIDERAÇÕES INICIAIS

Em 25 de maio de 2010, foi celebrado o Contrato CT.DS.PV.023.2010, de Prestação de Serviços de Levantamentos e de Monitoramento Hidrossedimentológico do Rio Madeira e do Futuro Reservatório da UHE Santo Antônio, entre a Santo Antônio Energia S.A e a PCE Projetos e Consultorias de Engenharia Ltda.

Este contrato tem por objeto a 2ª Etapa do Programa de Levantamentos e de Monitoramento Hidrossedimentológico do Rio Madeira e do Futuro Reservatório da UHE Santo Antônio iniciada em 1º de maio de 2010, em continuidade à 1ª Etapa do Programa, concluída em 30 de abril de 2010, de acordo com o Termo Aditivo ao contrato CT.DS.SP.002.2009, firmado em 18 de março de 2010.

As atividades realizadas no âmbito da 2ª Etapa do Programa estão agrupadas de acordo com as Metas constantes do Projeto Básico Ambiental da UHE Santo Antônio:

Meta I: Implantação e Operação de Estações Fluviométricas:

- 1.2 Instalação de estação fluviométrica no rio Jaciparaná Montante;
- I.3 Operação de 8 estações da Rede Fluviométrica Básica;
- I.4 Operação de 8 estações da Rede Fluviométrica Complementar.

Meta II: Realização de Medições de Descarga Líquida e Sólida:

- II.1 Medições de QL e QS com amostragem integrada na vertical
 - . Nos grandes rios (Madeira);
 - . Nos pequenos cursos d'água (Jaciparaná).
- II.2 Medições de QL e QS detalhada (pontual);
- II.3 Cálculo das medições de QS e QL

Meta III: Análises Laboratoriais:

- III.1 Controle, registro e armazenamento das amostras;
- III.2 Análises: Concentração, granulometria em suspensão e leito.

Meta IV: Levantamento Topobatimétrico e Coleta de Material do Leito para Análise Granulométrica:

IV.4 - ST e de AG do leito p/ acompanhamento do leito após a implantação do reservatório.

Meta V: Outros Monitoramentos:

V.5 - Monitorar a evolução dos trechos com margens erodidas ou potencialmente instáveis.

Meta VI: Banco de Dados Hidrossedimentométricos:

- VI.2 Manutenção (atualização) do Banco de Dados;
- VI.3 Análise de Consistência de Dados Hidrossedimentológicos.

Eng^o José Eduardo Moreir CREA: 21112-D/RJ

Meta VII: Caracterização Espacial do Sedimento Transportado pelo Rio Madeira em Condições Naturais:

VII.1 - Caracterização do sedimento ao longo do rio Madeira, de Abunã até Humaitá.

Meta VIII: Elaboração de Relatórios:

VIII.1 - Consolidação em relatórios de todos os levantamentos, monitoramentos e análises realizados.

De acordo com o estabelecido nas Atividades VI.3 e VII.1. vem sendo elaborados relatórios sobre consolidação e análise de consistência dos dados hidrossedimentométricos da bacia do rio Madeira obtidos nas fases anteriores dos estudos e, posteriormente, já no âmbito do Programa de Monitoramento, a partir de janeiro de 2008, contendo as principais análises para o estabelecimento de parâmetros hidrossedimentológicos do rio Madeira nas estações fluviométricas operadas pela PCE.

A fim de facilitar a consulta aos dados hidrossedimentológicos, os relatórios de consolidação vêm incluindo sempre os dados referentes aos períodos anteriores, razão pela qual, em todos eles, o marco inicial é janeiro de 2008.

Até o momento, já foram emitidos os seguintes relatórios de consolidação:

- PJ0697-X-H41-GR-ED-102-0A Consolidação e Análise dos Dados Hidrossedimentológicos do Rio Madeira Sem Reservatório - Relatório Parcial - R3 -Junho/2008 - referente a dados até dezembro de 2007, anteriores ao Programa de Monitoramento:
- PJ0697-X-H41-GR-RL-003-0A Consolidação e Análise dos Dados Hidrossedimentológicos do Rio Madeira Sem Reservatório - Relatório Parcial - R5 -Dezembro/2009 - referente a dados de Janeiro de 2008 a Julho de 2009:
- PJ0697-X-H41-GR-RL-005-0A Consolidação e Análise dos Dados Hidrossedimentológicos do Rio Madeira Sem Reservatório - Relatório Final – R8 -Julho/2010 - referente a dados de Janeiro de 2008 a Abril de 2010;
- PJ0777-X-H41-GR-RL-005-0A Consolidação e Análise dos Dados Hidrossedimentológicos do Rio Madeira Sem Reservatório - Relatório Parcial – R5 - Maio/2011 - referente a dados de Janeiro de 2008 a Março de 2011;
- O presente relatório apresenta a consolidação e análise dos dados hidrossedimentológicos do rio Madeira de Janeiro de 2008 a Setembro de 2011.

2. DADOS UTILIZADOS

No relatório PJ0697-X-H41-GR-ED-102-0A, emitido em Junho/2008, foi realizada a consolidação e análise dos dados hidrossedimentológicos do Rio Madeira na condição sem reservatório, considerando fundamentalmente os dados levantados na fase de Viabilidade.

Posteriormente, foram emitidos os relatórios PJ0697-X-H41-GR-RL-003-0A, em dezembro de 2009, e PJ0697-X-H41-GR-RL-005-0A, em julho de 2010, onde é realizada, respectivamente, a consolidação Parcial e Final de todos os dados observados e das medições de descargas líquidas e sólidas realizadas no âmbito do Programa de Levantamentos e Monitoramento Hidrossedimentológico do Rio Madeira e do Futuro Reservatório da UHE Santo Antônio, cuja 1ª etapa foi iniciada em fevereiro de 2008, por meio da contratação da PCE e concluída em 30 de abril de 2010.

Nos documentos mencionados foram considerados. basicamente. dados hidrossedimentométricos disponíveis nas estações da rede hidrometeorológica operada hoje pela Agência Nacional de Águas – ANA, e anteriormente pelo extinto Departamento Nacional de Águas e Energia Elétrica - DNAEE, no rio Madeira em Porto Velho e Abunã e no rio Mamoré em Guajará-Mirim. Nestas estações foram realizadas medições complementares de descargas líquidas, sólidas em suspensão e coletas de material do leito pelo Consórcio Eletrobrás Furnas / Construtora Norberto Odebrecht (FURNAS / CNO), no âmbito dos estudos dos aproveitamentos hidrelétricos de Santo Antônio e Jirau, e a partir de 2008 pela PCE. Todas essas informações, bem como a disponibilidade dos dados de interesse, foram apresentadas nos relatórios citados.

A 2ª Etapa do Programa de Levantamentos e Monitoramento Hidrossedimentológico do Rio Madeira e do Futuro Reservatório da UHE Santo Antônio teve início em maio de 2010 com a celebração de novo contrato. Em maio de 2011 foi emitido o relatório parcial de análise e consolidação dos dados coletados, sendo que o presente relatório trata da consolidação e análise final dos dados observados e das medições de descargas líquidas e sólidas realizadas no período de janeiro de 2008 a março de 2011.

Desta forma, atendendo as determinações do Programa de Monitoramento Hidrossedimentológico, neste relatório são levados em consideração os dados de leituras de réguas e de medições de descargas líquidas e sólidas nas estações que compõem a Rede Fluviométrica Básica, listadas a seguir, na Tabela 2.1.

Cabe destacar que no mês de março de 2011 foi instalada, no rio Jaciparaná, uma nova estação fluviométrica, denominada MONTANTE JACIPARANÁ, situada a 68 km da confluência com o rio Madeira (no limite da influência do remanso do reservatório da UHE Santo Antônio). Desta forma, as medições de descarga líquida e sólida na estação denominada Jaciparaná Vila foram suspensas, visto que nos próximos meses a região será influenciada pelo enchimento do reservatório.

Também cabe aclarar que em setembro de 2010 a seção de medição de descargas líquidas e sólidas de Porto Velho foi deslocada em 5,1 quilômetros para jusante. Isto foi devido à construção da ponte da BR-319 no local onde se situava a travessia das balsas, o que obrigou a deslocar a rota de travessias das balsas em aproximadamente 200 metros para jusante, coincidindo com a antiga seção de medição da PCE em Porto Velho (Figura 2.1.). Adicionalmente, as obras executadas durante a construção da ponte poderiam alterar e mascarar os resultados de amostragem de sedimentos do Programa

de Monitoramento. A nova seção de medição possui as seguintes coordenadas UTM (datum WGS 84): 9039444N / 399137E (na margem direita) e 9039519N / 398310E (na margem esquerda).

Tabela 2.1.
Estações Fluviométricas com Medição de Descarga Líquida e Sólida do Programa de Monitoramento Hidrossedimentológico do Rio Madeira

Nome de Fatacão	D:-	Coordena	ndas UTM	Cota Zero	Onereder	Data da
Nome da Estação	Rio	Norte (m)	Este (m)	(m)	Operador	Instalação
Abunã	Madeira	8926370	240512	74,65	ANA / PCE	*
Jusante Caldeirão do Inferno **	Madeira	8982304	323362	54,23	PCE	31/7/2009
Porto Velho **	Madeira	9032851	399179	43,00	ANA / PCE	*
São Carlos	Madeira	9066528	444077	38,40	PCE	19/9/2008
Humaitá	Madeira	9170426	497816	24,65	ANA / PCE	*
Jaciparaná Vila **	Jaciparaná	8975978	346143	62,87	PCE	
Montante Jaciparaná ***	Jaciparaná	8949448	348391		PCE	25/03/2011

^{*} Estações instaladas por outras entidades.

Além das estações que compõem a Rede Fluviométrica Básica, foram também considerados neste trabalho os dados (leituras de régua) de estações que compõem a Rede Fluviométrica Complementar, referentes às novas estações instaladas (ou reinstaladas) em pontos notáveis do rio Madeira entre o eixo da UHE Jirau e Humaitá e no Jaciparaná, com os objetivos de subsidiar а modelagem hidrossedimentológica unidimensional e bidimensional, e os estudos de remanso, previsão de vazões e níveis da UHE e de modelagem física (modelo reduzido). Estão também incluídas as leituras de réguas dos postos instalados para apoio aos trabalhos desenvolvidos no projeto executivo da UHE Santo Antônio, conforme se observa na Tabela 2.2.

Maiores informações acerca das estações fluviométricas listadas nas tabelas foram apresentadas em relatório específico emitido em setembro de 2010 - Instalação e Operação de Estações Fluviométricas no Rio Madeira - Relatório de Atualização / R2 - PJ0777-X-H41-GR-RL-0001-0A, contendo a ficha descritiva de cada posto.

O mapa com a localização das estações fluviométricas listadas na Tabela 2.1. e Tabela 2.2. apresenta-se no desenho PJ0777-Z-H41-GR-DE-0002, no ANEXO I.

^{**} A cota do zero da régua foi corrigida a partir das correções altimétricas dos marcos do IBGE de Outubro/2009. As novas informações altimétricas apresentadas pelo IBGE em Junho/2011 ainda não foram incorporadas.

^{***} A estação possui marcos, porém não há réguas instaladas no local. As medições são relacionadas ao nível d'água (NA).

Figura 2.1. Localização da Nova Seção de Medição de Descarga Líquida e Sólida em Porto Velho

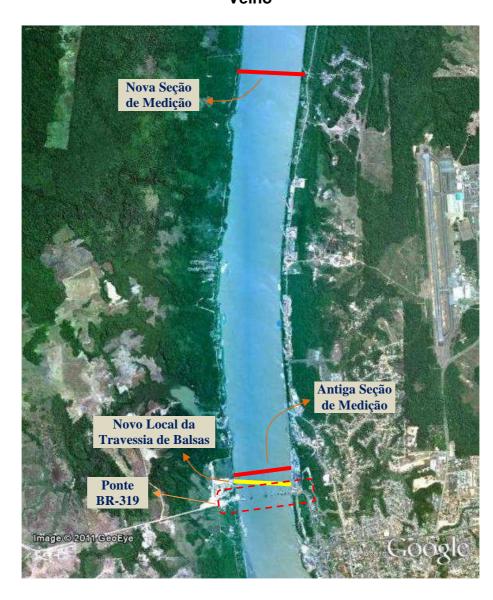


Tabela 2.2.
Estações Fluviométricas com Leitura de Régua do Programa de Monitoramento
Hidrossedimentológico do Rio Madeira

Name de Catacão	Rio	Coordena	ndas UTM	Cota Zero	Operada	Data da			
Nome da Estação	RIO	Norte (m)	Este (m)	(m)	Operador	Instalação			
Guajará Mirim *	Mamoré	8805961	243326	109,29	ANA				
Cachoeira Jirau Jusante	Madeira	8969207	312225		PCE	22/10/2008			
Cach. Cald. Inferno Montante	Madeira	8974232	315586		PCE	21/10/2008			
Cach. Cald. Inferno Jusante	Madeira	8976242	319427		PCE	17/10/2008			
Foz do Rio Jaciparaná **	Madeira	8985020	349022	54,91	PCE	15/10/2008			
Cach. do Morrinho Montante **	Madeira	9002670	366277	54,00	PCE	12/10/2008			
Cach. do Morrinho Jusante **	Madeira	9004736	372421	53,20	PCE	8/10/2008			
Pedral Jusante (†)	Madeira	9008470	382182	52,81	PCE	11/10/2008			
Cach. Teotônio Montante II (क)	Madeira	9016308	380769	51,02	PCE	14/10/2008			
Cach. Teotônio Montante **	Madeira	9020215	383057	52,07	PCE	12/9/2008			
Cachoeira Teotônio Jusante **	Madeira	9020227	383346	42,35	PCE	11/9/2008			
Régua 4 **	Madeira	9024456	392343	40,52	PCE	8/9/2008			
Régua 11 **	Madeira	9026028	393071	39,46	PCE	2/11/2008			
Régua 1 **	Madeira	9027361	392594	43,06	PCE	5/9/2008			
Régua 10 **	Madeira	9026852	393964	39,46	PCE	14/1/2009			
Régua 5 **	Madeira	9027542	394572	40,40	PCE	5/9/2008			
Régua 9 **	Madeira	9026334	395002	38,92	PCE	2/11/2008			
Régua 6 **	Madeira	9027243	395260	40,66	PCE	2/9/2008			
Régua 2 **	Madeira	9027543	395890	41,22	PCE	1/9/2008			
Régua 3 **	Madeira	9026506	396292	40,28	PCE	3/9/2008			
Régua 7 **	Madeira	9029102	397739	42,89	PCE	5/9/2008			
Régua 8 **	Madeira	9027152	396953	39,53	PCE	1/11/2008			
Cujubim *	Madeira	9050760	418771	42,29	PCE	17/09/2008			
Papagaio *	Madeira	9095804	490024	29,67	AHIMOC / PCE	22/09/2008			
Jaciparaná (ponte) **	Jaciparaná	8976164	347743	61,51	ANA / PCE				

^{*} Estações instaladas por outras entidades.

A seguir apresenta-se um resumo básico das medições realizadas nas principais estações da Rede Fluviométrica Básica, no período de janeiro de 2008 a setembro de 2011. A Tabela 2.3. mostra a quantidade de medições de descarga líquida (com molinete e com ADCP) e descarga sólida (amostragens de sedimento em suspensão e do leito) realizadas no contexto do Programa de Monitoramento do Rio Madeira (1ª e 2ª Etapas) e, na seqüência, a Tabela 2.4. lista a disponibilidade de dados de leituras de régua em todas as estações fluviométricas monitoradas.

^{**} A cota do zero da régua foi corrigida a partir das correções altimétricas dos marcos do IBGE de Outubro/2009. As novas informações altimétricas apresentadas pelo IBGE em Junho/2011 ainda não foram incorporadas.

^(†) A determinação da cota do zero da régua é precária, precisando de uma avaliação mais acurada.

Neste sentido dispõe-se de leituras correspondentes a 32 réguas, sendo que 10 (dez) delas já se encontram desativadas. Adicionalmente, em fase com o cronograma de enchimento do reservatório da UHE Santo Antônio, as estações Régua 4, Régua 10, Régua 11 e Cachoeira de Teotônio Jusante foram desativadas em 30/09/2011 e a estação Jaciparaná (Ponte) – CPRM também deixará de ser operada pela PCE a partir de outubro de 2011.

Cabe esclarecer que a régua de Porto Velho apresentou duas séries de leituras diárias independentes até o mês de julho de 2011, que correspondem aos dados lidos, respectivamente, por um observador da CPRM (ANA) e um observador da PCE. A partir do mês de agosto o observador da PCE passou a realizar também as leituras para a CPRM, ficando assim as leituras restritas a uma única série de dados.

Em relação às leituras da régua Jusante Caldeirão do Inferno se destaca que não estão sendo realizadas as leituras diárias, como se observa na Tabela 2.4., pois não há observador neste local devido ao remanejamento dos ribeirinhos da área de influencia direta do reservatório da usina. No entanto, a seção de réguas permanece operante devido às medições freqüentes de descarga líquida e sólida que a equipe de hidrometria da PCE realiza.

Tabela 2.3.

Medições de Descarga Líquida e Sólida Realizadas no Contexto do Programa de Monitoramento Hidrossedimentológico do Rio Madeira (1ª e 2ª Etapas)

Nome da Estação	Molinete	ADCP	Amostra de Suspensão	Amostra do Leito
Abunã	25	34	51	47
Jusante Caldeirão do Inferno	48	32	51	46
Porto Velho	49	45	51	46
São Carlos	47	32	52	48
Humaitá	28	32	52	47
Jaciparaná Vila	21	-	22	19
Montante Jaciparaná	5	-	5	5
TOTAL	223	175	284	258

Engº José Eduardo Moreira CREA: 21112-D/RJ

10

Tabela 2.4. Disponibilidade de Dados de Leituras de Réguas nas Estações Fluviométricas do Programa de Monitoramento Hidrossedimentológico do Rio Madeira

Estação		20	08			2009														2010												2011								
Estação	Jan a Ago	Set	Out	Nov	Dez	Jan	Fev	Mar	Abr	Maio	Jun	Jul	Ago	Set	Out	Nov	Dez	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set		
Humaitá		Х	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Х	Х	Χ	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Χ	Х	Х	Х	Х	Х	Х	Χ		
Papagaio		Х	Х	Χ	Χ	Х	Χ	Χ	Χ	Х	Χ	Х	Х	Х	Х	Χ	Х	Χ	Х	Х	Х	Х	Х	Χ	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ		
São Carlos		Х	Χ	Х	Χ	Χ	Χ	Х	Χ	Х	Χ	Х	Х	Х	Х	Χ	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Χ		
Cujubim		Х	Χ	Х	Χ	Χ	Χ	Χ	Χ	Х	Χ	Х	Х	Х	Χ	Х	Χ	Х	Χ	Х	Х	Х	Χ	Х	Х	Х	Χ	Х	Х	Х	Χ	Х	Х	Х	Х	Χ	Χ	Χ		
Porto Velho - ANA	Х	Χ	Χ	Х	Χ	Χ	Χ	Х	Χ	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Χ	Χ	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Χ		
Porto Velho - PCE													Х	Х	Χ	Х	Х	Х	Χ	Х	Х	Х	Χ	Х	Х	Х	Χ	Х	Х	Х	Χ	Х	Х	Х	Х	Χ				
R-7		Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Х	Х	Χ	Х	Χ	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Χ	Х	Χ	Х	Х	Х	Х	Х	Х	Χ		
R-8				Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Х	Χ	Х	Х	Х	Х	Χ	Х	Χ	Х	Χ	Χ	Х	Х	Х	Х	Х	Χ		
R-2		Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ																												
R-3		Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ	(*)	Χ	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Χ	Χ	Х	Х	Х	Х	Χ		
R-6		Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ	Χ	Χ	Х	Х																											
R-9				Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Х	Х	Χ	Χ	Х	Χ	Χ	Х	Х	Х	Х	Χ	Х	Χ	Χ	Х	Х	Х	Χ	Χ	Χ	Х	Х	Х	Х	Χ		
R-10				Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Х	Х	Χ	Χ	Х	Χ	Χ	Х	Х	Χ	Х	Χ	Х	Χ	Χ	Х	Χ	Х	Χ	Х	Х	Х	Х	Х	Χ	Χ		
R-5		Х	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ																										
R-1		Х	Χ	Х	Χ	Χ	Χ	Χ	Х	Χ	Χ	Х	Х	Х	Χ	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Χ		
R-11				Х	Χ	Χ	Χ	Χ	Х	Χ	Χ	Х	Х	Х	Χ	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Χ		
R-4		Х	Χ	Х	Χ	Χ	Χ	Χ	Х	Χ	Χ	Х	Х	Х	Χ	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Χ		
Cachoeira Teotônio Jusante		Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ	Χ	Х	Χ	Χ	Х	Х	Х	Χ	Х	Х	Х	Х	Χ	Х	Χ	Х	Х	Х	Х	Χ	Χ	Χ	Х	Х	Х	Х	Χ		
Cachoeira Teotônio Montante		Χ	Χ	Х	Χ	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ	Χ	Х	Х	Х	Х	Χ	Х	Χ	Х	Х	Х	Х	Χ	Х	Χ	Х	Х	Х	Х	Χ		
Cachoeira Teotônio Montante II			Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ	Х	Χ	Х	Х	Х	Х	Χ	Х															
Pedral Jusante			Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ	Χ	Х	Χ	Χ	Χ	Х	Х	Х	Х	Х	Χ															
Cachoeira do Morrinho Jusante			Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Х	Х	Χ	Х	Х	Χ	Χ	Х	Х	Χ	Х	Х	Х	Х	Χ	Х	Х	Χ	Χ	Χ	Χ	Х	Х	Х	Χ	Χ		
Cachoeira do Morrinho Montante			Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ	Х	Х	Х	Х	Χ	Х	Х	Χ	Х	Χ	Χ	Χ	Х	Х	Χ						
Foz do Rio Jaciparaná			Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ	Х	Χ	Х	Х	Х	Х	Χ	Х	Χ	(*)	Х	Х	Х	Χ	Χ	Χ	Х	Х	Х	Х	Χ		
Jaciparaná (Vila) - PCE			Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ	Х	Χ	Х	Х	Х	Х	Χ	Х	Χ	Х	Х	Х	Х	Χ	Χ	Χ	Х	Х	Х	Х	Χ		
Jaciparaná (Ponte) - CPRM			Χ	Х	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Х	Χ	Χ	Χ	Χ	Х	Χ	Х	Х	Х	Х	Χ	Х	Χ	Х	Х	Х	Х	Χ	Χ	Χ	Х	Х	Х	Х	Χ		
Jusante Caldeirão do Inferno													Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	(*)	(*)	(*)	(*)		
Cachoeira do Cald. Inferno Jusante			Χ	Х	Χ	Χ	Χ	Х	Х																															
Cachoeira do Cald. Inferno Montante			Χ	Х	Х	Χ	Χ	Χ	Х																															
Cachoeira Jirau Jusante			Χ	Х	Χ	Χ	Χ	Х	Χ																															
Abunã			Χ	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Χ	Х	Х	Х	Χ	Х	Х	Х	Χ	Х	Х	Х	Х	Х	Х	Х		
Guajará - Mirim					Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х	Х		

Legenda:

Estações desativadas

(*) - Não houve leitura neste mês

3. SERVIÇOS DE CAMPO E LABORATÓRIO

Engº José Eduardo Moreira CREA: 21112-D/RJ

Para a realização sistemática dos serviços de operação da Rede Fluviométrica Básica e Complementar no âmbito do Programa de Levantamentos e Monitoramento Hidrossedimentológico do Rio Madeira e do Futuro Reservatório da UHE Santo Antônio, incluindo os relativos às medições de descargas líquidas e sólidas, cálculos e análises sedimentométricas em laboratório, foi implantada em maio de 2008 uma Filial da PCE – Projetos e Consultorias de Engenharia Ltda. em Porto Velho. A mesma foi projetada de forma a atender as necessidades técnicas e administrativas dos serviços em andamento, de acordo com os itens a seguir.

3.1. INSTALAÇÕES DO ESCRITÓRIO, LABORATÓRIO E SALAS DE HIDROMETRIA

- Reforma, ampliação e adequação das instalações imóveis de Porto Velho para as funções a que se destinam;
- Instalação de escritório técnico-administrativo, composto de salas de hidrometria, laboratório de sedimentometria, sala de reuniões, depósito e copa;
- Aquisição e instalação de equipamentos, móveis e utensílios, telefonia e internet.

Durante o mês de setembro passado a cidade de Porto Velho foi atingida por uma forte tempestade que arrancou o telhado e derrubou o forro das instalações do laboratório de hidrossedimentologia, conforme se observa na Figura 3.1. Esta circunstância provocou a paralisação total das atividades no laboratório. Foram retirados todos os equipamentos e vidrarias (sem nenhum dano) e o laboratório foi instalado provisoriamente em outras dependências do escritório da PCE.

Figura 3.1.
Situação do Laboratório de Hidrossedimentologia após Vendaval

Durante a vistoria dos estragos causados pela tormenta verificou-se o risco de colapso em parte da obra civil do laboratório. Esta situação, aliada ao fato de essa parte do terreno da sofre freqüentes alagamentos (durante as chuvas intensas), levaram à decisão de construir um novo laboratório de sedimentos, conforme visto na Figura 3.2 e Figura 3.3.

Figura 3.2.
Sala de Recepção de Amostras do Novo Laboratório de Hidrossedimentologia

Figura 3.3. Instalações do Novo Laboratório de Hidrossedimentologia

3.2. CONTRATAÇÃO DE PESSOAL

A equipe sediada em Porto Velho, vinculada ao Programa de Monitoramento Hidrossedimentológico do Rio Madeira, está composta de 16 pessoas, distribuídas da seguinte forma:

- Um técnico especializado em hidrometria para a supervisão técnica dos trabalhos de campo;
- Dois hidrometristas, dois auxiliares de hidrometrista e três ajudantes de hidrometrista para realização de levantamentos e medições de campo;
- Quatro profissionais para apoio de campo, sendo 2 barqueiros e 2 motoristas;
- Três laboratoristas para os serviços do laboratório de sedimentometria;
- Duas pessoas para apoio das atividades do escritório, sendo 1 administrativo e 1 servente.

3.3. EQUIPAMENTOS DE HIDROSSEDIMENTOMETRIA

• Aquisição de instrumentos e equipamentos para os serviços de levantamentos e medições de campo, entre os quais se destacam o ADCP WH Rio Grande 600 kHz, equipamentos de posicionamento GPS e DGPS, molinetes e guinchos fluviométricos (35m e 50m), lastros (30 kg e 50 kg), amostradores de sedimentos em suspensão e de sedimentos do leito, ecobatímetro digital BATHY 500-MF e software de processamento HyPack, medidor de concentração e granulometria a laser LISST-SL, níveis topográficos, réguas limnimétricas, entre outros. A descrição detalhada destes equipamentos se encontra no Relatório de Consolidação e Análise de Dados – R5 (PJ 0697-X-H41-GR-RL-003-0A), emitido em Dezembro de 2009.

3.4. Instrumental para o Laboratório de Sedimentometria

• Aquisição de instrumentos e materiais para o laboratório de sedimentometria, entre os que se destacam diversas balanças, estufas, bombas de vácuo, equipo de filtragem de amostras, tubos de sedimentação, tanque de pipetagem, agitador mecânico e jogos de peneiras, frascos para coletas de amostras, vidraçarias e acessórios diversos, totalizando mais de 500 itens. A descrição detalhada deste instrumental se encontra no Relatório de Consolidação e Análise de Dados – R5 (PJ 0697-X-H41-GR-RL-003-0A), emitido em Dezembro de 2009.

3.5. VIATURAS E EMBARCAÇÕES

 Para o desenvolvimento das atividades de campo foi necessária a aquisição de 2 pick-up Mitsubishi, modelo L200 GLS 4x4) e 3 barcos de alumínio com motor.

A seguir se observam alguns dos equipamentos de hidrossedimentometria adquiridos, além das viaturas e embarcações utilizadas durante os serviços (Figura 3.4.).

Figura 3.4. Equipamentos, Viaturas e Embarcações Adquiridos para os Serviços de Campo do Programa de Monitoramento Hidrossedimentológico

Barco com capota

Molinete hidrométrico e lastro

Veículo e carreta rodoviária

Veículos e acampamento durante os trabalhos de hidrometria

ADCP

Ecobatímetro e DGPS

Antena para DGPS

4. PROCEDIMENTOS E CONSISTÊNCIA DOS DADOS

PJ0777-X-H41-GR-RL-0008-0A

4.1. OPERAÇÃO DAS ESTAÇÕES

A operação das estações hidrométricas obedeceu às Normas Hidrológicas de 1970 do extinto Departamento Nacional de Águas e Energia Elétrica (DNAEE, 1970) e ao Guia de Práticas Sedimentométricas publicado pela ANEEL (Carvalho *et al.*, 2000). Essas normas estão de acordo com as regras emitidas por entidades internacionais como a Organização Mundial de Meteorologia (OMM), o Serviço Geológico dos Estados Unidos (USGS – United States Geological Survey) e o Comitê Internacional de Grandes Barragens (ICOLD - International Committee on Large Dam).

A operação das estações incluiu leituras de nível d'água obtidas nas réguas, medições de descarga líquida e sólida, nivelamento das réguas, manutenção dos equipamentos da estação, limpeza da seção transversal e outras providências. A seguir são descritas sucintamente as metodologias empregadas nas principais atividades de monitoramento.

4.1.1. Leitura de Níveis d'água

A leitura de nível d'água nas réguas instaladas em lances é realizada por um observador local, devidamente treinado, diariamente às 7h e às 17h. As anotações são feitas em cadernetas recolhidas pelo hidrometrista a cada visita à estação ou, excepcionalmente, a cada fim de mês.

Nos meses de março e abril de 2011 começou a funcionar a Rede Telemétrica da UHE Santo Antônio, a qual, na fase inicial está composta de 9 (nove) estações: Abunã, Jusante Caldeirão do Inferno, Jaciparaná Vila, Montante Jaciparaná, UHE Santo Antônio Jusante - R7, Porto Velho, São Carlos, Papagaio e Humaitá. Nestas estações a leitura do nível d'água ocorre a cada 15 minutos, e a transmissão dessas informações de hora em hora através do sistema de transmissão de dados via satélite GOES.

Cabe aclarar que as estações telemétricas de Jusante Caldeirão do Inferno e Jaciparaná Vila não estão coletando informação de níveis d'água no momento, pois o nível mínimo de operação destas estações ainda não foi atingido (lembra-se que a rede telemétrica foi dimensionada para funcionar após o enchimento do reservatório da UHE Santo Antônio).

4.1.2. Medição e Cálculo da Descarga Líquida com Molinete Hidrométrico

As medições de descarga líquida com o uso de molinetes resultam demoradas e complexas, além de perigosas. Por este motivo foram adotadas diferentes estratégias de medição e amostragem para os diferentes períodos do ano hidrológico. Nos períodos de estiagem as medições foram realizadas com o barco ancorado, considerando 20 verticais e 6 (seis) pontos por vertical (superfície, fundo, 20%, 40%, 60%, 80%). Na medida em que o rio começa a aumentar o nível, as medições passaram a ser realizadas em três pontos por vertical: a 20%, 60% e 80 % da profundidade total.

Durante o período de pico da cheia, quando acontecem elevadas velocidades da corrente e grande escoamento de troncos de madeira flutuantes e submersos, a velocidade foi medida em somente um ponto na vertical, a 60% da profundidade total. A quantidade de

Engº José Eduardo Moreira CREA: 21112-D/RJ

verticais foi mantida durante o ano todo, independentemente do período de águas altas ou águas baixas.

A descarga líquida foi calculada através do método da meia seção no escritório no Rio de Janeiro, por meio de programa computacional. Além deste procedimento, a equipe de hidrometria da filial Porto Velho foi também orientada a calcular a medição, de forma a maximizar a precisão dos resultados e verificar possíveis erros de digitação.

4.1.3. Medição da Descarga Líquida com ADCP

De forma concomitante às medições de descarga líquida com molinete hidrométrico está sendo utilizado um medidor acústico de efeito Doppler, comumente denominado ADCP (Acoustic Doppler Current Profiler). O equipamento da serie WorkHorse da RDInstruments®, com freqüência de 600 kHz, é especificado para operar em rios com grandes profundidades, e mede a velocidade instantânea da corrente a partir de um dispositivo que pode ser montado em um barco ou lancha (RDI, 2003).

Para evitar interferências magnéticas com a bússola do equipamento, o barco utilizado é de alumínio e o suporte do equipamento também foi construído, na maior parte, em alumínio. Adicionalmente, no momento de realizar as medições, é inserida uma correção local da variação magnética no arquivo de configuração.

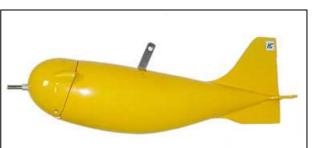
As medições de descarga líquida com o uso de ADCP são normalmente realizadas a partir de 3 ou mais travessias, com o uso de um equipamento de posicionamento via satélite acoplado (GPS). Dadas as condições particulares do rio Madeira, com elevadas velocidades da corrente e alta carga de sedimentos em suspensão, utiliza-se preferencialmente um GPS com correção diferencial (sinal OMNISTAR), além de um ecobatímetro, de forma a evitar os problemas de fundo móvel.

4.1.4. Medição da Descarga Sólida em Suspensão

A realização de medições diretas da carga de sedimentos do leito no rio Madeira não foi possível devido às grandes profundidades e altas velocidades verificadas. Em vista disso foi estabelecido que as medições de descarga sólida fossem feitas pelo método indireto, que consiste em fazer amostragens integradas dos sedimentos em suspensão e amostragem dos sedimentos do leito, analisar as amostras para determinação da concentração e da granulometria dos sedimentos em suspensão e granulometria dos sedimentos do leito, além da medida da descarga líquida instantânea no momento da amostragem. Os resultados da descarga sólida são obtidos por cálculos através de fórmulas conhecidas e de uso tradicional.

As coletas das amostras integradas dos sedimentos em suspensão foram realizadas com o amostrador de saca, AMS-8 (Figura 4.1.), de fabricação nacional, que possibilita a obtenção da amostra em toda a vertical pelo método de integração na vertical. Já para a amostragem de sedimentos do rio Jaciparaná está sendo utilizado o amostrador de sedimentos em suspensão D-49 (Figura 4.2.), que resulta mais apropriado para aquele curso de água.

ngº José Eduardo Moreira CREA: 21112-D/RJ



Durante as medições foi utilizado o processo de igual incremento de largura (IIL), sendo 20 verticais para a medida da descarga líquida, entre 9 e 12 verticais para a amostragem de sedimentos em suspensão e 5 verticais para amostragem do material do leito. Todas as amostras foram etiquetadas com a data, nome do rio, do local, do processo de coleta, nome do hidrometrista e outras informações.

Figura 4.1.
Amostrador de Sedimento em
Suspensão - Modelo AMS-8 (saca)

Figura 4.2.
Amostrador de Sedimento em Suspensão - Modelo DH-49

Paralelamente ao procedimento de amostragem de sedimentos integrada na vertical, em dezembro de 2010 teve inicio a amostragem de sedimentos em suspensão na superfície do rio, nas estações fluviométricas do rio Madeira (Abunã, Jusante Caldeirão do Inferno, Porto Velho, São Carlos e Humaitá). Esta amostra é coletada no centro da seção transversal, em garrafa plástica de 500 ml (ou 2000 ml em períodos de estiagem), a uma profundidade de aproximadamente 20 cm. A análise no laboratório determina apenas a concentração de sedimentos em suspensão destas amostras. Com este novo dado se pretende avaliar a correlação entre o fluxo de sedimentos médio na seção transversal e o fluxo de sedimentos na superfície do escoamento. Adicionalmente esta informação pode subsidiar estudos do transporte de sedimentos em suspensão a partir de imagens de satélite.

De acordo com o postulado no Projeto Básico Ambiental, no marco do Programa de Monitoramento Hidrossedimentológico devem ser realizadas medições de descarga sólida através de amostragem pontual de sedimentos, com a finalidade de caracterizar a distribuição vertical de sedimentos em suspensão ao longo do estirão em estudo. Com este intuito estão definidas quatro campanhas ao longo do ano hidrológico (enchente, pico da cheia, vazante e estiagem) nas estações Jusante Caldeirão do Inferno, Porto Velho e Humaitá, onde devem ser coletadas 5 amostras de água ao longo de três verticais (localizadas a 25%, 50% e 75% da largura da seção transversal).

As primeiras tentativas de amostragem pontual ocorreram em novembro de 2009, quando foi utilizado um amostrador do tipo DH-49 (modificado), fabricado pela empresa HIDROMEC. Com as pressões e as velocidades elevadas encontradas no rio Madeira, o

sistema de vedação do equipamento evidenciou problemas e, ainda que o fabricante do equipamento tehna realizado diversas modificações no desenho original do equipamento, o problema no sistema de vedação não foi solucionado.

Em virtude destes problemas, a PCE providenciou o desenvolvimento e aquisição de um novo amostrador pontual de sedimentos, adaptado do modelo Callede, que apresenta um sistema de amostragem e armazenamento diferente. Este modelo de amostrador, de construção artesanal, vem sendo utilizado pela Agência Nacional de Águas nos principais rios da Amazônia.

O primeiro protótipo fornecido pela empresa GLENBER, conforme se observa na Figura 4.3. foi reprovado nos primeiros testes realizados no mês de março de 2011, o que motivou a reformulação do equipamento e desenvolvimento de um novo protótipo de amostrador pontual (Figura 4.4.). Este segundo protótipo foi testado com êxito no rio Paraíba do Sul (na localidade de Anta) em junho de 2011, precisando apenas de pequenos ajustes (diminuição do diâmetro do tubo do amostrador, de 100mm para 75mm) para garantir a estanqueidade da amostra coletada.

Em seguida, o amostrador foi enviado a Porto Velho, para realizar os testes finais de funcionamento no rio Madeira. Assim, em julho de 2011 começaram as campanhas de amostragem detalhada de sedimentos em suspensão do rio Madeira, como se observa na Figura 4.5.

Figura 4.3.
Primeiro Protótipo do Amostrador
Pontual de Sedimentos em Suspensão

Figura 4.4.
Segundo Protótipo do Amostrador
Pontual de Sedimentos em Suspensão

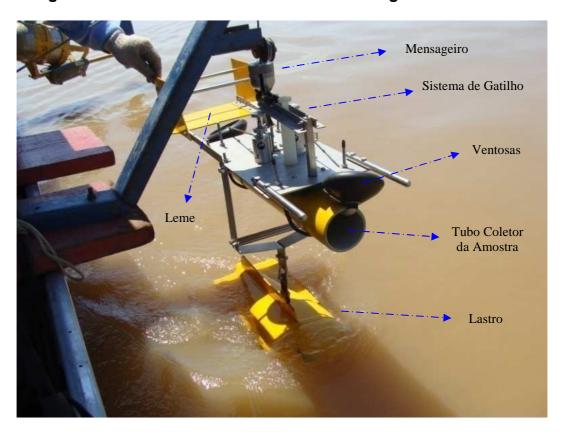

Eng^o José Eduardo Moreira CREA: 21112-D/RJ

Figura 4.5.

Amostrado Pontual de Sedimentos em Suspensão Desenvolvido no Âmbito do Programa de Monitoramento Hidrossedimentológico do Rio Madeira

4.1.5. Medições de Sedimentos do Leito

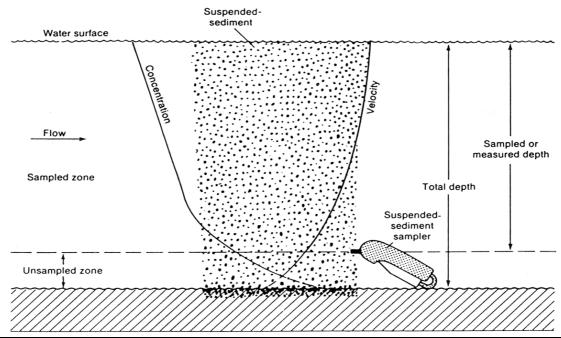
Segundo consta na literatura (Julien, 1995; Carvalho *et al.*, 2000), um dos equipamentos mais adequados para operar à grandes profundidades e com elevadas velocidades é o modelo US BM-54, do tipo de penetração vertical (Figura 4.6.). Nos trabalhos desenvolvidos pela PCE os sedimentos do leito foram coletados com este amostrador que possibilita obter uma amostra da superfície do material que compõe o leito. Além deste amostrador, em algumas ocasiões especiais foi utilizado um outro tipo de amostrador, de construção simples, do tipo de raspagem horizontal (Figura 4.7.).

As amostras de cada vertical de material do leito foram acondicionadas em sacos plásticos, totalizando cerca de 2 kg de material. Todas as amostras foram etiquetadas com a data, nome do rio, local de amostragem, número da vertical, processo de coleta e outras informações, e encaminhadas para o laboratório.

As coordenadas dos locais de amostragem foram gravadas no GPS durante o procedimento de amostragem ou imediatamente após a finalização do mesmo, utilizando coordenadas UTM e *Datum* WGS 1984.

Figura 4.6. Amostrador de Sedimentos do Leito Modelo US BM-54

Figura 4.7.
Amostrador de Sedimentos do Leito do
Tipo de Raspagem Horizontal



4.1.6. Determinação da Descarga Sólida em Suspensão

A descarga sólida em suspensão foi determinada a partir do procedimento de amostragem nas diversas verticais pelo método IIL (Igual Incremento de Largura). Durante o procedimento o amostrador não alcança toda a profundidade do curso d'água, sendo que a descarga em suspensão não medida corresponde à distância do bico do amostrador ao fundo do rio, que normalmente compreende 0,3 a 0,4m, conforme se observa na Figura 4.8.

Figura 4.8.

Desenho Esquemático das Regiões de Amostragem em um Curso d'Água em Relação ao Perfil Vertical de Velocidades e Concentrações (Edwards & Glysson, 1998)

Essa descarga sólida em suspensão medida é calculada pela seguinte expressão:

 $Q_{ss} = 0.0864.Q.C$

sendo,

Q_{ss} = descarga sólida em suspensão medida, em t/dia,

Q = descarga líquida, em m³/s,

C = concentração do sedimento em suspensão, em mg/l,

0,0864 = constante de transformação de unidades.

4.1.7. <u>Determinação da Descarga Sólida Total</u>

A descarga sólida total foi calculada pelo Método Modificado de Einstein (método de Einstein modificado por Colby & Hembree - 1955) considerando duas alternativas de procedimentos: Saída Einstein, segundo o critério do Serviço Geológico dos Estados Unidos (USGS), e Saída Lara, de acordo com o processo do US Bureau of Reclamation (USBR). Os resultados conduzem a valores próximos, tendo sido selecionado o método do USGS, por ser mais tradicional.

Na prática, os cálculos foram realizados mediante a utilização de um programa computacional desenvolvido por Mendes (2001), preparado segundo as instruções contidas em publicações do USGS e do USBR. O processo calcula a descarga sólida em suspensão medida (Q_{sm}), a descarga sólida total (Q_{st}) e a descarga de arrasto, além da descarga sólida total para cada faixa granulométrica.

Com o objetivo de avaliar o desempenho da fórmula de Einstein modificada por Colby e Hembree (Colby & Hembree, 1955), foi realizado um estudo de consistência da mesma. Para isto, a descarga sólida total <u>estimada</u> mediante a fórmula de Einstein modificada foi contrastada com a descarga sólida em suspensão <u>medida</u> (Figura 4.9.).

As pequenas diferenças observadas em relação à linha de ajuste perfeito (linha tracejada a 45°) são atribuídas ao fato de que a descarga sól ida medida não contempla o transporte de sedimentos na camada mais próxima ao leito (0,20 - 0,40 m), como também não pondera a descarga sólida de arrasto, além da dispersão intrínseca do processo hidrossedimentológico. Conclui-se, desta forma, que a fórmula de Einstein modificada apresenta um adequado ajuste aos dados medidos por FURNAS/CNO e PCE no rio Madeira em Porto Velho.

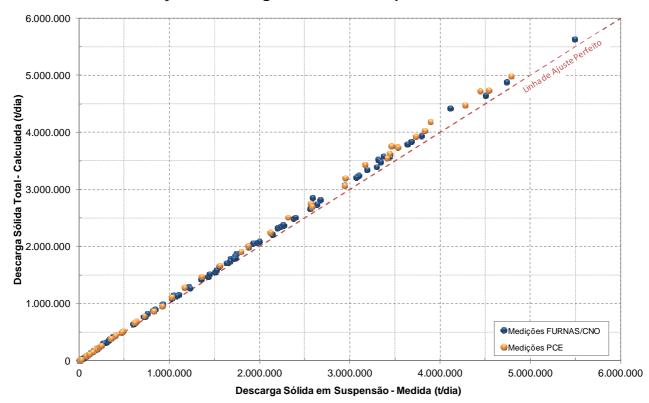


Figura 4.9.

Avaliação da Descarga Sólida Total Calculada Mediante a Fórmula de Einstein

Modificada em relação à Descarga Sólida em Suspensão Medida em Porto Velho

4.1.8. <u>Distribuição Granulométrica do Material do Leito</u>

A determinação da distribuição granulométrica de sedimentos do leito foi realizada com o método de peneiramento a seco, mediante a agitação mecânica e manual da uma série de peneiras com malhas padronizadas.

Os resultados das análises granulométricas são apresentados pelas porcentagens de material dos diversos diâmetros, para os quais são traçadas as curvas granulométricas. Nas curvas granulométricas de material do leito, podem ser assinaladas as porcentagens de diâmetros característicos para 16, 50, 84 e 90%, que são denominados de d_{16} , d_{50} , d_{84} e d_{90} , respectivamente.

4.2. ANÁLISES DE LABORATÓRIO

Cada amostra recebida pelo laboratório foi catalogada em livro especial e em meio magnético. Em seguida, a amostra foi pesada e armazenada em local apropriado para posterior análise.

