

resources & energy

Anexos Gerais Volume 5

EIA Estudo de Impacto Ambiental

AHE São Luiz do Tapajós Aproveitamento Hidrelétrico São Luiz do Tapajós

SUMÁRIO VOLUME 5 – ANEXO GERAL

Anexo Geral 7.4.1.1.2.6/04 - Modelagem Matemática de Qualidade das Águas do Reservatório

Anexo Digital 7.4.1.1.2.6/01 - Dados de Entrada e Saída Referentes a Modelagem de Qualidade da Água

Anexo Digital 7.4.1.1.2.6/02 - Dados de Entrada Saída da Modelagem de Estratificação Térmica do Reservatório

Anexo Geral 7.4.1.1.4/03 – Dados dos Levantamentos Hidrossedimentométricos

Anexo Geral 7.4.1.1.4/04 - Modelagem Hidrossedimentométrica

Anexo Digital 7.4.1.1.4/01 - Dados de Entrada e Saída Referentes a Modelagem Hidrossedimentométrica

resources & energy

ANEXO GERAL 7.4.1.1.2.6/04 Modelagem Matemática de Qualidade das Águas do Reservatório

VOLUME 5 – Anexo Geral

DIREITOS RESERVADOS

CNEC WorleyParsons

Revisão: 0

7.4.1.1.1. Recursos Hídricos – Modelagem Matemática de Qualidade das Águas do Reservatório

7.4.1.1.1.1. Introdução

Durante a formação de reservatórios artificiais, as alterações na qualidade da água devido à submersão dos solos e da vegetação se constituem num dos principais impactos sobre o meio biótico (Tundisi, 1978; Baxter & Glaude, 1980). No geral, essas alterações incluem a fertilização temporária das massas de água e pressões no balanço de oxigênio dissolvido (Ploskey, 1985; Bianchini Jr. & Cunha-Santino, 2011).

Um dos métodos empregados para atenuar tais alterações consiste na remoção prévia da biomassa vegetal (nas suas diferentes formas) da área a ser inundada. Nesse contexto, estudos de simulação da qualidade da água de futuros reservatórios têm sido utilizados para o estabelecimento do grau de desmatamento necessário para atenuar e/ou neutralizar alguns impactos (Garzon, 1984; Bianchini Jr., 1997).

Nesse estudo, ressalta-se que o termo desmatamento é adotado no contexto de remoção da fitomassa (que inclui: folhas, galhos finos, cascas e serapilheira) da bacia de acumulação e não somente no que se refere à retirada de estruturas com interesse econômico (i.e. fustes e galhos grossos). Em geral, tais simulações consideram os ciclos biogeoquímicos de alguns elementos, dentre os quais: o carbono e o nitrogênio.

A quantificação da área a ser desmatada é relevante por ser um procedimento dispendioso, que deve constar da planilha de custos dos empreendimentos.

Do ponto de vista ambiental, as ações de desmatamento e limpeza do reservatório estão relacionadas à atenuação de vários impactos sobre as características químicas, físicas e biológicas dos recursos hídricos envolvidos com as formações dos reservatórios. Principalmente os impactos relacionados com os balanços de: oxigênio dissolvido (e.g. mortalidade de peixes, formação de gás sulfídrico e de metano, aumento do poder de corrosão da água, etc.), nitrogênio e de fósforo (e.g. aumento da fertilidade da água). De acordo com vários estudos desenvolvidos (Jewell, 1971; Lush & Hynes, 1973; NAS, 1981; Chapra, & Reckhow, 1983; Esteves & Barbosa, 1986; Gale et al., 1992; Moore Jr. et al., 1992; Wetzel, 2001; Davis & Cornwell, 2008) têm-se verificado que estas alterações tendem a diminuir o potencial de utilização das águas do reservatório e do trecho do rio a jusante do empreendimento (e.g. dessedentação de animais, captação de água para abastecimento domiciliar, recreação, irrigação, etc.).

Em relação à qualidade das águas e suas inter-relações com a formação do reservatório são identificadas duas fases:

 Fase de enchimento do reservatório, onde se observa a ocorrência de condições mais críticas em termos de qualidade da água. A biomassa vegetal residente é afogada e se decompõe, liberando uma grande quantidade de compostos orgânicos e nutrientes, com possibilidades de estabelecimento de condições anóxicas. Este processo ocorre até o reservatório alcançar o seu nível operacional, a partir do qual toda a vegetação estará incorporada; e,

 Fase de operação, onde ocorre o consumo de toda a matéria orgânica inundada ao longo do tempo e posterior estabilização das condições bioquímicas do meio aquático. A formação do reservatório propicia um novo equilíbrio ao sistema hídrico, condicionando tempos de residência relativamente elevados e favorecendo a ocorrência de processos eutróficos. No ciclo de estabilização do regime hidráulico pode ocorrer também a estratificação térmica do reservatório, onde são formados três reatores bioquímicos distintos, o hipolímnio (compartimento inferior), o epilímnio (compartimento superior) e uma camada intermediária, o metalímnio.

Para representar estes processos, foram utilizados os seguintes modelos de simulação:

- Modelo hidráulico. Concebido para retratar o processo de circulação da água no reservatório, durante as fases de enchimento e operação. A simulação destes processos é realizada pelo programa MEKONG, apropriado à modelação de grandes planícies de inundação. Este aplicativo gera as informações hidráulicas de entrada utilizadas pelo modelo de eutrofização.
- Modelo de eutrofização. O modelo de eutrofização baseia-se fundamentalmente no módulo EUTRO4 do modelo de simulação de qualidade da água WASP4 (Water Quality Analysis Simulation Program) distribuído pela EPA - Environmental Protection Agency, americana. O programa original foi adaptado para capacitar a representação do processo de incorporação e biodegradação da matéria vegetal inundada.
- Modelo de estratificação térmica. Modelo matemático desenvolvido por Huber e Harleman, do "Massachusetts Institute of Technology, abril/1971", e posteriormente aplicado em diversos reservatórios, com significativo sucesso. O modelo utilizado foi concebido com base no programa fonte apresentado em linguagem Fortram constante da publicação "Prediction of the Annual Cycle of Temperature Changes in a Stratified Lake or Reservoir: Mathematical Modeland User's Manual", desenvolvido por Patrick J. Ryan e Donald R. F. Harleman do MIT – Massachusetts Institute of Technology.

7.4.1.1.1.2. Características dos Modelos Matemáticos

7.4.1.1.1.2.1. Modelo Hidráulico

O modelo apresentado é parte integrante de um sistema destinado à simulação da qualidade da água em reservatórios, gerando as variáveis de natureza hidráulica requisitadas pelo modelo de simulação de qualidade da água.

O modelo matemático concebido é do tipo bidimensional e baseia-se no algoritmo proposto por Jean A. Cunge que o utilizou na modelagem das áreas inundadas do Delta do Mekong.

No processo de modelagem, o corpo hídrico é representado por uma sequência de compartimentos horizontais e trechos de canais por onde se processa o escoamento entre células vizinhas. As leis de transferência de vazões baseiam-se na Fórmula de Manning aliada à expressão da continuidade, cujo sentido do escoamento é função da diferença dos níveis d'água entre as células consideradas.

O condicionante físico que regula o escoamento é ditado principalmente pela topografia local. A água que extravasa de sua calha natural tem seu fluxo de vazão moldado pelas fronteiras naturais do terreno, tais como meandros, vales irregulares, depressões no terreno e vegetação, o que pressupõe o conhecimento da morfologia da área inundada, a qual deve ser amarrada topograficamente.

7.4.1.1.1.2.1.1. Concepção Teórica

Na aplicação do modelo de células, considera-se que a superfície da água de cada compartimento seja horizontal em toda sua extensão, caracterizada através de seu nível d'água representativo **z**_i.

Baseado nesta premissa é admitido as seguintes hipóteses:

O volume de água V_i contido em cada célula está diretamente relacionado com o seu respectivo nível z_i ; e,

A transferência da vazão $\mathbf{Q}_{i,k}$ entre duas células adjacentes de número de ordem **i** e **k**, em qualquer tempo, é função dos seus respectivos níveis d'água.

Ou seja:

$$V_i = V(z_i)$$
$$Q_{i,k} = f(z_i, z_k)$$

Onde i e j são os números de ordem das células adjacentes.

No balanço de massa, em uma dada célula de ordem i, são considerados os fluxos de vazões que ocorrem entre esta e as células adjacentes. A equação da continuidade representativa deste processo é a seguinte:

 $As_i * dz_i / dt = Q_{i,k}$

)

Onde:

As_i = área da superfície da célula i correspondente ao nível zi

Q i,k = vazão entre as células i e k em função dos níveis zi e zk

A transferência de vazões entre células baseia-se na equação dinâmica, onde são desprezados os termos de inércia e utiliza a fórmula de Manning-Strickler para a declividade da linha da energia:

 $\Delta h / \Delta x = S_0 - S_f$

Onde:

 Δh = diferença de profundidade do escoamento

 Δx = distância entre centros de células

S₀ = declividade do terreno entre os centros de células

 S_f = declividade da linha de energia

$$S_0 = -\Delta z_p / \Delta x$$

Onde:

 Δz_p = diferença de cotas de fundo entre centros de células

 $S_f = Q_{i,k}^2 * n^2 / A_{i,k}^2 * R_{i,k}^{4/3}$

Onde:

n = coef. de rugosidade da fórmula de Manning entre as células i e k

A_{i,k} = área da seção transversal entre as células i e k

R_{i,k} = raio hidráulico da seção A_{i,k}

Os valores $A_{i,k}$ e $R_{i,k}$ associada à seção transversal entre as células i e k são calculados para um nível ponderado z_p , dado por:

 $z_p = \alpha * z_i + (1 - \alpha) * z_k(5)$

Onde α é um coeficiente de ponderação entre 0 e 1.

No modelo matemático, considerou-se α = 1/2, portanto:

 $z_p = (z_i + z_k) / 2$

Substituindo as equações (3) e (4) na equação (2) resulta:

$$\Delta \mathbf{h} / \Delta \mathbf{x} = -\Delta \mathbf{z}_{p} / \Delta \mathbf{x} - \mathbf{Q}_{i,k}^{2} * \mathbf{n}^{2} / \mathbf{A}_{i,k}^{2} * \mathbf{R}_{i,k}^{4/3}$$

Reorganizando os termos e escrevendo-se a expressão resultante em função da diferença Δz entre os níveis d'água dos centros de cada célula i e k, e explicitando-se a vazão de transferência, resulta:

 $\begin{aligned} & \mathsf{Q}_{i,k} = \text{sign} * \mathsf{A}_{i,k} * \mathsf{R}_{i,k}^{2/3} * (|z_k - z_i|)^{1/2} / n / \Delta x^{1/2} \\ & \text{sign} = (z_k - z_i) / (|z_k - z_i|) \end{aligned}$

O termo **sign** indica o sinal do fluxo da vazão, sendo considerada positiva quando entra na célula i e negativa quando sai.

Considerando-se na expressão (8) o coeficiente de vazão $\Phi = A_{i,k} R_{i,k}^{2/3} / n / \Delta x^{1/2}$ resulta:

$$Q_{i,k} = sign * \Phi * (|z_k - z_i|)^{1/2}$$

7.4.1.1.1.2.1.2. Formulação Numérica do Modelo

No processo de solução numérica, a equação originalmente contínua passa a ser tratada em termos de incrementos finitos. Desta forma, procura-se uma formulação matemática que a transforme em equações do tipo lineares.

Esta solução parte da discretização da equação da continuidade (1), já citada anteriormente:

$$\mathbf{A}_{si}^{n} \star \Delta \mathbf{z}_{i}^{n+1} / \Delta \mathbf{t} = \Sigma \mathbf{Q}_{i,k}$$

Onde:

 Δz_i = variação dos níveis de água entre os tempos n e n+1

Na discretização temporal, o índice **n** será referido ao tempo $n^*\Delta t$ anterior ao cálculo onde a variável é conhecida. O índice **n+1** corresponde ao tempo atual, onde se procura o valor desconhecido da variável.

Considerando a aplicação de um esquema implícito ao termo $Q_{i,k}$, resulta:

$$\mathbf{Q}_{i,k}$$
[$\mathbf{Z}_{i}(\tau)$, $\mathbf{Z}_{k}(\tau)$] = $\Theta * \mathbf{Q}_{i,k}^{n+1} + (1 - \Theta) * \mathbf{Q}_{i,k}^{n}$

Onde:

 Θ = coeficiente de ponderação no tempo, variável entre 0 e 1

 τ = tempo intermediário entre **n** * Δt e (**n** + 1) * Δt

Para Θ = 1, tem-se uma formulação totalmente implícita, condição adotada no modelo hidráulico.

Como as relações de vazões obtidas não são lineares, o sistema é expandido através da aplicação da série de Taylor. Neste processo, desprezam-se os termos de ordem superior e admite-se que as variações Δzi são pequenas durante o intervalo de tempo Δt. A equação assim desenvolvida resulta:

$$\mathbf{Q}_{i,k}^{n+1} = \mathbf{Q}_{i,k}^{n} + \delta \mathbf{Q}_{i,k}^{n} / \delta \mathbf{z}_{i} * \Delta \mathbf{z}_{i}^{n+1} + \delta \mathbf{Q}_{i,k}^{n} / \delta \mathbf{z}_{k} * \Delta \mathbf{z}_{k}^{n+1}$$

Substituindo o resultado encontrado na expressão (10) resulta no seguinte sistema linear de equações:

$$\mathbf{A}_{\mathrm{s}i}^{n} * \Delta \mathbf{z}_{i}^{n+1} / \Delta \mathbf{t} = \Sigma \mathbf{Q}_{i,k}^{n} + \Sigma \delta \mathbf{Q}_{i,k}^{n} / \delta \mathbf{z}_{i} * \Delta \mathbf{z}_{i}^{n+1} + \Sigma \delta \mathbf{Q}_{i,k}^{n} / \delta \mathbf{z}_{k} * \Delta \mathbf{z}_{k}^{n+1}$$

O conjunto de equações resultantes forma um sistema linear, contendo n equações a n incógnitas pode ser representada numericamente através de uma matriz de coeficientes do tipo esparsa, com muitos elementos nulos.

7.4.1.1.1.2.1.3. Aplicação do Modelo Hidráulico

A modelagem matemática requer um trabalho preparatório dos dados de entrada, devendo compreender as seguintes atividades:

- Montagem do esquema topológico de células representativo do sistema hídrico;
- ✓ Definição das variáveis temporais, representadas pelas vazões afluentes e defluentes ao corpo hídrico simulado;
- ✓ Calibragem do modelo hidráulico; e,
- ✓ Exploração do sistema com a imposição de cenários alternativos de aportes de vazões hidrológicas e operativas.

• Segmentação do Reservatório

A segmentação do reservatório é realizada após uma análise cuidadosa dos fluxos que poderão ocorrer na área alagada, com nível de detalhamento compatível com os níveis de precisão desejados na modelagem.

Este trabalho é baseado em dados cartográficos e levantamentos topobatimétricos de seções transversais realizados ao longo sistema hídrico que, tratados numericamente, permitem a definição dos dados de entrada do modelo matemático.

A delimitação dos segmentos é orientada pelos pontos notáveis que caracterizam o corpo d'água a ser simulado, identificando-se inicialmente os canais onde os escoamentos ocorrem com maior facilidade. Neste processo, a primeira delimitação deverá contemplar os compartimentos representativos do curso d'água principal, separando-os das porções laterais inundadas, onde as velocidades do fluxo d'água se processam de forma mais lenta.

Atenção especial é dispensada aos cursos d'água afluentes ao corpo principal que, dependendo de suas dimensões, deverão ser representadas por segmentos independentes. Nestes locais, em função dos altos tempos de residência, há geralmente a ocorrência de processos de eutrofização.

A partir destes conceitos, define-se o esquema topológico do sistema hídrico, caracterizado por um conjunto de compartimentos individualizados interligados entre si através de canais hipotéticos de drenagem.

Baseado nesta topologia é definido os parâmetros geométricos representativos de cada compartimento, o qual é caracterizado através de pares de valores relacionando o nível d'água com a área da superfície liquida.

Os canais de comunicação entre segmentos, definidos preliminarmente nesta fase, são ajustados durante a calibragem do modelo.

• Definição das Variáveis Temporais

Os insumos básicos de entrada são constituídos por séries de vazões afluentes e defluentes ao meio hídrico.

As vazões afluentes são representadas pelo aporte principal de vazão aplicada em sua extremidade de montante e aquelas provenientes das contribuições laterais, definidas pelos estudos hidrológicos.

As parcelas relativas às defluências representam as retiradas e/ou as vazões de saída do reservatório, as quais são definidas com base em suas regras operativas.

7.4.1.1.1.2.2. Modelo Matemático de Eutrofização

O modelo de eutrofização baseia-se fundamentalmente na estrutura lógica do módulo **EUTRO4** do programa **WASP4**, ao qual foram acrescidas as equações que permitem simular os processos físicos e bioquímicos de incorporação e degradação da biomassa que ocorrem durante as fases de enchimento e operação do reservatório.

A seguir são apresentadas as versões originais do modelo WASP, conforme concebido pela EPA e as alterações introduzidas neste programa, capacitando-o para simular os processos associados à incorporação e biodegradação da biomassa inundada.

7.4.1.1.1.2.2.1. Modelo WASP4 Original

O modelo de simulação de qualidade da água **WASP4** (Water Quality Analysis Simulation Program) desenvolvido pela United States Environmental Protection Agency - USEPA é de larga aceitação nos estudos de planejamento.

As características deste modelo, em termos de estrutura espacial, discretização temporal, versatilidade estrutural e varáveis de estado simuláveis, torna-o adequado para aplicação aos estudos de qualidade da água dos recursos hídricos.

Através dos módulos presentes neste programa, são simulados os efeitos de advecção, dispersão e interação dos diversos constituintes considerados no processo. Os constituintes simulados podem ser conservativos ou não, incluindo-se substâncias tóxicas e as variáveis envolvidas no processo de eutrofização do reservatório.

Estas cinéticas são realizadas por quatro módulos independentes:

- DYNHYD4 Simula o movimento da água em rios, estuários ou reservatórios, cujo processo é representado, matematicamente, por duas equações diferenciais que controlam a conservação da massa e quantidade de movimento do escoamento conhecido como Equações de Saint Venant.
- **Módulo básico** Simula o transporte dos constituintes conservativos, tais como: cloretos, traçadores químicos etc.

- EUTRO4 Simula especificamente os processos físico-químicos que afetam o transporte e a interação entre os nutrientes, fitoplancton, matéria orgânica e oxigênio dissolvido.
- TOXI4 Simula a evolução e a degradação de elementos tóxicos, através de um grande número de processos químicos e biológicos. Estes processos incluem a biodegradação, hidrólise, fotólise e oxidação química, metais pesados etc.

No módulo **EUTRO4** objeto dos trabalhos de modelagem é identificado quatro sistemas interativos:

- Cinética fitoplanctônica;
- Ciclo do fósforo;
- Ciclo do nitrogênio e
- Balanço do oxigênio dissolvido

No processo de simulação, o corpo hídrico é representado por um conjunto de segmentos ou reatores de mistura completa, onde ocorrem reações envolvendo as seguintes variáveis bioquímicas:

- Amônia: NH3
- Nitrato: NO3
- Ortofosfato: **OPO4**
- Clorofila A: CHLa
- Demanda bioquímica do oxigênio: DBO
- Oxigênio dissolvido: **OD**
- Nitrogênio orgânico: **ON**
- Fósforo orgânico: **OP**

Os processos cinéticos e as reações de transformação envolvem a participação de oito variáveis de estado, os quais são integrados em quatro sistemas interativos:

 Cinética fitoplanctônica – Esta cinética assume um destaque central no processo de eutrofização, interagindo e afetando os demais ciclos. Durante a fase de crescimento, ocorre a absorção dos compostos de fósforo e nitrogênio e liberação de oxigênio dissolvido. Após a sua morte, a biodegradação reconstitui estes elementos ao meio aquático, na formas de nitrogênio e fósforo orgânico, momento onde ocorre também o consumo de oxigênio dissolvido;

- Ciclo do fósforo O fósforo na sua forma orgânica é transformado em ortofosfato o qual é absorvido pelos fitoplanctons para a sua multiplicação e crescimento;
- Ciclo do nitrogênio O nitrogênio orgânico é transformado em amônia e nitrato o qual, por sua vez, suprem também as comunidades fitoplanctonicas. Na ausência de oxigênio dissolvido, o nitrato através do processo de denitrificação libera o nitrogênio.
- Ciclo do oxigênio dissolvido O oxigênio dissolvido interage com todos os demais processos, sendo consumido no processo de oxidação do carbono orgânico, com liberação de CO2, e da amônia que é transformada em nitrato. A regeneração do oxigênio dissolvido é realizada através do processo de reaeração na superfície líquida e liberação de oxigênio durante a fase de crescimento da comunidade fitoplanctônica.

7.4.1.1.1.2.2.2. Módulo EUTRO4 Modificado

As alterações inseridas no programa original visaram capacitar a representação dos processos físicos e bioquímicos relacionados à incorporação e biodegradação da fitomassa inundada, que ocorrem a partir da fase de enchimento do reservatório.

A fim de capacitar a representação do processo de incorporação e posterior biodegradação da biomassa inundada, foi realizado um trabalho de adaptação no programa original, mais especificamente no módulo EUTRO4, com a incorporação de novos algoritmos, sem alteração de sua estrutura lógica.

Na formulação do modelo, admite-se o reservatório subdividido em compartimentos independentes, comportando-se como reator de mistura completa, cujas cinéticas, representadas por equações diferenciais de primeira ordem, descrevem as variações temporais dos seguintes parâmetros:

- Demanda bioquímica de oxigênio;
- Nitrogênio contido na vegetação submersa e dissolvido na água;
- Fósforo contido na vegetação e dissolvido na água; e,
- Oxigênio dissolvido.

Nesta nova concepção foram acrescidos três novos sistemas ao módulo EUTRO4 original, conforme esquematizado na **Figura 7.4.1.1.1.2.2.2/01**. A **Figura 7.4.1.1.1.2.2.2/02** apresenta a estrutura do Módulo EUTRO4 Modificado

Figura 7.4.1.1.1.2.2.2/02- Estrutura do Módulo EUTRO4 Modificado

Na **Figura 7.4.1.1.1.2.2.2/03** são representadas as interações cinéticas dos processos relacionados à degradação da matéria vegetal inundada, as quais foram incorporadas neste novo módulo.

SISTEMA 9

Figura 7.4.1.1.1.2.2.2/03 - Representações Cinéticas dos Sistemas 9, 10 e 11

Onde:

- **DBO** = demanda bioquímica do oxigênio;
- **RV** = DBO da matéria vegetal fixa ao solo;
- **OD** = oxigênio dissolvido;
- NF = nitrogênio fixo na matéria vegetal;
- **PF** = fósforo fixo na matéria vegetal;
- K1 = taxa de biodegradação da DBO fixa;

- **K2** = taxa de dissolução da DBO fixa;
- **K3** = taxa de biodegradação da DBO dissolvida.

A representação destes processos é descrita por três sistemas interativos:

<u>SISTEMA 9</u> – Representadas as seguintes cinéticas:

- A matéria vegetal inundada fixa ao fundo do reservatório, sofre biodegradação com consumo de oxigênio dissolvido, segundo uma taxa k1;
- A matéria vegetal inundada fixa ao solo, sofre dissolução, produzindo uma DBO dissolvida na massa líquida, a uma taxa de transferência k2;
- A DBO dissolvida, por sua vez, sofre também um processo de biodegradação com consumo de oxigênio, segundo uma taxa k3.

O processo de degradação da biomassa inundada, representada pelas parcelas fixa ao solo e dissolvida, são regidas pelos níveis de concentrações de oxigênio dissolvido no corpo hídrico que estabelecem as cinéticas representativas das condições aeróbicas e anaeróbicas.

Desta forma é requerido, como dados de entrada, o fornecimento de dois conjuntos de parâmetros K1, K2 e K3 representativas das condições aeróbicas e anaeróbicas do corpo hídrico.

<u>SISTEMA 10</u>. O nitrogênio fixo presente na matéria vegetal inundada sofre dissolução, produzindo nitrogênio orgânico na forma dissolvida.

<u>SISTEMA 11</u>. O fósforo fixo na presente na matéria vegetal inundada sofre dissolução, produzindo fósforo orgânico na forma dissolvida.

Onde:

- K1 = taxa de biodegradação da DBO fixa
- K2 = taxa de dissolução da DBO fixa
- K3 = taxa de biodegradação da DBO dissolvida

As parcelas de cargas representativas do nitrogênio e fósforo são definidas com base nas relações estequiométricas entre o nitrogênio-carbono orgânico e o fósforo-carbono orgânico cujos valores são partes dos dados de entrada do modelo matemático.

O modelo adotado apresenta algumas características que devem ser consideradas quando da interpretação de seus resultados, dentre os quais se citam:

• O modelo considera cada segmento como sendo um reator de mistura completa e

O processo de biodegradação tem início logo após o seu afogamento, ou seja, não se prevê, portanto, a morte gradual da fitomassa submersa. Desse modo, em algumas situações, as simulações podem conter resultados que sejam mais críticos do que o esperado (por exemplo: déficits de OD), pois a defasagem temporal entre submersão e morte da vegetação contribui para a atenuação da velocidade das alterações da qualidade da água. No entanto, a despeito destas limitações, o modelo utilizado fornece, inequivocamente, as tendências das características da qualidade da água do futuro reservatório.

7.4.1.1.1.2.3. Modelo de Estratificação

A estratificação térmica deve-se à criação de ambientes lênticos com reduzida capacidade de renovação. Este processo é constatado ao longo da coluna d'água em reservatórios profundos, com o aparecimento de três níveis ou camadas distintas de temperatura, sendo elas: epilímnio, metalímnio e hipolímnio.

O estabelecimento da estratificação é favorecido quando o volume do reservatório é grande, face aos volumes de vazões anuais afluentes. Nestas condições a isoterma é horizontal durante a maior parte do ano e a estratificação é geralmente mantida durante o verão e o outono.

A causa primária da estratificação térmica é a baixa condutividade da água, a limitação da penetração da energia radiante e da luz, e o fato de que o fluxo de vazões no fim da primavera e no verão tende a ser mais quente que superfície do reservatório. Este fluxo quente afluente permanece na camada superficial do reservatório.

Outro fluxo de calor penetra nas camadas da superfície do reservatório na forma de energia radiante, sendo grande parte absorvida nos primeiros poucos metros, condicionando um aquecimento maior da água situada próximo à superfície (epilímnio), em contraste com aquela situada nas camadas mais profundas (hipolímnio) que se mantém em temperaturas mais baixas. A água mais aquecida e menos densa tende a permanecer na superfície, absorvendo mais calor, e estabelecendo condições de estratificação.

Por outro lado, o processo de evaporação esfria a camada superficial, provocando o aparecimento de correntes de convecção. Este processo é intensificado durante o período noturno com a ausência da radiação solar e perdas por condutividade. A ação do vento vem intensificar este processo, provocando uma circulação turbulenta na camada do epilímnio.

A destruição da estratificação térmica é acompanhada por uma mistura vertical do reservatório e consequente quedas nos índices de qualidade da água.

Na condição estratificada, a camada do hipolímnio apresenta-se como um reator bioquímico isolado da atmosfera, impedindo o processo de re-aeração. Neste ambiente são normalmente observadas condições de anaerobiose e baixos índices de qualidade das águas, com produção indesejável de gases e odores, ocasionalmente

com efeitos tóxicos, com uma produção de amônia, redução de sulfeto e formação de metano.

Esta situação mais crítica, observada na camada de fundo, decorre principalmente dos processos de decomposição da matéria orgânica oriunda da vegetação afogada.

Durante a quebra da termoclina ocorre uma mistura das camadas, causando uma rápida deterioração da qualidade da água. Por esta razão, o conhecimento do perfil térmico é essencial para o controle da qualidade da água e da previsão de estruturas hidráulicas de descargas adequadas, visando minimizar os impactos decorrentes destes processos.

7.4.1.1.1.2.3.1. Conceituação Teórica

O modelo matemático adotado baseia-se no processo de absorção e transmissão da radiação solar, convecção devido ao esfriamento da superfície pela evaporação, ação do vento e os fluxos de vazões afluentes e defluentes.

As primeiras verificações do modelo matemático foram desenvolvidas em laboratório, através de modelos físicos desenvolvidos por Huber e Harleman do "Massachusetts Institute of Technology" e posteriormente aplicado em diversos reservatórios com sucesso.

O comportamento térmico do reservatório, normalmente é simulado, descrevendo um ciclo anual completo, de forma a acompanhar as variações sazonais de vazões e condições climáticas, calculando as perdas de calor diárias como uma função das informações meteorológicas.

No processo de modelagem, o reservatório é esquematizado em uma série de elementos horizontais com elevação y, área A=f(Y) e espessura dy. O fluxo de calor penetra na superfície horizontal por radiação, por advecção vertical e por difusão. A equação dinâmica, controlando os processos de transmissão e distribuição da temperatura no corpo d'água, considera em sua formulação a conservação da continuidade e do calor.

A relativa estabilidade conferida aos corpos de água estratificados se deve principalmente às propriedades peculiares da água caracterizadas pelos seus elevados calores latentes de evaporação (Lv = 590 cal.g-1) e fusão (Lf = 80 cal.g-1). Deste modo, a água exige o aporte de grandes quantidades de energia para trocar o seu estado físico, conferindo-lhe uma elevada inércia térmica que resulta numa demora em aquecimento e resfriamento.

As principais simplificações da modelagem são:

• A isoterma no reservatório estratificado é horizontal e o gradiente térmico existe apenas na direção vertical;

- O transporte de calor devido à mistura provocada pelo fluxo turbulento ocorre somente na região do epilímnio e se limita ao espaço de tempo em que a temperatura induz a desestabilização do perfil de densidade;
- A radiação solar é transmitida somente na direção vertical;
- O fluxo de calor não é perdido na interface física entre a massa líquida e o solo junto às margens e fundo do reservatório. As trocas de calor partem da superfície do reservatório, via evaporação e através dos fluxos de vazões derivadas da afluência e da defluência;
- A densidade e o calor específico e o coeficiente de difusão molecular da água é assumido constante ao longo da simulação;
- A energia da radiação solar, transmitida para a água e interceptada pelas margens, é distribuída uniformemente sobre a seção transversal e na profundidade de interceptação.

7.4.1.1.1.3. Dados Básicos Utilizados na Modelagem

Para o desenvolvimento das diferentes modelagens matemáticas, procedeu-se uma fase preparatória de coleta de dados disponíveis, onde as informações básicas foram definidas em função das necessidades de informações para as entradas em cada um dos modelos, conforme apresentados nos itens seguintes.

7.4.1.1.1.3.1. Dados Cartográficos e Topográficos

A Base Cartográfica adotada nos estudos baseou-se em restituição aerofotogramétrica, realizada pela empresa Geomensura (Eletronorte/Geomensura, 2007), com área do reservatório levantada na escala 1:2.000, com curvas de nível a cada 1 m e curvas mestras a cada 5 m.

7.4.1.1.1.3.2. Dados Climáticos

Os dados climáticos foram obtidos na estação meteorológica de Itaituba, operada pelo Instituto Nacional de Meteorologia - INMET, onde foram considerados os seguintes parâmetros climáticos: temperatura média do ar; umidade relativa do ar; nebulosidade e velocidade média do vento. A estação meteorológica de Itaituba localiza-se nas coordenadas de 04º 28' de Latitude Sul e 55º 98' de Longitude Oeste e altitude de 45 m.

A radiação média foi obtida do Centro de Referência para Energia Solar e Eólica Sérgio de Salvo Brito - CRESESB.

O **Quadro 7.4.1.1.1.3.2/01** resume as informações meteorológicas utilizadas nos modelos matemáticos.

Mês	Temperatura do Ar (ºC)	*Radiação Média (kwh/m².dia)	Umidade Relativa do Ar (%)	Velocidade do Vento (m/s)	Nebulosidade (0 – 10)
Jan	26,2	4,56	88	0,76	8,5
Fev	25,8	4,22	91	0,75	7,8
Mar	26,2	4,67	91	0,71	7,6
Abr	26,4	4,33	91	0,63	7,4
Mai	26,5	4,64	91	0,55	7,1
Jun	26,4	4,72	89	0,58	6,3
Jul	26,4	5,47	88	0,69	5,6
Ago	27	5,97	85	0,76	5,6
Set	27,5	5,44	84	0,89	6,1
Out	27,8	5,44	83	0,82	6,6
Nov	27,5	5,33	84	0,84	6,8
Dez	26,8	4,64	88	0,79	7,2

Quadro 7.4.1.1.1.3.2/01 - Registros Médios Mensais dos Parâmetros Climáticos

FONTE: Normais Climatológicas 1.961/1.990: INMET, 1992

(*) Centro de Referência para Energia Solar e Eólica Sérgio de Salvo Brito – CRESESB, 2011

7.4.1.1.1.3.3. Dados Hidrológicos

Na composição das séries de vazões médias mensais, foram considerados os dados fluviométricas disponíveis nos cursos do Tapajós e Jamanxim, conforme estações identificadas no **Quadro 7.4.1.1.3.3/01**.

Código		Curso	urso		Área de	Locali	Período	
ANA	Estação	d'água	Município	UF	Drenagem (km ²)	Latitude	Longitude	de Análise
-	Canal de Fuga de Jatobá	Tapajós	Itaituba	PA	386.711	05°10'46''	56°55'56"	Jan a mai/07
17650000	Jatobá	Tapajós	Itaituba	PA	387.378	05°09'09''	56°51'14"	Dez/72 a abr/12
17710000	Buburé	Tapajós	Itaituba	PA	450.000	04°37'02''	56°19'37"	Jan/91 a abr/2013

Quadro 7.4.1.1.1.3.3/01- Rede de Estações Fluviométricas de Interesse

FONTE: Sistema de Informações Hidrológicas: Banco de Dados Hidrometeorológicos da ANA (Hidroweb), 2013

Além destes dados, foram consideradas também as séries de vazões médias mensais geradas nos locais do eixo do AHE São Luiz do Tapajós, AHE Jatobá e AHE Cachoeira do Caí, compilada com base no período de dados de janeiro de 1931 a dezembro de 2011 e cujos valores são reproduzidos no **Quadro 7.4.1.1.1.3.3/02**.

Mês	AHE São Luiz do Tapajós (m ³ /s)	AHE Jatobá (m ³ /s)	AHE Cachoeira do Caí (m ³ /s)
Jan	15.988	13.409	2.250
Fev	22.113	18.130	3.507
Mar	27.368	22.026	4.619
Abr	26.256	20.975	4.544
Mai	18.664	14.771	3.220
Jun	9.788	8.217	1.274
Jul	5.857	5.271	472
Ago	4.408	4.140	213
Set	4.069	3.873	170
Out	4.688	4.340	306
Nov	6.547	5.876	552
Dez	10.245	8.670	1.353
Média	12.999	10.808	1.873

Quadro 7.4.1.1.1.3.3/02- Vazões Médias Mensais nos Locais dos Eixos do AHE São Luíz do Tapajós, Jatobá e Cachoeira do Caí.

FONTE: CNEC WorleyParsons, 2013

7.4.1.1.1.3.4. Dados de Qualidade das Águas

Compreendem os parâmetros de natureza química e física proveniente de campanhas de qualidade da água realizadas na área de influência do reservatório do AHE São Luiz do Tapajós. Na composição destas informações foram considerados os dados das campanhas de qualidade da água realizados no âmbito dos estudos de EIA-RIMA, campanhas do Projeto Brasil das Águas e de dados de monitoramento disponíveis de estações fluviométricas operadas pela Agência Nacional de Águas - ANA.

7.4.1.1.1.3.4.1. Dados de Estudos Ambientais do AHE São Luiz do Tapajós

As amostragens desenvolvidas no âmbito dos estudos do EIA da AHE São Luiz do Tapajós resultaram de quatro campanhas de amostragens de qualidade da água, realizadas no ano de 2012, procurando caracterizar as condições hidrológicas associadas ao regime de cheia, de vazante, de seca e de enchente.

Nestas campanhas foram amostrados 41 pontos de coleta, dos quais 17 estão situados na calha do rio Tapajós; 6 na calha do rio Jamanxim, 12 nos tributários afluentes e 6 em lagoas marginais.

No **Quadro 7.4.1.1.1.3.4.1/01** são identificados os pontos amostragens considerados nos estudos de modelagem matemática, onde foram selecionados os pontos da rede de coleta localizados na área de influência do reservatório do AHE São Luiz do Tapajós.

Ambientes	Pontos	Localização	Coorde Sirga (Fuso	nadas em is 2000 o: 21m)
			Leste	Norte
	CT4	Futuro Reservatório - rio Tapajós - eixo da barragem	579.805	9.493.298
	CT5	Futuro Reservatório - rio Tapajós - jusante da confluência com o rio Jamanxim	570.877	9.484.710
	CT6	Futuro Reservatório - rio Tapajós – jusante da confluência com o rio Jutaí	520.724	9.442.232
	PD1	Pedral - rio Tapajós - jusante do futuro reservatório	582.042	9.505.607
Calha do Tapajós	PD2	Pedral - rio Tapajós - cachoeira São Luiz do Tapajós	580.408	9.498.814
	PD3	Futuro Reservatório - pedral - rio Tapajós - entre os rios Jamanxim e Tucunaré	568.521	9.484.202
	PD4	Pedral - rio Tapajós - próximo da foz do rio Ratão	500.280	9.412.933
	PR2	Praia - margem direita do rio Tapajós - próximo ao canal de restituição	583.544	9.501.065
	PR3	Futuro Reservatório - praia - rio Tapajós - montante do rio Jamanxim	549.140	9.480.732
	CJ8	Futuro Reservatório - rio Jamanxim - próximo à confluência com o rio Tapajós	561.900	9.472.784
	CJ9	Futuro Reservatório - rio Jamanxim a montante do igarapé Jamanxinzinho	560.649	9.445.054
	CJ10	Rio Jamanxim - montante do futuro reservatório	562.148	9.427.344
Calha do Jamanxim	PD5	Futuro Reservatório - pedral - rio Jamanxim - próximo à foz do igarapé Jamanxinzinho	560.312	9.459.068
	PD6	Pedral - rio Jamanxim - montante da cachoeira Santa Helena	562.943	9.420.781
	PR5	Futuro Reservatório - praia - rio Jamanxim - próximo à confluência com o rio Tapajós	562.086	9.470.844
	TR2	Futuro Reservatório - igarapé Bathu - próximo ao eixo da barragem	581.967	9.495.588
Tributários	TR3	Futuro Reservatório -igarapé Lajinha - montante da confluência com o rio Jamanxim	554.975	9.476.688
	TR4	Futuro Reservatório - rio Mariazinha	540.760	9.484.481
	TR5	Futuro Reservatório - igarapé Jutaí	515.165	9.440.189
	TR7	Futuro Reservatório - igarapé Jamanxinzinho	564.367	9.455.408
	LA3	Futuro Reservatório - lagoa em ilha no rio Tapajós - montante da confluência com o rio Mariazinha	536.834	9.476.747
Layuas	LA4	Futuro Reservatório - lagoa na margem esquerda do rio Tapajós - jusante da confluência com o rio Mariazinha	545.108	9.482.354
	TR2A	Futuro reservatório - rio Tucunaré	579.289	9.485.641
Tributários	TR4A	Futuro reservatório - igarapé da Montanha	524.445	9.453.960

Ambientes	Pontos	Localização	Coorde Sirga (Fuso	nadas em s 2000 o: 21m)	
			Leste	Norte	
	TR5A	Rio Ratão - montante do futuro reservatório	506.462	9.411.369	
	TR40A	Igarapé Bom Jardim ou Bacabal - montante do futuro reservatório	486.841	9.382.277	
	TR41A	Igarapé da Missão - montante do futuro reservatório	496.914	9.410.809	
Calha do Tapajós	CT6A	Futuro reservatório - rio Tapajós - jusante da confluência com o rio Ratão	505.297	9.421.740	

Nos **Quadros 7.4.1.1.1.3.4.1/02** a **7.4.1.1.1.3.4.1/17** são apresentados os dados dos parâmetros monitorados de interesse para a modelagem matemática. Os valores para cada ponto foram obtidos através da média entre as medidas realizadas nas margens direita, esquerda e no centro.

