

Soltura de exemplar marcado de jurupoca (Hemisorubim plathyrhynchos) no rio Pardo, MS.

PROGRAMA DE MANEJO PESQUEIRO 2012-2013

Relatório GA/200/2013

PRINCÍPIOS DA POLÍTICA DE MEIO AMBIENTE DA CESP

A CESP – Companhia Energética de São Paulo, tendo como consideração básica a integração da geração de energia elétrica ao Sistema de Gestão Ambiental, a fim de harmonizar suas atividades com as questões ambientais, compromete-se a:

- Incorporar as variáveis ambientais às políticas e diretrizes da empresa;
- Desenvolver suas atividades, considerando o cumprimento da legislação ambiental;
- Otimizar a utilização dos recursos naturais, buscando, na fonte, a redução dos poluentes, oriundos de suas atividades;
- Buscar a melhoria contínua dos processos da empresa, quanto aos aspectos ambientais;
- Estabelecer e manter programas para promover o desenvolvimento sustentável, procurando assegurar às gerações presentes e futuras o direito de uma convivência harmônica com a natureza.

Abril/2013

PROGRAMA DE MANEJO PESQUEIRO 2012-2013

RELATÓRIO GA/200/2013

São Paulo, Abril de 2013

CESP - Companhia Energética de São Paulo

CNPJ: 60.933.603/0001-78

Diretoria de Geração

Departamento de Meio Ambiente

Avenida Nossa Senhora do Sabará, 5.312 – Escritório 32A

04447-011 – São Paulo, SP

e-mail: inform@cesp.com.br

Divisão de Restauração e Conservação de Ecossistemas Rodovia BR 262, km 01 – Caixa Postal 331 79.601-970 – TRÊS LAGOAS, MS

Estação de Hidrobiologia e Aquicultura de Jupiá Rodovia Marechal Rondon, km 667 16.920-000 – CASTILHO, SP

Unidade de Produção do Rio Paraíba Rodovia dos Tamoios, km 38 - Bairro do Rio Claro 12.260-000 – PARAIBUNA, SP

Estação de Hidrobiologia e Aquicultura de Paraibuna Rodovia dos Tamoios, km 38 - Bairro do Rio Claro 12.260-000 – PARAIBUNA, SP

Divisão de Gerenciamento Ambiental de Reservatórios Rodovia Marechal Rondon, km 667 - UHE Engenheiro Souza Dias (Jupiá) - 3º Andar 16.920-000 – CASTILHO, SP

SUMÁRIO

1	INTRODUÇÃO	1
2	CARACTERÍSTICAS DOS RESERVATÓRIOS DA CESP	2
3	ESTRUTURAS DE MANEJO PESQUEIRO DA CESP	4
3.1	Estação de Hidrobiologia e Aqüicultura de Jupiá	4
3.2	Estação de Hidrobiologia e Aqüicultura de Paraibuna	5
3.3	Elevador para Peixes da UHE Engenheiro Sergio Motta (Porto Primavera)	5
3.4	Escadas para Peixes da UHE Engenheiro Sergio Motta (Porto Primavera)	6
4	ATIVIDADES DO PROGRAMA DE MANEJO PESQUEIRO DA CESP	6
4.1	Limnologia	7
4.1.1	Objetivos	7
4.1.2	Variáveis analisadas	7
4.2	Monitoramento da ictiofauna e dinâmica populacional	8
4.2.1	Objetivos	8
4.2.2	Variáveis analisadas	8
4.3	Caracterização de áreas de reprodução de peixes em tributários	9
4.3.1	Objetivos	9
4.4	Operação de equipamentos de transposição para peixes na UHE Engenheiro Sergio Motta	9
4.5	Monitoramento da produção pesqueira	10
4.5.1	Objetivos	10
4.5.2	Variáveis analisadas	10
4.6	Salvamento de peixes	11
4.7	Produção de alevinos e estocagem em reservatórios	11
5	RESULTADOS	12
5.1	Limnologia	12
5.1.1	UHE Três Irmãos	12
5.1.2	UHE Ilha Solteira	13
5.1.3	UHE Eng. Souza Dias (Jupiá)	13
5.1.4	UHE Eng. Sergio Motta (Porto Primavera)	13
5.1.5	UHE Paraibuna	13
5.1.6	UHE Jaguari	14
5.2	Monitoramento da ictiofauna e dinâmica populacional	14
5.2.1	UHE Três Irmãos	14
5.2.2	UHE Ilha Solteira	19
5.2.3	UHE Eng. Souza Dias (Jupiá)	24
5.2.4	UHE Eng. Sergio Motta (Porto Primavera)	29
5.2.5	UHE Paraibuna	34
5.2.6	UHE Jaguari	37
5.2.7	Análise integrada: bacia do alto Paraná	42
5.2.8	Análise integrada: bacia do Alto Paraíba do Sul	47
5.3	Caracterização de áreas de reprodução de peixes em tributários	50
5.4	Primavera)	50
5.5	Levantamento da Produção Pesqueira	50
5.6	Salvamento de peixes	52
5.7	Produção de alevinos e estocagem em reservatórios	52
6	PRODUÇÃO CIENTÍFICA	53
6.1	Resumos em eventos científicos	53
6.2	Trabalhos completos publicados em anais de congressos	54
6.3	Artigos Científicos Submetidos para Publicação	55
6.4	Artigos Científicos Publicados	56
6.5	Matérias em Revistas	57
6.6	Capitulo de livro publicado	57
6.7	Dissertações e Teses em Desenvolvimento	57
6.8	Teses Concluídas	58
6.9	Trabalhos de Iniciação Científica e Conclusão de Curso de Graduação	59
6.10	Organização de Eventos	60
7	REFERÊNCIAS BIBLIOGRÁFICAS	60
2 8	FOLIPE TÉCNICA	63

LISTA DE FIGURAS

Figura 1	Localização das usinas da CESP
Figura 2	Vista geral da UHE Engenheiro Souza Dias (Jupiá)
Figura 3	Vista geral da UHE Ilha Solteira
Figura 4	Vista geral da UHE Engenheiro Sergio Motta (Porto Primavera)
Figura 5	Vista geral da UHE Três Irmãos
Figura 6	Vista geral da UHE Jaguari
Figura 7	Vista geral da UHE Paraibuna
Figura 8	Vista geral da Estação de Hidrobiologia e Aqüicultura de Jupiá
Figura 9	Vista geral da Estação de Hidrobiologia e Aqüicultura de Paraibuna
Figura 10	Vista geral do elevador para peixes na UHE Engenheiro Sergio Motta
Figura 11	Vista geral da escada para peixes na UHE Engenheiro Sergio Motta
Figura 12 Figura 13	Número de espécies por estação (A) e por ordem taxonômica (B) na UHE de Três Irmãos Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação
rigula 13	Jusante de Nova Avanhandava
Figura 14	Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação Jacaré
Figura 15	Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação Pereira Barreto
Figura 16	Dendogramas de similaridade de Jaccard (A), e de Bray-Curtis (B), entre as estações do reservatório de Três Irmãos
Figura 17	Ordenação espacial (NMDS) da ictiofauna das estações do reservatório de Três Irmãos
Figura 18	Índices de diversidade de Shannon (A), equitabilidade (B), riqueza (C) e dominância (D) das estações de amostragem do reservatório de Três Irmãos
Figura 19	Número de espécies por estação (A) e por ordem taxonômica (B) no reservatório de Ilha Solteira
Figura 20	Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação Jusante de Água Vermelha
Figura 21	Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação Córrego Cigano
Figura 22	Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação São José dos Dourados
Figura 23	Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação Montante de Ilha Solteira
Figura 24	Dendogramas de similaridade de Jaccard (A), e de Bray-Curtis (B), entre as estações do reservatório de Ilha Solteira
Figura 25	Ordenação espacial (NMDS) da ictiofauna das estações do reservatório de Ilha Solteira
Figura 26	Índices de diversidade de Shannon (A), equitabilidade (B), riqueza (C) e dominância (D) das estações de amostragem do reservatório de Ilha Solteira
Figura 27	Número de espécies por estação (A) e por ordem taxonômica (B) no reservatório de Jupiá
Figura 28	Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação Jusante de Ilha Solteira
Figura 29	Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação Timboré
Figura 30	Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação Sucuriú
Figura 31	Dendogramas de similaridade de Jaccard (A), e de Bray-Curtis (B), entre as estações do reservatório de Jupiá
Figura 32	Ordenação espacial (NMDS) da ictiofauna das estações do reservatório de Jupiá
Figura 33	Índices de diversidade de Shannon (A), equitabilidade (B), riqueza (C) e dominância (D) das estações de amostragem do reservatório de Jupiá
Figura 34	Número de espécies por estação (A) e por ordem taxonômica (B) no reservatório de Porto Primavera
Figura 35	Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação Jusante de Jupiá
Figura 36	Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação Panorama
Figura 37	Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação Presidente Epitácio
Figura 38	Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação Montante de Porto Primavera

Figura 39	Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação Jusante de Porto Primavera
Figura 40	Dendogramas de similaridade de Jaccard (A), e de Bray-Curtis (B), entre as estações do reservatório de Porto Primavera
Figura 41	Ordenação espacial (NMDS) da ictiofauna das estações do reservatório de Porto Primavera
Figura 42	Índices de diversidade de Shannon (A), equitabilidade (B), riqueza (C) e dominância (D) das estações de amostragem do reservatório de Porto Primavera
Figura 43	Número de espécies por estação (A) e por ordem taxonômica (B) no reservatório de Paraibuna
Figura 44	Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação Jusante de Lourenço Velho
Figura 45	Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação Barragem
Figura 46	Índices de diversidade de Shannon (A), equitabilidade (B), riqueza (C) e dominância (D) das estações de amostragem do reservatório de Paraibuna
Figura 47	Número de espécies por estação (A) e por ordem taxonômica (B) no reservatório de Jaguari.
Figura 48	Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação Rio do Peixe
Figura 49	Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação Jaguari
Figura 50	Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação Barragem
Figura 51	Dendogramas de similaridade de Jaccard (A), e de Bray-Curtis (B), entre as estações do reservatório de Jaguari
Figura 52	Ordenação espacial (NMDS) da ictiofauna das estações do reservatório de Jaguari
Figura 53	Índices de diversidade de Shannon (A), equitabilidade (B), riqueza (C) e dominância (D) das estações de amostragem do reservatório de Jaguari
Figura 54	Número de espécies por reservatório (A) e por ordem taxonômica (B) da bacia do Alto Paraná
Figura 55	Frequência relativa em número (A), em biomassa (B) e dominância específica (C) no reservatório de Três Irmãos
Figura 56	Frequência relativa em número (A), em biomassa (B) e dominância específica (C) no reservatório de Ilha Solteira
Figura 57	Frequência relativa em número (A), em biomassa (B) e dominância específica (C) no reservatório de Jupiá
Figura 58	Frequência relativa em número (A), em biomassa (B) e dominância específica (C) no reservatório de Porto Primavera
Figura 59	Dendogramas de similaridade de Jaccard (A), e de Bray-Curtis (B), entre os reservatórios do Alto Paraná
Figura 60	Ordenação espacial (NMDS) da ictiofauna dos reservatórios do Alto Paraná
Figura 61	Índices de diversidade de Shannon (A), equitabilidade (B), riqueza (C) e dominância (D) dos reservatórios do Alto Paraná
Figura 62	Número de espécies por reservatório (A) e por ordem taxonômica (B) na bacia do Alto Paraíba de Sul
Figura 63	Frequência relativa em número (A), em biomassa (B) e dominância específica (C) no reservatório de Paraibuna
Figura 64	Frequência relativa em número (A), em biomassa (B) e dominância específica (C) no reservatório de Jaguari
Figura 65	Índices de diversidade de Shannon (A), equitabilidade (B), riqueza (C) e dominância (D) dos reservatórios do Alto Paraíba do Sul
Figura 66	Captura por Unidade de Esforço (CPUE) em biomassa das principais espécies na produção pesqueira do conjunto dos reservatórios da CESP no Alto Paraná (A) e contribuição das espécies migratórias à CPUE total por reservatório, no ano de 2011 (B)
Figura 67	Captura total amostrada (em kg) e captura por unidade de esforço (CPUE) em biomassa nos reservatórios da CESP no Alto Paraná no ano de 2011