As análises do material em suspensão das amostras integradas foram realizadas pelo processo de pipetagem ou do tubo de remoção pela base, de acordo com o valor da concentração de sedimentos na amostra. O procedimento, nas duas situações, exige a retirada preliminar da areia presente na amostra com uso de peneiras de 5 cm de

diâmetro e a pesagem desse material a fim de compor a curva granulométrica. No caso das análises das amostras de sedimentos em suspensão colhidas na superfície do rio, apenas a concentração de sedimentos é analisada, o que se faz através do processo de filtração ou evaporação.

Por último, no caso das amostras pontuais são utilizados os mesmos procedimentos das análises integradas no período de enchente e pico da cheia, quando é analisada a concentração e granulometria dos sedimentos através dos processos de pipetagem ou tubo de remoção pela base. No período de vazante/estiagem, analisa-se somente a concentração, devido à baixa concentração de sedimentos.

O material do leito foi analisado pelo processo de peneiramento. O material resultante da peneira mais fina foi analisado por pipetagem, pelo tubo de remoção pela base ou por densitometria, dependendo do peso do resíduo. Nos casos de pouco material, de 0,150 a 5 g, foi utilizado o método do tubo de remoção pela base e, nos casos de 5 a 10 g, o método da pipetagem.

4.3. Consistência de dados

4.3.1. Leitura de Níveis d'água

Como dito anteriormente, os dados consolidados de leituras de régua das estações fluviométricas operadas pela PCE no âmbito do Programa de Monitoramento Hidrossedimentológico apresentam-se no ANEXO II. A consistência das séries de leituras (7h00 e 17h00) foi realizada prioritariamente para as 22 estações em operação do rio Madeira restando, portanto, algumas réguas nas quais foi realizada apenas uma consistência preliminar dos dados, entre as que citamos:

- Régua 2, Régua 5 e Régua 6 (réguas desativadas, instaladas próximas ao eixo da usina);
- Cachoeira do Teotônio Montante II e Pedral Jusante (réguas desativadas, que carecem de informações altimétricas);
- Cachoeira do Caldeirão do Inferno Jusante, Cachoeira do Caldeirão do Inferno Montante e Cachoeira do Jirau Jusante (réguas desativadas, operadas unicamente na Etapa da Viabilidade);
- Jaciparaná Vila e Jaciparaná (Ponte) (réguas em operação, localizadas em um curso de água afluente ao rio Madeira).

O procedimento de avaliação e correção de dados contou com as seguintes etapas:

- 1- verificação de erros de digitação das leituras diárias (tarefa realizada a partir do controle dos boletins fluviométricos);
- 2- verificação de erros de observação (e/ou digitação) dos lances de régua;
- 3- correção das leituras diárias devido à aferição e nivelamento de lances de régua;
- 4- correlação de réguas com a régua mais próxima (situada a montante ou jusante) para correção e preenchimento de dados.

Este último ponto (correlação de réguas) apresentou uma importância capital para a consistência de dados, rezão pela qual, apresentam-se a seguir exemplos da correlação de leituras de réguas (Figura 4.10. e Figura 4.11.).

Figura 4.10.
Correlação da Leitura de Réguas de Jus. Caldeirão do Inferno e Foz do Jaciparaná

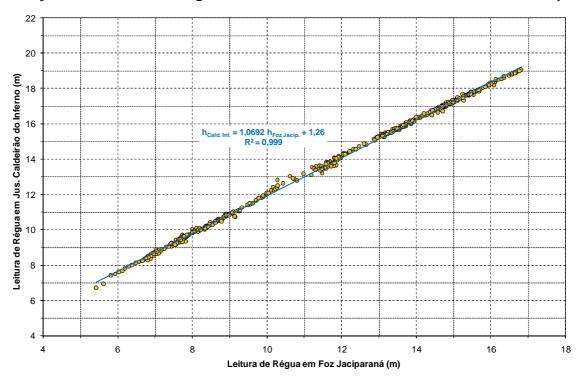
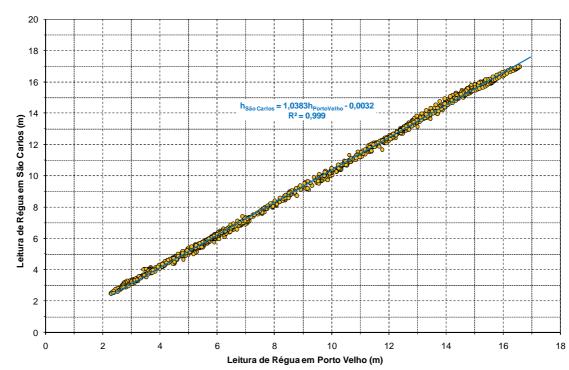



Figura 4.11.

Correlação da Leitura de Réguas de Porto Velho e São Carlos

4.3.2. Medições da Descarga Sólida

Os erros nos resultados das medições da descarga sólida ocorrem geralmente devido ao uso de amostrador inadequado, erros na amostragem, na análise de laboratório, descarga líquida mal medida ou mal calculada, erros de digitação, entre outros. Mesmo com a realização criteriosa das medições, a literatura demonstra que o erro médio esperado é de 10% no resultado da descarga sólida em suspensão e 25% na descarga sólida do leito ou do material do leito (Yuqian, 1983).

A análise de consistência de dados sedimentométricos exige grande quantidade de medições para se chegar ao resultado adequado. Geralmente, devido à irregularidade da carga sólida nos cursos d'água, com grandes variações a cada momento, é recomendável dispor de uma boa quantidade de dados, com a maior freqüência de medições possível. Além disso, as medições devem ser executadas com o máximo cuidado, seguindo os critérios estabelecidos em normas, tais como:

- Designar técnicos experientes para compor as equipes de campo e laboratório;
- Efetuar a medição da descarga líquida de maneira correta seguindo as normas;
- Utilizar o equipamento adequado às condições locais de profundidades e velocidades considerando o método de medição escolhido;
- Obedecer aos métodos de amostragem e coletar quantidade de material adequado às análises que deverão ser efetuadas;
- Efetuar as análises de acordo com os métodos estabelecidos;
- Escolher métodos adequados de cálculos;
- Garantir a digitação dos dados sem erros e ter o máximo cuidado com as amostras.

Com os resultados é possível efetuar análises gráficas para verificar a qualidade das medições, por exemplo, com a curva-chave de sedimentos. No caso de haver pontos muito dispersos, procura-se analisar os resultados de concentração, de granulometria, etc., antes de descartar a medição. Por outro lado, valores dispersos podem indicar ajustes diferentes no período de subida ou descida dos hidrogramas. Neste sentido, um dos procedimentos adotados para avaliar a consistência das análises laboratoriais consistiu na re-amostragem dos sedimentos em suspensão durante as medições. Isto é, sazonalmente, em cada estação fluviométrica, são realizadas amostragens duplicadas dos sedimentos em suspensão.

4.3.3. Medição da Descarga Líquida com ADCP

As medições de vazão com equipamentos de efeito doppler apresentam numerosas vantagens técnicas em relação às medições convencionais, mas também representam um desafio já que é necessário um adequado conhecimento técnico e operacional para avaliar as mesmas.

As principais diretrizes levadas em consideração para garantir o bom desempenho durante as medições e no processamento dos resultados, em consonância com o exposto na literatura internacional (Oberg *et al.*, 2005; Mueller & Wagner, 2009), são as seguintes:

• uma medição é válida quando, pelo menos, 50% da vazão total foi efetivamente

medida pelo equipamento (existem camadas próximas ao leito, à superfície e nas margens que não são medidas, são estimadas);

- no caso de constatar-se a possibilidade de leito móvel no local da medição recomenda-se o uso conjunto de ADCP, ecobatímetro e DGPS;
- uma travessia considera-se adequada quando a variação de vazão em relação ao valor médio da medição (média de todas as travessias) é menor que 5%;
- o número total de bad ensembles e lost ensembles não deve superar o 10% do total de ensembles da medição, já que estes vazios são calculados por extrapolação das verticais próximas;
- a trajetória da embarcação durante as diferentes travessias deve ser semelhante;
- recomenda-se que a quantidade de travessias realizada durante os trabalhos de campo seja um número par (para evitar tendências nos resultados das medições que começaram em uma ou outra margem);
- o valor médio das principais magnitudes deve ser semelhante durante as diferentes travessias, para assegurar a uniformidade dos resultados;
- deve-se evitar as variações acentuadas na velocidade da embarcação.

5. RESULTADOS DAS MEDIÇÕES DE DESCARGA LÍQUIDA

Engº José Eduardo Moreira CREA: 21112-D/RJ

Neste item, apresenta-se o resumo dos resultados das medições de descarga líquida executadas pela PCE nas estações fluviométricas descritas na Tabela 2.1. As medições foram realizadas paralelamente com o uso de molinete fluviométrico e ADCP (*Acoustic Doppler Current Profiler*) e, eventualmente, foi utilizado apenas um dos métodos (molinete ou ADCP).

As medições realizadas com molinete seguiram a metodologia de trabalho descrita no item Procedimentos e Consistência dos Dados. No período de março de 2009 a setembro de 2011 foram realizadas 223 medições convencionais nas estações fluviométricas.

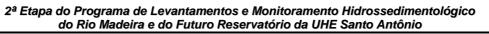
A partir de maio de 2009 incorporou-se às atividades de campo a medição com o medidor acústico de efeito Doppler (ADCP), metodologia adotada como padrão, conforme descrito no Projeto Básico da UHE Santo Antônio, de forma que, no período maio de 2009 a setembro de 2011, foram realizadas 175 medições com este equipamento.

Os resultados obtidos nas medições de ADCP foram altamente satisfatórios, além de diminuir o tempo efetivo da medição e os riscos de acidentes para o pessoal de campo e os equipamentos. Por estes motivos, a partir de abril de 2010, as medições de descarga líquida nas estações de Abunã e Humaitá passaram a ocorrer preferencialmente com o uso do ADCP.

Nas estações de Jaciparaná Vila e Montante Jaciparaná as medições são realizadas somente com o molinete, pois o ADCP disponível (freqüência de 600 kHz) não é recomendado para seu uso em rios com baixas profundidades. Na estação de Jaciparaná Vila, inicialmente as medições foram realizadas na seção denominada S-03, originalmente implantada por FURNAS, a jusante da foz do rio Branco. Posteriormente, verificou-se que este local não abrangia a vazão afluente do rio São Francisco, motivo pelo qual a seção de medição foi deslocada para a Vila Jaciparaná. Por se tratar de um trecho curvilíneo e com alta influência do efeito de remanso do rio Madeira, esta estação foi novamente deslocada para montante e, a partir de junho de 2009, as medições foram realizadas na seção S-02 (denominação de FURNAS), até março de 2011. Na tabela resumo da estação Jaciparaná Vila, as leituras de réguas relacionadas às medições são referentes à régua instalada pela PCE na vila de Jaciparaná.

Com o represamento do rio Madeira no sítio da UHE Santo Antônio, o remanso do reservatório afetará o trecho do rio Jaciparaná nas imediações da Vila Jaciparana. Por este motivo, as medições de descarga líquida e sólida nesta estação foram suspensas, e foi instalada uma nova estação fluviométrica fora da influência do remanso, denominada Montante Jaciparaná. Assim, a partir de março de 2011, a seção de medição do rio Jaciparaná foi deslocada em 49 quilômetros para montante. Neste novo local as medições de descarga líquida e sólida não abrangem os aportes dos rios Branco e São Francisco.

Os resumos das medições de descarga líquida são apresentados para cada posto em duas tabelas, uma relativa à medição com molinete e outra relativa à medição com ADCP, com destaque para as principais informações que caracterizam cada medição (Tabela 5.1 a Tabela 5.12).



5.1. ESTAÇÃO FLUVIOMÉTRICA ABUNÃ

Tabela 5.1. Resumo das Medições com Molinete em Abunã

Data	Leitura da Régua (cm)	Largura (m)	Área da seção (m²)	Prof. Média (m)	Vel. Média (m/s)	Descarga Líquida (m³/s)
29/03/2009	1930	639,9	14.346,3	22,4	2,14	34.624
08/04/2009	1902	644,9	15.096,2	23,4	2,22	33.496
20/04/2009	1917	637,8	15.049,1	23,6	2,17	32.633
19/05/2009	1729	630,2	13.781,2	21,9	2,04	28.079
30/05/2009	1599	638,8	13.049,8	20,4	1,78	23.171
13/06/2009	1509	625,0	12.487,5	20,0	1,72	21.525
30/06/2009	1438	617,8	11.871,0	19,2	1,75	20.762
23/07/2009	1184	607,3	10.040,3	16,5	1,27	12.777
20/08/2009	976	602,0	8.990,6	14,9	0,98	8.772
03/09/2009	870	598,7	8.236,6	13,8	0,79	6.470
14/10/2009	684	584,5	7.833,5	13,4	0,69	5.367
04/11/2009	935	597,5	8.776,4	14,7	0,89	7.806
06/12/2009	1378	623,0	11.565,5	18,6	1,55	17.975
15/12/2009	1461	626,7	12.263,3	19,6	1,77	21.690
12/01/2010	1589	627,1	12.834,1	20,5	1,96	25.152
27/01/2010	1827	633,2	14.358,7	22,7	2,38	34.143
23/02/2010	1795	631,1	14.609,9	23,2	2,27	33.201
09/03/2010	1939	635,8	15.465,4	24,3	2,60	40.136
23/03/2010	1878	638,5	14.675,9	23,0	2,49	36.477
04/01/2011	1424	618,9	11.564,5	18,7	1,75	20.221
22/03/2011	1984	641,1	15.498,2	24,2	2,58	39.974
05/04/2011	2013	650,8	15.316,2	23,5	2,79	42.668
19/04/2011	1998	649,1	15.197,2	23,4	2,66	40.425
02/06/2011	1485	618,1	12.267,5	19,9	1,71	20.999
14/06/2011	1251	610,2	11.111,9	18,2	1,36	15.110

Tabela 5.2. Resumo das Medições com ADCP em Abunã

Data	Leitura da Régua (cm)	N°de Travessias	Vazão Total (m³/s)	Desvio Q total (m³/s)	Erro (%)	Vazão medida (m³/s)	Área da seção (m²)	Veloc. Média (m/s)	Largura (m)
19/05/2009	1729	6	25.869	307	1,0	21.934	14.293,8	1,94	623,2
30/05/2009	1599	3	19.192	506	3,0	16.714	13.639,2	1,49	632,0
10/06/2009	1562	4	21.855	243	1,0	18.487	13.084,7	1,75	621,3
13/06/2009	1509	6	19.967	452	2,0	16.887	12.972,9	1,56	619,8
30/06/2009	1438	8	18.533	399	2,0	15.641	12.027,9	1,58	611,3
23/07/2009	1184	4	12.739	238	2,0	10.862	10.800,1	1,21	591,8
20/08/2009	976	6	8.429	190	2,0	7.037	9.139,3	0,92	597,3
06/12/2009	1378	4	17.436	273	2,0	14.741	11.757,8	1,48	603,1
16/12/2009	1475	4	17.271	319	2,0	14.753	12.214,5	1,41	619,4
12/01/2010	1589	7	22.959	444	2,0	19.737	13.148,1	1,75	627,3
27/01/2010	1827	4	30.313	362	1,0	26.922	14.218,1	2,13	635,0
10/02/2010	1841	4	30.407	509	2,0	26.585	14.391,8	2,11	632,3
13/04/2010	1763	6	26.377	477	2,0	23.430	13.939,5	1,89	622,0
27/04/2010	1641	6	22.775	510	2,0	20.119	12.432,4	1,83	622,8
04/05/2010*	1763	4	28.135	524	1,9	24.906	12985,4	2,18	596,4
18/05/2010	1512	6	20.116	413	2,0	17.690	12.298,2	1,64	617,5
01/06/2010	1374	6	16.524	192	1,0	14.525	11.393,3	1,45	611,5
15/06/2010	1102	6	10.833	142	1,0	8.904	9.823,7	1,10	596,8
06/07/2010	853	6	6.246	131	2,0	5.167	8.240,6	0,76	583,1
10/08/2010	764	6	4.697	73	1,6	3.831	7.583,1	0,62	582,4
21/09/2010	634	6	3.046	62	2,0	2.431	6.867,4	0,44	576,4
05/10/2010	616	6	2.845	60	2,1	2.264	6.812,7	0,42	576,8
09/11/2010	884	6	6.675	135	2,0	5.571	8.299,0	0,80	586,8
30/11/2010	984	6	8.319	114	1,4	6.981	8.875,1	0,94	592,1
14/12/2010	968	6	8.143	197	2,4	6.832	8.857,9	0,92	590,8
04/01/2011*	1424	6	18.528	246	1,3	16.313	11.866,9	1,56	611,6
18/01/2011*	1432	6	17.965	248	1,4	15.747	11.909,8	1,51	614,3
02/02/2011	1696	8	26.196	358	1,4	22.930	13.353,0	1,96	623,5
15/02/2011*	1784	6	28.998	594	2,0	25.137	13.717,5	2,12	616,5
01/03/2011	1904	5	32.351	787	2,4	28.266	14.524,6	2,23	625,9
04/05/2011	1812	6	28.494	542	1,9	25.437	14.283,4	2,00	627,5
17/05/2011	1657	6	24.044	423	1,8	21.370	13.578,6	1,77	621,0
07/07/2011	957	4	7.829	196	2,5	6.361	9.324,5	0,84	591,3
05/08/2011	872	6	6.427	117	1,8	5.289	8.703,2	0,74	580,6
06/09/2011	671	4	3.456	53	1,5	2.798	7.417,3	0,47	566,7

Observação:

* Medições Revisadas em Out/2011 – Correção na Profundidade do Ecobatímetro. As medições realizadas em 30/05/2009 e 16/12/2009 estão sujeitas ao efeito de fundo móvel, pois foram realizadas sem o auxílio de GPS no posicionamento da embarcação.

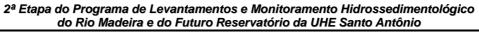
5.2. ESTAÇÃO FLUVIOMÉTRICA JUSANTE CALDEIRÃO DO INFERNO

Tabela 5.3.
Resumo das Medições com Molinete em Jusante Caldeirão do Inferno

Data	Leitura da Régua	Largura	Área da seção	Prof. Média	Vel. Média	Descarga Líquida
Data	(cm)	(m)	(m²)	(m)	(m/s)	(m³/s)
01/04/2009*	1828	1.270,5	21.776,1	17,1	1,87	40.775
09/04/2009*	1772	1.271,9	21.373,3	16,8	1,71	36.592
18/04/2009*	1817	1.278,3	21.139,9	16,5	1,80	38.081
20/05/2009*	1626	1.254,5	19.232,3	15,3	1,43	27.423
29/05/2009*	1541	1.252,0	17.431,7	13,9	1,41	24.511
11/06/2009*	1497	1.246,6	17.390,0	14,0	1,40	24.362
29/06/2009*	1409	1.243,4	16.123,2	13,0	1,30	20.892
21/07/2009*	1243	1.260,1	14.315,9	11,4	0,99	14.234
18/08/2009	1058	1.375,6	10.875,6	7,9	0,86	9.377
01/09/2009	985	1.232,6	10.910,3	8,9	0,78	8.520
16/10/2009	858	1.232,3	9.133,4	7,4	0,61	5.590
06/11/2009	991	1.239,2	10.876,1	8,8	0,77	8.334
05/12/2009	1318	1.245,7	15.052,8	12,1	1,18	17.693
17/12/2009	1436	1.252,2	16.533,2	13,2	1,39	23.036
14/01/2010	1573	1.262,2	17.857,6	14,2	1,56	27.916
29/01/2010	1708	1.265,6	19.701,5	15,6	1,74	34.192
12/02/2010	1718	1.255,8	19.818,9	15,8	1,80	35.719
24/02/2010	1686	1.270,3	19.646,7	15,5	1,80	35.343
11/03/2010	1795	1.265,5	21.135,2	16,7	1,92	40.582
26/03/2010	1721	1.267,5	20.047,6	15,8	1,82	36.505
15/04/2010	1630	1.257,1	18.733,0	14,9	1,65	30.844
29/04/2010	1527	1.255,4	17.702,8	14,1	1,47	26.018
06/05/2010	1653	1.253,5	18.975,9	15,1	1,69	32.030
20/05/2010	1409	1.251,0	16.292,9	13,0	1,34	21.813
03/06/2010	1304	1.240,5	14.724,2	11,9	1,14	16.845
17/06/2010	1107	1.246,4	12.328,7	9,9	0,88	10.894
07/07/2010	915	1.238,5	9.882,2	8,0	0,66	6.526
11/08/2010	823	1.230,2	8.620,6	7,0	0,58	5.026
22/09/2010	703	1.230,4	7.402,9	6,0	0,45	3.366
07/10/2010	691	1.233,2	7.109,4	5,8	0,42	2.965
10/11/2010	941	1.240,9	10.695,1	8,6	0,68	7.292
02/12/2010	1026	1.244,3	11.429,0	9,2	0,79	9.063
15/12/2010	1012	1.239,3	11.537,7	9,3	0,75	8.667
06/01/2011	1384	1.248,0	15.711,6	12,6	1,26	19.813
19/01/2011	1394	1.251,0	15.837,7	12,7	1,29	20.370
03/02/2011	1597	1.269,5	18.960,8	14,9	1,63	30.954
17/02/2011	1684	1.274,7	20.455,0	16,1	1,74	35.520
02/03/2011	1768	1.270,9	21.196,0	16,7	1,83	38.853
23/03/2011	1835	1.273,9	21.318,9	16,7	1,94	41,283
06/04/2011	1878	1.279,1	21.806,4	17,1	1,97	43.023
20/04/2011	1852	1.285,2	21.328,7	16,6	1,88	40.101

Data	Leitura da Régua (cm)	Largura (m)	Área da seção (m²)	Prof. Média (m)	Vel. Média (m/s)	Descarga Líquida (m³/s)
06/05/2011	1683	1.263,2	19.374,8	15,3	1,70	32.991
19/05/2011	1545	1.264,6	17.593,5	13,9	1,53	26.901
03/06/2011	1416	1.255,4	16.061,5	12,8	1,34	21.473
15/06/2011	1235	1.246,7	13.840,8	11,1	1,05	14.538
09/07/2011	980	1.238,9	10.475,6	8,5	0,77	8.069
02/08/2011	934	1.241,1	10.083,7	8,1	0,72	7.271
08/09/2011	729	1.229,0	7.354,7	6,0	0,48	3.527

Observação: * As Leituras de régua de abril a julho de 2009 foram obtidas indiretamente pela diferença entre o Nível d'Água (NA) e a cota do zero da régua.


Tabela 5.4. Resumo das Medições com ADCP em Jusante Caldeirão do Inferno

Data	Leitura da Régua (cm)	N° de Travessias	Vazão Total (m³/s)	Desvio Q total	Erro	Vazão medida (m³/s)	Área da seção (m²)	Veloc. Média (m/s)	Largura (m)
29/05/2009**	1541	2	24.553	439	2,0	19.973	18.385,4	1,34	1.242,5
11/06/2009 **	1497	4	22.955	246	1,0	18.700	17.860,4	1,29	1.247,5
29/06/2009**	1409	6	19.252	611	3,0	15.666	16.222,3	1,19	1.218,1
21/07/2009**	1243	5	13.674	233	2,0	11.035	14.321,1	0,96	1.240,9
18/08/2009	1058	6	9.359	177	2,0	6.915	11.546,0	0,81	1.381,1
01/09/2009	985	3	7.687	191	2,0	5.690	11.202,8	0,69	1.224,1
05/12/2009	1318	4	16.462	248	2,0	13.253	15.707,6	1,05	1.239,6
17/12/2009	1436	4	20.692	274	1,0	17.007	17.227,2	1,20	1.242,2
14/01/2010	1573	6	25.848	197	1,0	21.522	18.700,0	1,38	1.256,3
29/01/2010	1708	4	31.182	399	1,0	26.625	19.999,1	1,56	1.266,8
12/02/2010	1718	4	31.484	287	1,0	26.985	20.136,9	1,56	1.268,9
15/04/2010*	1630	4	27.155	212	1,0	22.855	19.045,3	1,43	1.254,1
29/04/2010	1527	4	23.784	135	1,0	20.010	17.860,0	1,33	1.251,7
06/05/2010	1653	4	28.986	318	1,0	24.580	19.357,6	1,50	1.257,8
20/05/2010	1406	4	19.207	246	1,0	15.938	16.373,9	1,17	1.248,3
03/06/2010*	1304	4	15.748	205	1,0	12.864	15.101,0	1,04	1.245,9
17/06/2010	1107	4	10.516	220	2,0	8.030	12.916,9	0,81	1.236,9
07/07/2010	915	4	6.387	126	2,0	4.443	10.424,9	0,61	1.229,8
11/08/2010	821	4	4.866	68	1,4	3.400	9.240,3	0,53	1.229,8
22/09/2010	703	4	3.107	28	0,9	2.012	7.739,2	0,40	1.227,3
07/10/2010	691	5	2.906	28	1,0	1.745	6.878,7	0,42	1.350,7
10/11/2010	941	4	6.644	156	2,3	4.762	10.669,1	0,62	1.236,0
15/12/2010	1012	4	8.237	85	1,0	6.074	11.524,8	0,72	1.233,8
06/01/2011	1384	4	18.685	211	1,1	15.318	16.291,3	1,15	1.254,9
19/01/2011*	1394	4	18.700	55	0,3	15.647	16.200,6	1,15	1.250,7
17/02/2011	1683	4	30.347	460	1,5	25.903	20.048,4	1,51	1.259,8
02/03/2011	1767	4	34.078	543	1,6	29.338	21.005,5	1,62	1.263,6
06/05/2011	1683	1	30.254			25.747	19.655,5	1,54	1.265,7
19/05/2011	1545	4	24.022	344	1,4	20.221	17.977,1	1,34	1.244,3
09/07/2011	980	4	7.636	303	4,0	5.696	11.223,5	0,68	1.236,1
02/08/2011	934	4	6.627	191	2,9	4.801	10.598,8	0,63	1.231,1
08/09/2011 Observação:	729	3 Ses Revisadas	3.328	141	4,2	2.136	7.931,7	0,42	1.224,6

Observação: * Medições Revisadas em Out/11 - Correção na Profundidade do Ecobatímetro.

^{**} As Leituras de régua de abril a julho de 2009 foram obtidas indiretamente pela diferença entre o Nível d'Água (NA) e a cota do zero da régua.

5.3. ESTAÇÃO FLUVIOMÉTRICA PORTO VELHO

Tabela 5.5. Resumo das Medições com Molinete em Porto Velho

Data	Leitura da Régua (cm)	Largura (m)	Área da seção (m²)	Prof. Média (m)	Vel. Média (m/s)	Descarga Líquida (m³/s)
19/03/2009	1484	757,1	16.966,0	22,4	2,22	37.739
03/04/2009	1551	755,3	17.345,1	23,0	2,32	40.196
16/04/2009	1538	757,0	17.488,4	23,1	2,27	39.656
04/05/2009	1455	755,1	16.872,5	22,4	1,94	32.672
22/05/2009	1337	751,1	15.950,8	21,2	1,77	28.223
01/06/2009	1227	741,2	15.086,9	20,4	1,58	23.866
22/06/2009	1060	738,4	14.944,5	20,2	1,52	21.281
06/07/2009	941	734,0	14.093,1	19,2	1,21	16.985
05/08/2009	711	728,1	12.218,8	16,8	0,85	10.363
14/09/2009	452	713,4	10.301,2	14,4	0,53	5.492
26/10/2009	576	720,0	11.163,1	15,5	0,72	8.075
19/11/2009	761	726,0	12.438,5	17,1	0,98	12.181
23/11/2009	793	721,4	12.594,3	17,5	1,03	12.979
19/12/2009	1105	741,1	14.718,2	19,9	1,66	24.472
04/01/2010	1223	744,9	15.545,6	20,9	1,92	29.775
18/01/2010	1284	753,1	15.906,6	22,3	1,91	30.371
01/02/2010	1408	756,0	16.818,7	22,3	2,16	36.395
15/02/2010	1401	753,0	16.749,4	22,2	2,04	34.202
01/03/2010	1447	754,1	17.083,7	22,7	2,16	36.930
15/03/2010	1504	757,1	17.509,7	23,1	2,27	39.833
03/04/2010	1559	759,3	18.625,9	24,5	2,26	42.111
19/04/2010	1345	757,1	17.023,3	22,5	1,77	30.117
10/05/2010	1304	751,2	16.215,1	21,6	1,82	29.477
25/05/2010	1046	740,1	14.087,5	19,0	1,47	20.638
08/06/2010	965	740,3	13.687,9	18,5	1,35	18.412
29/06/2010	595	719,3	10.928,2	15,2	0,77	8.380
19/07/2010	483	693,1	9.669,6	14,0	0,63	6.112
02/08/2010	453	712,2	9.654,4	13,6	0,55	5.307
13/09/2010	326	773,0	7.654,4	9,9	0,48	3.680
25/10/2010	319	767,8	7.645,9	10,0	0,49	3.714
12/11/2010	500	774,9	9.177,9	11,8	0,71	6.517
06/12/2010	601	778,1	9.863,3	12,7	0,87	8.566
17/12/2010	612	786,8	10.001,3	12,7	0,89	8.883
10/01/2011	1075	797,1	12.823,1	16,1	1,53	19.571
25/01/2011	1073	803,8	13.344,3	16,6	1,77	23.622
08/02/2011	1240	806,6	14.316,8	17,8	2,12	30.385
21/02/2011	1385	817,2	15.521,2	19,0	2,35	36.402
14/03/2011	1505	812,8	15.902,5	26,2	2,44	38.791
28/03/2011	1568	827,9	17.006,8	20,5	2,43	41.316
11/04/2011	1645	833,9	17.958,5	21,5	2,55	45.697
25/04/2011	1576	818,7	17.607,4	21,5	2,30	40.435


PJ0777-X-H41-GR-RL-0008-0A 36

Data	Leitura da Régua (cm)	Largura (m)	Área da seção (m²)	Prof. Média (m)	Vel. Média (m/s)	Descarga Líquida (m³/s)
09/05/2011	1434	810,5	16.726,8	20,6	2,14	35.859
25/05/2011	1194	801,0	14.749,3	18,4	1,71	25.168
06/06/2011	1047	794,7	13.716,3	17,3	1,51	20.664
20/07/2011	512	779,9	9.440,3	12,1	0,70	6.649
08/08/2011	520	780,9	9.400,7	12,0	0,69	6.510
12/09/2011	320	776,0	7.900,0	10,2	0,44	3.451
22/09/2011	348	774,7	8.096,0	10,5	0,49	3.970
27/09/2011	305	769,7	7.788,4	10,1	0,42	3.303

Tabela 5.6. Resumo das Medições com ADCP em Porto Velho

Data	Leitura da Régua (cm)	N°de Travessias	Vazão Total (m³/s)	Desvio Q total (m³/s)	Erro (%)	Vazão medida (m³/s)	Área da seção (m²)	Veloc. Média (m/s)	Largura (m)
15/05/2009*	1398	3	30.280	312	1,0	26.770	17.591,8	1,72	751,9
16/05/2009*	1399	3	30.125	804	2,7	26.747	17.725,7	1,70	747,5
22/06/2009	1060	4	19.808	863	4,4	16.874	15.275,5	1,30	739,3
06/07/2009	941	6	16.460	111	0,7	14.124	14.309,9	1,15	732,6
24/07/2009	844	6	13.205	215	1,6	11.210	16.759,0	0,81	994,9
05/08/2009	711	6	9.987	124	1,2	8.477	12.418,3	0,80	726,5
10/11/2009	584	2	7.704	170	2,2	6.489	10.843,4	0,71	694,2
17/11/2009	778	6	11.907	149	1,3	10.191	12.745,5	0,93	720,3
23/11/2009	793	6	12.546	157	1,3	10.725	12.799,5	0,98	717,5
19/12/2009	1105	4	22.335	671	3,0	19.351	15.054,7	1,48	748,7
04/01/2010	1223	5	26.411	615	2,3	22.977	15.914,8	1,66	753,0
18/01/2010	1284	2	27.406	455	1,7	23.684	15.767,0	1,74	736,5
01/02/2010	1408	4	32.540	127	0,4	28.878	16.415,7	1,98	752,6
15/02/2010	1401	2	31.376	102	0,3	27.776	16.843,8	1,86	749,8
03/04/2010	1559	4	36.116	422	1,2	31.894	18.377,5	1,97	758,6
19/04/2010	1345	4	26.334	164	0,6	23.508	16.947,7	1,55	747,7
10/05/2010	1304	4	26.217	441	1,7	23.279	15.996,5	1,64	747,8
25/05/2010	1046	4	18.453	517	2,8	16.200	14.037,7	1,31	735,4
08/06/2010	965	4	16.432	307	1,9	14.352	13.341,0	1,23	732,0
29/06/2010	594	4	7.747	320	4,1	6.545	10.882,8	0,71	708,9
19/07/2010	483	5	5.735	103	1,8	4.881	9.654,1	0,59	706,1
02/08/2010	454	4	5.297	133	2,5	4.351	9.827,8	0,54	709,8
13/09/2010	326	4	3.688	41	1,1	2.902	7.917,8	0,47	768,6
25/10/2010	318	4	3.612	12	0,3	2.797	7.907,1	0,46	772,7
12/11/2010	500	4	6.457	17	0,3	5.214	9.328,4	0,69	774,8
06/12/2010	601	4	8.361	101	1,2	6.949	9.967,7	0,84	770,3
17/12/2010	612	4	8.586	76	0,9	7.119	10.167,6	0,84	778,3
10/01/2011	1075	4	17.605	327	1,9	14.952	12.524,0	1,41	776,9
25/01/2011**	1073	4	21.604	65	0,3	18.716	13.711,9	1,58	792,9
09/05/2011	1434	4	31.047	520	1,7	27.279	16.709,6	1,86	792,5
25/05/2011	1194	4	22.861	528	2,3	19.743	14.786,6	1,55	782,2
22/06/2011	800	6	12.447	307	2,5	10.371	12.104,7	1,03	786,4
20/07/2011	512	4	6.223	205	3,3	5.041	9.586,4	0,65	769,2
08/08/2011	520	4	6.216	229	3,7	5.043	9.564,9	0,65	772,4
12/09/2011	320	4	3.534	170	4,8	2.823	8.070,6	0,44	763,7
19/09/2011	354	6	4.118	205	5,0	3.292	8.255,5	0,50	763,6
20/09/2011	364	6	4.185	109	2,6	3.341	8.346,7	0,50	769,5
21/09/2011	363	6	4.071	102	2,5	3.270	8.277,0	0,49	770,9

Data	Leitura da Régua (cm)	N°de Travessias	Vazão Total (m³/s)	Desvio Q total (m³/s)	Erro (%)	Vazão medida (m³/s)	Área da seção (m²)	Veloc. Média (m/s)	Largura (m)
22/09/2011	348	5	3.984	130	3,3	3.176	8.265,2	0,48	770,9
23/09/2011	340	7	3.752	122	3,3	3.024	7.999,3	0,47	736,6
26/09/2011	318	4	3.658	59	1,6	2.949	7.635,3	0,48	704,0
27/09/2011	305	6	3.564	38	1,1	2.821	7.960,4	0,45	761,3
28/09/2011	304	6	3.589	28	0,8	2.791	8.002,2	0,45	770,0
29/09/2011	304	6	3.423	100	2,9	2.733	7.874,4	0,44	763,6
30/09/2011	310	5	3.287	119	3,6	2.642	7.271,6	0,46	643,2

Observação:

* Medições Revisadas em Out/11 - Correção na Declividade Magnética.

** Medições Revisadas em Out/11 - Correção na Profundidade do Ecobatímetro.

5.4. ESTAÇÃO FLUVIOMÉTRICA SÃO CARLOS

Tabela 5.7. Resumo das Medições com Molinete em São Carlos

Data	Leitura da Régua (cm)	Largura (m)	Área da seção (m²)	Prof. Média (m)	Vel. Média (m/s)	Descarga Líquida (m³/s)
25/03/2009	1554	1.001,3	17.367,3	17,3	2,18	37.805
05/04/2009	1615	1.005,0	18.474,7	18,4	2,15	39.712
12/04/2009	1574	1.000,9	18.740,2	18,7	1,90	35.606
06/05/2009	1516	997,5	17.059,2	17,1	1,96	33.480
24/05/2009	1383	986,7	17.580,7	17,8	1,67	29.419
04/06/2009	1284	985,5	16.830,2	17,1	1,66	27.949
24/06/2009	1068	980,2	14.486,6	14,8	1,46	21.192
08/07/2009	935	978,9	13.330,1	13,6	1,25	16.648
26/08/2009	601	961,7	9.646,9	10,0	0,89	8.539
09/09/2009	508	956,9	8.503,5	8,9	0,78	6.631
06/10/2009	557	959,3	8.097,7	8,4	0,98	7.955
27/11/2009	827	968,0	10.457,6	10,8	1,42	14.861
30/11/2009	827	969,1	10.304,6	10,6	1,46	15.022
09/12/2009	1001	973,2	9.645,2	9,9	2,17	20.955
06/01/2010	1252	980,3	14.281,7	14,6	2,04	29.065
22/01/2010	1360	989,9	15.196,6	15,4	2,20	33.382
03/02/2010	1470	998,8	17.615,8	17,6	2,12	37.380
17/02/2010	1465	998,1	17.693,4	17,7	2,08	36.847
03/03/2010	1518	1.002,4	17.083,1	17,0	2,16	36.906
17/03/2010	1554	997,9	17.732,1	17,8	2,13	37.820
07/04/2010	1598	1.002,7	18.547,2	18,5	2,13	39.574
21/04/2010	1394	990,3	16.694,8	16,9	1,82	30.327
12/05/2010	1325	989,0	16.735,0	16,9	1,72	28.843
27/05/2010	1057	983,2	14.190,6	19,0	1,49	21.101
10/06/2010	948	975,1	13.037,1	13,4	1,34	17.479
21/07/2010	539	963,0	8.915,7	9,3	0,86	7.653
04/08/2010	448	957,0	7.703,1	8,1	0,75	5.765
15/09/2010	380	958,3	6.670,5	7,0	0,73	4.893
27/10/2010	333	954,5	5.669,7	5,9	0,75	4.230
17/11/2010	474	959,5	6.717,0	7,0	0,94	6.287
08/12/2010	646	968,7	8.360,8	8,6	1,18	9.894
21/12/2010	699	964,3	8.299,8	8,6	1,40	11.621
12/01/2011	994	977,7	10.583,7	10,8	1,91	20.228
27/01/2011	1100	984,4	11.255,5	11,4	2,14	24.097
10/02/2011	1299	997,3	15.374,3	15,4	2,03	31.140
23/02/2011	1449	996,8	16.445,5	16,5	2,36	38.872
16/03/2011	1557	997,5	17.265,5	17,3	2,43	41.924
30/03/2011	1608	997,5	17.371,7	17,4	2,47	42.838
13/04/2011	1690	997,0	19.295,4	19,3	2,45	47.866
28/04/2011	1597	998,2	18.163,6	18,2	2,12	38.512
11/05/2011	1466	997,8	16.728,9	16,8	2,04	34.048

Engº José Eduardo Moreira CREA: 21112-D/RJ

Data	Leitura da Régua (cm)	Largura (m)	Área da seção (m²)	Prof. Média (m)	Vel. Média (m/s)	Descarga Líquida (m³/s)
27/05/2011	1214	985,3	15.144,3	15,4	1,70	25.718
08/06/2011	1048	980,8	13.757,2	14,0	1,46	20.133
29/06/2011	743	973,2	10.466,5	10,7	1,12	11.752
23/07/2011	595	963,1	9.024,6	9,4	0,99	8.957
10/08/2011	578	962,8	8.939,2	9,3	0,93	8.290
14/09/2011	341	953,4	6.644,6	7,0	0,61	4.021

Tabela 5.8. Resumo das Medições com ADCP em São Carlos

Data	Leitura da Régua (cm)	N°de Travessias	Vazão Total (m³/s)	Desvio Q total (m³/s)	Erro (%)	Vazão medida (m³/s)	Área da seção (m²)	Velocidade média (m/s)	Largura (m)
24/06/2009	1068	6	19.373	285	1,5	16.107	15.050,4	1,29	973,4
08/07/2009	935	6	15.929	299	1,9	13.179	13.784,2	1,16	966,1
26/08/2009	601	6	8.411	242	2,9	6.606	9.763,3	0,86	963,1
27/11/2009	827	6	13.653	138	1,0	10.761	10.779,8	1,27	958,1
30/11/2009	827	6	14.132	367	2,6	11.105	10.775,1	1,31	937,6
09/12/2009	1001	4	19.090	415	2,2	14.809	10.046,7	1,90	974,1
06/01/2010	1252	6	26.472	628	2,4	21.749	14.105,8	1,88	972,2
22/01/2010	1360	4	30.791	518	1,7	26.509	15.967,1	1,93	986,6
03/02/2010	1470	6	33.413	352	1,1	29.090	17.371,9	1,92	989,9
07/04/2010	1598	4	34.981	817	2,3	30.615	18.666,3	1,87	996,2
21/04/2010	1394	2	27.385	452	1,7	23.489	17.081,0	1,60	984,7
12/05/2010	1325	4	26.931	817	3,0	23.303	16.873,4	1,60	983,0
27/05/2010	1057	4	19.378	609	3,1	16.480	14.307,1	1,35	975,4
10/06/2010	948	4	16.282	382	2,3	13.335	13.440,2	1,21	970,7
22/06/2010	687	5	10.077	351	3,5	7.986	10.746,0	0,94	958,4
21/07/2010	539	4	6.961	139	2,0	5.430	8.728,6	0,80	955,5
04/08/2010	448	4	5.599	193	3,4	4.071	7.930,9	0,71	951,7
15/09/2010	379,5	4	4.574	138	3,0	3.206	6.849,5	0,67	941,8
27/10/2010	333	4	3.969	93	2,4	2.573	5.591,5	0,71	948,6
17/11/2010	474	4	6.040	130	2,2	4.228	6.885,0	0,88	959,5
08/12/2010	646	3	9.332	217	2,3	6.984	8.606,5	1,08	958,1
21/12/2010	699	5	10.846	221	2,0	8.191	8.663,1	1,25	955,4
12/01/2011*	993	4	18.265	395	2,2	14.729	10632,7	1,72	963,1
27/01/2011*	1100	4	21.024	521	2,5	16.702	11034,9	1,91	981,4
10/02/2011*	1298	4	28.070	309	1,1	24.045	15063,8	1,86	964,4
23/02/2011	1449	4	34.061	1.195	3,5	27.875	16.441,7	2,07	992,8
28/04/2011	1597	5	34.460	1123	3,3	30.156	18716,2	1,84	982,0
11/05/2011	1465,5	4	30.604	994	3,2	25.906	17156,0	1,78	982,7
29/06/2011	743	4	11.101	280	2,5	8.925	10815,0	1,03	964,0
23/07/2011	594,5	4	8.652	249	2,9	6.755	9367,8	0,92	951,7
10/08/2011	577,5	4	7.433	62	0,8	5.832	8806,9	0,85	911,5
14/09/2011	341	4 Povisadas or	3.911	106	2,7	2.878	6666,7	0,59	932,3

Observação: * Medições Revisadas em Out/2011 - Correção na Profundidade do Ecobatímetro.