Parâmetros	CT4	CT5	CT6	CT6A	PD1	PD2	PD3	PD4	PR2	PR3
Data da Coleta	16/4/2012	20/4/2012	25/4/2012	25/4/2012	15/4/2012	16/4/2012	20/4/2012	25/4/2012	15/4/2012	20/4/2012
Temperatura da água (°C)	28,5	29,1	29,3	28,5	28,1	28,1	29,1	28,9	27,5	28,6
OD (mg/L)	7,1	6,9	6,4	6,7	7,1	7,1	7,2	6,9	7,1	6,65
DBO (mg/L)	2	2	3	3	<2,0	3	3	2	<2,0	2
Nitrato (mg/L)	<0,02	0,04	0,03	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02
Amônia (mg/L)	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
Nitrogênio Orgânico (mg/L)	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02
Nitrogênio Total (mg/L)	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
Fósforo Orgânico (ug/L)	0,02	0,02	0,02	<0,003	<0,003	0,02	0,02	<0,003	0,02	0,01
Ortofosfato (mg/L)	<0,003	<0,003	<0,003	<0,003	<0,003	<0,003	<0,003	<0,003	<0,003	<0,003
Fósforo Total (ug/L)	0,02	0,02	0,02	<0,003	<0,003	0,03	0,02	<0,003	0,02	0,02
Clorofila_a	<0,001	<0,001	0	<0,001	<0,001	0	<0,001	<0,001	<0,001	<0,001

Quadro 7.4.1.1.1.3.4.1/02 - Rio Tapajós: Período de Cheia (abril/2012)

Quadro 7.4.1.1.3.4.1/03 - Rio	Tapajós: Período de Vazant	e (julho/2012)
-------------------------------	----------------------------	----------------

Parâmetros	CT4	CT5	CT6	CT6A	PD1	PD2	PD3	PD4	PR2	PR3
Data da Coleta	6/7/2012	7/7/2012	11/7/2012	12/7/2012	5/7/2012	6/7/2012	6/7/2012	12/7/2012	5/7/2012	7/7/2012
Temperatura da água (°C)	30	29,7	30,4	30,5	29,9	29,3	30,6	30,3	31	30,7
OD (mg/L)	6,6	6,33	6,2	6,2	6,1	6,1	6,4	6,3	6	6,9
DBO (mg/L)	<2,0	<2,0	3	3	<2,0	<2,0	<2,0	<2,0	<2,0	2
Nitrato (mg/L)	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02
Amônia (mg/L)	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
Nitrogênio Orgânico (mg/L)	<0,02	<0,02	0,08	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02
Nitrogênio Total (mg/L)	<0,05	<0,05	0,08	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
Fósforo Orgânico (ug/L)	0,03	0,03	0,04	0,02	0,03	0,02	0,03	0,03	0,02	<0,003
Ortofosfato (mg/L)	0,03	0,03	0,03	0,02	0,02	0,02	0,02	0,03	0,02	<0,003
Fósforo Total (ug/L)	0,09	0,1	0,12	0,05	0,07	0,06	0,09	0,08	0,06	<0,003

Parâmetros	CT4	CT5	CT6	CT6A	PD1	PD2	PD3	PD4	PR2	PR3
Data da Coleta	6/7/2012	7/7/2012	11/7/2012	12/7/2012	5/7/2012	6/7/2012	6/7/2012	12/7/2012	5/7/2012	7/7/2012
Clorofila_a	22	<2,5	16	<2,5	<2,5	5	<2,5	13	5	47

Quadro 7.4.1.1.3.4.1/04- Rio	Tapajós: Período de Seca	(setembro e outubro/2012)
------------------------------	--------------------------	---------------------------

Parâmetros	CT4	CT5	CT6	CT6A	PD1	PD2	PD3	PD4	PR2	PR3
Data da Coleta	17/9/2012	17/9/2012	23/9/2012	24/9/2012	1/10/2012	17/9/2012	17/9/2012	24/9/2012	1/10/2012	18/9/2012
Temperatura da água (ºC)	31,6	32,6	32,1	31,6	30,4	31,3	32,5	32,3	30,4	32,4
OD (mg/L)	7,3	7,5	7,4	7,3	7,9	7	7,2	7,5	7	7,5
DBO (mg/L)	2	2	2	3	3	3	4	4	2	<2,0
Nitrato (mg/L)	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02
Amônia (mg/L)	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
Nitrogênio Orgânico (mg/L)	<0,02	0,14	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02
Nitrogênio Total (mg/L)	<0,05	0,14	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
Fósforo Orgânico (ug/L)	0,01	0,03	0,02	0,02	0,02	<0,003	0,03	0,03	0,04	<0,003
Ortofosfato (mg/L)	<0,003	<0,003	<0,003	<0,003	<0,003	<0,003	<0,003	<0,003	<0,003	<0,003
Fósforo Total (ug/L)	0,04	0,08	0,06	0,07	0,08	<0,003	0,02	0,08	0,1	0,02
Clorofila_a	<2,50	<2,50	24,6	52,9	16,6	3,7	6,9	6,9	20,3	5,3

Parâmetros	CT4	CT5	CT6	CT6A	PD1	PD2	PD3	PD4	PR2	PR3
Data da Coleta	28/11/2012	28/11/2012	1/12/2012	4/12/2012	27/11/2012	28/11/2012	29/11/2012	4/12/2012	27/11/2012	29/11/2012
Temperatura da água (°C)	31	30,4	29,9	29,3	31,1	30,8	31,1	28,5	30,8	30,6
OD (mg/L)	7	6,6	6,9	6,8	7,2	6,8	7,3	6,8	6,8	7,1
DBO (mg/L)	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0	2	<2,0	<2,0	<2,0
Nitrato (mg/L)	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02
Amônia (mg/L)	<0,05	<0,05	<0,05	<0,05	<0,005	<0,005	<0,005	<0,005	<0,005	<0,005
Nitrogênio Orgânico (mg/L)	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02
Nitrogênio Total (mg/L)	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
Fósforo Orgânico (ug/L)	<0,003	<0,003	<0,003	<0,003	<0,003	<0,003	<0,003	<0,003	<0,003	<0,003
Ortofosfato (mg/L)	<0,003	<0,003	<0,003	<0,003	<0,003	<0,003	<0,003	<0,003	<0,003	<0,003
Fósforo Total (ug/L)	<0,003	0,04	<0,003	<0,003	0,04	<0,003	<0,003	<0,003	<0,003	<0,003
Clorofila_a	4,13	<2,50	9,12	17,54	<2,50	<2,50	31,21	3,21	14,22	32,8
EONTE, ELNICHEC Marloy Dorook	20.12									

Quadro 7.4.1.1.1.3.4.1/05- Rio Tapajós: Período de Enchente (novembro e dezembro/2012)

Parâmetros	CJ8	CJ9	CJ10	PD5	PD6	PR5
Data da Coleta	20/4/2012	16/4/2012	22/4/2012	16/4/2012	19/4/2012	20/4/2012
Temperatura da água (°C)	27,3	26,4	26,8	22,7	26,8	27,3
OD (mg/L)	6,7	7,3	7,1	7,2	7	6,8
DBO (mg/L)	2	<2,0	<2,0	2	<2,0	<2,0
Nitrato (mg/L)	0,03	0,03	0,03	<0,02	<0,02	<0,02
Amônia (mg/L)	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
Nitrogênio Orgânico (mg/L)	<0,02	<0,02	<0,02	<0,02	<0,02	0,02
Nitrogênio Total (mg/L)	<0,05	<0,05	<0,05	<0,05	<0,05	0,02
Fósforo Orgânico (ug/L)	0,02	0,02	0,02	0,02	0,02	0,01
Ortofosfato (mg/L)	<0,003	<0,003	<0,003	<0,003	<0,003	<0,003
Fósforo Total (ug/L)	0,03	0,03	0,02	0,02	0,02	0,02
Clorofila_a	0,0001	0,0008	<0,001	<0,001	0,00002	<0,001

Quadro 7.4.1.1.1.3.4.1/06 - Rio Jamanxim – Período de Cheia (abril/2012)

Quadro 7.4.1.1.1.3.4.1/07 - Rio Jamanxim – Período de Vazante (julho/2012)

Parâmetros	CJ8	CJ9	CJ10	PD5	PD6	PR5
Data da Coleta	7/7/2012	8/7/2012	8/7/2012	9/7/2012	2/7/2012	7/7/2012
Temperatura da água (°C)	29,1	29,2	28,5	28,3	28,6	29,1
OD (mg/L)	6,6	6,5	6,9	6,5	6,7	6,8
DBO (mg/L)	<2,0	<2,0	<2,0	<2,0	<2,0	<2,0
Nitrato (mg/L)	<0,02	<0,02	<0,02	<0,02	0,05	<0,02
Amônia (mg/L)	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
Nitrogênio Orgânico (mg/L)	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02
Nitrogênio Total (mg/L)	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
Fósforo Orgânico (ug/L)	<0,003	0,02	0,02	<0,003	0,02	0,01
Ortofosfato (mg/L)	<0,003	<0,003	<0,003	<0,003	<0,003	<0,003
Fósforo Total (ug/L)	<0,003	0,05	0,04	<0,003	0,04	0,05
Clorofila_a	<2,5	24	6	<2,5	5	<2,5

FONTE: ELN/CNEC WorleyParsons, 2012

Quadro 7.4.1.1.1.3.4.1/08 - Rio Jamanxim – Período de Seca (setembro e outubro/2012)

Parâmetros	CJ8	CJ9	CJ10	PD5	PD6	PR5
Data da Coleta	18/9/2012	5/10/2012	5/10/2012	18/9/2012	4/10/2012	18/9/2012
Temperatura da água (°C)	31,7	30,5	29,8	31,5	30,9	31,6
OD (mg/L)	7,1	7	6,6	7,6	7,8	6,9
DBO (mg/L)	3	4	2	2	<2,0	3
Nitrato (mg/L)	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02
Amônia (mg/L)	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05
Nitrogênio Orgânico (mg/L)	0,25	0,2	0,12	<0,02	<0,02	<0,02
Nitrogênio Total (mg/L)	0,25	0,2	0,12	<0,05	<0,05	<0,05
Fósforo Orgânico (ug/L)	0,04	0,08	0,08	0,01	0,04	<0,003
Ortofosfato (mg/L)	<0,003	<0,003	<0,003	<0,003	<0,003	<0,003
Fósforo Total (ug/L)	0,16	0,23	0,19	0,04	0,11	0,02
Clorofila_a	<2,50	23,1	9,8	<2,50	5,3	<2,50

Parâmetros	CJ9	CJ10	PD6
Data da Coleta	29/11/2012	1/12/2012	25/11/2012
Temperatura da água (ºC)	30,3	29,6	30,9
OD (mg/L)	6,5	6,7	6,7
DBO (mg/L)	<2,0	<2,0	<2,0
Nitrato (mg/L)	<0,02	<0,02	<0,02
Amônia (mg/L)	<0,05	0,09	<0,05
Nitrogênio Orgânico (mg/L)	<0,02	0,7	<0,02
Nitrogênio Total (mg/L)	<0,05	0,79	<0,05
Fósforo Orgânico (ug/L)	<0,003	0,05	<0,003
Ortofosfato (mg/L)	<0,003	0,04	<0,003
Fósforo Total (ug/L)	0,03	0,19	<0,003
Clorofila_a	6,22	31,25	<2,50

Quadro 7.4.1.1.1.3.4.1/09 - Rio Jamanxim – Período de Enchente (novembro e dezembro/2012)

Parâmetros	TR2	TR2A	TR3	TR4	TR4A	TR5	TR5A	TR7	TR40A	TR41A
Data da Coleta	16/4/2012	15/4/2012	21/4/2012	23/4/2012	21/4/2012	25/4/2012	25/4/2012	16/4/2012	24/4/2012	23/4/2012
Temperatura da água (°C)	25,3	26,03	25	25,5	25,8	25,5	25,7	25,7	22,7	26,8
OD (mg/L)	6,2	6,7	4,9	6,3	6,2	5,7	5	6,6	7,2	7
DBO (mg/L)	2	<2,0	2	2	<2,0	2	3	<2,0	-	-
Nitrato (mg/L)	0,08	<0,02	<0,02	0,04	<0,02	<0,02	<0,02	<0,02	-	-
Amônia (mg/L)	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	-	-
Nitrogênio Orgânico (mg/L)	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	-	-
Nitrogênio Total (mg/L)	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	-	-
Fósforo Orgânico (ug/L)	<0,003	0,02	<0,003	0,01	0,02	0,02	<0,003	0,02	-	-
Ortofosfato (mg/L)	<0,003	<0,003	<0,003	<0,003	<0,003	<0,003	<0,003	<0,003	-	-
Fósforo Total (ug/L)	<0,003	0,04	<0,003	0,02	0,02	0,02	<0,003	0,02	-	-
Clorofila_a	<0,001	0,0067	<0,001	<0,001	<0,001	<0,001	<0,001	<0,001	-	-

Quadro 7.4.1.1.3.4.1/10 - Tributários – Período de Cheia (abril/2012)

FONTE: ELN/CNEC WorleyParsons, 2012

Quadro 7.4.1.1.3.4.1/11 - Tributários – Período de Vazante (julho/2012)

Parâmetros	TR2	TR2A	TR3	TR4	TR4A	TR5	TR5A	TR7	TR40A	TR41A
Data da Coleta	6/7/2012	6/7/2012	7/7/2012	7/7/2012	11/7/2012	11/7/2012	12/7/2012	13/7/2012	12/7/2012	12/7/2012
Temperatura da água (°C)	24,9	25,9	24,9	24,9	25	24,4	23	25,5	25,8	24,8
OD (mg/L)	6,1	6,2	5,6	6	6,9	5,5	5,9	7	5,9	5,6
DBO (mg/L)	<2,0	<2,0	<2,0	2	<2,0	<2,0	2	<2,0	-	-
Nitrato (mg/L)	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	-	-
Amônia (mg/L)	<0,05	<0,05	<0,05	0,06	<0,05	<0,05	<0,05	<0,05	-	-
Nitrogênio Orgânico (mg/L)	<0,02	<0,02	<0,02	0,04	0,06	<0,02	<0,02	0,1	-	-
Nitrogênio Total (mg/L)	<0,05	<0,05	<0,05	0,1	0,06	<0,05	<0,05	0,1	-	-
Fósforo Orgânico (ug/L)	0,02	0,02	<0,003	0,05	<0,003	<0,003	0,02	0,02	-	-
Ortofosfato (mg/L)	0,03	<0,003	<0,003	0,04	<0,003	<0,003	0,02	0,02	-	-
Fósforo Total (ug/L)	0,08	0,04	<0,003	0,1	<0,003	<0,003	0,06	0,06	-	-
Clorofila_a	4,7	21	<2,5	3	38	9	105	4	-	-

Parâmetros	TR2	TR2A	TR3	TR4	TR4A	TR5	TR5A	TR7	TR40A	TR41A
Data da Coleta	16/9/2012	17/9/2012	20/9/2012	16/9/2012	23/9/2012	23/9/2012	24/9/2012	18/9/2012	25/9/2012	25/9/2012
Temperatura da água (ºC)	27,8	29,7	27,1	29,2	28,2	27,9	29,9	28,7	28,3	27,2
OD (mg/L)	5,4	6,8	6,8	5,2	6,9	6,6	6,5	6,8	6,6	6,7
DBO (mg/L)	3	3	<2,0	2	<2,0	2	5	3	<2,0	-
Nitrato (mg/L)	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	-
Amônia (mg/L)	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	-
Nitrogênio Orgânico (mg/L)	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	0,02	0,04	-
Nitrogênio Total (mg/L)	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	<0,05	0,15	-
Fósforo Orgânico (ug/L)	0,02	0,02	0,01	0,02	0,02	0,03	0,03	0,02	0,04	-
Ortofosfato (mg/L)	<0,003	<0,003	<0,003	<0,003	<0,003	<0,003	<0,003	<0,003	<0,003	-
Fósforo Total (ug/L)	0,04	0,04	0,04	0,04	0,06	0,08	0,06	0,06	0,11	-
Clorofila_a	19,8	<2,50	15	5,3	9,1	41,1	44,1	15,4	<2,50	-

Quadro 7.4.1.1.3.4.1/12 - Tributários – Período de Seca (setembro/2012)

Parâmetros	TR2	TR2A	TR4	TR4A	TR5	TR5A	TR40A	TR41A
Data da Coleta	28/11/2012	28/11/2012	30/11/2012	1/12/2012	1/12/2012	4/12/2012	3/12/2012	4/12/2012
Temperatura da água (°C)	27,2	28,1	27,9	26,9	26,2	26,1	26,4	24,9
OD (mg/L)	6,3	6,4	6,2	6,4	5,9	5,6	5,8	4,9
DBO (mg/L)	<2,0	<2,0	<2,0	<2,0	<2,0	2	<2,0	-
Nitrato (mg/L)	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	<0,02	-
Amônia (mg/L)	<0,05	0,08	<0,05	<0,05	<0,05	<0,05	<0,05	-
Nitrogênio Orgânico (mg/L)	0,28	0,4	0,33	0,27	0,16	<0,02	<0,02	-
Nitrogênio Total (mg/L)	0,28	0,48	0,33	0,27	0,16	<0,05	<0,05	-
Fósforo Orgânico (ug/L)	0,02	0,03	0,03	0,02	0,01	<0,003	0,01	-
Ortofosfato (mg/L)	<0,003	0,04	0,05	0,02	<0,003	<0,003	<0,003	-
Fósforo Total (ug/L)	0,14	0,15	0,11	0,08	0,04	0,03	0,06	-
Clorofila_a	6,99	8,96	10,23	32,45	4,28	16,12	4,66	-

Quadro 7.4.1.1.3.4.1/13 - Tributários – Período de Enchente (novembro e dezembro/2012)

Quadro 7.4.1.1.1.3.4.1/14 - Lagoas - Pe	eríodo de Cheia (abril/2012)
---	------------------------------

Parâmetros	LA3	LA4	LA5
Data da Coleta	21/4/2012	22/4/2012	27/4/2012
Temperatura da água (ºC)	33,9	29,5	27,5
OD (mg/L)	6,8	3,8	2,5
DBO (mg/L)	3	<2,0	<2,0
Nitrato (mg/L)	0,11	0,07	0,08
Amônia (mg/L)	<0,05	0,06	<0,05
Nitrogênio Orgânico (mg/L)	<0,02	0,05	<0,02
Nitrogênio Total (mg/L)	<0,05	0,11	<0,05
Fósforo Orgânico (ug/L)	0,03	0,02	0,02
Ortofosfato (mg/L)	<0,003	<0,003	<0,003
Fósforo Total (ug/L)	0,04	0,04	0,03
Clorofila_a	0,0049	0,0024	0,00066

Quadro 7.4.1.1.1.3.4.1/15 - Lagoas – Período de Vazante(julho/2012)

Parâmetros	LA3	LA4	LA5
Data da Coleta	9/7/2012	9/7/2012	14/7/2012
Temperatura da água (ºC)	32,4	30,1	30,7
OD (mg/L)	2,7	4	2,8
DBO (mg/L)	<2,0	<2,0	3
Nitrato (mg/L)	<0,02	0,04	0,1
Amônia (mg/L)	<0,05	<0,05	0,15
Nitrogênio Orgânico (mg/L)	<0,02	<0,02	0,59
Nitrogênio Total (mg/L)	<0,05	<0,05	0,74
Fósforo Orgânico (ug/L)	0,01	0,02	0,19
Ortofosfato (mg/L)	<0,003	<0,003	0,17
Fósforo Total (ug/L)	0,04	0,05	0,4
Clorofila_a	4	<2,5	77

FONTE: ELN/CNEC WorleyParsons, 2012

Quadro 7.4.1.1.1.3.4.1/16 - Lagoas - Período de Seca (setembro/2012)

Parâmetros	LA3	LA4	LA5
Data da Coleta	20/9/2012	20/9/2012	26/9/2012
Temperatura da água (ºC)	33,5	36	31,7
OD (mg/L)	6,3	6,4	5,8
DBO (mg/L)	<2,0	<2,0	2
Nitrato (mg/L)	0,05	0,04	<0,02
Amônia (mg/L)	0,1	<0,05	<0,05
Nitrogênio Orgânico (mg/L)	0,12	0,75	0,1
Nitrogênio Total (mg/L)	0,22	0,75	0,62
Fósforo Orgânico (ug/L)	0,07	0,09	0,1
Ortofosfato (mg/L)	<0,003	<0,003	<0,003
Fósforo Total (ug/L)	0,2	0,23	0,33
Clorofila_a	<2,50	7,5	7,5

Parâmetros	LA3	LA4	LA5
Data da Coleta	2/12/2012	29/11/2012	6/12/2012
Temperatura da água (ºC)	30	32,6	29,7
OD (mg/L)	4,8	4,4	4
DBO (mg/L)	<2,0	2	<2,0
Nitrato (mg/L)	<0,02	<0,02	<0,02
Amônia (mg/L)	<0,05	<0,05	<0,05
Nitrogênio Orgânico (mg/L)	<0,02	<0,02	0,3
Nitrogênio Total (mg/L)	<0,05	<0,05	0,3
Fósforo Orgânico (ug/L)	0,02	0,02	0,06
Ortofosfato (mg/L)	0,03	0,02	0,06
Fósforo Total (ug/L)	0,07	0,09	0,17
Clorofila_a	95,3	28,2	<2,50

Quadro 7.4.1.1.3.4.1/17 - Lagoas – Período de Enchente (novembro e dezembro/2012)

FONTE: ELN/CNEC WorleyParsons, 2012

7.4.1.1.1.3.4.2. Dados da Rede de Monitoramento da ANA

No **Quadro 7.4.1.1.1.3.4.2/01** são relacionadas as estações fluviométricas de interesse operadas pela Agência Nacional de Águas - ANA. Os dados das campanhas de amostragens obtidos das respectivas estações são apresentados nos **Quadros 7.4.1.1.3.4.2/02 a 7.4.1.1.3.4.2/03** e localização apresentada na **Figura 7.4.1.1.3.4.2/01**.

Quadro 7.4.1.1.1.3.4.2/01- Estações Operadas pela ANA

Código	Entanão	Pio	Área	Coordenadas		
	ESIdÇdÜ	RIO	(km2)	Latitude	Longitude	
17650000	Jatobá*	Tapajós	387.000	05°09'09"	56°51'14"	
17730000	Itaituba*	Tapajós	458.000	04°16'32"	55°58'56"	

FONTE: Sistema de Informações Hidrológicas: Banco de Dados Hidrometeorológicos da ANA (Hidroweb), 2013

Data	Temp. (°C)	OD (mg/l)	Data	Temp. (°C)	OD (mg/l)	Data	Temp. (°C)	OD (mg/l)	Data	Temp. (°C)	OD (mg/l)
16/3/1975	27,6	-	9/10/1976	31,2	-	25/4/1981	30	6,7	23/4/1979	28	7,4
9/4/1975	27,4	-	18/11/1976	31,2	-	8/6/1981	30	7,7	13/2/1980	24,8	6,4
21/5/1975	26,4	-	6/12/1976	30	-	8/6/1981	30	7,6	13/2/1980	24,8	6,6
20/8/1975	27,4	-	15/8/1977	31	-	8/6/1981	30	7,7	22/4/1980	24,8	6,8
13/9/1975	31,2	-	10/9/1977	31,5	-	19/1/1982	27,5	9,9	21/11/1980	28	5
8/10/1975	31,6	-	11/10/1977	29	-	19/1/1982	27	10,2	21/11/1980	28	4,9
12/11/1975	30,4	-	21/12/1977	29	-	17/3/1982	28	8,1	19/8/1981	31	-
14/12/1975	30,2	-	23/2/1978	29	-	17/3/1982	27,5	8,2	22/10/1981	30	-
25/1/1976	31	-	19/4/1978	27,5	6,5	13/5/1982	29	5,8	22/10/1981	30	-
26/2/1976	28	-	16/6/1978	28	8	13/5/1982	28,5	6	20/12/1981	29	8,6
26/2/1976	28	-	23/8/1978	28,5	-	18/1/1983	30	6,2	20/12/1981	29	8,8
3/4/1976	30,2	-	31/8/1978	33,5	-	19/1/1977	29,5	-	20/12/1981	29	8,6

Quadro 7.4.1.1.1.3.4.2/02 - Dados de Qualidade da Água - Estação Jatobá

Dete	Temp.	OD	Dete	Temp.	OD	Dete	Temp.	OD	Dete	Temp.	OD
Dala	(°C)	(mg/l)	Data	(°C)	(mg/l)	Data	(°C)	(mg/l)	Dala	(°C)	(mg/l)
27/4/1976	27,8	-	20/10/1978	37,5	-	10/2/1977	27	-	16/7/1982	29	9,2
25/5/1976	29	-	15/12/1978	29	-	12/3/1977	28	-	16/7/1982	29	9,2
21/6/1976	26	-	12/2/1979		-	14/4/1977	28	-	21/9/1982	30,7	8
27/7/1976	27,4	-	15/2/1981	26	7,6	14/5/1977	28,5	-	21/9/1982	31	7,8
24/8/1976	30,5	-	15/2/1981	27	7,3	13/6/1977	28	-	19/11/1982	31	7,4
									19/11/1982	-	7,1

FONTE: Sistema de Informações Hidrológicas: Banco de Dados Hidrometeorológicos da ANA /(Hidroweb), 2013

Quadro 7.4.1.1.1.3.4.2/03	 Dados de Qualidade 	e da Água –	Estação Itaituba

Data	Temp.	OD	Dete	Temp.	OD	Dete	Temp.	OD	Dete	Temp.	OD
Data	(°C)	(mg/l)									
1/4/1976	29,8	-	3/2/1997	27,4	-	1/12/1997	29,7	6,5	15/2/2002	26	5
27/5/1976	31	-	3/2/1997	27,6	-	1/12/1997	29,6	6,6	15/2/2002	26	5,8
28/7/1976	32	-	3/2/1997	27,9	-	1/12/1997	29,7	6,3	15/2/2002	26,1	5,9
13/9/1976	31	-	30/7/2011	3092	1,26	1/12/1997	29,7	5,7	22/8/2002	28,6	4,3
20/11/1976	30,2	-	31/5/1997	31	5,5	1/12/1997	29,5	5,9	22/8/2002	28,6	4,7
22/1/1977	28,8	-	31/5/1997	31,2	5,3	1/12/1997	29,2	6	22/8/2002	28,6	4,4
21/2/1977	29	-	31/5/1997	31,2	5	1/12/1997	29,1	5,9	12/12/2002	25,4	4,5
6/3/1977	28	-	31/5/1997	31,4	5,6	1/12/1997	29,3	6,1	12/12/2002	25,4	3,9
6/4/1977	29,5	-	31/5/1997	30,8	5,8	1/12/1997	29,2	5,9	12/12/2002	25,4	3,8
16/5/1977	28	-	11/2/1980	25	7	1/12/1997	29,1	5,4	31/7/2005	28,5	8,6
12/6/1977	27	-	24/4/1980	23,8	7,4	1/12/1997	29,9	5,7	9/11/2005	29,4	7,9
12/8/1977	31	-	24/4/1980	24	7	27/7/1998	29,2	5,3	3/3/2006	27,5	7,9
19/10/1977	31	-	28/5/1980	31	7,7	27/8/1997	29	5,8	5/7/2006	-	7,2
3/1/1978	29	-	13/7/1980	25,2	6,8	27/8/1997	29,2	5,8	14/9/2006	31,9	5,6
25/2/1978	29	-	13/7/1980	25	6,8	27/8/1997	29	6,7	30/11/2006	31,3	7,3
21/4/1978	24	6,5	17/2/1981	26,5	7	27/8/1997	28,9	6,7	27/7/1998	29	6
10/6/1978	29	7,6	17/2/1981	27	7,1	27/8/1997	29	5,8	27/7/1998	29,5	6
16/6/1978	28	8	22/4/1981	29	6,5	27/8/1997	27,9	6,4	27/7/1998	28	5
21/8/1978	34	-	4/6/1981	30	7,5	27/7/1998	32,5	6,5	27/7/1998	29	7
17/10/1978	38,5	1,5	21/8/1981	30	-	27/7/1998	29	6	27/10/1998	28,2	3,3
18/12/1978	30	-	24/10/1981	30	-	27/7/1998	30,6	5,7	27/10/1998	28,2	3,3
9/2/1979	-	-	9/3/1982	27,5	10,6	27/7/1998	30,4	9	2/11/2000	26,6	3,2
25/4/1979	28	7,5	9/3/1982	27,6	10,4	27/7/1998	29	8	2/11/2000	27	3,2
11/2/1980	25	7	11/5/1982	25,5	5	27/7/1998	30,2	4	2/11/2000	27	3,4
17/7/1980	25	6,8	11/5/1982	25,5	6	27/10/1998	28,2	3,1	29/1/2001	24,7	5
24/9/1980	30	-	26/7/1982	29	9,1	27/10/1998	28,2	2,9	29/1/2001	24,7	3,7
24/9/1980	30	-	26/7/1982	29	9,6	27/10/1998	28,5	3	29/1/2001	24	4,8
24/9/1980	30	-	18/2/2010	29,14	1,45	22/5/2000	22,5	2,8	15/2/2002	26	5,6
23/11/1980	27	6,8	10/5/2010	30,32	1,79	22/5/2000	21,2	4,4	14/5/2002	27,3	4,8
23/11/1980	27	6,9	30/7/2010	30,89	0,66	22/5/2000	21,6	3,7	14/5/2002	27,3	4,8
24/10/1981	29,5	-	31/10/2010	31,66	0,3	22/5/2000	22,4	5,1	14/5/2002	27,3	4,5
24/10/1981	30	-	30/1/2011	-	1,05	8/8/2000	28,2	5,96	14/5/2002	27,3	4,9
17/12/1981	32	9,5	6/5/2011	-	0,71	8/8/2000	27,8	6,02	22/8/2002	28,6	3,7
17/12/1981	32	9,6	31/5/1997	30,6	5,4	8/8/2000	26,8	5,76	12/12/2002	25,4	4

Data	Temp.	OD	Data	Temp.	OD	Data	Temp.	OD	Data	Temp.	OD
Dala	(°C)	(mg/l)	Dala	(°C)	(mg/l)	Dala	(°C)	(mg/l)	Dala	(°C)	(mg/l)
14/1/1982	28	-	31/5/1997	30,4	5,4	8/8/2000	28,8	6,12	28/11/2003	22,3	5,2
14/1/1982	28,5	-	31/5/1997	31	6,1	2/11/2000	26,6	5,2	28/11/2003	22,5	4,4
12/9/1982	30,3	5,5	31/5/1997	30,6	5,8	29/1/2001	23,8	5,9	28/11/2003	22,6	4,6
23/11/1982	30	7,5	31/5/1997	30,6	6,04	18/7/2001	28	2,9	28/11/2003	22,8	4,5
23/11/1982	30	7,6	31/5/1997	30,4	5,6	18/7/2001	28,9	3,5	3/7/2005	28,5	-
16/1/1983	29,7	7,3	27/8/1997	29	6	18/7/2001	28,8	2,8	13/12/2007	27,1	7,9
16/1/1983	30	7,6	27/8/1997	28,9	6,2	18/7/2001	28,7	3,2	8/4/2008	25,8	7,6
3/2/1997	28,1	-	27/8/1997	28,8	6	21/10/2001	27,1	7,6	6/11/2008	30,94	0,21
3/2/1997	27,3	-	27/8/1997	28,9	5,6	21/10/2001	27	7,4	4/2/2009	28,89	0,12
3/2/1997	27,6	-	27/8/1997	28,9	5,6	21/10/2001	27	7,6	6/5/2009	27,65	0,64
3/2/1997	27,8	-	27/8/1997	29,1	5,6	21/10/2001	27,6	7,7	26/7/2009	31,19	0,31
									27/10/2009	32,29	1,58

FONTE: Sistema de Informações Hidrológicas: Banco de Dados Hidrometeorológicos da ANA /(Hidroweb), 2013

7.4.1.1.1.3.4.3. Dados da Rede de Monitoramento do Projeto Brasil das Águas

No **Quadro 7.4.1.1.1.3.4.3/01** são relacionados os pontos de amostragens de qualidade das águas desenvolvidas no âmbito do Projeto Brasil das Águas. As informações relativas aos parâmetros físico-químicos disponíveis e referente a campanha realizada em agosto de 2004, são apresentados no **Quadro 7.4.1.1.3.4.3/02**.

Ponto	Município	Coordenadas				
i onto	Manicipio	Latitude	Longitude			
330	Itaituba	06° 10' 53"	55° 48' 05"			
294	Trairão	05° 22' 52"	56° 04' 34"			
270	Trairão/Itaituba	04° 47' 36"	56° 26' 44"			
242	Itaituba	04° 14' 21"	55° 55' 31"			
287	Itaituba	05° 15' 51"	56° 58' 50"			
308	Itaituba	05° 33' 28"	57° 06' 55"			
359	Itaituba	04° 23' 06"	56° 07' 29"			
328	Jacareacanga	06° 12' 06"	57° 41' 06"			
354	Maués/Jacareacanga	06° 28' 22"	58° 15' 49"			
378	Maués/Jacareacanga	07° 06' 49"	58° 13' 54"			
257	Trairão/Itaituba	04° 43' 32"	56° 25' 08"			
320	Itaituba/Jacarecanga	05° 52' 08"	57° 09' 43"			
348	Novo Progresso/Jacareacanga	06° 43' 16"	56° 52' 31"			

Quadro 7.4.1.1.1.3.4.3/01 - Estações Operadas pelo Projeto Brasil das Águas

FONTE: Projeto Brasil das Águas, 2004

Donto	Dete	Temp.	OD	~U	Clorofila	Nitrato	Ortofosfato	Amônio	P Total	Estado
Ponto	Dala	(°C)	(mg/l)	рп	(ug/L)	(mg/L)	(mg/L)	(mg/L)	(ug/L)	Trófico
330	21/8/2004	28,82	6,69	7,45	12,00	65,96	2,90	0,00	20,92	Oligotrófico
294	21/8/2004	29,62	6,27	7,64	10,10	21,46	0,00	0,00	19,32	Oligotrófico
270	21/8/2004	30,70	7,00	7,53	2,20	21,04	0,00	0,00	23,95	Oligotrófico
242	20/8/2004	31,46	5,68	7,28	0,30	2,70	1,95	0,00	18,84	Oligotrófico
287	21/8/2004	31,36	5,82	7,46	13,70	1,63	0,97	0,00	15,17	Oligotrófico
308	21/8/2004	30,81	5,86	7,30	7,10	7,78	0,97	0,53	15,65	Oligotrófico
359	21/8/2004	31,72	5,99	7,46	9,40	6,98	0,00	0,00	13,25	Oligotrófico
328	21/8/2004	30,45	5,56	7,29	3,10	6,98	0,00	0,00	14,21	Oligotrófico
354	21/8/2004	29,08	5,96	7,22	3,70	26,76	0,97	0,00	9,74	Oligotrófico
378	25/6/2004	28,19	6,25	7,22	9,00	12,86	6,81	0,00	14,85	Oligotrófico
257	21/8/2004	30,12	6,35	7,42	Nulo	6,44	0,97	0,00	13,89	Oligotrófico
320	21/8/2004	29,89	6,04	7,23	19,70	144,42	0,00	3,79	14,20	Oligotrófico
348	21/8/2004	26,54	5,88	6,91	39,00	186,90	1,16	0,00	198,01	Eutrófico

Quadro 7.4.1.1.1.3.4.3/02 - Dados de Qualidade da Água - Projeto Brasil das Águas

FONTE: Projeto Brasil das Águas, 2004

7.4.1.1.1.3.5. Estimativas de Fitomassa

Os dados utilizados para a quantificação da fitomassa são provenientes dos estudos de caracterização da vegetação, incluindo os levantamentos de campo e a identificação botânica a partir dos dados coletados nas campanhas de campo que apresentaram Formações Aluviais e Submontanas a serem diretamente afetadas pela formação do futuro reservatório do AHE São Luiz do Tapajós.

Neste trabalho o peso seco em toneladas por hectare de matéria orgânica arbórea foi estimado com base na equação desenvolvida no âmbito do trabalho realizado por pesquisadores do Instituto Nacional de Pesquisa da Amazônia (INPA), entitulado de "Estimativas de biomassa florestal na Amazônica brasileira: Novas equações alométricas e ajustes para biomassa obtida a partir de inventários de volume de madeira".

A equação representada por LN Peso seco (kg) = -1,716+2,413*LN DAP(cm) foi ajustada levando em consideração árvores com diâmetros compreendidos de 5 cm a 124 cm, ou seja contempla uma ampla amplitude diamétrica com um coeficente de regressão (r²) de 0,964 e um erro padrão da estimativa de 0,306.

• Estimativa de fitomassa acima do solo (arbórea, matéria orgânica morta e total)

Além de se estimar o peso referente a fitomassa arbórea total também foi estimado a fitomassa para os componentes denominados de troncos, galhos, folhas e casca que juntos representam a matéria orgânica arbórea. Também foram estimados os valores referentes a matéria orgânica morta, que neste caso contempla a serapilhera.

Estas estimativas foram feitas tendo como base os dados provenientes da avaliação do potencial de fitomassa do Parque Estadual do Cantão no Tocantins, realizado pela Juris Ambientis no ano de 1997, em áreas de Floresta de Terra Firme e Floresta Alagável, cujas variações dendrométricas se assemelham ao AHE São Luiz do Tapajós. Neste estudo os resultados gerais médios obtidos para matéria orgânica arbórea da Floresta de Terra Firme e Floresta Alagável, obtidos através do método destrutivo, permitiram estabelecer valores percentuais destes componenetes em relação à fitomassa total.

A matéria orgânica morta foi estimada com base nos valores apresentados por diverssos autores, na qual realizaram quantificações em áreas cobertas por Floresta Ombrófila Densa. Dentre os autores pesquisados podem ser citados os trabalhos de Hayashi (2006), Caldeira *et. al.* (2008) e Ramos (2002).

• Estimativas de fitomassa abaixo do solo (raízes)

O sistema radicular necessita de um meio adequado para se desenvolver e suprir a planta de água e nutrientes. Dessa forma, dependendo das propriedades químicas, físicas e biológicas do solo, esse desenvolvimento será dificultado ou facilitado, refletindo em sua relação raiz/parte aérea (Andrade, 1997).

A disposição da biomassa radicular no solo, pode ser definido pelo número, diâmetro, peso e extensão das raízes no solo em função da posição que elas ocupam. Classificação para expressar o conjunto dessas informações tem sido propostas, encontrando-se descrições da morfologia radicular desde sua fase inicial até adulta (Andrade, 1997).

Segundo Ferez (2010), diversos fatores bióticos podem influênciar e causar grande variação nos padrões de distribuição de biomassa em uma árvore, como a idade e o tipo de espécie (angiospermas ou gimnospermas), quanto aos componentes abióticos podem estar relacionadas à umidade do solo e disponibilidade de nutrientes.

Desta maneira para este estudo foram agrupados trabalhos realizados pelos seguintes autores: Barichello et. al. (2005), Forster et. al. (2007) e Ferez (2010). Estes autores utilizaram de métodos destrutivos para a quantificação da fitomassa de raízes para diversas espécies florestais, gerando desta maneira dados consistentes.

• Resultados obtidos para fitomassa

A seguir são apresentados os resultados de peso de matéria orgânica por hectare referentes a Floresta Ombrófila de Terra Firme e Floresta Ombrófila Aluvial calculados segundo equações ajustadas como já descrito neste relatório, bem como os pesos percentuais para os componentes da matéria orgânica arbórea denominados de tronco, galhos, casca e folhas, bem como para a matéria orgânica morta (serrapilheira).
• Resultados obtidos para Floresta Ombrófila Submontana

A matéria orgânica seca arbórea total para a Floresta Ombrófila Submontana estimada para o AHE São Luiz do Tapajós foi de 200,68 t.ha⁻¹, valor este próximo aos 200 t.ha⁻¹ para uma Floresta Tropical pluvial em Porto Rico citado por Ovigton & Folster em 1982 e de 223,30 t.ha⁻¹ para uma Floresta de Terra firme em área do Parque Estadual do Cantão no Tocantins realizado pela Juris Ambientis em 1999 e que serviu de base para o cálculo dos percentuais apresentados neste trabalho. Folster *et al* ,1975, em trabalhos realizados com Florestas Sempre verdes de encosta na Colômbia encontrou valores que variam de 185 t.ha⁻¹ a 330 t.ha⁻¹ e Santos *et al*., 1998, encontrou valores para uma floresta primária em território amazônico que variam de 120,9 t.ha⁻¹ a 219,5 t.ha⁻¹.

Para o valor de matéria orgânica seca total foi obtido 206,46 t.ha⁻¹,este resultado foi obtido através da soma dos componentes, matéria orgânica arbórea e morta bem como os seus percentuais em relação ao total, em que seus valores são apresentados no **Quadro 7.4.1.1 1.3.5/01**.

Tipo de Matéria Orgânica		Tipologia vegetal				
	Materia Organica	Tipologia vegetal (ton/ha) (%) 96,58 48,12 77,24 38,49 14,44 7,20 12,37 6,17 200,68 100,0 5,78 -	(%)			
	tronco	96,58	48,12			
	galhos	77,24	38,49			
MO arbórea	folhas	14,44	7,20			
	casca	a Tipolo (ton/ha) 96,58 77,24 14,44 12,37 200,68 5,78 206,46	6,17			
	total	200,68	100,00			
MO mo	rta (serrapilheira)	5,78	-			
	MO total	206,46	-			

Quadro 7.4.1.1.3.5/01 - Fitomassa em toneladas por hectare e percentuais - Floresta Ombrófila Submontana.

• Resultados obtidos para Floresta Ombrófila Aluvial

A matéria orgânica seca arbórea total para a Floresta Ombrófila Aluvial estimada para o AHE São Luiz do Tapajós foi de 180,77 t.ha⁻¹, valor este considerado acetável em relação ao valor de 197,17 t.ha⁻¹ para uma floresta alagável no Parque Estadual do Cantão no Tocantins realizado pela Juris Ambientis em 1997, levando em conta que a vegetação no parque se apresenta em maior estado de conservação e aos valores próximos de 161 t.ha⁻¹ para uma mata ciliar da UHE Porto Primavera encontrado por Welington Deliti & Marcio Meguro, 1992 e 166,15 t.ha⁻¹ para formações florestais no Rio Tocantins (EIA/RIMA da UHE Lageado THEMAG, 1997).

Para o valor de matéria orgânica seca total foi obtido 186,55 t.ha⁻¹,este resultado foi obtido através da soma dos componentes, matéria orgânica arbórea e morta bem como os seus percentuais em relação ao total, em que seus valores são apresentados no **Quadro 7.4.1.1 1.3.5/02**.

Tino do	Matória Orgânica	Tipologia vegetal				
ripo de	Materia Organica	(ton/ha) (% 86,99 48, 69,57 38, 13,01 7,2 11,15 6,1	(%)			
	tronco	86,99	48,12			
	galhos	69,57	38,49			
MO arbórea	folhas	13,01	7,20			
	casca	galhos 69,57 folhas 13,01 casca 11,15	6,17			
	total	180,77	100,00			
	MO morta	5,78 -				
	MO total	186,55 -				

Quadro 7.4.1.1.3.5/02 - Fitomassa em toneladas por hectare e percentuais - Floresta Ombrófila Aluvial.

• Resultado para Fitomassa abaixo do solo

Considerando os resultados obtidos nos trabalhos desenvolvidos por Barichello et. al. (2005), Forster et. al. (2007) e Ferez (2010), apresentados no **Quadro 7.4.1.1.3.5/03**, foi obtida a média aritmética dos respectivos valores percentuais e aplicados para a Floresta Aluvial e Floresta Submontana.

Quadro 7.4.1.1.1.3.5/03	Percentuais de	fitomassa	abaixo	do solo
-------------------------	----------------	-----------	--------	---------

Autor	Fitomassa aba Fitomassa	ixo do solo (%) em ı aárbórea acima do s	relação a solo	
Barichello et. al. (2005)	12			
Forster et. al. (2007)	22,1	19,4	19,8	
Ferez (2010)		29		
Média	20,46			

Através destes dados foi possivel obter um valor médio de fitomassa abaixo do solo na ordem de 20,46% da biomassa arbórea acima do solo. Desta maneira para a Floresta Submontana o valor de Fitomassa abaixo do solo representa um montante de 41,06 t.ha⁻¹ e para Floresta Aluvial o valor de Fitomassa abaixo do solo representa um montante de 36,98 t.ha⁻¹.

A pesquisa das condições de uso e cobertura dos solos presentes na área abrangida pelo reservatório do AHE São Luiz do Tapajós permitiu a identificação e delimitação da área de 12 parcelas de ocupação do território conforme relacionado no **Quadro 7.4.1.1.3.5/04.**

Usos do Solo (nº)	Uso do Solo do Reservatório	Área (ha)
1	Floresta Ombrófila Aberta Aluvial da Planície Fluvial	6.063,18
2	Floresta Ombrófila Aberta Submontana	5.265,57
3	Floresta Ombrófila Densa Aluvial da Planície de Inundação	2.794,07
4	Floresta Ombrófila Densa Aluvial da Planície Fluvial	14.117,43
5	Floresta Ombrófila Densa Submontana	8.550,96
6	Vegetação Secundária	47,29
7	Campos Naturais	0,03
8	Banco de Areia	179,38
9	Pedrais	1.720,01
10	Antrópico	721,26
11	Estradas	61,05
12	Rio	38.794,03
	Total	78.314,27

Quadro 7.4.1.1.1.3.5/04 - Tipos de Ocupação da Área Abrangida pelo Reservatório

FONTE: CNEC WorleyParsons, 2013

7.4.1.1.1.4. Preparação dos Dados de Entrada da Modelagem Matemática

Na montagem dos dados de entrada para a modelagem matemática foram considerados os seguintes tipos de informações:

- Definição da Compartimentação do Reservatório
- Condições de contorno para as variáveis bioquímicas;
- Dados hidrológicos e climatológicos;
- Dados relativos à densidade de carbono biodegradável;
- Constantes das equações cinéticas relativas aos ciclos dos nutrientes e do oxigênio dissolvido e
- Taxas de biodegradação da fitomassa inundada.

As variáveis temporais relativas aos níveis d'água e o fluxo de vazões entre segmentos são supridas pelo modelo de simulação hidráulico que geram as variáveis hidráulicas requisitadas pelo modelo bioquímico.

7.4.1.1.1.4.1. Segmentação do Reservatório do AHE São Luiz do Tapajós

No processo de modelagem, o reservatório é representado por uma sequência de células horizontais interligadas através de elementos de canais por onde veiculam as vazões e os constituintes químicos e bioquímicos.

Cada segmento é representado como um reator homogêneo de mistura completa, ambiente onde processam as cinéticas e as transformações dos componentes limnológicos presentes no meio líquido e aqueles decorrentes da incorporação e biodegradação da biomassa inundada.