LISTA DE TABELAS

Tabela 1	Características dos empreendimentos da CESP na bacia do Alto Paraná
Tabela 2	Características dos empreendimentos da CESP na bacia do rio Paraíba do Sul
Tabela 3	Programa de Manejo Pesqueiro: subprogramas previstos por reservatório, no período de julho de 2011 a junho de 2012
Tabela 4	Estações de amostragens ictiológicas e limnológicas no reservatório da UHE Três Irmãos. 66
Tabela 5	Estações de amostragens ictiológicas e limnológicas no reservatório da UHE Ilha Solteira.
Tabela 6	Estações de amostragens ictiológicas e limnológicas no reservatório da UHE Engenheiro Souza Dias (Jupiá), bacia do Paraná
Tabela 7	Estações de amostragens ictiológicas e limnológicas no reservatório da UHE Engenheiro Sergio Motta (Porto Primavera)
Tabela 8	Estações de amostragens ictiológicas e limnológicas no reservatório da UHE Paraibuna 69
Tabela 9	Estações de amostragens ictiológicas e limnológicas no reservatório da UHE Jaguari Dados limnológicos do reservatório de Três Irmãos, no período de julho/2011 a
Tabela 10	junho/2012, os dados em vermelho estão incompatíveis com os limites da Resolução CONAMA 357/2005
Tabela 11	junho/2012, os dados em vermelho estão incompatíveis com os limites da Resolução CONAMA 357/2005
Tabela 12	Dados limnológicos do reservatório de Jupiá, no período de julho/2011 a junho/2012, os dados em vermelho estão incompatíveis com os limites da Resolução CONAMA 357/2005
Tabela 13	Dados limnológicos do reservatório de Porto Primavera, no período de julho/2011 a junho/2012, os dados em vermelho estão incompatíveis com os limites da Resolução CONAMA 357/2005
Tabela 14	Dados limnológicos do reservatório de Paraibuna, no período de julho/2011 a junho/2012, os dados em vermelho estão incompatíveis com os limites da Resolução CONAMA 357/2005
Tabela 15	Dados limnológicos do reservatório de Jaguari, no período de julho/2011 a junho/2012, os dados em vermelho estão incompatíveis com os limites da Resolução CONAMA 357/2005
Tabela 16	Frequência absoluta de espécies em número (n) e em biomassa (g) nas estações de amostragem do reservatório de Três Irmãos
Tabela 17	Frequência absoluta de espécies em número (n) e em biomassa (g) nas estações de amostragem do reservatório de Ilha Solteira
Tabela 18	Frequência absoluta de espécies em número (n) e em biomassa (g) nas estações de amostragem do reservatório de Jupiá
Tabela 19	Frequência absoluta de espécies em número (n) e em biomassa (g) nas estações de amostragem do reservatório de Porto Primavera
Tabela 20	Frequência absoluta de espécies em número (n) e em biomassa (g) nas estações de amostragem do reservatório de Paraibuna
Tabela 21	Frequência absoluta de espécies em número (n) e em biomassa (g) nas estações de amostragem do reservatório de Jaguari
Tabela 22	alto Paraná
Tabela 23	CESP na bacia do Alto Paraíba do Sul
Tabela 24	Rendimento da produção pesqueira por espécie, em CPUE, nos reservatórios da CESP no Alto Paraná, no ano de 2011
Tabela 25	Salvamentos de peixes nas usinas da CESP no período de julho de 2011 a junho de 2012. 100
Tabela 26	Programa de Manejo Pesqueiro: produção do ano piscícola, período de julho de 2011 a junho de 2012
Tabela 27	Programa de Manejo Pesqueiro: resultados de repovoamento por reservatório no período de julho de 2011 a junho de 2012
Tabela 28	Programa de Manejo Pesqueiro: produção prevista para o ano piscícola, período de julho de 2012 a junho de 2013
Tabela 29	Programa de Manejo Pesqueiro: previsão de repovoamento por reservatório no período de julho de 2012 a junho de 2013

LISTA DE QUADROS

Quadro 1	Normas e respectivas implicações para o desenvolvimento de programa de manejo pesqueiro em reservatórios	1
Quadro 2	Variáveis limnológicas abordadas no Programa de Manejo Pesqueiro da CESP e respectivos procedimentos metodológicos	7
Quadro 3	Composição e posição taxonômica das espécies coletadas no reservatório de Três Irmãos	83
Quadro 4	Composição e posição taxonômica das espécies coletadas no reservatório de Ilha Solteira	84
Quadro 5	Composição e posição taxonômica das espécies coletadas no reservatório de Jupiá	85
Quadro 6	Composição e posição taxonômica das espécies coletadas no reservatório de Porto Primavera	86
Quadro 7	Composição e posição taxonômica das espécies coletadas no reservatório de Paraibuna	88
Quadro 8	Composição e posição taxonômica das espécies coletadas no reservatório de Jaguari	88
Quadro 9	Composição e posição taxonômica das espécies coletadas no nos reservatórios do Alto Paraná	89
Quadro 10	Composição e posição taxonômica das espécies coletadas no nos reservatórios do Alto	91

APÊNDICES (em cópia digital no Anexo 20 - CD)

- ANEXO 1 OKAWARA, R.Y.; SANCHES, E.A.; DAMASCENO, D.Z.; CANEPPELE, D.; ROMAGOSA, E.. Efeito da temperatora na desova do surubim do Paraíba, Steindachneridion parahybae. III EPgIP Encontro de pós-graduandos do Instituto de Pesca APTA Instituto de Pesca Anais 22 e 23 de setembro de 2011- São Paulo, SP.
- ANEXO 2 OKAWARA, R.Y.; SANCHES, E.A.; DAMASCENO, D.Z.; CANEPPELE, D.; ROMAGOSA, E.. Desenvolvimento inicial de larvas de *Steindachneridion parahyba*. V Congresso da Sociedade Brasileira de Aquicultura e Biologia Aquática AQUACIÊNCIA 2012 Anais 01 a 05 de julho Palmas, TO.
- ANEXO 3 AZEVEDO, A. V.; GIANSANTE, M. A. V.; ASSUMPÇÃO, L.; SILVA, P. S.; PAULA, S.; MAKRAKIS, M. C.. Ictioplâncton na escada para peixes da UHE Engenheiro Sergio Motta, alto rio Paraná: variações na composição e abundância. XX Encontro Anual de Iniciação Científica EAIC e X Encontro de Pesquisa EPUEPG. Ponta Grossa, PR, 2011.
- ANEXO 4 CASSIANO, K.D.; MAKRAKIS, M.C.; SILVA, P.S.; ASSUMPÇÃO, L.; MAKRAKIS, S.; MARQUES, H. Distribuição de ovos e larvas em três tributários do Alto rio Paraná, Brasil.. In: III Simpósio Nacional de Engenharia de Pesca e I Feira Tecnológica de Aquicultura e Pesca, 2012, Toledo, PR. III Simpósio Nacional de Engenharia de Pesca e I Feira Tecnológica de Aquicultura e Pesca, 2012.
- ANEXO 5 GIANSANTE, M. A. V.; AZEVEDO, A. V.; SILVA, P. S.; LIMA, A. F.; ASSUMPÇÃO, L.; MAKRAKIS, M. C.; BIRON, R. P.. Lagoas marginais do rio Verde-MS, alto rio Paraná: variações na composição e abundância do ictioplâncton e juvenis de peixes, e importância para o recrutamento. XX Encontro Anual de Iniciação Científica EAIC e X Encontro de Pesquisa EPUEPG. Ponta Grossa, PR, 2011. (Anexo 5)
- ANEXO 6 MAKRAKIS, S.; FONTES-JUNIOR, H.M.; MAKRAKIS, M.C.; FERNANDEZ, D.R.; DIAS, J.H.P.; BELMONT, R.A.F. Downstream migration of Neotropical potamodromous species through hydroelectric reservoir: myth or reality?. In: II International Symposium on Fish Passages in South America, 2012, Toledo, PR. II International Symposium on Fish Passages in South America Extended Abstracts, 2012.
- ANEXO 7 NETTSON, L.V.; MAKRAKIS, M.C.; SILVA, P.S.; ASSUMPÇÃO, L.; MAKRAKIS, S.; MARQUES, H. Ocorrência de larvas e juvenis em duas lagoas marginais do alto Rio Paraná. In: III Simpósio Nacional de Engenharia de Pesca e I Feira Tecnológica de Aquicultura e Pesca, 2012, Toledo, PR. III Simpósio Nacional de Engenharia de Pesca e I Feira Tecnológica de Aquicultura e Pesca, 2012.
- ANEXO 8 SILVA, P.S.; MAKRAKIS, M.C.; ASSUMPÇÃO, L.; PAULA, S.; MAKRAKIS, S.; DIAS, J.H.P.; MARQUES, H. Preferencial spawning areas of Neotropical migratory fish species in tributaries of Porto Primavera Reservoir, Upper Paraná River. In: II International Symposium on Fish Passages in South America, 2012, Toledo, PR. II International Symposium on Fish Passages in South America Extended Abstracts, 2012.
- ANEXO 9 SILVA, P.S.; MAKRAKIS, M.C.; ANDRADE, F.F.; AZEVEDO, A.V.; MAKRAKIS, S.; DIAS, J.H.P.; MARQUES, H. Downstream passage of fish eggs and larvae through the Porto Primavera fish ladder, Upper Paraná River, Brazil. In: II International Symposium on Fish Passages in South America, 2012, Toledo, PR. II International Symposium on Fish Passages in South America Extended Abstracts, 2012.
- ANEXO 10 SANCHES, E.A.; MARCOS, R.M.; OKAWARA, R.Y.; CANEPPELE, D.; BOMB.ARDELLI R.A.; ROMAGOSA, E.. Sperm motility parameters for *Steindachneridion parahybae* based on open-source software. Journal of Applied Ichthyology.
- ANEXO 11 DIAS, J.H.P.; CANEPPELE, D. ; BELMONT, R. A. F. . Manejo genético em programas de estocagem de reservatórios: a experiência da CESP. Ação Ambiental (UFV), v. 47, p. 35-41, 2012.
- ANEXO 12 HONJI, R.M.; TOLUSSI, C.E.; MELLO, P.H.; CANEPPELE, D.; MOREIRA R.G.. Embryonic development and larval stages of *Steindachneridion parahybae* (Siluriformes: Pimelodidae) implications for the conservation and rearing of this endangered Neotropical species Neotropical Ichthyology, 10(2): 313-327, 2012.
- ANEXO 13 MAKRAKIS, M.C.; MIRANDA, L.E.; MAKRAKIS, S.; FONTES JÚNIOR, H.M.; MORLIS, W.G.; DIAS, J.H.P.; GARCIA, J.O. Diversity in migratory patterns among Neotropical fishes in a highly regulated river basin. Journal of Fish Biology, v. 81, p. 866-881, 2012.
- ANEXO 14 VIVEIROS, A.T.M.; ISAÚ, Z.A.; CANEPPELE, D.; LEAL, M.C. Sperm cryopreservation affects postthaw motility, but not embryogenesis or larval growth in the Brazilian fish *Brycon insignis*

(Characiformes) - Theriogenology 78 (2012) 803-810.

ANEXO 15 VIVEIROS A.T.M.; ORFÃO, L.H., NASCIMENTO, A.F., CORRÊA, F.M., CANEPPELE, D. Effects of extenders, cryoprotectants and freezing methods on sperm quality of the threatened Brazilian freshwater fish pirapitinga-do-sul *Brycon opalinus* (Characiformes). - Theriogenology 78 (2012) 361–368

ANEXO 16 Nova Chance aos Surubins do Paraíba. Revista ECOAVENTURA – Pesca Esportiva Meio Ambiente e Turismo. Ed 33 – 78-85p

ANEXO 17 A Volta da Prata da Casa. Revista ECOAVENTURA – Pesca Esportiva Meio Ambiente e Turismo. Ed 34 – 22-27p

ANEXO 18 MAKRAKIS, M. C.; SILVA, P. S.; MAKRAKIS, S.; LIMA, A. F.; ASSUMPÇÃO, L.; PAULA, S.; MIRANDA, L. E.; DIAS, J. H. P.. Spawning and nursery habitats of Neotropical fish species in the tributaries of a regulated river. In: Kia Pourali; Vafa Niroomand Raad. (Org.). Larvae: Morphology, Biology and Life Cycle. Larvae: Morphology, Biology and Life Cycle. 1ed.New York: Nova Science Publishers, 2012, v. 1, p. 153-166.