5.5. ESTAÇÃO FLUVIOMÉTRICA HUMAITÁ

Tabela 5.9. Resumo das Medições com Molinete em Humaitá

Data	Leitura da Régua (cm)	Largura (m)	Área da seção (m²)	Prof. Média (m)	Vel. Média (m/s)	Descarga Líquida (m³/s)
27/03/2009	2239	1.110,1	20.173,7	18,2	2,17	43.694
06/04/2009	2284	1.107,1	21.628,6	19,5	2,19	47.258
14/04/2009	2263	1.108,4	20.866,5	18,8	2,10	43.709
08/05/2009	2206	1.108,3	20.705,9	18,7	1,88	38.939
26/05/2009	2066	1.089,8	20.456,6	18,8	1,75	35.783
06/06/2009	1976	1.089,9	18.771,1	17,2	1,71	32.186
26/06/2009	1731	1.075,9	15.473,9	14,4	1,49	23.060
10/07/2009	1593	1.056,1	14.133,3	13,4	1,25	17.736
28/08/2009	1239	1.037,1	10.321,7	10,0	0,87	9.000
11/09/2009	1129	1.027,9	9.184,0	8,9	0,85	6.859
08/10/2009	1196	1.032,2	9.982,7	9,7	0,85	8.480
25/11/2009	1458	1.047,3	12.628,8	12,1	1,20	15.103
02/12/2009	1481	1.072,9	12.883,6	12,0	1,24	16.026
11/12/2009	1671	1.077,8	14.815,6	13,8	1,48	21.944
08/01/2010	1891	1.100,1	17.018,4	15,5	1,80	30.584
20/01/2010	1988	1.106,8	17.496,2	15,8	2,04	35.716
05/02/2010	2140	1.115,1	19.816,8	17,8	2,17	42.907
19/02/2010	2152	1.117,3	19.844,5	17,8	2,13	42.239
05/03/2010	2205	1.113,2	20.156,1	18,1	2,11	42.563
19/03/2010	2235	1.115,0	21.559,8	19,3	2,13	45.851
09/04/2010	2271	1.114,7	21.452,6	19,2	2,13	45.683
23/04/2010	2096	1.086,4	18.905,5	17,4	1,83	34.642
14/01/2011	1670	1.091,8	14.413,6	13,2	1,55	22.362
12/02/2011	1978	1.109,2	18.070,5	16,3	1,96	35.330
18/03/2011	2223	1.120,2	20.819,5	18,6	2,18	45.429
01/04/2011	2276	1.125,3	21.158,8	18,9	2,31	48.951
15/04/2011	2335	1.125,3	22.277,7	19,8	2,45	54.659
10/06/2011	1695	1.075,0	14.942,1	13,9	1,42	21.276

Tabela 5.10. Resumo das Medições com ADCP em Humaitá

Data	Leitura da Régua (cm)	N°de Travessias	Vazão Total (m³/s)	Desvio Q total	Erro	Vazão medida (m³/s)	Área da seção (m²)	Veloc. Média (m/s)	Largura (m)
26/06/2009	1731	6	21.581	140	0,6	17.991	16.003,0	1,35	1.073,1
10/07/2009	1593	6	17.797	181	1,0	14.639	14.503,7	1,23	1.053,6
28/08/2009	1239	6	8.840	105	1,2	7.017	10.750,7	0,82	1.035,8
25/11/2009	1458	6	14.535	167	1,1	11.732	13.040,6	1,11	1.045,3
02/12/2009	1481	6	14.983	52	0,3	12.399	13.342,4	1,12	1.057,8
11/12/2009	1671	4	21.303	141	0,7	17.750	15.305,2	1,39	1.070,6
08/01/2010	1891	6	28.211	132	0,5	24.050	17.615,7	1,60	1.095,0
20/01/2010	1988	5	32.531	320	1,0	27.706	18.312,0	1,78	1.104,7
05/02/2010	2140	4	38.260	266	0,7	33.047	20.264,0	1,89	1.115,2
09/04/2010	2271	4	40.762	363	0,9	35.898	21.586,9	1,89	1.129,0
14/05/2010	1986	6	28.468	399	1,4	24.646	18.366,1	1,55	1.080,1
29/05/2010	1710	6	19.645	390	2,0	16.662	15.300,4	1,28	1.069,6
12/06/2010	1594	6	17.144	299	1,7	13.872	14.559,3	1,18	1.070,0
24/06/2010	1346	6	10.759	315	2,9	8.539	11.817,5	0,91	1.032,6
23/07/2010	1184	6	7.647	206	2,7	6.092	9.823,4	0,78	1.024,9
06/08/2010	1087	6	5.809	183	3,2	4.381	8.906,0	0,65	1.018,8
17/09/2010	1020	6	4.864	115	2,4	3.634	8.216,9	0,59	1.039,5
29/10/2010	982	4	4.340	112	2,6	3.242	7.746,4	0,56	1.027,4
19/11/2010	1116	5	6.618	100	1,5	5.007	9.044,0	0,73	1.022,5
10/12/2010	1291	7	10.878	86	0,8	8.354	10.895,2	1,00	1.031,4
23/12/2010	1370	5	11.990	118	1,0	9.593	11.570,4	1,04	1.038,2
14/01/2011*	1669	5	20.180	378	1,9	17.006	14.535,1	1,39	1.077,6
29/01/2011*	1803	3	25.033	438	1,7	21.137	16.010,3	1,56	1.077,3
12/02/2011*	1977	2	30.899	715	2,3	22.312	18.560,2	1,66	1.096,6
25/02/2011	2124	5	38.502	578	1,5	32.183	20.342,9	1,89	1.094,2
29/04/2011	2277	5	39.243	508	1,3	33.788	21.722,5	1,81	1.107,0
13/05/2011	2137	4	33.005	278	0,8	28.764	19.816,1	1,67	1.077,2
24/05/2011	1971	6	27.587	475	1,7	23.686	17.221,7	1,60	1.074,2
01/07/2011	1397	5	12.223	476	3,9	9.734	11.436,3	1,07	1.031,8
30/07/2011	1262	6	9.368	116	1,2	7.194	10.303,3	0,91	1.031,4
12/08/2011	1210	6	8.075	255	3,2	6.243	9.660,3	0,84	1.018,7
16/09/2011	1008	6	4.171	174	4,2	3.072	7.442,3	0,56	1.012,9

Observação: * Medições Revisadas em Out/2011 - Correção na Profundidade do Ecobatímetro.

5.6. ESTAÇÃO FLUVIOMÉTRICA JACIPARANÁ VILA

Tabela 5.11. Resumo das Medições com Molinete em Jaciparaná Vila

Local da Medição	Data	Leitura da Régua* (cm)	Largura (m)	Área da seção (m²)	Prof. média (m)	Vel. Média (m/s)	Descarga Líquida (m³/s)
S03	30/03/2009	831	103,4	648,8	6,3	0,89	578
S03	10/04/2009	793	113,0	612,9	5,4	0,80	490
VILA	17/04/2009	837	152,0	1.145,4	7,5	0,32	371
VILA	28/05/2009	607	150,3	847,2	5,6	0,53	450
S02	28/06/2009	432	109,1	412,7	3,8	0,66	271
S02	22/07/2009	362	108,7	298,1	2,7	0,96	287
S02	04/09/2009	197	102,2	170,4	1,7	0,56	96
S02	05/11/2009	177	101,1	162,9	1,6	0,51	82
S02	04/12/2009	340	105,2	242,7	2,3	0,42	103
S02	28/01/2010	762	132,3	846,3	6,4	0,88	741
S02	25/02/2010	742	131,0	866,8	6,6	0,84	726
S02	24/03/2010	788	131,8	862,8	6,6	0,79	683
S02	30/04/2010	613	126,5	626,0	5,0	0,66	415
S02	19/05/2010	521	123,8	519,0	4,2	0,63	329
S02	16/06/2010	303	107,3	305,8	2,9	0,63	193
S02	12/08/2010	152	102,1	143,0	1,4	0,46	66
S02	06/10/2010	144	101,5	123,1	1,2	0,55	68
S02	01/12/2010	215	105,4	196,2	1,9	0,62	122
S02	20/01/2011	358	110,2	403,2	3,7	0,57	230
S02	16/02/2011	731	117,0	747,9	6,4	0,83	621
S02	24/03/2011	889	117,7	861,1	7,3	1,00	843

Observação: * As leituras da régua correspondem à estação de Jaciparaná Vila.

5.7. ESTAÇÃO FLUVIOMÉTRICA MONTANTE JACIPARANÁ

Tabela 5.12. Resumo das Medições com Molinete em Montante Jaciparaná

Data	Nível d'água* (m)	Largura (m)	Área da Seção (m²)	Prof. Média (m)	Vel. Média (m/s)	Descarga Líquida (m³/s)
25/03/2011	75,38	91,0	491,0	5,40	0,96	470
08/04/2011	75,70	91,2	525,1	5,76	0,95	501
05/05/2011	73,60	89,2	338,9	3,80	0,70	237
17/06/2011	71,48	82,0	174,4	2,13	0,55	96
04/08/2011	70,44	77,0	92,8	1,20	0,39	36

Observação: * Cota do nível d'água na seção obtida através de nivelamento a partir do marco de referência.

6. RESULTADOS DAS MEDIÇÕES DE DESCARGA SÓLIDA

Engº José Eduardo Moreira CREA: 21112-D/RJ

No laboratório de sedimentometria da PCE foram analisadas as amostras de sedimento em suspensão e do leito coletadas durante as medições, seguindo as metodologias descritas sucintamente nos itens anteriores. Rotineiramente, os resultados das análises são enviados ao escritório da PCE no Rio de Janeiro, onde passam por um processo de avaliação e consistência e, posteriormente, utilizados para o cálculo da descarga sólida em suspensão e da descarga sólida total, conforme descrito no item *Procedimentos e Consistência dos Dados*.

Sazonalmente foi realizado um procedimento de re-amostragem do sedimento em suspensão (amostragem integrada na vertical), com o intuito de avaliar a consistência das amostragens e análises laboratoriais. Para o cálculo da descarga sólida total pelo Método de Einstein Modificado, com a re-amostragem dos sedimentos em suspensão, foram assumidos os dados da descarga líquida e os dados da análise granulométrica dos sedimentos do leito amostrados no mesmo dia.

6.1. RESULTADOS DAS ANÁLISES LABORATORIAIS

6.1.1. Análises do Sedimento em Suspensão e do Leito

Neste item apresenta-se o resumo dos resultados das análises granulométricas dos sedimentos em suspensão (obtidos a partir do procedimento de amostragem integrada na vertical) e dos sedimentos do leito para cada estação fluviométrica que compõe a rede básica do Programa de Monitoramento Hidrossedimentológico do Rio Madeira (Tabela 6.1. a Tabela 6.7.).

Para a emissão deste relatório foram incluídas as análises do sedimento de suspensão e do leito de todas as medições realizadas até o mês de agosto de 2011. Em cada tabela destaca-se, para cada estação, a percentagem de material sedimentar que compõe cada faixa granulométrica do material em suspensão e material do leito (argila, silte, areia fina, areia média, areia grossa, pedregulho) e os diâmetros característicos do material que compõem o leito do rio.

Maiores detalhes acerca da análise laboratorial realizada em cada medição estão disponíveis no ANEXO III "Ensaios de Laboratório das Amostras de Sedimento em Suspensão" e no ANEXO IV "Ensaios de Laboratório das Amostras de Sedimento do Leito".

Estação Fluviométrica Abunã

Tabela 6.1.
Resumo das Análises do Sedimento em Suspensão e do Leito em Abunã

			N	laterial em	suspensão)						Mat	erial do le	ito						
				(%)							(%)				Coefi	ciente d	e Unifor	midade	(mm)	
No. Med.	Data	Argila	Silte	Ar.fina	Ar.med.	Ar.gros.	Conc. Total	Argila	Silte	Argila + Silte	Ar.fina	Ar.med.	Ar.gros.	Pedreg	D 10%	D 35%	D 50%	D 65%	D 90%	Observação
		0,0005 - 0,004	0,004 - 0,0625	0,0625 - 0,250	0,250 - 0,500	0,500 - 2,00	(ppm)	0,0005- 0,004	0,004 - 0,0625	0,000 - 0,0625	0,0625 - 0,250	0,250 - 0,500	0,500 - 2,00	2,00 - 64,00	10,0	2 00 /0	2 00%	00,0	2 3070	
1	29/3/09	17,5	67,1	12,3	0,2	2,9	1014			1,5	18,8	62,8	16,8	0,1	0,174	0,302	0,357	0,406	0,629	
2	8/4/09	19,9	68,4	11,5	0,2	0	772,5			0,6	67,4	31,1	0,6	0,3	0,112	0,168	0,202	0,241	0,378	
3	20/4/09	19,2	62,4	18,2	0,1	0,1	840,1			2,2	74,3	21,4	1,8	0,3	0,082	0,145	0,175	0,214	0,357	
4	19/5/09	16,8	54,1	28,6	0,3	0,2	578,6			1,8	87,1	11	0,1	0	0,085	0,142	0,165	0,193	0,263	
5	30/5/09	23,6	44,2	31,9	0,3	0	411,3			0,7	80,2	18,4	0,7	0	0,097	0,152	0,177	0,204	0,320	
6	13/6/09	23,4	51,6	24,9	0,1	0	515,7			0,5	80,5	17,9	1,1	0	0,085	0,146	0,172	0,205	0,324	
Ream.	13/6/09	28,5	44,7	26,7	0,1	0	517,7													Reamostragem dos sedimentos em suspensão
7	30/6/09	12,3	61,4	25,9	0,4	0	538,5	0,7	6,4		47,7	34,3	10,6	0,3	0,091	0,183	0,231	0,307	0,507	
8	23/7/09	20,1	57,9	21,7	0,1	0,2	342,2			0,3	82,1	11,8	4,7	1,1	0,132	0,165	0,187	0,210	0,346	
9	20/8/09	30,4	59,8	9,7	0,1	0	213,3			0,6	77,6	14,5	6,5	0,8	0,121	0,163	0,188	0,218	0,434	
10	3/9/09	35,6	60,9	3,5	0	0	186,1			0,8	80,7	14,6	3,8	0,1	0,101	0,154	0,179	0,201	0,329	
11	14/10/09	42,8	55,3	1,9	0	0	172,2			1,1	77	17	4,4	0,5	0,123	0,164	0,188	0,219	0,376	
12	4/11/09	52,0	42,6	5,4	0	0	325,5													Sem amostra do leito
13	6/12/09	36,7	52,5	10,8	0	0	1240			0,8	83,7	12,9	2,3	0,3	0,115	0,159	0,181	0,207	0,301	
14	15/12/09	34,0	53,1	12,7	0,2	0	1274			1,0	77,9	13	8	0,1	0,113	0,163	0,185	0,216	0,451	
15	12/1/10	35,8	53,0	11,1	0,1	0	1346			1,5	57,1	37	4,3	0,1	0,087	0,164	0,214	0,282	0,435	
16	27/1/10	30,6	57,4	11,8	0,2	0	1372			2,2	69	28,6	0,2	0	0,080	0,141	0,179	0,226	0,364	
17	10/2/10	32,4	60,3	7,1	0,2	0	1639			2,0	70,2	26,7	1,1	0	0,081	0,144	0,179	0,224	0,367	
18	23/2/10	23,6	65,9	10,2	0,3	0	1363			1,6	66,2	30,5	1	0,7	0,081	0,145	0,185	0,246	0,394	
19	9/3/10	25,0	65,4	9,3	0,3	0	1617			2,4	84,5	12,1	0,9	0,1	0,076	0,126	0,153	0,186	0,279	
20	23/3/10	20,1	68,0	11,8	0,1	0	1181			2,0	82,2	15,1	0,6	0,1	0,075	0,127	0,155	0,190	0,296	
21	13/4/10	17,8	51,1	30,9	0,2	0	735			0,8	75,7	22,9	0,6	0	0,098	0,155	0,183	0,218	0,341	
22	27/4/10	17,1	54,2	28,4	0,3	0	455,7			1,9	64,7	30,9	2,3	0,2	0,094	0,163	0,198	0,244	0,395	
23	4/5/10	15,0	62,4	22,3	0,3	0	805,4			0,4	62,7	35,5	1,2	0,2	0,116	0,172	0,209	0,259	0,398	
24	18/5/10	14,3	56,8	28,4	0,5	0	595,7			0,4	75,5	22,3	1,4	0,4	0,130	0,167	0,193	0,223	0,353	

Tabela 6.1.

Resumo das Análises do Sedimento em Suspensão e do Leito em Abunã (continuação)

			N	laterial em	suspensão)						Mat	erial do le	ito						
				(%)							(%)				Coefic	ciente d	e Unifor	midade	(mm)	
No. Med.	Data	Argila	Silte	Ar.fina	Ar.med.	Ar.gros.	Conc. Total	Argila	Silte	Argila + Silte	Ar.fina	Ar.med.	Ar.gros.	Pedreg	D 10%	D 35%	D 50%	D 65%	D 90%	Observação
		0,0005 - 0,004	0,004 - 0,0625	0,0625 - 0,250	0,250 - 0,500	0,500 - 2,00	(ppm)	0,0005- 0,004	0,004 - 0,0625	0,000 - 0,0625	0,0625 - 0,250	0,250 - 0,500	0,500 - 2,00	2,00 - 64,00	2 10%	2 00 70	2 00%	2 00 %	D 00%	
25	1/6/10	26,8	58,3	14,8	0,1	0	569			0,2	62,1	37	0,6	0,1	0,142	0,185	0,217	0,263	0,415	
26	15/6/10	26,4	58,8	14,4	0,3	0,1	280,6			0,3	67,6	31,9	0,2	0	0,137	0,178	0,207	0,242	0,364	
27	6/7/10	32,2	62,3	5,5	0	0	124			0,6	63,2	35,5	0,7	0	0,134	0,180	0,213	0,256	0,397	
28	10/8/10	44,3	54,1	1,6	0	0	111,6			1,3	60,7	37,9	0,1	0	0,130	0,179	0,215	0,264	0,397	
29	21/9/10	49,0	50,5	0,5	0	0	77,39	0,6	4,4		57,2	37,2	0,6	0	0,109	0,172	0,211	0,263	0,405	
30	5/10/10	55,9	43,8	0,3	0	0	46,5			4,2	51,8	42,8	1,1	0,1	0,130	0,186	0,230	0,289	0,414	
Ream.	5/10/10	47,3	51,9	0,8	0	0	46,8													Reamostragem dos sedimentos em suspensão
31	9/11/10	51,8	45,6	2,6	0	0	483,6	0,9	4,4		55,2	38,7	0,8	0	0,098	0,172	0,214	0,271	0,415	
Ream.	9/11/10	49,1	48,4	2,5	0	0	481,7													Reamostragem dos sedimentos em suspensão
32	30/11/10	50,7	44,2	5,1	0	0	495,9			1,8	53	43	2,2	0	0,134	0,193	0,235	0,295	0,431	
33	14/12/10	51,4	44,5	4,1	0	0	471			1,0	67,5	30,6	0,5	0,4	0,130	0,173	0,203	0,240	0,377	
34	4/1/11	26,7	58,8	14,0	0,5	0	1200			0,5	68,5	29,8	0,9	0,3	0,133	0,175	0,204	0,239	0,377	
35	18/1/11	29,9	55,8	14,1	0,2	0	946			0,3	60	39,4	0,3	0	0,137	0,185	0,221	0,272	0,407	
36	2/2/11	29,5	61,2	9,0	0,3	0	1791			0,3	35	54,2	9,2	1,3	0,142	0,251	0,303	0,366	0,519	
37	15/2/11	27,6	59,7	12,3	0,4	0	1640			3,8	60,4	35,5	0,3	0	0,075	0,135	0,185	0,259	0,406	
38	1/3/11	21,4	60,7	17,7	0,2	0	1180			0,7	69,9	18,8	1,7	8,9	0,094	0,158	0,191	0,232	0,560	
39	22/3/11	19,0	57,9	22,8	0,3	0	1023	1,4	6,3		59,3	22,7	8,2	2,1	0,075	0,157	0,194	0,242	0,513	
40	5/4/11	18,9	59,4	21,5	0,2	0	934,6	3,3	14,9		59,8	17,5	4,4	0,1	0,021	0,130	0,162	0,204	0,382	
41	19/4/11	17,6	58,9	23,3	0,2	0	948,6	2,4	9,8		54,7	23,7	8	1,4	0,049	0,146	0,187	0,242	0,486	
42	4/5/11	18,4	58,7	22,7	0,2	0	695,3	1,6	7,4		58,2	27,5	5,2	0,1	0,077	0,167	0,199	0,243	0,424	
43	17/5/11	10,6	56,1	32,9	0,4	0	505			1,8	62,5	25,9	1	8,8	0,128	0,175	0,209	0,255	0,492	
44	2/6/11	18,3	47,1	33,8	0,8	0	385,8			0,6	77,1	22,2	0,1	0	0,130	0,167	0,191	0,220	0,337	
45	14/6/11	28,7	40,5	29,8	1	0	276,7			2,1	65,1	31,7	1,1	0	0,105	0,166	0,200	0,243	0,384	
46	7/7/11	24,5	64,9	10,6	0	0	136,1			0,8	59,4	39,3	0,5	0	0,135	0,183	0,220	0,272	0,393	
47	5/8/11	38,5	56,0	5,0	0,5	0	183,8			1,1	59,3	38,6	0,6	0,4	0,131	0,181	0,219	0,272	0,410	

Estação Fluviométrica Jusante Caldeirão do Inferno

Tabela 6.2. Resumo das Análises do Sedimento em Suspensão e do Leito em Jusante Caldeirão do Inferno

			ı	Material em	suspensã	0						M	aterial do l	eito						
				(%)							(%)				Coefi	ciente d	e Unifor	midade	(mm)	
No. Med.	Data	Argila	Silte	Ar.fina	Ar.med.	Ar.gros.	Conc. Total	Argila	Silte	Argila + Silte	Ar.fina	Ar.med.	Ar.gros.		D 109/	D 250/	D 50%	D 65%	D 90%	Observação
		0,0005 - 0,004	0,004 - 0,0625	0,0625 - 0,250	0,250 - 0,500	0,500 - 2,00	(ppm)	0,0005- 0,004	0,004 - 0,0625	0,000 - 0,0625	0,0625 - 0,250	0,250 - 0,500	0,500 – 2,00	2,00 - 64,00	D 10%	D 33%	D 30 %	D 65%	D 90 %	
1	1/4/09	17,7	57,6	22,1	1,1	1,5	1181													Sem amostra do leito
2	9/4/09	17,6	63,4	18,4	0,4	0,2	982,4			0,1	39,2	48	9,6	3,1	0,155	0,237	0,293	0,362	0,590	
3	18/4/09	12,5	64,6	21,8	0,8	0,3	992,3			0,2	42	34,4	13,6	9,8	0,149	0,223	0,294	0,396	1,937	
4	20/5/09	19,7	48,8	30,7	0,8	0	444,1			0,4	57,4	40,1	1,9	0,2	0,139	0,188	0,226	0,283	0,421	
5	29/5/09	10,2	54,0	35,1	0,7	0	413,9			0,2	51,8	46,9	0,9	0,2	0,139	0,199	0,244	0,303	0,433	
6	11/6/09	24,2	52,6	22,5	0,6	0,1	498,2			0,3	41,3	50,4	7,6	0,4	0,150	0,228	0,282	0,345	0,481	
7	29/6/09	17,4	52,5	30,0	0,1	0	356,4			0,1	38,7	50	7,4	3,8	0,148	0,235	0,293	0,349	0,527	
Ream.	29/6/09	7,3	65,3	27,2	0,2	0	317,5													Reamostragem dos sedimentos em suspensão
8	21/7/09	27,9	47,6	24,3	0,2	0	295,1	1,4	11,4		35,4	41,8	8,2	1,8	0,044	0,193	0,263	0,330	0,500	
9	18/8/09	22,9	70,6	6,4	0,1	0	156,4			0,7	41,2	52,9	4,7	0,5	0,130	0,225	0,286	0,338	0,460	
10	1/9/09	37,8	58,0	4,1	0,1	0	176,1													Análise do Leito inconsistente
11	16/10/09	47,7	51,2	1,1	0	0	153,8			0,7	33,4	61,8	3,5	0,6	0,152	0,256	0,300	0,354	0,460	
12	6/11/10	39,2	57,7	3,0	0,1	0	299,1			0,3	38,2	51,2	8,8	1,5	0,150	0,236	0,293	0,353	0,518	
13	5/12/09	52,7	38,6	8,7	0	0	847,2			0,1	33,9	59,8	3,8	2,4	0,158	0,256	0,302	0,353	0,470	
14	17/12/09	39,5	51,0	9,4	0,1	0	1123			0,3	46	37,2	8,1	8,4	0,138	0,209	0,269	0,354	1,582	
15	14/1/10	34,4	53,0	12,1	0,5	0	1208			0,2	43,1	50,7	3	3	0,150	0,225	0,277	0,330	0,468	
16	29/1/10	29,6	55,7	14,2	0,5	0	1436			0,3	38,6	56,8	4,1	0,2	0,150	0,235	0,287	0,344	0,461	
17	12/2/10	28,0	59,3	12,0	0,7	0	1584			0,1	24,3	67	8,4	0,2	0,183	0,282	0,335	0,381	0,488	
18	24/2/10	22,3	63,4	14,2	0,1	0	1338			0,3	43,2	53,1	2,8	0,6	0,143	0,219	0,273	0,331	0,454	
19	11/3/10									0,3	37,3	58,7	2,9	0,8	0,153	0,241	0,292	0,346	0,449	Análise de Suspensão inconsistente
20	26/3/10	19,6	62,8	16,9	0,7	0	1215			0,2	29	62,5	6,6	1,7	0,163	0,270	0,316	0,372	0,486	
21	15/4/10	22,0	58,9	18,8	0,3	0	995,1			0,2	38,6	57,2	2,8	1,2	0,150	0,235	0,287	0,343	0,455	
22	29/4/10	13,6	54,3	31,6	0,5	0	512,5			0,2	40,5	56,1	2,8	0,4	0,150	0,233	0,281	0,338	0,452	
23	6/5/10	14,8	61,2	23,6	0,4	0	920,9			0,3	44,7	53,6	1,4	0	0,142	0,213	0,268	0,324	0,427	
24	20/5/10	23,2	57,4	19,2	0,2	0	493,4			0,1	33,1	63,3	3,3	0,2	0,156	0,258	0,301	0,354	0,461	

Tabela 6.2.

Resumo das Análises do Sedimento em Suspensão e do Leito em Jusante Caldeirão do Inferno (continuação)

			N	/laterial em	n suspensã	io						Ma	aterial do l	eito						
				(%)							(%)				Coefi	ciente d	e Unifor	midade	(mm)	
No. Med.	Data	Argila	Silte	Ar.fina	Ar.med.	Ar.gros.	Conc. Total	Argila	Silte	Argila + Silte	Ar.fina	Ar.med.	Ar.gros.	Pedreg	D 40%	D 35%	D E00/	D CEN	D 00%	Observação
		0,0005 - 0,004	0,004 - 0,0625	0,0625 - 0,250	0,250 - 0,500	0,500 - 2,00	(ppm)	0,0005- 0,004	0,004 - 0,0625	0,000 - 0,0625	0,0625 - 0,250	0,250 - 0,500	0,500 - 2,00	2,00 - 64,00	D 10%	D 35%	D 30%	D 65%	D 90%	
25	3/6/10	33,2	54,0	12,7	0,1	0	491,7			0,1	38	59,3	2,5	0,1	0,152	0,238	0,295	0,337	0,439	
26	17/6/10	36,0	52,9	11,0	0,1	0	213,5			0,6	38,3	55,2	4,5	1,4	0,145	0,234	0,288	0,347	0,470	
27	7/7/10	38,4	55,1	6,4	0,1	0	100,4			0,1	34,2	60,6	4,8	0,3	0,160	0,255	0,300	0,355	0,463	
28	11/8/10	40,7	56,7	2,6	0	0	103,8			0,3	35,9	53,9	8,9	1	0,154	0,247	0,300	0,362	0,494	
29	22/9/10	43,8	54,3	1,9	0	0	66,09			0,9	32,6	61,8	4,4	0,3	0,156	0,257	0,302	0,346	0,462	
30	7/10/10									0,8	47,6	47,5	3,3	0,8	0,145	0,206	0,257	0,319	0,454	Análise de Suspensão inconsistente
Ream.	7/10/10	47,8	48,3	3,9	0	0	47,74													Reamostragem dos sedimentos em suspensão
31	10/11/10	53,8	44,7	1,5	0	0	521,1			0,2	38,4	53,5	5,1	2,8	0,154	0,236	0,291	0,352	0,482	
Ream.	10/11/10	58,2	40,1	1,7	0	0	513,5													Reamostragem dos sedimentos em suspensão
32	2/12/10	53,1	42,8	4,1	0	0	416,8			0,1	39,3	57,8	2,7	0,1	0,153	0,233	0,285	0,340	0,454	
33	15/12/10	55,1	42,4	2,5	0	0	349			0,2	16,9	75,7	6,6	0,6	0,191	0,298	0,339	0,388	0,482	
34	6/1/11	30,2	59,3	10,4	0,1	0	977			0,2	50,8	45,9	2,9	0,2	0,140	0,200	0,247	0,309	0,446	
35	19/1/11	33,5	54,5	11,9	0,1	0	471,5			0,3	52,4	45,3	1,6	0,4	0,143	0,197	0,242	0,297	0,422	
36	3/2/11	27,4	60,5	11,9	0,2	0	1776			0,5	48,2	38	8,1	5,2	0,130	0,199	0,257	0,337	0,612	
37	17/2/11	31,2	56,6	11,9	0,3	0	1729			0,3	42,8	55,5	1,3	0,1	0,150	0,220	0,273	0,329	0,444	
38	2/3/11	24,6	55,9	18,9	0,6	0	1236			0,2	39,2	48,5	6,7	5,4	0,145	0,233	0,292	0,360	0,591	
39	23/3/11	18,0	55,1	25,9	1	0	1086													Sem amostra do leito
40	6/4/11	15,7	56,0	27,6	0,7	0	1062													Análise do Leito inconsistente
41	20/4/11	15,6	51,8	31,1	1,5	0	1069			0,8	46,9	49,2	2,5	0,6	0,128	0,201	0,259	0,319	0,445	
42	6/5/11	7,8	64,4	27,3	0,5	0	775,8	1,4	8,6		41	42	6,3	0,7	0,064	0,155	0,243	0,315	0,471	
43	19/5/11	14,7	53,0	31,9	0,4	0	559,9	0,8	9,2		41,5	41,4	6,9	0,2	0,063	0,174	0,242	0,313	0,471	
44	3/6/11	17,7	48,7	33,1	0,5	0	361,1			0,2	40,3	53,6	5,2	0,7	0,132	0,230	0,284	0,343	0,469	
45	15/6/11	33,3	45,9	20,7	0,1	0	221,5			1,1	46,9	43,8	7	1,2	0,110	0,201	0,259	0,327	0,481	
46	9/7/11	33,3	55,5	11,2	0	0	145,2			0,3	57,2	36,8	2,7	3	0,137	0,188	0,227	0,288	0,446	
47	2/8/11	36,2	58,6	5,1	0,1	0	167,5			0,2	43,4	47,2	8,8	0,4	0,144	0,219	0,276	0,342	0,489	

Estação Fluviométrica Porto Velho

Tabela 6.3. Resumo das Análises do Sedimento em Suspensão e do Leito em Porto Velho

			P	Material em	n suspensã	io						Ma	aterial do l	eito						
				(%)							(%)				Coefi	ciente d	e Unifor	midade	(mm)	
No. Med.	Data	Argila	Silte	Ar.fina	Ar.med.	Ar.gros.	Conc. Total	Argila	Silte	Argila + Silte	Ar.fina	Ar.med.	Ar.gros.	_	D 10%	D 35%	D 50%	D 65%	D 90%	Observação
		0,0005 - 0,004	0,004 - 0,0625	0,0625 - 0,250	0,250 - 0,500	0,500 - 2,00	(ppm)	0,0005- 0,004	0,004 - 0,0625	0,000 - 0,0625	0,0625 - 0,250	0,250 - 0,500	0,500 - 2,00	2,00 - 64,00	2 1070	2 00 /0	2 0070	2 60%	2 00%	
1	19/3/09	20,0	66,4	13,3	0,3	0	1082	4,2	10,5		58,8	26,3	0,2	0,0	0,023	0,148	0,181	0,220	0,375	
2	3/4/09	21,5	65,1	13,0	0,4	0	1103			0,2	41,5	34,4	19,7	4,2	0,139	0,221	0,296	0,397	1,228	
3	16/4/09	18,0	64,9	16,8	0,3	0	748,8			0,4	50,8	43,4	5,4	0	0,143	0,202	0,247	0,312	0,460	
4	4/5/09	22,5	61,3	15,8	0,3	0,1	664,7			0,5	57,6	34,9	6,8	0,2	0,130	0,184	0,224	0,282	0,466	
5	22/5/09	17,3	59,2	23,1	0,3	0,1	558,3			1	59,1	27,7	11,8	0,4	0,104	0,172	0,215	0,283	0,572	
6	1/6/09	19,6	56,4	23,8	0,2	0	496,5			2	57,5	33,2	7,1	0,2	0,084	0,160	0,210	0,280	0,468	
7	22/6/09	17,0	58,4	24,5	0,1	0	345,8			3,7	54,8	37,5	3	1	0,079	0,154	0,209	0,282	0,443	
Ream.	22/6/09	20,7	58,0	21,2	0,1	0	333,1													Reamostragem dos sedimentos em suspensão
8	6/7/09	23,2	57,1	19,6	0,1	0	332			3,5	55,6	34,8	5,6	0,5	0,074	0,146	0,208	,	0,462	
9	5/8/09	18,4	72,3	9,2	0,1	0	246	1,1	9,7		58	26,2	4,6	0,4	0,057	0,143	0,182	0,235	0,423	
10	14/9/09	42,8	52,9	4,2	0,1	0	210,5	2	13,3		64,2	19,6	0,8	0,1	0,042	0,115	0,153	0,196	0,342	
11	26/10/09	63,3	33,0	3,7	0	0	246	2,2	8,8		74,7	13,5	0,8	0	0,061	0,105	0,138	0,176	0,297	
12	19/11/09	55,2	37,7	7,0	0,1	0	450,4	1,8	10		72,4	10	5,3	0,5	0,057	0,108	0,142	0,180	0,334	
13	23/11/09	39,3	42,6	18,0	0,1	0	357,8													Sem amostra do leito
14	19/12/09	31,2	57,8	10,6	0,4	0	1219			0,7	70,3	28,6	0,4	0	0,096	0,157	0,190	0,231	0,366	
15	4/1/10	34,2	53,4	12,0	0,4	0	1339			0,3	64	33,7	1,6	0,4	0,120	0,173	0,208	0,259	0,394	
16	18/1/10	33,2	57,4	8,8	0,6	0	1301			1,1	51,3	37,9	6,8	2,9	0,131	0,193	0,242	0,315	0,492	
17	1/2/10	30,0	58,7	11,0	0,3	0	1359			0,3	52,8	45,3	1,6	0	0,138	0,199	0,240	0,300	0,415	
18	15/2/10	29,0	56,5	14,3	0,2	0	1621			0,2	44,2	48,9	6,4	0,3	0,142	0,216	0,272	0,335	0,472	
19	1/3/10	24,9	66,4	8,3	0,4	0	1423			0,2	49,2	41,8	8,6	0,2	0,139	0,203	0,253	0,324	0,485	
20	15/3/10									0,2	47,5	43	8,1	1,2	0,144	0,207	0,260	0,330	0,489	Análise de Suspensão inconsistente
21	3/4/10	25,7	63,0	11,2	0,1	0	971,2			0,4	44,2	49,1	6	0,3	0,129	0,210	0,271	0,333	0,470	
22	19/4/10	20,7	62,3	16,8	0,2	0	599,7			0,2	48,4	39,7	10,6	1,1	0,141	0,206	0,257	0,333	0,536	
23	10/5/10	22,1	58,7	18,8	0,4	0	831,1			0,3	32,7	59,4	7,2	0,4	0,149	0,259	0,306	0,363	0,481	
24	25/5/10	21,6	52,1	26,1	0,2	0	515			1,6	58,4	36,4	3,1	0,5	0,084	0,157	0,207	0,280	0,425	

Tabela 6.3.
Resumo das Análises do Sedimento em Suspensão e do Leito em Porto Velho (continuação)

			N	Material em	n suspensã	io						Ma	aterial do l	eito						
				(%)							(%)				Coef	iciente d	le Unifor	midade	(mm)	
No. Med.	Data	Argila	Silte	Ar.fina	Ar.med.	Ar.gros.	Conc. Total	Argila	Silte	Argila + Silte	Ar.fina	Ar.med.	Ar.gros.	Pedreg	D 10%	D 35%	D 50%	D 65%	D 90%	Observação
		0,0005 - 0,004	0,004 - 0,0625	0,0625 - 0,250	0,250 - 0,500	0,500 - 2,00	(ppm)	0,0005- 0,004	0,004 - 0,0625	0,000 - 0,0625	0,0625 - 0,250	0,250 - 0,500	0,500 - 2,00	2,00 - 64,00	2 1070	0070	2 00%	2 00 %	2 3070	
25	8/6/10	26,5	51,6	21,8	0,1	0	521,5			2,3	59,2	29	9,2	0,3	0,078	0,145	0,198	0,272	0,493	
26	29/6/10	20,2	74,6	5,2	0	0	193,6	1,7	12,3		53,8	25,7	6,4	0,1	0,048	0,136	0,178	0,237	0,445	
27	19/7/10	29,8	65,4	4,8	0	0	173,7	3,8	25,8		47,8	17,8	4,5	0,3	0,019	0,077	0,118	0,178	0,398	
28	2/8/10	37,3	59,8	2,9	0	0	164,4	3,1	17		53,5	17	9	0,4	0,030	0,092	0,129	0,196	0,484	
29	13/9/10	11,6	86,5	1,9	0	0	32,36	1	7,8		45,3	41,3	4,2	0,4	0,069	0,165	0,228	0,300	0,452	
30	25/10/10	49,6	48,2	2,2	0	0	65,29	2,5	14,6		33	44,8	4,3	0,8	0,028	0,152	0,250	0,315	0,453	
Ream.	25/10/10	38,8	59,7	1,5	0	0	64,41													Reamostragem dos sedimentos em suspensão
31	12/11/10	71,1	26,4	2,5	0	0	361,1	1,8	12		55,7	28,3	2,2	0	0,047	0,124	0,168	0,228	0,404	
Ream.	12/11/10	56,2	40,6	3,2	0	0	354,1													Reamostragem dos sedimentos em suspensão
32	6/12/10	51,2	40,6	8,2	0	0	308,4	1,5	9		31,4	50,8	6,3	1	0,060	0,209	0,280	0,343	0,477	
33	17/12/10	55,3	38,5	6,2	0	0	323,1			0,1	43,4	51,9	4,1	0,5	0,151	0,220	0,274	0,333	0,460	
34	10/1/11	45,2	49,1	5,6	0,1	0	1063			4,4	43,7	45,8	5,7	0,4	0,082	0,189	0,258	0,323	0,466	
35	25/1/11	38,6	55,3	6,1	0	0	1443			1,5	59	38,7	0,7	0,1	0,081	0,148	0,201	0,271	0,414	
36	8/2/11	31,4	57,9	10,7	0	0	1421			0,9	69	29,4	0,7	0	0,089	0,153	0,188	0,233	0,372	
37	21/2/11	31,0	53,9	14,9	0,2	0	1413			0,3	48,6	49,6	1,5	0	0,135	0,202	0,255	0,313	0,439	
38	14/3/11	21,1	59,4	18,9	0,6	0	1160			1	60,5	36	2,4	0,1	0,092	0,166	0,209	0,267	0,428	
39	28/3/11	18,4	57,2	23,4	1	0	888,2													Sem amostra do leito
40	11/4/11	20,0	56,5	23,1	0,4	0	876,5			0,5	57,1	23,3	16,7	2,4	0,104	0,175	0,221	0,312	0,873	
41	25/4/11	14,6	61,1	23,8	0,5	0	845,5			0,2	30,1	53,1	15,7	0,9	0,163	0,269	0,324	0,393	0,664	
42	9/5/11	20,1	53,3	26,0	0,6	0	746	1,5	7,3		32,2	44,5	13,8	0,7	0,075	0,219	0,291	0,363	0,591	
43	25/5/11	13,1	57,4	28,5	1	0	537,4	1,2	6,2		17,6	54,4	17,5	3,1	0,111	0,293	0,345	0,406	0,926	
44	6/6/11	18,1	57,2	24,5	0,2	0	404	1,2	5,6		32,7	49,4	9,2	1,9	0,083	0,224	0,291	0,358	0,512	
45	22/6/11	24,8	60,9	14,2	0,1	0	329,4	2,6	19,9		36,4	28,1	11,2	1,8	0,033	0,095	0,168	0,291	0,592	
46	20/7/11	24,5	74,4	1,1	0	0	191,4	4,2	21,6		24,6	35,1	12,3	2,2	0,016	0,136	0,251	0,334	0,622	
47	8/8/11	40,7	55,6	3,7	0	0	187			21,9	37,6	31,8	7,3	1,4		0,107	0,185	0,282	0,481	

Estação Fluviométrica São Carlos

Tabela 6.4. Resumo das Análises do Sedimento em Suspensão e do Leito em São Carlos

			N	/laterial em	suspensã	0						Ma	aterial do le	eito						
				(%)							(%)				Coefi	ciente d	e Unifor	midade	(mm)	
No. Med.	Data	Argila	Silte	Ar.fina	Ar.med.	Ar.gros.	Conc. Total	Argila	Silte	Argila + Silte	Ar.fina	Ar.med.	Ar.gros.	Pedreg	D 10%	D 35%	D 50%	D 65%	D 90%	Observação
		0,0005 - 0,004	0,004 - 0,0625	0,0625 - 0,250	0,250 – 0,500	0,500 – 2,00	(ppm)	0,0005- 0,004	0,004 – 0,0625	0,000 - 0,0625	0,0625 - 0,250	0,250 – 0,500	0,500 – 2,00	2,00 - 64,00	2 1070	2 00 %	2 00 70	D 0070	2 30 %	
1	25/3/09	26,0	59,3	14,0	0,2	0,5	832,9			0,6	63,6	11,7	22,5	1,6	0,102	0,163	0,198	0,259	1,240	
2	5/4/09	17,7	70,4	11,2	0,3	0,4	928			0,1	39,9	42,1	16,5	1,4	0,151	0,229	0,295	0,369	0,908	
3	12/4/09	18,3	66,7	14,2	0,5	0,3	756			0,2	55,1	31,2	11,7	1,8	0,142	0,195	0,234	0,300	0,604	
4	6/5/09	22,5	63,1	13,7	0,6	0,1	646,2			0,1	39,7	40,5	16,2	3,5	0,155	0,233	0,299	0,385	1,109	
5	24/5/09	14,5	64,4	20,1	1,0	0,0	500,7			0,1	32,9	47,1	16,7	3,2	0,165	0,260	0,322	0,400	1,173	
6	4/6/09	18,1	62,2	19,0	0,7	0,0	388			0,1	25,5	57,9	15,2	1,3	0,179	0,288	0,336	0,401	0,740	
Ream.	4/6/09	12,1	67,0	19,5	1,3	0,1	459,4													Reamostragem dos sedimentos em suspensão
7	24/6/09	23,8	61,8	14,2	0,2	0,0	372,2	0,6	7,1		36,5	40,2	12,3	3,3	0,079	0,205	0,284	0,350	0,895	
Ream.	24/6/09	14,9	71,6	13,2	0,3	0,0	403,5													Reamostragem dos sedimentos em suspensão
8	8/7/09	19,8	63,0	17,0	0,2	0,0	361,6	1,4	13,5		32,3	23,9	19,5	9,4	0,048	0,113	0,279	0,409	1,922	
9	26/8/09	22,9	55,0	22,1	0,0	0,0	308,9	2,3	11,6		76,1	8,7	1,3	0	0,049	0,081	0,097	0,114	0,250	
10	9/9/09	28,4	52,2	18,8	0,4	0,2	256,5	2,8	12,8		81,5	1,5	1,4	0	0,037	0,080	0,090	0,105	0,162	
11	6/10/09	40,7	36,9	22,3	0,1	0,0	348,6	1,7	8,1		89,4	0,8	0	0	0,062	0,086	0,098	0,113	0,182	
12	27/11/09	34,5	43,4	21,9	0,2	0,0	579,6			0,8	84,6	12,2	1,5	0,9	0,082	0,138	0,164	0,195	0,295	
13	30/11/09	38,4	44,7	16,8	0,1	0,0	705,4			1,0	73,4	17,2	6,7	1,7	0,073	0,123	0,160	0,210	0,460	
14	9/12/09	34,4	43,9	21,6	0,1	0,0	1143			0,7	81,6	10,2	6,6	0,9	0,088	0,145	0,171	0,203	0,392	
15	6/1/10	32,2	54,1	13,7	0,0	0,0	1111			0,9	97,6	1,4	0,1	0	0,084	0,138	0,159	0,180	0,222	
16	22/1/10	30,3	57,5	12,2	0,0	0,0	1004			0,5	91,9	7,3	0,2	0,1	0,106	0,152	0,172	0,195	0,240	
17	3/2/10	28,5	58,3	12,9	0,3	0,0	1056			0,3	76,4	20,8	2,5	0	0,132	0,169	0,193	0,223	0,354	
18	17/2/10	33,2	60,3	6,3	0,2	0,0	1535			0,2	70,7	22,1	6,3	0,7	0,131	0,173	0,201	0,235	0,437	
19	3/3/10	26,4	65,4	7,9	0,3	0,0	1022			0,2	73,1	18,8	7,1	0,8	0,138	0,174	0,200	0,230	0,458	
20	17/3/10	28,0	66,1	5,6	0,3	0,0	1250			0,3	47,7	37,7	12,5	1,8	0,146	0,206	0,260	0,337	0,642	
21	7/4/10	25,7	63,3	10,6	0,4	0,0	897,5			0,2	52,1	28,7	11,2	7,8	0,140	0,199	0,243	0,320	1,603	
22	21/4/10	17,4	68,5	13,8	0,3	0,0	630,5			0,2	48,9	38,1	11,1	1,7	0,144	0,205	0,255	0,324	0,583	
23	12/5/10	26,8	61,7	11,1	0,4	0,0	686,3			0,5	49,1	36,8	12,4	1,2	0,106	0,189	0,253	0,329	0,608	
24	27/5/10	20,3	65,7	13,8	0,2	0,0	488,2	0,8	8,3		40,9	33,2	14,9	1,9	0,065	0,112	0,251	0,342	0,747	

Tabela 6.4. Resumo das Análises do Sedimento em Suspensão e do Leito em São Carlos (continuação)