No processo de segmentação da área do reservatório, procurou-se separar o corpo central do reservatório onde o fluxo ocorre de forma preferencial dos braços tributários laterais onde o escoamento se processa de forma mais lenta.

Na **Figura 7.4.1.1.4.1/01** é apresentado o esquema de compartimentação do reservatório do AHE São Luiz do Tapajós a ser representado nos estudos de modelagem matemática. Neste processo o reservatório foi dividido em 24 reatores, sendo 9 representativos do corpo central do reservatório (calha do Tapajós), 3 segmentos representativos da calha do Jamanxim e 12 segmentos representativos dos principais braços tributários laterais. No modelo são considerados ainda 14 pontos de afluências de cargas e vazões (Q-01 a Q-14).

No **Mapa 7.4.1.1.2.6.3.4.1/01** é apresentada a segmentação do reservatório do AHE São Luiz do Tapajós, com a identificação da malha hídrica, dos reatores e das subbacias contribuintes. No **Mapa 7.4.1.1.2.6.3.4.1/02** é apresentada a mesma segmentação, onde são consideradas as tipologias vegetais e o uso do solo.

Figura 7.4.1.1.4.1/01 – Esquema de Compartimentação do Reservatório do AHE São Luiz do Tapajós

2

7.4.1.1.1.4.2. Dados Hidráulicos do Reservatório

A definição dos dados de entrada do modelo hidráulico baseou-se fundamentalmente nos elementos geométricos e hidráulicos extraídos da restituição aerofotogramétrica na escala 1:2.000 elaborada pela Geomensura (ELN/Geomensura,2007) e dos levantamentos topobatimétricos de seções transversais, disponibilizadas em formato DWG.

Para a definição destes parâmetros utilizaram-se os recursos disponíveis do software AutoCAD e de programas utilitários de tratamento numérico, que permitiu a compilação e a formatação dos dados de entrada da modelagem.

Como insumo de entrada, o modelo hidráulico admite dados característicos de cada segmento considerado na modelagem do reservatório, representado através de pares de pontos relacionando à cota do nível d'água e a respectiva área da superfície líquida e volume d'água residente.

Os valores das relações cota-área-volume de cada compartimento é apresentado no **Quadro 7.4.1.1.1.4.2/01**.

Os canais virtuais, interligando os vários segmentos são retratados através de uma variável denominada condutância, definida também a partir de pares de pontos relacionadas à cota do nível d'água. A estimativa destes dados é realizada através da seguinte expressão:

$$K_{ij} = A_{ij} * RH_{ij}^{2/3} / (n * \Delta X_{ij}^{\frac{1}{2}})$$

Onde:

 \boldsymbol{A}_{ij} = área da seção transversal do canal virtual em função da cota do N.A., em m²;

RH_{ij} = raio hidráulico para uma dada cota, em m;

n = coeficiente de rugosidade da fórmula de Manning e

 ΔX_{ij} = distância entre os centros dos segmentos i e j em m.

Cota Reator 1		Reator 2		Reator 3		Reator 4		
(m)	Área (km²)	Volume (hm³)	Área (km²)	Volume (hm³)	Área (km²)	Volume (hm³)	Área (km²)	Volume (hm³)
40	-	-	0,00	0,00	0,00	0,00	0,00	0,00
45	0,00	0,00	0,24	0,58	25,34	62,56	3,56	8,79
50	2,38	5,94	4,07	9,38	61,42	272,54	8,18	37,29
55	101,76	207,80	7,78	38,78	77,37	622,22	11,73	87,30

FONTE: CNEC WorleyParsons, 2013

Cota	Reator 5		Reator 6		Reator 7		Reator 8	
(m)	Área (km²)	Volume (hm³)	Área (km²)	Volume (hm³)	Área (km²)	Volume (hm³)	Área (km²)	Volume (hm³)
35	-	-	-	-	-	-	0,00	0,00
40	0,00	0,00	0,00	0,00	0,00	0,00	2,71	6,54
45	38,43	94,87	4,32	10,67	36,81	90,88	7,05	29,81
50	42,85	297,68	8,22	41,45	41,97	287,42	16,11	86,16
55	46,13	522,62	11,58	91,23	47,61	513,75	23,54	185,73

Quadro 7.4.1.1.1.4.2/01 - Curvas Cota-Área-Volume dos Segmentos- Continuação

FONTE: CNEC WorleyParsons, 2013

Quadro 7.4.1.1.1.4.2/01 - Curvas Cota-Área-Volume dos Segmentos - Continuação

Cota	Rea	ator 9	Rea	tor 10	Rea	ator 11	Rea	tor 12
(m)	Área (km²)	Volume (hm³)	Área (km²)	Volume (hm³)	Área (km²)	Volume (hm³)	Área (km²)	Volume (hm³)
25	-	-	-	-	-	-	0,00	0,00
30	-	-	-	-	-	-	0,00	0,00
35	0,00	0,00	0,00	0,00	0,00	0,00	28,63	65,52
40	40,41	97,62	1,60	3,87	1,75	4,22	78,59	317,85
45	44,79	308,23	6,13	21,75	6,85	24,07	94,68	747,33
50	48,98	543,43	10,36	62,48	11,66	69,77	102,66	1.242,88
55	52,41	800,40	16,56	129,91	16,37	140,25	110,86	1.784,32

FONTE: CNEC WorleyParsons, 2013

Quadro 7.4.1.1.1.4.2/01	- Curvas Co	ota-Área-Volume	e dos Segmentos –	Continuação
			0	3

Cota	Rea	ator 13	Rea	tor 14	Reator 15		Reator 16	
(m)	Área (km²)	Volume (hm³)	Área (km²)	Volume (hm³)	Área (km²)	Volume (hm³)	Área (km²)	Volume (hm³)
30	0,00	0,00	-	-	-	-	-	-
35	1,45	3,32	-	-	0,00	0,00	0,00	0,00
40	8,53	25,23	0,00	0,00	0,43	1,03	18,31	44,23
45	13,84	80,04	2,82	6,96	2,94	8,43	26,46	154,30
50	22,81	170,84	15,70	48,83	9,32	37,55	32,82	302,52
55	33,21	311,70	30,94	164,41	19,11	107,87	36,73	478,52

FONTE: CNEC WorleyParsons, 2013

Quadro 7.4.1.1.1.4.2/01 - Curvas Cota-Área-Volume dos Segmentos - Continuação

Cota	Rea	tor 17	Rea	ator 18	Rea	tor 19	Rea	ator 20
(m)	Área (km²)	Volume (hm³)	Área (km²)	Volume (hm³)	Área (km²)	Volume (hm³)	Área (km²)	Volume (hm³)
25	-	-	-	-	-	-	0,00	0,00
30	0,00	0,00	0,00	0,00	0,00	0,00	17,54	35,97
35	0,68	1,56	59,27	135,61	0,33	0,76	39,40	167,90
40	9,40	21,94	75,07	466,19	2,16	6,19	48,04	387,42
45	19,62	92,10	82,60	859,65	7,33	28,37	53,54	642,00
50	24,14	201,40	86,72	1.286,16	15,65	84,47	60,08	928,50
55	28,20	333,71	91,94	1.740,00	24,65	185,42	67,82	1.253,32

FONTE: CNEC WorleyParsons, 2013

Cota	Rea	ator 21	Reator 22		Reator 23		Reator 24	
(m)	Área (km²)	Volume (hm³)	Área (km²)	Volume (hm³)	Área (km²)	Volume (hm³)	Área (km²)	Volume (hm³)
20	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
25	0,01	0,00	0,08	0,06	2,74	1,82	23,70	15,80
30	0,77	1,16	0,72	1,61	6,85	24,63	39,25	176,34
35	3,38	10,11	1,70	7,22	14,30	75,26	44,18	390,22
40	8,58	38,55	3,12	19,07	19,41	160,29	45,98	628,44
45	14,08	94,21	4,56	38,09	22,67	265,72	47,56	866,49
50	20,83	181,15	6,17	64,93	26,21	388,87	49,97	1.114,34
55	37,86	327,53	8,18	101,14	30,97	533,94	52,16	1.374,96

Quadro 7.4.1.1.1.4.2/01 - Curvas Cota-Área-Volume dos Segmentos - Continuação

FONTE: CNEC WorleyParsons, 2013

7.4.1.1.1.4.3. Definição das Vazões Afluentes ao Reservatório

O contorno do reservatório compreendeu a linha de remanso definida para a cota de operação a fio d'água e nível d'água máximo normal estabelecido na cota 50,0 m e vazões afluentes representativas de uma condição hidrológica média.

As vazões contribuintes a faixa do reservatório baseou-se na seguinte sistemática:

- Vazões laterais ao corpo do reservatório. Compreendem os aportes de vazões dos tributários laterais existentes na área intermediaria do reservatório que contempla uma superfície territorial de 13.587 km². As vazões de cada parcela de área contribuinte foram estimadas considerando a proporcionalidade das áreas das bacias de drenagem contribuintes respectivas e produtividades hídricas expressa em L/s/km².
- Vazões afluentes a montante dos cursos do Tapajós e Jamanxim. Foram definidas a partir dos dados de vazões médias mensais afluentes ao eixo do AHE Jatobá e Cachoeira do Caí, adotando-se como padrão, a média mensal compilada entre janeiro de 1931 a dezembro de 2011, procurando desta forma, aferir uma condição hidrológica média.

No **Quadro 7.4.1.1.1.4.3/01** são apresentadas as áreas de cada parcela contribuinte ao corpo do reservatório, indicando os cursos d'água participantes mais significativos.

Bacia Contribuinte	Curso d'água Principal	Área (km²)	Tributários Laterais
B01	Tapajós	3345,87	Rio Ratão, Igarapé da Missão e laterais
B02	Tapajós	274,99	Igarapé do Barreiro ou Farmácia
B03	Tapajós	1110,12	Igarapé Putica e Igarapé do Jacaré e laterais
B04	Tapajós	589,63	Rio Jutaí
B05	Tapajós	266,30	Igarapé Jutaizinho e laterais

Quadro 7.4.1.1.1.4.3/01- Áreas das Bacias Contribuintes dos Segmentos

Bacia Contribuinte	Curso d'água Principal	Área (km²)	Tributários Laterais
B06	Tapajós	795,21	Igarapé da Montanha
B07	Tapajós	427,42	Laterais
B08	Tapajós	376,57	Igarapé Urubutu
B09	Tapajós	238,24	Igarapé São João e laterais
B10	Tapajós	213,75	Sem identificação
B11	Tapajós	456,80	Igarapé Mariazinha
B12	Tapajós	342,92	Laterais
B13	Tapajós	328,32	Córrego Lajinha
B14	Jamanxim	563,57	Laterais Montante
B15	Jamanxim	1126,82	Jamanxinzinho
B16	Jamanxim	90,02	Laterais
B17	Jamanxim	147,62	São Raimundo e Laterais
B18	Tapajós	235,86	Laterais
B19	Tapajós	235,78	Laterais
B20	Tapajós	420,73	Igarapé Mumbuaí e Laterais
B21	Tapajós	1324,27	Rio Tucunaré
B22	Tapajós	83,77	Igarapé Pimental
B23	Tapajós	434,47	Igarapé Bathu
B24	Tapajós	157,48	Laterais
Total		13.586,53	

No **Quadro 7.4.1.1.1.4.3/02** são discriminados os dados de vazões médias mensais afluentes lateralmente a cada segmento do reservatório.

Ponto	Jan	Fev	Mar	Abr	Mai	Jun	Jul	Ago	Set	Out	Nov	Dez
0.01	13447,	18186,	22111,	21061,	14850,	8252,	5284,	4146,	3876,	4345,	5890,	8696,
Q-01	8	1	3	9	4	0	4	5	1	0	0	2
Q-02	9,6	13,9	21,1	21,5	19,7	8,7	3,3	1,6	0,8	1,2	3,5	6,5
Q-03	20,6	29,8	45,3	46,2	42,2	18,6	7,1	3,4	1,6	2,6	7,5	13,9
Q-04	27,8	40,2	61,1	62,3	56,9	25,1	9,6	4,6	2,2	3,5	10,1	18,8
Q-05	13,2	19,0	28,9	29,5	26,9	11,9	4,6	2,2	1,0	1,7	4,8	8,9
Q-06	44,6	64,5	97,9	99,8	91,2	40,2	15,4	7,5	3,5	5,7	16,1	30,1
Q-07	7,5	10,8	16,4	16,7	15,3	6,7	2,6	1,2	0,6	1,0	2,7	5,0
Q-08	16,0	23,1	35,1	35,8	32,7	14,4	5,5	2,7	1,3	2,0	5,8	10,8
Q-09	11,5	16,6	25,2	25,7	23,5	10,4	4,0	1,9	0,9	1,5	4,2	7,7
0.10	2250,0	3507,0	4619,0	4544,0	3220,0	1274,	472,0	213,0	170,0	306,0	552,0	1353,
Q-10						0						0
Q-11	39,4	57,0	86,6	88,2	80,6	35,6	13,6	6,6	3,1	5,0	14,2	26,6
Q-12	8,3	12,0	18,3	18,6	17,0	7,5	2,9	1,4	0,7	1,1	3,0	5,6
Q-13	8,2	11,9	18,1	18,5	16,9	7,4	2,9	1,4	0,7	1,1	3,0	5,6
Q-14	28,5	41,2	62,5	63,8	58,2	25,7	9,9	4,8	2,2	3,6	10,3	19,2
Q-15	46,3	67,0	101,7	103,7	94,7	41,8	16,0	7,7	3,7	5,9	16,7	31,2
Q-16	2,9	4,2	6,4	6,6	6,0	2,6	1,0	0,5	0,2	0,4	1,1	2,0
Q-17	15,2	22,0	33,4	34,0	31,1	13,7	5,3	2,5	1,2	1,9	5,5	10,2

Quadro 7.4.1.1.1.4.3/02- Vazões Médias Mensais Afluentes (m³/s)

7.4.1.1.1.4.4. Densidade de Carbono Biodegradável

A partir dos dados de inventário da fitomassa residente na área do reservatório, procedeu-se o cálculo da densidade do carbono biodegradável utilizada como insumo de entrada no modelo matemático.

Nesta estimativa, calculou-se a densidade de carbono biodegradável expressa em kg/m², considerando-se as várias tipologias vegetais presentes na área do reservatório e a parcela residente no solo, sendo desprezada a biomassa do tronco que se caracteriza por elevados tempos de degradação.

No **Quadro 7.4.1.1.1.4.4/01** são apresentados os valores das densidades do carbono biodegradável, expresso em kg/m² correspondente a cada segmento.

	Total do Carbono Oxidável					
Segmento	Fitomassa (kg/m ²)	Solo (kg/m²)	Reservatório (kg/m²)			
Seg_01	0,016	0,002	0,018			
Seg_02	0,348	0,038	0,386			
Seg_03	0,029	0,004	0,032			
Seg_04	0,349	0,038	0,387			
Seg_05	0,063	0,007	0,070			
Seg_06	0,318	0,035	0,353			
Seg_07	0,105	0,011	0,117			
Seg_08	0,353	0,038	0,391			
Seg_09	0,116	0,013	0,129			
Seg_10	0,350	0,038	0,387			
Seg_11	0,351	0,038	0,389			
Seg_12	0,162	0,018	0,180			
Seg_13	0,348	0,037	0,386			
Seg_14	0,230	0,025	0,255			
Seg_15	0,323	0,035	0,358			
Seg_16	0,183	0,020	0,203			
Seg_17	0,275	0,030	0,305			
Seg_18	0,142	0,016	0,158			
Seg_19	0,356	0,038	0,394			
Seg_20	0,155	0,017	0,172			
Seg_21	0,315	0,035	0,350			
Seg_22	0,319	0,036	0,355			
Seg_23	0,337	0,037	0,373			
Seg_24	0,124	0,014	0,138			
Reservatório	0,169	0,019	0,187			

Quadro 7.4.1.1.1.4.4/01 - Densidade de Carbono Biodegradável

Os teores de carbono orgânico facilmente oxidável foram calculados considerando a proporção de fitomassa (i.e. folhas, galhos, cascas e serapilheira) e matéria orgânica do solo por tipologia vegetal/ambiente (i.e. Floresta Ombrófila Aberta Aluvial da Planície Fluvial; Floresta Ombrófila Aberta Submontana; Floresta Ombrófila Densa Aluvial da Planície de Inundação; Floresta Ombrófila Densa Aluvial da Planície Fluvial; Floresta Submontana; Vegetação Secundária; Campos Naturais; Antrópico).

Nesta estimativa adotou-se a composição elementar dos recursos vegetais (i.e. Cfolhas: 41,4%, C-galhos: 44,3%, C-Cascas: 51,3%, serapilheira: 39,4%; Cunha-Santino & Bianchini Jr., 2002) e os parâmetros bioquímicos de biodegradação obtidos em experimentos de degradação da fitomassa realizados em laboratório (Bianchini Jr. et al., 1998; Bitar et al., 2002).

Os conteúdos de carbono orgânico do solo foram estimados de acordo com: i) o teor de matéria orgânica e carbono orgânico dos solos (Jorge, 1972; Medina, 1972; Demolinari et al., 2008); ii) a densidade aparente dos horizontes aráveis (Nelson & Muckenhirn, 1941; Buckman & Brady, 1968); iii) a consideração de um perfil de 10 cm de profundidade (Bianchini Jr., 1998). Os coeficientes de reação (i.e. dissolução e oxidação da matéria orgânica) foram estimados de ensaios de degradação e considerando a contribuição proporcional de cada tipo de recurso no conjunto de detritos. Os demais parâmetros do modelo foram obtidos de compilações elaboradas por Bowie et al. (1985).

O modelo utilizado admite que os processos de degradação da fitomassa submersa sejam regidos, em condições aeróbias e anaeróbias, pelos seguintes mecanismos básicos: i) dissolução de formas orgânicas (e.g. carboidratos, polifenóis, proteínas, etc.); ii) oxidação das formas particuladas de matéria orgânica (e.g. celulose, lignina, amido, etc.); iii) oxidação da matéria orgânica dissolvida liberada. Admite, também, que tais processos sejam regidos por cinéticas de primeira ordem, através das quais, as velocidades das reações (de dissolução e oxidação) são proporcionais às concentrações dos substratos. Tais hipóteses permitem definir a seguinte equação:

$$\frac{d[A]}{dt} = -k[A] \tag{1},$$

Onde:

A = concentração de reagente (nesse caso matéria orgânica) e

k = coeficiente relativo à velocidade de perda de massa de A.

De modo geral, as hipóteses básicas do processo de degradação admitida por esse modelo podem ser esquematizadas a partir do diagrama apresentado na **Figura 7.4.1.1.4.4/01** (Bianchini Jr., 1997).

FONTE: UFSCAR

Figura 7.4.1.1.1.4.4/01- Esquema de Processo de Degradação

Onde:

k₁ = coeficiente de oxidação da matéria orgânica particulada;

k₂ = coeficiente de dissolução;

k₃ = coeficiente de oxidação da matéria orgânica dissolvida;

 k_T = coeficiente global de perda de massa da matéria orgânica (k_1 + k_2).

Os coeficientes globais de perda de massa (k_T) foram adotados em função dos resultados obtidos de experimentos de degradação (sob condições aeróbias e anaeróbias) de folhas, galhos, cascas e serapilheira. Com base nas médias dos k_T , verificou-se que sob as condições aeróbias, os processos foram cerca de 23% mais rápidos. As estimativas de k_1 (coeficiente de degradação dos detritos fixos ao solo) e k_2 (coeficiente de dissolução da matéria orgânica) foram feitas em função dos rendimentos de compostos mineralizados (CO₂ e outros gases) e de MOD, verificados em tais experimentos. Nestes cálculos foram considerados: a condição do experimento (aeróbio/anaeróbio), o tipo de recurso e sua contribuição relativa na composição dos detritos (folhas: 20,7%; galhos: 34,6%; cascas: 15,8%; serapilheira: 28,9%). O coeficiente de oxidação da MOD (k_3) foi obtido do experimento realizado sob condições aeróbias (Bianchini Jr. *et al.*, 1998); também para o cálculo deste parâmetro foi considerada a contribuição relativa de cada recurso.

7.4.1.1.1.4.5. Constantes das Equações Cinéticas

As constantes das equações cinéticas relativas aos ciclos dos nutrientes e do oxigênio dissolvido adotado na modelagem são apresentadas no **Quadro 7.4.1.1.1.4.5/01**.

Constante	Descrição	Valor	Unidade
K1320C	Nitrification rate at 20° C	0,10	1/day
K1320T	Temperaturecoefficient for k1320C	1,085	-
KNIT	half-saturation constant for nitrification-oxygen limitation	2,0	mg O2/L
K140C	Denitrification rate at 20° C	0,09	1/day
K140T	Temperaturecoefficient for K140C	1,045	-
KNO3	half-saturation const. for denitrification- oxygen limitation	2,0	mg O2/L
KIC	Satured growth rate of phytoplankton at 20° C	0,2	1/day
KIT	Temperaturecoefficient for KIC	1,068	-
XKC	Cholorophyllextinctioncoefficient	0,017	m²/mg chla
PHIMX	Maximumphosphorous quantum yield	720	mg C/mole
KMNGI	Nitrogen half-saturation const. for phytoplantkton growth	0,025	mg N/L
KMPGI	Phosphorous half-saturation const. for phyto. growth	0,001	mg PO4/L
NCRB	Nitrogen-to-carbon ratio in phytoplankton	0,250	mg N/mg C
PCRB	phosphorus-to-carbon ratio in phytoplankton	0,025	mgPO4/mgC
KIRC	endogenous respiration rate of phytoplankton at 20° C	0,125	1/day
KIRT	temperaturecoefficient for KIRC	1,045	-
KID	non-predatory phytoplankton death rate	0,020	1/day
KPZDC	decomposition rate for phyto. in the sediment at 20° C	0,020	1/day
KPZDT	temperaturecoefficient for KPZDDC	1,08	-
KDC	BOD deoxygenation rate at 20° C	0,10	1/day
KDT	temperaturecoefficient	1,047	-
KDSC	decomposition rate for CBOD. in the sediment at 20° C	0,011	1/day
KDST	temperaturecoefficient	1,047	-
KBOD	half-satur. const. for carbon. Deoxygenationoxygenlimit.	0,00	mg O2/L
OCRB	oxygen-to-carbon ratio in phytoplankton	2,67	mgO2/mg C
K2	reaeration rate at 20° C for entire water body	0,00	1/day
K1013C	mineralization rate of dissolved organic nitrogen at 20°C	0,020	1/day
K1013T	temperaturecoefficient for K1013C	1,02	-
KONDC	decomposition rate for organic nitrogen in the sediment	0,0004	1/day
KONDT	temperaturecoefficient	1,08	-
K58C	mineralization. rate of dissolved organic phosphorus at 20°C	0,22	1/day
K58T	temperaturecoefficient for K58C	1,08	-
KOPDC	decomposition. rate for organic phosphorus in the sediment	0,0004	1/day
KOPDT	temperaturecoefficient	1,08	-

Quadro 7.4.1.1.1.4.5/01 - Constantes das Equações Cinéticas

FONTE: UFSCar/EPA

7.4.1.1.1.4.6. Taxas de Biodegradação da Fitomassa

As constantes das equações cinéticas relativas ao processo de biodegradação da fitomassa afogada do Reservatório do AHE São Luiz do Tapajós são apresentadas no **Quadro 7.4.1.1. 1.4.6/01.**

Quadro 7.4.1.1.1.4.6/01- Taxas de Biodegradação da Fitomassa Inundada	
	Г

Descrição	Valor	Unidade
Taxa de solubilização - condição aeróbica	0,760	1/dia
Taxa de solubilização - condição anaeróbica	0,364	1/dia
Taxa de oxidação material particulado - cond. aeróbica	0,240	1/dia
Taxa de oxidação material particulado - cond. anaeróbica	0,449	1/dia

Descrição	Valor	Unidade
Taxa de oxidação material dissolvido- cond. aeróbica	0,016	1/dia
Taxa de oxidação material dissolvido- cond. anaeróbica	0,003	1/dia
Razão nitrogênio- carbono	0,0287	mg N/mg C
Razão fósforo- carbono	0,0016	mg P/mg C

FONTE: UFSCar/EPA

7.4.1.1.1.5. Resultados das Modelagens Matemáticas

A seguir são apresentados os estudos de modelagem matemática, onde são analisados os resultados auferidos pelos seguintes aplicativos:

- Modelo de simulação WASP de qualidade da água, onde é analisado um cenário de inicio de enchimento em 1º de fevereiro e duração de três meses para completar esta etapa, e
- Modelo de estratificação térmica. Nesta modelagem e verificada a tendência de estratificação térmica do reservatório analisadas a luz das variações sazonais de vazões.

7.4.1.1.1.5.1. Modelagem Matemática da Qualidade da Água

Neste item são apresentados os resultados dos estudos de modelagem matemática da qualidade da água, onde as condições ambientais do recurso hídrico são aferidas de acordo com o cenário sem desmatamento da área a ser abrangida pelo reservatório e desenvolvimento de ação corretiva de desmatamento e limpeza do reservatório.

Os processamentos consideraram as seguintes premissas:

- Vazão mensal definida no local do eixo do AHE São Luiz do Tapajós compilada com base na média histórica gerada entre janeiro de 1931 a dezembro de 2011, retratando, portanto, uma condição hidrológica média. As vazões mensais obtidas foram discretizadas em base diária, formalizando desta forma os dados de entrada do modelo hidráulico. Durante o processamento do modelo hidráulico, estas vazões foram por sua vez discretizadas em intervalo de 10 minutos a fim evitar problemas de instabilidade numérica.
- Data de inicio do enchimento do reservatório: Considerou-se o fechamento do reservatório primeiro dia do mês de fevereiro e um período de simulação de 365 dias, o que abrange os períodos de enchimento e pós-enchimento do reservatório.

- Tempo de enchimento do reservatório. As simulações consideraram um cenário com duração do tempo de enchimento de 3 meses.
- Vazão sanitária a ser liberada para jusante: Considerando-se a ocorrência de condições hidrológicas médias, haverá pouca alteração no regime natural de vazão do rio Tapajós. Para proceder ao enchimento em três meses, deverá ser retida uma vazão de 1.010 m³/s e liberada para jusante uma vazão média da ordem de 23.700 m³/s. A retenção da vazão deverá ser mantida durante todo o período de enchimento até o nível d'água do reservatório alcançar a cota de 50,0 m correspondente ao nível máximo normal de operação. A partir deste nível a vazão de saída é mantida igual a somatória das vazões de entrada de forma a manter a continuidade do sistema.

Os valores de vazões liberadas para jusante durante o período de enchimento são bastante superiores a vazão mínima $Q_{7,10}$ (vazão de 7 dias consecutivos e período de retorno de 10 anos) definida em 3.558 m³/s, garantindo desta forma, maior tempo para assimilação dos compostos bioquímicos liberados durante a submersão da biomassa residente e permitir o resgate da fauna local.

A seguir são apresentados os resultados da simulação considerando as condições sem desmatamento do reservatório e considerando a realização de ações preventivas de desmatamento e limpeza, onde se procurou auferir níveis de oxigênio dissolvido não abaixo dos 4 mg/L, limite suficiente para a manutenção da vida aquática. Salienta-se que este período é transitório e limitado a fase de enchimento do reservatório.

Os resultados da modelagem matemática são apresentados através de saídas gráficas, onde é analisado o comportamento temporal e espacial das concentrações da DBO e do oxigênio dissolvido.

Para cada parâmetro analisado, os resultados são apresentados através de dois conjuntos de gráficos:

- Um conjunto reunindo os segmentos do corpo central do reservatório abrangido pelo curso do rio Tapajós;
- Um conjunto agrupando os segmentos representativos dos braços tributários.

O **Anexo Digital 7.4.1.1.2.6/01** apresenta todos os dados de saída referentes a modelagem de qualidade da água.

a) Condição sem Desmatamento do Reservatório

Neste cenário foi analisado o comportamento da qualidade da água, considerando-se a inundação da biomassa natural residente na área do reservatório, cujos resultados são utilizados como referência para a formalização dos cenários com desmatamento. Dentre os parâmetros considerados nos processos bioquímicos e cinéticos de qualidade da água, o oxigênio dissolvido constitui o mais importante, sendo determinante para a preservação da ictiofauna.

Além da importância do oxigênio para o subsídio à sobrevivência dos peixes e demais organismos aeróbios, a presença deste elemento também condiciona a disponibilidade de nutrientes, interferindo, deste modo, na evolução da eutrofização. A presença de oxigênio mantém o sistema aquático em condição oxidante. Nesta situação, normalmente, ocorre a oxidação e/ou hidratação (química ou biológica) de cátions metálicos (e.g. Fe, AI) e outros íons (e.g. Mn, Ca) que se ligam a espécies fosfatadas (por adsorção) e precipitam. Ainda nesta condição (oxidante) as formas fosfatadas podem reagir com argilas (e.g. gipsita, hematita) e, de forma similar, precipitarem (Wetzel, 1983).

A manutenção das condições oxidantes conserva os precipitados (ricos em fósforo e outros nutrientes) imobilizados nas camadas superficiais dos sedimentos que, por sua vez, ainda formam uma camada que contribui para barrar a difusão de elementos nutrientes desde os sedimentos. Na ocorrência de rebaixamento do potencial de oxiredução (pelo evento de anaerobiose ou anoxia), estes compostos precipitados dissolvem-se e juntamente com os demais elementos reduzidos do interior dos sedimentos, se difundem para a coluna d'água, contribuído para a eutrofização do ambiente aquático. Este processo de eutrofização induzido pela ausência de oxigênio é usualmente denominado: "autofertilização" (Esteves, 1988). Pelo exposto, fica evidente a importância da proposição de excluir e/ou minimizar a anaerobiose e a anoxia como mecanismo de controle e atenuação da eutrofização dos braços do reservatório.

Nas **Figuras 7.4.1.1.1.5.1/01** e **7.4.1.1.1.5.1/02** são retratadas de forma gráfica a evolução temporal do oxigênio dissolvido para cada segmento considerado na modelagem e nas **Figuras 7.4.1.1.1.5.1/03** e **7.4.1.1.1.5.1/04** a evolução temporal da DBO – Demanda Bioquímica do Oxigênio.

Verificam-se condições mais satisfatórias de qualidade da água nos segmentos que compõem o corpo central do reservatório onde a circulação da água se processa de forma preferencial. Em função da alta disponibilidade hídrica do período fixado para o enchimento do reservatório, as concentrações de oxigênio dissolvido ficaram compreendidas entre 5,9 e 6,9 mg/L.

As partições do reservatório mais afetadas pelo processo do enchimento estão relacionadas aos braços tributários e compartimentos das várzeas e cujos setores deverão ser objeto de ações preventivas de desmatamento e limpeza mais detalhado. Nestes compartimentos, a evolução temporal da taxa de oxigênio dissolvido apresentou um padrão comum de comportamento, chegando a atingir níveis de anoxia.

Os gráficos a seguir apresentam o número de dias contado a partir do inicio do enchimento fixado em 1º de fevereiro.

Figura 7.4.1.1.1.5.1/01 – Oxigênio Dissolvido – Corpo Central do Reservatório

Figura 7.4.1.1.1.5.1/02 – Oxigênio Dissolvido – Braços Tributários

Figura 7.4.1.1.5.1/03 - DBO – Corpo Central do Reservatório

Figura 7.4.1.1.1.5.1/04 - DBO – Corpo Central do Reservatório

b) Condição com Desmatamento e Limpeza do Reservatório

Neste cenário são apresentados os resultados da simulação, considerando a realização de ações preventivas de desmatamento e limpeza da área a ser abrangida pelo futuro lago, visando a preservação da qualidade da água durante as fases de enchimento e operação do reservatório.

As simulações foram desenvolvidas através de um processo interativo, considerandose a cada processamento, a imposição de taxas de desmatamento e limpeza do reservatório. Este procedimento foi realizado até atingir as metas almejadas de manter as concentrações de oxigênio dissolvido em patamares não inferiores a 4 mg/L.

No **Quadro 7.4.1.1.1.5.1/01** são assinalados os segmentos que deverão ser objeto de ações preventivas de desmatamento e limpeza resultantes do processamento, onde são assinalados os valores percentuais de retirada de fitomassa e as áreas respectivas expressas em km².

Segmento	Área total ocupada pela vegetação Inundável	Porcentagem de Desmatamento	Área a ser Desmatada
	(km²)	(%)	(km²)
1	0,993	0,00	0,00
2	4,453	85,00	3,79
3	4,364	14,29	0,62
4	8,757	75,00	6,57
5	7,264	55,40	4,02
6	8,160	68,00	5,55
7	12,256	60,48	7,41
8	17,137	72,00	12,34
9	16,381	28,47	4,66
10	10,745	81,00	8,70
11	12,324	77,00	9,49
12	47,863	28,48	13,63
13	23,556	68,00	16,02
14	10,653	25,00	2,66
15	9,783	78,00	7,63
16	16,673	83,00	13,84
17	19,694	65,00	12,80
18	35,256	26,65	9,40
19	15,891	84,00	13,35
20	26,571	43,71	11,61
21	22,699	65,00	14,75
22	6,134	60,00	3,68
23	11,123	10,00	1,11
24	29,981	12,46	3,74
Total	378,711	49,5	187,381

Quadro 7.4.1.1.1.5.1/01 – Segmentos Considerados nas Ações de Desmatamento

As simulações indicam a necessidade de ações de desmatamento e limpeza do reservatório centrada principalmente nos compartimentos abrangidos pelos braços tributários.

Outra questão relevante a ser considerada, refere-se variação natural do nível d'água do rio Tapajós e sua relação com ecologia das florestas afetadas e que pode contribuir na definição de área e volume a ser desmatado, como segue:

- No caso das florestas de terra firme, que nunca são submersas, a inundação com afogamento das bases, ou mesmo a saturação do solo afetando somente as raízes tende a matar as árvores e arbustos muito rapidamente, pelo que é recomendada sua remoção total nos trechos em que a modelagem aponta diminuição da qualidade da água, principalmente nos tributários menores e braços com maior tempo de detenção.
- Já as florestas aluviais convivem com períodos de quatro a seis meses de inundação parcial anual, e tendem a definhar somente entre seis meses e um ano após a inundação permanente, de modo gradual, conforme a tolerância das diferentes espécies de plantas afetadas. O nível dos rios Tapajós e Jamanxim chega a subir naturalmente até quatro a seis metros dentro dessas florestas, sendo normalmente tolerado pelas árvores, arbustos e lianas aí presentes. Assim, quando a inundação permanente atingir essas florestas é esperado que ocorra uma morte gradual da vegetação com disponibilização homeopática da fitomassa, que se iniciará tardiamente (no mínimo após seis meses), num período não tão crítico para afetar a qualidade da água.

Por conta das questões apresentadas acima, é recomendado que o desmatamento seja concentrado em áreas de floresta de terra firme e, em porções de floresta aluvial onde a coluna d'água prevista do reservatório ultrapasse a altura de cinco metros, caracterizando inundações não usuais. Nas porções do reservatório cobertas por floresta aluvial, onde o nível da inundação não chega a atingir cinco metros, o desmatamento não deve ser necessário, porque a floresta tende a morrer gradualmente, gerando uma dinâmica de substituição de habitats com menor capacidade de eutrofização e dentro dos limites de tolerância do sistema.

Diante das considerações anteriores a ação preventiva de desmatamento e limpeza do reservatório deverá compreender uma área de 216,6 km², ou 57,7% da área ocupada pela vegetação inundável.

Nas **Figuras 7.4.1.1.1.5.1/05** e **7.4.1.1.1.5.1/06** são apresentados de forma gráfica a evolução temporal do oxigênio dissolvido e nas **Figuras 7.4.1.1.1.5.1/07** e **7.4.1.1.5.1/08** o respectivo gráfico apresentando a evolução temporal da DBO – demanda bioquímica do oxigênio.

Figura 7.4.1.1.5.1/05 – Oxigênio Dissolvido – Corpo Central do Reservatório

Figura 7.4.1.1.1.5.1/06 – Oxigênio Dissolvido – Braços Tributários

Figura 7.4.1.1.1.5.1/07 - DBO – Corpo Central do Reservatório

Figura 7.4.1.1.5.1/08 - DBO – Braços Tributários

Nas **Figuras 7.4.1.1.1.5.1/09** e **7.4.1.1.1.5.1/10** são apresentados de forma gráfica a evolução temporal da Amônia e nas **Figuras 7.4.1.1.1.5.1/11** e **7.4.1.1.1.5.1/12** os respectivos gráficos apresentando a evolução temporal do Nitrato que apresentaram concentrações abaixo do Valor Máximo Permitido da Resolução CONAMA 357/05 que especificam limites respectivos de 10 mg/L para o nitrato e 3,7 mg/L para a amônia.

Figura 7.4.1.1.5.1/09 – Amônia – Corpo Central do Reservatório

Figura 7.4.1.1.1.5.1/10 – Amônia – Braços Tributários

Figura 7.4.1.1.1.5.1/11 – Nitrato – Corpo Central do Reservatório

Figura 7.4.1.1.5.1/12 – Nitrato – Braços Tritbutários

Nas **Figuras 7.4.1.1.1.5.1/13** e **7.4.1.1.1.5.1/14** são apresentados os resultados da simulação da qualidade da água para o constituinte fósforo, representativas dos compartimentos que compõem o corpo central e os braços tributários. As maiores taxas de decréscimo do fósforo ocorrem durante o período de estiagem, mais especificamente nos meses de agosto, setembro e outubro, onde o tempo de residência da água no reservatório é mais elevado.

A Resolução Conama 357/2005 define limites máximos de 0,1 mg/L de fósforo total para ambientes lóticos e 0,03 mg/L para lênticos de classe 2. Para sistemas aquáticos intermediários com tempo de residência entre 2 e 40 dias e tributários diretos de ambiente lêntico, o valor limite é 0,05 mg/L.

Figura 7.4.1.1.5.1/13 – Fósforo – Corpo Central do Reservatório.

Figura 7.4.1.1.5.1/14 – Fósforo – Braços Tributários do Reservatório.

Neste particular, é analisado o tempo de residência da água no reservatório que apresentam diferenciações em função não apenas do regime sazonal de vazões como também da variabilidade espacial dos fluxos de vazões que determinam a circulação da água no reservatório, onde são identificadas as seguintes partições:

- Segmentos representativos do corpo central do reservatório, acompanhando o alinhamento do álveo natural do curso do Tapajós, onde as alterações esperadas tenderão a ser pouco significativas em função do fluxo preferencial do escoamento; e
- Segmentos representativos dos compartimentos laterais do reservatório, onde os tempos de residência são mais elevados e os processos de eutrofização esperados são mais pronunciados.

Para a classificação do estado trófico das águas do reservatório, adotaram-se os critérios utilizados pela CETESB, que consideraram os valores de concentração do fósforo, conforme faixas de valores apresentados respectivamente no **Quadro 7.4.1.1.5.1/02** e **Quadro 7.4.1.1.5.1/03**.

Concentração de Fósforo (mg/L)	Classificação do Estado Trófico
< 0,013	Ultraoligotrófico
0,013 < P ≤ 0,035	Oligotrófico
0,035 < P ≤ 0,137	Mesotrófico
0,137 < P ≤ 0,296	Eutrófico
0,297 < P	Supereutrófico

Quadro 7.4.1.1.1.5.1/02 - Classificação do Estado Trófico – Rios.

FONTE: CETESB.

Quadro 7.4.1.1.1.5.1/03 - Classificação do Estado Trófico – Reservatórios.

Concentração de Fósforo (mg/L)	Classificação do Estado Trófico
P ≤ 0,008	Ultraoligotrófico
0,008 < P ≤ 0,019	Oligotrófico
0,019 < P ≤ 0,052	Mesotrófico
0,052 < P ≤ 0,120	Eutrófico
0,120 < P	Supereutrófico

FONTE: CETESB.

Com base nos baixos tempos de residência dos segmentos representativos do corpo central do reservatório, os resultados evidenciam que em tais setores as águas deverão se enquadrar predominantemente em estado mesotrófico. Condição pouco diferente deverá ser observada para os compartimentos dos braços laterais (onde a circulação da água se processa de forma mais lenta), durante o período de formação do reservatório quando tais setores deverão se enquadrar como eutróficos. Em seguida, os braços laterais deverão a apresentar declínio das concentrações de

fósforo e consequentemente se enquadrarem, predominantemente, como sistemas mesotróficos.

Os ambientes mesotróficos (condição predominante prevista para o reservatório) correspondem a corpos d'água com produtividade primária intermediária. Por possuir uma concentração média de nutrientes esses ambientes tendem a apresentar ciclagem relativamente lenta, transparência limitada, presença variável de microalgas e macrófitas aquáticas. Em geral, a predominância de tais condições provoca, normalmente, baixo prejuízo aos usos múltiplos da água (WALT et al. 2007).

Os resultados das simulações indicam, ainda, que atenção especial deverá ser dispensada nos braços laterais que permeiam ambas as margens do reservatório, principalmente nos compartimentos onde as condições de uso e ocupação do solo da bacia são mais intensas. Nesse contexto, ressalta-se o controle de erosões e o levantamento das fontes pontuais (e.g., garimpo) e difusas (e.g., enxurradas com fertilizantes empregados nas culturas) de fósforo. Nessas regiões com baixa circulação hidrodinâmica, as emissões de matéria orgânica deverão ser também evitadas tendo em vista que a anaerobiose tende a favorecer a liberação de fósforo desde os sedimentos (processo de autofertilização).

Ressalta-se que, devido às características do modelo adotado, os valores estimados das concentrações dos constituintes químicos referem-se a situações médias, podendo ocorrer casos de maior gravidade em locais específicos do reservatório onde a circulação da água seja menor, condicionando maiores tempos de residência. Nesta condição enquadram-se os cursos dos braços tributários afluentes ao corpo do reservatório.

Os processos de eutrofização dos braços deverão ser controlados na origem, com o desenvolvimento de ações que evitem as afluências de fontes poluidoras e que detenham os aportes de nutrientes (principalmente nitrogênio e fósforo), superiores as capacidades de assimilação dos corpos d'água.

No corpo central do reservatório, no alinhamento da antiga calha do rio onde os fluxos hidráulicos serão predominantes, as condições límnicas tenderão a ser menos alteradas.

7.4.1.1.1.5.2. Modelo de Estratificação Térmica do Reservatório

Os estudos de modelagem da estratificação térmica contemplaram 5 compartimentos do reservatório do AHE de São Luiz do Tapajós, seguintes:

• O primeiro compartimento refere-se a calha do rio Tapajós, procurando retratar uma condição nas proximidades do eixo do empreendimento;

- Três destes compartimentos abrangeram os cursos d'água localizados mais próximos do local do eixo, respectivamente os braços dos igarapés Bathu, Pimental e Tucunaré, formador da margem esquerda do rio Tapajós e
- O quarto compartimento refere-se ao rio Jamanxim, principal tributário contribuinte pela margem esquerda do rio Tapajós.

7.4.1.1.1.5.2.1. Preparação dos Dados de Entrada da Modelagem Matemática

A seguir são apresentadas as informações utilizadas na composição dos dados de entrada do modelo de estratificação térmica que inclui as características físicas e hidráulicas do reservatório e as informações de natureza hidrometeorológica.

• Dados físicos operativos do reservatório

O estudo considerou o reservatório operando a fio d'água na cota referente ao seu nível d'água máximo normal estabelecido na cota 50,00 m. As análises procuraram retratar uma condição hidrológica média do reservatório.