ANEXO 19 Universidade de São Paulo - Programa de Pós-Graduação em Fisiologia

Doutoranda: Cristiéli da Silva Ribeiro

Orientadora: Prof. Dra. Renata Guimarães Moreira

Projeto: A influência térmica na dinâmica das membranas celulares: uma contribuição na conservação de *Steindachneridion parahybae* (Siluriformes: Pimelodidae) uma espécie de peixe ameaçada de extinção.

ANEXO 20 Universidade Federal de Lavras - Programa de Pós-Graduação em Zootecnia

Doutorando: Rafael Venâncio

Orientadora: Prof. Dra. Ana Tereza Mendonça Viveiros

Projeto: Avaliação computadorizada do sêmen criopreservado do Surubim do Paraíba, *Steindachneridion parahybae* (Steindachner, 1876).

ANEXO 21 CD – Cópia Digital do Relatório GA/200/2013 e Anexos de 1 a 20

PROGRAMA DE MANEJO PESQUEIRO - 2012/2013

1 INTRODUÇÃO

A formação de reservatórios altera as condições hidráulicas dos rios, afetando, suas características físicas, químicas, biológicas. Quanto à biota aquática, ocorrem alterações na abundância relativa das espécies, com proliferação excessiva de algumas e redução de outras (THOMAZ; ROBERTO; BINI, 1997).

Esses processos são ainda potencializados por alterações no uso e ocupação das bacias, práticas agrícolas inadequadas, perda da vegetação ripária e poluição das águas, empobrecendo a diversidade biológica e reduzindo os estoques pesqueiros.

Nesse contexto, cabe às empresas concessionárias dos reservatórios o imperativo ético e legal de desenvolver atividades de manejo dos recursos pesqueiros, integrando informações biológicas, ecológicas, sociais, culturais, econômicas e políticas para embasar decisões que possibilitem a conservação da biodiversidade e a sustentabilidade das atividades pesqueiras (AGOSTINHO; GOMES, 1997). O Quadro 1 apresenta o ordenamento legal pertinente ao manejo pesqueiro de reservatórios.

Quadro 1. Normas e respectivas implicações para o desenvolvimento de programas de manejo pesqueiro em reservatórios.

Norma Legal	Implicação
Política Nacional do Meio Ambiente, estabelecida pela Lei nº 6938, de 31 de agosto de 1981	Determina a avaliação de impactos ambientais e a obrigatoriedade de licenciamento para "atividades efetiva ou potencialmente poluidoras".
Resoluções CONAMA nº 001, de 23 de fevereiro de 1986 e nº 237, de 19 de dezembro de 1997	Estabelecem procedimentos para licenciamento ambiental de empreendimentos potencialmente poluidores.
Lei Estadual nº 11.165, de 27 de junho de 2002, Artigo 15	Institui o Código de Pesca e Aquicultura do Estado de São Paulo e obriga proprietários ou concessionários de represas e cursos d'água a adotar medidas de proteção à fauna e à flora, na forma da legislação em vigor.

Quadro 1 (continuação). Normas e respectivas implicações para o desenvolvimento de programas de manejo pesqueiro em reservatórios.

Norma Legal	Implicação
Política Nacional de Desenvolvimento Sustentável da Aquicultura e da Pesca (Lei 11.959, de 29 de junho de 2009)	Promove o desenvolvimento sustentável da pesca e da aquicultura como fonte de alimentação, emprego, renda e lazer, busca assegurar o uso sustentável dos recursos pesqueiros em harmonia com a conservação do meio ambiente e da biodiversidade.
Resolução Conjunta ANA/ANEEL nº 3, de 10 de agosto de 2010	Estabelece aos concessionários de geração de energia hidrelétrica as condições e os procedimentos para monitoramento pluviométrico, limnimétrico, fluviométrico, sedimentométrico e de qualidade da água nos reservatórios.

No caso específico das UHE's Engenheiro Sergio Motta (Porto Primavera) e Três Irmãos, os programas para conservação da biota aquática estão consignados nas respectivas licenças de operação. Quanto às UHE's Engenheiro Souza Dias (Jupiá) e Ilha Solteira, a CESP submeteu ao IBAMA os Planos Ambientais de Conservação e Uso do Entorno de Reservatórios Artificiais, para a devida regularização ambiental desses empreendimentos. As UHE's Jaguari e Paraibuna foram regularizadas pela Secretaria de Estado de Meio Ambiente de São Paulo em 1999 através do Ofício OF/CPRN/DAIA/418/99, de 31/8/1999. Independente da situação de licenciamento ambiental, a CESP desenvolve o Programa de Manejo Pesqueiro em todos os seus reservatórios e respectivas áreas de influência, como reportado neste relatório.

2 CARACTERÍSTICAS DOS RESERVATÓRIOS DA CESP

A Figura 1 apresenta a localização dos reservatórios da CESP nas bacias hidrográficas do Alto Paraná e do Paraíba do Sul, e as Figuras 2 a 7 mostram aspectos gerais das Usinas. Nas Tabelas 1 e 2 são apresentados dados gerais dos empreendimentos hidroelétricos da CESP, abordando respectivamente os reservatórios da bacia hidrográfica do Alto Paraná e do Paraíba do Sul.

Figura 1. Localização das usinas da CESP nas bacias hidrográficas do Alto Paraná e do Paraíba do Sul.

Figura 2. Vista Geral da UHE Engenheiro Souza Dias (Jupiá).

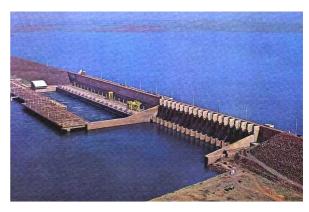


Figura 3. Vista da UHE Ilha Solteira.

Figura 4. Vista da UHE Engenheiro Sérgio Motta (Porto Primavera).

Figura 5. Vista da UHE Três Irmãos.

Figura 6. Vista da UHE Jaguari.

Figura 7. Vista da UHE Paraibuna.

3 ESTRUTURAS DE MANEJO PESQUEIRO DA CESP

Para apoiar seu Programa de Manejo Pesqueiro, a CESP dispõe das Estações de Hidrobiologia e Aquicultura de Jupiá e de Paraibuna, e das estruturas de transposição de peixes da UHE Engenheiro Sergio Motta (elevador e escada para peixes). As estações têm os seguintes objetivos:

- a. Realizar levantamentos e monitoramentos ictiológicos e limnológicos nos reservatórios e seus principais tributários.
- b. Desenvolver técnicas de reprodução induzida para espécies da ictiofauna autóctone.
- c. Produzir alevinos de espécies nativas para estocagem dos reservatórios.
- d. Efetuar salvamentos de peixes nas unidades geradoras das usinas, quando das paradas para manutenção e limpeza.

3.1 Estação de Hidrobiologia e Aquicultura de Jupiá

Essa unidade é dotada de 983,48 m² de edificações (administração, laboratórios, sanitários, depósitos, garagem, áreas de serviço etc.), 70 tanques de 200 m², 14 tanques de 1.000 m² e mais 70 tanques de 10 m², totalizando 28.700 m² de espelho d'água (Figura 8).

3.2 Estação de Hidrobiologia e Aquicultura de Paraibuna

A EHA Paraibuna foi inaugurada no dia oito de abril de 1981, no intuito de minimizar os impactos causados à ictiofauna da bacia do rio Paraíba do Sul, principalmente nas áreas sob a influência dos reservatórios de Paraibuna e Jaguari. Essa unidade dispõe de 595 m² de edificações de apoio (administração, laboratórios, sanitários, depósitos, garagem, áreas de serviço etc.), 16 tanques de 10 m², 14 tanques circulares de 78 m², 14 tanques de 200 m², quatro tanques de 1.000 m², cinco tanques com tamanhos médios de 500 m² e três lagos, sendo um com 3.400 m², outro com 3.800 m², e o terceiro com 2.600 m², totalizando 21.151 m² (Figura 9).

Figura 8. Vista geral da Estação de Hidrobiologia e Aquicultura de Jupiá.

Figura 9. Vista geral da Estação de Hidrobiologia e Aquicultura de Paraibuna.

3.3 Elevador para peixes da UHE Engenheiro Sérgio Motta (Porto Primavera)

O elevador está instalado no muro central da usina, entre as estruturas de geração e os vertedouros. Quatro grandes bombas centrífugas geram um fluxo laminar dentro de um canal, atraindo os peixes, que são conduzidos até uma caçamba que os eleva 29 metros. A seguir os peixes são despejados em uma caçamba onde são possíveis as operações de identificação, contagem e pesagem dos exemplares, que, na sequencia, são conduzidos até o reservatório. Esse dispositivo (Figura 10) iniciou operações em novembro de 1999, e os resultados vêm sendo reportados ao IBAMA em relatórios específicos.

3.4 Escada para peixes da UHE Engenheiro Sérgio Motta (Porto Primavera)

Com extensão total desenvolvida de 520 metros e desnível de 20 metros, a escada é dotada de 50 paredes transversais (degraus), com espaçamento entre si de 8 metros. Esse equipamento (Figura 11) iniciou operações em novembro de 2001, e os resultados vêm sendo reportados ao IBAMA em relatórios específicos.

Figura 10. Vista geral do elevador para peixes da UHE Engenheiro Sergio Motta.

Figura 11. Vista geral da escada para peixes da UHE Engenheiro Sergio Motta.

4 ATIVIDADES DO PROGRAMA DE MANEJO PESQUEIRO DA CESP

O Programa de Manejo Pesqueiro da CESP vem sendo desenvolvido desde 1986, através de cinco subprogramas, descritos abaixo, e de atividades de produção de alevinos, estocagem (repovoamento) de reservatórios, desenvolvimento de tecnologia de piscicultura de espécies autóctones e manejo genético dos plantéis de reprodutores. Os subprogramas constituintes do Programa de Manejo Pesqueiro da CESP estão descritos a seguir. A Tabela 3 apresenta a programação de coletas para o período de julho de 2011 a junho de 2012. As estações de amostragens ictiológicas e limnológicas estão descritas nas tabelas 4 a 9.

4.1 Limnologia

4.1.1 Objetivos:

- a. Acompanhar a produtividade biológica dos reservatórios através da avaliação das variações temporais e espaciais das características físicas, químicas e biológicas da água.
- Subsidiar a definição, implantação e avaliação de técnicas de manejo ambiental nos reservatórios.

4.1.2 Variáveis analisadas:

As variáveis, suas respectivas metodologias de análise e os reservatórios em que são executadas estão descritas no Quadro 2.

Quadro 2. Variáveis, suas respectivas metodologias de análise e os reservatórios em que são executadas.

Variável	Metodologia	Reservatórios
Temperatura	Multianalisador HORIBA U-50	Ilha Solteira, Eng. Souza Dias, Eng. Sergio Motta, Três Irmãos, Jaguarí e Paraibuna
Transparência	Disco de Secchi	Ilha Solteira, Eng. Souza Dias, Eng. Sergio Motta, Três Irmãos, Jaguarí e Paraibuna
Turbidez	turbidímetro Hack	Ilha Solteira, Eng. Souza Dias, Eng. Sergio Motta, Três Irmãos, Jaguarí e Paraibuna
рН	Multianalisador HORIBA U-50	Ilha Solteira, Eng. Souza Dias, Eng. Sergio Motta, Três Irmãos, Jaguarí e Paraibuna
Condutividade	Multianalisador HORIBA U-50	Ilha Solteira, Eng. Souza Dias, Eng. Sergio Motta, Três Irmãos, Jaguarí e Paraibuna
Oxigênio dissolvido	Multianalisador HORIBA U-50	Ilha Solteira, Eng. Souza Dias, Eng. Sergio Motta, Três Irmãos, Jaguarí e Paraibuna
Fósforo total	STRICKLAND & PARSONS (1960)	Ilha Solteira, Eng. Souza Dias, Eng. Sergio Motta, Três Irmãos
Nitrogênio total	MACKERETH <i>et al.</i> (1978) e KOROLEFF (1976)	Ilha Solteira, Eng. Souza Dias, Eng. Sergio Motta, Três Irmãos
Material em suspensão	HENRY (1993)	Ilha Solteira, Eng. Souza Dias, Eng. Sergio Motta, Três Irmãos, Jaguarí e Paraibuna
Clorofila	GOLTERMAN & CLYMO (1969)	Ilha Solteira, Eng. Souza Dias, Eng. Sergio Motta, Três Irmãos
Feofitina	GOLTERMAN & CLYMO (1969)	Ilha Solteira, Eng. Souza Dias, Eng. Sergio Motta, Três Irmãos
Nitrogênio (NO ₂ ,NO ₃ ,NH ₃)	MACKERETH <i>et al.</i> (1978) e KOROLEFF (1976)	Três Irmãos
Ortofosfato	STRICKLAND & PARSONS (1960)	Três Irmãos

4.2 Monitoramento da Ictiofauna e dinâmica populacional

4.2.1 Objetivos:

- a. Conhecer a estrutura e a dinâmica das comunidades de peixes dos reservatórios.
- b. Conhecer a biologia reprodutiva, dinâmica alimentar e outras variáveis de interesse pesqueiro.
- c. Subsidiar o ordenamento pesqueiro dos reservatórios estudados
- d. Avaliar o impacto da formação de reservatórios sobre a ictiofauna e propor medidas mitigadoras adequadas.