			N	/laterial em	n suspensã	0						Ma	aterial do le	eito						
				(%)							(%)				Coefi	ciente d	e Unifor	midade	(mm)	
No. Med.	Data	Argila	Silte	Ar.fina	Ar.med.	Ar.gros.	Conc. Total	Argila	Silte	Argila + Silte	Ar.fina	Ar.med.	Ar.gros.	Pedreg	D 400/	D 250/	D 500/	D 050/	D 000/	Observação
		0,0005 - 0,004	0,004 - 0,0625	0,0625 - 0,250	0,250 - 0,500	0,500 - 2,00	(ppm)	0,0005- 0,004	0,004 - 0,0625	0,000 - 0,0625	0,0625 - 0,250	0,250 - 0,500	0,500 - 2,00	2,00 - 64,00	D 10%	D 35%	D 30%	של 65%	D 90%	
25	10/6/10	19,9	63,1	16,8	0,2	0,0	579,2	0,8	10,5		38,4	31,7	16,3	2,3	0,059	0,115	0,253	0,349	0,797	
26	22/6/10	24,4	58,9	16,6	0,1	0,0	349,9	1,8	16,8		62,4	14,5	4,2	0,3	0,042	0,081	0,098	0,119	0,379	
27	21/7/10	20,3	61,0	18,7	0,0	0,0	255,8	1,3	10,0		67,7	11,1	8,3	1,6	0,061	0,084	0,096	0,113	0,492	
28	4/8/10	30,1	47,8	22,0	0,1	0,0	248,9	1,8	11,3		70,9	8,7	7	0,3	0,057	0,082	0,095	0,110	0,398	
29	15/9/10	4,2	54,2	41,6	0,0	0,0	154,4	2,8	16,4		60,7	13	6,6	0,5	0,032	0,081	0,098	0,121	0,420	
30	27/10/10	15,0	39,1	45,8	0,1	0,0	190,6			3,7	81,7	9,6	4,7	0,3	0,072	0,117	0,147	0,183	0,308	
Ream.	27/10/10	15,2	35,4	49,4	0,0	0,0	201,9													Reamostragem dos sedimentos em suspensão
31	17/11/10	37,1	26,3	36,4	0,2	0,0	494,1			1,2	96,9	1,2	0,6	0,1	0,090	0,141	0,160	0,183	0,227	
Ream.	17/11/10	44,5	34,0	21,5	0,0	0,0	484,5													Reamostragem dos sedimentos em suspensão
32	8/12/10	34,9	28,1	37,0	0,0	0,0	501,9			3,9	80,9	8,8	6,2	0,2	0,075	0,132	0,159	0,192	0,327	
33	21/12/10	33,0	38,4	28,6	0,0	0,0	533,4			0,6	95,8	2,4	1,1	0,1	0,090	0,141	0,161	0,185	0,230	
34	12/1/11	31,9	49,6	18,4	0,1	0,0	944,5			0,4	63,1	23,7	10,9	1,9	0,112	0,171	0,208	0,261	0,602	
35	27/1/11	33,4	48,2	18,3	0,1	0,0	1253			0,5	73,4	12,9	11,4	1,8	0,108	0,160	0,189	0,225	0,648	
36	10/2/11	30,4	58,9	10,7	0,0	0,0	1127			0,6	96,2	2,9	0,3	0	0,108	0,150	0,169	0,191	0,231	
37	23/2/11	36,4	49,7	13,8	0,1	0,0	1325			0,4	91,5	7,4	0,6	0,1	0,113	0,156	0,175	0,198	0,241	
38	16/3/11	24,0	59,4	16,0	0,6	0,0	988,8			0,3	75,0	19	5,4	0,3	0,135	0,172	0,196	0,226	0,397	
39	30/3/11	19,8	63,6	15,9	0,7	0,0	784,1			0,2	57,3	33,8	8,2	0,5	0,143	0,191	0,228	0,294	0,482	
40	13/4/11	21,6	58,5	19,1	0,8	0,0	890			0,5	51,4	18,3	25,5	4,3	0,125	0,192	0,243	0,396	1,382	
41	28/4/11	18,6	66,0	14,6	0,8	0,0	776,4			0,2	53,9	38,2	7,4	0,3	0,137	0,194	0,237	0,305	0,475	
42	11/5/11	15,7	61,8	21,0	1,5	0,0	665,1			0,2	52,9	31,7	12,7	2,5	0,141	0,195	0,240	0,309	0,832	
43	27/5/11	14,2	60,7	23,7	1,4	0,0	601,8	2,0	9,3		37,4	32,8	15,1	3,4	0,050	0,193	0,258	0,353	0,972	
44	8/6/11	16,0	71,0	12,6	0,4	0,0	455,4			0,3	44,7	40,3	12,2	2,5	0,150	0,216	0,273	0,353	0,722	_
45	29/6/11	15,0	68,8	16,0	0,2	0,0	367,9	1,0	11,7		71,4	6	6,5	3,4	0,056	0,083	0,095	0,111	0,484	
46	23/7/11	20,6	57,1	22,2	0,1	0,0	353	0,5	6,0		70,3	8,9	9,8	4,5	0,069	0,098	0,119	0,163	0,817	
47	10/8/11	28,8	49,7	21,5	0,0	0,0	282,4			9,1	60,7	16,5	9,1	4,6	0,066	0,091	0,115	0,195	0,916	

Estação Fluviométrica Humaitá

Tabela 6.5.
Resumo das Análises do Sedimento em Suspensão e do Leito em Humaitá

			N	/laterial em	suspensã	0														
				(%)						(%)				Coefi	ciente d	e Unifor	rmidade	(mm)		
No. Med.	Data	Argila	Silte	Ar.fina	Ar.med.	Ar.gros.	Conc. Total	Argila	Silte	Argila + Silte	Ar.fina	Ar.med.	3	Pedreg	D 10%	D 35%	D 50%	D 65%	D 90%	Observação
		0,0005 - 0,004	0,004 - 0,0625	0,0625 - 0,250	0,250 - 0,500	0,500 - 2,00	(ppm)	0,0005- 0,004	0,004 - 0,0625	0,000 - 0,0625	0,0625 - 0,250	0,250 - 0,500	0,500 – 2,00	2,00 - 64,00	D 10%	33 %	50%	D 03 /6	D 30%	Observação Sem amostra do leito Reamostragem dos sedimentos em suspensão Reamostragem dos sedimentos em suspensão
1	27/3/09	26,4	57,4	15,9	0,3	0	720,8													Sem amostra do leito
2	6/4/09	22,1	65,4	12,2	0,3	0	832,1			0,2	38,3	58,8	2,6	0,1	0,154	0,242	0,286	0,339	0,448	
3	14/4/09	14,6	69,4	15,7	0,3	0	735,3			0,3	34,8	57,2	7,5	0,2	0,155	0,252	0,300	0,359	0,481	
4	8/5/09	14,4	64,5	20,5	0,6	0	650,6			0,1	39,1	42	17,2	1,6	0,145	0,238	0,300	0,383	0,741	
5	26/5/09	16,1	61,7	21,7	0,5	0	562,1			0,4	40,8	39,3	16,4	3,1	0,144	0,225	0,293	0,380	0,900	
6	6/6/09	17,2	58,6	23,5	0,6	0,1	493,5	1,5	8,3		39	38,3	12,3	0,6	0,066	0,181	0,256	0,335	0,584	
Ream.	6/6/09	12,2	63,1	24,2	0,4	0,1	500,8													Reamostragem dos sedimentos em suspensão
7	26/6/09	19,0	65,9	15,1	0	0	353,4			0,2	28,4	41,7	24,2	5,5	0,159	0,281	0,358	0,458	1,435	
Ream.	26/6/09	13,3	68,6	18,1	0	0	347,7													Reamostragem dos sedimentos em suspensão
8	10/7/09	20,7	62,1	17,2	0	0	326,4			0,1	14	62,5	20,1	3,3	0,229	0,318	0,377	0,430	0,945	
9	28/8/09	30,6	61,9	7,5	0	0	210,2			0,9	26,5	59,6	10,5	2,5	0,161	0,276	0,326	0,386	0,580	
10	11/9/09	33,5	63,0	3,3	0,2	0	199,1			0,4	23,5	63,1	11,4	1,6	0,179	0,291	0,334	0,393	0,553	
11	8/10/09	36,5	56,5	7,0	0	0	253,3			0,3	28,3	60,7	9,8	0,9	0,165	0,277	0,320	0,374	0,504	
12	25/11/09	43,2	45,6	11,1	0,1	0	471,3			0,2	26,8	57,4	13,8	1,8	0,167	0,278	0,331	0,396	0,644	
13	2/12/09	43,2	45,8	10,9	0,1	0	625,3			0,6	30	57,9	9,8	1,7	0,144	0,272	0,316	0,377	0,524	
14	11/12/09	38,5	48,6	12,9	0	0	981,2			0,2	25,7	59,5	13,4	1,2	0,168	0,281	0,332	0,394	0,583	
15	8/1/10	35,3	52,9	11,8	0	0	946,2			1,1	56,1	24,6	16,8	1,4	0,089	0,167	0,219	0,301	0,748	
16	20/1/10	32,0	54,0	13,9	0,1	0	1112			0,2	40,2	33,4	22,6	3,6	0,138	0,227	0,306	0,417	1,189	
17	5/2/10	29,6	54,4	15,8	0,2	0	957			0,2	44,3	39	15,6	0,9	0,146	0,216	0,277	0,360	0,651	
18	19/2/10	40,7	51,2	8,0	0,1	0	1584			0,2	46,5	40,1	9,8	3,4	0,139	0,208	0,266	0,333	0,596	
19	5/3/10	25,1	64,4	10,3	0,2	0	1009			0,3	49,4	47,2	2,8	0,3	0,137	0,202	0,252	0,313	0,447	
20	19/3/10	25,4	62,9	11,2	0,5	0	1050			0,2	39,7	51	8,6	0,5	0,146	0,231	0,288	0,352	0,489	
21	9/4/10	23,5	64,0	12,1	0,4	0	773,6			0,2	51,4	46,9	1,4	0,1	0,143	0,200	0,245	0,305	0,421	
22	23/4/10	15,9	69,4	14,5	0,2	0	535,6			0,1	26,7	66	5,9	1,3	0,172	0,275	0,320	0,372	0,481	
23	14/5/10	23,9	60,6	15,4	0,1	0	695,4			0,3	33,2	53,1	10,4	3	0,143	0,258	0,311	0,377	0,607	
24	29/5/10	22,4	58,2	19,1	0,3	0	490,7			0,2	23,5	63,6	11,6	1,1	0,175	0,289	0,334	0,392	0,549	

Tabela 6.5.
Resumo das Análises do Sedimento em Suspensão e do Leito em Humaitá (continuação)

			N	/laterial em	suspensã	0														
		(%)												Coefic	ciente d	le Unifor	midade	(mm)		
No. Med.	Data	Argila	Silte	Ar.fina	Ar.med.	Ar.gros.	Conc. Total	Argila	Silte	Argila + Silte	Ar.fina	Ar.med.	Ar.gros.	Pedreg	D 400/	D 250/	D 500/	D 050/	D 90%	Observação
		0,0005 - 0,004	0,004 - 0,0625	0,0625 - 0,250	0,250 - 0,500	0,500 - 2,00	(ppm)	0,0005- 0,004	0,004 - 0,0625	0,000 - 0,0625	0,0625 - 0,250	0,250 - 0,500	0,500 – 2,00	2,00 - 64,00	D 10%	D 35%	D 50%	D 65%	D 90%	Observação Reamostragem dos sedimentos em suspensão Reamostragem dos sedimentos em suspensão
25	12/6/10	29,2	55,3	15,3	0,2	0	478,1			0,2	37,2	50,4	10,8	1,4	0,150	0,241	0,298	0,365	0,546	
26	24/6/10	24,2	66,6	9,2	0	0	244			0,3	32,7	53,4	11,9	1,7	0,160	0,260	0,313	0,379	0,575	
27	23/7/10	28,0	61,6	10,3	0,1	0	159,8			0,6	34,2	47,6	14,1	3,5	0,157	0,254	0,313	0,388	0,893	
28	6/8/10	37,1	57,3	5,5	0,1	0	150,7			2,7	27,7	56,9	12,4	0,3	0,153	0,267	0,318	0,381	0,545	
29	17/9/10	25,4	62,6	12,0	0	0	60,72	0,7	4,7		32,3	46,3	14,7	1,3	0,136	0,238	0,302	0,376	0,681	
30	29/10/10	39,8	54,0	6,2	0	0	75,77	0,8	5,1		33,9	49,5	7,8	2,9	0,119	0,227	0,291	0,356	0,514	
Ream.	29/10/10	39,2	52,7	8,0	0,1	0	80,62													Reamostragem dos sedimentos em suspensão
31	19/11/10	59,1	37,4	3,5	0	0	312,8	1,6	6,5		23,1	56,1	11,9	0,8	0,111	0,265	0,316	0,375	0,541	
Ream.	19/11/10	60,2	36,5	3,3	0	0	314													Reamostragem dos sedimentos em suspensão
32	10/12/10	44,3	45,8	9,9	0	0	347,4	1,6	7,7		35,5	44	10,4	0,8	0,087	0,203	0,272	0,344	0,538	
33	23/12/10	36,3	51,1	12,6	0	0	430			0,4	34	49,6	14,9	1,1	0,158	0,255	0,312	0,383	0,659	
34	14/1/11	31,0	52,8	16,0	0,2	0	837,7			0,6	39,1	52,5	7,3	0,5	0,138	0,234	0,294	0,349	0,481	
35	29/1/11	36,7	48,9	14,1	0,3	0	753,4			0,9	66,4	32,2	0,5	0	0,102	0,163	0,198	0,242	0,388	
36	12/2/11	31,3	52,8	15,7	0,2	0	1101			0,1	34,1	47,8	14,7	3,3	0,153	0,256	0,315	0,391	0,801	
37	25/2/11	35,0	50,3	14,4	0,3	0	1152			0,3	40,6	44,5	13,5	1,1	0,152	0,228	0,289	0,364	0,595	
38	18/3/11	23,2	59,1	17,1	0,6	0	863,8			0,2	43,9	48,2	7,5	0,2	0,138	0,215	0,273	0,338	0,479	
39	1/4/11	19,5	60,6	19,3	0,6	0	719			0,2	38,3	42,7	16,9	1,9	0,152	0,237	0,302	0,384	0,792	
40	15/4/11	19,0	55,8	24,7	0,5	0	746,1			0,1	32,5	52,7	13,8	0,9	0,164	0,261	0,315	0,383	0,598	
41	30/4/11	20,2	64,0	15,5	0,3	0	665,5			0,2	45,7	44,1	7,8	2,2	0,145	0,213	0,268	0,338	0,495	
42	13/5/11	14,0	70,2	15,5	0,3	0	665,2	1,9	7		57,7	22,8	8,9	1,7	0,076	0,163	0,199	0,244	0,533	
43	24/5/11	11,8	67,1	20,4	0,7	0	582,6	1,5	8		50,2	23,3	14,4	2,6	0,074	0,176	0,215	0,293	0,849	
44	10/6/11	17,4	62,3	20,2	0,1	0	434,8	2,2	4,8		49	29,8	13,2	1	0,097	0,178	0,227	0,300	0,619	
45	1/7/11	18,0	68,0	13,7	0,3	0	268,4			0,1	44	48,6	5,5	1,8	0,152	0,219	0,273	0,337	0,479	
46	30/7/11	32,6	60,5	6,8	0,1	0	253,5			0,6	39,2	50	7,3	2,9	0,150	0,232	0,289	0,355	0,507	
47	12/8/11	42,2	50,3	7,5	0	0	197,5													Sem amostra do leito

Estação Fluviométrica Jaciparaná Vila

Tabela 6.6.
Resumo das Análises do Sedimento em Suspensão e do Leito em Jaciparaná Vila

				Mater	ial em sus	pensão						Ма							
				((%)				(%) Coeficiente de Uniformidade										1
No. Med.	Data	Argila	Silte	Argila + Silte	Ar.fina	Ar.med.	Ar.gros.	Conc. Total	Argila + Silte	Ar.fina	Ar.med.	Ar.gros.	Pedreg	D 10%	D 35%	D 50%	D CEN/	D 90%	Observação
		0,0005 - 0,004	0,004 - 0,0625	0,000 - 0,0625	0,0625 - 0,250	0,250 – 0,500	0,500 – 2,00	(ppm)	0,000 - 0,0625	0,0625 - 0,250	0,250 – 0,500	0,500 – 2,00	2,00 – 64,00	D 10%	D 33 /6	D 30 %	D 03 /6	D 30 /6	
1	30/3/09			100,0	0,0	0,0	0,0	20,69											Sem granulometria de suspensão e sem amostra do leito
2	10/4/09			100,0	0,0	0,0	0,0	16,23	0,6	21,4	26,9	42,5	8,6	0,140	0,349	0,516	0,784	1,883	Sem granulometria de suspensão
3	17/4/09			100,0	0,0	0,0	0,0	13,03	2,0	40,6	20,9	25,3	11,2	0,101	0,209	0,321	0,543	2,189	Sem granulometria de suspensão
4	28/5/09	27,2	46,1		24,2	1,6	0,9	25,37	4,7	50,8	16,8	14,9	12,8	0,079	0,165	0,223	0,370	2,669	
5	28/6/09	23,2	75,6		1,2	0,0	0,0	21,67	0,0	19,7	14,3	36,1	29,9	0,179	0,519	0,841	1,573	5,542	
6	22/7/09	36,2	63,8		0,0	0,0	0,0	25,56	0,1	20,8	23,8	37,6	17,7	0,175	0,378	0,583	0,884	3,230	
7	4/9/09								0,1	12,5	29	41	17,4	0,229	0,430	0,628	0,940	2,970	Análise de Suspensão inconsistente
8	5/11/09	42,4	52,2		5,4	0,0	0,0	29,45	0,3	16,1	21,8	36,1	25,7	0,191	0,455	0,801	1,417	3,977	
9	4/12/09	39,9	54,1		6,0	0,0	0,0	20,97	0,1	13,5	21,6	39,4	25,4	0,214	0,500	0,912	1,484	3,568	
10	28/1/10	37,9	47,3		14,8	0,0	0,0	26,96	0,0	16,5	28,6	45,9	9	0,198	0,394	0,574	0,868	1,930	
11	25/2/10	28,9	56,7		14,4	0,0	0,0	24,27	0,1	32,9	20,4	27,5	19,1	0,151	0,268	0,446	0,826	3,880	
12	24/3/10	35,7	49,8		14,5	0,0	0,0	60,42	0,0	22,5	23,3	38,7	15,5	0,170	0,367	0,565	0,863	2,553	
13	30/4/10	28,9	63,9		7,2	0,0	0,0	24,92	0,0	20,8	25,9	31	22,3	0,174	0,369	0,563	0,971	4,095	
14	19/5/10								0,9	21,3	25,5	38,9	13,4	0,145	0,362	0,532	0,783	2,809	Análise de Suspensão inconsistente
15	16/6/10	25,4	66,0		8,6	0,0	0,0	24,69	0,0	20,0	27	35,1	17,9	0,181	0,370	0,545	0,797	3,721	
16	12/8/10	30,6	65,0		4,4	0,0	0,0	21,16	0,5	24,2	22,3	33,2	19,8	0,148	0,347	0,559	0,961	3,704	
17	6/10/10			96,8	3,2	0,0	0,0	17,8	0,1	17,0	20,6	42	20,3	0,193	0,460	0,762	1,251	3,120	Decree de la contraction de la
Ream.	6/10/10	40.0	50.0	95,5	4,5	0,0	0,0	17,62	0.0	0.7	00.7	04	00.0	0.000	0.400	0.007	4.005	0.740	Reamostragem dos sedimentos em suspensão
18	1/12/10 20/1/11	42,0	52,2		5,8	0,0	0,0	35,65 50,39	0,0	8,7	33,7	31 24,3	26,6	0,260 0,187	0,432	0,637 0,456	1,265 0,751	3,746 3,638	
19 20	16/2/11	48,5 40,2	51,5 42,9		0,0 16,1	0,0	0,0	44,28	0,2	19,5	35,1	24,3	20,9		0,341	0,456	1,122	4,711	
21	24/3/11	40,2	42,9	65,0	35,0	0,8	0,0	16,51	0,9	24,9	21,8	27,4	25	0,116	0,338	0,008	1,122	4,711	Sem amostra do leito

<u>Observação</u>: as baixas concentrações de sedimentos em suspensão encontradas em 30/03/2009, 10/04/2009 e 17/04/2009 impossibilitaram a obtenção da granulometria dos sedimentos em suspensão.

ingº José Eduardo Morei CREA: 21112-D/RJ

Estação Fluviométrica Montante Jaciparaná

Tabela 6.7.
Resumo das Análises do Sedimento em Suspensão e do Leito em Montante Jaciparaná

				Materi	ial em sus _l	pensão						Ма	terial do le	eito					
		(%)							(%)						ciente d	e Unifor	midade	(mm)	
No. Med.	Data	Argila	Silte	Argila + Silte	Ar.fina	Ar.med.	Ar.gros.	Conc. Total	Argila + Silte	Ar.fina	Ar.med.	Ar.gros.	Pedreg		0% D 35%		D 65%	En/ D 000/	Observação
		0,0005 -		-,	0,0625 -	0,250 -	0,500 -	(ppm)		0,0625 -		0,500 -	2,00 -	D 10%	35%	D 30 /6	D 65%	D 90%	
		0,004	0,0625	0,0625	0,250	0,500	2,00		0,0625	0,250	0,500	2,00	64,00						
1	25/3/11			58,2	41,8	0,0	0,0	17,17	2,3	27,6	19,4	30,8	19,9	0,103	0,303	0,512	0,829	3,967	
2	8/4/11			49,4	41,5	9,1	0,0	27,86	2,7	47,9	20,2	20,4	8,8	0,086	0,178	0,248	0,395	1,788	
3	5/5/11			85,4	14,1	0,5	0,0	21,9	0,8	24,6	23	32,5	19,1	0,130	0,342	0,527	0,844	4,119	
4	17/6/11	27,2	64,5		8,3	0,0	0,0	27,13	0,4	17,0	16,3	34,5	31,8	0,179	0,531	0,985	1,766	5,580	
5	4/8/11	30,9	65,8		3,3	0,0	0,0	20,3	0,9	17,5	14,8	31,7	35,1	0,166	0,544	1,050	2,007	5,461	

6.1.2. Análises do Sedimento em Suspensão na Superfície do Escoamento

Apresenta-se a seguir os resultados das análises de concentração dos sedimentos em suspensão (CSS) na superfície do escoamento. Esta modalidade de amostragem, que teve início em novembro de 2010, acontece apenas nas estações fluviométricas do rio Madeira (Abunã, Jusante Caldeirão do Inferno, Porto Velho, São Carlos e Humaitá).

Os resultados obtidos para as medições realizadas em cada estação, do início da amostragem até o mês de agosto de 2011, constam na Tabela 6.8. a Tabela 6.12.

Tabela 6.8.

Análises da Concentração do Sedimento em Suspensão na Superfície do Escoamento em Abunã

Dete	Vazão	CSS
Data	(m³/s)	(mg/l)
30/11/2010	8.319	412,9
14/12/2010	8.143	364,8
04/01/2011	20.221	579,7
18/01/2011	17.965	390,6
02/02/2011	26.196	677,0
15/02/2011	28.998	723,6
01/03/2011	32.351	473,6
22/03/2011	39.974	315,6
05/04/2011	42.668	274,2
19/04/2011	40.425	254,3
04/05/2011	28.494	142,4
17/05/2011	24.044	115,3
01/06/2011	20.999	91,5
14/06/2011	15.110	95,5
07/07/2011	7.829	111,8
05/08/2011	6.427	154,1

Tabela 6.9.

Análises da Concentração do Sedimento em Suspensão na Superfície do Escoamento em Jusante Caldeirão do Inferno

Data	Vazão	CSS
Data	(m³/s)	(mg/l)
02/12/2010	9.063	353,2
15/12/2010	8.667	313,4
06/01/2011	19.813	798,0
19/01/2011	20.370	372,1
03/02/2011	30.954	1036,9
17/02/2011	35.520	877,3
02/03/2011	38.853	563,5
23/03/2011	41.283	298,4
06/04/2011	43.023	522,8
20/04/2011	40.101	537,4
06/05/2011	32.991	311,2
19/05/2011	26.901	177,1
03/06/2011	21.473	205,9
15/06/2011	14.538	136,0
09/07/2011	8.069	112,1
02/08/2011	7.271	149,9

Tabela 6.10.

Análises da Concentração do Sedimento em Suspensão na Superfície do Escoamento em Porto Velho

Data	Vazão	CSS
Data	(m³/s)	(mg/l)
06/12/2010	8.566	173,3
17/12/2010	8.883	254,7
10/01/2011	19.571	754,3
25/01/2011	23.622	511,8
08/02/2011	30.385	697,5
21/02/2011	36.402	632,2
14/03/2011	38.791	471,3
28/03/2011	41.316	332,6
11/04/2011	45.697	304,0
25/04/2011	40.435	230,6
09/05/2011	35.859	202,5
25/05/2011	25.168	119,0
06/06/2011	20.664	118,2
22/06/2011	12.447	67,4
20/07/2011	6.651	89,5
08/08/2011	6.511	99,9

Tabela 6.11.

Análises da Concentração do Sedimento em Suspensão na Superfície do Escoamento em São Carlos

Data	Vazão	CSS
Data	(m³/s)	(mg/l)
08/12/2010	9.894	259,4
21/12/2010	11.621	292,9
12/01/2011	20.228	604,8
27/01/2011	24.097	649,2
10/02/2011	31.140	670,4
23/02/2011	38.872	579,4
16/03/2011	41.924	486,0
30/03/2011	42.838	306,1
13/04/2011	47.866	321,1
28/04/2011	38.512	326,1
11/05/2011	34.048	324,6
27/05/2011	25.719	149,9
08/06/2011	20.133	167,1
29/06/2011	11.752	118,6
23/07/2011	8.957	123,9
10/08/2011	8.290	118,2

Tabela 6.12.

Análises da Concentração do Sedimento em Suspensão na Superfície do Escoamento em Humaitá

Data	Vazão	CSS
Data	(m³/s)	(mg/l)
10/12/2010	10.878	207,6
23/12/2010	11.990	259,3
14/01/2011	22.362	486,4
29/01/2011	25.033	670,4
10/02/2011	35.330	447,1
25/02/2011	38.502	600,6
18/03/2011	45.429	302,3
01/04/2011	48.951	186,5
15/04/2011	54.659	220,8
30/04/2011	39.243	202,0
13/05/2011	33.005	144,4
24/05/2011	27.587	118,8
10/06/2011	21.276	85,0
01/07/2011	12.223	184,1
30/07/2011	9.368	179,7
12/08/2011	8.075	152,3

6.1.3. Análises do Sedimento em Suspensão das Amostras Pontuais

Apresentam-se a seguir os resultados das análises da primeira campanha de amostragem pontual da concentração de sedimentos em suspensão (CSS) realizada no âmbito do Programa de Monitoramento. As amostragens foram realizadas no período próximo da estiagem do rio, entre os meses de julho e agosto de 2011, nas estações Jusante Caldeirão do Inferno, Porto Velho e Humaitá.

A Tabela 6.13. a Tabela 6.15., apresentadas a seguir, mostram o resumo dos resultados nas diferentes verticais de amostragem, diferenciando nelas a concentração de sedimentos finos (silte +argila), concentração de areias e concentração total, enquaanto que a Figura 6.1. a Figura 6.3. apresentam um desenho esquemático das seções de medição, a localização das verticais e profundidades de amostragem e os valores pontuais da concentração total de sedimentos em suspensão.

Tabela 6.13.

Concentração Pontual do Sedimento em Suspensão em Jusante Caldeirão do Inferno – 02/08/2011

Vertical	Distância da ME	Prof. Amostrada	Percentual Prof.	Conc. Finos	Conc. Areias	Conc. Total
	(m)	(m)	(%)	(mg/l)	(mg/l)	(mg/l)
		0,20	Sup.	150,42	3,14	153,56
		1,21	20%	166,20	3,73	169,93
1	311,4	2,42	40%	156,94	2,15	159,09
		3,63	60%	156,70	2,30	159,01
		4,84	80%	149,21	3,67	152,88
		0,20	Sup.	147,10	3,14	150,24
		1,54	20%	148,89	4,29	153,18
2	620,5	3,09 40%		146,08	6,80	152,89
		4,63	60%	147,78	9,14	156,92
		6,18	80%	142,85	10,33	153,18
		0,2	Sup.	138,27	2,07	140,34
		2,07	20%	141,96	6,70	148,66
3	930,4	4,14	40%	142,45	20,55	163,00
		6,2		151,42	26,40	177,82
		8,27	80%	153,05	24,38	177,43

Figura 6.1.

Desenho Esquemático dos Pontos de Amostragem da CSS em Jusante Caldeirão do Inferno

Tabela 6.14.

Concentração Pontual do Sedimento em Suspensão em Porto velho – 20/07/2011

Vertical	Distância da ME	Prof. Amostrada	Percentual Prof.	Conc. Finos	Conc. Areias	Conc. Total
	(m)	(m)	(%)	(mg/l)	(mg/l)	(mg/l)
		0,20	Sup.	96,85	2,31	99,16
		3,59	20%	126,52	2,72	129,24
1	194,7	7,18	40%	149,62	4,23	153,85
		10,76	60%	155,99	7,07	163,05
		14,35	80%	353,82	43,66	397,49
		0,20	Sup.	92,76	3,67	96,43
		3,05	20%	156,49	23,07	179,56
2	391,3	6,11	40%	135,21	3,70	138,91
		9,16	60%	186,73	8,81	195,54
		12,22	80%	220,47	17,86	238,33
		0,2	Sup.	106,30	4,13	110,43
		1,62	20%	144,36	3,53	147,89
3	581,5	3,24	40%	152,65	2,23	154,89
		4,85	60%	160,50	1,89	162,39
		6,47	80%	171,82	3,96	175,78

Figura 6.2.

Desenho Esquemático dos Pontos de Amostragem da CSS em Porto Velho

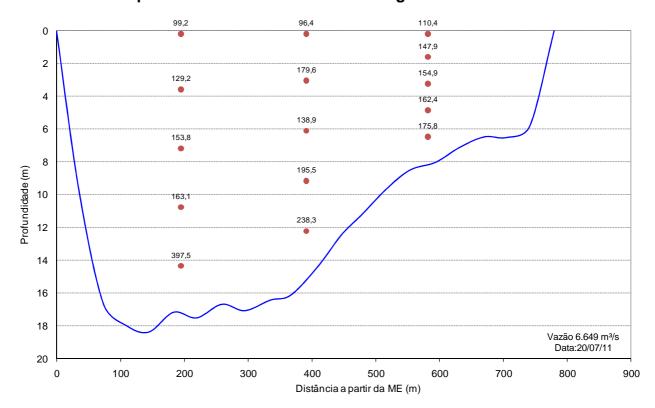


Tabela 6.15.

Concentração Pontual do Sedimento em Suspensão em Humaitá – 30/07/2011

Vertical	Distância da ME	Prof. Amostrada	Percentual Prof.	Conc. Finos	Conc. Areias	Conc. Total
	(m)	(m)	(%)	(mg/l)	(mg/l)	(mg/l)
		0,20	Sup.	203,40	24,45	227,85
		2,48	20%	204,22	12,51	216,74
1	256,3	4,96	40%	219,26	47,03	266,28
		7,45	60%	204,14	7,61	211,75
		9,93	80%	198,35	10,44	208,79
		0,20	Sup.	186,28	3,40	189,68
		2,27 20% 221,89 19,1 4,54 40% 257,66		221,89	6,60	228,50
2	519,1			257,66	13,19	270,86
		6,81	60%	253,87	15,67	269,54
		9,08	80%	246,03	15,22	261,25
		0,2	Sup.	177,94	1,58	179,52
		1,24	20%	204,69	1,72	206,42
3	774,8	2,48	40%	204,69	3,07	207,76
		3,72	60%	188,95	1,92	190,87
		4,96	80%	204,24	2,30	206,54

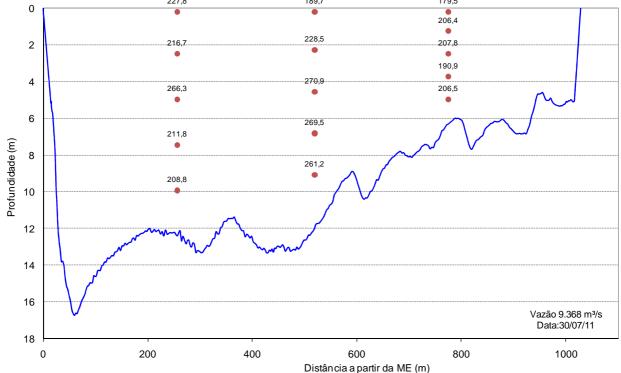


Figura 6.3.

Desenho Esquemático dos Pontos de Amostragem da CSS em Humaitá

227,8
189,7
179,5
206,4

6.2. RESULTADOS DO CÁLCULO DE DESCARGA SÓLIDA

De posse das informações da distribuição granulométrica do sedimento em suspensão (das amostragens integradas na vertical) e do sedimento que compõe o leito do rio Madeira foi possível estimar a descarga sólida em suspensão, de arrasto e total, para cada estação fluviométrica, pelo Método Modificado de Einstein (método de Einstein modificado por Colby & Hembree - 1955), conforme se observa na Tabela 6.16. a Tabela 6.22. Nestas tabelas também é possível visualizar os valores da descarga sólida total determinada em diferentes faixas granulométricas (silte+argila, areia fina, areia média, areia grossa e pedregulho).

O aplicativo utilizado para estimar a descarga sólida de sedimentos para cada medição permite gerar uma planilha com o resumo dos dados fornecidos e os principais resultados, conforme se observa no ANEXO V – "Cálculo da Descarga Sólida segundo o Método de Einstein Modificado".

Como já fora informado, todas as medições de descarga sólida realizadas até agosto de 2011 foram processadas antes da emissão do presente relatório. Destaca-se que na estação fluviométrica Jaciparaná Vila não foi possível determinar a descarga sólida total e de arrasto pelo Método de Einstein Modificado para as medições realizadas em 30/03/2009, 10/04/2009 e 17/04/2009 devido à baixa concentração de sedimentos em suspensão, que impede a determinação da granulometria destas amostras. Nos dias 22/07/2009, 04/12/2009 e 20/01/2011 também não foi possível calcular a descarga pelo Método de Einstein Modificado, pois a granulometria dos sedimentos do leito e em

suspensão não apresentam faixas em comum com porcentagens significativas (o que impede a aplicação do programa de cálculo).

Adicionalmente cabe informar que, como resultado da análise de consistência, houve pequenas correções nos valores de descarga líquida nas medições dos dias 04/05/2010, 18/01/2011 e 15/02/2011 para a estação Abunã e do dia 29/01/2011 para Humaitá. Disto resulta que os valores de descarga sólida apresentados em relatórios anteriores, para os locais e datas especificados, sofreram pequenas alterações.

Nas tabelas que seguem se observa que algumas análises do leito não foram utilizadas por apresentarem inconsistências ou, diretamente, pela impossibilidade de realizar a coleta. Para estas situações a descarga sólida total foi calculada considerando a granulometria do leito da própria estação correspondente a uma data anterior ou posterior.

Estação Fluviométrica Abunã

Tabela 6.16. Resumo do Cálculo da Descarga Sólida em Abunã pelo Método de Einstein Modificado

					Descarga	Descarga	Descarga Sólida	Descarga So	ólida Total USGS (1	t/dia) por Faixa Grar	ulométrica - Método	Einstein Mod.	
Número	_	Leitura da	Conc.	Descarga	Sólida em	Sólida Total	de Arrasto USGS	Argila	Areia	Areia	Areia		
da medicão	Data	Régua (cm)	(mg/l)	Líquida (m³/s)	Suspensão	USGS Método Einstein Mod.	Método Einstein	+ Silte	Fina	Média	Grossa	Pedregulho	Observações
medicao				(11173)	(t/dia)	(t/dia)	Mod. (t/dia)	(0,000 - 0,0625)	(0,0625 - 0,250	(0,250 - 0,500)	(0,500 - 2,00)	(2,00 - 16,00)	
1	29/3/2009	1.930	1.014,00	34.624	3.033.403	3.088.285	13.613	2.597.796	426.088	48.809	15.532	61	
2	8/4/2009	1.902	772,50	33.496	2.235.664	2.377.833	11.331	1.999.333	346.195	31.651	528	125	
3	20/4/2009	1.917	840,10	32.633	2.368.684	2.533.198	10.362	1.958.559	547.643	25.434	1.487	75	
4	19/5/2009	1.729	578,60	28.079	1.403.705	1.544.276	7.385	1.008.299	524.219	11.684	73	0	
5	30/5/2009	1.599	411,30	23.171	823.419	924.730	6.166	565.284	345.615	13.461	370	0	
6	13/6/2009	1.509	515,70	21.525	959.069	1.052.084	5.791	728.140	311.853	11.604	487	0	
Ream.	13/6/2009	1.509	517,70	21.525	962.788	1.060.101	5.791	713.200	334.320	12.087	494	0	Reamostragem dos sedimentos em suspensão
7	30/6/2009	1.438	538,50	20.762	965.979	1.061.973	8.010	721.607	310.432	24.306	5.574	54	
8	23/7/2009	1.184	342,20	12.777	377.752	415.311	2.568	298.347	113.269	3.036	646	13	
9	20/8/2009	976	213,30	8.772	161.669	173.978	1.215	147.670	24.619	1.424	263	0	
10	3/9/2009	870	186,10	6.470	104.038	108.753	522	101.569	6.566	576	42	0	
11	14/10/2009	684	172,20	5.367	79.849	82.254	243	79.286	2.702	250	17	0	
12	4/11/2009	935	325,50	7.806	219.516	228.890	817	209.887	17.819	1.078	106	0	Sem amostra do leito. Para os cálculos foram utilizados dados da amostra do dia 14/10/09.
13	6/12/2009	1.378	1.240,00	17.975	1.925.731	2.027.408	4.308	1.738.104	281.439	7.071	779	14	
14	15/12/2009	1.461	1.274,00	21.690	2.387.507	2.512.915	6.488	2.103.449	395.718	9.517	4.228	3	
15	12/1/2010	1.589	1.346,00	25.152	2.925.073	3.066.627	10.157	2.628.145	401.501	34.008	2.941	32	
16	27/1/2010	1.827	1.372,00	34.143	4.047.351	4.256.190	13.638	3.604.602	609.141	42.235	212	0	
17	10/2/2010		1.639,00	30.407	4.305.937	4.468.757	10.613	4.039.893	398.790	29.191	883	0	
18	23/2/2010	1.795	1.363,00	33.201	3.909.909	4.095.262	12.931	3.544.640	507.304	42.116	987	215	
19	9/3/2010	1.939	1.617,00	40.136	5.607.292	5.851.063	13.003	5.135.184	694.340	20.314	1.129	95	
20	23/3/2010	1.878	1.181,00	36.477	3.722.024	3.939.924	12.434	3.324.578	591.373	23.217	676	80	
21	13/4/2010	1.763	735,00	26.377	1.675.071	1.819.526	7.245	1.169.738	630.484	18.930	375	0	
22	27/4/2010	1.641	455,70	22.775	896.705	1.005.846	7.898	648.399	331.353	24.690	1.376	28	
23	4/5/2010	1.763	805,40	28.135	1.957.818	2.132.252	10.856	1.537.259	553.306	40.538	1.048	101	
24	18/5/2010	1.512	595,70	20.116	1.035.340	1.143.266	5.212	745.554	382.513	14.602	591	6	
25	1/6/2010	1.374	569,00	16.524	812.346	877.332	4.324	700.071	163.245	13.834	177	4	
26	15/6/2010	1.102	280,60	10.833	262.634	284.419	1.886	227.025	53.134	4.242	19	0	
27	6/7/2010	853	124,00	6.246	66.917	70.630	426	64.116	5.704	803	7	0	
28	10/8/2010	764	111,60	4.697	45.290	46.618	147	45.069	1.259	289	0	0	
29	21/9/2010	634	77,39	3.046	20.367	20.690	13	20.510	157	23	0	0	
30	5/10/2010	616	46,50	2.845	11.430	11.608	5	11.541	56	10	0	0	
Ream.	5/10/2010	616	46,80	2.845	11.504	11.707	5	11.545	147	15	0	0	Reamostragem dos sedimentos em suspensão
31	9/11/2010	884	483,60	6.675	278.902	286.439	636	274.693	10.244	1.489	12	0	

Tabela 6.16.