• Dados Climatológicos

Os dados de natureza climática foram obtidos da estação meteorológica de Itaituba operada pelo Instituto Nacional de Meteorologia - INMET e do Centro de Referência para Energia Solar e Eólica Sérgio de Salvo Brito – CRESESB, integrando os seguintes climáticos: temperatura média do ar; radiação solar média, umidade relativa do ar; velocidade do vento e nebulosidade, conforme dados apresentados no **Quadro 7.4.1.1.5.2/01**.

• Dados de Vazões Médias Mensais e Temperatura da Água

Foram utilizados os padrões médios mensais de vazões médias de longo termo afluentes em cada compartimento, procurando aferir uma condição hidrológica média.

As temperaturas das águas foram obtidas através de um trabalho de compilação e tratamento de dados tendo como referência informações obtidas de diversas campanhas de campo, tais como:

- Dados das quatro campanhas de qualidade das águas desenvolvidas no âmbito dos estudos de EIA-RIMA;
- Dados de campanhas de qualidade da água desenvolvidos no âmbito programa Brasil das Águas e
- Dados disponíveis obtidos das estações operadas pela Agência Nacional de Águas – ANA.

No **Quadro 7.4.1.1.1.5.2.1/01** são apresentados os dados de vazões médias mensais e no **Quadro 7.4.1.1.1.5.2.1/02** os valores de temperatura da água para os compartimentos simulados, procurando retratar as condições observadas no rio Tapajós e nos tributários afluentes, que apresentam padrões médios de temperatura da água ligeiramente inferiores ao comparar os registrados no curso principal.

Mês	Rio Tapajós (1) (m ³ /s)	Rio Bathu (2) (m ³ /s)	Rio Pimental (3) (m ^{3/} s)	Rio Tucunaré 04 (m ³ /s)	Rio Jamanxim 05 (m ³ /s)
Jan	7.625	15,2	2,9	46,3	2297,7
Fev	10.222	22	4,2	67,0	3576,0
Mar	17.353	33,4	6,4	101,7	4723,9
Abr	15.965	34	6,6	103,7	4650,8
Mai	10.372	31,1	6,0	94,7	3317,6
Jun	6.131	13,7	2,6	41,8	1317,1
Jul	4.360	5,3	1,0	16,0	488,5
Ago	3.663	2,5	0,5	7,7	221,0
Set	3.535	1,2	0,2	3,7	173,8
Out	3.820	1,9	0,4	5,9	312,1
Nov	5.381	5,5	1,1	16,7	569,2
Dez	8.335	10,2	2,0	31,2	1385,2

Quadro 7.4.1.1.1.5.2.1/01 – Dados de Vazões Médias Mensais nos Compartimentos Simulados

FONTE: Estudos de Viabilidade do AHE São Luiz do Tapajós, CNEC WorleyParsons, 2013

Quadro 7.4.1.1.1.5.2.1/02- Dados de	Temperatura nos	Compartimentos Simulados
-------------------------------------	-----------------	---------------------------------

Mês	Rio Tapajós (1) (m ³ /s)	Rio Bathu (2) (m ³ /s)	Rio Pimental (3) (m ³ /s)	Rio Tucunaré 04 (m ³ /s)	Rio Jamanxim 05 (m ³ /s)
Jan	29,38	27,84	28,13	28,08	29,48
Fev	28,78	27,32	27,72	27,77	28,75
Mar	28,56	27,23	27,74	27,75	28,53
Abr	28,92	27,35	27,76	27,74	29,00
Mai	29,59	27,81	27,98	27,93	29,77
Jun	30,03	28,20	28,14	28,09	30,33
Jul	30,47	28,58	28,41	28,35	30,66
Ago	30,85	28,84	28,60	28,53	30,84
Set	30,83	28,90	28,62	28,55	30,79
Out	30,85	29,03	28,70	28,63	30,90
Nov	30,61	29,00	28,63	28,56	30,72
Dez	30,40	28,80	28,44	28,38	30,55

FONTE: Estudos de Viabilidade do AHE São Luiz do Tapajós, CNEC WorleyParsons, 2013

7.4.1.1.1.5.2.2. Resultados da Simulação

A modelagem considerou o reservatório operando sem deplecionamento, mantendose a elevação do nível d'água na cota 50,0 m. Nestas condições as vazões afluentes e defluentes foram consideradas de mesma magnitude.

No processo de modelagem, os valores médios mensais fornecidos como dado de entrada, são discretizados a nível diário no processo de simulação, formalizando desta

forma, as variáveis temporais requisitadas pela modelagem. O **Anexo Digital 7.4.1.1.2.6/02** apresenta todos os dados de saída da modelagem.

• **Compartimento 01**: Procurou caracterizar o corpo central do reservatório, onde as

variações de níveis d'água, para diversas recorrências de vazões, revelaram pouco significativas. A extensão simulada abrangeu, a partir do eixo do reservatório, um percurso de 73 km em direção a montante.

Na parte mais profunda do reservatório, próxima a região do eixo, o leito do rio natural situa-se aproximadamente na cota 16,0 m. Nestas condições o perfil vertical de temperatura foi representado por uma grade composta por 35 pontos espaçados a cada metro entre as cotas 16 e 50 m.

Neste caso particular, adotou-se o cenário hidrológico mais critico da série observada de vazões verificada no ano de 1998 e que apresentou uma média anual de 8.064 m³/s. Ressalta-se que a simulação de uma condição hidrológica média não foi possível em função de instabilidades constadas no processo de modelagem.

Verifica-se que, mesmo para as condições mais criticas, a estratificação térmica do reservatório junto ao local do eixo do AHE São Luiz do Tapajós não é mantida ao longo do ano. O que se observa é nítido processo de desestabilização térmica afetado principalmente pela forte influência dos processos advectivos, resultando em uma ampla variação temporal da temperatura da água nas partições mais fundas do reservatório, conforme pode ser observado na **Figura 7.4.1.1.1.5.2.2/01**.

Figura 7.4.1.1.1.5.2.2/01- Perfil de Temperatura – Corpo Central do Reservatório Junto ao Eixo

• Compartimento C2: Trecho do compartimento do braço do igarapé Tucunaré.

O perfil vertical de temperatura da água foi representado por uma grade composta por 31 pontos espaçada a cada metro entre as cotas 20 e 50 m.

Verifica-se uma tendência de manutenção da estratificação térmica no compartimento deste braço com a ocorrência mais determinante observada entre os meses de fevereiro e outubro onde as temperaturas do fundo se estabilizam próximo de 27°C. Uma tendência de alteração deste equilíbrio é verificada entre os meses de novembro e janeiro, onde as temperaturas de fundo apresentam variações de até 1,6 °C, conforme assinalado na **Figura 7.4.1.1.5.2.2/02**.

Figura 7.4.1.1.1.5.2.2/02- Perfil de Temperatura – igarapé Tucunaré

 Compartimento C3: Trecho do compartimento do braço do braço do igarapé Pimental.

O perfil vertical de temperatura da água foi representado por uma grade composta por 31 pontos espaçada a cada metro entre as cotas 20 e 50 m.

Verifica-se que estratificação térmica deste braço é mantida ao longo do ano, com temperatura nas partições mais profundas deste braço estabilizada em valores próximos de 27,25°C. Verifica-se uma ocorrência pontual de variação da temperatura do fundo, desestabilizada em função das condições advectivas do escoamento, conforme verificado na **Figura 7.4.1.1.1.5.2.2/03**.

Figura 7.4.1.1.1.5.2.2/03 - Perfil de Temperatura – Igarapé Pimental

• Compartimento C4: Trecho do compartimento do braço do igarapé Bathu

O perfil vertical de temperatura da água foi representado por uma grade composta por 31 pontos espaçada a cada metro entre as cotas 20 e 50 m. Verifica-se grande semelhança das condições observadas no igarapé Pimental com uma forte tendência de manutenção da estratificação térmica ao longo do ano e estabilização da temperatura, nas porções mais profundas deste braço, em níveis próximos de 27,25°C. Na **Figura 7.4.1.1.1.5.2.2/04** é apresentado o perfil de temperatura da água correspondente a cada mês.

Figura 7.4.1.1.1.5.2.2/04 - Perfil de Temperatura - Igarapé Bathu

• **Compartimento C5**: Trecho do compartimento do rio Jamanxim.

Procurou caracterizar o corpo deste braço tributário, no trecho onde as variações de níveis d'água, para diversas recorrências de vazões, revelaram pouco significativas. Nestas condições, a extensão simulada abrangeu a partir da sua confluência no rio Tapajós, um percurso de 12,8 km em direção a montante deste tributário.

O perfil vertical de temperatura da água foi representado por uma grade composta por 31 pontos espaçada a cada metro entre as cotas 20 e 50 m.

Verifica-se neste compartimento uma fraca tendência de ocorrer processo de estratificação térmica em função do baixo tempo de residência da água o que favorece um processo de mistura da água em todo o perfil da coluna d'água, conforme pode ser observado na **Figura 7.4.1.1.1.5.2.2/05**.

Figura 7.4.1.1.1.5.2.2/05 - Perfil de Temperatura - rio Jamanxim

7.4.1.1.1.6. Conclusão

Os resultados das simulações indicam uma baixa tendência de ocorrer estratificação térmica no corpo central do reservatório e no braço do rio Jamanxim em função principalmente do reduzido tempo de residência da água, o que vem favorecer forte tendência de quebra da termoclina e manutenção de perfil de temperatura com pouca variação.

Mesma condição não é observada na maioria dos demais braços tributários, que se caracterizam por apresentar áreas de bacias contribuintes reduzidas, redundando em baixas vazões ao considerar os volumes auferidos com a formação do reservatório. Nestas condições os tempos de residência das águas são relativamente mais elevados o que vem favorecer a ocorrência de um ambiente com características mais lenticas e manutenção dos processos de estratificação térmica.

7.4.1.1.1.7. Referências Bibliográficas

Bianchini Jr., I. The degradation process of organic matter in reservoirs. <u>Hydropower</u> <u>Plants and Greenhouse Gas Emissions</u>. (Rosa, L. P. & dos Santos, M. A. eds.). Energy Planning Program. Rio de Janeiro: COPPE Report/Ed. Tecnologica. p.6-27, 1997.

Bianchini Jr., I.; Cunha, M. B. &Bitar, A. L. Projeto Básico Ambiental, Complexo Hidrelétrico Canoas. Subprograma: Modelagem Matemática – I Ensaios de degradação da Fitomassa. São Carlos (SP): FAI-UFSCar/CESP, (Relatório Técnico) 67p., 1998.

Bianchini Jr., I. Projeto Básico Ambiental, Complexo Hidrelétrico Canoas. Subprograma: Modelagem Matemática – II Avaliações da Qualidade da Água dos Reservatórios. São Carlos (SP): FAI-UFSCar/CESP, (Relatório Técnico) 58p., 1998.

Bitar, A. L.; Antonio, R. M. & Bianchini Jr., I. Degradação anaeróbia de folhas, galhos, cascas e serapilheira. *ActaLimnol. Brasil.*, 14(2): 17-26, 2002.

Bowie, G. L.; Mills, W. B.; Porcella, D. B.; Campbell, C. L.; Pagenkopf, J. R.; Rupp, G. L.; Johnson, K. M.; Chan, P. W. H. &Gherini, S. A. Rates, constants, and kinetics formulations in surface water quality modeling (2nd ed.). U.S. Environmental ProtectionAgency (EPA/600/3-85/040) 455p., 1985

Buckman, H. O. & Brady, N. C. <u>Natureza e Propriedades dos Solos</u>. Rio de Janeiro: Livraria Freitas Bastos. 594p., 1968.

Cunha-Santino, M. B. & Bianchini Jr., I. Estequiometria da decomposição aeróbia de galhos, cascas serapilheira e folhas. <u>Recursos Hidroenergéticos: Usos, Impactos e Planejamento Integrado</u>. Série: Ciências da Engenharia Ambiental, vol. 1 (Espíndola, E. L. G., Mauad, F. F., Schalch, V., Rocha, O., Felicidade, N., Rietzler, A., C. eds.). São Carlos: Rima. p. 43-56, 2002.

Demolinari, M. S. M.; Silva, I. V.; Lima, A. M. N.; Vergutz, L & Mendonça, E. S. Efeito da solução de separação densimétrica na quantidade e qualidade da matéria orgânica leve e quantificação do carbono orgânico da fração pesada. *R. Bras. Ci. Solo*, 32: 871-879, 2008.

Jorge, A. J. Química do Solo: matéria orgânica. <u>Elementos de Pedologia</u>. (Moniz, A. C. org.). São Paulo: Editora Universidade de São Paulo/Editora Polígono. p. 169-177.1972.

Medina, H. P. Física do Solo: constituição física. <u>Elementos de Pedologia</u>. (Moniz, A. C. org.).São Paulo: Editora Universidade de São Paulo/Editora Polígosno. p. 11-20.1972.

Nelson, I. B. & Muckenhin, R. J. Field percolation rates of four Wisconsin soils having different drainage characteristics. *J. Amer. Soc. Agron.*, 33: 1028-1036, 1941.

esources & energy

ANEXO DIGITAL 7.4.1.1.2.6/01

Dados de Entrada e Saída Referentes a Modelagem de Qualidade da Água

ANEXO DIGITAL 7.4.1.1.2.6/02

Dados de Entrada Saída da Modelagem de Estratificação Térmica do Reservatório

DIREITOS RESERVADOS **CNEC WorleyParsons**

resources & energy

ANEXO GERAL 7.4.1.1.4/03

Dados dos Levantamentos Hidrossedimentométricos

DIREITOS RESERVADOS

CNEC WorleyParsons

VOLUME 5 – Anexo Geral

7.4.1.1.4 Hidrossedimentometria

Neste tema são abordados os aspectos relacionados ao transporte de sedimentos, com o levantamento de informações e tratamento numérico de dados visando a formulação de subsídios necessários as análises relacionadas à vida útil do empreendimento e os processos de assoreamento que poderão ocorrer no estirão do reservatório e os possíveis efeitos a jusante.

Neste estudo procurou-se caracterizar as condições de rio natural, onde o comportamento sedimentométrico é aferido em função do regime de vazões, com a definição dos elementos básicos necessários ao desenvolvimento dos estudos de modelagem matemática.

7.4.1.1.4.4.1. Aspectos Gerais, Dados Utilizados e Metodologia

Para o desenvolvimento dos estudos de sedimentos procedeu-se ao levantamento de dados e informações considerando-se as diversas fontes de consultas e as derivadas dos levantamentos hidrossedimentométricos desenvolvidos no âmbito dos estudos de viabilidade do aproveitamento do AHE São Luiz do Tapajós.

7.4.1.1.4.4.1.1.Dados Utilizados

Compreendem as informações hidrossedimentométricas disponíveis nas estações operadas pela Agência Nacional de Águas – ANA e dados de campanhas de levantamento hidrossedimentométrico de campanhas desenvolvidos no âmbito dos estudos de inventário e viabilidade do AHE São Luiz do Tapajós.

Dados Hidrossedimentométricos de Estações Operadas pela Agência Nacional de Águas – ANA

Abrangem as informações relacionadas as campanhas de medições de descarga líquida e sólida, levantamento de perfis transversais, leituras de régua limnimétrica e de vazões médias diárias.

Em função da necessidade de aferir uma curva chave de sedimento para o local do barramento do AHE São Luiz do Tapajós, a coleta incluiu dados de estações situadas também fora da Área de Influência Direta, tendo por objetivo a formalização de uma base de informações mais ampla nos estudos de regionalização. Deste modo, as análises consideram também as estações situadas nas bacias dos rios Teles Pires e Juruena conforme descriminado no **Quadro 7.4.1.1.4.4.1.1/01** e espacializadas na **Figura 7.3.1.2.2.1/01** – Estações Fluviométricas de Interesse.

Código	Estação	Curso	Município	UF	Número de	Área de Drenagem	Local	lização	Período de
ANA		d'agua	-		Medições	(km²)	Latitude	Longitude	Análise
17730000	Itaituba	Tapajós	Itaituba	PA	49	458.000	04°16'32"	55°58'56"	1992/2011
17650000	Jatobá	Tapajós	Itaituba	PA	19	387.378	05°09'09"	56°51'14"	1977/1982
17430000	Barra do São Manuel Jusante	Tapajós	Borba	AM	86	333.000	7°20'23"	58°09'19"	1996/2011
17093000	Fontanilhas	Juruena	Juína	MT	78	55.900	11°21'30"	58°20'34"	1996/2012
17120000	Porto dos Gaúchos	Arinos	Porto dos Gaúchos	MT	32	37.100	11°32'12"	57°25'25"	1996/2012
17380000	Jusante Foz Peixoto de Azevedo	Teles Pires	Alta Floresta	MT	22	81.600	9°38'26"	56°01'10"	1996/2012

Quadro 7.4.1.1.4.4.1.1/01 - Estações Fluviométricas da Agência Nacional de Águas - ANA.

FONTE: ANA, 2013.

Nos Quadros **7.4.1.1.4.4.1.1/02** a **7.4.1.1.4.4.1.1/07** são apresentados um resumo do histórico das campanhas de medições de descarga líquida e sólida e que permitiram aferir as concentrações dos sólidos em suspensão.

Estação	Data	Vazão (m³/s)	Seção Molhada (m²)	Largura (m)	Vel. Média (m/s)	Conc. Cs (ppm)	Prof. Média (m)	Descarga Sólida medida (t/dia)
17730000	22/01/00	16.250,0	23.077	2.922,2	0,704	21,81	7,90	30.621,24
17730000	22/05/00	12.478,0	26.086	2.938,4	0,478	9,97	8,88	10.748,65
17730000	06/08/00	4.425,0	21.096	2.926,5	0,210	7,43	7,21	2.840,64
17730000	02/11/00	5.391,0	13.340	2.877,9	0,404	3,04	4,64	1.415,98
17730000	29/01/01	16.387,0	25.156	2.929,6	0,650	8,07	8,59	11.425,80
17730000	18/07/01	10.053,0	22.153	2.923,1	0,454	3,79	7,58	3.291,92
17730000	21/10/01	3.878,0	11.688	2.869,2	0,332	11,46	4,07	3.839,78
17730000	15/02/02	17.963,0	23.028	2.911,9	0,780	8,08	7,91	12.540,19
17730000	14/05/02	10.685,0	23.898	2.934,4	0,447	2,88	8,14	2.658,77
17730000	22/08/02	3.298,0	19.924	2.902,5	0,166	7,39	6,86	2.105,76
17730000	12/12/02	6.108,0	13.508	2.866,7	0,452	13,26	4,71	6.997,72
17730000	28/11/03	8.011,0	14.795	2.871,7	0,541	15,90	5,15	11.005,19
17730000	31/07/05	4.603,0	19.412	2.918,2	0,237	1,00	6,65	397,70
17730000	09/11/05	4.854,0	10.743	2.854,2	0,452	5,00	3,76	2.096,93
17730000	03/03/06	27.876,0	30.287	2.940,8	0,920	7,61	10,30	18.328,58
17730000	21/06/06	11.221,0	26.025	2.934,1	0,431	8,42	8,87	8.163,14
17730000	15/09/06	4.300,0	14.567	2.903,6	0,295	3,26	5,02	1.211,53
17730000	30/11/06	7.551,0	14.007	2.891,8	0,539	11,35	4,84	7.403,51
17730000	13/12/07	8.244,0	11.062	981,3	0,745	12,69	11,27	9.039,57

Quadro 7.4.1.1.4.4.1.1/02 - Rio Tapajós na Estação Fluviométrica de Itaituba

Estação	Data	Vazão (m³/s)	Seção Molhada (m²)	Largura (m)	Vel. Média (m/s)	Conc. Cs (ppm)	Prof. Média (m)	Descarga Sólida medida (t/dia)
17730000	07/04/08	15.722,0	15.848	1.503,7	0,992	9,17	10,54	12.461,79
17730000	07/04/08	30.786,0	31.722	2.895,3	0,970	9,17	10,96	24.402,02
17730000	31/07/08	5.312,0	21.055	2.930,3	0,252	2,24	7,19	1.026,23
17730000	06/11/08	6.160,0	12.763	2.887,2	0,483	9,25	4,42	4.924,14
17730000	26/07/09	6.353,0	25.062	2.941,0	0,253	5,35	8,52	2.934,96
17730000	27/10/09	5.360,0	11.725	2.875,5	0,457	7,96	4,08	3.686,31
17730000	10/05/10	14.127,0	24.684	2.945,9	0,572	10,51	8,38	12.830,66
17730000	30/7/2010	4.620,83	20.530	2.926,77	0,225	4,63	7,01	1.850,08
17730000	31/10/2010	4.198,33	10.276	2.826,37	0,409	4,68	3,64	1.697,97
17730000	30/1/2011	19.775,63	23.698	2.940,31	0,834	18,03	8,06	30.804,61
17730000	6/5/2011	22.109,77	29.273	2.885,25	0,755	7,11	10,15	13.587,85

Quadro 7.4.1.1.4.4.1.1/03 – Rio Tapajós na Estação Fluviométrica de Jatobá

Estação	Data	Vazão (m³/s)	Seção Molhada (m²)	Largura (m)	Vel. Média (m/s)	Conc. Cs (ppm)	Prof. Média (m)	Descarga Sólida medida (t/dia)
17650000	16/08/77	3.541,0	11.975	997,0	0,296	2,46	12,01	752,62
17650000	11/10/77	4.498,0	13.558	999,0	0,332	3,28	13,57	1.274,70
17650000	20/12/77	8.327,0	12.972	1.014,0	0,642	13,27	12,79	9.547,14
17650000	20/04/78	15.746,0	14.677	1.042,0	1,073	23,71	14,09	32.256,37
17650000	15/06/78	7.398,0	12.846	1.017,0	0,576	10,10	12,63	6.455,79
17650000	23/08/78	3.494,0	12.431	996,0	0,281	3,53	12,48	1.065,64
17650000	20/10/78	3.979,0	11.686	997,0	0,341	5,76	11,72	1.980,21
17650000	17/12/78	7.800,0	14.339	1.012,0	0,544	17,52	14,17	11.807,08
17650000	12/02/79	17.285,0	19.485	1.012,0	0,887	27,30	19,25	40.770,48
17650000	14/02/81	15.367,0	18.553	1.038,0	0,828	5,74	17,87	7.621,05
17650000	07/06/81	4.972,0	16.016	1.012,0	0,310	9,43	15,83	4.050,95
17650000	19/08/81	2.659,0	14.824	1.000,0	0,179	11,26	14,82	2.586,85
17650000	22/10/81	3.885,0	16.219	1.013,0	0,240	17,96	16,01	6.028,53
17650000	20/12/81	7.901,0	17.179	1.014,0	0,460	15,93	16,94	10.874,56
17650000	13/05/82	14.401,0	15.046	1.037,0	0,957	17,98	14,51	22.371,55
17650000	16/07/82	5.515,0	15.046	1.007,0	0,367	9,46	14,94	4.507,65
17650000	22/09/82	4.326,0	15.944	1.014,0	0,271	7,52	15,72	2.810,72
17650000	19/11/82	4.351,0	12.243	1.018,0	0,355	13,49	12,03	5.071,25

Estação	Data	Vazão (m³/s)	Seção Molhada (m²)	Largura (m)	Vel. Média (m/s)	Conc. Cs (ppm)	Prof. Média (m)	Descarga Sólida medida (t/dia)
17430000	22/01/00	15.013,0	13.365	954,3	1,123	4,26	14,01	5.525,74
17430000	25/05/00	6.971,0	10.390	946,4	0,671	18,40	10,98	11.082,22
17430000	31/07/00	3.131,0	8.438	932,7	0,371	7,43	9,05	2.009,95
17430000	27/10/00	2.984,0	8.835	929,0	0,338	3,87	9,51	997,75
17430000	04/10/01	2.481,0	8.103	926,8	0,306	6,23	8,74	1.335,45
17430000	30/01/02	15.609,0	13.883	957,0	1,124	5,26	14,51	7.093,73
17430000	13/05/02	6.825,0	10.691	946,9	0,638	6,04	11,29	3.561,67
17430000	10/09/02	2.115,0	8.687	926,4	0,243	0,39	9,38	71,27
17430000	25/11/02	3.502,0	8.955	897,3	0,391	11,59	9,98	3.506,82
17430000	07/11/03	4.859,0	9.817	940,3	0,495	11,33	10,44	4.756,53
17430000	09/08/05	3.504,0	8.649	927,9	0,405	7,00	9,32	2.119,22
17430000	19/11/05	3.813,0	8.982	934,9	0,424	4,00	9,61	1.317,77
17430000	26/02/06	20.987,0	16.390	1.125,7	1,280	7,61	14,56	13.799,04
17430000	01/07/06	5.533,0	9.916	963,9	0,558	5,91	10,29	2.825,28
17430000	22/09/06	3.317,0	8.894	958,5	0,373	2,96	9,28	848,30
17430000	08/12/06	6.512,0	10.370	963,2	0,628	8,73	10,77	4.912,94
17430000	09/12/07	8.244,0	11.062	981,3	0,745	12,69	11,27	9.039,57
17430000	19/04/08	16.232,0	13.467	959,0	1,205	7,10	14,04	9.950,35
17430000	12/08/08	3.894,0	9.122	922,9	0,427	2,61	9,88	876,43
17430000	16/11/08	4.267,0	9.384	933,9	0,455	4,71	10,05	1.736,06
17430000	01/08/09	3.947,0	9.290	935,6	0,425	4,18	9,93	1.426,83
17430000	04/11/09	4.420,0	9.343	937,0	0,473	3,95	9,97	1.507,69
17430000	18/05/10	7.321,0	10.446	950,5	0,701	7,33	10,99	4.638,37
17430000	7/8/2010	3.381,69	8.693	935,6	0,389	3,90	9,29	1.138,62
17430000	9/11/2010	3.708,36	8.941	925,77	0,415	7,59	9,66	2.430,89
17430000	8/2/2011	14.937,69	13.295	952,53	1,124	10,28	13,96	13264,956
17430000	10/5/2011	9.807,00	11.445	945,48	0,857	61,28	12,11	51.924,93

Quadro 7.4.1.1.4.4.1.1/04 – Rio Tapajós na Estação Fluviométrica de Barra do São Manuel

Quadro 7.4.1.1.4.4.1.1/05 – Rio Juruena na Estação Fluviométrica de Fontanilhas

Estação	Data	Vazão (m³/s)	Seção Molhada (m²)	Largura (m)	Vel. Média (m/s)	Conc. Cs (ppm)	Prof. Média (m)	Descarga Sólida medida (t/dia)
17093000	02/02/02	1.407,0	1.865	354,4	0,755	3,12	5,26	379,28
17093000	29/05/02	1.265,0	1.670	344,0	0,757	12,54	4,85	1.370,57
17093000	23/09/02	1.075,0	1.465	346,2	0,754	4,11	4,23	381,74
17093000	10/12/02	1.105,0	1.576	350,1	0,701	7,88	4,50	752,32
17093000	08/09/04	1.108,0	1.494	348,1	0,741	189,03	4,29	18.096,07
17093000	03/12/04	1.810,0	1.645	355,9	1,100	9,21	4,62	1.440,30
17093000	17/08/05	1.067,0	1.500	346,4	0,711	5,14	4,33	473,85
17093000	23/08/06	1.236,0	1.639	370,4	0,754	3,71	4,42	396,19
17093000	28/09/07	1.184,0	1.575	365,5	0,752	8,80	4,31	900,22

Estação	Data	Vazão (m³/s)	Seção Molhada (m²)	Largura (m)	Vel. Média (m/s)	Conc. Cs (ppm)	Prof. Média (m)	Descarga Sólida medida (t/dia)
17093000	06/04/08	1.950,0	2.273	178,1	0,858	11,42	12,77	1.924,04
17093000	28/07/08	1.179,0	1.575	348,7	0,749	1,42	4,52	144,65
17093000	28/07/08	1.179,0	1.575	348,7	0,749	3,55	4,52	361,62
17093000	28/07/08	1.179,0	1.575	348,7	0,749	3,93	4,52	400,33
17093000	28/07/08	1.179,0	1.575	348,7	0,749	4,18	4,52	425,80
17093000	28/07/08	1.179,0	1.575	348,7	0,749	6,89	4,52	701,85
17093000	28/10/08	1.146,0	1.598	350,0	0,717	0,13	4,57	12,87
17093000	28/10/08	1.146,0	1.598	350,0	0,717	1,75	4,57	173,28
17093000	28/10/08	1.146,0	1.598	350,0	0,717	2,68	4,57	265,36
17093000	28/10/08	1.146,0	1.598	350,0	0,717	3,01	4,57	298,03
17093000	28/10/08	1.146,0	1.598	350,0	0,717	11,13	4,57	1.102,03
17093000	22/05/09	1.433,0	1.933	375,6	0,741	5,73	5,15	709,44
17093000	22/05/09	1.433,0	1.933	375,6	0,741	5,84	5,15	723,06
17093000	22/05/09	1.433,0	1.933	375,6	0,741	7,10	5,15	879,06
17093000	22/05/09	1.433,0	1.933	375,6	0,741	9,19	5,15	1.137,82
17093000	24/08/09	1.165,0	1.453	351,6	0,802	6,93	4,13	697,75
17093000	24/11/09	1.169,0	1.600	353,1	0,731	6,80	4,53	686,61
17093000	04/03/10	1.997,0	2.389	378,8	0,836	3,09	6,31	532,46
17093000	7/6/2011	1.220,70	1.723	368,8	0,708	4291	4,67	452565,25
17093000	10/4/2011	1.133,70	1.542	362,3	0,719	2884	4,26	282492,65

Quadro 7.4.1.1.4.4.1.1/06 – Rio Arinos na Estação Fluviométrica de Porto dos Gaúchos

Estação	Data	Vazão (m³/s)	Seção Molhada (m²)	Largura (m)	Vel. Média (m/s)	Conc. Cs (ppm)	Prof. Média (m)	Descarga Sólida medida (t/dia)
17120000	20/09/00	401,0	653	212,7	0,614	11,25	3,07	389,77
17120000	24/04/02	803,0	927	213,4	0,866	19,23	4,34	1.334,16
17120000	25/11/02	458,0	679	214,4	0,675	4,06	3,17	160,66
17120000	10/03/03	1.092,0	1.073	216,0	1,018	9,02	4,97	851,03
17120000	23/06/03	595,0	770	214,0	0,773	7,29	3,60	374,76
17120000	26/07/04	549,0	732	213,5	0,750	12,92	3,43	612,84
17120000	25/10/04	537,0	727	214,0	0,738	10,41	3,40	482,99
17120000	01/08/05	421,0	653	212,7	0,645	4,80	3,07	174,60
17120000	09/11/05	447,0	680	214,0	0,658	9,17	3,18	354,15
17120000	21/07/06	507,0	713	214,2	0,711	5,52	3,33	241,80
17120000	21/04/07	765,0	902	216,6	0,849	6,79	4,16	448,79
17120000	14/08/07	411,0	651	212,8	0,632	4,08	3,06	144,88
17120000	05/12/07	825,0	952	217,9	0,867	13,18	4,37	939,47
17120000	05/07/08	561,0	761	215,5	0,738	9,50	3,53	460,47
17120000	01/10/08	399,0	651	212,6	0,613	4,81	3,06	165,82
17120000	30/03/09	987,0	1.048	219,0	0,942	14,96	4,79	1.275,83
17120000	29/07/09	459,0	685	214,0	0,670	5,41	3,20	214,71

Estação	Data	Vazão (m³/s)	Seção Molhada (m²)	Largura (m)	Vel. Média (m/s)	Conc. Cs (ppm)	Prof. Média (m)	Descarga Sólida medida (t/dia)
17120000	27/10/09	487,0	701	214,7	0,694	6,91	3,27	290,71
17120000	05/02/10	1.119,0	1.163	220,6	0,962	10,84	5,27	1.048,03
17120000	29/04/10	774,0	906	217,3	0,854	13,36	4,17	893,63
17120000	28/08/2011	413,74	660,05	213,5	0,627	4,56	3,09	163,00
17120000	26/11/2011	603,93	795,93	216	0,759	11,2	3,68	584,41
17120000	28/04/2012	902,03	970,33	218	0,93	8,4	4,45	654,66
17120000	19/07/2012	488,21	734,6	203,96	0,662	88,3	3,60	3724,61

Quadro 7.4.1.1.4.4.1.1/07 – Rio Teles Pires na Estação Fluviométrica Jusante Foz Peixoto de Azevedo

Estação	Data	Vazão (m³/s)	Seção Molhada (m²)	Largura (m)	Vel. Média (m/s)	Conc. Cs (ppm)	Prof. Média (m)	Descarga Sólida medida (t/dia)
17380000	30/05/00	1.551,0	2.322	388,1	0,668	16,50	5,98	2.211,11
17380000	05/08/00	672,0	1.808	385,1	0,367	13,83	4,69	802,98
17380000	31/10/00	683,0	1.747	372,7	0,391	11,93	4,69	704,00
17380000	06/07/05	981,0	2.058	374,7	0,476	11,83	5,49	1.002,69
17380000	07/10/05	826,0	1.855	373,5	0,445	11,17	4,97	797,16
17380000	06/10/06	825,0	1.994	392,5	0,414	10,33	5,08	736,32
17380000	05/07/07	925,0	2.017	391,2	0,458	8,54	5,16	682,52
17380000	27/10/07	733,0	1.898	389,2	0,386	7,34	4,88	464,85
17380000	26/05/08	2.089,0	2.708	403,2	0,772	12,19	6,72	2.200,17
17380000	28/08/08	635,0	1.902	398,2	0,334	4,98	4,78	273,22
17380000	04/07/09	1.131,0	2.298	404,1	0,492	11,99	5,69	1.171,55
17380000	24/09/09	733,0	1.869	391,8	0,392	12,18	4,77	771,56
17380000	23/8/2010	622	1896	407,06	0,328	6	4,66	315,24
17380000	28/6/2012	1.201	2495,57	412,73	0,481	8,1	6,05	840,53

• Campanhas de Levantamento Hidrossedimentométrico

No âmbito dos estudos ambientais do AHE São Luiz do Tapajós foi estabelecida uma rede de amostragem hidrossedimentométrica, com a definição de 12 pontos de medição e coleta de amostras de sedimentos distribuídas estrategicamente nos cursos dos rios Tapajós e Jamanxim e principais contribuintes laterais. As campanhas constaram de quatro levantamentos hidrossedimentométricos desenvolvidas no decorrer do ano de 2012, considerando os períodos de cheia, vazante, seca e enchente.

No **Quadro 7.4.1.1.4.4.1.1/08** é apresentada a localização dos pontos que compõem a rede de amostragem hidrossedimentométrica e no **Mapa 7.4.1.1.4/01** é apresentada a distribuição espacial destes pontos.

Pontos	Curso d'Áqua	Coordenada	s UTM (Fuso 22)
	---	Leste	Norte
TR-6 ou Crepori	Creporí	468.195	9.362.238
CT-7A	Tapajós	465.212	9.372.156
Bom Jardim ou Bacabal	Bacabal	486.753	9.382.543
TR-5A ou Ratão	Ratão	506.810	9.411.156
CT-6A	Tapajós	506.791	9.421.404
Jamanxim Montante	Jamanxim	560.586	9.444.462
PR-5	Jamanxim	562.009	9.470.854
TR-7	Jamanxinzinho	560.222	9.456.228
TR-2A ou Tucunaré	Tucunaré	579.312	9.485.656
CT-4	Tapajós	578.645	9.492.738
Curral	Tapajós	582.234	9.513.899
Itaituba	Tapajós	614.151	9.525.936

Quadro 7.4.1.1.4.4.1.1/08 - Rede de Amostragem Hidrossedimentometrica

FONTE: CNEC WorleyParsons, 2012.

Na seleção dos pontos de amostragens foram considerados os seguintes critérios:

• Curso do Tapajós

- Definição de pontos de amostragens estratégicos no curso do Tapajós, estabelecidos a montante da linha de remanso e próximo ao eixo do AHE São Luiz do Tapajós, procurando mensurar o aporte e a saída de sedimento nos pontos extremos da região a ser ocupada pelo reservatório. Nestes propósitos foram estabelecidos os pontos de amostragens CT-7A e CT-6A localizados a montante do reservatório e o Ponto CT-4 próximo ao local do eixo do empreendimento.
- No trecho a jusante do eixo do AHE São Luiz do Tapajós, foram considerados pontos de amostragens em duas praias utilizadas pela população local como área de lazer, respectivamente a praia do Curral situada mais próxima do eixo do aproveitamento e Itaituba próxima a zona urbana deste município, onde o rio Tapajós é influenciado pelo efeito de remanso propagado pelo rio Amazonas.

• Tributários afluentes

 Dimensão das bacias contribuintes laterais, sendo consideradas as de maior área de abrangência e que vem aferir maior participação nos processos hidrossedimentométricos. Dentre estes tributários, destaca-se o rio Jamanxim, que em função da dimensão de sua bacia contribuinte, definiram-se dois pontos de amostragens: um localizado a montante próximo a linha do remanso do reservatório do AHE São Luiz do Tapajós (Ponto Jamanxim Montante) e outro próximo a foz deste tributário no rio tapajós (Ponto PR-5). Dentre outros tributários considerados neste critério, citam-se: Creporí (Ponto TR-6 ou Creporí), Ratão (Ponto TR-5A ou Ratão) e Jamanxinzinho (Ponto TR-7).

- Condições de uso e ocupação do solo das bacias contribuintes e em especial aquelas onde são desenvolvidas as atividades garimpeiras, geradoras de expressivas cargas de sedimentos em suspensão. Dentre estes tributários destacam-se os rios Creporí (Ponto TR-6 ou Creporí), Bom Jardim (Ponto Bom Jardim ou Bacabal) e Ratão (TR-5A ou Ratão) e;
- Contribuintes laterais formadores de grandes braços tributários do reservatório a exemplo do rio Tucunaré (TR-2A ou Tucunaré).

Na microlocalização destes pontos, procurou-se sempre que possível, posicioná-las próximas dos locais de amostragem de qualidade da água, de forma permitir integração entre as informações relacionadas a estes dois temas. Neste grupo de amostragens inserem-se os seguintes pontos: TR-6, CT-7A, TR-5A, CT-6A, PR-5, TR-7, TR-2A, CT-4.

As campanhas de amostragens de campo ocorreram em períodos distintos do ano com intuito de aferir o comportamento sedimentométrico sazonal em diferentes condições hidrológicas, traduzidas com o desenvolvimento de quatro campanhas de campo. A primeira campanha de levantamento hidrossedimentométrico foi desenvolvida no período de 28/04/2012 a 02/05/2012. A segunda no período 10/07/2012 a 14/07/2012. A terceira no período 17/10/2012 a 21/10/2012 e a quarta entre 17/01/2013 a 21/01/2013.

As campanhas incluíram levantamento batimétrico de seções transversais, medição de velocidade de escoamento, coletas de amostras de sedimentos em suspensão visando determinação da descarga sólida e coleta de amostras de sedimentos de fundo e suspensão para fins de realização de análise de classificação granulométrica.

Em particular para os cursos do Creporí (Ponto TR-6), Ratão (Ponto TR-5A) e Tucunaré (Ponto TR 2A), os levantamentos incluíram medições de descarga líquida e sólida.

7.4.1.1.4.4.1.2. Metodologia

7.4.1.1.4.4.1.2.1. Procedimentos de Campo

A seguir são apresentados os procedimentos de campo praticados durante os trabalhos de amostragens realizadas no ano de 2012, com a realização de medições e coleta de amostras em diferentes locais representativos do recurso hídrico.

No **Quadro 7.4.1.1.4.4.1.2.1/01** são contabilizadas as quantidades totais de amostragens, levantamentos e tipos de medições realizadas nas quatro campanhas de levantamento hidrossedimentométrico.

Quadro 7.4.1.1.4.4.1.2.1/01 - Quantidades de Material Coletado em Ca	ampo.
--	-------

Tipos de Análise	Quantidade
Concentração dos sedimentos em suspensão	248
Curva granulométrica de sedimentos em suspensão	48
Curva granulométrica de sedimentos de fundo	84
Levantamento batimétrico de seção transversal	48
Medição de velocidade de escoamento	40
Medição de Descarga Líquida	12

FONTE: CNEC WorleyParsons, 2013.

As campanhas hidrossedimentométricas abrangeram os seguintes tipos de amostragens:

- Levantamento Batimétrico de Seção Transversal Os trabalhos de campo contemplaram, em cada período da campanha, o levantamento batimétrico de 12 seções transversais.
- Coleta de Sedimento em Suspensão Teve por objetivo avaliar a variação da concentração dos sólidos suspensos ao longo do perfil de profundidade no ponto de medição. Neste propósito foram realizadas coletas individualizadas de sedimento em suspensão em 5 níveis de profundidades, respectivamente: a 20%, a 40%, a 60%, a 80% e a 0,20m acima do fundo do rio;
- Determinação da Velocidade de Escoamento Baseada na mesma sistemática descrita anteriormente, foram realizadas medições da velocidade de escoamento da água ao longo do perfil de profundidades nesses mesmos pontos e nas 5 profundidades. Neste processo foi procedida a coleta de sedimentos em suspensão, visando aferir as variações da velocidade da água em função da profundidade e permitir estabelecer uma correlação entre a velocidade de escoamento e a concentração de sedimento em suspensão;

- Coleta de Amostras de Sedimento de Fundo Foram realizadas coletas de amostras de sedimento do leito do rio objetivando a realização de análise voltada a classificação granulométrica;
- Coleta de Amostras de Sedimento em Suspensão Esse tipo de amostragem visou a realização de análises voltadas classificação granulométrica dos sedimentos em suspensão.
- Medições de Descarga Líquida e Sólida As campanhas de medições de descarga líquida e sólida foram desenvolvidas nos cursos dos rios Creporí, Ratão e Tucunaré, visando estabelecer as produtividades hídricas e sólidas nestes três tributários.

As **Fotos 7.4.1.1.4.4.1.2.1/01 a 7.4.1.1.4.4.1.2.1/04** ilustram os equipamentos hidrométricos utilizados nos trabalhos de medição de velocidade e coletas de amostras de sedimentos em suspensão e de fundo.

Na **Foto 7.4.1.1.4.4.1.2.1/01** é apresentado o guincho hidrométrico acoplado ao barco, através do qual é possível realizar a operação de posicionamento do molinete fluviométrico e do amostrador de sedimento em suspensão em uma dada profundidade.

Foto 7.4.1.1.4.4.1.2.1/01 – Detalhe do Molinete Fluviométrico.

Na **Foto 7.4.1.1.4.4.1.2.1/02** é apresentado o equipamento de amostragem utilizado para coleta de sedimento em suspensão, onde foi utilizado o amostrador DH-48, adaptado para garrafa com capacidade de 1 litro.

Foto 7.4.1.1.4.4.1.2.1/02 – Amostrador de sedimento em suspensão tipo DH-48.

Na **Foto 7.4.1.1.4.4.1.2.1/03** é mostrado um detalhe da garrafa numerada contendo a amostra do sedimento em suspensão recém-coletada.

Foto 7.4.1.1.4.4.1.2.1/03 – Garrafa de 1 Litro com Amostra Coletada

Na **Foto 7.4.1.1.4.4.1.2.1/04** é apresentado o equipamento utilizado na coleta de sedimento de fundo, onde foi utilizado o amostrador *Rock-Island*.

Foto 7.4.1.1.4.4.1.2.1/04 – Amostrador de material de fundo tipo Rock-Island.

7.4.1.1.4.4.1.2.2. Metodologia Adotada nos Ensaios Laboratoriais

As análises laboratoriais das amostragens obtidas das quatro campanhas sedimentométricas visaram a determinação da concentração do sedimento em suspensão e classificação granulométrica dos sedimentos de fundo e suspensão.