4.2.2 Variáveis analisadas:

- a. Composição taxonômica.
- b. Frequência e dominância das espécies.
- c. Similaridade entre locais de coleta.
- d. Diversidade específica.
- e. Equitatividade.
- f. Riqueza específica.

As coletas ictiológicas são executadas trimestralmente com redes de malhar, com malhas variando entre 30 e 260 milímetros de nó a nó. As redes são expostas durante vinte e quatro horas em cada estação de coleta, sendo realizadas no mínimo duas despescas durante o período de exposição. Complementarmente são realizadas capturas com outros petrechos, visando avaliar a riqueza de espécies.

Os exemplares capturados são identificados e mensurados (comprimento total, comprimento padrão, altura do corpo, peso total, peso de estômago e gônadas). São feitas também identificação do sexo e análises de estádios de maturação gonadal e grau repleção estomacal. As identificações são feitas com base em Graça; Pavanelli (2007), Buckup; Menezes; Ghazi (2007) e Langeani *et al.* (2007).

Com os dados das capturas são calculados os índices de diversidade (Shannon-Wienner), equitatividade (Pielou) e riqueza (Margalef), além da captura por unidade

de esforço em número (CPUEn) e em biomassa (CPUEb). A similaridade entre locais de coletas foi calculada pelo coeficiente de similaridade de Jaccard (considerando apenas presença e ausência das espécies) e de Bray-Curtis (considerando as frequências absolutas). A partir das matrizes de similaridade são gerados dendrogramas e calculados os coeficientes de correlação cofenética, que expressam a fidelidade dos dendogramas obtidos às matrizes de similaridade originais. Para essas análises foi utilizado o programa estatístico de uso livre PAST, versão 1.76 (HAMMER; HARPER; RYAN, 2007).

4.3 Caracterização de áreas de reprodução de peixes em tributários.

4.3.1 Objetivos:

- a. Identificar, cadastrar e caracterizar as áreas potenciais e efetivas de reprodução de peixes nos reservatórios.
- b. Caracterizar o uso dessas áreas pela comunidade de peixes, com ênfase nas espécies de piracema.
- c. Estabelecer medidas de proteção, enriquecimento ou restauração do potencial biogênico dessas áreas, favorecendo a reprodução da ictiofauna.

Esse estudo foi desenvolvido no ano de 2008 nos reservatórios das UHE's Ilha Solteira e Jupiá, e em caráter contínuo desde 2001 na UHE Engenheiro Sergio Motta (Porto Primavera), sendo objeto de relatórios específicos (Apêndice 1).

4.4 Operação de equipamentos de transposição para peixes na UHE Engenheiro Sergio Motta (Porto Primavera)

São identificadas as espécies que realizam a transposição da barragem, ocorrendo um número significativo de espécies migratórias.

O monitoramento consiste em avaliar os aspectos de efetividade, movimentação ascendente e descendente de peixes e estádios de desenvolvimento gonadal. Junto ao monitoramento ictiológico também são mensurados, durante o período reprodutivo dos peixes, variáveis limnológicas como temperatura do ar e da água, transparência, turbidez, condutividade, pH e oxigênio dissolvido.

No período 2012/2014 haverá a continuidade do monitoramento realizado desde o período 2005/2006, mais a retomada do uso do sistema RFID (*Radio Frequency*

Identification), com uso de marcas do tipo PIT-tag (*Passive Integrated Transponder*), para a avaliação da atratividade (percentagem de indivíduos que encontram a entrada do sistema de transposição) e eficiência (percentagem de indivíduos que ascendem, após entrarem no sistema de transposição). Esse programa é objeto de relatórios específicos.

4.5 Monitoramento da produção pesqueira

4.5.1 Objetivos:

- a. Conhecer a produção pesqueira total e por espécie dos reservatórios, e sua evolução.
- Monitorar a contribuição dos programas de estocagem da CESP à produção pesqueira.
- c. Subsidiar os subprogramas de caracterização limnológica, ictiologia e dinâmica populacional das espécies de interesse.
- d. Avaliar o esforço de pesca e a captura por unidade de esforço (CPUE) por reservatório.
- e. Envolver o pescador profissional nos programas de conservação da ictiofauna desenvolvidos pela CESP.

4.5.2 Variáveis analisadas:

O programa de levantamento de dados sobre o rendimento pesqueiro dos reservatórios inclui:

- a. Relação das espécies capturadas.
- b. Quantidade pescada de cada espécie.
- c. Captura por unidade de esforço (CPUE), aqui considerada como rendimento em kg de pescado por pescador por dia.
- d. Artes de pesca utilizadas para a captura.

Os dados são coletados bimestralmente junto a pescadores profissionais, através de fichas de controle de desembarque. Como incentivo ao preenchimento das fichas

são distribuídos brindes (geralmente bonés e camisetas e réguas personalizadas) de divulgação do programa aos colaboradores.

4.6 Salvamento de peixes

A CESP dispõe de um Manual de Procedimentos Para Fechamento e Esgotamento de Máquinas e Salvamento de Peixes, visando possibilitar o salvamento e a liberação dos peixes quando das manutenções preventivas e corretivas de unidades geradoras ou outros equipamentos.

4.7 Produção de alevinos e estocagem em reservatórios

A produção de alevinos contempla espécies migratórias, que são as mais afetadas pela formação de reservatórios, sendo também priorizadas espécies endêmicas e/ou ameaçadas de extinção. A definição das quantidades produzidas decorre dos dados de rarefação demográfica das espécies, verificada através do monitoramento ictiológico em cada reservatório, e das características zootécnicas dessas espécies, que condicionam a produtividade.

A estocagem é feita com alevinos com tamanho médio de dez centímetros, de forma a minimizar a mortalidade por predação, uma vez que ocorre grande biomassa de ictiófagos nos reservatórios. Nos reservatórios de Jupiá e Três Irmãos, essa situação é agravada pela inexistência de ambientes que proporcionem abrigos para as formas jovens de peixes, o que condiciona também a proposta de maior densidade de estocagem nesses reservatórios. O fato dos reservatórios disporem de dados de ictiologia e limnologia disponíveis em séries históricas consente um monitoramento mais eficaz dos resultados da estocagem. O processo de produção de alevinos é fundamentado em técnicas de manejo genético (TOLEDO-FILHO *et al.*, 1992).

5 Resultados

5.1 Limnologia

Os locais de coleta estão descritos nas Tabelas 4 a 7 (reservatórios do Alto Paraná) e 8 e 9 (reservatórios do Alto Paraíba). Os resultados obtidos no período de julho de 2011 a junho de 2012 estão apresentados nas Tabelas 10 a 15. Como tendência geral, os reservatórios do Alto Paraná apresentaram qualidade adequada à manutenção da vida aquática, tendo como referência os limites estabelecidos na Resolução CONAMA 357, de 17 de março de 2005. A partir de janeiro de 2012, as coletas limnológicas nos reservatórios de Paraibuna e Jaguari passaram a ser realizadas em parceria com a CETESB - Companhia Ambiental do Estado de São Paulo, através de um Termo de Cooperação Técnica. Este Termo leva em conta a atuação da CETESB no diagnóstico e monitoramentos dos recursos hídricos do Estado de São Paulo, a responsabilidade da CESP com seus reservatórios e a otimização de recursos através do compartilhamento de infraestrutura e equipes técnicas entre os núcleos regionais das Companhias. Essa parceria promoveu a ampliação da malha de amostragem no Estado de São Paulo, ficando sob a responsabilidade da CESP a coleta e o transporte das amostras até o Laboratório da CESTESB em Taubaté, SP, que realiza todas as análises físicas, químicas e biológicas, disponibilizando os resultados para os programas comuns às Companhias. Os primeiros resultados desta parceria serão apresentados no próximo relatório de Manejo Pesqueiro.

5.1.1 UHE Três Irmãos

No reservatório da UHE Três Irmãos, cinco amostras de oxigênio dissolvido das 36 analisadas (13,9%), quatro de 36 de pH (11,1%), e três de 36 amostras de fósforo total (8,3%) apresentaram valores inadequados aos limites especificados na Resolução CONAMA 357/2005. As demais variáveis apresentaram valores favoráveis à manutenção da vida aquática (Tabela 10).

5.1.2 UHE Ilha Solteira

No reservatório da UHE Ilha Solteira (Tabela 11), foram observados concentrações de pH incompatíveis com os limites da Resolução CONAMA 357/2005 em 18 das 76 amostras (23,7%), além de 13 de oxigênio dissolvido (17,1%) nas cinco estações de coleta. Além disso, das 76 amostras analisadas para a variável fósforo total, três (3,9%) apresentaram valores superiores aos limites da referida Resolução, na estação Córrego Cigano. As demais variáveis apresentaram valores adequados à manutenção da vida aquática.

5.1.3 UHE Engenheiro Souza Dias (Jupiá)

No reservatório da UHE Engenheiro Souza Dias (Jupiá), foram encontrados índices de pH total incompatíveis com os limites estipulados pela Resolução CONAMA 357/2005 em sete (14,6%) das 48 amostras analisadas, em todas as estações (Tabela 12). Além disso, 4,2% (2/48) das amostras analisadas de oxigênio dissolvido e 6,2% (3/48) das amostras analisadas de fósforo total também apresentaram valores acima dos limites desta Resolução. As demais variáveis apresentaram valores compatíveis com os limites estabelecidos.

5.1.4 UHE Engenheiro Sergio Motta (Porto Primavera)

No reservatório da UHE Engenheiro Sergio Motta (Porto Primavera), durante o período avaliado, das variáveis analisadas, o pH e p oxigênio dissolvido apresentaram teores incompatíveis com a Resolução CONAMA 357/2005 (Tabela 13), sendo inadequados em seis em 84 (7,1%) e quatro em 84 (4,8%), respectivamente.

5.1.5 UHE Paraibuna

O reservatório de Paraibuna (Tabela 14) apresentou oito amostras com concentração de oxigênio dissolvido com valores inferiores ao limite da Resolução CONAMA 357/2005, em 26 amostras analisadas (30,8%), todas de meia água ou fundo; esse resultado pode ser associado às grandes profundidades do reservatório, que estabelecem gradientes térmicos e químicos na coluna d'água. Alem de oxigênio, apenas duas amostras (7,7%) de pH na estação Lourenço Velho

apresentaram valores inferiores aos estipulados naquela Resolução. As demais variáveis estão adequadas à sustentação da vida aquática.