Resumo do Cálculo da Descarga Sólida em Abunã pelo Método de Einstein Modificado (continuação)

					Descarga	Descarga	Descarga Sólida	Descarga Se	ólida Total USGS (1	t/dia) por Faixa Gran	nulométrica - Método	Einstein Mod.	
Número		Leitura da	Conc.	Descarga	Sólida em	Sólida Total	de Arrasto USGS	Argila	Areia	Areia	Areia		a . ~
da medicão	Data	Régua (cm)	(mg/l)	Líquida (m³/s)	Suspensão	USGS Método Einstein Mod.	Método Einstein	+ Silte	Fina	Média	Grossa	Pedregulho	Observações
				` ,	(t/dia)	(t/dia)	Mod. (t/dia)	(0,000 - 0,0625)	(0,0625 - 0,250	(0,250 - 0,500)	(0,500 - 2,00)	(2,00 - 16,00)	
Ream.	9/11/2010	884	481,70	6.675	277.806	285.238	636	273.849	9.889	1.488	12	0	Reamostragem dos sedimentos em suspensão
32	30/11/2010	984	495,90	8.319	356.434	369.569	1.089	342.387	24.400	2.685	97	0	
33	14/12/2010	968	471,00	8.143	331.374	343.362	995	321.539	19.872	1.933	18	0	
34	4/1/2011	1.424	1.200,00	20.221	2.096.555	2.216.857	6.480	1.814.999	380.491	20.884	474	9	
35	18/1/2011	1.432	946,00	17.965	1.468.358	1.554.396	4.858	1.274.501	261.831	17.961	104	0	
36	2/2/2011	1.696	1.791,00	26.196	4.053.632	4.203.303	9.918	3.720.315	415.891	58.978	7.914	206	
37	15/2/2011	1.784	1.640,00	28.998	4.108.901	4.209.227	11.663	3.637.920	543.492	27.608	208	0	
38	1/3/2011	1.904	1.180,00	32.351	3.298.249	3.488.308	9.713	2.741.520	722.136	22.513	1.557	581	
39	22/3/2011	1.984	1.023,00	39.974	3.533.176	3.788.012	17.383	2.753.045	982.971	40.162	10.959	875	
40	5/4/2011	2.013	934,60	42.668	3.445.443	3.719.425	17.838	2.735.772	940.427	36.391	6.706	130	
41	19/4/2011	1.998	948,60	40.425	3.313.232	3.582.492	20.522	2.569.294	950.597	49.422	11.492	1.687	
42	4/5/2011	1.812	695,30	28.494	1.711.746	1.854.573	9.175	1.338.107	487.602	25.119	3.713	32	
43	17/5/2011	1.657	505,00	24.044	1.049.088	1.157.849	5.876	709.308	429.009	18.894	525	113	
44	2/6/2011	1.485	385,80	20.999	699.954	793.316	5.601	463.918	315.648	13.703	47	0	
45	14/6/2011	1.251	276,70	15.110	361.244	408.910	3.725	253.346	143.744	11.570	250	0	
46	7/7/2011	957	136,10	7.829	92.062	98.353	683	83.528	13.327	1.488	11	0	
47	5/8/2011	872	183,80	6.427	102.063	105.835	377	97.589	7.294	946	6	0	

Estação Fluviométrica Jusante Caldeirão do Inferno

Tabela 6.17.
Resumo do Cálculo da Descarga Sólida em Jusante Caldeirão do Inferno pelo Método de Einstein Modificado

					Descarga	Descarga Sólida	Descarga Sólida	Descarga S	ólida Total USGS (1	t/dia) por Faixa Grai	nulométrica - Método	Einstein Mod.	
Número	D-11-	Leitura da	Conc.	Descarga	Sólida em	Total USGS	de Arrasto USGS	Argila	Areia	Areia	Areia		Q
da medicão	Data	Régua (cm)	(mg/l)	Líquida (m³/s)	Suspensão	Método Einstein	Método Einstein	+ Silte	Fina	Média	Grossa	Pedregulho	Observações
medicae				(11173)	(t/dia)	Mod. (t/dia)	Mod. (t/dia)	(0,000 - 0,0625)	(0,0625 - 0,250	(0,250 - 0,500)	(0,500 - 2,00)	(2,00 - 16,00)	
1	1/4/2009	1.828	1.181,00	40.775	4.160.645	4.365.792	17.474	3.172.887	1.036.602	138.000	17.048	1.254	Sem granulometria do leito
2	9/4/2009	1.772	982,40	36.592	3.105.904	3.304.014	15.629	2.552.540	667.533	72.269	11.006	667	
3	18/4/2009	1.817	992,30	38.081	3.264.865	3.479.633	18.938	2.553.009	850.695	56.584	17.458	1.886	
4	20/5/2009	1.626	444,10	27.423	1.052.218	1.179.231	9.170	731.469	414.231	32.492	1.020	19	
5	29/5/2009	1.541	413,90	24.511	876.533	997.381	8.884	571.943	389.780	35.148	511	1	
6	11/6/2009	1.497	498,20	24.362	1.048.658	1.144.932	9.005	815.837	282.049	42.564	4.450	32	
7	29/6/2009	1.409	356,40	20.892	643.318	688.899	6.762	456.731	211.283	18.391	2.381	114	
Ream	29/6/2009	1.409	317,50	20.892	573.102	629.923	6.762	423.734	182.706	20.877	2.488	117	Reamostragem dos sedimentos em suspensão
8	21/7/2009	1.243	295,10	14.234	362.922	398.403	3.278	277.329	107.767	12.279	1.026	2	
9	18/8/2009	1.058	156,40	9.377	126.714	140.071	1.831	120.314	14.718	4.714	325	0	
10	1/9/2009	985	176,10	8.520	129.626	134.633	511	125.768	7.014	1.500	351	0	Análise do leito inconsistente. Para os cálculos foram utilizados dados da amostra do dia 18/08/09
11	16/10/2009	858	153,80	5.590	74.288	76.315	155	74.456	1.410	427	22	0	
12	6/11/2009	991	299,10	8.334	215.360	225.059	777	211.513	10.639	2.659	248	0	
13	5/12/2009	1.318	847,20	17.693	1.295.107	1.358.666	4.636	1.198.583	140.069	18.865	1.129	21	
14	17/12/2009	1.436	1.123,00	23.036	2.235.077	2.347.441	8.636	2.049.318	270.822	23.279	3.483	540	
15	14/1/2010	1.573	1.208,00	27.916	2.913.598	3.055.758	11.373	2.574.770	408.892	69.203	2.710	184	
16	29/1/2010	1.708	1.436,00	34.192	4.242.254	4.476.107	15.086	3.664.944	703.462	102.332	5.282	87	
17	12/2/2010	1.718	1.584,00	35.719	4.888.397	5.142.115	17.097	4.321.080	677.248	130.624	13.042	121	
18	24/2/2010	1.686	1.338,00	35.343	4.085.749	4.309.486	16.522	3.552.126	692.724	61.311	3.213	111	
19	11/3/2010	1.795		40.582									Análise de suspensão inconsistente
20	26/3/2010	1.721	1.215,00	36.505	3.832.148	4.079.613	16.905	3.201.894	750.363	116.809	10.077	470	
21	15/4/2010	1.630	995,10	30.844	2.651.875	2.839.212	12.980	2.175.917	596.165	64.311	2.685	134	
22	29/4/2010	1.527	512,50	26.018	1.152.090	1.278.878	9.448	795.064	434.794	47.142	1.833	45	
23	6/5/2010	1.653	920,90	32.030	2.548.511	2.752.440	13.978	1.965.834	709.684	75.361	1.560	0	
24	20/5/2010	1.409	493,40	21.813	929.885	999.462	7.116	760.882	209.730	27.196	1.639	15	
25	3/6/2010	1.304	491,70	16.845	715.643	764.319	4.565	633.265	114.681	15.713	660	0	
26	17/6/2010	1.107	213,50	10.894	200.959	216.508	1.666	181.437	29.679	5.040	352	0	
27	7/7/2010	915	100,40	6.526	56.606	59.622	269	53.713	4.913	932	65	0	
28	11/8/2010	823	103,80	5.026	45.075	46.684	127	44.646	1.664	337	37	0	
29	22/9/2010	703	66,09	3.366	19.220	19.542	9	19.142	390	0	10	0	
30	7/10/2010	691		2.965									Análise de suspensão inconsistente
Ream.	7/10/2010	691	47,74	2.965	12.228	12.423	9	11.925	498	0	0	0	Reamostragem dos sedimentos em suspensão
31	10/11/2010	941	521,10	7.292	328.317	335.703	385	327.669	6.770	1.192	73	0	
Ream.	10/11/2010	941	513,50	7.292	323.529	330.853	385	322.163	7.431	1.187	73	0	Reamostragem dos sedimentos em suspensão

Tabela 6.17.
Resumo do Cálculo da Descarga Sólida em Jusante Caldeirão do Inferno pelo Método de Einstein Modificado (continuação)

					Descarga	Descarga Sólida	Descarga Sólida	Descarga S	ólida Total USGS (t	/dia) por Faixa Grar	Einstein Mod.		
Número da	Data	Leitura da	Conc.	Descarga Líquida	Sólida em	Total USGS	de Arrasto USGS	Argila	Areia	Areia	Areia		Observações
medicão	Data	Régua (cm)	(mg/l)	(m³/s)	Suspensão	Método Einstein	Método Einstein Mod. (t/dia)	+ Silte	Fina	Média	Grossa	Pedregulho	Obsei vações
					(t/dia)	Mod. (t/dia)	wod. (t/dia)	(0,000 - 0,0625)	(0,0625 - 0,250	(0,250 - 0,500)	(0,500 - 2,00)	(2,00 - 16,00)	
32	2/12/2010	1.026	416,80	9.063	326.370	339.341	992	317.703	18.394	3.129	114	0	
33	15/12/2010	1.012	349,00	8.667	261.353	269.752	437	258.202	7.866	3.471	214	0	
34	6/1/2011	1.384	977,00	19.813	1.672.431	1.769.920	6.878	1.518.060	227.842	22.918	1.097	4	
35	19/1/2011	1.394	471,50	20.370	829.812	903.263	7.133	740.776	141.014	20.894	569	10	
36	3/2/2011	1.597	1.776,00	30.954	4.749.763	4.977.899	13.929	4.229.383	687.755	52.605	7.515	641	
37	17/2/2011	1.684	1.729,00	35.520	5.306.218	5.555.522	14.575	4.716.390	745.706	91.845	1.541	41	
38	2/3/2011	1.768	1.236,00	38.853	4.149.134	4.408.985	17.342	3.382.515	907.934	107.876	9.830	830	
39	23/3/2011	1.835	1.086,00	41.283	3.873.640	4.157.633	20.017	2.869.165	1.131.618	143.646	12.008	1.195	Sem granulometria do leito. Para os cálculos foram utilizados dados da amostra do dia 02/03/11
40	6/4/2011	1.878	1.062,00	43.023	3.947.698	4.262.056	20.480	2.868.585	1.252.773	136.059	4.434	205	Análise do leito inconsistente. Para os cálculos foram utilizados dados da amostra do dia 20/04/11
41	20/4/2011	1.852	1.069,00	40.101	3.703.822	4.022.433	18.686	2.529.994	1.303.700	183.969	4.607	162	
42	6/5/2011	1.683	775,80	32.991	2.211.365	2.413.448	17.435	1.620.640	702.401	83.573	6.668	166	
43	19/5/2011	1.545	559,90	26.901	1.301.363	1.379.019	12.651	897.686	450.608	26.533	4.160	31	
44	3/6/2011	1.416	361,10	21.473	669.930	755.194	7.747	452.017	267.423	33.070	2.654	31	
45	15/6/2011	1.235	221,50	14.538	278.231	311.928	3.976	224.207	76.324	10.238	1.155	3	
46	9/7/2011	980	145,20	8.069	101.227	110.180	1.129	91.308	16.692	2.107	73	0	
47	2/8/2011	934	167,50	7.271	105.223	112.835	671	101.196	9.469	1.971	198	0	
Pontual	2/8/2011	934	180,46	7.271	113.362	-	-	-	-	-	-	-	Amostragem pontual dos sedimentos em suspensão

Estação Fluviométrica Porto Velho

Tabela 6.18. Resumo do Cálculo da Descarga Sólida em Porto Velho pelo Método de Einstein Modificado

					Descarga	Descarga Sólida	Descarga Sólida	Descarga S	ólida Total USGS (Einstein Mod.			
Número		Leitura da	Conc.	Descarga	Sólida em	Total USGS	de Arrasto USGS	Argila	Areia	Areia	Areia		
da medicão	Data	Régua (cm)	(mg/l)	Líquida (m³/s)	Suspensão	Método Einstein	Método Einstein	+ Silte	Fina	Média	Grossa	Pedregulho	Observações
ou.ouo				(,0)	(t/dia)	Mod. (t/dia)	Mod. (t/dia)	(0,000 - 0,0625)	(0,0625 - 0,250	(0,250 - 0,500)	(0,500 - 2,00)	(2,00 - 16,00)	
1	19/3/2009	1.484	1.082,00	37.739	3.527.995	3.745.125	12.986	3.098.692	607.361	38.855	217	0	
2	3/4/2009	1.551	1.103,00	40.196	3.830.662	4.027.329	22.487	3.357.616	599.071	43.998	25.174	1.470	
3	16/4/2009	1.538	748,80	39.656	2.565.578	2.755.192	16.209	2.155.437	541.352	51.953	6.450	0	
4	4/5/2009	1.455	664,70	32.672	1.876.346	2.004.353	11.281	1.593.837	376.546	28.685	5.216	69	
	16/5/2009	1.399											Medição somente com o ADCP
5	22/5/2009	1.337	558,30	28.223	1.361.398	1.470.864	9.860	1.056.216	387.088	20.444	7.032	82	
6	1/6/2009	1.227	496,50	23.866	1.023.782	1.115.008	7.428	788.907	299.904	23.073	3.103	21	
7	22/6/2009	1.060	345,80	21.281	635.807	675.948	6.760	487.226	173.122	14.658	929	14	
Ream.	22/6/2009	1.060	333,10	21.281	612.456	657.912	6.760	489.957	152.473	14.542	926	14	
8	6/7/2009	941	332,00	16.985	487.217	515.354	3.886	397.440	109.266	7.865	780	3	
9	5/8/2009	711	246,00	10.363	220.253	231.097	1.077	202.863	26.181	1.967	87	0	
10	14/9/2009	452	210,50	5.492	99.880	102.451	122	96.913	5.388	149	0	0	
11	26/10/2009	576	246,00	8.075	171.629	177.393	605	166.991	9.893	503	6	0	
12	19/11/2009	761	450,40	12.181	474.009	495.206	1.631	445.136	48.380	1.479	210	0	
13	23/11/2009	793	357,80	12.979	401.223	437.393	1.862	332.023	102.328	2.717	325	1	Sem granulometria do leito. Para os cálculos foram utilizados dados da amostra do dia 19/11/09
14	19/12/2009	1.105	1.219,00	24.472	2.577.420	2.693.434	7.064	2.319.606	352.044	21.591	193	0	
15	4/1/2010	1.223	1.339,00	29.775	3.444.639	3.623.286	10.019	3.050.935	530.941	40.047	1.279	84	
16	18/1/2010	1.284	1.301,00	30.371	3.413.900	3.552.691	11.383	3.128.523	382.924	35.705	4.887	652	
17	1/2/2010	1.408	1.359,00	36.395	4.273.467	4.478.072	13.741	3.835.213	587.852	53.260	1.747	0	
18	15/2/2010	1.401	1.621,00	34.202	4.790.197	4.977.065	13.096	4.142.760	762.017	65.294	6.907	87	
19	1/3/2010	1.447	1.423,00	36.930	4.540.465	4.736.517	15.590	4.198.189	480.445	48.383	9.367	131	
20	15/3/2010	1.504		39.832									Análise de suspensão inconsistente
21	3/4/2010	1.559	971,20	42.111	3.533.621	3.737.021	16.598	3.173.464	496.222	59.800	7.296	239	
22	19/4/2010	1.345	599,70	30.117	1.560.501	1.670.388	10.088	1.312.827	324.769	26.054	6.509	229	
23	10/5/2010	1.304	831,10	29.477	2.116.624	2.240.381	9.567	1.731.615	450.586	52.154	5.903	123	
24	25/5/2010	1.046	515,00	20.638	918.318	959.488	6.106	687.831	257.673	13.131	842	12	
25	8/6/2010	965	521,50	18.412	829.593	864.577	5.040	657.393	196.544	8.806	1.827	8	
26	29/6/2010	595	193,60	8.380	140.180	147.621	746	135.297	10.813	1.435	75	0	
27	19/7/2010	483	173,70	6.112	91.727	97.195	448	89.205	7.706	274	9	0	
28	2/8/2010	453	164,40	5.307	75.382	78.326	187	74.442	3.759	120	6	0	
29	13/9/2010	326	32,36	3.680	10.288	10.751	48	10.322	318	110	1	0	
30	25/10/2010	319	65,29	3.714	20.953	21.621	67	20.823	667	131	1	0	
Ream.	25/10/2010	319	64,41	3.714	20.671	21.351	70	20.739	481	130	1	0	Reamostragem dos sedimentos em suspensão
31	12/11/2010	500	361,10	6.517	203.331	209.815	677	200.823	7.906	1.069	17	0	
Ream.	12/11/2010	500	354,10	6.517	199.389	206.151	677	195.516	9.551	1.067	17	0	Reamostragem dos sedimentos em suspensão

Tabela 6.18. Resumo do Cálculo da Descarga Sólida em Porto Velho pelo Método de Einstein Modificado (continuação)

					Descarga	Descarga Sólida	Descarga Sólida	Descarga Se	ólida Total USGS (t/dia) por Faixa Gra	Einstein Mod.		
Número da	Data	Leitura da Régua (cm)	Conc. (mg/l)	Descarga Líquida	Sólida em Suspensão	Total USGS Método Einstein	de Arrasto USGS Método Einstein	Argila +	Areia Fina	Areia Média	Areia Grossa	Pedregulho	Observações
medicão				(m³/s)	(t/dia)	Mod. (t/dia)	Mod. (t/dia)	Silte (0,000 - 0,0625)		(0,250 - 0,500)	(0,500 - 2,00)	(2,00 - 16,00)	
32	6/12/2010	601	308,40	8.566	228.237	237.798	977	212.227	23.089	2.306	176	0	
33	17/12/2010	612	323,10	8.883	247.963	258.347	1.065	235.569	20.513	2.125	140	0	
34	10/1/2011	1.075	1.063,00	19.571	1.797.429	1.905.335	108	1.734.896	141.415	26.477	2.507	41	
35	25/1/2011	1.073	1.443,00	23.622	2.945.037	3.059.080	10.861	2.798.888	231.823	27.941	424	5	
36	8/2/2011	1.240	1.421,00	30.385	3.730.464	3.923.619	13.803	3.373.200	514.912	34.830	677	0	
37	21/2/2011	1.385	1.413,00	36.402	4.444.099	4.717.255	18.588	3.817.022	811.766	86.276	2.191	0	
38	14/3/2011	1.505	1.160,00	38.791	3.887.773	4.176.348	20.233	3.170.337	925.172	77.034	3.688	117	
39	28/3/2011	1.568	888,20	41.316	3.170.645	3.437.341	25.879	2.428.960	929.027	50.156	26.560	2.638	Sem granulometria do leito. Para os cálculos foram utilizados dados da amostra do dia 11/04/11
40	11/4/2011	1.645	876,50	45.697	3.460.582	3.762.261	28.812	2.682.155	996.429	51.286	29.242	3.148	
41	25/4/2011	1.576	845,50	40.435	2.953.804	3.195.561	21.653	2.265.889	818.371	86.255	24.215	831	
42	9/5/2011	1.434	746,00	35.859	2.311.249	2.508.796	17.855	1.719.095	692.322	78.601	18.329	449	
43	25/5/2011	1.194	537,40	25.168	1.168.600	1.275.020	10.171	835.191	376.387	49.746	13.137	559	
44	6/6/2011	1.047	404,00	20.664	721.289	778.077	6.851	550.848	200.610	22.579	3.985	55	
45	22/6/2011	800	329,40	12.447	354.244	377.442	2.760	310.483	62.056	4.202	698	3	
46	20/7/2011	512	191,40	6.649	109.962	114.326	666	110.765	2.094	1.377	90	0	
Pontual	20/7/2011	512	215,38	6.649	123.737	-	-	-	-	-	-	-	Amostragem pontual dos sedimentos em suspensão
47	8/8/2011	520	187,00	6.510	105.183	110.824	657	103.150	6.678	956	40	0	

Estação Fluviométrica São Carlos

Tabela 6.19.
Resumo do Cálculo da Descarga Sólida em São Carlos pelo Método de Einstein Modificado

					Descarga	Descarga Sólida	Descarga Sólida	Descarga S	ólida Total USGS (Einstein Mod.			
Número		Leitura da	Conc.	Descarga	Sólida em	Total USGS	de Arrasto USGS	Argila	Areia	Areia	Areia		1
da medicão	Data	Régua (cm)	(mg/l)	Líquida (m³/s)	Suspensão	Método Einstein	Método Einstein	+	Fina	Média	Grossa	Pedregulho	Observações
illeulcao				(11175)	(t/dia)	Mod. (t/dia)	Mod. (t/dia)	Silte (0,000 - 0,0625)	(0,0625 - 0,250	(0,250 - 0,500)	(0,500 - 2,00)	(2,00 - 16,00)	
1	25/3/2009	1.554	832.90	37.805	2.720.530	2.912.637	24.940	2.351.936	513.362	17.729	28.315	1.295	
2	5/4/2009	1.615	928.00	39.712	3.184.089	3.366.164	25.101	2.840.526	427.097	72.272	24.938	1.331	
3	12/4/2009	1.574	756.00	35.606	2.325.732	2.492.102	16.152	2.003.107	441.291	35.515	11.387	802	
4	6/5/2009	1.516	646.20	33.480	1.869.233	2.013.753	20.367	1.622.048	332.289	40.078	17.359	1.978	
5	24/5/2009	1.383	500.70	29.419	1.272.686	1.386.393	12.781	1.016.465	299.151	56.227	13.662	888	
6	4/6/2009	1.284	388,00	27.949	936.949	1.023.098	11.708	762.918	204.459	44.056	11.369	296	
Ream.	4/6/2009	1.284	459,40	27.949	1.109.367	1.209.659	11.708	889.654	245.536	61.471	12.685	314	Reamostragem dos sedimentos em suspensão
7	24/6/2009	1.068	372,20	21.192	681.484	745.705	8.396	592.336	126.568	21.524	5.031	245	
Ream.	24/6/2009	1.068	403,50	21.192	738.793	804.088	8.396	649.632	127.510	21.658	5.042	245	Reamostragem dos sedimentos em suspensão
8	8/7/2009	935	361,60	16.648	520.118	549.049	6.388	440.331	97.677	7.457	3.395	190	
9	26/8/2009	601	308.90	8.539	227.904	262.249	1.707	181.755	79.623	822	49	0	
10	9/9/2009	508	256,50	6.631	146.955	168.341	1.034	121.167	47.066	82	25	0	
11	6/10/2009	557	348.60	7.955	239.596	280.040	2.132	189.414	90.525	101	0	0	
12	27/11/2009	827	579.60	14.861	744.192	825.740	5.994	588.783	229.865	6.548	517	27	
13	30/11/2009	827	705,40	15.022	915.557	998.810	7.693	773.537	216.000	7.066	2.129	77	
14	9/12/2009	1.001	1.143,00	20.955	2.069.412	2.299.046	17.647	1.645.682	630.573	14.433	7.596	762	
15	6/1/2010	1.252	1.111,00	29.065	2.789.986	2.997.820	10.151	2.439.550	556.282	1.885	102	0	
16	22/1/2010	1.360	1.004,00	33.382	2.895.703	3.132.743	13.509	2.575.432	545.870	11.122	240	80	
17	3/2/2010	1.470	1.056,00	37.380	3.410.526	3.663.134	15.418	2.996.300	630.828	32.825	3.180	0	
18	17/2/2010	1.465	1.535,00	36.847	4.886.779	5.117.996	16.551	4.625.098	455.109	30.069	7.256	465	
19	3/3/2010	1.518	1.022,00	36.906	3.258.847	3.470.573	17.893	3.033.862	403.180	24.466	8.560	505	
20	17/3/2010	1.554	1.250,00	37.820	4.084.552	4.283.506	22.780	3.895.335	324.999	45.956	16.054	1.161	
21	7/4/2010	1.598	897,50	39.574	3.068.747	3.275.589	23.251	2.767.444	447.875	39.956	14.438	5.877	
22	21/4/2010	1.394	630,50	30.327	1.652.084	1.784.334	14.917	1.441.887	301.270	31.339	9.283	555	
23	12/5/2010	1.325	686,30	28.843	1.710.268	1.814.757	13.447	1.533.428	221.436	49.014	10.525	354	
24	27/5/2010	1.057	488,20	21.101	890.031	973.747	10.543	782.517	168.679	16.868	5.548	135	
25	10/6/2010	948	579,20	17.479	874.703	940.422	8.545	741.688	182.801	11.658	4.192	84	
26	22/6/2010	687	349,90	10.077	304.641	342.807	2.029	260.424	80.512	1.678	194	0	
27	21/7/2010	539	255,80	7.653	169.130	198.764	1.390	141.716	55.933	906	209	0	
28	4/8/2010	448	248,90	5.765	123.986	146.033	938	98.882	46.659	406	86	0	
29	15/9/2010	380	154,40	4.893	65.280	85.502	998	39.754	45.102	579	66	0	
30	27/10/2010	333	190,60	4.230	69.657	86.583	1.069	38.858	47.110	544	71	0	
	27/10/2010	333	201,90	4.230	73.786	92.302	1.069	38.453	53.219	557	72	0	Reamostragem dos sedimentos em suspensão
31	17/11/2010	474	494,10	6.287	268.376	312.526	1.546	173.423	138.880	189	34	0	
Ream.	17/11/2010	474	484,50	6.287	263.162	297.397	1.546	210.426	86.731	204	35	0	Reamostragem dos sedimentos em suspensão

Tabela 6.19.

Resumo do Cálculo da Descarga Sólida em São Carlos pelo Método de Einstein Modificado (continuação)

					Descarga	Descarga Sólida	Descarga Sólida	Descarga Se	ólida Total USGS (1	Einstein Mod.			
Número		Leitura da	Conc.	Descarga	Sólida em	Total USGS	de Arrasto USGS	Argila	Areia	Areia	Areia		Oh
da medicão	Data	Régua (cm)	(mg/l)	Líquida (m³/s)	Suspensão (t/dia)	Método Einstein Mod. (t/dia)	Método Einstein Mod. (t/dia)	+ Silte	Fina	Média	Grossa	Pedregulho	Observações
					(4)	(4)	(4)	(0,000 - 0,0625)	(0,0625 - 0,250	(0,250 - 0,500)	(0,500 - 2,00)	(2,00 - 16,00)	
32	8/12/2010	646	501,90	9.894	429.032	479.509	3.751	275.838	200.360	2.369	940	2	
33	21/12/2010	699	533,40	11.621	535.540	603.788	2.551	389.316	213.603	735	133	1	
34	12/1/2011	994	944,50	20.228	1.650.685	1.810.102	16.589	1.366.510	411.352	21.970	9.362	907	
35	27/1/2011	1.100	1.253,00	24.097	2.608.673	2.848.757	19.739	2.159.952	655.599	18.347	13.487	1.373	
36	10/2/2011	1.299	1.127,00	31.140	3.032.234	3.241.767	10.577	2.743.160	494.622	3.689	296	0	
37	23/2/2011	1.449	1.325,00	38.872	4.450.031	4.784.723	15.818	3.877.618	891.525	14.560	911	110	
38	16/3/2011	1.557	988,80	41.924	3.581.687	3.888.288	22.127	3.027.691	814.492	36.811	8.976	317	
39	30/3/2011	1.608	784,10	42.838	2.902.115	3.180.577	27.969	2.455.685	646.505	62.816	14.800	771	
40	13/4/2011	1.690	890,00	47.866	3.680.712	3.970.684	40.137	2.986.371	887.614	39.991	49.531	7.178	
41	28/4/2011	1.597	776,40	38.512	2.583.438	2.785.859	19.702	2.216.565	505.655	53.748	9.703	188	
42	11/5/2011	1.466	665,10	34.048	1.956.584	2.141.724	20.137	1.538.595	542.073	44.504	14.973	1.580	
43	27/5/2011	1.214	601,80	25.719	1.337.249	1.443.500	13.279	1.018.715	386.164	27.261	10.645	717	
44	8/6/2011	1.048	455,40	20.133	792.153	855.474	8.645	702.261	133.493	14.901	4.611	208	
45	29/6/2011	743	367,90	11.752	373.568	429.800	2.628	323.141	104.964	1.169	510	16	
46	23/7/2011	595	353,00	8.957	273.175	306.579	2.350	218.241	86.574	1.232	529	3	
47	10/8/2011	578	282,40	8.290	202.281	234.719	2.061	162.546	70.029	1.847	295	1	

Estação Fluviométrica Humaitá

Tabela 6.20. Resumo do Cálculo da Descarga Sólida em Humaitá pelo Método de Einstein Modificado

					Descarga	Descarga	Descarga Sólida	Descarga Se	ólida Total USGS (t	Einstein Mod.			
Número		Leitura da	Conc.	Descarga	Sólida em	Sólida Total	de Arrasto USGS	Argila	Areia	Areia	Areia		
da medicão	Data	Régua (cm)	(mg/l)	Líquida	Suspensão	USGS Método Einstein Mod.	Método Einstein	+	Fina	Média	Grossa	Pedregulho	Observações
medicao				(m³/s)	(t/dia)	(t/dia)	Mod. (t/dia)	Silte	(0,0625 - 0,250	(0,250 - 0,500)	(0,500 - 2,00)	(2,00 - 16,00)	
						(0 0.10)		(0,000 - 0,0625)	(0,0025 - 0,250	(0,230 - 0,300)	(0,500 - 2,00)	(2,00 - 16,00)	Sem granulometria do leito. Para os cálculos
1	27/3/2009	2.239	720,80	43.694	2.721.148	2.969.336	20.462	2.308.190	566.899	89.878	4.262	107	foram utilizados dados da amostra do dia
·	2.76/2000	2.200	120,00	10.001	2.12.11.10	2.000.000	20.102	2.000.100	000.000	00.070			06/04/09
2	6/4/2009	2.284	832,10	47.258	3.397.534	3.713.954	20.586	3.009.463	602.859	97.088	4.433	110	
3	14/4/2009	2.263	735,30	43.709	2.776.808	3.032.053	20.695	2.364.387	573.820	82.029	11.632	186	
4	8/5/2009	2.206	650,60	38.939	2.188.816	2.365.457	19.186	1.750.187	521.827	70.160	22.596	686	
5	26/5/2009	2.066	562,10	35.783	1.737.806	1.885.607	15.981	1.371.144	458.330	39.926	15.297	910	
6	6/6/2009	1.976	493,50	32.186	1.372.358	1.496.556	14.807	1.056.172	390.890	39.223	10.116	155	
Ream	6/6/2009	1.976	500,80	32.186	1.392.659	1.522.805	14.807	1.064.981	407.365	40.110	10.194	155	Reamostragem dos sedimentos em suspensão
7	26/6/2009	1.731	353,40	23.060	704.100	767.182	11.230	608.004	131.531	14.953	12.199	494	
Ream	26/6/2009	1.731	347,70	23.060	692,744	759.137	11.230	577.002	153.312	15.870	12.453	500	Reamostragem dos sedimentos em suspensão
8	10/7/2009	1.593	326,40	17.736	500.181	566.185	5.374	420.007	94.376	43.401	8.276	124	3
9	28/8/2009	1.239	210,20	9.000	163.460	168.579	322	153.392	14.066	955	166	0	
10	11/9/2009	1.129	199,10	6.859	117.990	121.847	401	115.401	4.493	1.667	285	0	
11	8/10/2009	1.196	253,30	8.480	185.582	193.221	895	174.458	15.856	2.463	445	0	
12	25/11/2009	1.458	471,30	15.103	614.984	653.469	4.715	554.398	83.427	12.138	3.474	32	
13	2/12/2009	1.481	625,30	16.026	865.802	910.277	5.084	781.132	110.907	15.189	3.000	49	
14	11/12/2009	1.671	981,20	21.944	1.860.296	1.959.347	9.507	1.641.204	279.909	30.069	8.045	120	
15	8/1/2010	1.891	946,20	30.584	2.500.291	2.652.815	17.156	2.232.988	379.696	25.064	14.684	384	
16	20/1/2010	1.988	1.112,00	35.716	3.431.500	3.663.127	27.951	2.988.586	592.792	47.078	31.817	2.855	
17	5/2/2010	2.140	957,00	42.907	3.547.772	3.822.662	27.319	3.017.238	711.079	67.614	25.737	995	
18	19/2/2010	2.152	1.584,00	42.239	5.780.698	6.057.993	23.556	5.375.078	600.151	66.465	15.030	1.269	
19	5/3/2010	2.205	1.009,00	42.563	3.710.582	4.063.756	20.706	3.364.933	610.174	84.106	4.327	216	
20	19/3/2010	2.235	1.050,00	45.851	4.159.642	4.414.142	22.694	3.718.629	562.938	116.559	15.487	530	
21	9/4/2010	2.271	773,60	45.683	3.053.405	3.279.796	20.286	2.707.822	502.380	67.530	2.034	30	
22	23/4/2009	2.096	535,60	34.642	1.603.083	1.704.937	14.286	1.388.006	259.227	51.375	6.091	238	
23	14/5/2010	1.986	695,40	28.468	1.710.430	1.794.208	9.742	1.466.039	292.949	28.599	6.221	400	
24	29/5/2010	1.710	490,70	19.645	832.879	898.150	5.502	681.726	190.316	21.822	4.262	24	
25	12/6/2010	1.594	478,10	17.144	708.182	751.523	4.504	607.075	126.061	15.776	2.583	28	
26	24/6/2010	1.346	244,00	10.759	226.817	242.928	1.392	209.462	27.494	5.121	851	1	
27	23/7/2010	1.184	159,80	7.647	105.580	110.372	618	96.216	12.091	1.713	352	0	
28	6/8/2010	1.087	150,70	5.809	75.636	78.555	188	72.486	5.239	710	120	0	
29	17/9/2010	1.020	60,72	4.864	25.518	27.196	122	22.879	3.839	420	58	0	
30	29/10/2010	982	75,77	4.340	28.412	29.732	91	27.094	2.280	338	21	0	
Ream	29/10/2010	982	80,62	4.340	30.231	31.788	90	28.247	3.164	355	21	0	Reamostragem dos sedimentos em suspensão
31	19/11/2010	1.116	312,80	6.618	178.858	185.093	417	175.276	7.952	1.598	267	0	
Ream	19/11/2010	1.116	314,00	6.618	179.544	185.728	409	176.316	7.567	1.582	263	0	Reamostragem dos sedimentos em suspensão

Tabela 6.20.

Resumo do Cálculo da Descarga Sólida em Humaitá pelo Método de Einstein Modificado (continuação)

					Descarga	Descarga	Descarga Sólida	Descarga Se	ólida Total USGS (t	Einstein Mod.			
Número		Leitura da	Conc.	Descarga	Sólida em	Sólida Total	de Arrasto USGS	Argila	Areia	Areia	Areia		Ob
da medicão	Data	Régua (cm)	(mg/l)	Líquida (m³/s)	Suspensão (t/dia)	USGS Método Einstein Mod.	Método Einstein Mod. (t/dia)	+ Silte	Fina	Média	Grossa	Pedregulho	Observações
					(truia)	(t/dia)	wou. (vuia)	(0,000 - 0,0625)	(0,0625 - 0,250	(0,250 - 0,500)	(0,500 - 2,00)	(2,00 - 16,00)	
32	10/12/2010	1.291	347,40	10.878	326.507	352.648	2.816	298.806	44.737	8.000	1.103	2	
33	23/12/2010	1.370	430,00	11.990	445.452	475.782	2.754	395.019	70.166	8.514	2.076	7	
34	14/1/2011	1.670	837,70	22.362	1.618.523	1.745.058	10.576	1.375.017	326.876	38.099	4.988	79	
35	29/1/2011	1.803	753,40	25.033	1.629.492	1.629.492	1.752.686	1.413.415	312.952	26.013	307	0	
36	12/2/2011	1.978	1.101,00	35.330	3.360.832	3.569.336	20.889	2.861.922	626.191	60.508	19.363	1.352	
37	25/2/2011	2.124	1.152,00	38.502	3.832.212	4.052.889	18.525	3.308.025	654.006	72.954	17.263	641	
38	18/3/2011	2.223	863,80	45.429	3.390.465	3.643.355	24.074	2.825.087	683.254	120.655	14.125	234	
39	1/4/2011	2.276	719,00	48.951	3.040.937	3.306.219	32.923	2.468.300	690.062	109.135	36.193	2.528	
40	15/4/2011	2.335	746,10	54.659	3.523.512	3.888.811	34.234	2.670.369	1.058.500	124.975	33.207	1.760	
41	30/4/2011	2.277	665,50	39.243	2.256.441	2.433.611	15.073	1.927.037	449.748	48.515	8.072	238	
42	13/5/2011	2.137	665,20	33.005	1.896.906	2.046.574	11.126	1.621.657	394.563	24.027	6.044	282	
43	24/5/2011	1.971	582,60	27.587	1.388.637	1.516.428	11.194	1.113.163	370.980	22.728	9.153	405	
44	10/6/2011	1.695	434,80	21.276	799.272	892.484	8.844	647.755	218.257	20.568	5.850	55	
45	1/7/2011	1.397	268,40	12.223	283.448	318.744	3.309	248.152	58.056	11.661	870	5	
46	30/7/2011	1.262	253,50	9.368	205.182	219.565	1.572	194.099	20.423	4.519	524	0	
Pontual	30/7/2011	1.262	252,72	9.368	204.553	-	-	-	-	-	-	-	Amostragem pontual dos sedimentos em suspensão
47	12/8/2011	1.210	197,50	8.075	137.792	148.055	1.063	129.535	15.033	3.160	326	0	Sem granulometria do leito. Para os cálculos foram utilizados dados da amostra do dia 30/07/11

Estação Fluviométrica Jaciparaná Vila

Tabela 6.21. Resumo do Cálculo da Descarga Sólida em Jaciparaná Vila pelo Método de Einstein Modificado

							D 04114-	D 04114-	Descarga	Sólida Total USGS (t/	dia) por Faixa Granu	instein Mod.		
Número	Local da			Conc.	Descarga	Descarga Sólida	Descarga Sólida Total USGS	Descarga Sólida de Arrasto USGS	Argila	Areia	Areia	Areia		
da medicão	Medição	Data	Cota (m)	(mg/l)	Líquida (m³/s)	em Suspensão (t/dia)	Método Einstein Mod. (t/dia)	Método Einstein Mod. (t/dia)	+ Silte	Fina (0,0625 - 0,250	Média (0,250 - 0,500)	Grossa (0,500 - 2,00)	Pedregulho (2,00 - 16,00)	Observações
1	S03	30/3/2009	72,69	20,69	578	1.033								Não foi possível aplicar o Método de Einstein Modificado
2	S03	10/4/2009	72,28	16,23	490	687								Não foi possível aplicar o Método de Einstein Modificado
3	VILA	17/4/2009*	71,26	13,03	371	418								Não foi possível aplicar o Método de Einstein Modificado
4	VILA	28/5/2009*	68,91	25,37	450	987	1.175	17	739	392	40	4	0	
5	S02	28/6/2009	67,65	21,67	271	508	552	17	515	12	3	22	0	
6	S02	22/7/2009	66,57	25,56	287	633								Não foi possível aplicar o Método de Einstein Modificado
7	S02	4/9/2009	65,62		96									Análise de suspensão inconsistente
8	S02	5/11/2009	65,39	29,45	82	210	227	3	202	12	6	7	0	
9	S02	4/12/2009*	66,30	20,97	103	187								Não foi possível aplicar o Método de Einstein Modificado
10	S02	28/1/2010*	70,52	27,00	741	1.730	2.291	173	1.501	400	129	258	2	
11	S02	25/2/2010*	70,32	24,30	726	1.524	2.111	185	1.335	470	118	187	1	
12	S02	24/3/2010*	70,78	60,40	683	3.562	4.008	88	3.106	579	147	176	1	
13	S02	30/4/2010	67,10	24,90	415	894	996	26	854	97	16	28	0	
14	S02	19/5/2010	66,33	56,43	329									Análise de suspensão inconsistente
15	S02	16/6/2010	64,64	24,70	193	411	478	20	381	38	26	33	0	
16	S02	12/8/2010	63,17	21,20	66	122	132	3	119	8	2	3	0	
17	S02	6/10/2010	63,10	17,80	68	104	137	11	103	13	5	16	0	
Ream.	S02	6/10/2010	63,10	17,60	68	103	131	11	100	5	7	18	0	
18	S02	1/12/2010	63,81	35,70	122	378	477	23	361	24	52	41	0	
19	S02	20/1/2011	65,76	50,39	230	1.003								Não foi possível aplicar o Método de Einstein Modificado
20	S02	16/2/2011	68,65	44,30	621	2.378	2.863	123	2.011	512	160	177	3	
21	S02	24/3/2011	70,10	16,50	843	1.202	2.140	292	793	708	248			Sem granulometria do leito. Para os cálculos foram utilizados dados da amostra do dia 16/02/11

^{*}As cotas dos dias 17/04/09, 28/05/09, 04/12/09, 28/01/10, 25/02/10 e 24/03/10 correspondem à cota da régua da estação de Jaciparaná (Vila).

Estação Fluviométrica Montante Jaciparaná

Tabela 6.22.

Resumo do Cálculo da Descarga Sólida em Montante Jaciparaná pelo Método de Einstein Modificado

						Descarga Sólida	Doccarga Sálida	Descarga	Sólida Total USGS (t/	dia) por Faixa Granu	lométrica - Método E	instein Mod.	
Número		NA na Seção	Conc.		Descarga Sólida	•	de Arrasto USGS	Araila	Areia	Areia	Areia		
da medicão	Data	(m)	(mg/l)	Líquida (m³/s)	em Suspensão (t/dia)	Método Einstein Mod. (t/dia)	Método Einstein Mod. (t/dia)	+ Silte	Fina	Média	Grossa	Pedregulho	Observações
						mod. (valu)	mod. (bulu)	(0,000 - 0,0625)	(0,0625 - 0,250	(0,250 - 0,500)	(0,500 - 2,00)	(2,00 - 16,00)	
1	25/3/2011	75,38	17,17	470	697	1.518	255	413	552	183	359	10	
2	8/4/2011	75,70	27,86	501	1.206	2.215	242	607	1.156	297	154	2	
3	5/5/2011	73,60	21,90	237	449	618	38	392	134	36	56	0	
4	17/6/2011	71,48	27,13	96	226	242	5	210	22	2	8	0	
5	4/8/2011	70,44	20,30	36	63	64	0	61	2	0	0	0	

7. ESTUDOS HIDROSSEDIMENTOLÓGICOS BÁSICOS

Engº José Eduardo Moreira CREA: 21112-D/RJ

Neste item estão apresentados os estudos e análises realizadas a partir dos dados coletados no período a que faz referência este relatório. Particularmente, nas estações fluviométricas de Humaitá, Porto Velho e Abunã dispunha-se de uma quantidade considerável de medições de outras entidades, as quais também foram avaliadas durante o desenvolvimento destes estudos.

Neste Capítulo, primeiramente, descrevem-se as curvas-chave de descarga líquida e descarga sólida para as estações hidrométricas consideradas pelo Programa de Monitoramento Hidrossedimentológico, e suas respectivas séries de descarga sólida em suspensão e total. Posteriormente apresenta-se a granulometria dos sedimentos em suspensão e do leito do rio Madeira, uma análise da quantidade de areia transportada em suspensão ao longo do estirão, um estudo das concentrações de sedimentos em suspensão na superfície do escoamento e um aprofundamento na interpretação das curvas de descarga sólida nas diferentes estações do rio Madeira. Finalmente, apresenta-se a curva de permanência de descarga sólida em suspensão nas estações Abunã, Porto Velho e Humaitá, e uma avaliação comparativa do desempenho das medições de vazão com molinete e ADCP.

7.1. CURVAS-CHAVE DE DESCARGA LÍQUIDA

Neste relatório são apresentadas novas curvas-chave de descarga líquida para todas as estações localizadas no rio Madeira que compõem a Rede Básica de Monitoramento, levando em consideração, basicamente, as medições realizadas pela PCE no período 2009 a 2011.

Desta forma, as curvas-chave das estações Abunã e Porto Velho originalmente desenvolvidas a partir das medições realizadas por FURNAS/CNO no período 2003-2007, e apresentadas no Projeto Básico Consolidado da UHE Santo Antônio foram atualizadas. Já para as estações de Jusante Caldeirão do Inferno, São Carlos e Humaitá, as curvas-chave de descarga líquida foram atualizadas a partir das equações originalmente desenvolvidas no Relatório de Consolidação e Análise dos Dados Hidrossedimentológicos do Rio Madeira sem Reservatório (PJ0697-X-H41-GR-RL-005-0A) em junho de 2010.

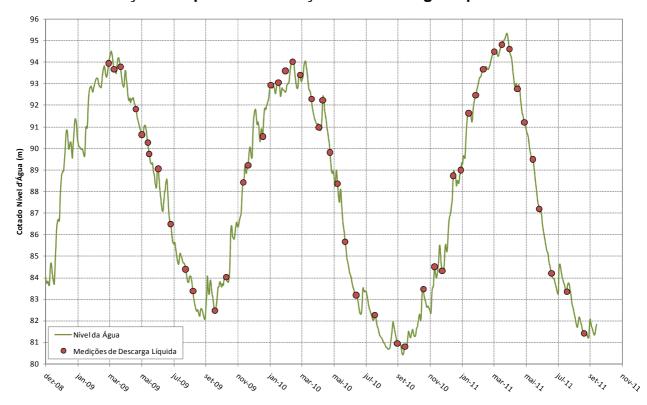
A atualização das curvas-chave foi realizada mediante o uso do programa Curva-chave, desenvolvido em parceria entre o Serviço Geológico do Brasil (CPRM) e o Laboratório de Hidrologia do Programa de Engenharia Civil (COPPE / Universidade Federal do Rio de Janeiro), o qual permite a análise, traçado e extrapolação de curvas de descarga (CPRM, 2011).

Por último, destaca-se que, excetuando-se os casos de constatação de erros consideráveis, o Programa de Monitoramento Hidrossedimentológico pretende efetuar a revisão destas equações, em princípio, a cada período de 2 ou 3 anos.

7.1.1. Estação Fluviométrica Abunã

Nesta atualização da curva-chave foram consideradas fundamentalmente as medições realizadas pela PCE, desconsiderando os dados medidos por FURNAS/CNO na etapa da

viabilidade, que permitiram desenvolver a curva apresentada no Projeto Básico Consolidado da UHE Santo Antônio.

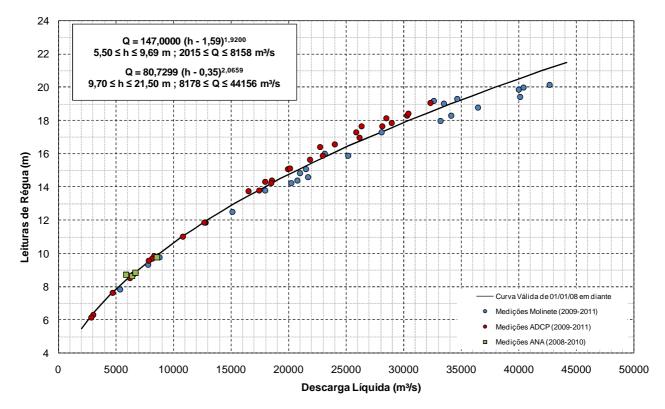

Para esta atualização da curva-chave de descarga líquida da estação fluviométrica de Abunã foram utilizadas 59 medições realizadas pela PCE no período de março de 2009 a setembro de 2011, sendo que 26 correspondem a medições com molinete e 33 a medições com ADCP (vale lembrar que existem mais duas medições com ADCP as quais foram descartadas após a análise de consistência de dados). Adicionalmente, foram consideradas também 4 medições realizadas neste período pela Agência Nacional de Águas (ANA). A distribuição temporal destas medições apresenta-se na Figura 7.1.

A análise dos dados disponíveis permitiu definir uma relação cota-vazão (com validade de 01/01/2008 em diante) composta de duas curvas, conforme se observa na Figura 7.2. Apresentam-se a seguir as equações e o intervalo de validade de cada uma.

$$5,50 \le h \le 9,69$$
 $Q = 147,0 (h - 1,59)^{1,92}$

$$9,70 \le h \le 21,50$$
 $Q = 80,7299 (h - 0,35)^{2,0659}$

Figura 7.1.
Distribuição Temporal das Medições de Descarga Líquida em Abunã



83

Figura 7.2. Curva-chave de Descarga Líquida em Abunã

7.1.2. Estação Fluviométrica Jusante Caldeirão do Inferno

Esta estação fluviométrica foi instalada em abril de 2009, imediatamente a jusante da UHE Jirau, de forma a conhecer as vazões que ingressam ao reservatório da UHE Santo Antônio. A curva-chave da estação foi estabelecida a partir de 47 medições de vazão pelo método convencional (molinete) e 31 medições com ADCP, executadas pela PCE até agosto de 2011.

O cotagrama com a distribuição temporal das medições executadas a partir de 2009 se observa na Figura 7.3, enquanto que o gráfico com a relação h-Q se observa na Figura 7.4. Apresenta-se a seguir a equação resultante e o intervalo de validade da mesma.

$$6,00 \le h \le 20,00$$
 $Q = 30,1506 (h - 0,58)^{2,5009}$

Figura 7.3.
Distribuição Temporal das Medições de Descarga Líquida em Jusante do Caldeirão do Inferno

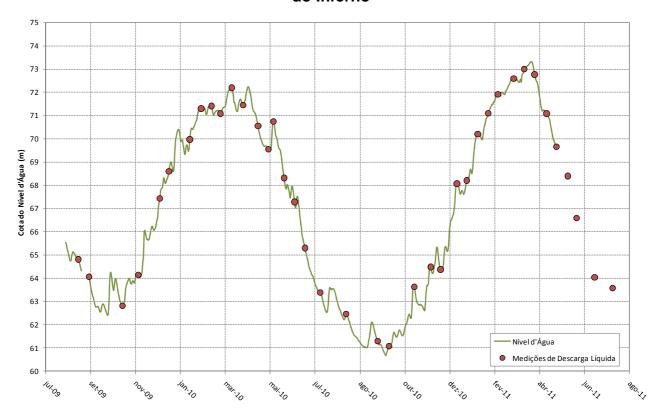
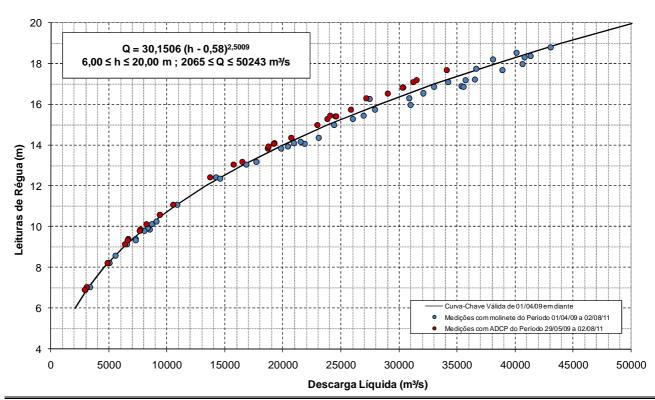



Figura 7.4.

Curva-chave de Descarga Líquida em Jusante Caldeirão do Inferno

7.1.3. Estação Fluviométrica Porto Velho - ANA

Nesta atualização da curva-chave foram consideradas fundamentalmente as medições realizadas pela PCE, desconsiderando os dados medidos por FURNAS/CNO na etapa da viabilidade, que permitiram desenvolver a curva apresentada no Projeto Básico Consolidado da UHE Santo Antônio.