Nos **Quadros 7.4.1.1.4.4.1.2.2/01** a **7.4.1.1.4.4.1.2.2/04** são resumidos os dados obtidos das 4 campanhas de amostragens dos sedimentos em suspensão, com a apresentação dos resultados das concentrações em 5 níveis de profundidades.

Seção	Data	Número da Amostra	Profundidade (m)	Volume (ml)	Sedimento (g)	Concentração (mg/l)
		139	0,75	954,2	0,065	82,01
Dam		138	1,50	957,9	0,116	118,35
Jardim	28/4/2012	1391	2,25	949,6	0,060	69,29
ourunn		2852	3,00	963,3	0,051	53,38
		135	3,75	989,8	0,056	72,11
	28/4/2012	1348	0,83	973,0	0,061	63,10
		181	1,67	943,3	0,043	45,69
		<i>`</i> 0106	2,50	915,3	0,052	56,92
TR 6		144	3,34	938,3	0,056	60,00
		3080	4,17	914,8	0,260	283,89
		1780	1/3 da ME	575,4	0,048	84,12
		134	2/3 da ME	889,9	0,052	58,21
		136	1,23	931,5	0,026	27,59
CT 7A	28/4/2012	1467	2,46	949,1	0,024	25,60
		300	3,69	975,3	0,045	46,45

Quadro 7.4.1.1.4.4.1.2.2/01 – Concentração dos Sedimentos em Suspensão – 1ª Campanha

Seção	Data	Número da Amostra	Profundidade (m)	Volume (ml)	Sedimento (g)	Concentração (mg/l)
		<i>`</i> 0109	4,92	964,2	0,026	27,28
		291	6,15	950,7	0,029	30,08
		´0107	1/3 da ME	923,9	0,023	24,89
		137	2/3 da ME	961,9	0,029	30,04
		245	2,46	943,6	0,020	21,20
		1084	4,92	572,7	0,027	47,32
		257	7,38	932,6	0,016	16,73
Curral	1/5/2012	<i>`</i> 0175	9,84	504,3	0,029	58,30
		3327	12,30	946,4	0,035	37,51
		2159	1/3 da ME	921,7	0,028	30,27
		378	2/3 da ME	780,3	0,033	42,42
		718	2,26	889,7	0,038	42,60
		857	4,52	938,6	0,022	23,76
		202	6,79	931,4	0,024	26,30
Itatuba	2/5/2012	<i>`</i> 0193	9,05	867,2	0,012	14,30
		162	11,31	623,7	0,029	46,66
		´0167	1/3 da ME	947,6	0,034	36,20
		1469	2/3 da ME	926,6	0,025	26,76
		38	3,79	934,3	0,022	23,87
		258	7,58	844,3	0,023	26,89
		161	11,37	964,1	0,028	28,52
Jamanxim	30/4/2012	1409	15,16	979,8	0,023	23,58
wontante		1407	18,95	965,9	0,024	24,33
		339	1/3 da ME	828,0	0,029	34,54
		<i>`</i> 0744	2/3 da ME	944,3	0,021	22,56
		<i>´</i> 0217	0,39	897,0	0,017	18,62
		1082	0,79	965,7	0,017	18,02
TR 7	29/4/2012	<i>`</i> 0334	1,18	971,6	0,018	18,83
		165	1,58	922,0	0,016	17,57
		3190	1,97	647,1	0,016	25,19
		715	1,52	964,3	0,025	26,34
		<i>´</i> 0238	3,05	929,2	0,025	27,44
		813	4,57	973,8	0,025	25,67
PR 5	30/4/2012	971	6,10	910,0	0,025	27,14
		13	7,62	935,7	0,026	27,36
		1447	1/3 da ME	859,1	0,022	25,84
		<i>`</i> 0229	2/3 da ME	981,2	0,047	48,10
		166	0,84	964,9	0,032	33,27
		1445	1,68	871,4	0,048	55,31
TR5A	29/4/2012	48	2,52	972,3	0,027	28,18
	2011/2012	´0153	3.36	939.0	0.075	79.55
		1732	4,20	722,3	0.035	47.90
		159	0.75	974,3	0.022	22.89
		0145	1,50	969,7	0,020	20.42
TR2A	30/4/2012	0138	2,25	935,4	0.019	20.42
		810	3.00	857,2	0.021	24,50
		0229	3,75	766.6	0,022	28.18
CT4	1/5/2012	<i>`</i> 0523	0,81	968,2	0,021	22,10

Seção	Data	Número da Amostra	Profundidade (m)	Volume (ml)	Sedimento (g)	Concentração (mg/l)
		´0165	1,62	959,8	0,021	22,30
		´0260	2,43	973,3	0,137	141,17
		´0147	3,24	965,7	0,031	32,62
		1414	4,05	890,6	0,025	27,62
		37	1/3 da ME	973,6	0,024	24,55
		S/N	2/3 da ME	849,3	0,017	20,49
		133	0,74	824,3	0,023	28,27
		142	1,48	940,1	0,023	24,04
		143	2,22	941,7	0,022	23,26
CT6A	29/4/2012	<i>`</i> 0734	2,96	969,6	0,150	155,12
		´0129	3,70	952,4	0,026	27,30
		141	1/3 da ME	983,6	0,019	19,11
		´0182	2/3 da ME	967,1	0,026	26,88

Quadro 7.	4.1.1.4.4.1.2	.2/02 – Co	ncentração dos	Sedimentos	em Suspensä	ăo – 2ª Campanha

Seção	Data	Número da Amostra	Profundidade (m)	Volume (ml)	Sedimento (g)	Concentração (mg/l)
		1082	0,53	979,1	0,377	384,74
Dava		1391	1,07	830,6	0,261	314,59
Bom	13/7/2012	136	1,60	971,8	0,290	298,00
ourain		<i>`</i> 0310	2,14	972,4	0,363	373,30
		<i>`</i> 0734	2,47	978,8	0,344	351,55
		´0138	0,37	972,7	0,082	84,10
		138	0,74	981,4	0,085	86,92
		1090	1,10	938,7	0,072	76,17
TR6	14/7/2012	48	1,47	969,7	0,081	83,74
		1888	1,64	812,6	0,078	96,36
		2852	1/3 da ME	975,6	0,101	103,94
		166	2/3 da ME	964,6	0,075	77,34
		´0182	0,83	972,5	0,009	9,56
		13 A	1,66	979,2	0,011	11,44
		142	2,50	963,3	0,010	9,86
CT7A	14/7/2012	133	3,33	967,9	0,085	87,82
		<i>´</i> 0238	3,96	907,8	0,011	11,57
		143	1/3 da ME	969,4	0,016	16,20
		′0229 B	2/3 da ME	972,6	0,017	17,48
		′0229 A	2,02	968,4	0,271	279,64
		339	4,04	973,7	0,022	22,49
		37	6,06	970,0	0,016	16,08
Curral	10/7/2012	258	8,08	954,7	0,018	19,27
		<i>´</i> 0744	9,90	752,9	0,013	17,40
		<i>´</i> 0260	1/3 da ME	960,4	0,023	24,36
		1409	2/3 da ME	897,2	0,018	19,73
Itaituba	10/7/2012	161	1,64	979,3	0,013	12,97

Seção	Data	Número da Amostra	Profundidade (m)	Volume (ml)	Sedimento (g)	Concentração (mg/l)
		1407	3,29	966,1	0,012	12,63
		165	4,93	971,2	0,013	13,39
		813	6,58	933,3	0,012	13,29
		1414	8,02	927,2	0,014	14,99
		1447	1/3 da ME	983,5	0,017	16,78
		´0147	2/3 da ME	957,0	0,021	21,53
		2159	2,36	960,3	0,018	18,74
		257	4,73	826,7	0,022	26,13
		<i>`</i> 076	7,09	468,1	0,034	73,06
Jamanxim	12/7/2012	sn A	9,46	905,4	0,022	23,86
wontante		137	11,62	976,9	0,021	21,91
		3328	1/3 da ME	723,1	0,020	27,11
		3327	2/3 da ME	656,1	0,019	28,96
		715	0,20	822,6	0,008	9,73
		2897	0,41	990,5	0,069	69,26
TR7	12/7/2012	1452	0,61	928,4	0,063	67,49
		139	0,82	970,9	0,013	13,29
		´0175	0,82	631,6	0,010	16,15
		2972	0,68	791,3	0,021	27,04
		15	1,35	992,4	0,024	24,28
		23	2,03	986,0	0,024	24,04
PR 5	12/7/2012	109	2,70	976,3	0,020	20,38
		1783	3,18	737,9	0,023	31,44
		24	1/3 da ME	958,6	0,021	21,49
		17	2/3 da ME	648,8	0,022	33,75
		1445	0,58	829,3	0,073	87,91
		´0302	1,16	732,9	0,094	128,80
TR 5A	13/7/2012	´0307	1,75	922,6	0,078	84,87
		14	2,33	961,5	0,190	197,82
		18	2,71	852,1	0,077	90,48
		´0153	0,51	951,9	0,025	26,26
		245	1,02	915,4	0,010	11,25
TR 2A	11/7/2012	1732	1,53	958,2	0,012	12,63
		´0217	2,04	967,4	0,012	12,09
		3190	2,35	621,9	0,012	19,94
		22	0,43	926,6	0,023	24,82
		1778	0,86	859,1	0,016	18,74
		<i>`</i> 0523	1,29	976,6	0,021	21,40
CT4	11/7/2012	´0145	1,72	375,6	0,011	30,35
		´0165	1,95	551,1	0,049	88,73
		13 B	1/3 da ME	957,9	0,019	20,25
		<i>´</i> 0334	2/3 da ME	919,2	0,013	14,47
		145	0,35	991,4	0,085	85,74
		378	0,71	971,2	0,016	16,58
OTC A	10/7/0040	0303	1,06	979,5	0,030	30,63
CTOA	13/7/2012	<i>´</i> 0301	1,42	959,6	0,018	18,76
		20	1,57	698,1	0,018	25,21
		19	1/3 da ME	977,7	0,012	12,79

Seção	Data	Número da Amostra	Profundidade (m)	Volume (ml)	Sedimento (g)	Concentração (mg/l)
		<i>`</i> 0129	2/3 da ME	977,6	0,020	20,25

Quadro 7.4	4.1.1.4.4.1.2	.2/03 – Co	ncentração dos	Sedimentos	em Suspenså	áo – 3ª Campanha

Seção	Data	Número da Amostra	Profundidade (m)	Volume (ml)	Sedimento (g)	Concentração (mg/l)
		1443	2,84	954,2	0,225	236,22
		1391	2,43	957,9	0,215	224,97
Bom	20/10/2012	1444	1,82	949,6	0,304	319,71
Jardim		1787	1,22	963,3	0,204	211,36
		143	0,61	989,8	0,594	599,82
		1888	1,80	718,6	0,101	140,41
		1442	1,60	808,6	0,121	149,27
		1786	1,20	956,7	0,129	134,63
TR6	21/10/2012	1779	0,80	784,3	0,116	147,90
		162	0,40	950,0	0,457	481,16
		1785	1/3 da ME	841,7	0,121	143,88
		1777	2/3 da ME	933,1	0,133	142,96
		´0744	-0,20	962,4	0,166	172,90
		813	0,00	926,5	0,097	104,26
	21/10/2012	165	0,00	836,5	0,105	125,52
CT7A		1407	0,00	738,9	0,105	142,10
		1447	0,00	899,3	0,074	82,29
		1782	1/3 da ME	923,2	0,076	82,00
		1780	2/3 da ME	979,7	0,065	66,65
	17/10/2012	<i>`</i> 0147	12,56	561,3	0,055	98,34
		´0217	10,21	500,6	0,054	108,47
		245	7,66	692,0	0,055	78,76
Curral		142	5,10	909,0	0,061	67,55
		<i>`</i> 0302	2,55	560,1	0,054	96,05
		258	1/3 da ME	978,0	0,056	57,36
		133	2/3 da ME	943,3	0,058	61,59
		22	5,10	578,9	0,059	101,23
		1778	4,24	730,1	0,059	80,95
		´0145	3,18	941,5	0,060	64,15
Itaituba	17/10/2012	<i>`</i> 0334	2,12	855,8	0,054	62,87
		2972	1,06	672,9	0,053	78,76
		3190	1/3 da ME	852,4	0,053	62,29
		´0165	2/3 da ME	724,8	0,058	79,47
		141	5,72	815,0	0,066	81,23
		3327	4,74	956,5	0,046	48,20
lanacianti		23	3,55	919,5	0,076	82,44
Montante	19/10/2012	1452	2,37	924,6	0,075	81,01
		166	1,18	923,7	0,094	101,33
		135	1/3 da ME	850,1	0,273	321,73
		136	2/3 da ME	925,8	0,061	65,78

Seção	Data	Número da Amostra	Profundidade (m)	Volume (ml)	Sedimento (g)	Concentração (mg/l)
		2852	0,77	975,7	0,051	52,68
		138	0,78	982,9	0,059	59,62
TR7	19/10/2012	<i>`</i> 0129	0,58	982,5	0,020	19,85
		<i>`</i> 0138	0,39	828,0	0,052	62,92
		<i>`</i> 0734	0,19	816,2	0,052	63,46
		<i>`</i> 0238	3,71	807,7	0,228	282,04
		378	3,13	597,5	0,086	143,26
		´0175	2,35	948,2	0,085	89,54
PR5	19/10/2012	1682	1,56	942,2	0,077	81,94
		3228	0,78	873,7	0,062	71,19
		<i>´</i> 076	1/3 da ME	898,6	0,065	72,45
		2159	2/3 da ME	728,5	0,068	93,48
		2897	3,20	724,8	0,078	107,34
		715	2,72	962,1	0,080	82,63
TR5A	20/10/2012	18	2,04	931,9	0,082	88,10
		257	1,36	959,2	0,088	91,64
		1082	0,68	855,2	0,184	214,80
		<i>`</i> 0106	0,90	989,4	0,391	394,68
		<i>`</i> 0301	0,88	888,7	0,031	34,54
TR2A	18/10/2012	13	0,66	960,6	0,029	30,19
		19	0,44	993,1	0,028	28,30
		14	0,22	882,1	0,028	31,40
		<i>`</i> 0307	1,30	473,0	0,022	46,51
		<i>`</i> 0303	1,20	958,9	0,033	34,31
		20	0,90	931,8	0,032	34,88
CT4	18/10/2012	139	0,60	960,9	0,031	32,68
		´0229	0,30	979,6	0,026	26,64
		1445	1/3 da ME	747,1	0,029	38,68
		137	2/3 da ME	929,1	0,030	32,50
		24	3,44	909,1	0,060	66,00
		339	2,91	969,2	0,062	63,97
		17	2,18	951,2	0,107	112,07
CT6A	20/10/2012	1783	1,46	968,9	0,058	59,86
		<i>´</i> 0260	0,73	971,9	0,082	84,78
		15	1/3 da ME	836,1	0,054	64,82
		<i>`</i> 0310	2/3 da ME	717,7	0,056	78,03

Seção	Data	Número da Amostra	Profundidade (m)	Volume (ml)	Sedimento (g)	Concentração (mg/l)
		37	3,07	954,2	0,225	236,22
_		<i>`</i> 0182	2,62	957,9	0,215	224,97
Bom	17/1/2013	1888	1,96	949,6	0,304	319,71
Jaruini		1780	1,31	963,3	0,204	211,36
		1785	0,65	989,8	0,594	599,82
		<i>`</i> 0147	3,78	718,6	0,101	140,41
		<i>`</i> 0145	3,18	808,6	0,121	149,27
		142	2,39	956,7	0,129	134,63
TR 6	17/1/2013	´0217	1,59	784,3	0,116	147,90
		245	0,80	950,0	0,457	481,16
		3190	integrada	841,7	0,121	143,88
		258	integrada	933,1	0,133	142,96
		2972	17,03	962,4	0,166	172,90
		715	13,78	926,5	0,097	104,26
		<i>´</i> 0303	10,34	836,5	0,105	125,52
CT 7A	7/1/2013	138	6,89	738,9	0,105	142,10
		<i>`</i> 0734	3,45	899,3	0,074	82,29
		139	integrada	923,2	0,076	82,00
		<i>`</i> 0334	integrada	979,7	0,065	66,65
		<i>'</i> 76	16,40	561,3	0,055	98,34
		1452	13,28	500,6	0,054	108,47
		23	9,96	692,0	0,055	78,76
Curral	21/1/2013	2159	6,64	909,0	0,061	67,55
		137	3,32	560,1	0,054	96,05
		378	integrada	978,0	0,056	57,36
		1682	integrada	943,3	0,058	61,59
		18	6,50	578,9	0,059	101,23
		2897	5,36	730,1	0,059	80,95
		257	4,02	941,5	0,060	64,15
Itatuba	21/1/2013	1783	2,68	855,8	0,054	62,87
		22	1,34	672,9	0,053	78,76
		<i>`</i> 0310	integrada	852,4	0,053	62,29
		1778	integrada	724,8	0,058	79,47
			26,00	815,0	0,066	81,23
		19	20,96	956,5	0,046	48,20
		14	15,72	919,5	0,076	82,44
Jamanxim	19/1/2013	1787	10,48	924,6	0,075	81,01
Montante		20	5,24	923,7	0,094	101,33
		13	integrada	850,1	0,273	321,73
		1445	integrada	925,8	0,061	65,78
		1442	3,72	975,7	0,051	52,68
		<i>`</i> 0307	3,14	982,9	0,059	59,62
TR 7	19/1/2013	<i>`</i> 0106	2,35	982,5	0,050	50,38
		<i>`</i> 0229	1,57	828,0	0,052	62,92
		<i>`</i> 0301	0,78	816,2	0,052	63,46
	00///20/2	<i>`</i> 0138	5,90	807,7	0,228	282,04
PR 5	20/1/2013	3328	4,88	597,5	0,086	143,26

Quadro 7.4.1.1.4.4.1.2.2/04 – Concentração dos Sedimentos em Suspensão – 4ª Campanha

Seção	Data	Número da Amostra	Profundidade (m)	Volume (ml)	Sedimento (g)	Concentração (mg/l)	
		<i>`</i> 0302	3,66	948,2	0,085	89,54	
		141	2,44	942,2	0,077	81,94	
		133	1,22	873,7	0,062	71,19	
		?	integrada	898,6	0,065	72,45	
		<i>`</i> 0744	integrada	728,5	0,068	93,48	
	18/1/2013	162	3,90	989,4	0,391	394,68	
		3327	3,28	888,7	0,031	34,54	
TR5A		135	2,46	960,6	0,029	30,19	
		136	1,64	993,1	0,028	28,30	
		48	0,82	882,1	0,028	31,40	
		162	3,90	989,4	0,391	394,68	
		3327	3,28	888,7	0,031	34,54	
TR2A	20/1/2013	135	2,46	960,6	0,029	30,19	
		136	1,64	993,1	0,028	28,30	
		48	0,82	882,1	0,028	31,40	

No **Quadro 7.4.1.1.4.4.1.2.2/05** é apresentado os resultados das medições do perfil de velocidade de escoamento realizadas em diferentes profundidades e para as quatro campanhas.

	1ª Campanha			2ª Campanha			3ª Campanha			4ª Campanha		
Seção	Data	Prof. (m)	Velocidade (m/s)									
		0,10	0,521		0,10	0,685		0,10	0,670		0,10	0,634
		0,75	0,516		0,53	0,567		0,61	0,762		0,65	0,613
D		1,50	0,495		1,07	0,644		1,22	0,834		1,31	0,629
Bom	28/4/2012	2,25	0,510	13/7/2012	1,60	0,624	20/10/2012	1,82	0,829	17/1/2013	1,96	0,608
ouruini		3,00	0,541		2,14	0,608		2,43	0,788		2,62	0,624
		3,55	0,490		2,47	0,500		2,84	0,690		3,07	0,624
		3,75	0,000		2,67	0,000		3,04	0,000		3,27	0,000
		0,10	0,911	14/7/2012	0,10	0,711	21/10/2012	0,10	0,654	17/1/2013	0,10	0,916
	28/4/2012	0,83	0,886		0,37	0,670		0,40	0,624		0,80	0,968
		1,67	0,932		0,74	0,665		0,80	0,593		1,59	1,045
TR 6		2,50	0,880		1,10	0,577		1,20	0,588		2,39	0,973
		3,34	0,808		1,47	0,500		1,60	0,541		3,18	0,844
		3,97	0,783		1,64	0,500		1,80	0,510		3,78	0,675
		4,17	0,000		1,84	0,000		2,00	0,000		3,98	0,000
		0,10	0,932		0,10	0,264		0,10	0,480		0,10	1,209
		1,23	0,927		0,83	0,279		1,09	0,485	7/1/2013	3,45	1,189
		2,46	0,886		1,66	0,279		2,19	0,475		6,89	1,158
CT 7A	28/4/2012	3,69	0,860	14/7/2012	2,50	0,284	21/10/2012	3,28	0,454		10,34	1,086
		4,92	0,814	- - -	3,33	0,130		4,38	0,469		13,78	0,793
		5,95	0,654		3,96	0,089	-	5,27	0,403		17,03	0,300
		6,15	0,000		4,16	0,000		5,47	0,000		17,23	0,000
		0,10	0,870		0,10	0,536		0,10	0,505		0,10	1,178
Curral	1/5/2012	2,46	0,855	10/7/2012	2,02	0,536	17/10/2012	2,55	0,439	21/1/2013	3,32	1,004
		4,92	0,808		4,04	0,541		5,10	0,439		6,64	0,957

Quadro 7.4.1.1.4.4.1.2.2/05 - Perfil de Velocidade de Escoamento

	1ª Campanha			2ª Campanha			3ª Campanha			4ª Campanha		
Seção	Data	Prof. (m)	Velocidade (m/s)									
	ľ	7,38	0,695		6,06	0,490		7,66	0,423		9,96	0,788
		9,84	0,685		8,08	0,469		10,21	0,377		13,28	0,444
		12,10	0,264		9,90	0,403		12,56	0,362		16,40	0,362
		12,30	0,000		10,10	0,000		12,76	0,000		16,60	0,000
		0,10	0,716		0,10	0,408		0,10	0,433		0,10	1,040
		2,26	0,716		1,64	0,413		1,06	0,516		1,34	1,014
		4,52	0,644		3,29	0,403		2,12	0,439		2,68	1,009
Itatuba	2/5/2012	6,79	0,577	10/7/2012	4,93	0,387	17/10/2012	3,18	0,408	21/1/2013	4,02	0,839
		9,05	0,531		6,58	0,315		4,24	0,341		5,36	0,752
		11,11	0,387		8,02	0,341		5,10	0,315		6,50	0,557
		11,31	0,000		8,22	0,000		5,30	0,000		6,70	0,000
		0,10	1,625		0,10	0,274		0,10	0,146		0,10	0,947
		3,79	1,769		2,36	0,331		1,19	0,202		5,24	1,035
		7,58	1,810		4,73	0,197		2,38	0,197		10,48	1,112
Jamanxim	30/4/2012	11,37	1,636	12/7/2012	7,09	0,259	19/10/2012	3,57	0,264	19/1/2013	15,72	0,968
Wortdrife		15,16	1,625		9,46	0,177		4,76	0,094		20,96	0,865
		18,75	0,248		11,62	0,043		5,75	0,048		26,00	0,562
		18,95	0,000		11,82	0,000		5,95	0,000		26,20	0,000
		0,10	1,358		0,10	0,983		0,10	0,716		0,10	0,788
		0,39	1,333		0,20	0,922		0,19	0,685		0,78	0,752
		0,79	1,369		0,41	0,860		0,39	0,701		1,57	0,654
TR 7	29/4/2012	1,18	1,194	12/7/2012	0,61	0,808	19/10/2012	0,58	0,654	19/1/2013	2,35	0,695
		1,58	1,096		0,82	0,670		0,78	0,593		3,14	0,557
		1,77	0,916		0,82	0,526		0,77	0,510		3,72	0,469
		1,97	0,000		1,02	0,000		0,97	0,000		3,92	0,000
PR 5	30/4/2012	0,10	0,819	12/7/2012	0,10	0,053	19/10/2012	0,10	0,223	20/1/2013	0,10	1,019

	1ª Campanha			2ª Campanha			3ª Campanha			4ª Campanha		
Seção	Data	Prof. (m)	Velocidade (m/s)									
		1,52	0,737		0,68	0,058		0,78	0,238		1,22	0,880
		3,05	0,896		1,35	0,058		1,56	0,223		2,44	0,952
		4,57	0,783		2,03	0,033		2,35	0,182		3,66	0,870
		6,10	0,680		2,70	0,048		3,13	0,192		4,88	0,685
		7,42	0,290		3,18	0,110		3,71	0,120		5,90	0,454
		7,62	0,000		3,38	0,000		3,91	0,000		6,10	0,000
		0,10	0,860	13/7/2012	0,10	0,546	20/10/2012	0,10	0,747		0,10	0,552
	29/4/2012	0,84	0,814		0,58	0,500		0,68	0,701	18/1/2013	0,61	0,552
		1,68	0,793		1,16	0,351		1,36	0,659		1,22	0,531
TR5A		2,52	0,803		1,75	0,274		2,04	0,634		1,84	0,536
		3,36	0,654		2,33	0,223		2,72	0,433		2,45	0,526
		4,00	0,670		2,71	0,213		3,20	0,351		2,86	0,459
		4,20	0,000		2,91	0,000		3,40	0,000		3,06	0,000
		0,10	0,562	·	0,10	0,228	-	0,10	0,408		0,10	0,670
		0,70	0,521		0,51	0,202		0,22	0,428		0,82	0,644
		1,39	0,577		1,02	0,238		0,44	0,387		1,64	0,670
TR 2A	30/4/2012	2,09	0,536	11/7/2012	1,53	0,269	18/10/2012	0,66	0,315	20/1/2013	2,46	0,675
		2,78	0,423		2,04	0,187		0,88	0,264		3,28	0,634
		3,28	0,500		2,35	0,166		0,90	0,207		3,90	0,588
		3,48	0,000		2,55	0,000		1,10	0,000		4,10	0,000
		0,10	1,939		0,10	0,639		0,10	1,122		0,10	0,012
		0,81	1,929		0,43	0,639		0,30	0,968		0,30	0,012
CT4	1/5/2012	1,62	1,759	11/7/0010	0,86	0,541	18/10/2012	0,60	0,803	20/1/2012	0,60	0,012
014	1/3/2012	2,43	1,589	11/1/2012	1,29	0,531	10/10/2012	0,90	0,706	20/1/2013	0,90	0,012
		3,24	1,348		1,72	0,469		1,20	0,408		1,20	0,012
		3,85	0,397	F	1,95	0,279		1,30	0,259		1,30	0,012

	1ª Campanha			2ª Campanha			3ª Campanha			4ª Campanha		
Seção	Data	Prof. (m)	Velocidade (m/s)									
		4,05	0,000		2,15	0,000		1,50	0,000		1,50	0,000
	29/4/2012	0,10	1,420	13/7/2012	0,10	1,076	20/10/2012	0,10	1,158	18/1/2013	0,10	0,012
		0,74	1,425		0,35	1,081		0,73	1,178		0,73	0,012
		1,48	1,302		0,71	1,076		1,46	1,153		1,46	0,012
CT6A		2,22	0,957		1,06	0,993		2,18	0,891		2,18	0,012
		2,96	0,788		1,42	0,767		2,91	0,819		2,91	0,012
		3,50	0,418		1,57	0,880		3,44	0,603		3,44	0,012
	_	3,70	0,000		1,77	0,000		3,64	0,000		3,64	0,000

A seguir são apresentados os aspectos metodológicos adotados nas análises laboratoriais e processamento dos dados hidrossedimentométricos obtidos das campanhas de campo, com a determinação das análises granulométricas dos sedimentos de fundo e em suspensão e concentração sólida.

7.4.1.1.4.4.1.2.2.1. Concentração do Material Sólido em Suspensão

Para a determinação da concentração do material sólido em suspensão foi adotado o método da filtração por gravidade (DNAEE, 1970). Esse tipo de análise, para determinação da concentração total é recomendado pela rapidez de operação e simplicidade de equipamento apresentando relativa precisão.

O método não exige na sua operação correção para sais dissolvidos, porque estes passam pelo filtro, deixando somente o material sedimentado, embora uma parcela diminuta de sal fique retida com a umidade.

7.4.1.1.4.4.1.2.2.2. Análise Granulometrica

Foram realizadas analises granulométricas das amostragens obtidas das coletas dos sedimentos de fundo e em suspensão, que foram classificadas de acordo com as faixas de diâmetro granulométrico estabelecidas pela "American Geophysical Union".

Material de Fundo

A metodologia usada foi a do peneiramento, seguindo as normas da ABNT para análise granulométrica de solos, NBR 7181.

O ensaio de granulometria é o processo utilizado para a determinação da percentagem em peso que cada faixa especificada de tamanho de partículas representa na massa total ensaiada.

Inicialmente, as amostras recebidas de campo são identificadas e colocadas em bandejas de alumínio visando a sua secagem ao ar livre.

Após a secagem, as mesmas são quartejadas de modo a se obter uma amostra de 500 gramas que são levadas para a estufa onde permanecem de 10 a 15 minutos a 100 °C para a secagem final.

Uma vez resfriadas, as amostras são peneiradas em 02 (duas) etapas: primeiramente no conjunto das peneiras de 2,80 mm a 0,50 mm permanecendo no vibrador por 10 (dez) minutos. O restante do material que passa vai para o segundo conjunto de peneiras (de 0,355 a 0,038 mm), sendo colocado no vibrador por 25 minutos.

Terminado o peneiramento, são efetuadas as pesagens das diversas quantidades retidas em cada peneira, que se inicia da peneira de maior para a de menor diâmetro.

Os resultados das pesagens são lançados em planilhas eletrônicas que calculam automaticamente as porcentagens retidas acumuladas e os diâmetros característicos representando graficamente a correspondente curva granulométrica.

Material em Suspensão

A metodologia usada foi a do Tubo de Remoção pela Base (TRB), que relaciona a dimensão do sedimento com sua velocidade de queda. Esse método, comum às análises do material de suspensão e de fundo, objetiva a determinação da granulometria e da concentração do material contido na amostra.

Classificação Granulométrica

Para a classificação granulométrica utilizou-se a Tabela da American Geophysical Union que geralmente é utilizada como referência nas formulações e métodos utilizados no campo da sedimentologia. No **Quadro 7.4.1.1.4.4.1.2.2.2/01** é apresentada a classificação granulométrica proposta por esta Instituição e utilizada nos estudos do AHE São Luiz do Tapajós.

Diâmetro (mm)	Denominações
64-32	Cascalho muito grosso
32 -16	Cascalho grosso
16 - 8	Cascalho médio
8 - 4	Cascalho fino
4 – 2	Cascalho muito fino
2,00 - 1,00	Areia muito grossa
1,00 – 0,50	Areia grossa
0,50 – 0,25	Areia média
0,25 – 0,125	Areia fina
0,125 – 0,0625	Areia muito fina
0,0625 – 0,031	Silte grosso
0,031 - 0,016	Silte médio
0,016 - 0,008	Silte fino
0,008 - 0,004	Silte muito fino
0,004 - 0,0020	Argila grossa
0,0020 – 0,0010	Argila média
0,0010 - 0,0005	Argila fina
0,0005 - 0,00024	Argila muito fina

Quadro 7.4.1.1.4.4.1.2.2.2/01 - Classificação Granulométrica da American Geophysical Union.

FONTE: American Geophysical Union.

7.4.1.1.4.4.2. Apresentação dos Resultados Hidrossedimentométricos

A seguir são apresentados os resultados das análises laboratoriais, expressa em curvas de classificação granulométrica dos sedimentos de fundo e em suspensão.

Para a apresentação e comparação gráfica dos resultados das análises granulométricas de material de fundo, dividiram-se os trechos percorridos dos recursos hídricos em 3 compartimentos seguintes:

- Rio Tapajós;
- Rio Jamanxim, e;
- Tributários afluentes.

7.4.1.1.4.4.2.1. Calha do Rio Tapajos

7.4.1.1.4.4.2.1.1. Análise Granulométrica dos Sedimentos de Fundo

Nas Figuras **7.4.1.1.4.4.2.1.1/01** a **7.4.1.1.4.4.2.1.1/04**, são ilustradas as curvas granulométricas de sedimento de fundo, dos pontos pertencentes a calha do rio Tapajós relativas a cada campanha.

Figura 7.4.1.1.4.4.2.1.1/01 – Curvas Granulométricas de Sedimento de Fundo – Rio Tapajós 1^ª Campanha (Cheia).

Figura 7.4.1.1.4.4.2.1.1/02 – Curvas Granulométricas de Sedimento de Fundo – Rio Tapajós

2ª Campanha (Vazante).

Figura 7.4.1.1.4.4.2.1.1/03 – Curvas Granulométricas de Sedimento de Fundo – Rio Tapajós 3ª Campanha (Seca).

Figura 7.4.1.1.4.4.2.1.1/04 – Curvas Granulométricas de Sedimento de Fundo – Rio Tapajós 4^a Campanha (Enchente).

7.4.1.1.4.4.2.1.2. Análise Granulométrica dos Sedimentos em Suspensão

Nas Figuras **7.4.1.1.4.4.2.1.2/01** a **7.4.1.1.4.4.2.1.2/04**, são ilustradas as curvas granulométricas de sedimentos em suspensão, dos pontos pertencentes a calha do rio Tapajós, relativas a cada campanha.

Figura 7.4.1.1.4.4.2.1.2/01 – Curvas Granulométricas de Sedimento em Suspensão – Rio Tapajós – 1ª Campanha (Cheia).

Figura 7.4.1.1.4.4.2.1.2/02 – Curvas Granulométricas de Sedimento em Suspensão – Rio Tapajós – 2ª Campanha (Vazante).

Figura 7.4.1.1.4.4.2.1.2/03 – Curvas Granulométricas de Sedimento em Suspensão – Rio Tapajós – 3ª Campanha (Seca).

Figura 7.4.1.1.4.4.2.1.2/04 – Curvas Granulométricas de Sedimento em Suspensão – Rio Tapajós – 4ª Campanha (Enchente).

7.4.1.1.4.4.2.2. Calha do Rio Jamanxim

7.4.1.1.4.4.2.2.1. Análise Granulométrica dos Sedimentos de Fundo

Nas Figuras **7.4.1.1.4.4.2.2.1/01** a **7.4.1.1.4.4.2.2.1/04**, são ilustradas as curvas granulométricas de sedimento de fundo, dos pontos pertencentes a calha do rio Jamanxim, relativas a cada campanha.

Figura 7.4.1.1.4.4.2.2.1/01 – Curvas Granulométricas de Sedimento de Fundo – Rio Jamanxim – 1ª Campanha (Cheia).

Figura 7.4.1.1.4.4.2.2.1/02 – Curvas Granulométricas de Sedimento de Fundo – Rio Jamanxim – 2ª Campanha (Vazante).

Figura 7.4.1.1.4.4.2.2.1/03 – Curvas Granulométricas de Sedimento de Fundo – Rio Jamanxim – 3ª Campanha (Seca).

Figura 7.4.1.1.4.4.2.2.1/04 – Curvas Granulométricas de Sedimento de Fundo - Rio Jamanxim – 4ª Campanha (Enchente).

7.4.1.1.4.4.2.2.2. Análise Granulométrica dos Sedimentos em Suspensão

Nas Figuras **7.4.1.1.4.4.2.2.2/01** a **7.4.1.1.4.4.2.2.2/04**, são ilustradas as curvas granulométricas de sedimentos em suspensão, dos pontos pertencentes a calha do rio Jamanxim, relativas a cada campanha.

Figura 7.4.1.1.4.4.2.2.2/01 – Curvas Granulométricas de Sedimento em Suspensão – Rio Jamanxim – 1ª Campanha (Cheia).

Figura 7.4.1.1.4.4.2.2.2/02 – Curvas Granulométricas de Sedimento em Suspensão – Rio Jamanxim – 2ª Campanha (Vazante).

Figura 7.4.1.1.4.4.2.2.2/03 – Curvas Granulométricas de Sedimento em Suspensão – Rio Jamanxim – 3ª Campanha (Seca).

Figura 7.4.1.1.4.4.2.2.2/04 – Curvas Granulométricas de Sedimento em Suspensão – Rio Jamanxim – 4ª Campanha (Enchente).

7.4.1.1.4.4.2.3. Tributários Afluentes

7.4.1.1.4.4.2.3.1. Análise Granulométrica dos Sedimentos de Fundo

Nas Figuras **7.4.1.1.4.4.2.3.1/01** a **7.4.1.1.4.4.2.3.1/04**, são ilustradas as curvas granulométricas de sedimento de fundo, dos pontos pertencentes a calhados tributários afluentes, relativas a cada campanha.

Figura 7.4.1.1.4.4.2.3.1/01 – Curvas Granulométricas de Sedimento de Fundo – Tributários – 1ª Campanha (Cheia).

Figura 7.4.1.1.4.4.2.3.1/02 – Curvas Granulométricas de Sedimento de Fundo – Tributários – 2^a Campanha (Vazante).

Figura 7.4.1.1.4.4.2.3.1/03 – Curvas Granulométricas de Sedimento de Fundo – Tributários – 3ª Campanha (Seca).

Figura 7.4.1.1.4.4.2.3.1/04 – Curvas Granulométricas de Sedimento de Fundo – Tributários – 4ª Campanha (Enchente).

7.4.1.1.4.4.2.3.2. Análise Granulométrica dos Sedimentos em Suspensão

Nas **Figuras 7.4.1.1.4.4.2.3.2/01** a **7.4.1.1.4.4.2.3.2/04**, são ilustradas as curvas granulométricas de sedimentos em suspensão, dos pontos pertencentes a calha dos tributários, relativas a cada campanha.

Figura 7.4.1.1.4.4.2.3.2/01 – Curvas Granulométricas de Sedimento em Suspensão - Tributários – 1ª Campanha (Cheia).

Figura 7.4.1.1.4.4.2.3.2/02 – Curvas Granulométricas de Sedimento em Suspensão - Tributários – 2ª Campanha (Vazante).

Figura 7.4.1.1.4.4.2.3.2/03 – Curvas Granulométricas de Sedimento em Suspensão - Tributários – 3ª Campanha (Seca).

Figura 7.4.1.1.4.4.2.3.2/04 – Curvas Granulométricas de Sedimento em Suspensão - Tributários – 4^a Campanha (Enchente).

7.4.1.1.4.4.3. Avaliação dos Resultados Hidrossedimentométricos

Os sedimentos que compõem o leito dos cursos d'água apresentam em média uma composição granulométrica enquadrada na faixa entre a areia média e cascalho muito fino e quase ausência de sedimentos coesivos, conforme comentado na sequencia.

7.4.1.1.4.4.3.1. Calha do Rio Tapajós

No grupo de amostragens obtidas no rio Tapajós, respectivamente os Pontos CT-7A, CT-6A, CT-4, Curral e Itaituba, indicaram, em média, a presença de sedimentos de fundo enquadrados na categoria das areias médias com diâmetro granulométrico D_{50} variando entre 0,3 e 0,5 mm.

Foram verificadas condições diferenciadas no ponto de amostragem CT-4 que apresentou no período de cheia, sedimentos de fundo classificados como cascalho muito fino, provavelmente em função do escoamento mais turbulento verificado durante a coleta. No período da seca, verificou-se no ponto CT-7A sedimentos classificados como areia grossa.

Na quarta campanha de amostragem não foram procedidas coletas de sedimento de fundo nos Pontos CT-6A e CT-4, apesar das diversas tentativas de lançamento da draga, onde se obteve sedimentos com faixa granulométrica classificada como cascalho muito grosso, refletindo as condições hídricas nestes pontos, de rio veiculando em regime turbulento em leito conformado em substrato rochoso.

A comparação entre as curvas granulométricas resultantes das amostragens de Curral e Itaituba revela um padrão bastante coerente de comportamento, com uma tendência natural de obter sedimentos com constituição granulométrica mais fina a medida que se dirige para jusante neste trecho de rio.

O conjunto de amostragens obtidas no rio Tapajós, assinalou uma faixa de variação granulométrica bastante estreita ao comparar as campanhas desenvolvidas nos períodos de cheia, vazante, seca e enchente. Em média, foi identificada a presença de sedimentos em suspensão com diâmetro granulométrico D_{50} próximo de 0,008 mm.

7.4.1.1.4.4.3.2. Calha do Rio Jamanxim

As amostragens revelaram um padrão granulométrico disperso com a presença de sedimentos situados na faixa granulométrica classificadas como areia grossa a muito grossa característico de leito de rios com escoamento turbulento.

7.4.1.1.4.4.3.3. Tributários

As amostragens realizadas nos tributários revelaram um padrão disperso de distribuição granulométrica. Nos pontos de amostragens realizadas nos rios Ratão e Bom Jardim indicaram em média, a presença de sedimentos classificados como cascalho muito fino com diâmetro granulométrico médio variando entre 3,2 e 3,5 mm, revelando uma condição alterada em função da presença das atividades garimpeiras neste curso d'água.

Para os demais tributários, as amostragens revelaram um padrão granulométrico disperso com a presença de sedimentos situados na faixa granulométrica classificadas como areia grossa a muito grossa característico de leito de rios com escoamento turbulento.

Nos sedimentos em suspensão observa-se a predominância dos sedimentos coesivos, onde as frações granulométricas enquadradas nas faixas dos siltes e argilas participam com um percentual variando entre 91 e 97%. A fração restante enquadra-se na faixa de areia muito fina.

Um padrão granulométrico pouco mais disperso é verificado nas amostragens realizadas nos tributários com diâmetro granulométrico D_{50} variando entre 0,005 e 0,008 mm.

7.4.1.1.4.4.4. Alterações na Morfologia das Seções

As alterações ocorridas na morfologia da calha de escoamento foram aferidas através de análise visual comparativa entre os levantamentos batimétricos subsequentes de seções transversais.

Neste propósito são utilizadas as seguintes informações:

 Dados de quatro campanhas de levantamento de campo desenvolvidas no decorrer do ano de 2012, procurando aferir as variações da morfologia no intervalo de um ano hidrológico. No Quadro 7.4.1.1.4.4.4/01 são relacionadas as seções topobatimétricas consideradas nos quatro levantamentos.

			Coordenadas UTM			
Seção	Curso d'água	Pontos	Fuso	b: 22		
			E (m)	N (m)		
TD 6	Cropori	MD	467.938.23	9.362.231.59		
IK-0	Стероп	ME	468.129.04	9.362.240.27		
CT 74	Tanaiós	MD	466.397.00	9.371.083.00		
CI-7A	Тарајоѕ	ME	465.220.00	9.372.146.00		
Rom jardim	Rom Jardim	MD	486.741.95	9.382.609.98		
Boni jaruin	Bom Jaruim	ME	486.718.32	9.382.632.75		
	Detão	MD	506.834.22	9.411.010.13		
IK-5A	Ralao	ME	506.782.27	9.410.969.06		
	Tanaiáa	MD	506.791.00	9.421.404.00		
CT-0A	Тарајоѕ	ME	505.204.00	9.423.897.00		
TD 7	lomonyizinho	MD	563.074.00	9.456.320.00		
112-1	Jamanxizinno	ME	563.045.00	9.456.288.00		
lamanyim montanta	lomonvim	MD	560.748.00	9.444.389.00		
Jamanxim moniante	Jamanxim	ME	560.336.00	9.444.515.00		
	lamanyim	MD	561.686.00	9.470.919.00		
FR-J	Jamarixim	ME	562.257.00	9.470.835.00		
	Tucupará	MD	579.331.00	9.485.640.00		
TR-2A	rucunare	ME	579.320.00	9.485.616.00		
	Tanaiáa	MD	580.774.00	9.490.711.00		
01-4	Тарајоѕ	ME	578.652.00	9.492.736.00		
Curral	Tanaiós	MD	583.235.00	9.512.616.00		
Guirai	гарајоз	ME	582.234.00	9.513.899.00		
Itaituba	Tanaiós	MD	614.937.00	9.525.159.00		
παιτυρα	rapajus	ME	612.670.00	9.572.204.00		

Quadro 7.4.1.1.4.4.4/01 – Seções Topobatimétricas Levantadas na Área do Reservatório.