5.1.6 UHE Jaguari

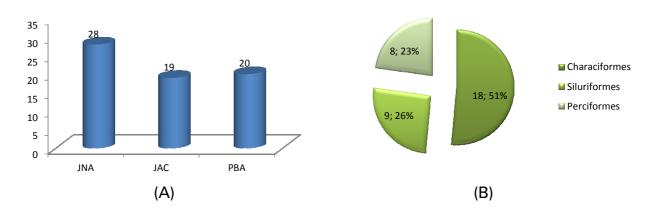
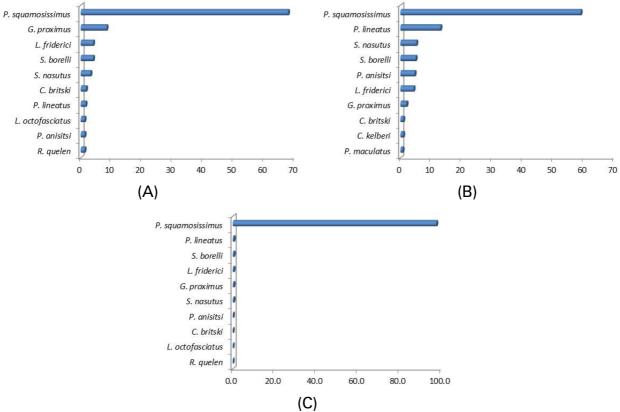
No reservatório de Jaguari (Tabela 15), apenas o oxigênio dissolvido apresentou amostras com concentrações inferiores às estabelecidas na Resolução CONAMA 357/2005 para águas de Classe 2, totalizando sete das 20 amostras analisadas (35%). As demais variáveis estão adequadas à sustentação da vida aquática.

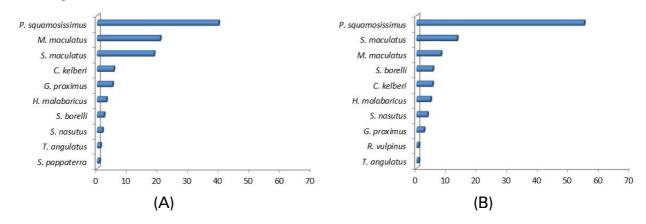
5.2 Monitoramento da ictiofauna e dinâmica populacional

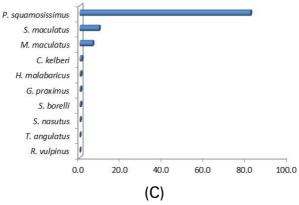
5.2.1 UHE Três Irmãos

No reservatório de Três Irmãos foram coligidos 3269 exemplares, totalizando 737 kg, pertencentes a três ordens, 14 famílias e 30 gêneros. A composição de espécies do reservatório está representada no Quadro 3.

A Figura 12A apresenta o número de espécies por estação no reservatório, no qual a estação Jusante de Nova Avanhandava é representada pela sigla JNA, a estação nomeada Jacaré é representada pela sigla JAC e a de Pereira Barreto pela sigla PBA. A Figura 12B apresenta a composição obtida de espécies por ordem taxonômica.


Figura 12. Número de espécies por estação (A) e por ordem taxonômica (B).


A frequência absoluta das espécies por estação está apresentada na Tabela 16. Os valores de dominância de espécies e frequência relativa por estação estão apresentados nas Figuras 13 a 15.

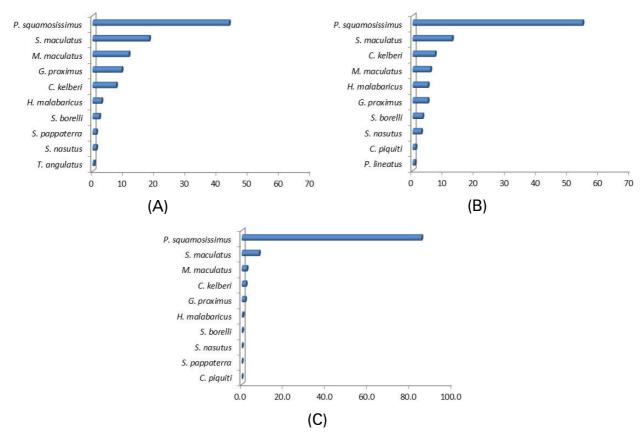
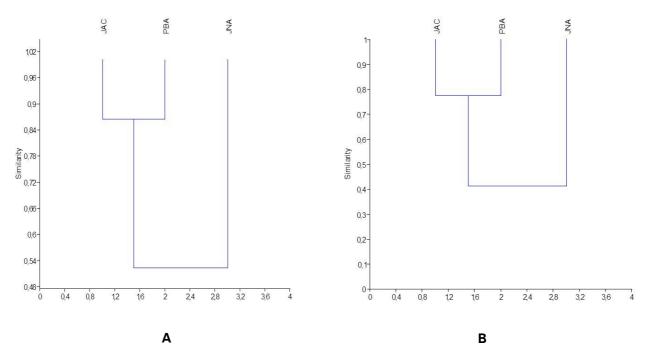

Figura 13. Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação Jusante de Nova Avanhandava.

Figura 14. Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação Jacaré.

Figura 15. Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação Pereira Barreto.


Verifica-se que o reservatório de Três Irmãos apresenta ampla dominância da espécie invasora *Plagioscion squamosissimus* (corvina), apresentando 97% de dominância na estação JNA, 82% na JAC e 85 % em PBA – fato recorrente nos últimos anos, com pequenas variações na amplitude. Deve-se destacar que os principais fatores que favorecem a abundância da corvina em reservatórios são seus hábitos reprodutivos (VAZZOLLER, 1996; CARNELÓS E BENEDITO-CECÍLIO, 2002;

SUZUKI et al, 2004) e larvas pelágicas (NAKATANI et al, 1997), que tornam a espécie apta a completar seu ciclo de vida em ambiente lêntico e alimentar, tratando-se de espécie amplamente reconhecida na literatura como ictiófaga (HAHN et al, 1997a; HAHN et al 1997b; HAHN et al, 2004; AGOSTINHO et al, 1997; AGOSTINHO et al, 1999; MORETTO, 2006). Entretanto, é ecologicamente insustentável que uma espécie predadora seja mais abundante que suas presas. Assim, embora seja esperada a abundância dessa espécie no reservatório de Três Irmãos, pela disponibilidade e adequação de habitat, não havia explicação ecológica para Contudo, segundo Rosa (2009), o item tamanha dominância. predominante para a espécie no reservatório de Ilha Solteira é o camarão Macrobrachium amazonicum, extremamente abundante também no reservatório de Três Irmãos, o que pode ser o principal fator explanatório da dominância dessa espécie nestes ambientes. Cabe destacar ainda que M. amazonicum, assim como a corvina, é uma espécie invasora no Alto Paraná, como relatam Bialetzki et al (1997), sendo sua ocorrência e abundância também recentes. Portanto, sua importância na alimentação de peixes nessa bacia hidrográfica não é suficientemente conhecida, e muito menos na intensidade que vem sendo constatada (BENNEMANN et al, 2006; ROSA, 2009).

A Figura 16 apresenta os resultados de similaridade. De acordo com os resultados obtidos, utilizando o tanto o método de Jaccard quanto o de Bray-Curtis, há maior similaridade entre as estações de Jacaré e Pereira Barreto, ficando a estação de Jusante de Nova Avanhandava menos similar a essas, como pode ser observado nos dendogramas abaixo. Os coeficientes de correlação cofenética foram significativos para as duas análises.

Figura 16. Dendogramas de similaridade de Jaccard (A), com coeficiente de correlação cofenética de 0.998, e de Bray-Curtis (B), com coeficiente de correlação cofenética de 0.979, entre as estações do reservatório de Três Irmãos.

A ordenação espacial da ictiofauna do reservatório de Três Irmãos, obtida pela NMDS (Figura 17), confirma esse padrão, com a estação JNA isolada em sentido oposto na coordenada 1 em relação as estações JAC e PBA.

Figura 17. Ordenação espacial (NMDS) da ictiofauna das estações do reservatório de Três Irmãos.

A Tabela 16 e a Figura 18 expõem os dados de diversidade (índice de Shannon), equitabilidade, riqueza e dominância das estações do reservatório de Três Irmãos.

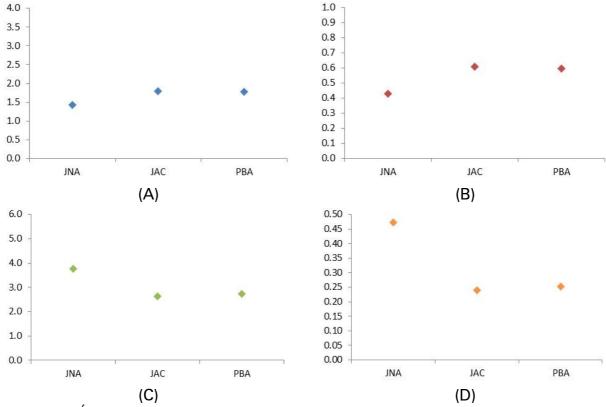


Figura 18. Índices de diversidade de Shannon (A), equitabilidade (B), riqueza (C) e dominância (D) das estações de amostragem do reservatório de Três Irmãos.

5.2.2 UHE Ilha Solteira

No reservatório de Ilha Solteira foram coligidos 2235 exemplares, totalizando 686 kg, pertencentes a três ordens, 11 famílias e 27 gêneros. A composição de espécies do reservatório está representada no Quadro 4.

A Figura 19A apresenta o número de espécies por estação no reservatório, no qual a estação Jusante de Água Vermelha é representada pela sigla JAV, a estação Córrego Cigano é representada pela sigla CCI, e São José dos Dourados e Montante de Ilha Solteira são, respectivamente SJD e MIS. A Figura 19B apresenta a composição obtida de espécies por ordem taxonômica.

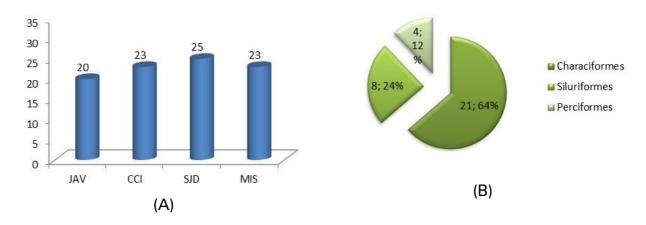
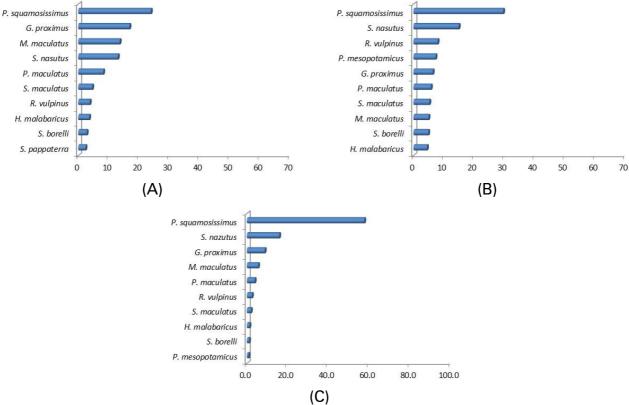



Figura 19. Número de espécies por estação (A) e por ordem taxonômica (B).

A frequência absoluta das espécies por estação está apresentada na Tabela 17. Os valores de dominância de espécies e frequência relativa por estação estão apresentados nas Figuras 20 a 23.

Figura 20. Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação Jusante de Água Vermelha.

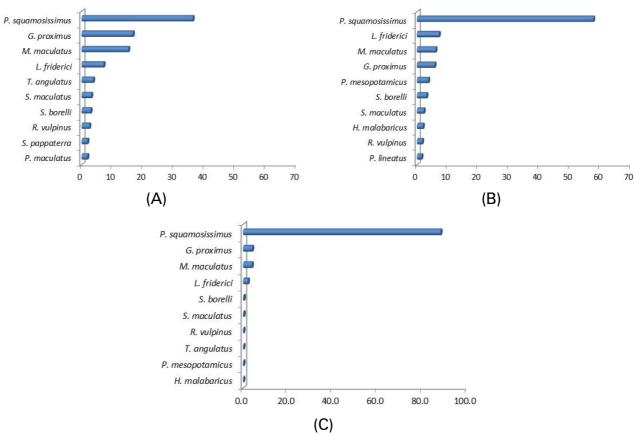
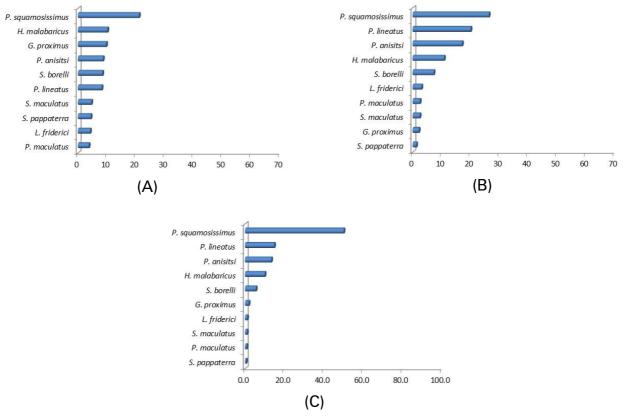
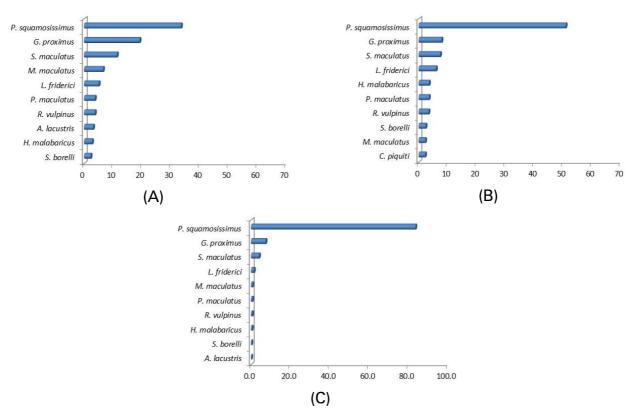




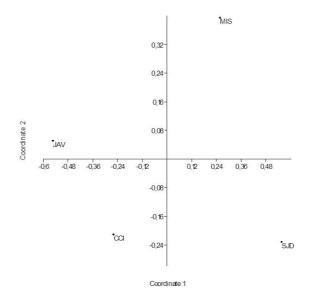
Figura 21. Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação Córrego Cigano.