Para o desenvolvimento desta nova curva-chave de descarga líquida da estação fluviométrica de Porto Velho foram utilizadas 88 medições realizadas pela PCE no período de março de 2009 a setembro de 2011, sendo que 48 correspondem a medições com molinete e 40 a medições com ADCP. Adicionalmente, foram consideradas também 3 medições realizadas durante o ano 2008 pela Agência Nacional de Águas (ANA). A distribuição temporal destas medições apresenta-se na Figura 7.5.

A análise dos dados disponíveis permitiu definir uma relação cota-vazão (com validade de 16/04/2008 em diante) composta de duas curvas, conforme se observa na Figura 7.6. Apresentam-se a seguir as equações e o intervalo de validade de cada uma.

$$1,70 \le h \le 4,87$$
 $Q = 38,9522 (h + 3,70)^{2,3497}$

$$4,88 \le h \le 17,50$$
 $Q = 219,7037 (h + 1,20)^{1,8398}$

Figura 7.5.

Distribuição Temporal das Medições de Descarga Líquida em Porto Velho

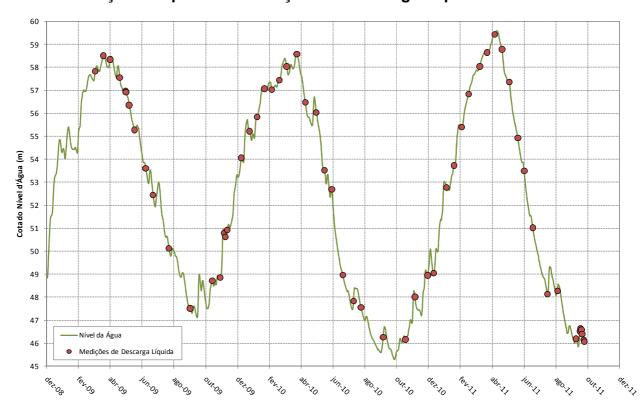
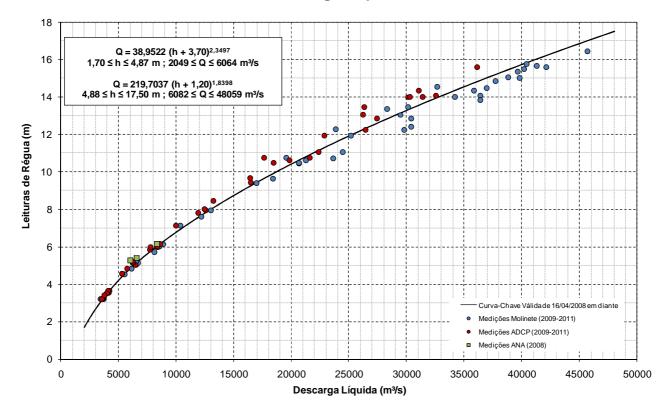



Figura 7.6.

Curva-chave de Descarga Líquida em Porto Velho

7.1.4. Estação Fluviométrica São Carlos

Na atualização da curva-chave da estação fluviométrica de São Carlos foram consideradas fundamentalmente as medições realizadas pela PCE a partir de 2009. Neste sentido foram utilizadas 76 medições realizadas pela PCE no período de março de 2009 a agosto de 2011, sendo que 45 correspondem a medições com molinete e 31 a medições com ADCP. Adicionalmente, foram consideradas também 3 medições realizadas por FURNAS/CNO durante os estudos de viabilidade (período 2006-2007). A Figura 7.7. apresenta a distribuição temporal das medições realizadas pela PCE no período de estudo.

A análise das medições permitiu definir uma relação cota-vazão (com validade a partir de 01/01/2008) composta de três curvas, conforme se observa na Figura 7.8. Apresentam-se a seguir as equações e o intervalo de validade de cada uma.

 $2,40 \le h \le 5,00$ $Q = 1003,6449 (h + 0,01)^{1,1617}$

 $5,01 \le h \le 12,83$ $Q = 553,3457 (h + 0,01)^{1,5307}$

 $12,84 \le h \le 17,00$ $Q = 285,6537 (h + 0,01)^{1,7897}$

Figura 7.7.
Distribuição Temporal das Medições de Descarga Líquida em São Carlos

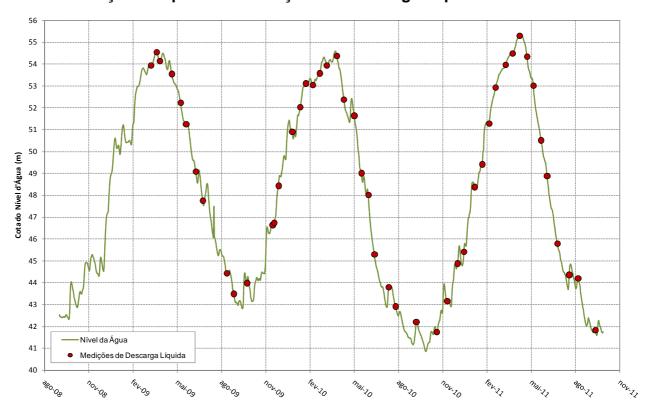
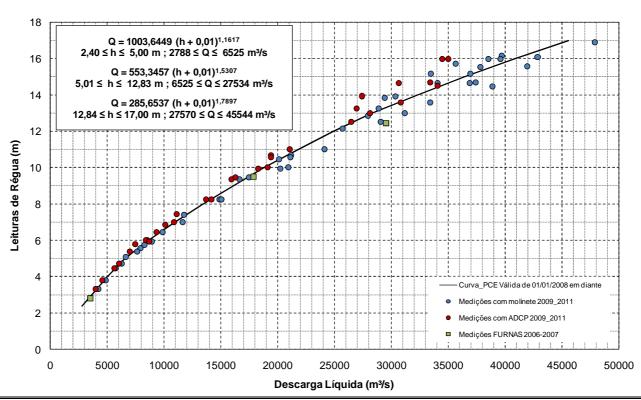
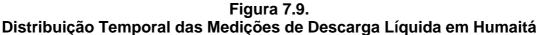
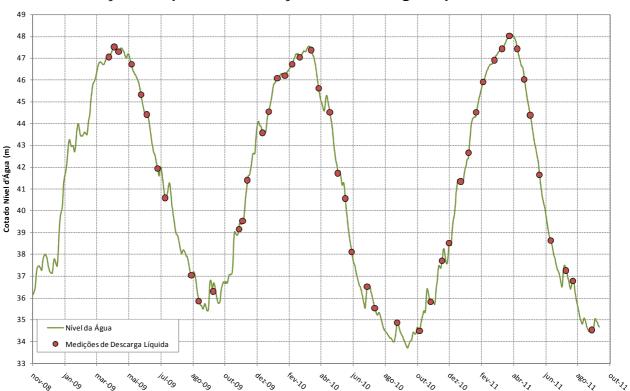



Figura 7.8.
Curva-chave de Descarga Líquida em São Carlos




7.1.5. Estação Fluviométrica Humaitá

Na atualização da curva-chave da estação fluviométrica de Humaitá foram consideradas fundamentalmente as medições realizadas pela PCE a partir de 2009. Neste sentido foram utilizadas 59 medições realizadas pela PCE no período de março de 2009 a agosto de 2011, sendo que 28 correspondem a medições com molinete e 31 a medições com ADCP. Adicionalmente, foram consideradas também 6 medições realizadas no período 2008/2009 pela Agência Nacional de Águas (ANA). A distribuição temporal das medições realizadas pela PCE no período de estudo se observa na Figura 7.9.

A análise das medições permitiu definir uma relação cota-vazão (com validade a partir de 01/01/2008) composta de uma única curva, conforme se observa na Figura 7.10. Apresenta-se a seguir a equação e o intervalo de validade da mesma.

$$9,00 \le h \le 24,00$$
 $Q = 76,9227 (h - 3,18)^{2,1484}$

24 $Q = 76,9227 (h - 3,18)^{2,1484}$ $9,00 \le h \le 24,00 \text{ m}$; $3384 \le Q \le 52321 \text{ m}^3/\text{s}$ 22 20 Leituras de Régua (m) 18 16 14 12 Curva-Chave Válidade 01/01/08 em diante Medições Molinete (2009-2011) 10 Medições ADCP (2009-2011) Medições ANA (2008-2009) 8 0 5000 10000 15000 20000 25000 35000 40000 45000 50000 55000 30000 Descarga Líquida (m³/s)

Figura 7.10.
Curva-chave de Descarga Líquida em Humaitá

7.1.6. Estação Fluviométrica Jaciparaná Vila

Na estação fluviométrica Jaciparaná Vila, particularmente no local denominado Seção 02, não foi desenvolvida uma curva-chave de descarga líquida, pois a mesma encontra-se, naturalmente, sob intenso efeito de remanso do rio Madeira, afetando significativamente os resultados obtidos. Ainda assim, em atendimento às exigências dos órgãos reguladores, desde o inicio da operação desta estação foram realizadas 21 medições com molinete (mas pela análise de consistência apenas 17 medições foram utilizadas), com a distribuição temporal apresentada na Figura 7.11. O gráfico que sintetiza estas medições, a partir dos pares de dados de cota e vazão, se observa na Figura 7.12.

No mês de março/2011 foi realizada a última medição na estação Jaciparaná Vila, já que o represamento do rio Madeira no sítio da UHE Santo Antônio afetará o trecho deste rio nas imediações da Vila Jaciparaná. Por este motivo, as medições de descarga líquida e sólida nesta estação foram suspensas, e foi instalada uma nova estação fluviométrica fora da influência do remanso, denominada Montante Jaciparaná.

Figura 7.11.
Distribuição Temporal das Medições de Descarga Líquida em Jaciparaná Vila

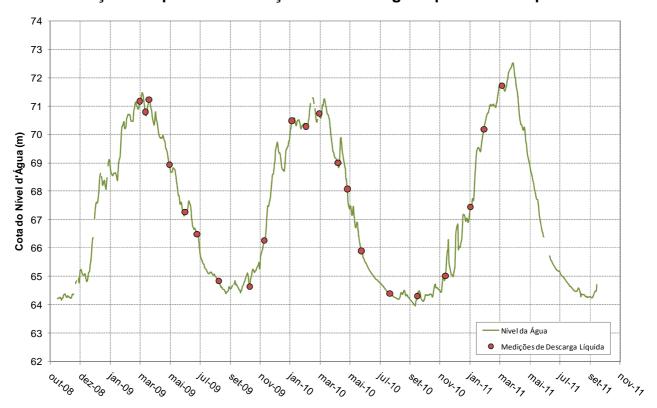
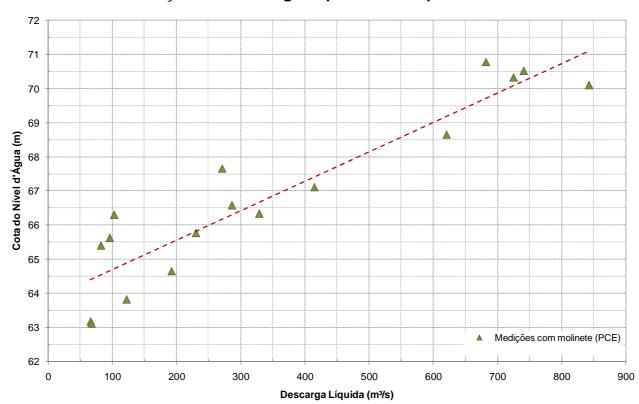
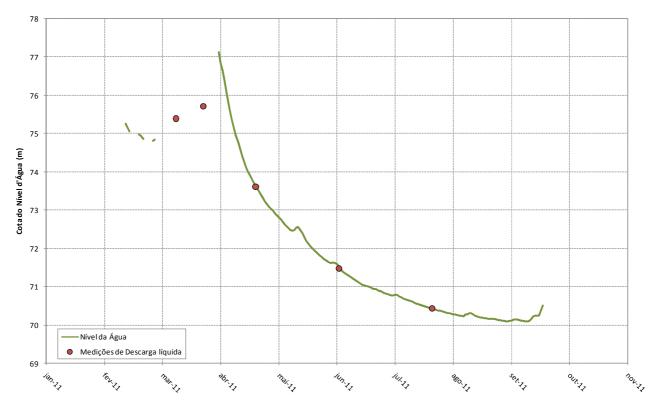



Figura 7.12. Medições de Descarga Líquida em Jaciparaná Vila

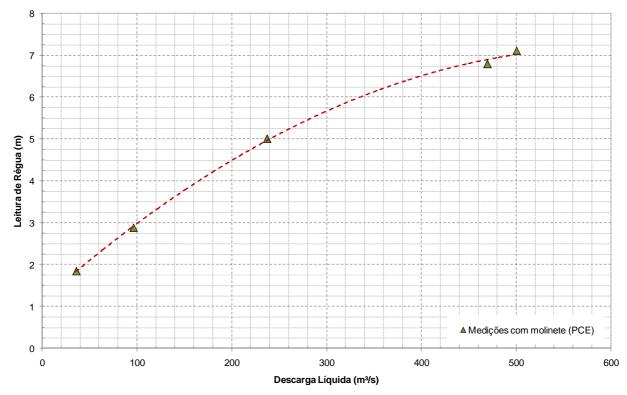


7.1.7. Estação Fluviométrica Montante Jaciparaná

Esta estação fluviométrica começou a operar em março/2011 com o intuito de caracterizar melhor os aportes da bacia do rio Jaciparaná ao reservatório da UHE Santo Antônio. Ainda assim, neste curto período de tempo foram realizadas 5 medições de vazão com molinete, com a distribuição temporal apresentada na Figura 7.13.

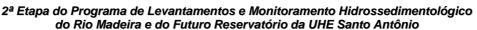
Devido à quantidade reduzida de medições, que não chegam a cobrir sequer um ano hidrológico, optou-se por não ajustar uma relação cota-vazão para este local, apesar de que preliminarmente mostram um bom ajuste (Figura 7.14.).

Figura 7.13.
Distribuição Temporal das Medições de Descarga Líquida em Montante Jaciparaná



Eng^o José Eduardo Moreira CREA: 21112-D/RJ

Figura 7.14. Medições de Descarga Líquida em Montante Jaciparaná


7.2. CURVAS-CHAVE DE DESCARGA SÓLIDA

A partir dos novos dados coletados entre maio de 2010 e agosto de 2011 foi possível revisar as curvas-chave de descarga sólida em suspensão e descarga sólida total para cada estação fluviométrica, as quais foram apresentadas no Relatório Consolidação e Análise dos Dados Hidrossedimentológicos do Rio Madeira sem Reservatório (PJ0697-X-H41-GR-RL-005-0A), emitido em julho de 2010.

As estações fluviométricas de Abunã, Porto Velho e Humaitá possuem uma quantidade significativa de dados pretéritos de outras duas entidades, ANA e FURNAS/CNO. A estação de São Carlos possui também três medições de descarga líquida realizadas por FURNAS/CNO, sendo apenas duas com dados de medições de descarga sólida.

No estudo de consolidação de dados apresentado em junho de 2008 (PJ0697-X-H41-GR-ED-102-0A), verificou-se a existência de diferenças significativas nas concentrações de sedimentos em suspensão das medições da ANA e de FURNAS/CNO e, inclusive, notou-se uma dispersão maior nos dados da ANA, que apresentam um coeficiente de determinação de 0,60, enquanto os dados de FURNAS/CNO apresentaram um coeficiente de 0,86. As diferenças encontradas foram atribuídas aos diferentes critérios de medição e métodos de análise das amostras e principalmente aos equipamentos utilizados. Uma das possíveis causas está associada ao amostrador de sedimentos em suspensão antigamente utilizado nas coletas realizadas pela ANA, tipo D-49, indicado para rios de até 4,5 metros de profundidade, enquanto que FURNAS/CNO utilizou um

amostrador de saca (tipo AMS-8), indicado para rios com grandes profundidades, como é o caso do rio Madeira.

O equipamento utilizado nas medições da PCE é do mesmo tipo, AMS-8 (amostrador de saca), e precisamente esta semelhança no equipamento justifica a utilização dos dados de FURNAS/CNO como referência para as medições atuais e o descarte dos dados da ANA para os estudos de sedimentos do rio Madeira.

7.2.1. Estação Fluviométrica Abunã

No período de novembro de 2003 à maio de 2006 o consórcio FURNAS/CNO realizou 86 medições de descarga líquida e sólida em Abunã, que em conjunto com as 50 medições (considerando três re-amostragens) realizadas pela PCE até agosto de 2011 permitiram elaborar uma nova curva-chave para esta estação. A curva-chave de descarga sólida em suspensão e descarga sólida total são apresentadas, respectivamente, na Figura 7.15. e Figura 7.16.

Cabe destacar que na consolidação de dados realizada nas séries de dados para a elaboração das curvas-chave foram eliminadas as medições de FURNAS/CNO dos dias 12/08/2004, 09/09/2004 e 22/09/2004 devido a inconsistências na determinação da concentração destas medições.

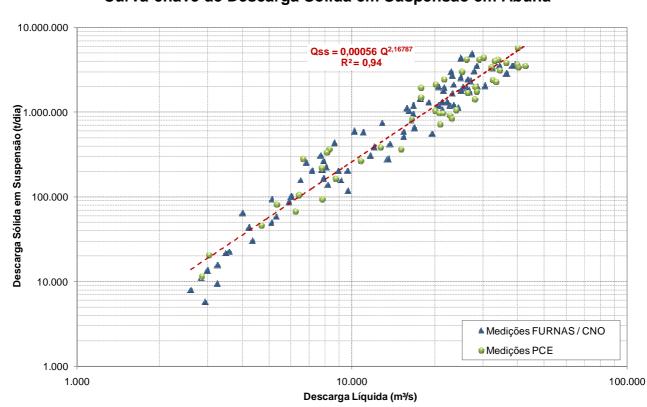
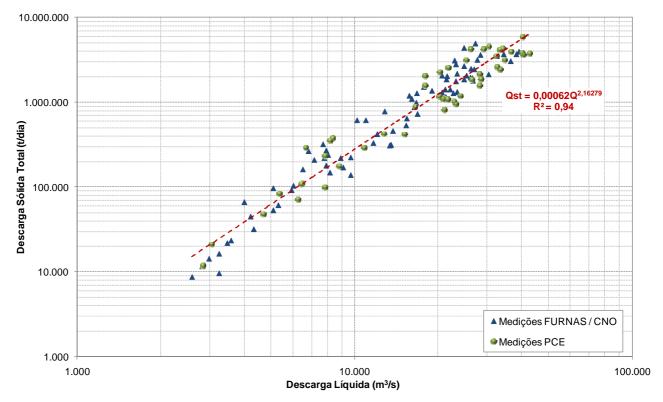



Figura 7.15. Curva-chave de Descarga Sólida em Suspensão em Abunã

Figura 7.16. Curva-chave de Descarga Sólida Total em Abunã

7.2.2. Estação Fluviométrica Jusante Caldeirão do Inferno

Para a elaboração das novas curvas-chave de sedimentos na estação Jusante Caldeirão do Inferno foram consideradas 47 medições de descarga sólida com amostragem integrada, além dos dados correspondentes a 3 re-amostragens de sedimentos em suspensão e uma amostragem pontual.

Na análise de consistência, foram desprezadas duas amostras dos sedimentos em suspensão por apresentarem inconsistências, nos dias 13/03/2010 e 07/10/2011. Desta forma, o cálculo da curva-chave de descarga sólida em suspensão (Qss) foi realizado com 49 conjuntos de dados (Figura 7.17.) e a curva-chave de descarga sólida total (Qst) com 48 conjuntos de medições (Figura 7.18.), na qual foram usadas as mesmas medições do que na figura anterior, com exceção da amostragem pontual.

Figura 7.17.

Curva-chave de Descarga Sólida em Suspensão em Jusante Caldeirão do Inferno

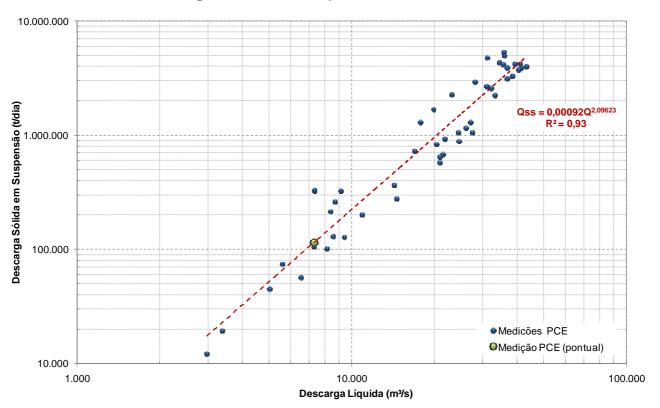
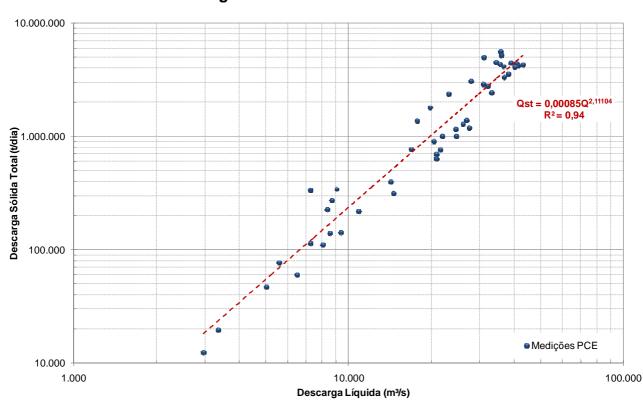
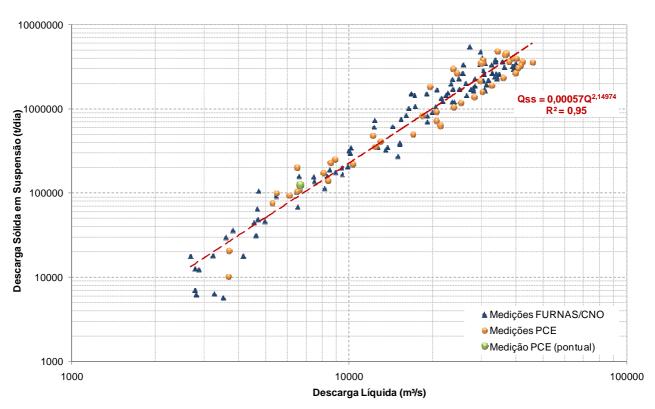



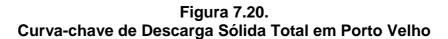
Figura 7.18.
Curva-chave de Descarga Sólida Total em Jusante do Caldeirão do Inferno

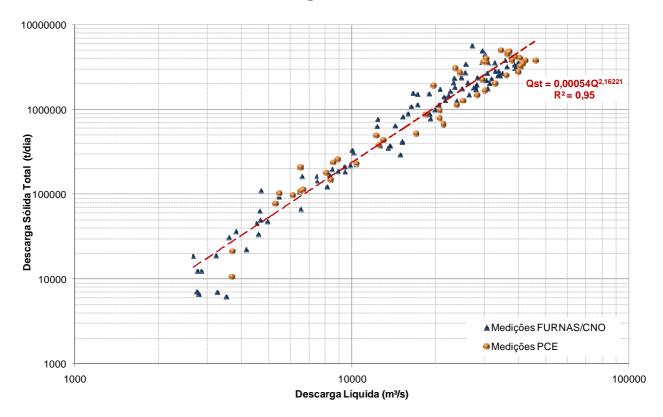


7.2.3. Estação Fluviométrica Porto Velho

Na estação fluviométrica de Porto Velho foram realizadas, no âmbito do Programa de Monitoramento Hidrossedimentológico, 51 medições até agosto de 2011, incluindo três reamostragens dos sedimentos em suspensão e uma amostragem pontual. A amostra de sedimentos em suspensão do dia 15/03/2010 foi desconsiderada na análise final já que os resultados da análise laboratorial não resultaram consistentes.

Por tanto, a nova curva-chave de descarga sólida em suspensão foi elaborada a partir de 107 medições realizadas por FURNAS/CNO (no período 2003-2006) e 50 medições realizadas pela PCE (Figura 7.19.). Da mesma forma, o novo ajuste da curva-chave de descarga sólida total levou em consideração as 107 medições de FURNAS/CNO e 49 medições realizadas pela PCE já que foi excluída a amostragem pontual (Figura 7.20.).


Figura 7.19.
Curva-chave de Descarga Sólida em Suspensão em Porto Velho



Eng^o José Eduardo Moreira CREA: 21112-D/RJ

7.2.4. Estação Fluviométrica São Carlos

O novo ajuste das curvas-chave de descarga sólida em suspensão e descarga sólida total da estação São Carlos foi realizado a partir dos conjuntos de dados de 47 medições, além de quatro medições de re-amostragem de sedimentos em suspensão e 2 medições de FURNAS/CNO realizadas no período 2006/2007.

As novas relações obtidas para as curvas-chave de sedimentos em suspensão e total são apresentadas, respectivamente, na Figura 7.21. e Figura 7.22.

Figura 7.21.

Curva-chave de Descarga Sólida em Suspensão em São Carlos

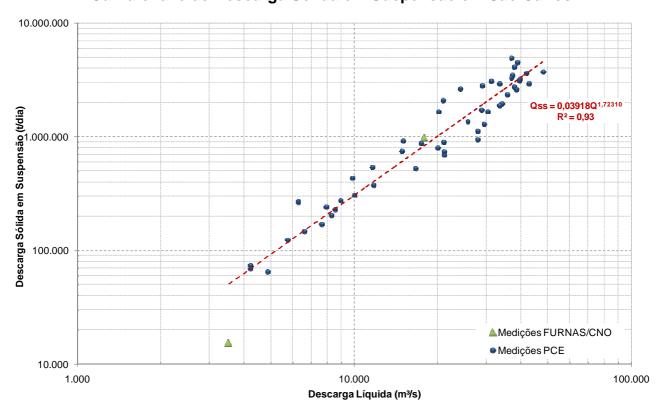
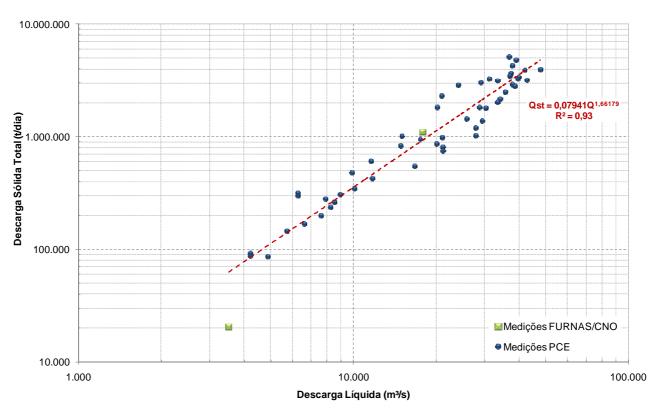
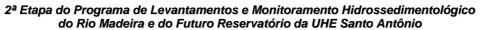




Figura 7.22.
Curva-chave de Descarga Sólida Total em São Carlos

7.2.5. Estação Fluviométrica Humaitá

Conforme descrito anteriormente, esta estação possui registros históricos de medições da ANA, ocorridas entre 1998 e 2007. Nesse período foram feitas 34 medições de descarga líquida e coleta de sedimentos em suspensão com análise de concentração. No entanto, a elaboração das curvas-chave de descarga sólida não levou em consideração estes dados, mas somente os dados das medições executadas por FURNAS/CNO e principalmente pela PCE, devido à incompatibilidade dos dados, conforme se visualiza na Figura 7.23.

Em relatórios anteriores (PJ0697-X-H41-GR-ED-102) se apontou que uma das possíveis causas para essas diferenças poderia residir no uso de amostradores inadequados para as condições extremas dos rios amazônicos. No entanto, atualmente são utilizados os mesmos equipamentos e as diferenças ainda persistem, o que leva a considerar outras hipóteses como as diferenças no procedimento de amostragem ou nos métodos de análise das amostras em laboratório, o qual pode ser uma fonte relevante de erro (Pinto & Magalhães, 2010).

Na estação de Humaitá a PCE realizou 47 medições de sedimentos com amostragem integrada na vertical, além de 4 re-amostragens de sedimentos (amostragem integrada) e 1 amostra pontual. Adicionalmente foi considerada uma medição de sedimentos realizada por FURNAS/CNO em 2006. Desta forma, a determinação das curvas-chave de descarga de sedimentos em suspensão (Figura 7.24.) e descarga sólida total (Figura 7.25.) foi realizada com mais de 50 conjuntos de dados coletados nos últimos 3 anos.

Figura 7.23.
Avaliação Comparativa dos Dados Coletados pela ANA e PCE em Humaitá

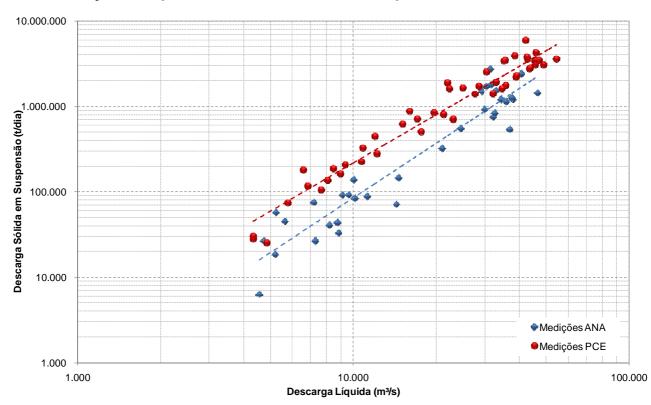


Figura 7.24. Curva-chave de Descarga Sólida em Suspensão em Humaitá

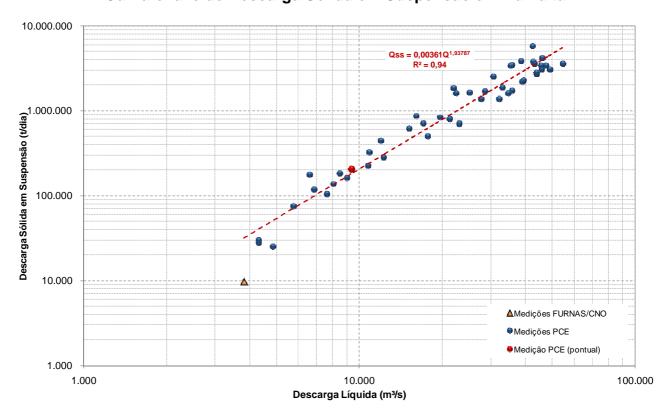
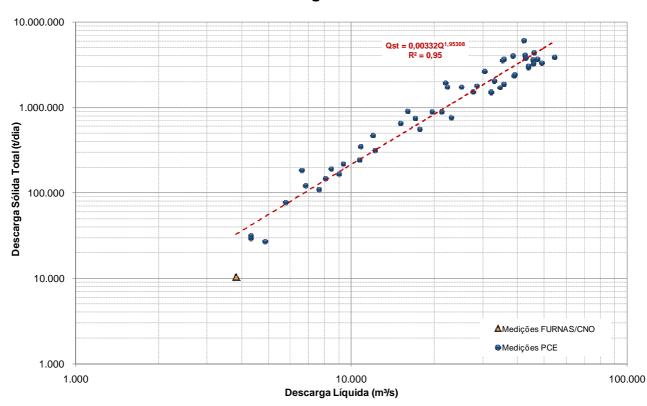
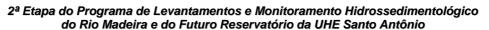
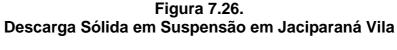
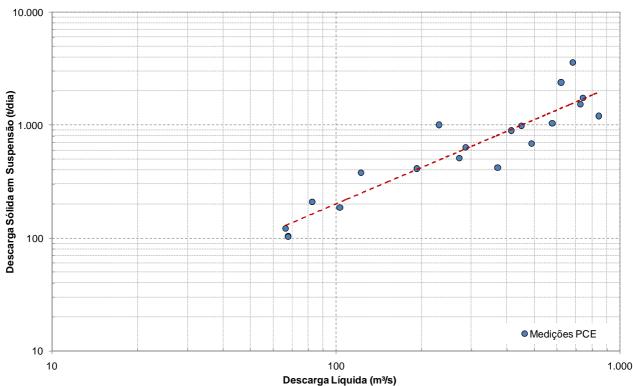
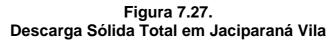




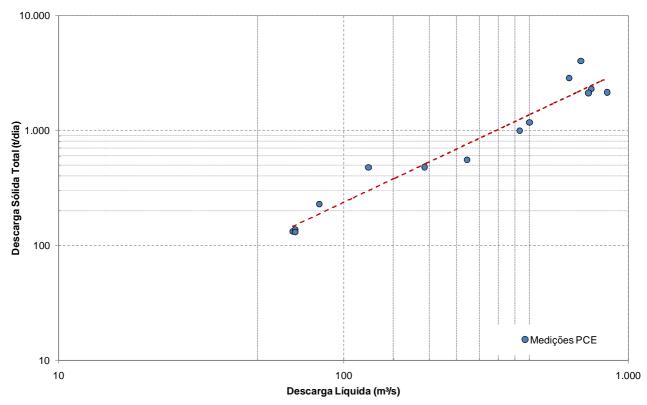
Figura 7.25.
Curva-chave de Descarga Sólida Total em Humaitá




7.2.6. Estação Fluviométrica Jaciparaná Vila

A estação de Jaciparaná Vila (S02) encontra-se sob influência do efeito de remanso do rio Madeira, que afeta significativamente a dinâmica do escoamento e dos sedimentos em suspensão no local de medição. Por este motivo não é possível obter uma equação confiável para as curvas-chave de descarga sólida em suspensão e descarga sólida total.


Apesar disto, na estação fluviométrica Jaciparaná Vila foram realizadas 21 medições de descarga líquida e sólida, além de 1 re-amostragem de sedimentos em suspensão, de forma a atender os requerimentos estabelecidos no Projeto Básico Ambiental do empreendimento. Destaca-se que nas medições realizadas em 30/03/2009, 10/04/2009, 17/04/2009, 22/07/2009 e 04/12/2009 não foi possível realizar o cálculo da descarga sólida total já que as baixas concentrações encontradas no curso de água impediram a análise da granulometria dos sedimentos em suspensão. As análises de suspensão dos dias 04/09/2009 e 19/05/2010 foram desprezadas por apresentarem resultados pouco consistentes. Na Figura 7.26. e Figura 7.27. apresentam-se, respectivamente, as relações da descarga líquida com a descarga sólida em suspensão e com a descarga sólida total para as medições realizadas no local, mas sem estabelecer uma relação matemática.


Por último, vale recordar que no mês de março as medições de descarga líquida e sólida nesta estação foram suspensas, e que também neste mês as medições do rio Jaciparaná foram deslocadas para a estação Montante Jaciparaná, localizada a 68 km da foz do rio, aproximadamente no limite de influência do reservatório da UHE Santo Antônio.

7.2.7. Estação Fluviométrica Montante Jaciparaná

Em março de 2011 foi instalada uma nova estação fluviométrica no rio Jaciparaná, localizada a 68 km da foz do rio, aproximadamente no limite de influência do remanso do reservatório da UHE Santo Antônio. As medições de descarga líquida e sólida foram iniciadas também nesse mês, totalizando 5 conjuntos de dados até agosto de 2011.

Os resultados da descarga sólida em suspensão e descarga sólida total são apresentados, respectivamente, nos gráficos da Figura 7.28. e Figura 7.29. Dado que as medições tiveram início recentemente (e não chegam a representar um ano hidrológico) e se dispõe de uma quantidade reduzida de pontos, optou-se por não estabelecer ainda a equação das curvas-chave de sedimentos do rio Jaciparaná neste local.

Figura 7.28.

Descarga Sólida em Suspensão em Montante Jaciparaná

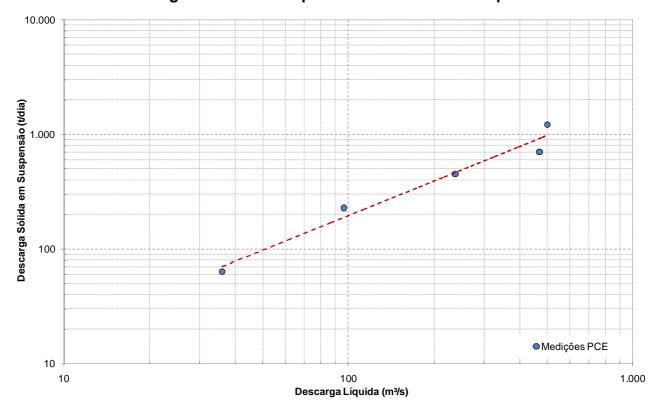
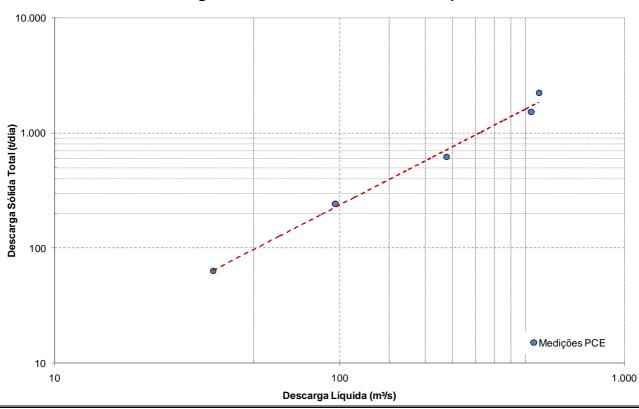



Figura 7.29.

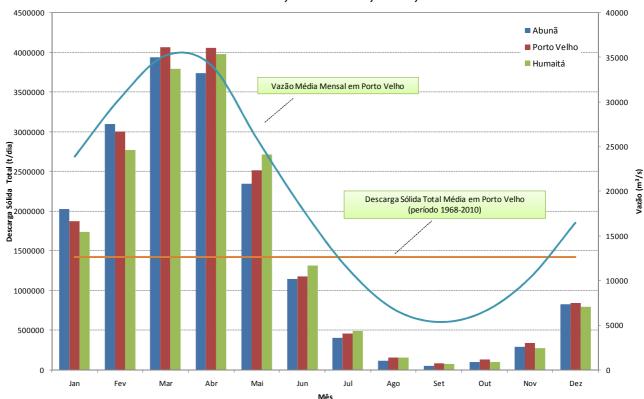
Descarga Sólida Total em Montante Jaciparaná

7.3. SÉRIES DE DESCARGAS SÓLIDAS

A partir das curvas de descarga sólida em suspensão e descarga sólida total descritas no item anterior, e levando-se em consideração as descargas líquidas diárias, foram geradas as séries de descargas sólidas diárias e médias mensais para as estações de Abunã, Jusante Caldeirão do Inferno, Porto Velho, São Carlos e Humaitá (Tabela 7.1. a Tabela 7.10.).

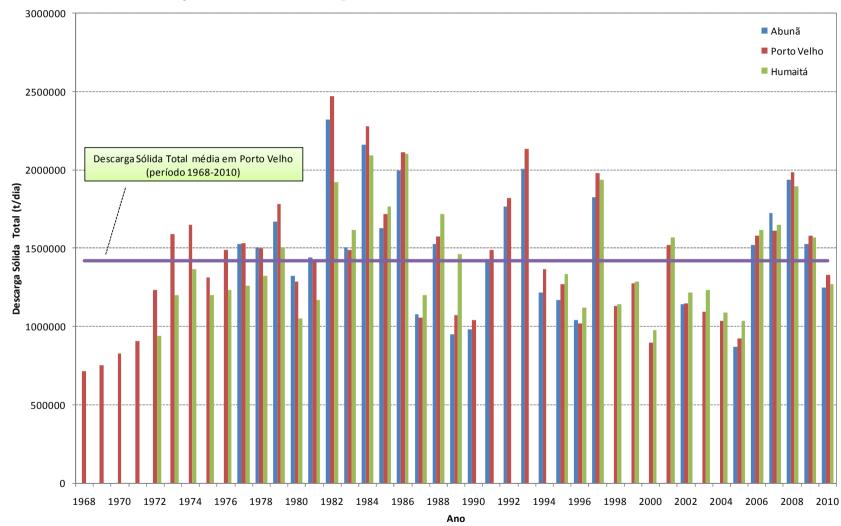
Em Abunã as séries de descargas sólidas em suspensão e total foram geradas a partir das equações mostradas na Figura 7.15. e Figura 7.16., para o período de março de 1976 à agosto de 2011, com falhas nos anos de 1998, 1999, 2000, 2001, 2003 e 2004 devido à interrupção da leitura da régua em alguns meses destes anos. Em Porto Velho as medições de descarga líquida começaram no ano 1967 e por este motivo as series de descarga sólida foram determinadas de forma interrompida para o período compreendido entre janeiro de 1968 e agosto de 2011, levando-se em consideração as equações exibidas na Figura 7.19. e Figura 7.20.

As séries de descarga sólida na estação São Carlos correspondem ao período 2008-2011 já que a mesma foi instalada em setembro/2008. Na estação Humaitá as séries de descarga sólida foram geradas para o período de janeiro de 1972 a agosto de 2011, com interrupções nos anos 1990, 1991, 1992, 1993 e 1994. A régua de Jusante do Caldeirão do Inferno foi primeiramente instalada na Ilha do Padre, em outubro de 2008. Com a mudança do eixo da UHE Jirau, o acesso à Ilha do Padre ficou comprometido e por este motivo a estação foi re-instalada a jusante da ilha, e começou a operar em agosto de 2009. A série desta estação compreende apenas o período setembro de 2009 até abril de 2011, pois no mês de maio o observador desta régua foi removido do local pela Santo Antônio Energia - SAE devido ao enchimento do reservatório.


Em termos quantitativos, considerando apenas os anos completos, se observa que o valor médio da descarga sólida total em Porto Velho (1968 a 2010), totalizou 1.404.128 t/dia. Em relação às médias mensais, a mínima descarga sólida total foi de 15.231 t/dia (setembro de 2005) e a máxima descarga sólida total aconteceu em abril de 1984 com 6.857.030 t/dia. Na estação Abunã, o valor médio da descarga sólida total foi de 1.459.621 t/dia (1976 a 2010), enquanto que o valor médio em Humaitá foi de 1.391.147 t/dia para o período 1972-2010.

Quando avaliadas estas três estações conjuntamente, levando—se em consideração apenas os anos em comum (períodos 1977-1989, 1995-1997, 2002, 2005-2010), pode-se visualizar o andamento da carga de sedimentos na distância (no sentido de jusante) e no tempo (Figura 7.30.). Assim, verifica-se em janeiro e fevereiro a maior carga de sedimentos em Abunã, em março e abril o pico ocorre em Porto Velho, e em maio e junho a maior carga de sedimentos se verifica em Humaitá. Posteriormente, no período de julho a dezembro a carga de sedimentos nas três estações é semelhante, sendo que nos meses de agosto, setembro e outubro praticamente não existe um transporte expressivo de sedimentos.

Figura 7.30.
Variação Mensal da Descarga Sólida Total em Abunã, Porto Velho e Humaitá
Período 1977-1989, 1995-1997, 2002, 2005-2010



A avaliação da descarga sólida total, considerando os valores anuais, se apresenta na Figura 7.31., onde é possível identificar a alternância de anos úmidos e secos e o seu impacto na descarga sólida. Nas figuras anteriormente comentadas se visualiza que a descarga sólida total é levemente superior nas estações de Porto Velho e Humaitá, sinalizando que no trecho em questão existe uma ligeira tendência erosiva.