FONTE: CNEC WorleyParsons, 2013.

 Dados da estação fluviométrica de Itaituba operada pela Agência Nacional de Águas – ANA. As informações disponíveis se resumem nos levantamentos de 5 perfis transversais desenvolvidas entre os anos de 1997 a 2005.

Nas **Figuras 7.4.1.1.4.4.4/01** a **7.4.1.1.4.4.4/12** são apresentadas as seções batimétricas medidas ao longo das quatro campanhas de monitoramento hidrossedimentométrico desenvolvidas ao longo do ano de 2012.

Figura 7.4.1.1.4.4/01 – Batimetria – Rio Crepori em TR 6

Figura 7.4.1.1.4.4/02 - Batimetria - Tapajós em CT 7A

Figura 7.4.1.1.4.4.4/03 – Batimetria – Rio Bom Jardim ou Bacabal em Bom Jardim

Figura 7.4.1.1.4.4/04 – Batimetria – Rio Ratão em TR 5A

Figura 7.4.1.1.4.4/05 – Batimetria – Rio Tapajós em CT-6A

Figura 7.4.1.1.4.4/06 - Batimetria - Rio Jamanxim em Jamanxim Montante

Figura 7.4.1.1.4.4/07 – Batimetria – Rio Jamanxizinho em TR-7

Figura 7.4.1.1.4.4.4/08 – Batimetria – Rio Jamanxim em PR-5

Figura 7.4.1.1.4.4.4/09 - Batimetria - Rio Tucunaré em TR-2A

Figura 7.4.1.1.4.4.4/10 – Batimetria – Rio Tapajós em CT 4

Figura 7.4.1.1.4.4/11 – Batimetria – Rio Tapajós em Curral

Figura 7.4.1.1.4.4/12 – Batimetria – Rio Tapajós em Itaituba

Na **Figura 7.4.1.1.4.4/13** é apresentado o histórico de levantamentos de perfis transversais desenvolvidos pela Agência Nacional de Águas – ANA na estação fluviométrica de Itaituba. O gráfico retrata a configuração obtida de cinco levantamentos realizados entre os anos de 1997 a 2005.

Figura 7.4.1.1.4.4.4/13 – Perfis Transversais na Estação Fluviométrica de Itaituba.

Na composição dos gráficos comparativos entre os levantamentos batimétricos, desconsideraram-se em alguns casos, os perfis que apresentaram grande diferenciação quanto a conformação morfológica do leito. As incorformidades verificadas refletem as dificuldades de se estabilizar o barco em um percurso préestabelecido, veiculando em rio com escoamento turbulento e leito em substrato rochoso, onde não raras vezes são verificadas amplas alterações de fundo.

Nesta comparação foram descartados também os levantamentos realizados fora dos pontos de amostragens em função das dificuldades de locais de acesso em função da pouca profundidade do curso d'água.

A análise do histórico dos levantamentos de perfís transversais permite aferir uma relativa estabilidade quanto as transformações ocorridas na morfologia da calha de escoamento com variações observadas na espessura de sedimento da ordem de 3,0 metros.

Com base nos quatro levantamentos realizados no ano de 2012, verifica-se que as maiores alterações morfológicas foram percebidas nas seções levantadas no curso do Tapajós. Dentre os tributários laterais, destaca-se o rio Ratão como o mais afetado por estas transformações. Os demais contribuintes assinalam uma relativa estabilidade quanto as alterações ocorridas na morfologia.

O histórico de levantamento disponibilizado pela Agência Nacional de Águas – ANA, restrita a estação fluviometrica de Itaituba e com observações realizadas no periodo de 1997 a 2005 afere uma condição de estabilidade no comportamento

sedimentometrico, com variações percebidas na espessura do sedimento da ordem 2 metros.

7.4.1.1.4.4.5. Processamento das Curvas Chaves de Sedimento

Tendo como referência os dados de medições de descarga sólida e líquida monitorada nas estações fluviométricas procedeu-se o cálculo das curvas chaves de sedimento representativas do curso do Tapajós. Na composição desta base de informação incluem os dados hidrossedimentométricos obtidos das quatro campanhas de monitoramento sedimentométrico e as obtidas durante os estudos de inventário.

Observa-se que grande parte das informações utilizadas na composição desta curva chave foi derivada das estações operadas pela Agência Nacional de Águas – ANA que detém um histórico observado bem mais extenso, conforme dados apresentados no **Quadro 7.4.1.1.4.4.1.1/01**.

Neste particular reflete-se a carência de dados oriundas do rio Jamanxim que não detém massa critica de dados suficientes para a composição de uma curva chave confiável.

• Aspectos Metodológicos

A partir dos dados disponíveis de descarga sólida em suspensão foram estimadas as descargas sólidas totais, através da sistemática preconizada pelo método simplificado de Colby, traduzida pelas seguintes expressões:

$$Q_{st} = Q_{sm} + Q_{nm}$$
$$Q_{sm} = 0,0864 \times Q_L \times C_S$$
$$Q_{nm} = q_{nm} \times K \times L$$

onde:

 Q_{st} = descarga sólida total, em t/dia;

 Q_{sm} = descarga sólida medida, em t/dia;

 Q_{nm} = descarga sólida não medida, em t/dia;

 Q_L = descarga líquida, em m³/s;

 C_s = concentração de sólido em suspensão medida, em ppm;

 q_{nm} = descarga sólida não medida aproximada, em t/dia;

K = fator de correção e

L =largura do rio, em m.

O valor de Q_{nm} corresponde à descarga de arrasto somada a descarga não amostrada, sendo definida com o auxílio de ábacos a partir da velocidade média, da profundidade média, da concentração do sólido em suspensão medida e da largura da seção.

A partir da descarga sólida total, foram estabelecidas as relações funcionais sintetizadas através da regressão dos logaritmos das descargas sólidas totais sobre os correspondentes logaritmos das vazões líquidas, obtendo-se desta forma as curvas-chaves de sedimentos, expressa através da seguinte equação geral:

 $\mathbf{Q}_{solida} = \mathbf{a} * (\mathbf{Q}_{liquida})^n$

onde:

Q_{líquida} é a descarga líquida, em m³/s/km²;

 \mathbf{Q}_{solida} é a descarga sólida, em ton/dia/km²;

a e **n** são os coeficientes resultantes do processo de correlação.

Esse procedimento de regionalização em relação à área de drenagem permite aplicar a equação obtida em qualquer local do curso do Tapajós, desde que se respeite a região de validade delimitada pelos estudos de regionalização.

• Processamento das Curvas-chave dos Sedimentos em Suspensão

A seguir é apresentada a equação da curva chave de sedimento definida para o trecho do rio Tapajós situado a montante do eixo do AHE São Luiz do Tapajós (alto curso do Tapajós).

A análise regional dos dados de medições de descarga sólida permitiu estabelecer uma equação de curva-chave de sedimentos a partir dos dados de medições de descarga líquida e sólida disponíveis nas estações fluviométricas consideradas nos cursos dos rios Tapajós, Teles Pires e Juruena.

A equação resultante é a seguinte: Q_{st} = 15,7307 x (Qlíq) ^{1,5851}

No **Figura 7.4.1.1.4.4.5/01** é apresentada a configuração da curva-chave de sedimento total, valida para o curso do Tapajós.

Figura 7.4.1.1.4.4.5/01 – Curva-chave de Sedimento Total – Alto Curso do Tapajós.

No **Quadro 7.4.1.1.4.4.5/01** são apresentados os volumes estimativos de descarga sólida definidas para o local do eixo do AHE São Luiz do Tapajós, com valores expressos em toneladas por mês.

Os valores foram obtidos, considerando a aplicação da série de vazões médias mensais definidas para o local do eixo do AHE São Luiz do Tapajós e referente ao período de janeiro de 1931 a dezembro de 2009, abrangendo, portanto, uma diversidade de condições hidrológicas de vazões.

Masaa	Média	Máxima	Mínima
Weses	(ton/mês)	(ton/mês)	(ton/mês)
Jan	1.136.333	2.865.732	339.542
Fev	1.738.453	4.242.007	488.940
Mar	2.657.480	4.558.913	1.254.041
Abr	2.394.901	4.364.242	1.063.897
Mai	1.462.293	3.101.147	507.049
Jun	502.522	1.018.625	230.888
Jul	226.361	348.596	140.344
Ago	144.871	217.307	104.126
Set	122.235	176.562	95.072
Out	158.453	380.287	99.599
Νον	267.106	656.447	113.181
Dez	561.376	1.258.568	212.779
Total Anual	947.699	2.657.480	122.235

Quadro 7.4.1.1.4.4.5/01 - Valores Estimativos da Descarga Sólida Total.

FONTE: CNEC WorleyParsons, 2013.

Na **Figura 7.4.1.1.4.4.5/02** é apresentado um histograma retratando a produtividade de carga sólida mínima, média e máxima na bacia expressa em ton/mês/km².

Figura 7.4.1.1.4.4.5/02 - Histograma Comparativo entre as Descargas Sólidas Totais.

resources & energy

ANEXO GERAL 7.4.1.1.4/04

Modelagem Hidrossedimentométrica

DIREITOS RESERVADOS

CNEC WorleyParsons

VOLUME 5 – Anexos Gerais

7.4.1.1.4.4.6. Modelagem Hidrossedimentometrica

7.4.1.1.4.4.6.1. Introdução

Este relatório trata do estudo de assoreamento na região a montante da barragem do AHE São Luiz do Tapajós, e também sobre o potencial de erosões no trecho de jusante no trecho compreendido entre o canal de fuga e a estação fluviométrica de Itaituba. O trecho de todo o estudo é indicado na Figura 7.4.1.1.4.4.6.1/01, com detalhamento do trecho de jusante na Figura 7.4.1.1.4.4.6.1/02. Também foi analisado o comportamento do trecho onde se encontram cavidades localizadas à margem do canal esquerdo da ilha da Goyana (Figura 7.4.1.1.4.4.6.1/03), no rio Tapajós, uma vez que a retenção de sedimentos no reservatório poderia dar margem a este tipo de ocorrência caso a capacidade de retenção de sedimentos fosse significativa. No entanto, será visto mais adiante que devido ao baixo tempo de residência do reservatório e ao padrão de transporte sólido (concentrações, granulometria, etc.) não existe essa possibilidade.

Figura 7.4.1.1.4.4.6.1/01 - Localização do trecho de interesse de estudo do AHE São Luíz do Tapajós

Figura 7.4.1.1.4.4.6.1/02 - Localização do trecho de interesse a Jusante do AHE São Luíz do Tapajós

Figura 7.4.1.1.4.4.6.1/03 - Localização do trecho de interesse específico no canal esquerdo da ilha de Goyana

As análises consideram primeiramente uma abordagem acerca dos dados de medição obtidos nas campanhas recentes e na sequência o problema é analisado com auxílio de modelação matemática sedimentológica, fazendo uso do modelo HEC-RAS. Foram feitas diferentes hipóteses de cálculo, avaliando um cenário que perfaz um total de 100

anos após a conclusão das obras, para ao final concluir sobre o potencial de assoreamento na área a montante do barramento e de erosão no trecho a jusante do empreendimento até a localidade de Itaituba.

Os arquivos do programa HECRAS são apresentados no Anexo Digital 7.4.1.1.4/01.

7.4.1.1.4.4.6.2.1. Seções Topobatimétricas

Das seções topo-batimétricas levantadas foram utilizadas 27 no Rio Tapajós a montante da foz do Rio Jamanxim, 10 nesse afluente e mais 3 seções desse ponto até o eixo do aproveitamento, conforme indicação da **Figura 7.4.1.1.4.4.6.2.1/01**.

Figura 7.4.1.1.4.4.6.2.1/01 – Esquema das Seções de Cálculo de assoreamento

Para as simulações do possível processo de erosão foram utilizadas 7 seções situadas a jusante do AHE São Luís do Tapajós conforme a indicação da **Figura 7.4.1.1.4.4.6.2.1/02**. A seção S2 assinalada na figura foi levantada posteriormente às demais para permitir um detalhamento melhor do trecho de ocorrência das cavidades, no canal da ilha da Goyana.

Figura 7.4.1.1.4.4.6.2.1/02 – Esquema das Seções de Cálculo de erosão

Dos estudos hidrológicos e hidráulicos do empreendimento foram feitos os cálculos de remanso para diferentes situações com a finalidade de fazer a calibração do modelo em termos do fator de resistência de Manning. Estes dados correspondem aos valores introduzidos no módulo de Dados Geométricos do modelo HEC-RAS, a ser apresentado mais adiante, neste relatório.

7.4.1.1.4.4.6.2.2. Caracterização dos Sedimentos de Fundo e em Suspensão

As campanhas de caracterização sedimentológica foram realizadas, utilizando aparelhos de hidrometria convencional (amostrador de sedimentos em suspensão, molinete calibrado, guincho com graduação e apoio de terra para determinação do posicionamento do ponto de medição de velocidades). As amostras foram enviadas ao laboratório de sedimentometria onde foram determinadas as concentrações. A metodologia empregada foi a de filtração por gravidade. Para complementar a caracterização, realizou-se medições de velocidades e amostragens pontuais ao longo de verticais em algumas seções. Este levantamento permite caracterizar melhor o transporte sólido em suspensão para avaliar a proporção de carga de lavagem esperado nas equações de transporte sólido obtidas das campanhas.

Nas diferentes campanhas de sedimentos em suspensão, verificou-se um comportamento muito homogêneo. A título de exemplo apresenta-se nas **Figuras 7.4.1.1.4.4.6.2.2/01** a **7.4.1.1.4.4.6.2.2/03** os resultados da quarta campanha ao longo do trecho de interesse. Os dados de todas as campanhas são apresentados nas Figuras 7.4.1.1.4.4.2.3.2/01 a 7.4.1.1.4.4.2.3.2/04, 7.4.1.1.4.4.2.2.2/01 a 7.4.1.1.4.4.2.1.2/01 a 7.4.1.1.4.4.2.1.2/04 e apresentam o mesmo comportamento. Observa-se que a quase totalidade dos sedimentos em suspensão (mais de 90%) correspondem à fração com dimensão inferior aos siltes (d < 0,06 mm).

Figura 7.4.1.1.4.4.6.2.2/01 – Granulometria em Suspensão nas Seções CT7A, CT6A e CT4.

Figura 7.4.1.1.4.4.6.2.2/02 – Granulometria em Suspensão nas Seções Curral e Itaituba

Figura 7.4.1.1.4.4.6.2.2/03 – Granulometria em Suspensão nos Afluentes

Novamente, a título de exemplo, são apresentados os gráficos das granulometrias do material de fundo nos mesmos locais na última campanha (**Figuras 7.4.1.1.4.4.6.2.2/04** a **7.4.1.1.4.4.6.2.2/06**). Os dados completos estão apresentados Figuras 7.4.1.1.4.4.2.3.1/01 a 7.4.1.1.4.4.2.3.1/04, 7.4.1.1.4.4.2.2.1/01 a 7.4.1.1.4.4.2.1.1/04.

Figura 7.4.1.1.4.4.6.2.2/04 - Granulometria do Material de Fundo na Seção CT7A

Figura 7.4.1.1.4.4.6.2.2/05 – Granulometria do Material de Fundo nas Seções Curral e Itaituba

Figura 7.4.1.1.4.4.6.2.2/06 – Granulometria do Material de Fundo nos Afluentes

Ao se comparar esses dados com as granulometrias do material em suspensão podese ver claramente que esses últimos, coletados em suspensão pelo método de integração na vertical, correspondem quando muito às frações mais finas do material de fundo (menos de 10%). Portanto, fica confirmado tratar-se exclusivamente de Carga de Lavagem. Esta modalidade de transporte de material raramente encontrado no leito praticamente não interage com o material que constitui o leito. Em outras palavras, trata-se de material que é transportado quase que permanentemente em suspensão com baixa probabilidade de ser retido dentro do futuro reservatório (estudos de assoreamento) e consequentemente produzir aprofundamento no trecho a jusante (estudos de erosão).

Essa conclusão é importante uma vez que um reservatório com as características como a deste caso em estudo, com baixo tempo de residência e que receba cargas de sedimentos finos, em grande parte constituída por argilas e siltes, deverá ter uma

evolução muito discreta no assoreamento. Este fato será verificado mais adiante, nos resultados da modelação sedimentológica.

Pelas razões apontadas, perde o sentido estudar a distribuição de concentrações, uma vez que deve resultar aproximadamente constante na vertical por tratar-se de material em suspensão muito fino. De fato essa característica foi constatada nas medições pontuais ao longo da profundidade, conforme se apresenta no **Quadro 7.4.1.1.4.4.6.2.2/01**.

Seção	Localização	C 1 ^ª camp. (mg/l)	C 2 ^ª camp. (mg/l)	C 3 ^ª camp. (mg/l)	C 4 ^ª camp. (mg/l)
CT 7A	Montante do eixo	25 e 30	16 e 17	67 e 82	82 e 173
CT 6A	Montante do eixo	19 e 27	13 e 20	65 e 78	81 e 101
CT 4	Eixo	20 e 25	14 e 20	33 e 39	-
Curral	Jusante do eixo	30 e 42	24 e 20	57 e 62	68 e 108
Itaituba	Jusante do eixo	27 e 36	17 e 22	62 e 79	63 e 101

Quadro 7.4.1.1.4.4.6.2.2/01 - Concentrações médias medidas em 5 seções do rio Tapajós

Observa-se nestes resultados concentrações muito baixas, notadamente nas duas primeiras campanhas, chegando estas quase ao limite de detecção dos métodos convencionais de análise laboratorial. Estes resultados, no entanto, são coerentes com os obtidos em campanhas realizadas em épocas diferentes no rio Tapajós.

Ao analisar os resultados de campanhas realizadas pela A.N.A. nos postos de Itaituba (17730000) entre os anos 1992 e 2011 e de Jatobá (17650000) entre os anos de 1977 e 1982 observam-se concentrações muito baixas, como mostra o **Quadro 7.4.1.1.4.4.6.2.2/02** com as respectivas variações nas medições:

Posto	Código	Período	C mínima (mg/l)	C média (mg/l)	C máxima (mg/l)
Itaituba	17730000	1992-2011	1,0	11,6	48,3
Jatobá	17650000	1977-1982	2,5	12,0	27,3

Quadro 7.4.1.1.4.4.6.2.2/02 - Concentrações medidas em séries históricas no rio Tapajós

Para o estudo de assoreamento no reservatório e de erosão a jusante do barramento foi utilizado um critério mais conservador, considerando a hipótese de retenção total de sedimentos no reservatório. As granulometrias do material de fundo correspondem aos trechos caracterizados nas campanhas. Estes dados estão apresentados no

Quadro 7.4.1.1.4.4.6.2.2/03 a seguir, com a distribuição granulométrica no formato do módulo de transporte sólido do modelo HEC-RAS.

Fração	d	Estudo de	Assoreamento	Estudo de (material	e Erosão do leito)
Tração	(mm)	(%)	fundo (%)	Itaituba (%)	Curral (%)
Argila	0,004	38,2	-	-	-
silte muito fino	0,008	12,8	-	-	-
silte fino	0,016	16,8	-	-	-
silte médio	0,0313	16,7	0,0	0,0	0,0
silte grosso	0,0625	10,6	0,1	0,2	0,2
areia muito fina	0,125	4,9	4,4	1,1	0,8
arei fina	0,25	0,0	39,4	21,4	13,4
areia media	0,5	-	45,8	51,3	43,4
areia grossa	1	-	4,5	14,7	26,1
areia muito grossa	2	-	2,2	7,8	10,7
seixos muito finos	4	-	1,8	3,3	4,8
seixos finos	8	-	1,4	0,1	0,6
seixos médios	16	-		0,0	0,0

Quadro 7.4.1.1.4.4.6.2.2/03 - Curvas granulométricas médias nos trechos nos estudos de assoreamento e de erosão

7.4.1.1.4.4.6.3. Modelagem Matemática

7.4.1.1.4.4.6.3.1. Modelo HEC-HAS

O Sistema HEC-RAS reúne quatro modelos unidimensionais que tratam do escoamento permanente gradualmente variado, escoamento não permanente (modelo hidrodinâmico), análise de transporte de sedimentos e qualidade da água. Estes modelos são integrados e utilizam a mesma base de informações para a caracterização da geometria das seções, posicionamento, e outras informações que podem ser utilizadas em comum a todos os modelos, dando-lhe com isto grande versatilidade na sua utilização.

A **Figura 7.4.1.1.4.4.6.3.1/01** a seguir mostra o painel principal do projeto Tapajós que resultou na modelagem do trecho de interesse. Os botões na parte superior deste painel habilitam as principais ações tais como a inserção da geometria, dados para a modelação hidrodinâmica em regime permanente, não permanente e quase permanente, dados para a caracterização sedimentométrica, entre outros. Os botões mais a direita apresentam os resultados na forma gráfica, com possibilidade de animação, ou na forma de tabela com a possibilidade de escolha dos dados de saída.

HEC-RAS	4.1.0	
File Edit	Run View Options GIS Tools Help	
	(立下命 🖤 🖬 上发生)	L▓♥ೆ₽₽₽¥₽₽∎∎₽∞ Įщ
Project:	Tapajós_Jusante	C:\\CONSUL\AAAAATAPAJOZ\TAPAJOZ\HECRAS\Tapajos.prj 👘 🚞
Plan:	Plan Laursen com incremento dt diferente	C:\\CONSUL\AAAAATAPAJOZ\TAPAJOZ\HECRAS\Tapajos.p15
Geometry:	JUSANTE	C:\\CONSUL\AAAAATAPAJOZ\TAPAJOZ\HECRAS\Tapajos.g01
Steady Flow:		
Quasi Unstea	dy TapajosJus2	C:\\CONSUL\AAAAATAPAJOZ\TAPAJOZ\HECRAS\Tapajos.q04
Unsteady Flov	N:	
Sediment:	TapajosGranuJJusante Laursen	C:\\CONSUL\AAAAATAPAJOZ\TAPAJOZ\HECRAS\Tapajos.s08
Description :		🛫 🛄 SI Units

Figura 7.4.1.1.4.4.6.3.1/01 - Painel principal do modelo HEC-RAS

Na Figura 7.4.1.1.4.4.6.3.1/02 há a identificação dos seguintes arquivos:

- Projeto arquivo mestre que engloba os demais (primeira linha-caixa à esquerda) com o respectivo endereço (caixa a direita);
- Plano, correspondente à aplicação do modelo ("rodar o modelo");
- Geometria, arquivo com todos os dados das seções, posicionamento, fator de resistência de Manning já calibrado para cada seção;

O arquivo de dados Geométricos (**Figura 7.4.1.1.4.4.6.3.1/03**) apresenta uma ampla possibilidade de inserções tais como afluências, bifurcações, introdução de estruturas. A principal refere-se à inserção das seções de cálculo apresentado no painel da **Figura 7.4.1.1.4.4.6.3.1/04**.

Na **Figura 7.4.1.1.4.4.6.3.1/05** tem-se as condições do regime Quase Permanente, arquivo dos dados necessários aos cálculos hidrodinâmicos contendo a série de vazões, temperaturas e condição de fronteira a jusante na condição de regime quase permanente, aplicável à modelação sedimentológica.

🚵 Sediment Transport Analysis
File Options Help
Plan : Plan Laursen com incremento dt diferente Short ID Laursen Jus
Geometry File : JUSANTE
Quasi-Unsteady Flow : TapajosJus2
Sediment Data : 🛛 TapajosGranulJusante Laursen 💽
Simulation Time Window Starting Date: 01JAN2001 Ending Date: 31DEC2100 Ending Time: 24:00
Plan Description :
Simulação a Jusante da UHE Tapajós com método de Laursen
Compute
Enter/Edit short identifier for plan (used in plan comparisons)

Figura 7.4.1.1.4.4.6.3.1/02 - Painel do arquivo de Plano do modelo HEC-RAS

Figura 7.4.1.1.4.4.6.3.1/03 - Painel do arquivo de dados Geométricos (Topologia)

	-		7			1.		1 BLC	-			Ve DL	In the second second	-
iver	: Tapajos		1	Ap	oly Data	14		Plot	Uptions	99 69	I Keep P	rev XS Plots	Llear	Prev
eac	h: Jusante	-	Rive	er Sta.: 6			- + 1		Тара	jós_Jusante R	Plan: Plan Laursen	com incremento dt	diferente 1	2/02/2013
	della Car	al da Euran		-				i I	15		Canal	de Fuga	<i>a</i>	
esc	ription [Cari	ai ue ruya						-	140				1 _	
De	el Row	Ins Ro	ow	Dow	nstream l	Reach	Lengths	3						Legend
	Cross Sectio	n Coordinates		LOB	Cha	annel	ROB		120 -			- 1	E	G 01jan2001 00
	Station	Elevation	-	922.53	922.5	53	922.53					- 1	W	/S 01jan2001 00
1	0	58.15		Ma	annina's i	n Value	s 12	1	300 1			1	100	Ground
2	1.59	57.79		LOB	Cha	annel	ROB	1	80 -			- T		Bank Sta
3	7.35	56.3		0.057	0.057		0.057	Ê				1		
4	12.03	55			100000	-	1	E S	60			1		
5	13.25	54.81		Main	Channe	IBank	Stations	te,	40			1		
6	17.95	54		Left B	ank	H	light Bank	. 8	1			1		
7	21.49	53.34		0		1800			20					
8	27.83	52.12		Cont\Exp	Coefficie	nt (Ste	adv Flow			Y.	N			
9	32.01	51.21		Contra	ction	E	xpansion	1	0-		r "			
10	35.74	50.39		0.1		0.3			-20-					
11	39.51	49.55	-	Tarre		1								
-	~ ~~	1.40							-40	500	1000	1500	2000	
										000	Station (m)	1000	2000	

Figura 7.4.1.1.4.4.6.3.1/04 - Painel de inserção de dados geométricos das seções

Boundary Condition Types Flow Series Lateral Flow Series Uniform Lateral Flo Normal Depth Stage Series Rating Curve T.S. Gate Openings Select Location for Boundary Condition Openings Select Location for Boundary Condition Openings Openings	Flow Series Normal Depth T.S. Gate Openings Se Flow Change Location(s)	Boundary C Lateral Stag	Condition Types Flow Series re Series	Uniform Lateral Flow Rating Curve
Flow Series Lateral Flow Series Uniform Lateral Flo Normal Depth Stage Series Rating Curve T.S. Gate Openings Select Location for Boundary Condition Select Location for Boundary Condition dd Flow Change Location(s) Delete Current Row River Reach RS Boundary Condition Type	Flow Series Normal Depth T.S. Gate Openings Se Flow Change Location(s); Biver Beach	Lateral Stag	Flow Series	Uniform Lateral Flow Rating Curve
Normal Depth Stage Series Rating Curve T.S. Gate Openings	Normal Depth T.S. Gate Openings Se J Flow Change Location(s)	Stag	je Series	Rating Curve
T.S. Gate Openings Select Location for Boundary Condition vidd Flow Change Location(s) Delete Current Row River Reach RS Boundary Condition Type	T.S. Gate Openings Se d Flow Change Location(s)	elect Location fo	or Boundary Condit	
Select Location for Boundary Condition vdd Flow Change Location(s) Delete Current Row River Reach RS Boundary Condition Type	Se d Flow Change Location(s)) Biver Beach	elect Location fo	or Boundary Condit	
vdd Flow Change Location(s) Delete Current Row River Reach RS Boundary Condition Type	d Flow Change Location(s))			on
River Reach RS Boundary Condition Type	Biver Beach	Delete (Current Row	
	The field	RS	Bound	ary Condition Type
Tapajos Jusante 6 Flow Series	Tapajos Jusante	6	Flow Series	Contract of the second seconds
Tapajos Jusante 1 Stage Series	Tapajos Jusante	1	Stage Series	

Figura 7.4.1.1.4.4.6.3.1/05 - Painel de inserção da série de vazões e níveis

A tela da **Figura 7.4.1.1.4.4.6.3.1/06** mostra a entrada de dados que possibilita a série histórica de dados de vazões seja discretizada em passos (time step) que variáveis em função da capacidade de transporte sólido de vazão considerada. Assim sendo, as vazões mais elevadas, com maior capacidade de transporte tem incrementos de tempo (time step) menores no cálculo das variações do leito ao contrário do que ocorre com as vazões menores.

A tela da **Figura 7.4.1.1.4.4.6.3.1/07** mostra a entrada de dados das condições de fronteira a jusante, que pode ser uma curva-chave, ou situação de regime uniforme, entre outras opções.

	xed Start Time:	u	Date Date	; 013AN2001	Time: 00:01
		Hy	drograph Data	2	
No.	Ordinates Inte	rpolate Values	Del Row	Ins Row	
	Simulation	Elapsed	Flow	Computation	
	Time	Time	Duration	Increment	Flow
		(hours)	(hours)	(hours)	(m3/s)
1	01jan2001 0001	744	744	120	14946
2	01fev2001 0001	1416	672	60	19835
3	01mar2001 0001	2160	744	60	24677
4	01abr2001 0001	2880	720	24	28436
5	01mai2001 0001	3624	744	60	19802
6	01jun2001 0001	4344	720	120	9666
7	01jul2001 0001	5088	744	120	6271
8	01ago2001 0001	5832	744	360	4689
123456	Qlow 0 5000 15000 25000	Qhigh 5000 15000 25000 50000	CI]	
	() ()			1	

Figura 7.4.1.1.4.4.6.3.1/06 - Painel de inserção de vazões com variação nos incrementos de tempo no cálculo da variação do leito

С Г	Ise Simulation Time: ixed Start Time:		Date: 01JA Date:	N2001 Time: 00:01 Time:
		Hyd	lrograph Data	
No	Ordinates Inter	polate Values	Del Row Ins R	ow
_	Simulation	Elapsed	Stage	
	Time	Time	Duration	Stage
		(hours)	(hours)	(m)
1	01jan2001 0001	744	744	7.7
2	01fev2001 0001	1416	672	9.7
3	01mar2001 0001	2160	744	10.8
4	01abr2001 0001	2880	720	11.9
5	01mai2001 0001	3624	744	11.8
6	01jun2001 0001	4344	720	9.8
7	01jul2001 0001	5088	744	8.9
8	01ago2001 0001	5832	744	7.7
9	01set2001 0001	6552	720	5.8
10	01out2001 0001	7296	744	4.5
11	01nov2001 0001	8016	720	5
12	01dez2001 0001	8760	744	6.3
13	01jan2002 0001	9504	744	8.1
14	01fev2002 0001	10176	672	8.7
15	01mar2002 0001	10920	744	10.2
16	01 abr2002 0001	11640	720	10.3
17	101	110004	744	10.0

Figura 7.4.1.1.4.4.6.3.1/07 - Painel de inserção de níveis a jusante

A **Figura 7.4.1.1.4.4.6.3.1/08**, do módulo de análise sedimentológica, mostra os arquivos que contém os dados sedimentométricos e opções de métodos de cálculo da capacidade de transporte sólido, equações para as considerações quanto ao efeito de pavimentação do leito e equações que definem a velocidade de queda do sedimento. Existem ainda opções para a inserção de outras características tais como o peso específico do sedimento, profundidade máxima de erosão, calibração de equações.

No caso da análise de transporte sólido, que é o interesse principal deste trabalho, o modelo permite trabalhar com até sete equações de transporte sólido não coesivo (Engelund-Hansen, Ackers-White, Yang, Toffaleti, Laursen, Meyer-Peter e Muller, Wilcock), algumas das quais podendo ter seus parâmetros ajustados no caso de haver necessidade de aferição. Além destas equações o modelo também permite tratar do transporte sólido de sedimentos coesivos, se for o caso. Ainda neste painel existe a opção de definir a granulometria de fundo em cada seção de cálculo, a série de vazões na seção de montante e correspondente granulometria do material transportado e limites de erosão (**Figura 7.4.1.1.4.4.6.3.1/09** e **Figura 7.4.1.1.4.4.6.3.1/10**).

Figura 7.4.1.1.4.4.6.3.1/08 - Painel de inserção dos dados sedimentométricos

Figura 7.4.1.1.4.4.6.3.1/09 - Painel de inserção da granulometria de fundo

V Sediment Data - TapajosGranullusante Laursen
File Options View Help
Initial Conditions and Transport Parameters Boundary Conditions)
Select Location for Sediment Boundary Condition
Add Sediment Boundary Location(s) Delete Current Row
Sedment Boundary Condition Types
Rating Curve Sediment Load Series Equilibrium Load
Riv\SA Reach RS 1 Tansing Jugante S Ration Curve
E Set downstream pass-through boundary.

Figura 7.4.1.1.4.4.6.3.1/10 - Painel de inserção das condições de fronteira

Mais detalhes das opções de cálculo podem ser consultadas nos arquivos disponibilizados na página da instituição (<u>www.hec.usace.army.mil</u>).

7.4.1.1.4.4.6.3.2. Descrição dos Princípios de Modelagem

Na análise sedimentológica, o modelo HEC-RAS considera o escoamento como sendo quase permanente, ou seja, dentro de intervalos de tempo pré-definidos considera-se que não haja variação temporal das características hidráulicas. A capacidade de transporte sólido ao longo do curso d'água é calculada para estas condições de escoamento em regime permanente a cada intervalo de tempo.

Figura 7.4.1.1.4.4.6.3.2/01 - Esquema de discretização da vazão ao longo do tempo (Figura extraída do Reference Manual – HEC-RAS)
Os intervalos de tempo podem ser subdivididos em intervalos menores para considerar as variações das características hidráulicas decorrentes das mudanças do leito, porém mantendo a invariabilidade das condições no tempo. Assim sendo, nas vazões de cheias, quando a capacidade de transporte sólido é mais significativa, estes intervalos são menores no período de estiagem estes intervalos podem ser ampliados (ver ilustração da **Figura 7.4.1.1.4.4.6.3.2/01**). A título de exemplo, esta discretização poderia ser a apresentada no **Quadro 7.4.1.1.4.4.6.3.2/01**, que foi a discretização utilizada na modelação:

Q	dt
(m³/s)	(horas)
0 a 5.000	360
5.000 a 15.000	120
15.000 a 25.000	60
25.000 a 50.000	24

Quadro 7.4.1.1.4.4.6.3.2/01 - Exemplo de sub-intervalos de tempo

O cálculo da fase líquida é feito pela aplicação do princípio da conservação da quantidade de movimento, conforme o seguinte esquema de cálculo:

Figura 7.4.1.1.4.6.3.2/02 - Esquema de cálculo com o uso da equação da conservação da quantidade de movimento (Figura extraída do Reference Manual – HEC-RAS)

Na equação da conservação da quantidade de movimento da **Figura 7.4.1.1.4.4.6.3.2/02** as simbologias são as seguintes:

Q1 e Q2 são as vazões nas seções de saída (1) e entrada (2);

- β coeficiente de Boussinesq;
- A área da seção de escoamento;
- Y profundidade de escoamento;
- L distância entre as seções;
- So declividade do leito;
- Sf declividade da linha de energia;

O balanço de massa de sedimentos transportado no volume de controle que abrange uma determinada seção é feito de acordo com o esquema apresentado na Figura **7.4.1.1.4.4.6.3.2/03**:

Figura 7.4.1.1.4.4.6.3.2/03 - Esquema de cálculo do balanço de massa de sedimentos (Figura extraída do Reference Manual – HEC-RAS)

Da diferença entre a vazão sólida procedente do trecho de montante e da capacidade do trecho onde está sendo feito o cálculo ocorrerá a modificação do leito produzindo rebaixamento (erosão) ou elevação (assoreamento) entre os pontos definidos como limites de erosão, conforme o esquema da **Figura 7.4.1.1.4.4.6.3.2/04**.

Figura 7.4.1.1.4.4.6.3.2/04 - Esquema da variação do leito numa dada seção (Figura extraída do Reference Manual – HEC-RAS)

Detalhes sobre os métodos de cálculo de capacidade de transporte sólido ou opções de cálculos podem ser vistos na página da instituição (<u>www.hec.usace.army.mil</u>).

7.4.1.1.4.4.6.3.3. Simulações e Condições de Fronteira

Para a modelação sedimentológica utilizou-se os métodos de Engelund-Hansen, Ackers-White, Yang, Toffaleti e Laursen, por serem os métodos que consideram o transporte sólido total (suspensão e fundo) e por essa razão resultam em volumes de transporte mais expressivos. Numa primeira bateria de simulações foram consideradas as condições de escoamento natural sem a presença da barragem no período de 100 anos. Essas simulações foram feitas inicialmente considerando a situação de equilíbrio a montante, a partir do cálculo da capacidade de descarga para os diferentes métodos.

Por uma questão prática, para poder avaliar o potencial erosivo a jusante, ajustou-se uma curva-chave de sedimentos como dado de entrada nas seções extremas de montante (Jamanxim e Tapajós) de forma que apresentasse um comportamento semelhante ao que se obteria com o método que apresentasse maiores variações no leito. Este ajuste resultou numa equação que apresentava resultados semelhantes ao método de Engelund-Hansen. A razão do ajuste com a equação de Engelund-Hansen se deveu ao fato dessa metodologia apresentar a condição mais favorável em termos de assoreamento, conforme será visto mais adiante. A curva-chave utilizada considerou as características do material do leito, uma vez que o transporte em

suspensão é constituído basicamente por carga de lavagem, sem possibilidade de contribuição no processo de assoreamento.

A condição hidráulica de fronteira de jusante para o estudo de assoreamento foi a série histórica com os níveis médios mensais na seção de Itaituba. A montante a condição hidráulica de fronteira é representada pela série histórica de vazões líquidas resultante das somas das contribuições do Tapajós e Jamanxim (dados de simulação do assoreamento do reservatório).

A etapa seguinte compreende o conjunto de simulações para a determinação do assoreamento na área do reservatório e o potencial erosivo a jusante da barragem até a última seção localizada na cidade de Itaituba. Será visto mais a frente que a taxa de retenção de sedimentos no reservatório é desprezível, algo da ordem de 1%. Portanto, com uma taxa dessa ordem de grandeza, já se esperava que não devessem ocorrer erosões a jusante por descontinuidade do transporte sólido. Considerando uma hipótese mais conservativa, apenas a título de verificação, considerou-se o critério adotado no estudo de vida útil do reservatório que adota uma retenção de 59% dos sedimentos afluentes. Desta maneira a curva-chave de sedimentos a jusante da barragem seria igual à de montante corrigida pelo fator 0,41 (41% de transpasse) nessa situação mais pessimista.

Como o modelo considera o ano calendário, incluindo anos bissextos, a série construída para as simulações não segue a mesma data da série histórica. Para efeito de cálculo essa série começou no ano 2013 e terminou no ano 2112.

7.4.1.1.4.4.6.4. Resultados e Análises

Dado o grande número de dados de saída, selecionou-se apenas os resultados de um ano civil a cada 20 anos, ao longo de todo o trecho simulado. Para tornar mais clara a apresentação, serão separadas as análises referentes ao estudo de assoreamento e ao estudo de erosão.

7.4.1.1.4.4.6.4.1. Simulações para as Condições Naturais sem Barragem

Para melhor avaliar as tendências de transformações morfológicas em termos de potencial de erosão e assoreamento ao longo do trecho afetado pelo empreendimento foram feitas simulações para as condições naturais. Os estudos das alterações do trecho de jusante com a presença do empreendimento foram realizadas com simulações do trecho completo desde as seções extremas a montante do reservatório, nos rios Tapajós e Jamanxim até a estação fluviométrica de Itaituba, num horizonte de

100 anos. Considerou-se inicialmente que a contribuição de montante correspondesse à situação dos contribuintes em Regime (vazão sólida igual à capacidade de transporte). Não foi utilizado o histórico de vazões sólidas medidas por tratar-se de material de carga de lavagem com baixa concentração e, portanto, com baixo potencial de assoreamento. Os resultados são apresentados nos **Quadros** 7.4.1.1.4.4.6.4.1/01 a 7.4.1.1.4.4.6.4.1/10 e **Figuras** 7.4.1.1.4.4.6.4.1/01 a 7.4.1.1.4.4.6.4.1/15.