Figura 22. Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação São José dos Dourados.


Figura 23. Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação Montante de Ilha Solteira.

Assim como o reservatório de Três Irmãos, Ilha Solteira também apresenta ampla dominância da espécie invasora *P. squamosissimus* (corvina), variando de 57% e 50% em JAV e SJD, respectivamente, a 83% e 88% nas estações MISA e CCI. Os fatores que favorecem a abundância da corvina em reservatórios já foram destacados anteriormente, assim como o principal fator explanatório da dominância dessa espécie nesses ambientes. Cabe ressaltar, entretanto, que essa dominância é minimizada em alguns trechos com características de transição, como é o caso das estações JAV e SJD.

A Figura 24 apresenta os resultados de similaridade. De acordo com os resultados obtidos utilizando o método de Jaccard, foram registrados dois blocos de similaridade qualitativa entre as estações mais próximas entre si, com SJD e MIS mais similares, e outro grupo formado pelas estações CCI e JAV. O método de Bray-Curtis, que agrega aspectos quantitativos, mostra a estação SJD menos similar em relação às outras três estações, mantém CCI e JAV em um maior grau de similaridade, com MIS com menor similaridade em relação a CCI e JAV, como pode



ser observado nos dendogramas abaixo. Os coeficientes de correlação cofenética foram significativos para as duas análises.

Figura 24. Dendogramas de similaridade de Jaccard (A), com coeficiente de correlação cofenética de 0.926, e de Bray-Curtis (B), com coeficiente de correlação cofenética de 0.901, entre as estações do reservatório de Ilha Soteira.

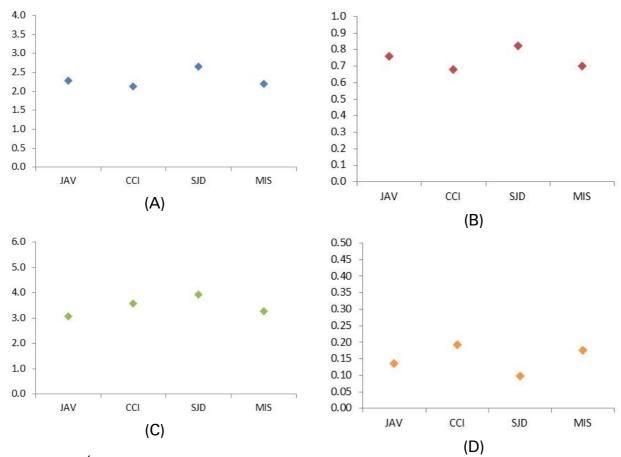

A ordenação da ictiofauna pela NMDS (Figura 25) demonstra menor similaridade entre a estação MIS e as demais.

Figura 25. Ordenação espacial (NMDS) da ictiofauna das estações do reservatório de Ilha Solteira.

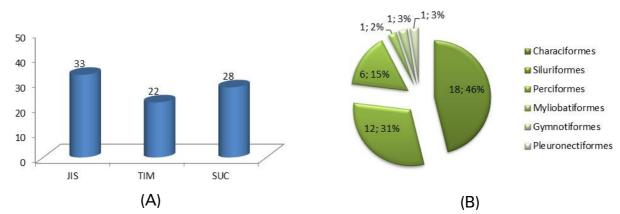
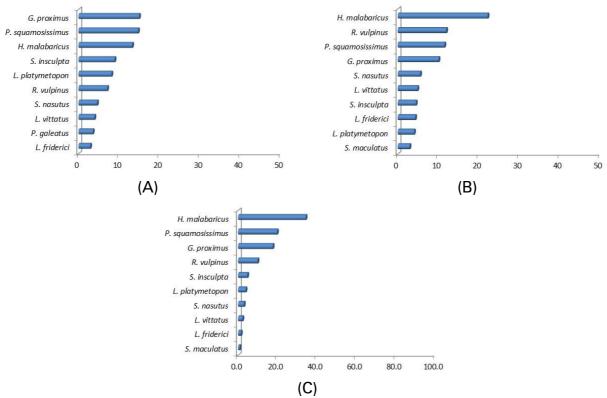
A Tabela 17 e a Figura 26 expõem os dados de diversidade (índice de Shannon), equitabilidade, riqueza e dominância das estações do reservatório de Ilha Solteira.

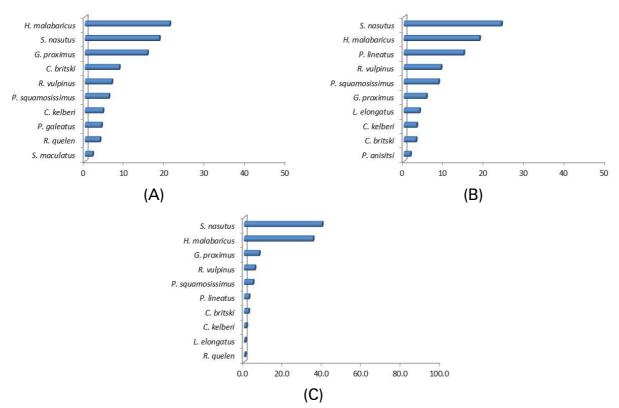
Figura 26. Índices de diversidade de Shannon (A), equitabilidade (B), riqueza (C) e dominância (D) das estações de amostragem do reservatório de Ilha Solteira.

5.2.3 UHE Engenheiro Souza Dias (Jupiá)

No reservatório de Jupiá foram coligidos 1491 exemplares, totalizando 336 kg, pertencentes a seis ordens, 16 famílias e 32 gêneros. A composição de espécies do reservatório está representada no Quadro 5.

A Figura 27A apresenta o número de espécies por estação no reservatório, no qual a estação Jusante de Ilha Solteira é representada pela sigla JIS, a estação nomeada Timboré é representada pela sigla TIM e a de Sucuriú pela sigla SUC. A Figura 27B apresenta a composição obtida de espécies por ordem taxonômica.


Figura 27. Número de espécies por estação (A) e por ordem taxonômica (B).

A frequência absoluta das espécies por estação está apresentada na Tabela 18. Os valores de dominância de espécies e frequência relativa por estação estão apresentados nas Figuras 28 a 30.

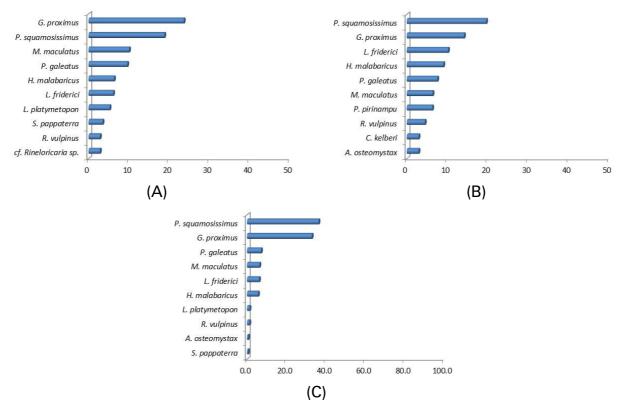


Figura 28. Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação Jusante de Ilha Solteira.

Figura 29. Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação Timboré.

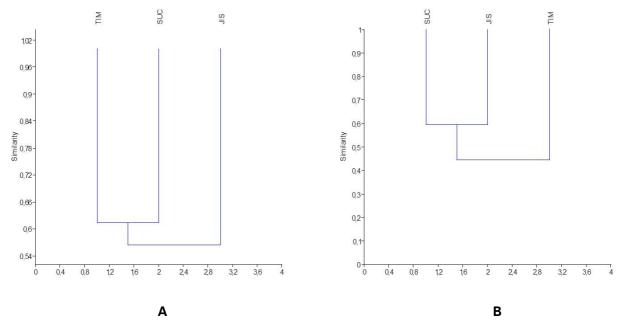


Figura 30. Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação Sucuriú.

O reservatório de Jupiá possui uma maior equitabilidade, evidenciado pelos gráficos de dominância específica. Quatro espécies aparecem de modo recorrente entre as principais nas estações de coleta desse reservatório, sendo cada uma dominante em uma estação: *H. malabaricus* (JIS, 34.3%), *S. nasutus* (TIM, 39.5%) e *P. squamosissimus* (SUC, 36.3%), além de *G. proximus*, que aparece entre as três primeiras nos três reservatórios.

A Figura 31 apresenta os resultados de similaridade. O método de Jaccard pareia as estações TIM e SUC, isolando JIS. O método de Bray-Curtis, por sua vez, pareia SUC e JIS, com a estação TIM mais afastada, como se pode observar nos dendogramas abaixo. Os coeficientes de correlação cofenética foram significativos para as duas análises.

Figura 31. Dendogramas de similaridade de Jaccard (A), com coeficiente de correlação cofenética de 0.990, e de Bray-Curtis (B), com coeficiente de correlação cofenética de 0.962, entre as estações do reservatório de Jupiá.

A ordenação da ictiofauna pela NMDS (Figura 32) mostra o padrão de ordenação espacial nesse reservatório, indicando baixa similaridade entre as três estações de coleta analisadas.

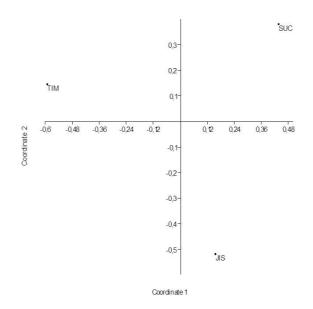
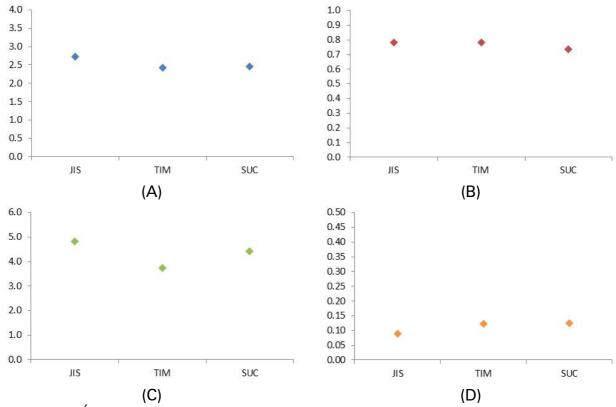



Figura 32. Ordenação espacial (NMDS) da ictiofauna das estações do reservatório de Jupiá.