Figura 7.31. Variação Anual da Descarga Sólida Total em Abunã, Porto Velho e Humaitá

Tabela 7.1. Série de Descarga Sólida em Suspensão em Abunã (t/dia)

A	•	F			arya Sur						Maria	D	N4 (.1! -
Ano	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez	Média
1976		-	3.697.045	2.847.996	1.867.659	837.367	193.870	51.328	36.892	45.932	164.147	461.256	
1977	1.786.034	2.513.352	4.266.524	3.148.990	2.154.313	929.247	332.731	117.260	72.124	133.479	462.196	1.024.823	1.411.756
1978	2.178.488	3.248.728	4.344.681	2.709.549	1.519.997	771.437	356.786	67.338	21.498	39.578	157.468	1.270.931	1.390.540
1979	2.664.195	3.485.033	3.684.297	4.053.742	2.653.921	1.083.036	302.196	76.835	50.605	55.089	103.994	294.504	1.542.287
1980	1.154.596	2.027.312	3.313.029	3.213.085	2.151.977	1.434.491	449.456	138.981	109.358	163.778	173.240	370.100	1.224.950
1981	958.677	2.466.442	3.512.937	3.214.368	2.269.719	1.531.918	331.603	71.217	39.496	139.770	385.375	1.039.213	1.330.061
1982	2.792.170	3.892.818	4.815.229	5.311.054	3.208.431	1.735.834	929.729	285.031	108.510	345.732	896.856	1.377.572	2.141.580
1983	1.657.073	2.483.354	3.095.253	2.815.712	2.699.438	1.627.164	1.205.305	356.739	69.324	65.251	182.071	423.546	1.390.019
1984	1.893.815	3.454.171	4.741.622	5.745.747	3.619.615	1.749.469	574.908	89.551	26.898	60.235	648.680	1.262.392	1.988.925
1985	2.618.966	3.323.879	3.189.015	3.180.600	2.727.269	1.420.118	392.223	203.912	95.612	128.439	345.095	443.473	1.505.717
1986	1.854.701	3.578.179	4.784.143	4.700.112	2.963.038	1.861.653	754.855	222.052	125.441	207.959	151.134	853.392	1.838.055
1987	2.091.574	2.872.505	2.088.367	1.383.802	1.293.376	418.698	121.798	56.258	30.027	67.983	262.838	1.271.298	996.544
1988	2.041.037	2.965.381	3.258.245	4.091.693	2.468.536	1.279.263	378.046	72.743	18.735	29.347	66.590	227.656	1.408.106
1989	1.292.790	2.041.362	2.439.543	2.427.268	1.182.881	524.056	194.812	72.914	44.605	41.364	74.394	237.614	881.134
1990	853.690	1.976.189	2.076.015	1.542.961	1.360.879	943.234	362.115	92.952	44.071	64.444	561.223	1.055.154	911.077
1991	2.159.390	3.261.712	3.487.441	2.875.986	1.862.831	875.454	282.825	136.669	68.917	81.883	239.986	539.471	1.322.714
1992	1.601.293	1.866.370	4.238.783	3.305.076	2.657.794	1.722.549	1.116.447	217.264	358.962	492.680	730.116	1.282.501	1.632.486
1993	2.905.842	4.463.033	5.103.246	4.043.639	2.639.664	1.006.790	288.258	112.826	83.150	92.041	369.184	1.086.340	1.849.501
1994	1.708.117	2.384.776	2.551.432	2.886.328	1.672.039	517.322	164.115	61.159	15.983	58.076	394.089	1.081.940	1.124.615
1995	1.963.648	2.195.506	3.240.518	3.008.167	1.424.005	370.989	151.991	50.251	17.485	25.799	69.206	473.861	1.082.619
1996	961.947	2.397.335	2.575.809	2.504.152	1.178.037	504.876	153.288	28.697	35.076	80.249	409.785	764.083	966.111
1997	1.786.046	2.976.072	4.670.738	4.577.600	3.016.137	1.432.080	418.453	114.133	43.168	102.676	192.702	855.843	1.682.137
1998	1.341.389	1.402.450	3.255.041	3.073.469	1.214.919	281.296	96.897	37.028	26.152	-	-	-	-
1999	-	-	-	-	-	-	-	ı	-	-	-	-	-
2000	-	-	-	-	-	-	-	ı	-	-	-	-	-
2001	-	-	-	-	-	-	-	ı	31.017	64.901	196.574	774.849	-
2002	1.453.364	2.327.858	3.422.040	2.219.863	1.379.933	721.562	161.562	60.986	43.873	74.683	173.324	650.839	1.057.491
2003	1.454.336	2.351.669	2.827.931	2.572.056	1.164.895	532.437	128.583	48.457	22.732	82.470	120.842	-	-
2004	2.253.774	-	-	1.968.184	1.260.137	437.146	177.182	82.854	33.930	52.972	206.696	615.985	-
2005	1.541.981	1.902.600	2.269.920	1.780.491	682.796	401.709	104.242	25.999	15.611	47.640	217.636	707.367	808.166
2006	2.366.520	3.859.397	3.798.228	3.582.592	1.411.665	492.339	161.494	24.726	9.313	55.994	295.933	813.493	1.405.975
2007	1.512.954	2.302.747	4.397.275	4.487.832	2.963.524	1.213.246	252.090	79.796	22.385	70.589	464.313	1.340.141	1.592.241
2008	2.789.053	4.483.885	4.677.280	4.781.197	2.903.346	1.271.406	264.687	84.629	37.576	67.539	167.336	304.352	1.819.357
2009	1.531.944	2.038.039	3.474.122	3.825.489	2.402.567	1.308.601	584.334	189.403	67.256	100.090	296.523	1.303.916	1.426.857
2010	2.327.432	3.015.558	3.560.981	2.611.853	1.591.909	381.117	81.511	32.927	20.462	23.556	79.931	264.793	1.166.002
2011	1.115.753	2.696.435	4.140.809	4.617.030	2.202.489	613.433	149.006	72.186	-	-	-	-	-
Média	1.873.119	2.850.128	3.609.883	3.358.177	2.144.987	1.054.631	388.281	112.259	60.554	104.141	306.115	807.879	1.389.179
Máximo	2.905.842	4.483.885	5.103.246	5.745.747	3.619.615	1.861.653	1.205.305	356.739	358.962	492.680	896.856	1.377.572	2.141.580
Minimo	853.690	1.402.450	2.076.015	1.383.802	682.796	281.296	81.511	24.726	9.313	23.556	66.590	227.656	808.166

^{*} Obs.: para o cálculo da média mensal não foram considerados meses de anos incompletos.

Tabela 7.2.

Série de Descarga Sólida Total em Abunã (t/dia)

	Serie de Descarga Solida Total em Abuna (t/dia)												
Ano	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez	Média
1976	-	-	3.881.906	2.992.161	1.964.181	882.118	204.914	54.437	39.153	48.726	173.584	486.549	-
1977	1.878.430	2.641.292	4.478.342	3.307.541	2.264.750	978.823	351.310	124.116	76.429	141.239	487.424	1.079.263	1.484.080
1978	2.290.204	3.412.209	4.560.215	2.846.982	1.599.266	812.869	376.623	71.352	22.846	41.993	166.562	1.337.467	1.461.549
1979	2.799.560	3.659.806	3.868.416	4.255.513	2.788.638	1.140.383	319.124	81.404	53.656	58.414	110.068	310.986	1.620.497
1980	1.215.540	2.131.652	3.479.580	3.374.755	2.262.445	1.509.533	474.138	147.055	115.740	173.177	183.209	390.698	1.288.127
1981	1.009.313	2.592.120	3.689.046	3.376.183	2.385.924	1.611.720	350.037	75.470	41.914	147.783	406.778	1.094.247	1.398.378
1982	2.933.460	4.086.983	5.052.835	5.571.905	3.369.699	1.825.857	979.336	301.046	114.867	364.981	944.647	1.449.758	2.249.614
1983	1.743.167	2.609.927	3.251.380	2.958.401	2.836.501	1.711.785	1.268.865	376.513	73.470	69.159	192.479	446.949	1.461.550
1984	1.991.306	3.627.379	4.975.822	6.026.840	3.800.527	1.840.033	606.130	94.831	28.568	63.837	683.645	1.328.844	2.088.980
1985	2.751.919	3.490.965	3.349.634	3.340.816	2.865.586	1.494.354	413.923	215.503	101.250	135.926	364.278	467.896	1.582.671
1986	1.950.376	3.757.382	5.020.272	4.932.263	3.112.783	1.957.716	795.436	234.663	132.756	219.829	159.852	899.031	1.931.030
1987	2.198.904	3.017.830	2.195.605	1.456.320	1.361.356	441.847	128.894	59.645	31.882	71.968	277.665	1.338.091	1.048.334
1988	2.145.999	3.115.261	3.422.038	4.295.288	2.594.289	1.346.328	399.014	77.068	19.916	31.166	70.573	240.565	1.479.792
1989	1.360.749	2.146.402	2.563.967	2.551.151	1.245.212	552.773	205.935	77.256	47.319	43.889	78.827	250.945	927.035
1990	899.427	2.077.961	2.182.704	1.623.434	1.432.272	993.544	382.238	98.421	46.757	68.258	591.763	1.111.169	958.996
1991	2.270.014	3.425.811	3.662.293	3.021.502	1.959.032	922.292	298.731	144.614	73.040	86.746	253.562	568.929	1.390.547
1992	1.684.596	1.962.588	4.449.308	3.471.243	2.792.692	1.811.885	1.175.435	229.569	378.928	519.763	769.487	1.349.941	1.716.286
1993	3.052.768	4.684.144	5.354.373	4.244.942	2.773.671	1.060.130	304.463	119.438	88.086	97.478	389.690	1.143.742	1.942.744
1994	1.796.766	2.506.605	2.681.353	3.032.389	1.758.729	545.613	173.565	64.828	16.995	61.565	415.884	1.139.309	1.182.800
1995	2.064.804	2.308.081	3.403.586	3.160.024	1.498.460	391.581	160.781	53.275	18.588	27.405	73.313	499.932	1.138.319
1996	1.012.939	2.519.770	2.706.911	2.631.721	1.240.152	532.520	162.131	30.467	37.218	85.007	432.461	805.209	1.016.375
1997	1.878.452	3.126.373	4.901.594	4.803.939	3.168.408	1.506.915	441.494	120.808	45.792	108.684	203.729	901.540	1.767.311
1998	1.411.794	1.475.910	3.418.765	3.228.445	1.278.768	297.120	102.589	39.297	27.777	-	-	-	-
1999	=	-	-	-	-	-	=	-	-	-	-	-	-
2000	=	-	-	-	-	-	=	-	-	-	-	-	-
2001	=	-	-	-	-	-	=	-	32.928	68.774	207.740	816.464	-
2002	1.529.297	2.446.651	3.593.806	2.333.566	1.452.070	760.485	170.878	64.644	46.547	79.117	183.265	686.031	1.112.196
2003	1.530.076	2.471.875	2.971.143	2.702.905	1.226.349	561.580	136.041	51.397	24.154	87.302	127.889	-	-
2004	2.369.035	-	-	2.069.619	1.326.380	461.229	187.352	87.755	36.015	56.154	218.437	649.392	-
2005	1.622.341	2.000.742	2.386.140	1.872.563	719.691	423.977	110.343	27.615	16.602	50.513	230.005	745.615	850.512
2006	2.486.957	4.051.900	3.987.808	3.761.966	1.485.379	519.371	170.766	26.259	9.917	59.312	312.485	857.062	1.477.432
2007	1.591.920	2.420.311	4.615.263	4.710.013	3.113.240	1.276.996	266.306	84.496	23.786	74.747	489.824	1.410.281	1.673.099
2008	2.930.346	4.705.933	4.908.464	5.017.117	3.050.030	1.338.134	279.589	89.647	39.879	71.570	176.969	321.254	1.910.744
2009	1.611.805	2.068.762	3.648.352	4.016.418	2.525.167	1.377.266	616.126	200.253	71.276	105.980	313.126	1.372.200	1.493.894
2010	2.446.333	3.058.632	3.739.351	2.744.456	1.674.535	402.136	86.350	34.951	21.745	25.026	84.671	279.697	1.216.490
2011	1.174.707	2.833.015	4.346.701	4.845.260	2.315.199	646.652	157.629	76.481	-	-	=	-	-
<u>Média</u>	1.969.560	2.987.624	3.790.302	3.526.402	2.254.661	1.110.245	409.570	118.757	64.135	110.162	323.080	850.952	1.459.621
<u>Máximo</u>	3.052.768	4.705.933	5.354.373	6.026.840	3.800.527	1.957.716	1.268.865	376.513	378.928	519.763	944.647	1.449.758	2.249.614
<u>Minimo</u>	899.427	1.475.910	2.182.704	1.456.320	719.691	297.120	86.350	26.259	9.917	25.026	70.573	240.565	850.512

^{*} Obs.: para o cálculo da média mensal não foram considerados meses de anos incompletos.

Tabela 7.3. Série de Descarga Sólida em Suspensão em Jusante Caldeirão do Inferno (t/dia)

Ano	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez	Média
2009	-	-	-	-	-	-	-	193.855	74.801	103.381	271.211	1.152.366	-
2010	2.085.829	2.729.694	3.161.511	2.336.407	1.368.092	368.197	84.385	36.982	22.712	24.273	75.348	242.708	1.044.678
2011	950.804	2.447.988	3.753.754	4.287.236	-	-	-	-	-	-	-	-	-
<u>Média</u>	2.085.829	2.729.694	3.161.511	2.336.407	1.368.092	368.197	84.385	36.982	22.712	24.273	75.348	242.708	1.044.678
<u>Máximo</u>	2.085.829	2.729.694	3.753.754	4.287.236	1.368.092	368.197	84.385	193.855	74.801	103.381	271.211	1.152.366	4.287.236
<u>Minimo</u>	950.804	2.447.988	3.161.511	2.336.407	1.368.092	368.197	84.385	36.982	22.712	24.273	75.348	242.708	22.712

^{*} Obs.: para o cálculo da média mensal não foram considerados meses de anos incompletos.

Tabela 7.4. Série de Descarga Sólida Total em Jusante Caldeirão do Inferno (t/dia)

Ano	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez	Média
2009	1	-	-	-	-	-	ı	205.122	78.630	108.901	287.778	1.235.209	-
2010	2.244.309	2.942.187	3.411.244	2.516.356	1.468.130	391.767	88.760	38.683	23.673	25.311	79.211	257.300	1.123.911
2011	1.017.521	2.636.900	4.055.158	4.636.177	-	-	-	=	-	-	-	-	-
<u>Média</u>	2.244.309	2.942.187	3.411.244	2.516.356	1.468.130	391.767	88.760	38.683	23.673	25.311	79.211	257.300	1.123.911
<u>Máximo</u>	2.244.309	2.942.187	4.055.158	4.636.177	1.468.130	391.767	88.760	205.122	78.630	108.901	287.778	1.235.209	4.636.177
<u>Minimo</u>	1.017.521	2.636.900	3.411.244	2.516.356	1.468.130	391.767	88.760	38.683	23.673	25.311	79.211	257.300	23.673

^{*} Obs.: para o cálculo da média mensal não foram considerados meses de anos incompletos.

CREA: 21112-D/RJ

Tabela 7.5. Série de Descarga Sólida em Suspensão em Porto Velho (t/dia)

		-					spensao e			(vuia)			B
Ano	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez	Média
1968	459.917	1.551.892	2.902.201	1.772.269	484.884	109.311	48.409	27.475	51.595	51.403	120.744	372.808	662.742
1969	1.319.673	1.708.840	1.709.391	1.589.242	612.639	347.826	140.679	50.120	38.587	287.832	105.005	469.554	698.282
1970	691.416	1.318.794	2.131.452	2.117.924	1.455.227	745.117	233.656	66.487	49.707	49.049	86.549	285.791	769.264
1971	892.694	2.302.381	2.900.877	1.871.110	793.886	247.821	141.298	47.124	38.319	97.614	187.763	559.319	840.017
1972	1.020.356	2.010.797	3.244.758	3.219.610	1.393.179	673.526	188.202	134.461	229.965	255.369	249.060	1.012.449	1.135.978
1973	1.553.827	3.013.126	3.920.865	3.655.306	2.048.967	1.092.067	422.415	177.945	100.314	106.247	403.182	1.077.882	1.464.345
1974	2.309.680	3.327.455	4.716.490	3.402.359	2.162.381	933.512	343.425	128.067	61.867	82.359	263.992	454.886	1.515.539
1975	1.201.870	2.547.178	3.632.859	3.142.122	1.593.051	721.066	402.864	105.772	50.934	131.172	176.171	791.745	1.208.067
1976	1.917.463	3.397.763	4.089.242	3.366.600	1.866.200	838.037	217.479	59.579	42.581	48.469	157.071	404.582	1.367.089
1977	1.627.045	2.240.776	4.309.304	3.480.477	2.209.330	936.162	355.424	127.635	72.969	126.672	442.940	955.396	1.407.011
1978	1.895.168	2.908.935	4.332.758	3.106.266	1.660.164	811.364	387.201	81.487	28.402	44.115	150.508	1.129.938	1.378.026
1979	2.376.717	3.450.262	3.907.838	4.612.292	3.056.684	1.219.170	332.720	91.549	58.096	59.087	113.866	306.093	1.632.031
1980	1.066.791	1.795.238	3.179.879	3.360.380	2.058.267	1.334.298	462.349	150.289	120.204	161.734	189.575	366.536	1.187.128
1981	904.111	2.185.692	3.472.064	3.469.297	2.235.067	1.471.304	368.679	81.521	44.365	127.606	389.274	1.018.720	1.313.975
1982	2.461.435	3.715.689	5.012.752	5.920.163	4.072.701	1.998.545	970.849	283.925	103.278	372.718	870.510	1.337.176	2.259.978
1983	1.700.372	2.544.464	3.305.923	2.582.871	2.452.655	1.545.880	1.137.946	439.101	99.037	69.172	174.557	422.350	1.372.861
1984	1.727.833	3.134.397	4.743.079	6.329.118	4.415.306	1.917.003	688.931	151.380	63.317	74.426	612.470	1.150.413	2.083.973
1985	2.318.574	3.152.289	3.311.260	3.442.660	3.062.219	1.479.363	539.265	263.769	123.856	173.017	398.710	680.805	1.578.816
1986	1.714.456	3.429.023	4.949.854	5.492.463	3.246.849	1.912.739	774.860	297.252	193.744	244.073	181.890	794.319	1.935.960
1987	1.860.425	2.684.347	2.144.397	1.502.112	1.292.264	492.433	166.089	74.000	36.181	69.665	273.854	1.149.359	978.761
1988	1.776.052	2.842.440	3.377.609	4.494.334	2.690.090	1.284.430	423.224	87.846	29.977	35.734	71.818	236.414	1.445.831
1989	1.217.322	2.196.789	2.800.927	2.638.798	1.565.961	595.092	274.000	82.664	76.819	56.058	92.662	273.867	989.246
1990	1.175.346	2.110.893	2.254.809	1.597.167	1.311.044	894.028	410.733	101.648	61.370	103.626	582.448	972.938	964.671
1991	2.032.728	3.178.906	3.593.064	3.215.386	1.780.139	1.005.106	366.770	141.737	78.526	113.862	301.282	646.664	1.371.181
1992	1.689.769	1.918.754	4.016.870	3.687.520	2.859.422	1.573.293	1.062.356	265.617	387.643	581.330	696.509	1.350.353	1.674.120
1993	2.551.292	4.290.270	5.140.762	5.359.433	2.991.875	1.083.312	301.691	130.591	108.896	103.301	394.414	974.436	1.952.523
1994	1.650.633	2.890.674	3.123.176	3.139.219	1.786.708	581.454	187.388	78.434	26.130	65.081	453.139	1.139.064	1.260.092
1995	1.772.991	2.249.245	3.645.815	3.345.433	1.569.638	563.943	178.350	113.997	28.177	28.077	68.147	459.347	1.168.597
1996	953.660	2.140.782	2.361.940	2.688.346	1.125.897	502.042	170.502	45.223	46.230	83.379	477.621	747.676	945.275
1997	1.611.424	2.929.812	5.256.417	5.534.768	3.179.153	1.415.092	500.450	146.929	52.354	108.242	216.843	767.330	1.809.901
1998	1.204.343	1.529.309	3.056.402	3.212.543	1.235.914	363.300	120.908	45.028	39.572	91.753	473.900	1.149.373	1.043.529
1999	1.891.228	3.155.932	3.208.905	3.019.919	1.326.402	519.408	252.429	62.803	28.979	37.679	79.423	491.655	1.172.897
2000	957.694	1.719.152	2.615.250	2.026.771	941.508	468.046	178.559	67.467	88.366	42.155	228.066	630.869	830.325
2001	1.580.099	2.926.354	4.697.618	3.511.820	1.738.647	831.321	261.177	97.418	40.731	66.592	319.396	725.338	1.399.709
2002	1.376.908	2.118.483	3.500.144	2.412.377	1.399.798	716.798	193.899	70.726	45.091	77.007	174.761	598.269	1.057.022
2003	1.269.816	2.256.309	2.908.542	2.950.824	1.258.449	571.359	161.262	53.556	30.440	81.490	108.250	467.728	1.009.835
2004	1.962.385	2.376.736	2.066.196	2.154.419	1.314.355	515.831	181.821	74.613	29.965	47.321	186.273	568.344	956.522
2005	1.372.198	1.855.495	2.618.692	2.064.141	770.998	442.346	132.137	30.005	14.562	44.747	207.774	679.059	852.680
2006	2.078.683	3.939.487	4.048.160	3.902.280	1.438.388	477.559	175.847	52.720	23.854	79.921	347.940	818.418	1.448.605
2007	1.566.344	2.162.380	3.798.725	4.320.820	2.728.076	1.065.983	261.007	102.303	26.690	69.268	416.813	1.224.165	1.478.548
2008	2.340.554	4.044.893	4.604.691	5.027.424	3.225.902	1.325.623	306.887	97.775	44.404	64.882	163.509	286.639	1.794.432
2009	1.402.005	1.929.512	3.467.077	3.888.516	2.720.710	1.371.116	643.825	222.324	76.932	102.860	277.910	1.122.810	1.435.466
2010	2.138.856	3.044.979	3.736.149	3.028.039	1.660.901	436.847	92.138	38.887	21.795	21.496	64.951	233.576	1.209.884
2011	922.063	2.393.735	3.944.793	4.828.117	2.356.775	635.570	154.419	71.949	-	-	-		_
Média	1.582.221	2.599.570	3.525.691	3.372.069	1.979.309	928.405	358.761	119.294	71.263	112.290	283.014	739.783	1.303.738
Máximo	2.551.292	4.290.270	5.256.417	6.329.118	4.415.306	1.998.545	1.137.946	439.101	387.643	581.330	870.510	1.350.353	2.259.978
Minimo	459.917	1.318.794	1.709.391	1.502.112	484.884	109.311	48.409	27.475	14.562	28.077	68.147	236.414	662.742

Tabela 7.6. Série de Descarga Sólida Total em Porto Velho (t/dia)

		_			Jooda, ga		Otal Olli I					_	
Ano	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez	Média
1968	491.008	1.668.024	3.130.093	1.906.372	517.961	115.692	50.988	28.845	54.379	54.183	127.897	397.892	711.945
1969	1.416.928	1.837.459	1.838.009	1.708.262	655.134	370.578	149.182	52.797	40.586	306.297	111.236	501.409	748.990
1970	739.631	1.416.190	2.294.922	2.280.156	1.563.292	797.437	248.535	70.185	52.374	51.672	91.525	304.983	825.909
1971	956.292	2.480.210	3.128.668	2.013.030	850.323	263.582	149.824	49.635	40.316	103.287	199.332	597.780	902.690
1972	1.094.098	2.164.464	3.501.821	3.474.697	1.496.574	720.351	199.898	142.532	244.499	271.623	265.275	1.085.649	1.221.790
1973	1.670.028	3.250.527	4.236.109	3.947.706	2.205.621	1.171.218	450.641	188.850	106.128	112.468	430.089	1.155.986	1.577.114
1974	2.487.932	3.591.730	5.101.218	3.672.927	2.328.789	1.000.407	365.953	135.670	65.265	87.082	280.837	485.572	1.633.615
1975	1.289.894	2.745.219	3.923.203	3.390.725	1.712.335	771.637	429.602	111.963	53.669	138.975	187.104	847.548	1.300.156
1976	2.063.501	3.668.058	4.419.129	3.634.321	2.007.666	897.733	231.194	62.828	44.821	51.051	166.647	431.672	1.473.218
1977	1.749.151	2.413.334	4.658.456	3.758.208	2.379.458	1.003.199	378.784	135.205	77.040	134.185	473.108	1.023.888	1.515.335
1978	2.039.052	3.137.405	4.683.893	3.351.915	1.784.996	868.889	412.838	86.148	29.822	46.450	159.575	1.212.827	1.484.484
1979	2.560.398	3.724.983	4.222.289	4.987.932	3.298.067	1.308.758	354.465	96.809	61.278	62.307	120.655	326.104	1.760.337
1980	1.144.082	1.930.871	3.431.489	3.627.516	2.215.514	1.432.662	493.624	159.337	127.326	171.645	201.264	390.646	1.277.165
1981	969.471	2.353.769	3.748.596	3.745.633	2.406.986	1.580.806	393.189	86.128	46.706	135.369	415.022	1.092.413	1.414.507
1982	2.652.815	4.013.241	5.423.683	6.411.449	4.401.608	2.151.096	1.040.568	302.226	109.286	397.455	932.650	1.435.777	2.439.321
1983	1.828.287	2.742.294	3.568.241	2.783.808	2.642.675	1.661.274	1.220.708	468.791	104.748	73.015	185.315	450.524	1.477.473
1984	1.858.727	3.382.212	5.130.163	6.857.030	4.774.537	2.063.018	737.160	160.542	66.810	78.661	655.188	1.234.152	2.249.850
1985	2.497.928	3.401.451	3.574.019	3.716.683	3.304.029	1.589.666	576.163	280.638	131.178	183.579	425.426	728.294	1.700.754
1986	1.843.722	3.702.010	5.355.334	5.945.948	3.504.259	2.058.552	829.576	316.453	205.714	259.501	193.070	850.533	2.088.723
1987	2.001.767	2.894.007	2.308.946	1.613.930	1.387.292	525.744	176.248	78.145	38.048	73.692	291.410	1.233.276	1.051.875
1988	1.910.193	3.065.296	3.646.293	4.859.524	2.900.671	1.379.251	451.531	92.886	31.487	37.570	75.827	251.360	1.558.491
1989	1.306.411	2.365.465	3.020.247	2.844.441	1.683.315	636.003	291.616	87.355	81.178	59.102	97.985	291.704	1.063.735
1990	1.261.367	2.272.583	2.428.457	1.716.637	1.407.515	957.710	438.255	107.572	64.727	109.701	622.685	1.042.736	1.035.829
													1.476.542
1991	2.188.412 1.816.970	3.430.343	3.880.104 4.340.582	3.470.295	1.914.592 3.084.064	1.077.519	391.036	150.222 282.738	82.940 413.402	120.545 621.199	320.966	691.534	1.802.651
1992		2.064.674		3.982.770		1.690.905	1.139.383				745.116	1.450.015	
1993	2.749.774	4.637.752	5.562.847	5.800.843	3.228.127	1.162.215	321.205	138.346	115.243	109.284	420.767	1.044.722	2.107.594
1994	1.774.442	3.117.752	3.370.119	3.387.334	1.922.096	621.535	198.996	82.865	27.424	68.685	483.644	1.221.849	1.356.395
1995	1.906.948	2.422.558	3.937.302	3.611.414	1.686.985	602.722	189.290	120.722	29.589	29.479	71.997	490.225	1.258.269
1996	1.022.430	2.304.819	2.544.374	2.898.224	1.207.970	536.185	180.940	47.620	48.691	88.133	509.927	800.211	1.015.793
1997	1.732.209	3.160.708	5.688.739	5.991.811	3.431.277	1.520.075	534.519	155.786	55.181	114.647	230.401	821.684	1.953.087
1998	1.292.324	1.643.386	3.297.639	3.467.184	1.326.893	387.297	128.083	47.410	41.639	97.135	505.880	1.233.065	1.122.328
1999	2.035.050	3.405.667	3.462.934	3.258.217	1.424.194	554.808	268.521	66.295	30.451	39.641	83.959	525.355	1.262.924
2000	1.026.414	1.848.553	2.819.306	2.181.672	1.009.168	499.580	189.536	71.210	93.431	44.365	242.503	674.661	891.700
2001	1.699.174	3.156.377	5.080.738	3.792.468	1.869.885	890.308	277.825	103.070	42.863	70.303	340.235	776.243	1.508.291
2002	1.478.737	2.281.342	3.779.081	2.599.302	1.503.828	766.922	205.912	74.681	47.474	81.381	185.519	639.752	1.136.994
2003	1.363.550	2.429.941	3.137.201	3.182.984	1.351.054	610.486	171.166	56.443	31.975	86.230	114.595	499.764	1.086.282
2004	2.112.287	2.560.655	2.224.302	2.319.645	1.411.410	550.997	193.042	78.839	31.485	49.887	197.848	607.309	1.028.142
2005	1.473.716	1.996.339	2.822.641	2.222.321	825.438	471.937	140.089	31.526	15.231	47.180	220.756	726.284	916.122
2006	2.238.705	4.256.563	4.374.735	4.216.039	1.545.806	509.757	186.708	55.583	25.022	84.583	370.829	876.572	1.561.742
2007	1.683.353	2.328.462	4.103.531	4.671.028	2.941.642	1.143.537	277.754	108.356	28.016	73.268	444.703	1.314.150	1.593.150
2008	2.521.529	4.371.020	4.979.571	5.439.604	3.481.916	1.423.703	326.860	103.412	46.750	68.482	173.475	305.404	1.936.811
2009	1.505.870	2.076.673	3.743.210	4.200.994	2.933.530	1.472.661	688.523	236.277	81.275	108.828	295.855	1.204.870	1.545.714
2010	2.303.029	3.284.975	4.035.439	3.267.285	1.786.177	466.465	97.414	40.919	22.854	22.538	68.544	248.359	1.303.667
2011	988.098	2.579.100	4.262.204	5.222.766	2.539.486	679.890	163.764	75.995	-	-	-	-	-
Média	1.715.293	2.813.939	3.812.969	3.632.797	2.123.597	983.369	376.217	124.508	74.147	116.853	296.201	779.645	1.404.128
Máximo	2.749.774	4.637.752	5.688.739	6.857.030	4.774.537	2.151.096	1.220.708	468.791	413.402	621.199	932.650	1.450.015	2.439.321
Minimo	491.008	1.416.190	1.838.009	1.613.930	517.961	115.692	50.988	28.845	15.231	22.538	68.544	248.359	711.945

Tabela 7.7. Série de Descarga Sólida em Suspensão em São Carlos (t/dia)

Ano	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez	Média
2008	-	-	-	-	-	-	-	-	-	130.956	257.520	395.249	
2009	1.399.074	1.851.219	3.043.587	3.363.895	2.541.352	1.393.225	768.070	328.034	153.545	188.650	394.546	1.132.237	1.379.786
2010	1.939.502	2.721.156	3.220.560	2.763.865	1.600.065	563.806	166.702	89.622	60.054	57.598	137.373	360.075	-
2011	1.000.114	2.146.148	3.221.097	3.853.180	2.182.484	785.943	260.888	146.964	ı	ı	1	-	-
<u>Média</u>	1.399.074	1.851.219	3.043.587	3.363.895	2.541.352	1.393.225	768.070	328.034	153.545	188.650	394.546	1.132.237	1.379.786
<u>Máximo</u>	1.939.502	2.721.156	3.221.097	3.853.180	2.541.352	1.393.225	768.070	328.034	153.545	188.650	394.546	1.132.237	3.853.180
<u>Minimo</u>	1.000.114	1.851.219	3.043.587	2.763.865	1.600.065	563.806	166.702	89.622	60.054	57.598	137.373	360.075	57.598

^{*} Obs.: para o cálculo da média mensal não foram considerados meses de anos incompletos.

Tabela 7.8. Série de Descarga Sólida Total em São Carlos (t/dia)

Ano	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez	Média
2008	-	-	-	-	-	-	-	-	-	155.359	298.236	449.601	-
2009	1.526.663	1.998.852	3.231.671	3.559.134	2.714.651	1.519.856	855.792	376.815	181.120	221.025	449.521	1.243.247	1.489.862
2010	2.091.537	2.900.961	3.412.770	2.942.454	1.736.110	633.399	196.190	107.759	73.275	70.360	162.716	412.036	-
2011	1.104.077	2.306.270	3.413.147	4.056.990	2.342.171	873.846	302.113	173.456	-	ı	-	=	-
<u>Média</u>	1.526.663	1.998.852	3.231.671	3.559.134	2.714.651	1.519.856	855.792	376.815	181.120	221.025	449.521	1.243.247	1.489.862
<u>Máximo</u>	2.091.537	2.900.961	3.413.147	4.056.990	2.714.651	1.519.856	855.792	376.815	181.120	221.025	449.521	1.243.247	4.056.990
<u>Minimo</u>	1.104.077	1.998.852	3.231.671	2.942.454	1.736.110	633.399	196.190	107.759	73.275	70.360	162.716	412.036	70.360

^{*} Obs.: para o cálculo da média mensal não foram considerados meses de anos incompletos.

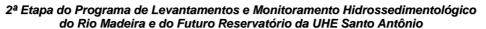
CREA: 21112-D/RJ

PPCE

Tabela 7.9. Série de Descarga Sólida em Suspensão em Humaitá (t/dia)

		_		ie de Des						vuia)			
Ano	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez	Média
1972	846.836	1.520.066	2.291.247	2.428.109	1.259.865	657.578	233.900	134.765	227.006	266.849	240.682	789.271	908.014
1973	1.153.710	2.065.548	2.778.541	2.819.139	1.871.284	983.777	424.825	189.560	106.403	111.027	366.683	899.438	1.147.495
1974	1.716.465	2.501.526	3.436.292	3.047.275	2.227.328	1.039.225	385.996	154.895	80.901	92.547	308.546	488.661	1.289.971
1975	1.206.009	2.339.669	2.994.999	2.920.902	1.761.113	815.256	403.522	150.366	62.305	155.248	187.763	700.169	1.141.443
1976	1.606.156	2.640.695	3.213.991	2.949.032	1.739.005	869.840	264.358	74.945	50.207	57.802	162.305	386.184	1.167.877
1977	1.408.078	1.905.076	3.109.467	2.908.062	2.038.143	943.985	404.203	153.753	81.089	148.620	418.352	880.047	1.199.906
1978	1.753.947	2.486.378	3.294.376	2.893.207	1.787.849	917.955	436.437	124.179	42.839	60.569	181.765	1.020.702	1.250.017
1979	2.143.088	2.913.171	3.294.867	3.576.986	2.671.058	1.220.452	432.659	129.091	70.245	72.424	120.206	272.810	1.409.755
1980	860.103	1.504.001	2.486.182	2.804.705	1.795.823	1.145.401	468.777	161.563	142.356	163.237	208.983	370.005	1.009.261
1981	789.868	1.763.028	2.661.982	2.887.961	2.118.093	1.329.197	385.131	87.595	49.488	109.195	352.418	825.709	1.113.305
1982	1.867.023	2.855.618	3.413.097	3.867.444	3.292.132	2.268.117	1.050.269	369.841	141.051	362.381	745.275	1.252.642	1.790.408
1983	1.772.948	2.482.767	3.282.999	3.348.524	2.736.733	1.691.239	1.090.143	338.823	121.052	81.786	170.107	456.076	1.464.433
1984	1.621.016	2.819.083	3.744.230	4.381.663	3.908.352	2.172.408	946.025	196.992	86.709	83.490	550.081	1.122.354	1.802.700
1985	2.163.085	2.992.382	3.211.544	3.325.818	3.210.008	1.714.362	602.409	272.978	124.689	179.924	392.334	709.623	1.574.930
1986	1.891.342	3.235.603	3.944.206	4.434.938	3.360.717	2.213.897	941.612	316.306	204.391	254.769	201.646	769.186	1.814.051
1987	1.958.324	2.763.501	2.616.643	2.020.571	1.743.672	599.895	201.309	99.494	46.545	46.640	322.033	1.105.106	1.126.978
1988	1.876.699	2.652.790	3.155.403	4.043.568	3.221.697	1.828.564	489.544	121.479	39.665	41.019	219.865	545.531	1.519.652
1989	1.587.452	2.744.114	3.583.965	3.303.222	1.966.388	915.904	419.781	153.766	131.983	114.430	187.044	665.194	1.314.437
1990	-	-	-	-	-	-	-	-	-	-	-	-	-
1991	1.332.278	2.479.196	3.874.948	4.124.146	2.397.124	1.517.759	1.133.987						-
1992	-	-	-	-	-	-	-	-	-	-	-	-	=
1993	2.816.338	4.252.230	5.013.089	5.216.457	-	-	-	176.073	123.016	110.937	364.967	1.004.451	-
1994	1.945.212	2.909.639	3.464.260	3.363.166	-	873.885	286.712	83.108	43.020	74.220	413.102	690.020	-
1995	1.796.130	2.266.299	3.278.664	3.330.599	2.007.940	760.036	239.825	143.337	38.860	37.746	81.780	551.576	1.211.066
1996	1.072.194	2.251.176	2.643.436	2.904.767	1.524.318	647.493	228.705	68.638	61.391	88.249	360.145	704.624	1.046.261
1997	1.639.339	2.688.087	4.114.909	4.555.228	3.357.655	1.702.492	613.171	187.121	75.460	112.214	226.177	711.295	1.665.262
1998	1.243.994	1.563.143	2.768.774	3.103.761	1.572.870	471.169	153.497	58.008	51.121	94.084	456.770	1.126.489	1.055.307
1999	1.857.021	2.757.233	3.111.476	2.975.508	1.611.477	649.795	303.207	86.777	39.117	56.890	95.403	506.719	1.170.885
2000	1.091.514	1.900.854	2.588.143	2.369.489	1.224.510	530.703	214.219	89.323	103.263	56.451	258.212	670.781	924.789
2001	1.541.204	2.808.491	3.891.852	3.526.888	2.157.880	1.048.236	333.271	128.646	52.290	79.891	331.314	820.660	1.393.385
2002	1.634.611	2.097.788	3.252.422	2.677.929	1.631.979	819.847	249.230	93.849	52.929	85.654	200.513	635.565	1.119.360
2003	1.323.052	2.328.286	2.877.096	3.355.407	1.790.095	751.545	237.884	79.112	44.602	100.614	146.990	476.020	1.125.892
2004	1.803.468	2.495.934	2.437.183	2.340.668	1.462.776	575.700	229.205	107.445	45.602	61.388	200.395	592.463	1.029.352
2005	1.336.707	1.699.371	2.654.858	2.302.066	924.583	477.319	170.663	44.107	23.776	52.130	219.709	669.061	881.196
2006	1.759.561	3.221.752	3.794.336	3.826.237	2.023.027	640.759	229.465	77.006	38.041	91.830	389.509	842.886	1.411.201
2007	1.692.413	2.370.210	3.491.175	3.944.585	2.917.559	1.277.523	310.986	130.391	38.349	65.134	342.603	961.533	1.461.872
2008	2.066.356	3.597.537	4.178.900	4.445.569	3.312.306	1.455.092	387.544	142.063	74.510	89.400	181.226	289.581	1.685.007
2009	1.305.248	1.907.989	3.401.239	3.827.623	2.964.591	1.455.465	684.394	251.994	104.494	124.983	283.561	1.002.756	1.442.861
2010	1.970.892	2.996.991	3.622.113	3.268.578	1.716.813	532.354	126.276	63.397	39.158	36.974	93.175	261.992	1.227.393
2011	896.066	2.235.812	3.485.502	4.241.957	2.587.481	755.536	207.537	106.533	-	-	-	-	-
<u>Média</u>	1.569.290	2.445.181	3.194.724	3.256.354	2.203.225	1.091.841	420.366	146.518	79.173	106.929	270.693	708.315	1.291.051
Máximo	2.816.338	4.252.230	5.013.089	5.216.457	3.908.352	2.268.117	1.133.987	369.841	227.006	362.381	745.275	1.252.642	1.814.051
Minimo	789.868	1.504.001	2.291.247	2.020.571	924.583	471.169	126.276	44.107	23.776	36.974	81.780	261.992	881.196

^{*} Obs.: para o cálculo da média mensal não foram considerados meses de anos incompletos.



114

Tabela 7.10. Série de Descarga Sólida Total em Humaitá (t/dia)

Ano	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez	Média
1972	906.161	1.633.917	2.470.588	2.619.399	1.352.449	702.179	247.928	142.194	240.457	282.943	255.256	844.222	974.808
1973	1.237.433	2.225.545	3.000.520	3.044.717	2.014.781	1.053.839	452,229	200.449	112.029	116.964	389.921	962.851	1.234.273
1974	1.846.767	2.699.286	3.717.034	3.293.113	2.401.541	1.113.888	410.589	163.563	84.996	97.421	327.553	520.725	1.389.706
1975	1.294.075	2.523.256	3.236.175	3.155.578	1.895.237	872.203	429.215	158.808	65.324	163.914	198.675	748.057	1.228.376
1976	1.727.418	2.850.613	3.474.722	3.186.314	1.871.115	931.210	280.422	78.680	52.548	60.553	171.518	410.880	1.257.999
1977	1.512.828	2.051.311	3.360.932	3.141.692	2.195.898	1.010.963	430.051	162.334	85.174	156.897	445.557	941.951	1.291.299
1978	1.887.373	2.682.713	3.562.357	3.125.524	1.924.346	983.003	464.579	130.988	44.773	63.484	192.157	1.094.684	1.346.332
1979	2.309.653	3.147.164	3.562.910	3.870.460	2.883.805	1.310.004	460.557	136.184	73.742	76.009	126.777	289.487	1.520.563
1980	920.524	1.616.401	2.682.602	3.029.072	1.932.743	1.228.430	499.423	170.627	150.211	172.511	221.149	393.355	1.084.754
1981	845.391	1.897.264	2.873.712	3.119.650	2.282.540	1.427.428	409.874	92.080	51.794	115.127	374.490	883.488	1.197.736
1982	2.010.394	3.084.432	3.691.763	4.187.257	3.560.060	2.445.861	1.125.725	393.251	148.818	385.341	796.898	1.344.362	1.931.180
1983	1.907.892	2.678.852	3.550.006	3.621.351	2.955.055	1.819.440	1.168.687	360.030	127.570	85.915	179.801	485.630	1.578.352
1984	1.744.294	3.044.776	4.052.856	4.748.678	4.232.126	2.342.040	1.013.295	208.442	91.142	87.760	587.055	1.203.502	1.946.331
1985	2.331.967	3.233.332	3.472.069	3.596.599	3.470.567	1.844.851	643.065	289.547	131.426	190.173	417.486	758.413	1.698.291
1986	2.036.598	3.498.371	4.271.085	4.806.867	3.634.785	2.387.025	1.008.489	335.880	216.256	270.022	213.396	822.550	1.958.443
1987	2.109.331	2.984.190	2.824.435	2.176.617	1.876.170	640.346	213.042	104.689	48.680	48.784	342.245	1.185.028	1.212.796
1988	2.020.532	2.863.702	3.410.946	4.379.484	3.483.482	1.968.796	521.693	128.081	41.437	42.868	232.952	581.753	1.639.644
1989	1.707.019	2.963.166	3.878.039	3.572.031	2.118.115	980.628	446.842	162.336	139.205	120.561	197.855	710.479	1.416.356
1990	-	-	-	-	-	-	-	-	-	-	-	-	-
1991	1.419.993	2.866.630	4.209.717	4.460.765	2.689.314	1.642.595	1.179.743	-	-	-	-	-	-
1992	-	-	-	-	-	-	-	-	-	-	-	-	-
1993	3.042.050	4.448.551	5.438.708	5.661.101	-	-	-	186.107	129.646	116.816	388.233	1.076.671	-
1994	2.094.767	3.143.440	3.747.501	3.637.291	-	935.565	304.329	87.325	44.963	77.924	439.681	737.706	-
1995	1.933.149	2.443.589	3.545.223	3.601.895	2.163.035	812.894	254.102	151.318	40.593	39.411	85.992	588.287	1.304.957
1996	1.149.871	2.427.042	2.853.528	3.137.931	1.638.949	691.601	242.256	72.016	64.355	92.779	382.963	753.072	1.125.530
1997	1.763.404	2.902.486	4.457.413	4.938.293	3.631.672	1.831.786	654.714	197.901	79.236	118.250	239.513	760.596	1.797.939
1998	1.334.955	1.680.525	2.990.099	3.354.754	1.691.627	502.042	162.129	60.774	53.510	99.123	486.505	1.208.054	1.135.341
1999	1.999.557	2.977.495	3.363.040	3.215.132	1.732.996	694.011	321.916	91.270	40.870	59.614	100.428	540.678	1.261.417
2000	1.170.229	2.046.627	2.793.700	2.555.881	1.314.362	565.770	226.800	93.912	108.710	59.129	273.855	716.676	993.804
2001	1.657.824	3.033.139	4.213.961	3.815.995	2.326.010	1.123.667	354.054	135.695	54.739	83.948	352.050	878.120	1.502.434
2002	1.757.921	2.260.991	3.516.601	2.891.210	1.755.530	876.974	264.186	98.729	55.420	90.080	212.212	679.103	1.204.913
2003	1.420.947	2.510.816	3.107.999	3.628.861	1.927.139	803.421	252.212	83.085	46.631	106.034	155.171	507.670	1.212.499
2004	1.941.642	2.693.256	2.629.274	2.524.328	1.572.229	614.336	242.760	113.207	47.702	64.391	212.072	632.200	1.107.283
2005	1.435.336	1.828.360	2.865.935	2.482.789	990.270	508.432	180.452	46.123	24.734	54.645	232.642	714.600	947.026
2006	1.894.241 1.820.632	3.483.303 2.556.504	4.107.521 3.776.926	4.142.317	2.180.445	684.190	243.128	80.890	39.723	96.730	414.366	902.243	1.522.425
2007				4.271.449	3.152.185	1.371.992	330.332	137.667	40.047	68.417	364.162	1.030.065	1.576.698
2008	2.226.699 1.401.414	3.893.005 2.054.815	4.527.234 3.678.843	4.818.468 4.143.816	3.582.327	1.564.012 1.564.223	412.331	149.897 267.101	78.219 110.015	94.000 131.736	191.615 300.976	307.471	1.820.440
2009 2010	2.122.938	3.238.349	3.678.843	4.143.816 3.534.770	3.203.383 1.847.634	1.564.223 568.024	731.191 133.118	66.483	40.900	38.604	300.976 97.991	1.074.877 277.808	1.555.199 1.323.856
2010	959.326	2.327.496	3.919.656	4.596.106	2.793.515	808.190	219.653	112.195	40.900	38.604	97.991	- 277.808	1.323.636
Média	1.687.836	2.638.488	3.454.109	3.521.538	2.793.515 2.376.312	1.171.750	447.982	112.195 154.830	83.264	112.769	287.449	757.439	1.391.147
<u>Máximo</u>	3.042.050	4.448.551	5.438.708	5.661.101	4.232.126	2.445.861	1.179.743	393.251	240.457	385.341	796.898	1.344.362	1.958.443
<u>Minimo</u>	845.391	1.616.401	2.470.588	2.176.617	990.270	502.042	133.118	46.123	24.734	38.604	85.992	277.808	947.026

^{*} Obs.: para o cálculo da média mensal não foram considerados meses de anos incompletos.

7.4. GRANULOMETRIA DOS SEDIMENTOS EM SUSPENSÃO E DO LEITO

Com base nas medições realizadas pela PCE no âmbito do Programa de Monitoramento Hidrossedimentológico, no período de março de 2009 a agosto de 2011, foi determinada a composição média dos sedimentos transportados em suspensão e no leito do rio para cada uma das estações fluviométricas que compõem a rede básica. As frações granulométricas levadas em consideração nas análises foram: argila, silte, areia fina, areia média, areia grossa e pedregulho.