Quadro 7.4.1.1.4.4.6.4.1/01 – Método de Engelund-Hansen para todo o trecho - condições naturais - rio Tapajós

	_	Distância			Fun	do (m)			N.A. (m)
Rio	Seção	Acumulada (m)	2013	2033	2053	2073	2093	2112	2112
Tapajós	27	199.814	45,96	45,96	45,96	45,96	45,96	45,96	52,7
Montante	26	194.293	41,17	41,79	42,05	42	41,92	41,84	51,17
	25	189.697	45,68	45,25	44,86	44,43	44,08	43,84	49,8
	24	183.791	33,24	30,95	29,92	29,42	29,05	28,93	48,15
	23	177.397	36,93	36,09	35,58	35,31	35,08	35	46,58
	22	173.270	35,99	34,63	34	33,59	33,36	33,23	45,28
	21	172.867	32,93	30,54	29,91	29,62	29,52	29,47	45,16
	20	172.075	34,93	33,99	33,45	33,03	32,85	32,73	44,92
	19	170.714	18,9	17,38	16,74	16,41	16,35	16,27	44,52
	18	170.123	21,11	23,26	22,78	22,42	22,32	22,23	44,32
	17	169.184	25,03	24,83	24,29	24,01	23,94	23,87	44,03
	16	168.477	28,07	29,19	28,79	28,47	28,43	28,38	43,81
	15	167.745	30,12	31,14	31,01	30,79	30,73	30,67	43,59
	14	167.013	32,05	32,59	32,22	32,02	32,01	32	43,39
	13	165.945	29,01	31,4	31,11	31,02	31	31	43,08
	12	162.927	30,58	30,31	29,97	29,88	29,95	30,03	42,46
	11	157.149	32,74	32,45	32,14	32,42	32,68	32,75	40,97
	10	152.604	26,45	26,65	27,16	28,05	28,61	28,77	39,84
	9	148.944	35,98	34,4	33,65	33,37	33,31	33,26	38,85
	8	139.726	30,16	26,44	26,53	26,48	26,43	26,47	38
	7	127.133	3,04	14,84	17,58	17,6	17,32	17,5	37,03
	6	115.000	27,38	28,9	28,99	28,9	28,85	28,81	36,34
	5	108.956	24,58	25,25	26,09	26,4	26,6	26,72	35,64
	4	102.678	26,35	26,61	27,03	27,45	27,76	27,99	34,75
	3	94.072	20,46	20,61	21,28	22,11	22,74	23,23	33,62
	2	87.372	24,97	24,94	25,02	25,18	25,36	25,51	32,61
Entrada	JUNÇÃO	81.143	22,79	23,22	23,59	23,99	24,47	24,9	31,83
Jamanxim	STM1 -4	81.143	22,79	23,68	24,08	24,34	24,48	24,64	31,83

	• •	Distância			Fun	do (m)			N.A. (m)
Rio	Seção	Acumulada (m)	2013	2033	2053	2073	2093	2112	2112
	3	72.555	24,21	24,2	24,2	24,2	24,2	24,2	30,03
	2	62.726	20,31	20,31	20,31	20,31	20,31	20,31	27,1
	C FORÇA	53.818	11	11	11	11	11	11	22,81
	EST.BV	53.668	11	11	11	11	11	11	21,93
	STJ 6	51.668	- 16,68	- 34,77	- 34,77	- 34,77	-34,77	- 34,77	9,1
	SCAV 3	49.397	- 13,25	- 11,35	- 12,21	- 11,81	-11,07	-9,9	9,03
	SCAV 2	45.957	- 27,94	- 26,02	- 27,21	- 28,27	-28,98	- 29,25	8,87
	SCAV 1	41.737	- 10,59	-7,63	-7,58	-7,68	-7,71	-7,72	8,63
	S 2	39.483	-9,76	-8,11	-6,79	-6,14	-6,03	-5,99	8,4
	STJ 5	34.923	-9,98	-9,88	-9,67	-9,4	-9,09	-8,86	7,87
	STJ 4	25.509	- 12,98	- 12,94	- 12,84	- 12,68	-12,46	- 12,26	7,56
	STJ 3	11.369	- 12,31	-12,3	- 12,29	- 12,26	-12,23	- 12,19	7,33
	STJ 2	1.429	-9,17	-9,17	-9,16	-9,15	-9,14	-9,12	7,14
	ITAITUBA	0	-9,17	-9,1	-9,04	-8,97	-8,9	-8,84	7,1

Quadro 7.4.1.1.4.4.6.4.1/02 – Método de Engelund-Hansen para todo o trecho - condiçõe	es
naturais - rio Jamanxim	

		Distância			Fund	lo (m)			N.A. (m)
Rio	Seçao	Acumulada (m)	2013	2033	2053	2073	2093	2112	2112
	SJ 10	55.784	10,86	10,86	10,86	10,86	10,86	10,86	39,73
	INTERM	43.585	10,83	4,9	4,89	4,61	4,52	4,73	38,67
	INTERM	43.428	14,55	7,01	7,01	7,01	7,02	7,11	38,58
	SJ 9	43.242	12,33	3,94	3,88	3,86	3,86	3,88	38,6
	SJ 8	42.811	23,27	16,43	16,73	16,5	16,25	16,52	38,52
	SJ 7	34.309	23,58	24,25	24,31	24,63	24,88	25	37,94
JAWANAIW	SJ 6	24.615	31,18	31,56	31,78	32,15	32,44	32,66	36,43
	SJ 5	19.027	24,79	24,66	25,19	25,63	26,02	26,33	34,97
	SJ 4	13.691	27,88	24,8	25,03	25,12	25,26	25,34	33,49
	SJ 3	10.270	20,51	23,24	23,63	23,81	24,11	24,41	32,93
	SJ 2	4.809	13,07	17,06	17,77	18,22	18,63	18,99	32,04
	SJ 1	0	24,46	24,58	24,72	24,88	25,05	25,23	31,89

Figura 7.4.1.1.4.4.6.4.1/01 - Perfil de fundo no Rio Tapajós em todo o trecho - Engelund

Figura 7.4.1.1.4.4.6.4.1/02 – Detalhe do perfil de fundo no Rio Tapajós a jusante do eixo - Engelund

Figura 7.4.1.1.4.4.6.4.1/03 – Perfil de fundo no Rio Jamanxim - Engelund

Quadro 7.4.1.1.4.4.6.4.1/03 – Método de Ackers-White para todo o trecho - Condições Naturais - rio Tapajós

Pio	Socão	Distância			Fund	o (m)			N.A. (m)
Nio -	Ueçau	Acumulada (m)	2013	2033	2053	2073	2093	2112	2112
Tapajós	27	199.814	45,96	45,96	45,96	45,96	45,96	45,96	53,15
Montante	26	194.293	41,17	41,64	41,96	42,21	42,37	42,46	52,19
	25	189.697	45,68	45,51	45,36	45,09	45,02	45,02	51,45
	24	183.791	33,24	32,92	32,69	32,14	31,96	31,9	49,78
	23	177.397	36,93	36,89	36,24	35,71	35,71	35,57	46,86
	22	173.270	35,99	35,62	34,71	34,71	33,96	33,53	44,9
	21	172.867	32,97	31,03	29,55	29,45	29,23	29,07	44,72
	20	172.075	34,99	34,01	33,95	33,95	32,94	32,28	44,34
	19	170.714	18,91	17,95	17,16	17,03	16,69	16,68	43,45
	18	170.123	21	20,83	19,99	20,01	20,07	19,6	43,21
	17	169.184	25,01	24,58	23,84	23,85	23,82	23,7	42,74
	16	168.477	28,03	27,12	27,04	26,78	26,27	25,99	42,55
	15	167.745	30,02	29,91	29,58	29,59	29,66	29,61	42,3
	14	167.013	32,05	31,64	31,05	30,78	30,49	30,1	42,19
	13	165.945	29,03	29,19	29,3	29,54	29,6	29,54	42
	12	162.927	30,59	30,22	29,67	29,36	29,13	28,95	41,53
	11	157.149	32,75	32,73	32,48	32,34	32,19	32,07	40,49
	10	152.604	26,45	27,53	28,3	28,53	28,66	28,56	39,2
	9	148.944	36,02	33,83	33,11	32,81	32,59	32,46	38,56
	8	139.726	30,36	27,88	27,43	27,39	27,38	27,33	36,39
	7	127.133	2,62	4,4	5,42	6,01	6,82	7,37	36,15

Pio	Socão	Distância			Fund	o (m)			N.A. (m)
Rio	Seçau	Acumulada (m)	2013	2033	2053	2073	2093	2112	2112
	6	115.000	27,32	29,55	30,01	30,21	30,3	30,35	35,71
	5	108.956	24,59	24,51	24,57	24,56	24,57	24,57	34,78
	4	102.678	26,35	26,61	27,18	27,52	27,82	28,1	33,89
	3	94.072	20,46	20,47	20,63	20,82	20,93	21,11	32,91
	2	87.372	24,97	24,96	25,08	25,19	25,3	25,48	32,21
Entrada	JUNÇÃO	81.143	22,79	23,13	23,5	23,73	23,91	24,03	31,65
Jamanxim	STM1 -4	81.143	22,8	23,47	23,76	23,96	24,07	24,24	31,63
	3	72.555	24,21	24,2	24,2	24,2	24,2	24,2	30,03
	2	62.726	20,31	20,31	20,31	20,31	20,31	20,31	27,1
	C FORÇA	53.818	11	11	11	11	11	11	22,81
	EST.BV	53.668	11	11	11	11	11	11	21,93
	STJ 6	51.668	-14,77	-21,63	-26,26	-30,05	-31,91	-34,45	9,37
	SCAV 3	49.397	-14,71	-10,51	-7,2	-5,31	-4,79	-3,9	9,06
	SCAV 2	45.957	-27,94	-27,99	-27,86	-27,62	-27,7	-27,44	8,73
	SCAV 1	41.737	-10,59	-10,18	-9,55	-8,57	-7,45	-6,46	8,39
	S 2	39.483	-9,76	-9,05	-8,66	-8,18	-7,62	-7,18	8,21
	STJ 5	34.923	-9,98	-9,92	-9,89	-9,72	-9,65	-9,44	7,86
	STJ 4	25.509	-12,98	-12,91	-12,89	-12,65	-12,74	-12,57	7,57
	STJ 3	11.369	-12,3	-12,27	-12,27	-12,17	-12,22	-12,14	7,34
	STJ 2	1.429	-9,17	-9,14	-9,14	-9,06	-9,11	-9,04	7,14
	ITAITUBA	0	-9,17	-9,11	-9,1	-8,98	-9,04	-8,9	7,1

Quadro 7.4.1.1.4.4.6.4.1/04 – Método de Ackers-White para todo o trecho - Condições Naturais - rio Jamanxim

Rio	Secão	Distância Acumulada	Fundo (m)							
Rio Jamanxim	Coşuo	(m)	2013	2033	2053	2073	2093	2112	2112	
	SJ 10	55.784	10,86	10,86	10,86	10,86	10,86	10,86	40,09	
	INTERM	43.585	10,86	9,96	9,64	9,48	9,34	8,9	38,35	
	INTERM	43.428	16,84	9,98	7,15	7,04	7,01	7,07	38,32	
	SJ 9	43.242	13,58	4,21	4,21	8,52	8,52	8,51	38,29	
	SJ 8	42.811	23,37	21,5	18,74	19,62	19,57	20,58	38,07	
lamanyim	SJ 7	34.309	23,57	24,05	24,05	24,04	24,05	24,43	36,93	
Jamanxiin	SJ 6	24.615	31,17	31,43	31,34	31,29	31,28	31,28	34,36	
	SJ 5	19.027	24,9	24,32	24	23,82	23,71	23,67	33,64	
	SJ 4	13.691	28,26	26,21	25,42	25,36	25,18	25,04	32,35	
	SJ 3	10.270	20,24	21,05	21,52	21,71	21,78	21,77	32,37	
	SJ 2	4.809	12,68	14,93	16,17	17,59	20,3	20,91	31,7	
	SJ 1	0	24,46	24,5	24,53	24,55	24,51	24,5	31,68	

FONTE: CNEC WorleyParsons, 2013

Figura 7.4.1.1.4.4.6.4.1/04 – Perfil de fundo no Rio Tapajós em todo o trecho - Ackers-White

Figura 7.4.1.1.4.4.6.4.1/05 – Detalhe do perfil de fundo no Rio Tapajós a jusante do eixo - Ackers-White

Figura 7.4.1.1.4.4.6.4.1/06 - Perfil de fundo no Rio Jamanxim - Ackers-White

Quadro	7.4.1.1.4.4.6.4.1/05 -	Método d	le Yang	para to	o obc	trecho -	Condições	Naturais	- rio
Tapajós									

Pio	Sooão	Distância			Funde	o (m)			N.A. (m)
RIO	Seçau	Acumulada (m)	2013	2033	2053	2073	2093	2112	2112
Tapajós	27	199.814	45,96	45,96	45,96	45,96	45,96	45,96	53,03
Montante	26	194.293	41,17	41,45	41,72	41,93	42,09	42,19	52,15
	25	189.697	45,68	45,54	45,45	45,37	45,29	45,23	51,28
	24	183.791	33,25	32,48	31,88	31,43	31,06	30,85	49,38
	23	177.397	36,93	36,5	36,23	36,05	35,89	35,79	47,26
	22	173.270	36	35,22	34,79	34,47	34,17	33,96	45,81
	21	172.867	32,98	31,25	30,91	30,62	30,39	30,17	45,67
	20	172.075	34,99	34,21	33,92	33,66	33,47	33,33	45,37
	19	170.714	18,98	18,24	18,01	17,79	17,6	17,41	44,76
	18	170.123	21,01	21,22	21,15	21,13	21,13	21,12	44,52
	17	169.184	25,01	24,98	24,9	24,73	24,55	24,39	44,14
	16	168.477	28,01	28,31	28,11	28,06	28,03	27,96	43,89
	15	167.745	30,03	30,83	30,89	30,81	30,73	30,68	43,66
	14	167.013	32,01	32,39	32,11	31,96	31,89	31,84	43,46
	13	165.945	29	31,01	31,09	31,04	30,95	30,91	43,21
	12	162.927	30,58	30,47	30,35	30,28	30,24	30,22	42,65
	11	157.149	32,74	32,88	32,96	33,05	33,13	33,13	41,3
	10	152.604	26,45	27,43	28,19	28,64	28,92	29,07	40,39
	9	148.944	36,04	34,57	34,45	34,37	34,32	34,28	39,52
	8	139.726	30,46	26,87	26,76	26,76	26,81	26,88	36,8
	7	127.133	2,62	8,82	9,86	10,76	11,54	12,24	36,02

Pio	Socão	Distância			Fund	o (m)			N.A. (m)
RIO	Seçao	Acumulada (m)	2013	2033	2053	2073	2093	2112	2112
	6	115.000	27,25	29,04	29,12	29,15	29,16	29,17	35,3
	5	108.956	24,58	24,54	24,55	24,57	24,62	24,65	34,27
	4	102.678	26,35	26,45	26,57	26,69	26,8	26,89	33,49
	3	94.072	20,46	20,46	20,48	20,53	20,56	20,62	32,73
	2	87.372	24,97	24,93	24,93	24,95	24,97	25	32,07
Entrada	JUNÇÃO	81.143	22,79	22,93	23,05	23,15	23,25	23,33	31,77
Jamanxim	STM1 -4	81.143	22,79	23,43	23,92	24,24	24,36	24,45	31,73
	3	72.555	24,21	24,2	24,2	24,2	24,2	24,2	30,03
	2	62.726	20,31	20,31	20,31	20,31	20,31	20,31	27,1
	C FORÇA	53.818	11	11	11	11	11	11	22,81
	EST.BV	53.668	11	11	11	11	11	11	21,93
	STJ 6	51.668	- 14,97	- 34,77	-34,77	- 34,77	- 34,77	- 34,77	8,95
	SCAV 3	49.397	- 14,55	-5,57	-7,63	-8,43	-8,87	-8,87	8,86
	SCAV 2	45.957	- 27,94	- 26,59	-26,69	- 26,69	-26,7	-26,7	8,56
	SCAV 1	41.737	- 10,59	-8,74	-7,92	-7,58	-7,41	-7,29	8,23
	S 2	39.483	-9,76	-9,49	-9,11	-8,67	-8,16	-7,75	8,09
	STJ 5	34.923	-9,98	-9,97	-9,94	-9,89	-9,82	-9,75	7,8
	STJ 4	25.509	- 12,98	- 12,97	-12,95	- 12,94	- 12,91	- 12,89	7,53
	STJ 3	11.369	- 12,31	-12,3	-12,3	- 12,29	- 12,29	- 12,28	7,33
	STJ 2	1.429	-9,17	-9,17	-9,17	-9,17	-9,16	-9,16	7,14
	ITAITUBA	0	-9,17	-9,17	-9,17	-9,16	-9,16	-9,15	7,1

FONTE: CNEC WorleyParsons, 2013

Quadro 7.4.1.1.4.4.6.4.1/06 - Método de	e Yang para	todo o trecho -	Condições	Naturais -	rio
Jamanxim					

Pie	Sacão	Distância			Fund	lo (m)			N.A. (m)
RIO	Seçau	Acumulada (m)	2013	2033	2053	2073	2093	2112	2112
	SJ 10	55.784	10,86	10,86	10,86	10,86	10,86	10,86	38,83
	INTERM	43.585	10,85	8,56	7,4	6,81	6,47	6,19	36,97
	INTERM	43.428	16,79	8,2	8,56	7,48	7,2	7,15	36,9
	SJ 9	43.242	13,56	6,38	7,03	6,72	6,49	6,22	36,89
lamanyim	SJ 8	42.811	23,34	18,84	18,35	17,71	17,44	17,37	36,76
Jamanxiin	SJ 7	34.309	23,57	23,53	23,45	23,41	23,37	23,32	35,91
	SJ 6	24.615	31,17	31,16	30,78	30,56	30,49	30,34	33,83
	SJ 5	19.027	24,88	23,84	23,59	23,41	23,33	23,18	33,18
	SJ 4	13.691	28,24	24,5	25,09	25,25	25,22	25,3	32,2
	SJ 3	10.270	20,25	19,99	19,91	19,77	19,73	19,76	32,2

SJ 2	4.809	12,73	20,25	21,73	22,21	22,57	22,89	31
SJ 1	0	24,46	24,53	24,54	24,59	24,62	24,61	31

FONTE: CNEC WorleyParsons, 2013

Figura 7.4.1.1.4.4.6.4.1/07 – Perfil de fundo no Rio Tapajós em todo o trecho – Yang

Figura 7.4.1.1.4.4.6.4.1/08 – Detalhe do perfil de fundo no Rio Tapajós a jusante do eixo -Yang

Figura 7.4.1.1.4.4.6.4.1/09 - Perfil de fundo no Rio Jamanxim - Yang

Quadro 7.4.1.1.4.4.6.4.1/07 - Método de	e Toffaleti para todo	o o trecho - Cono	dições Naturais ·	- rio
Tapajós				

Pio	Socão	Distância			Fund	do (m)			N.A. (m)
Rio	Jeçau	Acumulada (m)	2013	2033	2053	2073	2093	2112	2112
Tapajós	27	199.814	45,96	45,96	45,96	45,96	45,96	45,96	52,92
Montante	26	194.293	41,17	41,31	41,44	41,55	41,66	41,74	52,28
	25	189.697	45,68	45,6	45,56	45,54	45,52	45,51	51,73
	24	183.791	33,25	32,79	32,41	32,04	31,71	31,43	50,27
	23	177.397	36,93	36,93	36,93	36,95	36,92	36,96	48,05
	22	173.270	36	35,73	35,34	35,06	34,75	34,54	46,35
	21	172.867	33	32,47	32,43	32,02	31,72	31,64	46,06
	20	172.075	35	34,23	33,87	33,66	33,44	33,18	45,71
	19	170.714	18,99	18,84	18,76	18,82	18,84	18,77	45,01
	18	170.123	21,01	22,36	22,91	23,07	23,09	23,16	44,56
	17	169.184	25	24,94	24,9	24,88	24,87	24,83	43,9
	16	168.477	28	27,96	27,95	27,95	27,94	27,94	43,45
	15	167.745	30,01	30,18	30,14	30,1	30,05	29,97	43,23
	14	167.013	32	32,13	32,04	31,96	31,94	31,93	42,89
	13	165.945	29	29,17	29,32	29,45	29,49	29,49	42,79
	12	162.927	30,58	30,51	30,38	30,29	30,21	30,15	42,38
	11	157.149	32,74	32,87	32,73	32,67	32,63	32,59	40,48
	10	152.604	26,45	27,15	27,8	28,03	28	27,85	38,39
	9	148.944	36,04	34,28	33,08	32,09	31,46	31,1	38,07
	8	139.726	30,49	30,03	29,58	29,13	28,66	28,18	36,44
	7	127.133	2,56	2,47	2,35	2,28	2,23	2,19	36,55

Pie	Sacão	Distância			Fund	do (m)			N.A. (m)
RIU	Seçao	Acumulada (m)	2013	2033	2053	2073	2093	2112	2112
	6	115.000	27,25	28,65	29,7	30,46	30,93	31,18	36,23
	5	108.956	24,58	24,56	24,6	24,71	24,81	24,95	34,82
	4	102.678	26,35	26,39	26,57	26,96	27,43	27,72	33,8
	3	94.072	20,46	20,42	20,42	20,46	20,55	20,82	32,72
	2	87.372	24,97	24,91	24,88	24,9	24,98	25,16	31,92
Entrada	JUNÇÃO	81.143	22,79	22,88	23,01	23,18	23,43	23,6	31,44
Jamanxim	STM1 -4	81.143	22,79	23,02	23,23	23,41	23,61	23,78	31,42
	3	72.555	24,21	24,2	24,2	24,2	24,2	24,2	30,04
	2	62.726	20,31	20,31	20,31	20,31	20,31	20,31	27,09
	C FORÇA	53.818	11	11	11	11	11	11	22,81
	EST.BV	53.668	11,01	11,01	11,01	11,01	11,01	11,01	21,94
	STJ 6	51.668	- 14,77	- 20,32	- 24,39	-27,34	- 29,99	- 32,02	9,1
	SCAV 3	49.397	- 14,74	- 10,56	-7,7	-6,21	-5,15	-4,34	8,81
	SCAV 2	45.957	- 27,94	-27,9	- 27,78	-27,56	- 27,42	- 27,29	8,43
	SCAV 1	41.737	- 10,59	- 10,29	-9,85	-9,2	-8,41	-7,65	8,12
	S 2	39.483	-9,76	-9,58	-9,43	-9,35	-9,2	-9,03	8,02
	STJ 5	34.923	-9,98	-9,94	-9,91	-9,88	-9,85	-9,8	7,8
	STJ 4	25.509	- 12,98	- 12,94	- 12,91	-12,89	- 12,87	- 12,85	7,54
	STJ 3	11.369	- 12,31	- 12,29	- 12,28	-12,27	- 12,26	- 12,26	7,33
	STJ 2	1.429	-9,17	-9,16	-9,15	-9,14	-9,14	-9,13	7,14
	ITAITUBA	0	-9,17	-9,15	-9,14	-9,12	-9,11	-9,08	7,1

FONTE: CNEC WorleyParsons, 2013

Quadro 7.4.1.1.4.4.6.4.1/08 - Método de	Toffaleti para todo o trecho -	- Condições Naturais - rio
Jamanxim		

		Distância			F	undo (m)		N.A. (m)
Rio	Seção	Acumulada (m)	2013	2033	2053	2073	2093	2112	2112
	SJ 10	55.784	10,86	10,86	10,86	10,86	10,86	10,86	40,25
	INTERM	43.585	10,86	10,77	10,71	10,66	10,6	10,55	37,82
	INTERM	43.428	17,01	15,66	13,71	13,43	13,39	13,39	37,65
	SJ 9	43.242	13,67	12,64	11,4	10,85	10,83	10,82	37,66
lamanyim	SJ 8	42.811	23,38	22,91	22,5	22,15	21,84	21,58	37,33
Jamanxiin	SJ 7	34.309	23,57	23,54	23,51	23,48	23,46	23,42	36,32
	SJ 6	24.615	31,17	31,21	31,23	31,24	31,21	31,19	34,54
	SJ 5	19.027	24,9	24,68	24,5	24,33	24,16	24,05	33,71
F	SJ 4	13.691	28,27	27,84	27,29	26,68	26,05	25,5	31,23
	SJ 3	10.270	20,23	20,34	20,42	20,49	20,55	20,57	31,81

SJ 2	4.809	12,67	13,3	13,99	14,67	15,35	15,99	31,5
SJ 1	0	24,46	24,47	24,47	24,48	24,48	24,49	31,4

FONTE: CNEC WorleyParsons, 2013

Figura 7.4.1.1.4.4.6.4.1/10 – Perfil de fundo no Rio Tapajós em todo o trecho – Toffaleti

Figura 7.4.1.1.4.4.6.4.1/11 – Detalhe do perfil de fundo no Rio Tapajós a jusante do eixo - Toffaleti

Figura 7.4.1.1.4.4.6.4.1/12 – Perfil de fundo no Rio Jamanxim - Toffaleti

Quadro 7.4.1.1.4.4.6.4.1/09 -	- Método de Laursen	para todo o trecho	 – Condições Naturais -
rio Tapajós			

Pio	Socão	Distância			Fund	o (m)			N.A. (m)
Rio	Jeçau	Acumulada (m)	2013	2033	2053	2073	2093	2112	2112
Tapajós	27	199.814	45,96	45,96	45,96	45,96	45,96	45,96	53,15
Montante	26	194.293	41,17	41,5	41,76	41,99	42,17	42,32	52,36
	25	189.697	45,68	45,59	45,49	45,4	45,3	45,23	51,8
	24	183.791	33,25	32,87	32,55	32,28	31,98	31,75	50,75
	23	177.397	36,93	37,08	37,24	37,37	37,48	37,6	48,2
	22	173.270	36	35,65	35,1	34,8	34,33	34,11	45,94
	21	172.867	33	32,36	31,64	31,3	31,42	31,02	45,62
	20	172.075	35	34,34	34,36	33,74	33,23	33,35	44,96
	19	170.714	19	18,86	18,26	17,76	17,84	17,48	43,91
	18	170.123	21	22,15	22,36	22,77	22,25	22,2	43,38
	17	169.184	25	24,44	24,06	24,1	23,59	23,69	42,58
	16	168.477	28	27,71	27,12	26,89	26,63	26,53	42,23
	15	167.745	30	29,45	29,52	29,34	29,37	29,06	41,98
	14	167.013	32	31,73	31,08	30,47	30,49	29,75	41,89
	13	165.945	29	29,26	29,54	29,34	29,43	29,19	41,71
	12	162.927	30,58	29,59	28,94	28,4	28,43	28,57	41,3
	11	157.149	32,74	32,91	32,3	32,37	32,11	31,59	40,61
	10	152.604	26,45	27,28	28,37	28,55	28,71	29,01	39,69
	9	148.944	36,04	33,78	33,2	32,88	32,97	33,07	38,9
	8	139.726	30,48	28,22	27,61	27,46	27,21	27,09	37,47
	7	127.133	2,58	11,36	13,73	14,92	15,28	15,44	36,06

Pio	Socão	Distância			Fund	o (m)			N.A. (m)
RIU	Seçau	Acumulada (m)	2013	2033	2053	2073	2093	2112	2112
	6	115.000	27,24	27,89	28,15	28,34	28,49	28,59	34,48
	5	108.956	24,58	24,18	23,92	23,67	23,43	23,15	34
	4	102.678	26,35	26,6	26,95	27,22	27,47	27,68	33,2
	3	94.072	20,46	20,29	19,97	19,7	19,38	19,07	32,63
	2	87.372	24,97	25,03	25,29	25,6	25,95	26,34	31,94
Entrada	JUNÇÃO	81.143	22,79	22,95	23,01	23,03	23	22,93	31,66
Jamanxim	STM1 -4	81.143	22,79	23,11	23,4	23,65	23,93	24,22	31,62
	3	72.555	24,21	24,2	24,2	24,2	24,2	24,2	30,03
	2	62.726	20,31	20,31	20,31	20,31	20,31	20,31	27,1
	C FORÇA	53.818	11	11	11	11	11	11	22,81
	EST.BV	53.668	11	11	11	11	11	11	21,93
	STJ 6	51.668	-14,72	-21,37	-27,66	-34,35	-34,76	-34,76	9,77
	SCAV 3	49.397	-14,74	-7,96	-3	-1,44	-3,82	-3,78	9,42
	SCAV 2	45.957	-27,94	-27,81	-27,26	-25,53	-24,95	-25,19	8,86
	SCAV 1	41.737	-10,59	-10,16	-9,11	-7,28	-5,53	-4,27	8,26
	S 2	39.483	-9,76	-9,5	-9,38	-9,18	-8,66	-7,94	8,11
	STJ 5	34.923	-9,98	-9,9	-9,83	-9,79	-9,7	-9,52	7,82
	STJ 4	25.509	-12,98	-12,91	-12,85	-12,79	-12,75	-12,7	7,54
	STJ 3	11.369	-12,31	-12,28	-12,26	-12,23	-12,22	-12,2	7,33
	STJ 2	1.429	-9,17	-9,16	-9,16	-9,14	-9,13	-9,11	7,14
	ITAITUBA	0	-9,17	-9,14	-9,15	-9,14	-9,13	-9,12	7,1

Quadro 7.4.1.1.4.4.6.4.1/10 – Método de Laursen para todo o trecho – Condições Naturais – rio Jamanxim

Die	<u>Casãa</u>	Distância			Fund	o (m)			N.A. (m)
RIO	Seçao	Acumulada (m)	2013	2033	2053	2073	2093	2112	2112
	SJ 10	55.784	10,86	10,86	10,86	10,86	10,86	10,86	39,3
	INTERM	43.585	10,86	9,87	9,21	8,49	8,09	7,62	37,36
	INTERM	43.428	16,69	7,25	7,22	7,28	7,11	7,11	37,3
	SJ 9	43.242	13,49	4,34	4,35	4,37	4,36	4,37	37,32
	SJ 8	42.811	23,38	19,32	18,24	17,28	16,85	16,35	37,22
lomonvim	SJ 7	34.309	23,57	23,81	23,83	23,86	23,88	23,9	36,49
Jamanxiin	SJ 6	24.615	31,17	31,37	31,26	31,17	31,05	30,96	34,68
	SJ 5	19.027	24,9	24,1	23,97	23,9	23,91	23,9	34,15
	SJ 4	13.691	28,26	24,6	24,72	24,88	25	25,06	33,32
-	SJ 3	10.270	20,24	22,53	23,05	23,43	23,76	24	32,2
	SJ 2	4.809	12,67	13,45	13,77	14,05	14,31	14,53	31,74
	SJ 1	0	24,46	24,48	24,51	24,54	24,57	24,6	31,67

Figura 7.4.1.1.4.4.6.4.1/13 – Perfil de fundo no Rio Tapajós em todo o trecho – Laursen

Figura 7.4.1.1.4.4.6.4.1/14 – Detalhe do Perfil de fundo no Rio Tapajós a jusante do Eixo – Laursen

Figura 7.4.1.1.4.4.6.4.1/15 - Perfil de fundo no Rio Jamanxim - Laursen

Nessas simulações gerais observam-se alguns pontos com erosão e outros com assoreamento situados a montante do empreendimento (região do reservatório) e logo após o trecho encachoeirado, abrangendo a região onde se encontram as cavidades, nas 5 metodologias testadas, com diferentes graus de intensidade. Apesar de não resultar em valores importantes para o longo período estudado, essa informação já serve para demonstrar a tendência de assoreamento logo no início do trecho afetado pelo remanso do Amazonas, a exemplo do que ocorre em outros deltas de zonas estuarinas e reservatórios.

Para poder fazer um estudo mais adequado do comportamento sedimentológico a jusante do barramento é importante considerar a vazão sólida efluente da barragem. O critério adotado foi o de considerar uma curva chave sedimentométrica geral que resultasse num comportamento equivalente aos encontrados nos métodos que partiram da condição de equilíbrio a montante. Procurou-se ajustar a curva-chave que representasse a condição mais desfavorável em termos de transporte sólido, com maior potencial de retenção no reservatório, que corresponde aproximadamente ao resultado do método de Engelund-Hansen. Os valores dessa curva-chave são apresentados no **Quadro 7.4.1.1.4.4.6.4.1/11**.

Quadro 1141	1.1.4.4.0.4.1/1		Carra chare coamentemente ajactada para de cintalações							
Q (m³/s)	1000	2000	5000	10000	20000	50000	100000			
Qs (t/d)	8,4E+05	2,0E+06	6,0E+06	1,4E+07	3,3E+07	1,0E+08	2,4E+08			

Quadro 7.4.1.1.4.4.6.4.1/11 – Curva-Chave Sedimentométrica ajustada para as simulações

As **Figuras 7.4.1.1.4.4.6.4.1/16** a **7.4.1.1.4.4.6.4.1/19** a seguir mostram o comportamento da aplicação da curva-chave proposta na simulação. Apresenta-se também a comparação entre os resultados da aplicação dessa curva-chave comparada com o critério que considera a entrada de sedimentos em regime, com diferentes métodos de cálculo. Observa-se uma boa aderência dos resultados com o método de Engelund-Hansen. Os demais cálculos apresentados mais adiante correspondem à utilização dessa curva-chave de sedimentos. Um dado de entrada na modelação é a granulometria dessa curva-chave. Considerou-se a mesma granulometria do leito. Não foram consideradas as contribuições em suspensão dado que correspondem à parcela correspondente à carga de lavagem e, portanto, não participam das transformações morfológicas.

Figura 7.4.1.1.4.4.6.4.1/16 – Perfil de fundo no Rio Tapajós em todo o trecho - com a curvachave

Figura 7.4.1.1.4.4.6.4.1/17 –Detalhe do perfil de fundo no Rio Tapajós a jusante do eixo - com a curva-chave

Figura 7.4.1.1.4.4.6.4.1/18 – Perfil de fundo no Rio Jamanxim - com a curva-chave

Figura 7.4.1.1.4.4.6.4.1/19 – Comparação de resultados simulando com a curva-chave ajustada

As **Figuras 7.4.1.1.4.4.6.4.1/20** e **7.4.1.1.4.4.6.4.1/21** apresentam a comparação apenas com o método de Engelund-Hansen para que se possa avaliar melhor a aderência.

Figura 7.4.1.1.4.4.6.4.1/20 – Comparação dos resultados simulando com a curva-chave ajustada e o método de Engelund

Figura 7.4.1.1.4.4.6.4.1/21 – Detalhe da comparação no trecho de jusante

7.4.1.1.4.4.6.4.2. Estudo de Assoreamento do Reservatório

Os resultados das simulações para os cinco métodos de cálculo utilizados são apresentados nos **Quadros 7.4.1.1.4.4.6.4.2/01** a **7.4.1.1.4.4.6.4.2/05** e **Figuras 7.4.1.1.4.4.6.4.2/01** a **7.4.1.1.4.4.6.4.2/10**. Nas figuras representa-se separadamente o leito dos rios Jamanxim e Tapajós, com uma segunda representação mais detalhada desse último em seu trecho de montante para melhor visualizar o trecho com maior potencial de alteração.

Em todos os métodos utilizados praticamente não se notou qualquer alteração significativa para um horizonte de 100 anos no rio Tapajós. Isto se deve, principalmente, à limitada capacidade de transporte sólido do Rio Tapajós e afluentes, típica de rios em bacias com produção de sedimentos muito reduzidas. Estes resultados são coerentes com dados observados, conforme já discutido anteriormente. Os estudos de vida útil do reservatório estimam uma retenção de sedimento da ordem de 59%, cálculo obtido através da utilização da curva média de eficiência de retenção de sedimentos proposto por Brune, condição esta extremamente conservativa. Trata-

se de um método empírico para a estimativa da vida útil, obtida para a média de assoreamento em reservatórios de bacias com características muito diferentes às do Tapajós, com baixíssima produção de sedimentos.

De fato, considerando os resultados da modelagem matemática, como se apresenta adiante, chega-se num cálculo grosseiro a um aporte médio de sedimentos ao reservatório da ordem de 2,24x10¹⁰ toneladas em 100 anos. Considerando uma porosidade média da ordem de 50% essa quantidade se fosse transformada em volume de assoreamento seria da ordem de 1,12x10¹⁰ m³. No caso se a taxa de retenção fosse da ordem de 59% como prevê o método de Brune, o volume de assoreamento em 100 anos seria da ordem de 6,62x10⁹ m³, valor próximo da capacidade do reservatório que é de 7,77x10⁹ m³. Pelos valores resultantes da simulação chega-se ao final desse período a um assoreamento da ordem de 1,03% o que demonstra a baixíssima capacidade de retenção de sedimentos.

Rio	Secão	Distância Acumulada			Fund	o (m)			N.A. (m)
Tuo	ooyuo	(m)	2013	2033	2053	2073	2093	2112	2112
Tapajós	27	145.996	45,96	46,05	46,1	46,16	46,26	46,34	53,45
Montante	26	140.475	41,17	41,56	41,9	42,2	42,44	42,64	52,53
	25	135.879	45,68	45,48	45,41	45,38	45,37	45,38	51,91
	24	129.973	33,24	32,12	31,59	31,23	30,91	30,76	51,2
	23	123.579	36,93	36,97	36,95	36,96	36,95	36,95	50,67
	22	119.452	36	36,47	36,48	36,53	36,53	36,57	50,37
	21	119.049	33	33,33	33,34	33,38	33,38	33,43	50,34
	20	118.257	35	36,04	36,1	36,19	36,31	36,41	50,29
	19	116.896	19	20,31	20,45	20,39	20,4	20,44	50,21
	18	116.305	21	22,58	23,86	23,91	23,99	24,1	50,17
	17	115.366	25	25,9	27,5	28,11	27,88	27,96	50,13
	16	114.659	28	28,4	29,65	31,5	31,89	31,76	50,1
	15	113.927	30	30,25	30,8	32,33	34,66	34,92	50,07
	14	113.195	32	32,11	32,26	32,69	34,58	36,28	50,05
	13	112.127	29	29,03	29,06	29,1	29,4	30,11	50,05
	12	109.109	30,58	30,59	30,6	30,61	30,63	30,69	50,04
	11	103.331	32,74	32,75	32,76	32,77	32,78	32,79	50,04
	10	98.786	26,45	26,45	26,46	26,46	26,47	26,48	50,03
	9	95.126	36,05	36,05	36,05	36,05	36,05	36,05	50,03
	8	85.908	30,49	30,48	30,48	30,48	30,48	30,48	50,02
	7	73.315	2,55	2,55	2,56	2,56	2,56	2,57	50,01

Quadro 7.4.1.1.4.4.6.4.2/01 – Método de Engelund e Hansen

Rio	Secão	Distância Acumulada			Fund	o (m)			N.A. (m)
		(m)	2013	2033	2053	2073	2093	2112	2112
	6	61.182	27,24	27,25	27,25	27,25	27,25	27,25	50,01
	5	55.138	24,58	24,58	24,58	24,58	24,58	24,58	50,01
	4	48.860	26,35	26,35	26,35	26,35	26,35	26,35	50,01
	3	40.254	20,46	20,46	20,46	20,46	20,46	20,46	50
	2	33.554	24,97	24,97	24,97	24,97	24,97	24,97	50
Entrada	JUNÇÃO	27.325	22,79	22,79	22,79	22,79	22,79	22,79	50
Jamanxim	JUNÇÃO	27.325	22,79	22,79	22,79	22,79	22,79	22,79	50
	3	18.737	24,21	24,21	24,21	24,21	24,21	24,21	50
	2	8.908	20,31	20,31	20,31	20,31	20,31	20,31	50
Barragem	1	0	11	11	11	11	11	11	50
	10	55.784	10,86	11,33	11,77	12,18	12,54	12,88	50,17
Jamanxim	9.5	43.585	10,86	10,58	10,43	10,25	10,13	10,05	50,03
Montante	9.3	43.428	16,97	12,18	12,18	12,18	12,18	12,18	50,02
	9	43.242	13,67	10,65	10,65	10,65	10,65	10,65	50,02
	8	42.811	23,38	19,38	18,52	17,8	17,44	17,24	50,01
	7	34.309	23,57	23,76	23,82	23,9	23,95	24	50,01
	6	24.615	31,17	31,21	31,22	31,23	31,24	31,25	50,01
	5	19.027	24,9	24,9	24,9	24,9	24,9	24,9	50
	4	13.691	28,27	28,27	28,27	28,27	28,27	28,27	50
	3	10.270	20,23	20,23	20,23	20,23	20,23	20,23	50
	2	4.809	12,67	12,67	12,67	12,67	12,67	12,67	50
Junção	1	0	24,46	24,46	24,46	24,46	24,46	24,46	50

Figura 7.4.1.1.4.4.6.4.2/01 – Perfil de fundo no Rio Tapajós a montante da barragem -Engelund

Figura 7.4.1.1.4.4.6.4.2/02 - Perfil de fundo no Rio Jamanxim - Engelund

Die	Casão	Distância			Funde	o (m)			N.A. (m)
RIO	Seçao	Acumulada (m)	2013	2033	2053	2073	2093	2112	2112
Tapaiós	27	145.996	45,96	46,27	46,43	46,59	46,78	46,93	53,79
Montante	26	140.475	41,17	41,51	41,87	42,2	42,52	42,8	52,8
	25	135.879	45,68	45,57	45,45	45,45	45,45	45,46	52,35
	24	129.973	33,24	33,03	33,03	33,03	33,03	33,04	51,41
	23	123.579	36,93	36,93	36,92	36,92	36,92	36,92	50,54
	22	119.452	36,01	36,18	36,2	36,24	36,25	36,34	50,25
	21	119.049	33	33,18	33,25	33,31	33,32	33,36	50,21
	20	118.257	35	35,25	35,49	35,62	35,75	35,86	50,17
	19	116.896	19	19,34	19,61	19,82	20	20,17	50,1
	18	116.305	21	21,5	21,84	22,1	22,43	22,68	50,09
	17	115.366	25	25,39	25,53	25,82	26,14	26,42	50,07
	16	114.659	28	28,25	28,38	28,57	28,88	29,14	50,06
	15	113.927	30	30,21	30,64	30,79	31	31,25	50,06
	14	113.195	32	32,15	32,5	32,52	32,55	32,66	50,05
	13	112.127	29	29,06	29,19	29,23	29,25	29,26	50,05
	12	109.109	30,58	30,6	30,64	30,66	30,69	30,7	50,04
	11	103.331	32,74	32,76	32,77	32,79	32,82	32,83	50,04
	10	98.786	26,45	26,45	26,46	26,46	26,47	26,47	50,03
	9	95.126	36,05	36,05	36,05	36,05	36,05	36,05	50,03
	8	85.908	30,49	30,49	30,48	30,48	30,48	30,48	50,02

Quadro 7.4.1.1.4.4.6.4.2/02 - Método de Ackers e White

Pio	Socão	Distância			Fund	o (m)			N.A. (m)
NIU	Seçao	Acumulada (m)	2013	2033	2053	2073	2093	2112	2112
	7	73.315	2,55	2,55	2,56	2,56	2,56	2,56	50,01
	6	61.182	27,24	27,25	27,25	27,25	27,25	27,25	50,01
	5	55.138	24,58	24,58	24,58	24,58	24,58	24,58	50,01
	4	48.860	26,35	26,35	26,35	26,35	26,35	26,35	50,01
	3	40.254	20,46	20,46	20,46	20,46	20,46	20,46	50
	2	33.554	24,97	24,97	24,97	24,97	24,97	24,97	50
Entrada	JUNÇÃO	27.325	22,79	22,79	22,79	22,79	22,79	22,79	50
Jamanxim	JUNÇÃO	27.325	22,79	22,79	22,79	22,79	22,79	22,79	50
	3	18.737	24,21	24,21	24,21	24,21	24,21	24,21	50
	2	8.908	20,31	20,31	20,31	20,31	20,31	20,31	50
Barragem	1	0	11	11	11	11	11	11	50
	10	55.784	10,86	11,37	11,85	12,32	12,77	13,2	50,21
Jamanxim	9.5	43.585	10,86	10,77	10,73	10,69	10,66	10,64	50,04
Montante	9.3	43.428	17,01	12,2	12,2	12,2	12,2	12,2	50,03
	9	43.242	13,67	10,66	10,66	10,66	10,66	10,66	50,03
	8	42.811	23,38	23,02	22,41	21,85	21,45	21,21	50
	7	34.309	23,57	23,61	23,64	23,67	23,7	23,72	50,01
	6	24.615	31,17	31,2	31,21	31,22	31,23	31,24	50,01
	5	19.027	24,9	24,9	24,9	24,9	24,9	24,9	50
	4	13.691	28,27	28,27	28,27	28,27	28,27	28,27	50
	3	10.270	20,23	20,23	20,23	20,23	20,23	20,23	50
	2	4.809	12,67	12,67	12,67	12,67	12,67	12,67	50
Junção	1	0	24,46	24,46	24,46	24,46	24,46	24,46	50

Figura 7.4.1.1.4.4.6.4.2/03 - Perfil de fundo no Rio Tapajós a montante da barragem - Ackers

Figura 7.4.1.1.4.4.6.4.2/04 - Perfil de fundo no Rio Jamanxim - Ackers-White

Pie	Sacão	Distância		Fundo (m)							
RIU	Seçau	Acumulada (m)	2013	2033	2053	2073	2093	2112	2112		
Tapajós	27	145.996	45,96	46,41	46,58	46,75	46,99	47,17	54,04		
Montante	26	140.475	41,17	41,53	41,96	42,37	42,75	43,09	52,87		
	25	135.879	45,68	45,6	45,59	45,59	45,6	45,64	52,24		
	24	129.973	33,25	32,84	32,56	32,35	32,19	32,11	51,29		
	23	123.579	36,93	36,91	36,88	36,88	36,88	36,89	50,58		
	22	119.452	36	36,34	36,42	36,45	36,43	36,47	50,28		