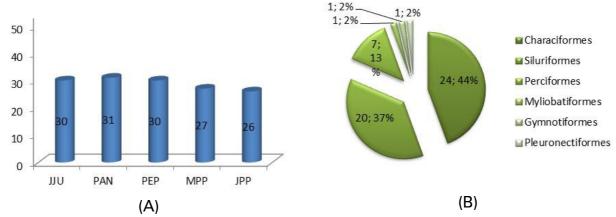
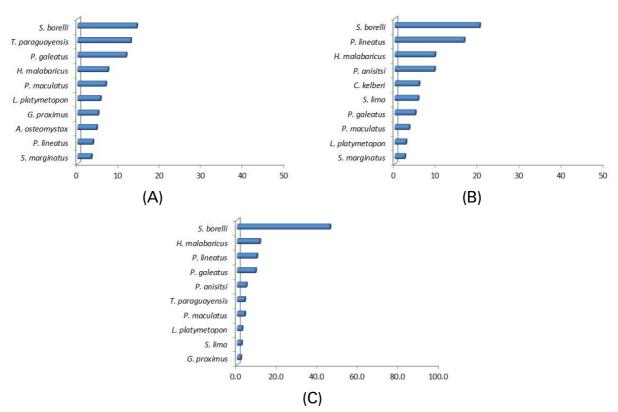
A Tabela 18 e a Figura 33 expõem os dados de diversidade (índice de Shannon), equitabilidade, riqueza e dominância das estações do reservatório de Jupiá.

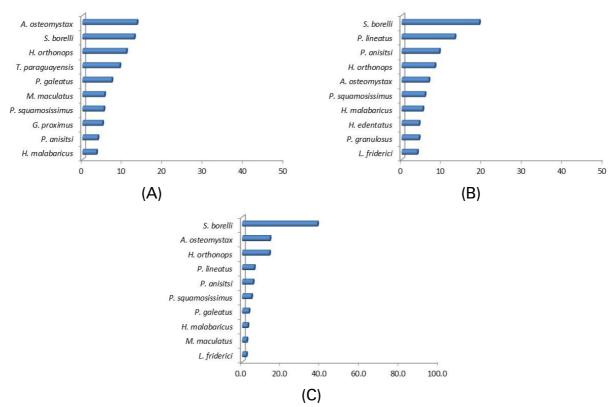
Figura 33. Índices de diversidade de Shannon (A), equitabilidade (B), riqueza (C) e dominância (D) das estações de amostragem do reservatório de Jupiá.

5.2.4 UHE Eng. Sergio Motta (Porto Primavera)

No reservatório de Porto Primavera foram coligidos 2049 exemplares, totalizando 810 kg, pertencentes a seis ordens, 19 famílias e 43 gêneros. A composição de espécies do reservatório está representada no Quadro 6.

A Figura 34A apresenta o número de espécies por estação no reservatório, no qual a estação Jusante de Ilha Solteira é representada pela sigla JIS, a estação nomeada Timboré é representada pela sigla TIM e a de Sucuriú pela sigla SUC. A Figura 34B apresenta a composição obtida de espécies por ordem taxonômica.


Figura 34. Número de espécies por estação (A) e por ordem taxonômica (B).

A frequência absoluta das espécies por estação está apresentada na Tabela 19. Os valores de dominância de espécies e frequência relativa por estação estão apresentados nas Figuras 35 a 39.

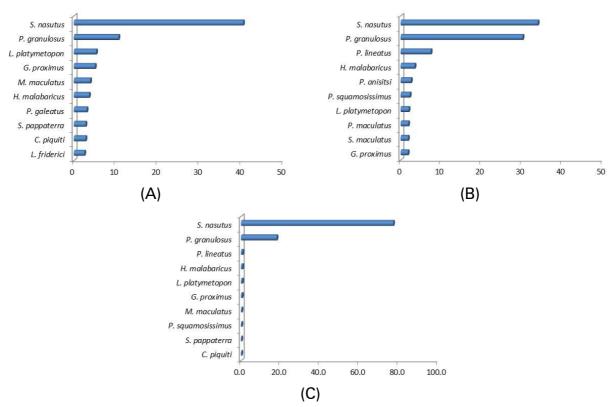


Figura 35. Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação Jusante de Jupiá.

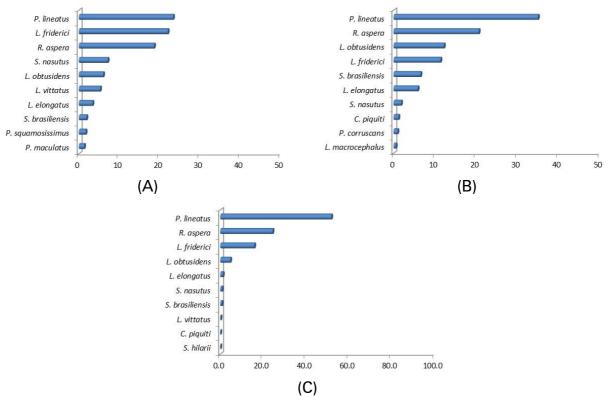


Figura 36. Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação Panorama.

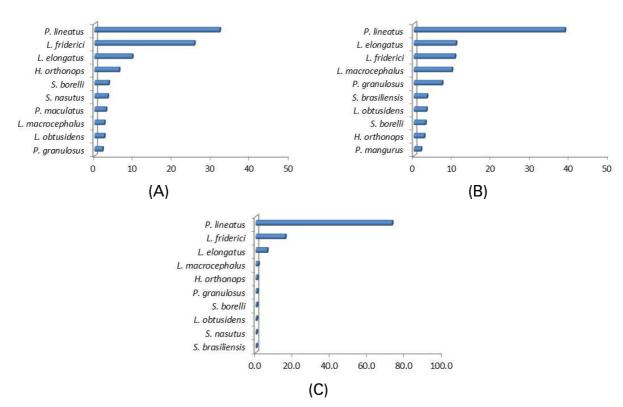


Figura 37. Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação Presidente Epitácio.

Figura 38. Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação Montante de Porto Primavera.

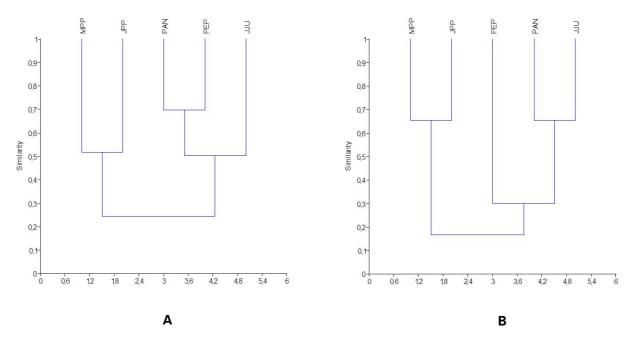


Figura 39. Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação Jusante de Porto Primavera.

O gênero *Schizodon* foi dominante nas estações situadas nas zonas fluvial e de transição do reservatório. Na zona lacustre e no trecho a jusante de Primavera a espécie dominante no período foi *Prochilodus lineatus*.

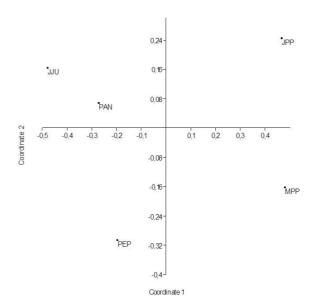

A Figura 40 apresenta os resultados de similaridade. As similaridades entre as estações foram calculadas através dos quocientes de Jaccard e de Bray-Curtis, sendo obtidos dois agrupamentos distintos, sendo um com as estações MPP (Montante de Primavera) e JPP e o outro com as estações JJU, PAN e PEP. Os coeficientes de correlação cofenética foram significativos para as duas análises.

Figura 40. Dendogramas de similaridade de Jaccard (A), com coeficiente de correlação cofenética de 0.923, e de Bray-Curtis (B), com coeficiente de correlação cofenética de 0.985, entre as estações do reservatório de Porto Primavera.

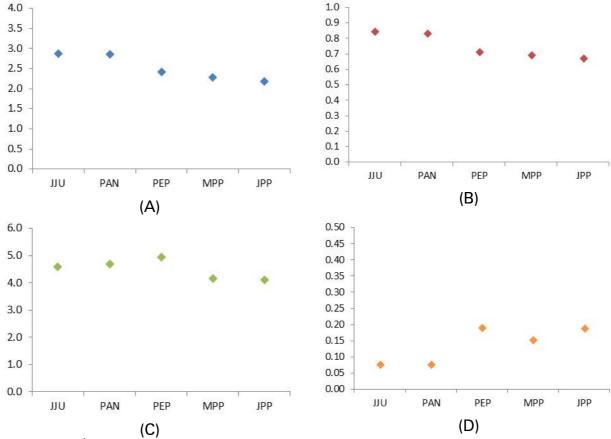

A ordenação espacial da ictiofauna pela NMDS é apresentada na Figura 32.

Figura 41. Ordenação espacial (NMDS) da ictiofauna das estações do reservatório de Porto Primavera.

A Tabela 19 e a Figura 42 expõem os dados de diversidade (índice de Shannon), equitabilidade, riqueza e dominância das estações do reservatório de Porto Primavera.

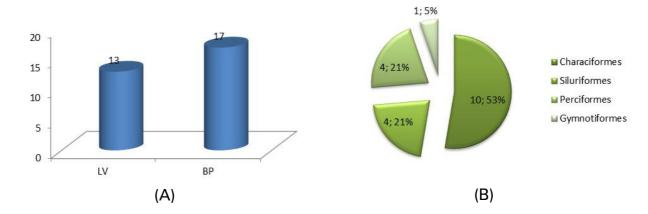
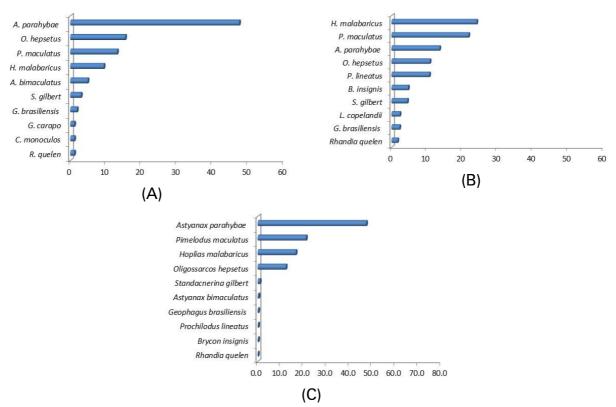
Figura 42. Índices de diversidade de Shannon (A), equitabilidade (B), riqueza (C) e dominância (D) das estações de amostragem do reservatório de Porto Primavera.

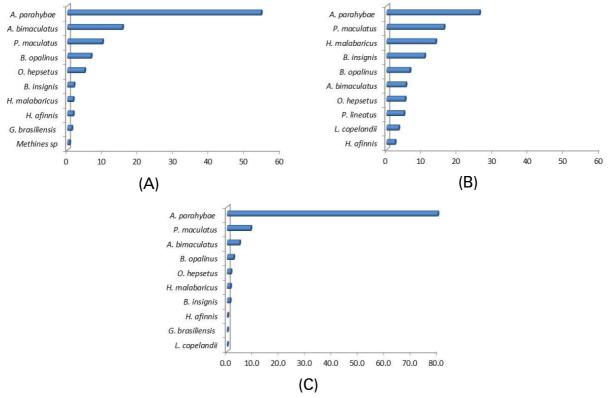
5.2.5 UHE Paraibuna

No reservatório de Paraibuna foram coligidos 765 exemplares, totalizando 60.7 kg, pertencentes a quatro ordens, 10 famílias e 16 gêneros. A composição de espécies do reservatório está representada no Quadro 7. Desde novembro de 2011, a pesca científica em ambiente lêntico está sendo realizada em apenas dois pontos, "Barragem" e "Lourenço Velho". Os pontos anteriormente avaliados, "Natividade da Serra" e "Redenção da Serra", foram deslocados para a região lótica dos principais formadores do reservatório, rio Paraibuna e rio Paraitinga respectivamente, onde estão instaladas às réguas de hidrometria da CESP e os pontos de qualidade de água estabelecidos em conjunto com a CETESB.

Com a mudança nas características do ambiente amostrado a metodologia também foi alterada, seguindo os padrões de coleta aplicados em outras regiões da bacia do rio Paraíba do sul para a definição do "Índice de Integridade Biótica", vinculado o Plano de Ação Nacional para a Conservação das Espécies Aquáticas Ameaçadas da Bacia do Rio Paraíba do sul – PAN Paraíba do sul. Esses novos resultados serão apresentados no próximo relatório de Manejo Pesqueiro.

A Figura 43A apresenta o número de espécies por estação no reservatório, no qual a estação Lourenço Velho é representada pela sigla LV, a estação nomeada Barragem é representada pela sigla BP. A Figura 43B apresenta a composição obtida de espécies por ordem taxonômica.