Como esperado, e dando seqüência aos resultados já apresentados nos relatórios anteriores, verificou-se a predominância de sedimentos finos (argila e silte) no material em suspensão do rio Madeira (Tabela 7.11.), com valores médios superiores a 80%, e porcentagens de silte entre 54% e 58%. No rio Jaciparaná as baixas concentrações de sedimento em suspensão não permitem que a análise laboratorial destaque a porcentagem de silte e argila, ainda que o sedimento fino em suspensão represente mais de 76% do material sedimentar em Montante Jaciparaná, e mais de 90% em Jaciparaná Vila.

Em relação ao material que compõe o leito do rio Madeira se constata que acima de 92% do material é composto por areia, sendo predominantes areias finas e médias (Tabela 7.12.). No rio Jaciparaná, as areias representam 80% do sedimento do leito na estação fluviométrica Jaciparaná Vila, e 75% na estação de Montante Jaciparaná, sendo predominante a fração areia grossa.

Tabela 7.11.

Granulometria Média do Sedimento em Suspensão no Rio Madeira

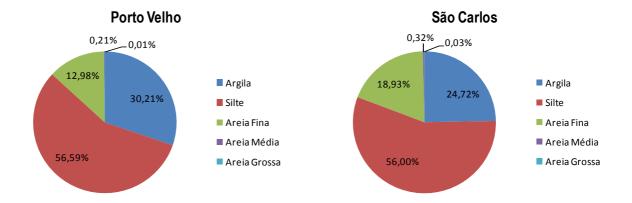
		Material	em Suspe	nsão (%)	
Estação	Argila	Silte	Areia Fina	Areia Média	Areia Grossa
Abunã	29,18	55,77	14,77	0,21	0,07
Jus. Caldeirão do Inferno	29,19	54,72	15,72	0,33	0,04
Porto Velho	30,21	56,59	12,98	0,21	0,01
São Carlos	24,72	56,00	18,93	0,32	0,03
Humaitá	28,43	57,91	13,44	0,21	0,01
Jaciparaná Vila	90	,09	9,72	0,14	0,05
Montante Jaciparaná	76	,28	21,80	1,92	0,00

Tabela 7.12.

Granulometria Média do Sedimento do Leito no Rio Madeira

		Mat	terial do Le	ito (%)	
Estação	Argila + Silte	Areia Fina	Areia Média	Areia Grossa	Pedregulho
Abunã	2,46	65,88	28,34	2,68	0,64
Jus. Caldeirão do Inferno	1,06	40,53	51,77	5,09	1,55
Porto Velho	6,64	49,78	36,25	6,59	0,74
São Carlos	4,34	64,15	20,93	8,86	1,72
Humaitá	1,74	37,28	47,91	11,44	1,63
Jaciparaná Vila	0,56	22,30	24,17	34,10	18,87
Montante Jaciparaná	1,42	26,92	18,74	29,98	22,94

Eng^o José Eduardo Moreira CREA: 21112-D/RJ



Uma forma alternativa, e mais clara, de apresentar os resultados das porcentagens de cada fração granulométrica nas amostras de sedimentos em suspensão e do leito, se visualiza nos gráficos apresentados nas Figura 7.32. a Figura 7.35.

Figura 7.32.
Granulometria Média do Sedimento em Suspensão no Rio Madeira

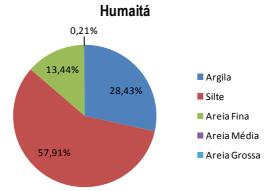
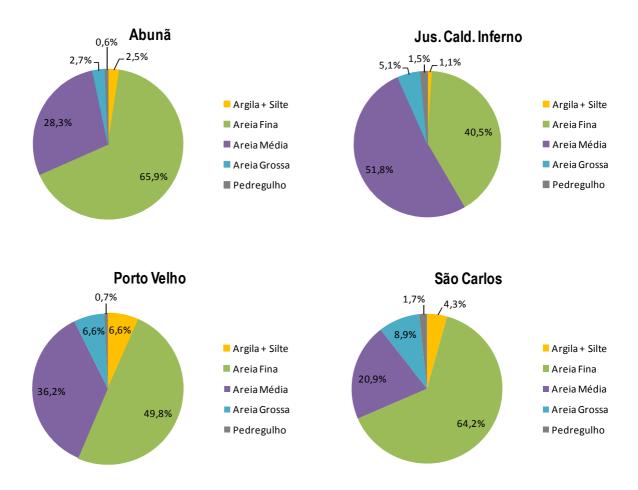



Figura 7.33.
Granulometria Média do Sedimento do Leito no Rio Madeira

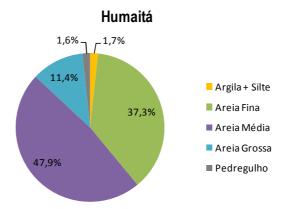


Figura 7.34.
Granulometria Média do Sedimento em Suspensão no Rio Jaciparaná

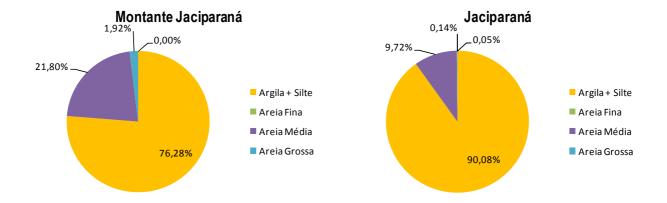
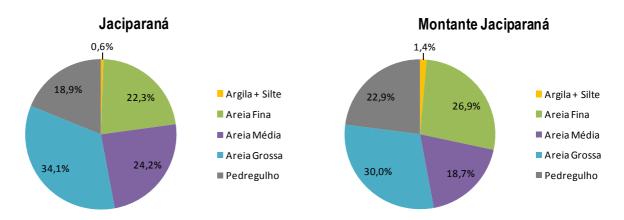
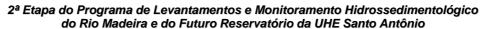



Figura 7.35.
Granulometria Média do Sedimento do Leito no Rio Jaciparaná

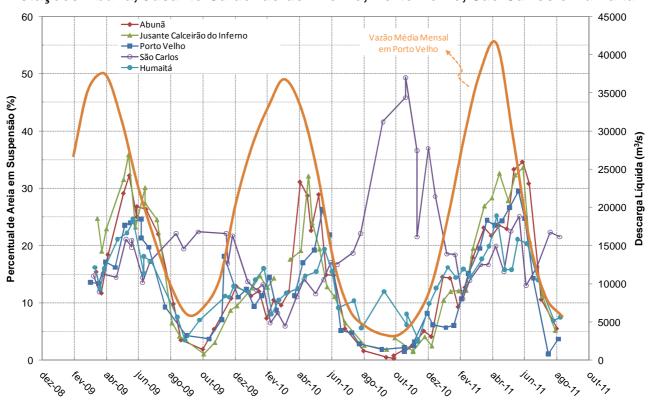


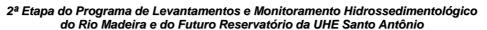
Por último, destaca-se que uma prática freqüente para caracterizar a granulometria dos sedimentos do leito de um curso de água consiste na descrição de diâmetros característicos médios, entre os quais destacam-se o d_{10} , d_{35} , d_{50} , d_{65} e d_{90} , os que são apresentados a seguir, na Tabela 7.13.

Tabela 7.13.

Diâmetros Característicos Médios do Sedimento do Leito

Estação -	Diâmetros Característicos Médios (mm)				
	d ₁₀	d ₃₅	d_{50}	d ₆₅	d_{90}
Abunã	0,107	0,167	0,201	0,245	0,399
Jus. Caldeirão do Inferno	0,142	0,226	0,280	0,340	0,534
Porto Velho	0,091	0,172	0,225	0,290	0,496
São Carlos	0,100	0,155	0,196	0,248	0,617
Humaitá	0,142	0,237	0,292	0,360	0,627
Jaciparaná Vila	0,170	0,371	0,580	0,971	3,365
Montante Jaciparaná	0,133	0,380	0,664	1,168	4,183

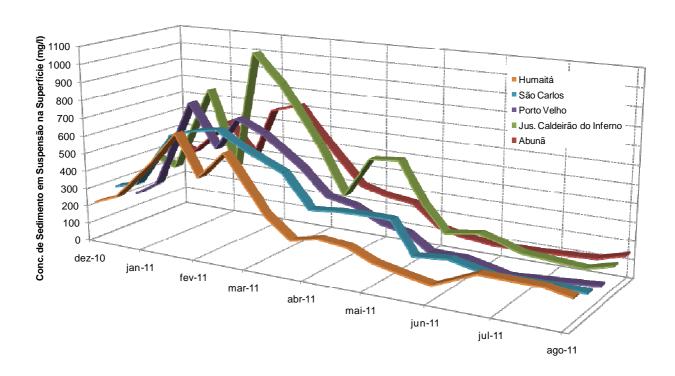

7.5. ANÁLISE DO CONTEÚDO DE AREIA NA DESCARGA SÓLIDA EM SUSPENSÃO


A partir dos resultados obtidos nas análises laboratoriais das amostras dos sedimentos em suspensão (Tabela 6.1. a Tabela 6.5.), foi realizado um exame do conteúdo total de areia na descarga sólida em suspensão do rio Madeira. Desta forma foi possível representar graficamente a variação temporal da percentagem de areia em suspensão no período março de 2009 até agosto de 2011 para todas as estações de monitoramento de descarga sólida neste rio, conforme se observa na Figura 7.36.

Ainda que as informações disponíveis compreendam apenas três anos hidrológicos, a análise desta figura permite identificar que o pico do transporte de sedimentos arenosos acontece entre 40 e 70 dias após o pico hidrológico, com valores praticamente nulos durante a estiagem e percentagens entre 25-35% durante o período mais intenso de transporte de areias. Resulta interessante destacar, por exemplo, que em Porto Velho o transporte de areias apresenta o máximo ao fim do mês de maio ou inicio de junho, o que evidencia marcadamente o tempo de defasagem entre a descarga líquida e a descarga sólida de areias, fato já apontado para o movimento de areias no leito do rio Amazonas por Strasser (2008). Já a estação de São Carlos apresenta resultados não consistentes em relação ao padrão exibido pelas estações restantes, motivo pelo qual se recomenda o prosseguimento destas medições durante vários ciclos completos do rio Madeira.

Figura 7.36.

Variação Temporal do Conteúdo de Areia na Descarga Sólida em Suspensão nas Estações Abunã, Jusante Caldeirão do Inferno, Porto Velho, São Carlos e Humaitá



7.6. CONCENTRAÇÃO DE SEDIMENTOS EM SUSPENSÃO NA SUPERFÍCIE DO ESCOAMENTO

Paralelamente ao procedimento de medição da descarga sólida com amostragem integrada na vertical do sedimento em suspensão, a partir de dezembro de 2010 passaram a ser executadas, nas estações do rio Madeira, as amostragens pontuais de sedimentos em suspensão na superfície do escoamento. A coleta das amostras visa determinar a concentração do sedimento em suspensão (CSS) no centro da seção transversal, em garrafa plástica de 500 ml (ou 2000 ml durante o período de águas baixas), a uma profundidade de aproximadamente 20 cm.

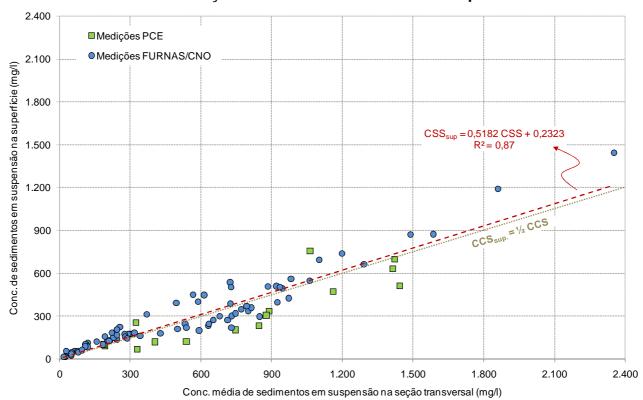

Os valores de CSS medidos pela PCE foram apresentados na Tabela 6.8. a Tabela 6.12. Em termos médios se percebe que a concentração na superfície do rio varia ao longo do ano entre 100 mg/l e 750 mg/l (Figura 7.37.). Estas informações vêm a complementar os dados medidos por FURNAS/CNO no período de fevereiro de 2004 a outubro de 2005, totalizando 228 conjuntos de dados, conforme a distribuição apresentada na Tabela 7.14.

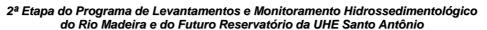
Figura 7.37.
Variação Temporal da Concentração de Sedimentos em Suspensão na Superfície do Escoamento nas Estações ao Longo do Rio Madeira

Este novo dado de concentração nos permite avaliar a correlação entre o fluxo de sedimentos médio na seção transversal e o fluxo de sedimentos na superfície do escoamento, sendo que os primeiros resultados neste sentido se observam na Figura 7.38. e Figura 7.39. Na primeira figura se apresentam os dados para estação Porto Velho, enquanto que a figura seguinte faz o mesmo, com menor detalhe, para as estações Abunã, Jusante Caldeirão do Inferno, São Carlos e Humaitá. Em geral, nas diferentes estações, se observa um comportamento uniforme, em que a concentração de sedimento

em suspensão na superfície do escoamento apresenta boa correlação (com exceção de Humaitá) com a concentração de sedimento em suspensão média de toda a seção.

Adicionalmente, esta informação poderá ser usada como subsidio aos estudos do transporte de sedimentos em suspensão a partir de imagens de satélite, a partir de trabalhos semelhantes já realizados na região (Martinez *et al.*, 2010).


Tabela 7.14.


Amostras Coletadas na Superfície do Escoamento nas Estações do Rio Madeira

Estação	N°de Amostras em Superfície		
Abunã	87		
Jusante Caldeirão do Inferno	16		
Porto Velho	93		
São Carlos	16		
Humaitá	16		
TOTAL	228		

Figura 7.38.

Relação entre a Concentração de Sedimentos em Suspensão na Superfície do Escoamento e a Concentração Média de Sedimentos em Suspensão em Porto Velho

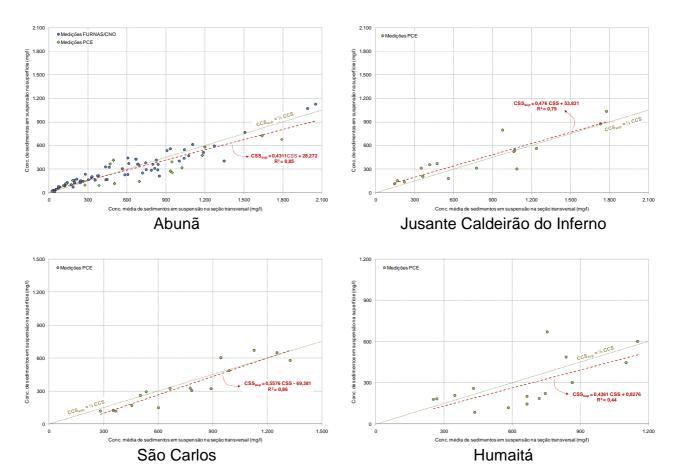
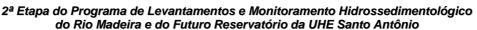


Figura 7.39.

Relação entre a Concentração de Sedimentos em Suspensão na Superfície do Escoamento e a Concentração Média de Sedimentos em Suspensão nas Estações Abunã, Jusante Caldeirão do Inferno, São Carlos e Humaitá


7.7. DETALHAMENTO DAS CURVAS DE DESCARGA SÓLIDA

Com o intuito de majorar o conhecimento acerca da dinâmica dos sedimentos em suspensão entre as estações de Abunã e Humaitá, ao longo do rio Madeira, e no rio Jaciparaná (em Jaciparaná Vila e Montante Jaciparaná), estão sendo desenvolvidos diversos estudos que visam o detalhamento das curvas de descarga sólida. Neste sentido, destacam-se os estudos que envolvem a caracterização das curvas-chave de sedimentos por faixa granulométrica e a caracterização dos períodos de enchente e vazante na curva de descarga sólida.

7.7.1. Caracterização das curvas-chave de sedimentos por faixa granulométrica

Nas cinco estações fluviométricas instaladas no rio Madeira e na estação do Jaciparaná (primeiro Jaciparaná Vila e, depois, Montante Jaciparaná) que fazem parte do Programa de Monitoramento, foi realizada a caracterização das curvas-chave de sedimentos em suspensão por faixa granulométrica. As informações necessárias para estas análises foram apresentadas anteriormente (Tabela 6.16. a Tabela 6.22.), em que se realizou o

calculo da descarga sólida total por faixa granulométrica (silte+argila, areia fina, areia média, areia grossa) através do Método de Einstein Modificado.

Desta forma é possível conhecer a importância relativa do material transportado para cada faixa granulométrica ao longo do trecho em estudo, desde Abunã até Humaitá. Na Figura 7.40. se observam as curvas-chave de descarga sólida em suspensão por faixa granulométrica em Porto Velho e, na Figura 7.41., apresentam-se com menor detalhe as curvas correspondentes às estações de Abunã, Jusante Caldeirão do Inferno, São Carlos e Humaitá.

A análise das curvas evidenciou que o material transportado em suspensão corresponde, na sua grande parte, a faixa granulométrica de material fino (silte + argila), com granulometria de diâmetro inferior a 0,0625mm. Cabe destacar que a curva ajustada para as faixas granulométricas silte+argila, areia fina e areia média apresentam um coeficiente de correlação (R²) superior a 0,90 em todas as estações fluviométricas, com exceção da estação de São Carlos.

Na estação de São Carlos se comprovou um comportamento atípico também na faixa granulométrica das areias (corroborando o achado na Figura 7.36.), pois se verificou um volume exagerado de areia fina (0,0625 – 0,250mm) e areia média (0,250 – 0,500mm), similar à carga de sedimentos finos, para as vazões inferiores a aproximadamente 15.000 m³/s. Se espera que novos dados contribuam para uma melhor compreensão desta particularidade.

Figura 7.40.

Curvas-Chave de Descarga Sólida em Suspensão por Faixa Granulométrica em Porto Velho

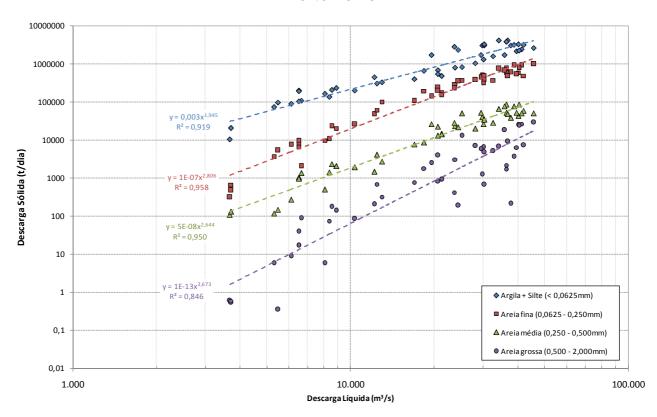
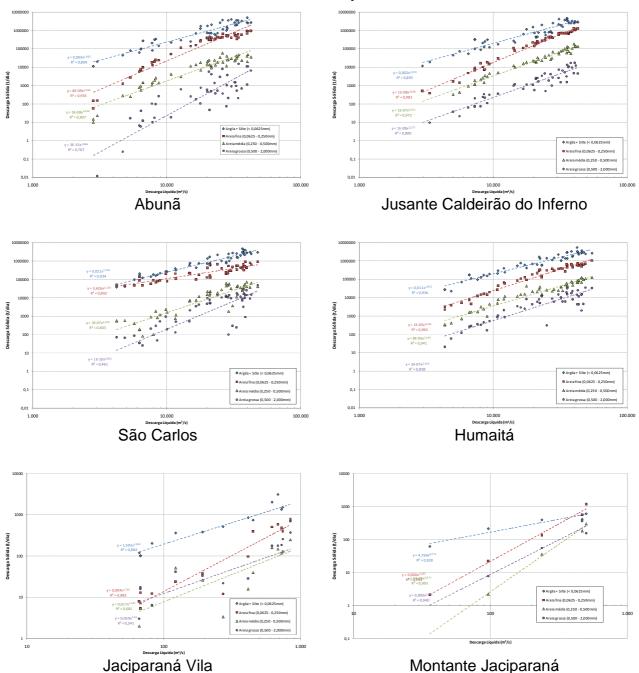



Figura 7.41.

Curvas-Chave de Descarga Sólida em Suspensão por Faixa Granulométrica em Abunã, Jusante Caldeirão do Inferno, São Carlos, Humaitá, Jaciparaná Vila e Montante Jaciparaná

7.7.2. Caracterização dos períodos de enchente e vazante nas curvas de descarga sólida

Um fato já apontado em relatórios anteriores de consolidação de dados é a diferença na relação que existe entre a descarga líquida e a descarga sólida nas fases de enchente e vazante do rio Madeira. Estas diferenças se traduzem, fundamentalmente, em uma defasagem temporal nos picos de sedimentos e vazões líquidas, configurando assim uma curva de descarga de sedimentos com forma de laçada.

Esta situação foi verificada em todas as estações monitoradas no rio Madeira (Figura 7.42. a Figura 7.46.), inclusive nas estações Abunã e Porto Velho que contam com um conjunto maior de informações, reunindo os dados de FURNAS/CNO e da PCE. Conforme se observa nestas figuras, em todos os casos os ajustes alcançados ao considerar curvas de descarga sólida específicas para o período de enchente e vazante apresentam um ótimo coeficiente de correlação (R² > 0,95), confirmando o comportamento díspar entre a descarga líquida e sólida.

Nesta análise, as medições realizadas durante o período de pico do rio Madeira foram consideradas como representativas de um único período conjuntamente com as medições realizadas durante a vazante e estiagem do rio.

Figura 7.42.

Curvas-chave de Descarga Sólida em Suspensão para os Períodos de Enchente e

Vazante do Rio Madeira em Abunã

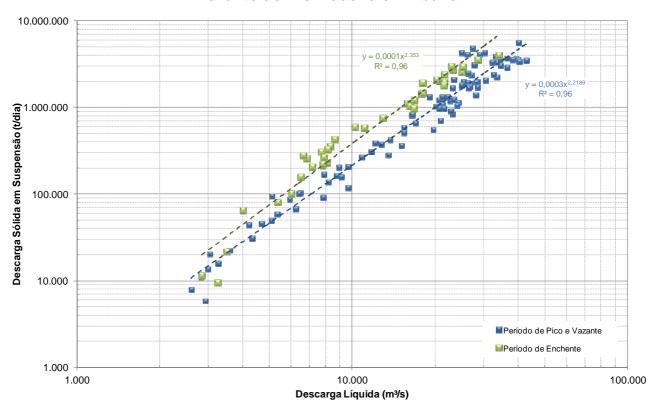


Figura 7.43.

Curvas-chave de Descarga Sólida em Suspensão para os Períodos de Enchente e

Vazante do Rio Madeira em Jusante Caldeirão do Inferno

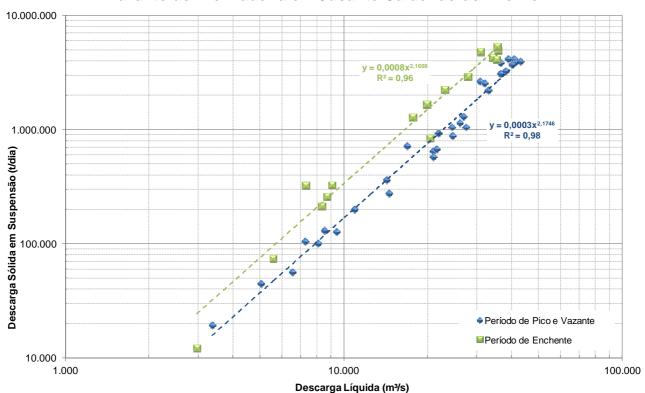


Figura 7.44.

Curvas-chave de Descarga Sólida em Suspensão para os Períodos de Enchente e

Vazante do Rio Madeira em Porto Velho

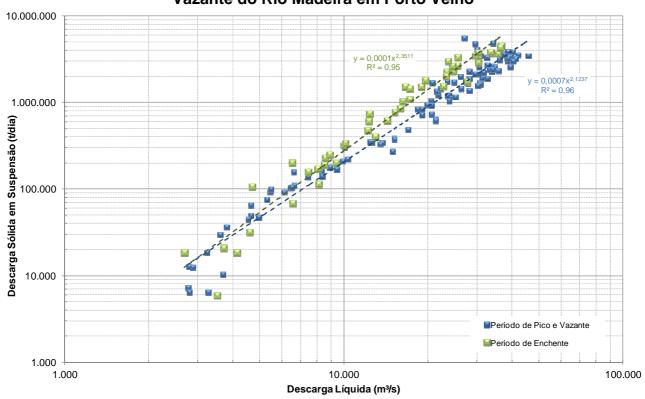
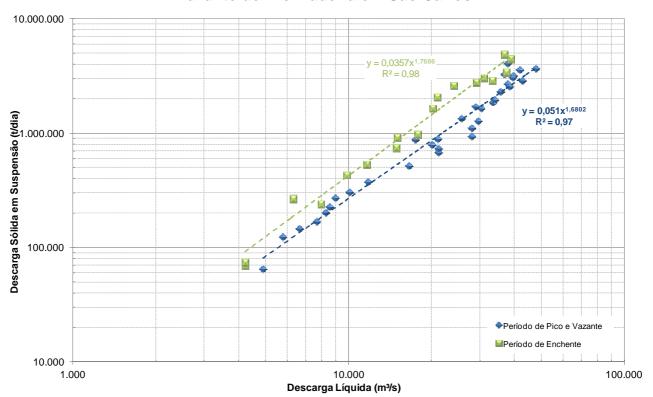
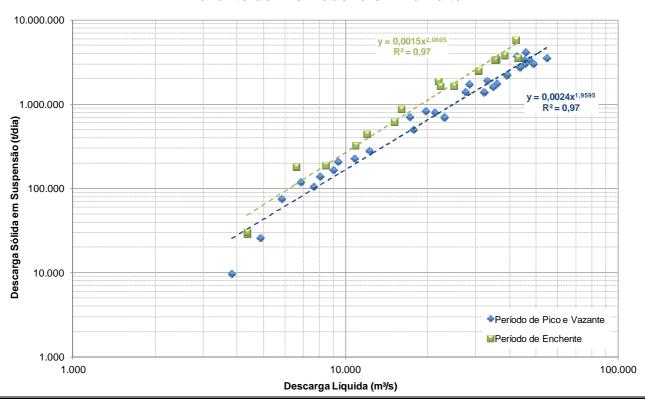
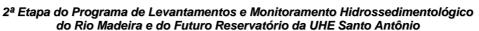


Figura 7.45.

Curvas-chave de Descarga Sólida em Suspensão para os Períodos de Enchente e

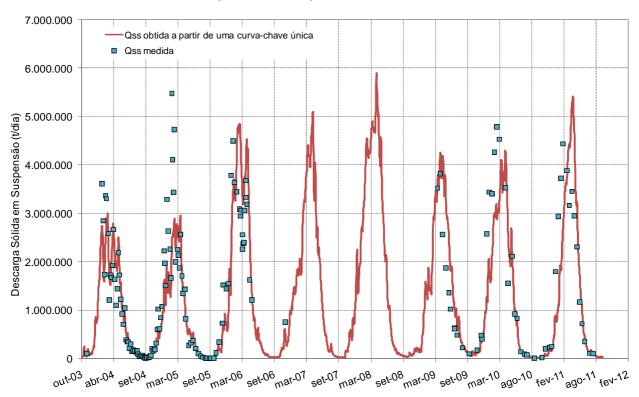
Vazante do Rio Madeira em São Carlos


Figura 7.46.

Curvas-chave de Descarga Sólida em Suspensão para os Períodos de Enchente e

Vazante do Rio Madeira em Humaitá



Para avaliar o desempenho da curva de descarga sólida em suspensão foi realizada a comparação entre os valores efetivamente medidos em campo de descarga sólida em suspensão e os valores calculados através das curvas de descarga de sedimentos, seja considerando uma curva única (Figura 7.47.) ou mediante diferentes curvas nos períodos de enchente e pico e vazante (Figura 7.48.).

Como resultado desta análise se verifica que quando consideradas duas curvas-chave, as séries de valores diários calculados se ajustam melhor aos dados medidos de descarga sólida em suspensão (Q_{ss}) , considerando tanto o ponto de vista temporal quanto do ponto de vista quantitativo.

Para confirmar os resultados deste estudo recomenda-se o prosseguimento das medições durante vários ciclos completos do rio Madeira, abrangendo em todos os casos o ano hidrológico completo.

Figura 7.47.
Avaliação do Desempenho da Curva-chave de Descarga Sólida em Suspensão (curva única) em Porto Velho

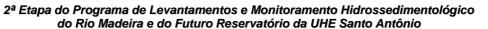
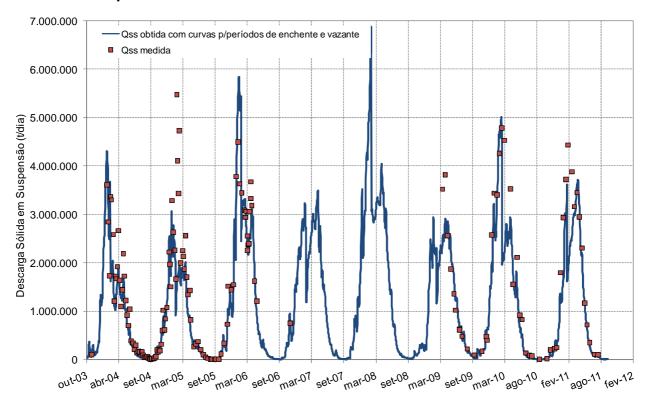



Figura 7.48.

Avaliação do Desempenho das Curvas-chave de Descarga Sólida em Suspensão para os Períodos de Enchente e Vazante em Porto Velho

7.7.3. <u>Avaliação comparativa das curvas-chave de descarga sólida em suspensão</u>

Após o ajuste das curvas-chave de descarga sólida nas estações que compõem a Rede Básica de Monitoramento no Rio Madeira procedeu-se à avaliação comparativa do comportamento das mesmas, conforme se visualiza na Figura 7.49. Nesta figura chamam a atenção, particularmente, duas situações:

- i) a estação Jusante Caldeirão do Inferno apresenta, quando comparada com Porto Velho e para a mesma descarga líquida, menos transporte de sedimentos, evidenciando que o trecho de rio próximo a Jus. Caldeirão do Inferno possui tendências à deposição dos sedimentos;
- ii) a estação São Carlos apresenta, para vazões menores do que 28.000 m3/s, um comportamento totalmente atípico, com elevado transporte de sedimentos e, inclusive, para vazões até 16.000 m³/s é a estação com maior descarga sólida em suspensão. Este resultado coincide com o exposto na Figura 7.36., onde estação São Carlos também evidencia um desempenho díspar em relação às estações restantes.

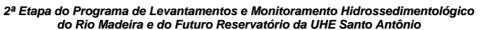
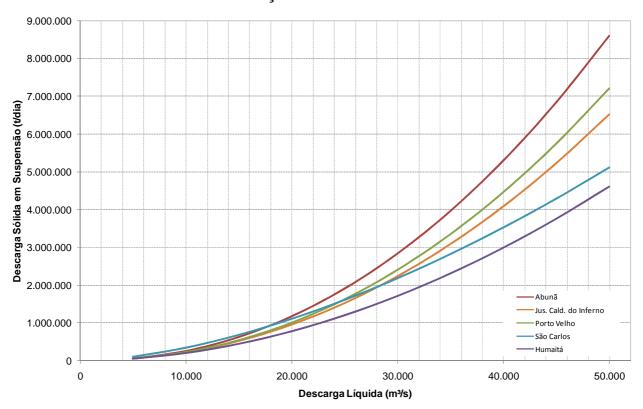



Figura 7.49.
Avaliação Comparativa das Curvas-chave de Descarga Sólida em Suspensão nas Estações do Rio Madeira

7.8. CURVA DE PERMANÊNCIA DA DESCARGA SÓLIDA EM SUSPENSÃO

A partir das novas curvas de descargas líquidas e sólidas apresentadas neste relatório foram recalculadas as curvas de permanência de descarga sólida em suspensão nas estações de Abunã, Porto Velho e Humaitá no rio Madeira.

A Figura 7.50. apresenta a curva de permanência da descarga sólida em suspensão nas estações citadas, onde se percebe que as cargas de sedimentos nas estações de Porto Velho e Abunã são semelhantes para valores extremos e que Abunã evidencia maior transporte de sedimentos para as descargas sólidas com permanência entre 15% e 50%. Na estação Humaitá o transporte de sedimentos é semelhante à Abunã ao longo do ano todo, mas os picos de descarga de sedimentos apresentam uma permanência menor. Também se verifica que as três estações apresentam descargas de sedimentos em suspensão maiores do que 500.000 t/dia mais de 50% do tempo.

Uma característica interessante no rio Madeira diz respeito à assimetria na distribuição sazonal do transporte de sedimentos, já que a maior parte do sedimento ocorre durante o período de águas altas. Isto se evidencia na curva de freqüência acumulada da descarga sólida em suspensão em função da vazão do rio (Figura 7.51.). Como na figura anterior, estas curvas foram construídas a partir das vazões líquidas e sólidas diárias de cada estação.

Um aspecto que merece destaque nesta análise é que vazões inferiores à vazão média de longo termo em Porto Velho (QMLT = 18.500 m³/s), que ocorrem em 47% do tempo, são responsáveis por menos de 10% da descarga sólida em suspensão. Outro exemplo se visualiza na estação Humaitá, onde as vazões de até 30.000 m³/s são responsáveis por apenas 25% da descarga sólida em suspensão transportada pelo rio Madeira.

Esta mesma análise da freqüência no tempo da descarga sólida em suspensão permite estimar a vazão dominante no processo de transporte de sedimentos. Este conceito merece destaque já que é o responsável pela manutenção do tamanho e forma do curso de água (calha principal e margens) e pelo equilíbrio das condições hidrossedimentológicas do escoamento.

Assim, a vazão dominante se caracteriza como a descarga líquida associada à maior freqüência de descarga sólida, a qual calcula-se como sendo o pico do histograma de freqüência, que foi estimado considerando diferentes intervalos de vazão (Figura 7.51.). Dessa forma, foram estimadas as vazões dominantes do rio Madeira em Porto Velho, em torno de 36.000 m³/s, em Abunã, em torno de 31.000m³/s e em Humaitá, cerca de 41.000m³/s

Figura 7.50.
Curva de Permanência da Descarga Sólida em Suspensão do Rio Madeira nas
Estações de Abunã, Porto Velho e Humaitá

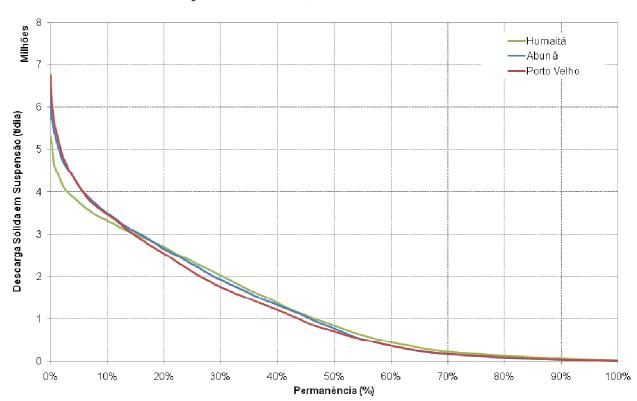
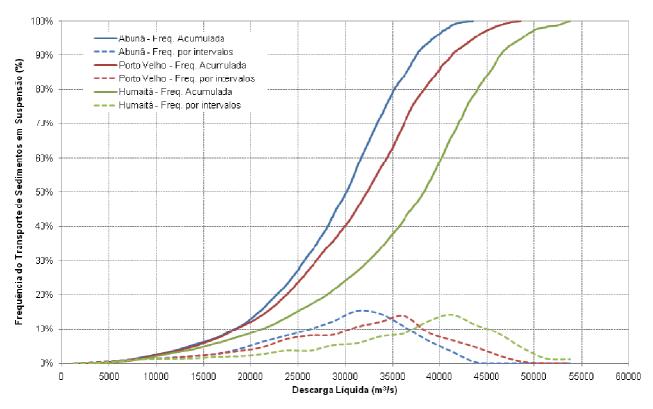



Figura 7.51.
Freqüência Acumulada da Descarga Sólida em Suspensão do Rio Madeira nas Estações de Abunã, Porto Velho e Humaitá

7.9. AVALIAÇÃO DO DESEMPENHO DOS MOLINETES E ADCP DURANTE AS MEDIÇÕES DE VAZÃO

O principio norteador para as medições de descarga líquida com molinetes fluviométricos ou com medidores acústicos de efeito Doppler (ADCP) é semelhante, ou seja, baseiam-se na medição e integração de áreas e velocidades. Entretanto, desde o inicio das medições com ADCP no âmbito do Programa de Monitoramento Hidrossedimentológico, em maio de 2009, foi evidente a diferença entre a vazão obtida a partir das medições com molinete fluviométrico e as medições com ADCP.

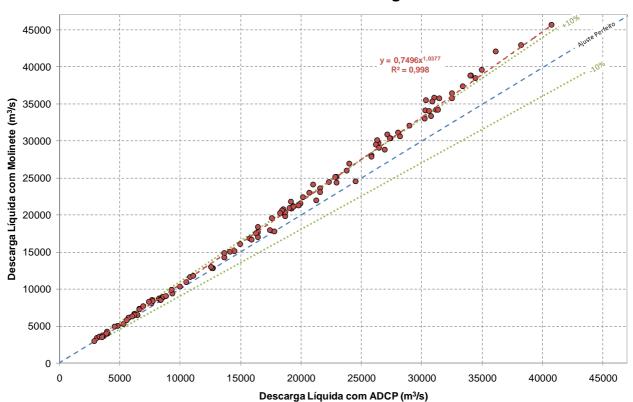

Para entender melhor estas diferenças foi plotada a descarga líquida obtida com um e outro método, conforme se observa na Figura 7.52., evidenciando claramente uma tendência nas medições realizadas com molinete a superestimar a vazão em aproximadamente 10%. Nesta figura foram consideradas as medições de todas as estações fluviométricas do Programa de Monitoramento Hidrossedimentológico no Rio Madeira (Abunã, Jusante Caldeirão do Inferno, Porto Velho, São Carlos e Humaitá), totalizando 115 conjuntos de dados.

Figura 7.52.

Avaliação das Medições de Descarga Líquida com Molinete e ADCP nas Estações de Monitoramento Hidrossedimentológico do Rio Madeira

De forma a identificar a fonte destas diferenças procedeu-se à avaliação da área e da velocidade média calculada com cada método, molinete ou ADCP, chegando-se aos resultados apresentados na Figura 7.53. e Figura 7.54. O fato de que as áreas calculadas nas medições de vazão sejam semelhantes não surpreende, pois os procedimentos e equipamentos utilizados são basicamente os mesmos: ecobatímetro ou sensor do ADCP para a profundidade e GPS ou DGPS para medir a distância entre as verticais ou ensembles. Isto explica o ajuste praticamente perfeito na Figura 7.53. formando uma linha a 45°

Por outro lado, a Figura 7.54. constata que a determinação da velocidade do escoamento com molinete ou ADCP é a variável responsável pelas divergências, e que certamente está influenciada pelas grandes profundidades e elevadas velocidades da corrente (nos períodos de enchente e cheia supera os 3 m/s) que obrigam ao uso de pesados lastros (50 kg) e correção de catenária.

Na literatura não existem muitas referências neste sentido, ainda menos considerando medições conjuntas de vazão com molinetes e ADCPs em rios de grande porte. Neste sentido, Gordon & Bornhoft (1991) descrevem diferenças de 10% em medições no rio Rhine (onde a velocidade média do molinete é 9% superior à velocidade média do ADCP) e consideram que os molinetes não são precisos para medir a velocidade em escoamentos turbulentos, onde a direção da corrente varia e sua intensidade pode oscilar, bem diferente das condições de escoamento uniforme estabelecidas nos canais de calibração dos molinetes.

Figura 7.53. Avaliação da Área Calculada durante as Medições de Vazão com Molinete e ADCP

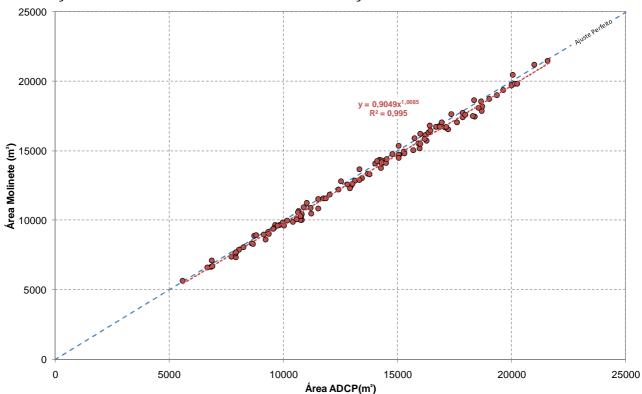
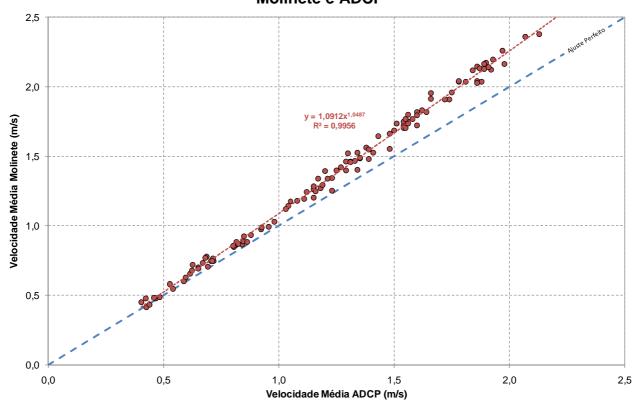



Figura 7.54.

Avaliação da Velocidade Média do Escoamento durante as Medições de Vazão com Molinete e ADCP

8. REFERÊNCIAS BIBLIOGRÁFICAS

DNAEE - Departamento Nacional de Águas e Energia Elétrica, 1970. *Normas e Recomendações Hidrológicas*, Ministério de Minas e Energia, Brasília.

CARVALHO, N.O., FILIZOLA Jr., N.P., dos SANTOS, P.M.C. & LIMA, J.E.F.W., 2000. Guia de Práticas Sedimentométricas, Superintendência de Estudos e Informações Hidrológicas, Agência Nacional de Energia Elétrica - ANEEL, Brasilia.

COLBY, B.R. & HEMBREE, C.H., 1955. Computations of total sediment discharge, Niobrara River near Cody, Nebrasca, *Water Supply Paper* 1357, United States Geological Survey, Washington D.C.

CPRM – Serviço Geológico do Brasil, 2011. Programa Curva-chave, parceria CPRM / COPPE (Univ. Federal do Rio de Janeiro, UFRJ), [on-line], Disponível via URL: http://www.cprm.gov.br/publique/cgi/cgilua.exe/sys/start.htm?infoid=1433&sid=36#PTSEC -INS.

EDWARDS, T.E. & GLYSSON, G.D., 1998. Field methods for measurement of fluvial sediment: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter C2, 80 p.

GORDON, R.L. & BORNHOFT, J., 1991. *BroadBand ADCP* - Discharge demonstration tests in the rivers Rhine, Moselle, Waterweg and Schelde during October 1991, RDInstruments report, 19p.

JULIEN, P.Y., 1995. *Erosion and sedimentation,* Cambridge University Press.

MENDES, A.B., 2001. Cálculo da Descarga Sólida Total pelo Método Modificado de Einstein, programa disponível no Anexo do livro *Hidrossedimentologia Prática*, de autoria N.O. Carvalho (2008).

MARTINEZ, J.M., VILLAR, R.E., GUYOT, J.L., FILIZOLA, N., COCHONNEAU, G. & OLIVEIRA, E., 2010. River sediment discharge assessed from satellite images and hidrologic data - Validation over the Amazon basin, IX Encontro Nacional de Engenharia de Sedimentos, Brasília, DF, 4p.

MUELLER, D.S. & WAGNER, C.R., 2009. Measuring discharge with acoustic Doppler current profilers from a moving boat: U.S. Geological Survey Techniques and Methods 3A-22, 72p.

OBERG, K.A., MORLOCK, S.E. & CALDWELL, W.S., 2005. Quality-Assurance Plan for Discharge Measurements using Acoustic Doppler Current Profilers, Scientific Investigations Report 2005-5183, United States Geological Survey, Reston, Virginia.

PINTO, M.C.F. & MAGALHÃES, W.F., 2010. Incerteza combinada da concentração de sedimento em suspensão determinada pelo método de filtração, IX Encontro Nacional de Engenharia de Sedimentos, Brasília, DF, 12p.

RDI, 2003. RDInstruments, Acoustic Doppler Solutions, "Winriver - User's guide" e "Principles of operation moving bottom" [on-line]. URL: http://www.rdinstruments.com. Arguivo capturado em 2002.

STRASSER, M.A., 2008. Dunas fluviais no rio Solimões-Amazonas – Dinâmica e transporte de sedimentos –, Tese de Doutorado, Programa de Engenharia Civil, COPPE / UFRJ, 160p.

YUQIAN, L., 1983. Operational methods for measurement of sediment transport, World Meteorological Organization, Geneva.

9. ANEXOS

ANEXO I – MAPA DE LOCALIZAÇÃO DAS ESTAÇÕES FLUVIOMÉTRICAS DO PROGRAMA DE MONITORAMENTO HIDROSSEDIMENTOLÓGICO

DESENHO PJ0777-Z-H41-GR-DE-0002

"LOCALIZAÇÃO DAS ESTAÇÕES FLUVIOMÉTRICAS" PROGRAMA DE MONITORAMENTO HIDROSSEDIMENTOLÓGICO

Engº José Eduardo Moreira CREA: 21112-D/RJ

Os ANEXOS II, III, IV e V são disponibilizados apenas em meio digital dada a extensão dos mesmos.