Quadro 7.4.1.1.4.4.6.4.2/03 – Método de Yang

Dia	0	Distância			Funde	o (m)			N.A. (m)
RIO	Seçao	Acumulada (m)	2013	2033	2053	2073	2093	2112	2112
	21	119.049	33	33,3	33,36	33,34	33,28	33,28	50,25
	20	118.257	35	35,52	35,92	36,13	36,21	36,22	50,2
	19	116.896	19	19,44	19,89	20,27	20,52	20,6	50,11
	18	116.305	21	21,31	21,72	22,24	22,97	23,47	50,09
	17	115.366	25	25,16	25,37	25,66	26,16	26,66	50,06
	16	114.659	28	28,08	28,17	28,27	28,48	28,73	50,06
	15	113.927	30	30,06	30,12	30,18	30,26	30,35	50,06
	14	113.195	32	32,03	32,07	32,11	32,16	32,2	50,05
	13	112.127	29	29,01	29,02	29,03	29,04	29,05	50,05
	12	109.109	30,58	30,58	30,59	30,59	30,6	30,6	50,04
	11	103.331	32,74	32,74	32,74	32,75	32,75	32,75	50,04
	10	98.786	26,45	26,45	26,45	26,45	26,45	26,45	50,03
	9	95.126	36,05	36,05	36,05	36,05	36,05	36,05	50,03
	8	85.908	30,49	30,49	30,49	30,49	30,49	30,49	50,02
	7	73.315	2,55	2,55	2,55	2,55	2,55	2,55	50,01
	6	61.182	27,24	27,24	27,24	27,24	27,24	27,24	50,01
	5	55.138	24,58	24,58	24,58	24,58	24,58	24,58	50,01
	4	48.860	26,35	26,35	26,35	26,35	26,35	26,35	50,01
	3	40.254	20,46	20,46	20,46	20,46	20,46	20,46	50
	2	33.554	24,97	24,97	24,97	24,97	24,97	24,97	50
Entrada	JUNÇÃO	27.325	22,79	22,79	22,79	22,79	22,79	22,79	50
Jamanxim	JUNÇÃO	27.325	22,79	22,79	22,79	22,79	22,79	22,79	50
	3	18.737	24,21	24,21	24,21	24,21	24,21	24,21	50
	2	8.908	20,31	20,31	20,31	20,31	20,31	20,31	50
Barragem	1	0	11	11	11	11	11	11	50
	10	55.784	10,86	11,42	11,93	12,46	12,97	13,45	50,21
Jamanxim	9.5	43.585	10,86	10,78	10,74	10,7	10,66	10,64	50,04
Montante	9.3	43.428	17,01	12,2	12,2	12,2	12,2	12,2	50,03
	9	43.242	13,67	10,66	10,66	10,66	10,66	10,66	50,03
	8	42.811	23,38	22,89	22,37	21,86	21,54	21,35	50
	7	34.309	23,57	23,62	23,64	23,67	23,69	23,71	50,01
	6	24.615	31,17	31,18	31,18	31,19	31,19	31,2	50,01
	5	19.027	24,9	24,9	24,9	24,9	24,9	24,9	50
	4	13.691	28,27	28,27	28,27	28,27	28,27	28,27	50
	3	10.270	20,23	20,23	20,23	20,23	20,23	20,23	50
	2	4.809	12,67	12,67	12,67	12,67	12,67	12,67	50
Junção	1	0	24,46	24,46	24,46	24,46	24,46	24,46	50

Figura 7.4.1.1.4.4.6.4.2/05 – Perfil de fundo no Rio Tapajós a montante da barragem - Yang

Figura 7.4.1.1.4.4.6.4.2/06 - Perfil de fundo no Rio Jamanxim - Yang

Quadro 7.4.1.1.4.4.6.4.2/04 -	Método de	e Toffaleti
-------------------------------	-----------	-------------

Rio	Seção	Distância		Fundo (m)						
		Acumulada (m)	2013	2033	2053	2073	2093	2112	2112	

Die	Gaaãa	Distância			Fund	lo (m)			N.A. (m)
RIO	Seçao	Acumulada (m)	2013	2033	2053	2073	2093	2112	2112
	27	145.996	45,96	46,67	46,88	47,02	47,23	47,43	53,95
	26	140.475	41,17	41,34	41,64	41,99	42,35	42,69	52,82
Tanaiós	25	135.879	45,68	45,66	45,66	45,67	45,68	45,7	52,28
Montante	24	129.973	33,25	32,89	32,7	32,46	32,16	31,98	51,37
	23	123.579	36,93	37,06	37,06	37,13	37,21	37,26	50,6
	22	119.452	36	36,19	36,34	36,43	36,51	36,58	50,25
	21	119.049	33	33,18	33,34	33,44	33,53	33,58	50,22
	20	118.257	35	35,21	35,42	35,62	35,78	35,89	50,17
	19	116.896	19	19,31	19,62	19,92	20,23	20,46	50,09
	18	116.305	21	21,25	21,51	21,82	22,21	22,53	50,08
	17	115.366	25	25,11	25,25	25,39	25,64	25,88	50,06
	16	114.659	28	28,07	28,15	28,24	28,39	28,54	50,06
	15	113.927	30	30,05	30,13	30,2	30,32	30,44	50,06
	14	113.195	32	32,01	32,03	32,04	32,07	32,1	50,05
	13	112.127	29	29	29	28,99	28,99	29	50,05
	12	109.109	30,58	30,59	30,6	30,6	30,6	30,61	50,04
	11	103.331	32,74	32,77	32,8	32,82	32,85	32,87	50,04
	10	98.786	26,45	26,46	26,48	26,5	26,54	26,56	50,03
	9	95.126	36,05	36,05	36,05	36,05	36,05	36,05	50,03
	8	85.908	30,49	30,48	30,48	30,48	30,48	30,48	50,02
	7	73.315	2,55	2,56	2,56	2,57	2,57	2,58	50,01
	6	61.182	27,24	27,25	27,25	27,25	27,26	27,26	50,01
	5	55.138	24,58	24,58	24,58	24,58	24,58	24,58	50,01
	4	48.860	26,35	26,35	26,35	26,35	26,35	26,35	50,01
	3	40.254	20,46	20,46	20,46	20,46	20,46	20,46	50
	2	33.554	24,97	24,97	24,97	24,97	24,97	24,97	50
Entrada	JUNÇÃO	27.325	22,79	22,79	22,79	22,79	22,79	22,79	50
Jamanxim	JUNÇÃO	27.325	22,79	22,79	22,79	22,79	22,79	22,79	50
	3	18.737	24,21	24,21	24,21	24,21	24,21	24,21	50
	2	8.908	20,31	20,31	20,31	20,31	20,31	20,31	50
Barragem	1	0	11	11	11	11	11	11	50
Jamanxim	10	55.784	10,86	11,41	11,93	12,47	12,99	13,5	50,22
Montante	9.5	43.585	10,86	10,84	10,83	10,83	10,82	10,82	50,04
	9.3	43.428	17,01	13,55	12,58	12,21	12,21	12,21	50,03
	9	43.242	13,67	12,45	11,44	10,65	10,65	10,65	50,03
	8	42.811	23,38	22,88	22,58	22,2	21,84	21,57	50
	7	34.309	23,57	23,6	23,62	23,63	23,65	23,66	50,01
	6	24.615	31,17	31,18	31,19	31,19	31,2	31,2	50,01
	5	19.027	24,9	24,9	24,9	24,9	24,9	24,9	50

Rio	Socão	Distância		Fundo (m)							
	Coguo	Acumulada (m)	2013	2033	2053	2073	2093	2112	2112		
	4	13.691	28,27	28,27	28,27	28,27	28,27	28,27	50		
	3	10.270	20,23	20,23	20,23	20,23	20,23	20,23	50		
	2	4.809	12,67	12,67	12,67	12,67	12,67	12,67	50		
Junção	1	0	24,46	24,46	24,46	24,46	24,46	24,46	50		

FONTE: CNEC WorleyParsons, 2013

Figura 7.4.1.1.4.4.6.4.2/07 – Perfil de fundo no Rio Tapajós a montante da barragem - Toffaleti

Figura 7.4.1.1.4.4.6.4.2/08 - Perfil de fundo no Rio Jamanxim - Toffaleti

Pio	Distância Fundo (m)							N.A. (m)	
	Ueçau	(m)	2013	2033	2053	2073	2093	2112	2112
	27	145.996	45,96	46,42	46,55	46,59	46,76	46,97	53,96
	26	140.475	41,17	41,48	41,9	42,37	42,79	43,15	52,75
Tanaiác	25	135.879	45,68	45,57	45,45	45,35	45,24	45,21	52,29
Montante	24	129.973	33,25	32,85	32,65	32,5	32,35	32,3	51,66
	23	123.579	36,93	37,26	37,5	37,7	37,91	38,03	50,64
	22	119.452	36	36,15	36,25	36,31	36,38	36,43	50,23
	21	119.049	33	33,17	33,33	33,46	33,58	33,72	50,2
	20	118.257	35	35,2	35,38	35,57	35,74	35,86	50,15
	19	116.896	19	19,21	19,37	19,57	19,82	19,97	50,08
	18	116.305	21	21,16	21,29	21,42	21,6	21,75	50,07
	17	115.366	25	25,08	25,14	25,18	25,26	25,3	50,06
	16	114.659	28	28,04	28,08	28,1	28,13	28,16	50,06
	15	113.927	30	30,04	30,07	30,09	30,11	30,14	50,06
	14	113.195	32	32,02	32,04	32,04	32,05	32,06	50,05
	13	112.127	29	29,01	29,01	29	29,01	29,02	50,05
	12	109.109	30,58	30,6	30,62	30,63	30,62	30,62	50,04
	11	103.331	32,74	32,78	32,83	32,88	32,94	32,98	50,04
	10	98.786	26,45	26,47	26,5	26,53	26,57	26,6	50,03
	9	95.126	36,05	36,05	36,05	36,05	36,06	36,06	50,03
	8	85.908	30,49	30,49	30,49	30,49	30,49	30,49	50,02
	7	73.315	2,55	2,56	2,57	2,57	2,59	2,6	50,01
	6	61.182	27,24	27,25	27,25	27,25	27,26	27,26	50,01
	5	55.138	24,58	24,58	24,58	24,59	24,59	24,59	50,01
	4	48.860	26,35	26,35	26,35	26,35	26,35	26,35	50,01
	3	40.254	20,46	20,46	20,46	20,46	20,46	20,46	50
	2	33.554	24,97	24,97	24,97	24,97	24,97	24,97	50
Entrada	JUNÇÃO	27.325	22,79	22,79	22,79	22,79	22,79	22,79	50
Jamanxim	JUNÇÃO	27.325	22,79	22,79	22,79	22,79	22,79	22,79	50
	3	18.737	24,21	24,21	24,21	24,21	24,21	24,21	50
	2	8.908	20,31	20,31	20,31	20,31	20,31	20,31	50
Barragem	1	0	11	11	11	11	11	11	50
Jamanxim	10	55.784	10,86	11,42	11,93	12,48	13	13,52	50,23
Montante	9.5	43.585	10,86	10,84	10,83	10,82	10,82	10,82	50,04
	9.3	43.428	17,01	14,06	13,16	12,22	12,19	12,19	50,03

Quadro 7.4.1.1.4.4.6.4.2/05 – Método de Laursen

Rio	Seção	Distância Acumulada (m)	Fundo (m)						N.A. (m)
			2013	2033	2053	2073	2093	2112	2112
	9	43.242	13,67	11,85	10,99	10,66	10,66	10,66	50,03
	8	42.811	23,38	23,38	23,3	23,06	22,79	22,58	50
	7	34.309	23,57	23,59	23,6	23,61	23,62	23,63	50,01
	6	24.615	31,17	31,18	31,18	31,18	31,19	31,19	50,01
	5	19.027	24,9	24,9	24,9	24,9	24,9	24,9	50
	4	13.691	28,27	28,27	28,27	28,27	28,27	28,27	50
	3	10.270	20,23	20,23	20,23	20,23	20,23	20,23	50
	2	4.809	12,67	12,67	12,67	12,67	12,67	12,67	50
Junção	1	0	24,46	24,46	24,46	24,46	24,46	24,46	50

Figura 7.4.1.1.4.4.6.4.2/09 – Perfil de fundo no Rio Tapajós a montante da barragem - Laursen

Figura 7.4.1.1.4.4.6.4.2/10 - Perfil de fundo no Rio Jamanxim - Laursen

7.4.1.1.4.4.6.4.3. Estudo de erosão a jusante do Aproveitamento

Nos estudos do potencial de erosão considerou-se o trecho a jusante do aproveitamento com seções desde o canal de fuga até Itaituba (Seção STJ02). Logo a jusante da seção STJ06 inicia a ilha da Goyana que compreende o trecho onde se encontram cavidades, objeto de discussão posterior. A **Figura 7.4.1.1.4.4.6.4.3/01** mostra o esquema topológico do trecho estudado com as seções batimétricas e respectivas distâncias.

Figura 7.4.1.1.4.4.6.4.3/01 - Esquema topológico do trecho a jusante do aproveitamento Nesse trecho, por simplificação, foram consideradas três seções compostas pelos canais dos braços esquerdo e direito da ilha da Goyana. Estas seções foram denominadas de **SCAV1**, correspondente à composição das seções SH2' e SH4,

SCAV2 correspondente à composição das seções SH3' e SH6 e **SCAV3** correspondente à composição das seções SH'4 e SH7.

Com as condições de fronteira, foram feitas as simulações para as condições naturais nesse trecho, considerando na seção de montante as vazões da curva-chave ajustada, utilizando novamente todas as metodologias de cálculo. Verifica-se, novamente, para a condição natural sem barragem uma tendência ao assoreamento no longo prazo nas proximidades do trecho da ilha da Goyana. Este resultado, de certa forma é coerente com a observação da formação de bancos de areia na região. Mais a jusante, até Itaituba, o trecho apresenta equilíbrio, conforme se observa nas figuras seguintes.

Considerando-se uma retenção da ordem de 1,03% de sedimentos, conforme foi avaliado no estudo de assoreamento, esse panorama seria praticamente o mesmo.

Para fazer uma demonstração por absurdo, considerou-se uma taxa de retenção de 59% de sedimentos, e que conforme já foi visto seria extremamente elevada. Fazendo as simulações no trecho de jusante chega-se aos resultados apresentados nas **Figuras 7.4.1.1.4.4.6.4.3/02** a **7.4.1.1.4.4.6.4.3/06** e **Quadros 7.4.1.1.4.4.6.4.3/01** a **7.4.1.1.4.4.6.4.3/10**.

Figura 7.4.1.1.4.4.6.4.3/02 - Perfil de fundo do rio Tapajós a jusante do Aproveitamento para o método de Engelund, comparando a situação natural e com o barramento após o período de 100 anos.

NOTA: A linha d'água refere-se ao último mês simulado em 2112.

	Distância			Fund	o (m)			N.A. (m)
Seção	Acumulada (m)	2013	2112	2053	2073	2093	2112	2112
CFORÇA	51.671	-14,7	-8,4	-7,7	-7,2	-6,8	-6,3	10,1
Q1	49.400	-14,8	-13,6	-11,4	-9,9	-9	-8,5	9,8
STJ06	45.960	-27,9	-27,8	-27,3	-27	-26,5	-25,9	9,4
SCAV3	44.990	-9,5	-8,1	-6,6	-6,1	-6,4	-6,3	9,3
SCAV2	44.380	-6,7	-5,2	-3,4	-1,9	-1,6	-1,7	9,1
SCAV1	43.390	-12,1	-12	-11,4	-10	-8,3	-7,2	8,8
S2	41.740	-10,6	-10,5	-10,3	-9,6	-8,4	-7,1	8,5
CURRAL	39.486	-9,8	-9,8	-9,8	-9,7	-9,5	-9,1	8,4
STJ05	34.926	-10	-10	-10	-10	-9,9	-9,9	8,1
STJ04	25.512	-13	-13	-13	-13	-12,9	-12,9	7,8
STJ03	11.372	-13	-13	-13	-13	-13	-13	7,5
STJ02	1.429	-9,2	-9,2	-9,1	-9,1	-9,1	-9,1	7,2
STJ01	0	-9,2	-9,1	-9	-8,9	-8,9	-8,8	7,1

Quadro 7.4.1.1.4.4.6.4.3/01 – Jusante do aproveitamento - sem barramento - Método de Engelund

Quadro 7.4.1.1.4.4.6.4.3/02 – Jusante do aproveitamento - com barramento - Método de Engelund

	Distância			Fund	o (m)			N.A. (m)
Seção	Acumulada (m)	2013	2112	2053	2073	2093	2112	2112
CFORÇA	51.671	-14,8	-12,1	-11	-10,7	-10,4	-10,2	9,2
Q1	49.400	-14,8	-14,7	-14,4	-14	-13,6	-13,2	9,1
STJ06	45.960	-27,9	-27,9	-27,9	-27,9	-27,9	-27,9	8,8
SCAV3	44.990	-9,5	-9,1	-8,2	-7,7	-7,4	-7,4	8,8
SCAV2	44.380	-6,7	-5,8	-4,8	-3,8	-3,1	-2,6	8,6
SCAV1	43.390	-12,1	-12	-11,9	-11,6	-11,2	-10,6	8,6
S2	41.740	-10,6	-10,6	-10,5	-10,4	-10,1	-9,8	8,5
CURRAL	39.486	-9,8	-9,8	-9,8	-9,8	-9,8	-9,7	8,4
STJ05	34.926	-10	-10	-10	-10	-10	-10	8,1
STJ04	25.512	-13	-13	-13	-13	-13	-13	7,8
STJ03	11.372	-13	-13	-13	-13	-13	-13	7,5
STJ02	1.429	-9,2	-9,2	-9,2	-9,2	-9,1	-9,1	7,2
STJ01	0	-9,2	-9,1	-9	-9	-8,9	-8,9	7,1

Figura 7.4.1.1.4.4.6.4.3/03 - Perfil de fundo do rio Tapajós a jusante do Aproveitamento para o método de Ackers.

	Ackers									
	Distância			Fund	o (m)			N.A. (m)		
Seção	Acumulada (m)	2013	2112	2053	2073	2093	2112	2112		
CFORÇA	51.671	-14,7	-4,1	-2,6	-2,1	-1,1	0,5	13,2		
Q1	49.400	-14,8	-14,1	-10,5	-6,9	-3,9	-1,7	10		
STJ06	45.960	-27,9	-27,7	-26,8	-25,9	-24,7	-23,1	8,9		
SCAV3	44.990	-9,5	-9	-8,5	-7,7	-6,8	-5,5	8,7		
SCAV2	44.380	-6,7	-6,2	-5,5	-4,9	-4,3	-3,5	8,6		
SCAV1	43.390	-12,1	-12	-11,9	-11,7	-11,4	-10,9	8,6		
S2	41.740	-10,6	-10,5	-10,4	-10,3	-10,2	-10	8,5		
CURRAL	39.486	-9,8	-9,7	-9,7	-9,7	-9,7	-9,6	8,4		
STJ05	34.926	-10	-10	-10	-9,9	-9,9	-9,9	8,1		
STJ04	25.512	-13	-13	-13	-13	-13	-12,9	7,8		
STJ03	11.372	-13	-13	-13	-13	-13	-13	7,4		
STJ02	1.429	-9,2	-9,2	-9,2	-9,1	-9,1	-9,1	7,2		
STJ01	0	-9,2	-9,1	-9,1	-9,1	-9	-9	7,1		

Quadro 7.4.1.1.4.4.6.4.3/03 – Jusante do aproveitamento - sem barramento - Método de Ackers

Quadro 7.4.1.1.4.4.6.4.3/04 – Jusante do aproveitamento - com barramento - Método de Ackers

	Distância			Fund	o (m)			N.A. (m)
Seção	Acumulada (m)	2013	2112	2053	2073	2093	2112	2112
CFORÇA	51.671	-14,8	-10	-6,8	-5,1	-4,5	-4,2	9,2
Q1	49.400	-14,8	-14,8	-14,4	-13,5	-12,2	-10,9	9
STJ06	45.960	-27,9	-27,9	-27,8	-27,6	-27,3	-27,1	8,7
SCAV3	44.990	-9,5	-9,4	-9,1	-8,9	-8,6	-8,4	8,6
SCAV2	44.380	-6,7	-6,5	-6,3	-6	-5,8	-5,5	8,6
SCAV1	43.390	-12,1	-12,1	-12,1	-12	-12	-11,9	8,5
S2	41.740	-10,6	-10,6	-10,5	-10,5	-10,5	-10,4	8,5
CURRAL	39.486	-9,8	-9,7	-9,7	-9,7	-9,7	-9,7	8,4
STJ05	34.926	-10	-10	-10	-10	-10	-10	8,1
STJ04	25.512	-13	-13	-13	-13	-13	-13	7,8
STJ03	11.372	-13	-13	-13	-13	-13	-13	7,4
STJ02	1.429	-9,2	-9,2	-9,2	-9,2	-9,2	-9,1	7,2
STJ01	0	-9,2	-9,1	-9,1	-9,1	-9,1	-9	7,1

Figura 7.4.1.1.4.4.6.4.3/04 - Perfil de fundo do rio Tapajós a jusante do Aproveitamento para o método de Yang.

Quadro 7.4.1.1.4.4.6.4.3/05 – Jusante do aproveitamento - sem barramento - Método de Yang

Seção	Distância			Fund	o (m)			N.A. (m) 2112		
	Acumulada (m)	2013	2112	2053	2073	2093	2112	2112		
CFORÇA	51.671	-14,7	-4,5	0,9	4	6,5	7,2	17,7		

Q1	49.400	-14,8	-14,8	-14,3	-13,1	-11,7	-10,4	9,9
STJ06	45.960	-27,9	-26,9	-24,8	-24	-23,3	-22,7	9,4
SCAV3	44.990	-9,5	-8,3	-6,3	-5,8	-6	-5,9	9,3
SCAV2	44.380	-6,7	-5,8	-3,9	-1,7	-1,8	-1,8	9,1
SCAV1	43.390	-12,1	-11,9	-11,5	-9,7	-7,8	-7,3	8,8
S2	41.740	-10,6	-10,5	-10,4	-9,9	-8,7	-7,1	8,5
CURRAL	39.486	-9,8	-9,7	-9,7	-9,7	-9,5	-9,1	8,4
STJ05	34.926	-10	-10	-10	-10	-9,9	-9,9	8,1
STJ04	25.512	-13	-13	-13	-12,9	-12,9	-12,9	7,8
STJ03	11.372	-13	-13	-13	-13	-13	-12,9	7,4
STJ02	1.429	-9,2	-9,2	-9,2	-9,2	-9,1	-9,1	7,2
STJ01	0	-9,2	-9,2	-9,1	-9,1	-9,1	-9,1	7,1

Quadro 7.4.1.1.4.4.6.4.3/06 – Jusante do aproveitamento - com barramento - Método de Yang

	Distância			Fund	lo (m)			N.A. (m)
Seção	Acumulada (m)	2013	2112	2053	2073	2093	2112	2112
CFORÇA	51.671	-14,8	-10,2	-7,1	-4,6	-2,4	-1	8,1
Q1	49.400	-14,8	-14,8	-14,8	-14,8	-14,6	-14,2	9,1
STJ06	45.960	-27,9	-27,9	-27,9	-27,7	-27,6	-27,3	8,8
SCAV3	44.990	-9,5	-9,1	-8,1	-7,3	-6,9	-6,9	8,8
SCAV2	44.380	-6,7	-6,1	-5,3	-4,5	-3,7	-3,2	8,6
SCAV1	43.390	-12,1	-12	-11,9	-11,6	-11,1	-10,4	8,6
S2	41.740	-10,6	-10,6	-10,5	-10,4	-10,2	-9,9	8,5
CURRAL	39.486	-9,8	-9,8	-9,8	-9,7	-9,7	-9,7	8,4
STJ05	34.926	-10	-10	-10	-10	-10	-10	8,1
STJ04	25.512	-13	-13	-13	-13	-12,9	-12,9	7,8
STJ03	11.372	-13	-13	-13	-13	-13	-13	7,4
STJ02	1.429	-9,2	-9,2	-9,2	-9,2	-9,2	-9,1	7,2
STJ01	0	-9,2	-9,2	-9,1	-9,1	-9,1	-9,1	7,1

Figura 7.4.1.1.4.4.6.4.3/05 - Perfil de fundo do rio Tapajós a jusante do Aproveitamento para o método de Toffaleti.

	Distância			Fund	o (m)			N.A. (m)
Seção	Acumulada (m)	2013	2112	2053	2073	2093	2112	2112
CFORÇA	51.671	-14,7	-0,3	7,2	7,2	7,2	7,2	31,6
Q1	49.400	-14,8	-14,8	-14,5	-14,1	-13,9	-13,9	9
STJ06	45.960	-27,9	-27,5	-26,3	-25,7	-25,3	-25	8,7
SCAV3	44.990	-9,5	-9,1	-8,7	-8,2	-8	-8,1	8,6
SCAV2	44.380	-6,7	-6,5	-6,2	-5,8	-5,3	-5	8,6
SCAV1	43.390	-12,1	-12	-12	-11,9	-11,9	-11,9	8,5
S2	41.740	-10,6	-10,5	-10,5	-10,4	-10,4	-10,4	8,5
CURRAL	39.486	-9,8	-9,7	-9,7	-9,7	-9,7	-9,7	8,4
STJ05	34.926	-10	-10	-9,9	-9,9	-9,9	-9,9	8,1
STJ04	25.512	-13	-13	-13	-13	-12,9	-12,9	7,8
STJ03	11.372	-13	-13	-13	-13	-13	-13	7,4

Quadro 7.4.1.1.4.4.6.4.3/07 – Jusante do aproveitamento - sem barramento - Método de Toffaleti

STJ02	1.429	-9,2	-9,2	-9,2	-9,2	-9,2	-9,2	7,2
STJ01	0	-9,2	-9,2	-9,2	-9,1	-9,1	-9,1	7,1

	Distância			Fund	lo (m)			N.A. (m)
Seção	Acumulada (m)	2013	2112	2053	2073	2093	2112	2112
CFORÇA	51.671	-14,8	-9,3	-4,1	0,9	5	7,2	17,1
Q1	49.400	-14,8	-14,8	-14,7	-14,7	-14,6	-14,4	8,9
STJ06	45.960	-27,9	-27,9	-27,8	-27,2	-26,5	-25,8	8,6
SCAV3	44.990	-9,5	-9,4	-9,1	-8,9	-8,7	-8,5	8,6
SCAV2	44.380	-6,7	-6,6	-6,5	-6,3	-6,2	-6	8,6
SCAV1	43.390	-12,1	-12,1	-12	-12	-12	-12	8,5
S2	41.740	-10,6	-10,6	-10,5	-10,5	-10,5	-10,5	8,5
CURRAL	39.486	-9,8	-9,7	-9,7	-9,7	-9,7	-9,7	8,4
STJ05	34.926	-10	-10	-10	-10	-10	-10	8,1
STJ04	25.512	-13	-13	-13	-13	-13	-13	7,8
STJ03	11.372	-13	-13	-13	-13	-13	-13	7,4
STJ02	1.429	-9,2	-9,2	-9,2	-9,2	-9,2	-9,2	7,2
STJ01	0	-9,2	-9,2	-9,2	-9,2	-9,1	-9,1	7,1

Quadro 7.4.1.1.4.4.6.4.3/08 – Jusante do aproveitamento - com barramento - Método de Toffaleti

Figura 7.4.1.1.4.4.6.4.3/06 - Perfil de fundo do rio Tapajós a jusante do Aproveitamento para o método de Laursen.

	Distância	Fundo (m)						
Seção	Acumulada (m)	2013	2112	2053	2073	2093	2112	2112
CFORÇA	51.671	-14.7	-5.2	-4.3	-3.5	-2.6	-1.7	12.2
Q1	49.400	-14.8	-13.3	-9.1	-5.7	-3.7	-2.7	10.5
STJ06	45.960	-27.9	-27.4	-26.4	-24.9	-22.6	-20.0	9.1
SCAV3	44.990	-9.5	-9.0	-8.2	-6.9	-5.1	-3.0	8.8
SCAV2	44.380	-6.7	-6.5	-6.2	-5.5	-4.5	-2.6	8.6
SCAV1	43.390	-12.1	-12.0	-11.9	-11.8	-11.4	-10.4	8.6
S2	41.740	-10.6	-10.5	-10.5	-10.4	-10.3	-10.1	8.5
CURRAL	39.486	-9.8	-9.7	-9.7	-9.7	-9.7	-9.6	8.4
STJ05	34.926	-10.0	-10.0	-10.0	-10.0	-9.9	-9.9	8.1
STJ04	25.512	-13.0	-13.0	-13.0	-13.0	-13.0	-12.9	7.8
STJ03	11.372	-13.0	-13.0	-13.0	-13.0	-13.0	-13.0	7.4
STJ02	1.429	-9.2	-9.2	-9.2	-9.2	-9.2	-9.2	7.2
STJ01	0	-9.2	-9.2	-9.2	-9.2	-9.1	-9.1	7.1

Quadro 7.4.1.1.4.4.6.4.3/09 – Jusante do aproveitamento - sem barramento - Método de Laursen

Quadro 7.4.1.1.4.4.6.4.3/10 – Jusante do aproveitamento - com barramento - Método de Laursen

	Distância			Fund	lo (m)			N.A. (m)
Seção	Acumulada (m)	2013	2112	2053	2073	2093	2112	2112
CFORÇA	51.671	-14.8	-10.1	-7.6	-6.8	-6.4	-6.1	9.3
Q1	49.400	-14.8	-14.6	-13.8	-12.4	-11.1	-9.8	9.0
STJ06	45.960	-27.9	-27.9	-27.6	-27.3	-26.8	-26.4	8.7
SCAV3	44.990	-9.5	-9.3	-9.0	-8.7	-8.3	-7.9	8.6
SCAV2	44.380	-6.7	-6.6	-6.5	-6.3	-6.0	-5.8	8.6
SCAV1	43.390	-12.1	-12.0	-12.0	-12.0	-12.0	-11.9	8.5
S2	41.740	-10.6	-10.6	-10.5	-10.5	-10.4	-10.4	8.5
CURRAL	39.486	-9.8	-9.8	-9.7	-9.7	-9.7	-9.7	8.4
STJ05	34.926	-10.0	-10.0	-10.0	-10.0	-10.0	-10.0	8.1
STJ04	25.512	-13.0	-13.0	-13.0	-13.0	-13.0	-13.0	7.8
STJ03	11.372	-13.0	-13.0	-13.0	-13.0	-13.0	-13.0	7.4
STJ02	1.429	-9.2	-9.2	-9.2	-9.2	-9.2	-9.2	7.2
STJ01	0	-9.2	-9.2	-9.2	-9.2	-9.1	-9.1	7.1

Conforme se pode observar nos resultados, mesmo raciocinando por absurdo, considerando essa hipótese de taxa de retenção muito acima da calculada, ainda

assim há algum nível de assoreamento, sem que se note qualquer indício de erosão, principalmente no trecho onde existem as cavidades.

7.4.1.1.4.4.6.5. Conclusões

• Considerações Gerais

O estudo sedimentológico levou à conclusão de que o processo de assoreamento no reservatório do AHE São Luiz do Tapajós é bastante reduzido e, portanto, não se observou qualquer processo erosivo a jusante, pelo contrário, houve uma tendência a assoreamento em longo prazo. Antes de apresentar as conclusões mais detalhadas, faz-se as seguintes considerações:

Para o caso especifico do AHE São Luiz do Tapajós, concebido para operar a fio d'água já era esperado que o processo de assoreamento fosse pouco significativo e portanto com baixo impacto em termos erosivos a jusante, ao contrário do que ocorre em reservatórios que operam com regularização de vazões. De fato os resultados da modelagem matemática apontam um reduzido processo de assoreamento do corpo do reservatório sem erosões a jusante do barramento e isto se deve aos seguintes fatores:

- Baixas Concentrações de Descarga Sólida

As baixas concentrações de descarga sólida verificadas pelas campanhas de levantamentos hidrossedimentométricos refletem as condições preservadas das bacias contribuintes, cujos solos apresentam protegidas por uma densa cobertura vegetal.

No **Quadro 7.4.1.1.4.4.6.5/01** são apresentados os valores das concentrações dos sólidos suspensos obtidas das quatro campanhas de monitoramento na calha do Tapajós, que assinalam, de forma geral, concentrações mais reduzidas ao comparar com índices obtidos de outras de bacias amazônicas.

Estação da Componho 2ª Componho 2ª Componho da Componho							
RIMA (2012)							
Quadro 7.4.1.1.4.4.6.5/01 – Concentrações de Descargas Sólidas na Calha do Tapajós – EIA							

Estação	1ª Campanha	2ª Campanha	3ª Campanha	1ª Campanha
LSIdydu	i Campanna	2 Campanna	5 Campanna	4 Campanna
Período de Amostragem	Cheia	Vazante	Seca	Enchente
CT7A (mg/L)	30	23	111	29
CT6A (mg/L)	43	30	76	42
CT4 (mg/L)	42	31	35	-
Praia do Curral (mg/L)	36	57	81	64
Itaituba (mg/L)	31	15	76	49

Estas condições são confirmadas também pelas amostragens realizadas pela Agência Nacional de Águas – ANA em diversos pontos da bacia do Tapajós, que apontam também valores reduzidos de descarga sólida em suspensão.

No **Quadro 7.4.1.1.4.4.6.5/02** são apresentados os resultados das campanhas desenvolvidas nas estações fluviométricas de Itaituba e Jatobá operadas pela ANA, localizadas mais próximas da região dos estudos e que detém um período histórico de medições de descarga líquida. Para a estação de Itaituba, foram considerados os dados monitorados a partir do ano 2000. Para a estação de Jatobá, considerou-se a série histórica disponível abrangendo o período observado entre os anos de 1977 a 1982.

Estação: Italtuba		Estação: Jatoba		
Data	Concentração (ppm)	Data	Concentração (ppm)	
22/01/00	21,81	16/08/77	2,46	
22/05/00	9,97	11/10/77	3,28	
06/08/00	7,43	20/12/77	13,27	
02/11/00	3,04	20/04/78	23,71	
29/01/01	8,07	15/06/78	10,10	
18/07/01	3,79	23/08/78	3,53	
21/10/01	11,46	20/10/78	5,76	
15/02/02	8,08	17/12/78	17,52	
14/05/02	2,88	12/02/79	27,30	
22/08/02	7,39	14/02/81	5,74	
12/12/02	13,26	07/06/81	9,43	
28/11/03	15,90	19/08/81	11,26	
31/07/05	1,00	22/10/81	17,96	
09/11/05	5,00	20/12/81	15,93	
03/03/06	7,61	13/05/82	17,98	
21/06/06	8,42	16/07/82	9,46	
15/09/06	3,26	22/09/82	7,52	
30/11/06	11,35	19/11/82	13,49	
13/12/07	12,69			
07/04/08	9,17			
07/04/08	9,17			
31/07/08	2,24			
06/11/08	9,25			
26/07/09	5,35			
27/10/09	7,96			
10/05/10	10,51			
30/7/2010	4,63			
31/10/2010	4,68			
30/1/2011	18,03			
6/5/2011	7,11			
Média	8,35	Média	11,98	

Quadro 7.4.1.1.4.4.6.5/02 - Concentrações de Sedimentos no Tapajós - EIA-RIMA (2012)

_

Esses valores se assemelham a outros da Bacia Amazônica, conforme pode-se ver na **Figura 7.4.1.1.4.4.6.5/01**, com dados de postos da ANA que ilustram esse fato. A exceção que se faz refere-se aos dados do rio Madeira que nasce em zona de

cordilheira e tem seu curso superior sem o mesmo nível de proteção, carreando grandes concentrações de sedimentos. Outros postos localizados na região Sudeste do Brasil (territórios paulista e mineiro), a exemplo de outros rios brasileiros com diferentes características de bacias e níveis de exposição do solo, apresentam concentrações consideravelmente superiores ao Tapajós.

Figura 7.4.1.1.4.4.6.5/01 - Dados de concentração em várias regiões do país

NOTA: a linha vermelha refere-se à faixa de variação das vazões sólidas específicas médias anuais dos postos A.N.A. dos rios Indaiá, Mesquita, Andorinhas e Pará, no estado de Minas Gerais.

- Tempo de Residência da Água

O reduzido tempo de residência da água refletem a menor capacidade de retenção de sedimento no corpo do reservatório. Considerando a vazão média de longo termo no local do eixo de 12.999 m³/s e o volume do reservatório de 7.765,99 * 106 m³

operando a fio d'água na cota 50,0m, o tempo de residência do reservatório resulta em 6,9 dias, o que permite caracterizar o reservatório como corpo d'água assemelhado a ambiente lótico. Considerando os compartimentos que compõem o corpo central do reservatório, onde a circulação da água ocorrerá de forma preferencial, o tempo de residência da água resulta em 5,3 dias.

- Arranjo das Estruturas Hidráulicas

Os posicionamentos da tomada d'água da casa de força principal, da casa de força complementar e das soleiras vertentes em cotas próximas do fundo do rio deverão favorecer a veiculação dos sedimentos para jusante, conforme se pode ver da descrição dessas estruturas apresentada a seguir:

Casa de Força Principal. Tomada d'água e casa de força de concreto armado, abrigando 34 unidades geradoras dotadas de turbina tipo Kaplan, com capacidade total de engolimento de aproximadamente 25.000 m³/s. A cota da soleira de entrada da tomada d'água da casa de força principal foi estabelecida em 6,50 metros, conforme apresentado na Figura 6.2.

Casa de Força Complementar. Tomada d'água e casa de força de concreto armado, abrigando 2 unidades geradoras dotadas de turbina tipo Kaplan, com capacidade total de engolimento de 1.068 m³/s. A cota da soleira de entrada da tomada d'água da casa de força secundária foi definida em 18,0 metros, conforme apresentado na Figura 6.3.

Vertedouro. Concebido com a forma geométrica de um perfil tipo Creager com coroamento na cota 30,0 m, é dotado de comportas segmento, projetado para veicular uma vazão de projeto decamilenar de 59.839 m³/conforme apresentado na Figura 6.4.

A fim de melhor aferir a circulação da água do reservatório na região próxima ao eixo do AHE São Luiz do Tapajós, é apresentado na **Figura 7.4.1.1.4.4.6.5/05** um relatório de saída do modelo MIKE 21, onde é retratada a conformação das linhas de fluxo de vazões representativa de uma condição hidrológica média. A simulação retrata um cenário de operação do aproveitamento associada a uma vazão média (12.999 m³/s), considerando como condição de contorno o aporte de uma vazão de 11.931 m³/s na casa de força principal e 1.068 m³/s na casa de força secundária e nível d'água operacional estabelecido na cota 50,0 m.

Figura 7.4.1.1.4.4.6.5/02 – Casa de Força Principal

Figura 7.4.1.1.4.4.6.5/03 – Casa de Força Secundária

Figura 7.4.1.1.4.4.6.5/04 – Estrutura Vertente

Figura 7.4.1.1.4.4.6.5/05 – Distribução de velocidades no reservatório próximo ao barramento resultando da simulação com o modelo MIKE 21.

Diferentemente do que se verifica na calha central do reservatório, os braços tributários irão formar compartimentos com maiores tempo de residência o que irá favorecer uma condição mais intensa de processo de assoreamento, com a tendência de formação de barras de sedimentos adentrando para o interior dos braços remansados.

É importante ressaltar que os projetos mais recentes concebidos para funcionar a fio d'água, são projetados para que haja o favorecimento da passagem de sedimentos pelas estruturas de forma a não formar assoreamento a montante que possa comprometer as tomadas d'água das turbinas. Um exemplo de maior significado dentro desse conceito são os empreendimentos do Rio Madeira.

Conclusões finais sobre o processo sedimentológico

Em razão das considerações apresentadas anteriormente quanto às características naturais do rio Tapajós, ou seja, as informações disponíveis sobre as granulometrias dos sedimentos amostrados em suspensão e o material de composição do leito, bem

como a série histórica de medições de concentrações e das campanhas, além do fato da bacia hidrográfica ser bastante protegida por floresta, já existiam indicações de uma baixa capacidade de transporte sólido no rio Tapajós a exemplo de outros rios da bacia Amazônica com essas mesmas características. Em regiões úmidas com grande cobertura de vegetação é natural que a vida útil seja muito elevada, da ordem de centenas de anos. As características do empreendimento, a exemplo de outros aproveitamentos hidroelétricos mais recentes concebidos para funcionarem a fio d'água, portanto sem volume de regularização, também davam indicação de volumes de assoreamento muito modestos como efetivamente foi verificado nas simulações.

Condições mais adversas guanto a ocorrência de processos de assoreamento deverão ser verificadas nos cursos dos tributários onde são desenvolvidas as atividades mineração do ouro, e que confere elevada turbidez das águas. Dentre estes tributários, destacam-se o rio Ratão situado próximo aos limites da linha do remanso do reservatório e mais a montante o igarapé Bom Jardim e rio Creporí, cujas águas apresentam fortemente impactadas pelos altos índices de turbidez. A coloração das águas é bastante visível a partir do encontro da água destes afluentes com o rio Tapajós, conformando uma faixa distinta entre as águas barrentas oriundas do tributário com as tonalidades mais claras do rio Tapajós. Neste grupo de mananciais citam-se outros tributários de menor porte, que em maior ou menor grau são afetadas pelas atividades garimpeiras, destacando-se o igarapé Pudica, Jutaí, da Montanha, Farmácia e São João, que a exceção do igarapé Pudica irão conformar braços tributários no reservatório. Os altos índices de turbidez verificados no curso destes igarapés devem-se em grande parte, das cargas de lavagem constituídas principalmente pelos sedimentos coesivos (granulometria na faixa da argila e silte), que em quase sua totalidade serão veiculados para jusante da barragem.

Quanto aos estudos do potencial de erosão, o segmento de interesse compreende o trecho do rio Tapajós a jusante do Pedral do Pereira onde a influência do remanso é mais determinante atingindo variações até próxima de 4 metros. Portanto, nessa região o transporte de sedimentos será diretamente influenciado pelo efeito de remanso propagado do rio Amazonas cujos efeitos são percebidos até o canal de fuga da casa de força principal. Nessa região há particular interesse na região da ilha da Goyana onde existe a ocorrência de cavidades em uma das margens, que constituem regiões de abrigos naturais.

As modelagens matemáticas apresentaram para a condição natural uma tendência ao assoreamento de alguns trechos, no longo prazo, onde se inclui a região das cavidades. Esse é um fenômeno típico de regiões arremansadas.

Os estudos de assoreamento indicaram uma taxa de retenção da ordem de 1,03% do material que adentrará no reservatório no período de 100 anos. Portanto este fato demonstra que a presença do empreendimento não afetará a dinâmica do regime de transporte sólido.

Apesar dessas evidências, procurou-se demonstrar que se fosse utilizado o critério dos estudos de estimativa de vida útil do empreendimento, considerando uma taxa de retenção de 59%, ainda assim haveria alguma tendência a processos de assoreamento no trecho que compreende as cavidades.

Considerando a situação de implantação do empreendimento continuou a ser verificada a tendência ao assoreamento no trecho das cavidades no longo prazo, embora de forma ligeiramente atenuada. Portanto, pelo que se analisou, a implantação do empreendimento não influi na possibilidade de ocorrência de erosão que pudessem colapsar as margens onde se encontram as cavidades.

Existem ainda um aspecto secundário que contribui para a redução dos efeitos que normalmente ocorrem à jusante de barramentos. No caso desse empreendimento, as vazões ordinárias são veiculadas pelas turbinas resultando na dissipação de grande parte da energia cinética que nas condições naturais, anteriores à construção da barragem, passariam pelo trecho encachoeirado. Como consequência disso há uma redução significativa do padrão de turbulência do escoamento e portanto da capacidade de transporte sólido favorecendo ainda mais a condição de ambiente deposicional. Mais a jusante, já na área de influência do remanso do rio Amazonas nota-se uma tendência ao equilíbrio morfológico.

resources & energy

ANEXO DIGITAL 7.4.1.1.4/01

Dados de Entrada e Saída Referentes a Modelagem Hidrossedimentométrica

DIREITOS RESERVADOS **CNEC** WorleyParsons

VOLUME 5 – Anexo Geral

Revisão: 0