Figura 43. Número de espécies por estação (A) e por ordem taxonômica (B).

A frequência absoluta das espécies por estação está apresentada na Tabela 20. Os valores de dominância de espécies e frequência relativa por estação estão apresentados nas Figuras 44 e 45.

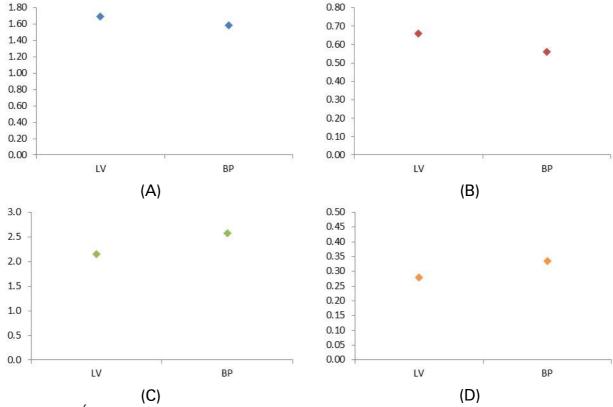

Figura 44. Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação Jusante de Lourenço Velho.

Figura 45. Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação Barragem.

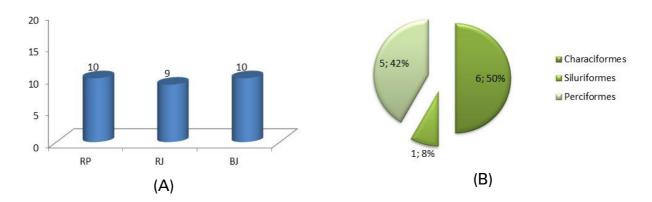
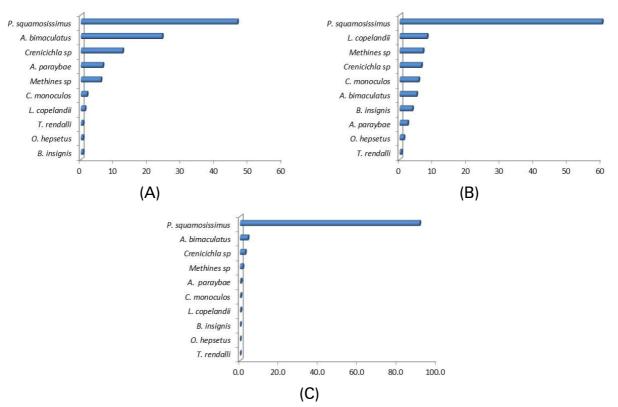
A Tabela 20 e a Figura 46 expõem os dados de diversidade (índice de Shannon), equitabilidade, riqueza e dominância das estações do reservatório de Paraibuna.

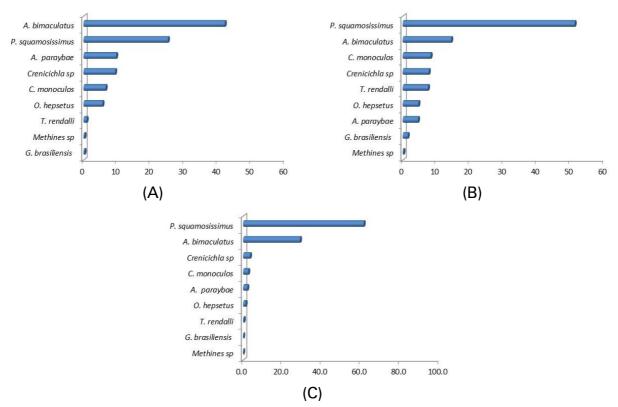
Figura 46. Índices de diversidade de Shannon (A), equitabilidade (B), riqueza (C) e dominância (D) das estações de amostragem do reservatório de Paraibuna.

5.2.6 UHE Jaguari

No reservatório de Jaguari foram coligidos 752 exemplares, totalizando 51.3 kg, pertencentes a três ordens, cinco famílias e 11 gêneros. A composição de espécies do reservatório está representada no Quadro 8.

A Figura 47A apresenta o número de espécies por estação no reservatório, no qual a estação Rio do Peixe é representada pela sigla RP, a estação nomeada Jaguari é representada pela sigla RJ e a de Barragem pela sigla BJ. A Figura 47B apresenta a composição obtida de espécies por ordem taxonômica.


Figura 47. Número de espécies por estação (A) e por ordem taxonômica (B).

A frequência absoluta das espécies por estação está apresentada na Tabela 21. Os valores de dominância de espécies e frequência relativa por estação estão apresentados nas Figuras 48 a 50.

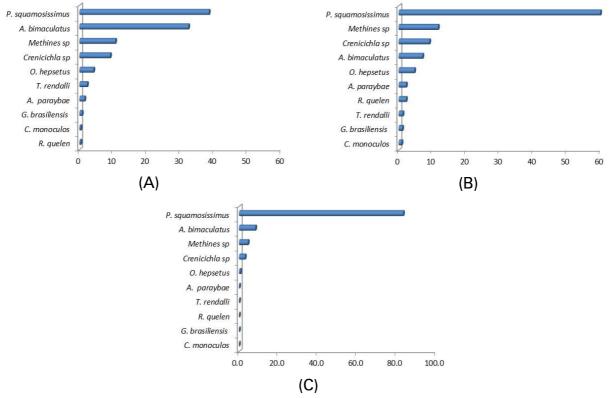


Figura 48. Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação Rio do Peixe.

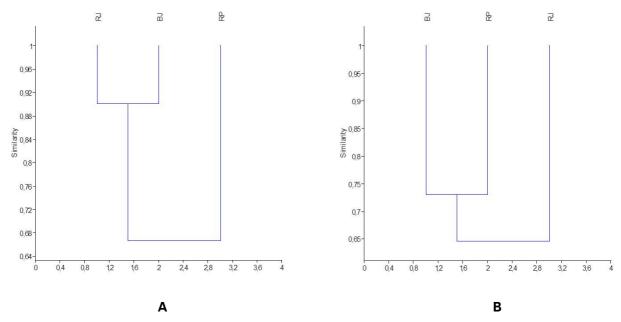

Figura 49. Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação Jaguari.

Figura 50. Frequência relativa em número (A), em biomassa (B) e dominância específica (C) na estação Barragem.

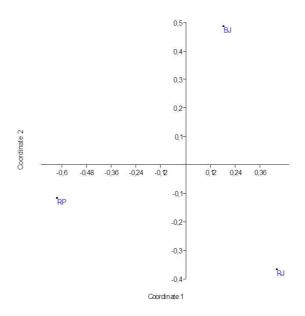

A Figura 51 apresenta os resultados de similaridade através dos quocientes de Jaccard e de Bray-Curtis, observando-se similaridade qualitativa elevada entre as estações RJ e BJ, no reservatório, e baixa similaridade entre essas e a estação RP, no afluente rio do Peixe, com coeficiente de correlação cofenética significativo (Figura 51A). Quanto à similaridade Bray-Curtis, o baixo coeficiente de correlação cofenética restringe quaisquer conclusões.

Figura 51. Dendogramas de similaridade de Jaccard (A), com coeficiente de correlação cofenética de 0.968, e de Bray-Curtis (B), com coeficiente de correlação cofenética de 0.575, entre as estações do reservatório de Jaguari.

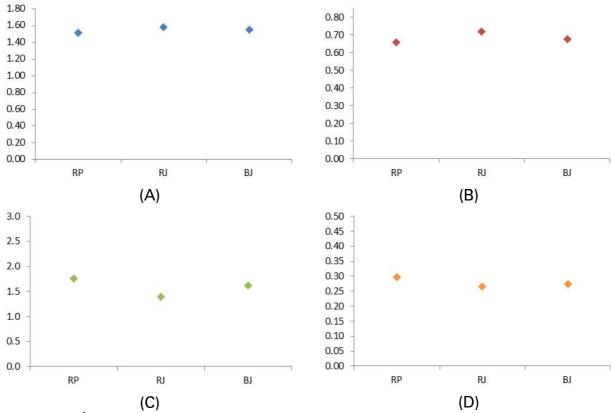

A ordenação espacial obtida por NMDS é apresentada na Figura 52;

Figura 52. Ordenação espacial (NMDS) da ictiofauna das estações do reservatório de Jaguari.

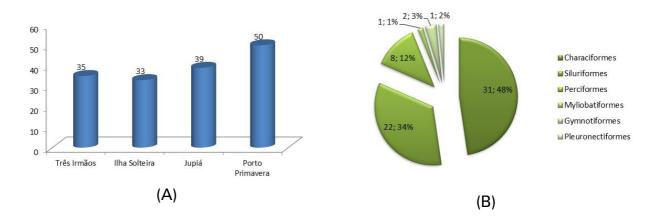
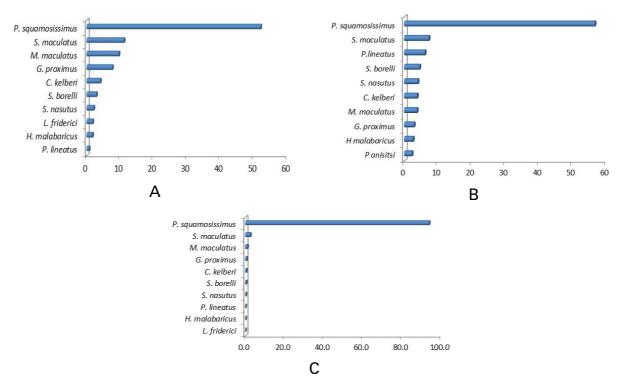
A Tabela 21 e a Figura 53 expõem os dados de diversidade (índice de Shannon), equitabilidade, riqueza e dominância das estações do reservatório de Jaguari.

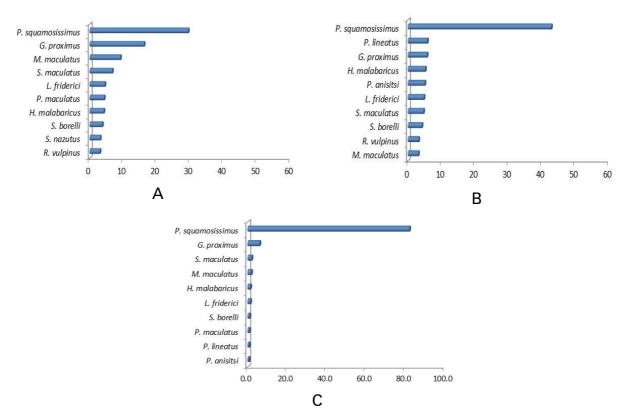
Figura 53. Índices de diversidade de Shannon (A), equitabilidade (B), riqueza (C) e dominância (D) das estações de amostragem do reservatório de Jaguari.

5.2.7 Análise integrada: bacia do alto Paraná

Na bacia do Alto Paraná foram coletados 9.044 exemplares de 65 espécies, pertencentes a seis ordens, 20 famílias e 53 gêneros. A composição de espécies do reservatório está representada no Quadro 9.

A Figura 54A apresenta o número de espécies por reservatório e a Figura 54B apresenta a composição obtida de espécies por ordem taxonômica.


Figura 54. Número de espécies por reservatório (A) e por ordem taxonômica (B).

A frequência absoluta das espécies por estação está apresentada na Tabela 22. Os valores de dominância de espécies e frequência relativa por reservatório estão apresentados nas Figuras 55 a 58.

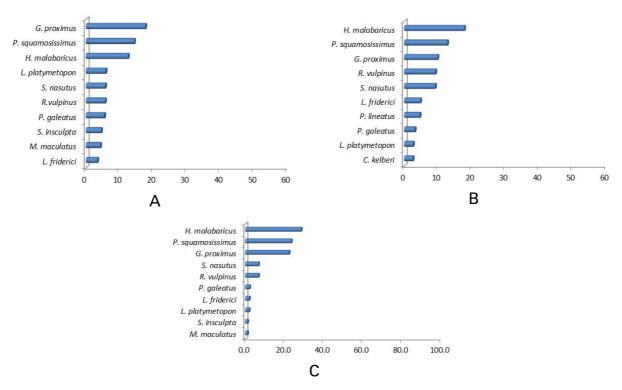


Figura 55. Frequência relativa em número (A), em biomassa (B) e dominância específica (C) no reservatório de Três Irmãos.

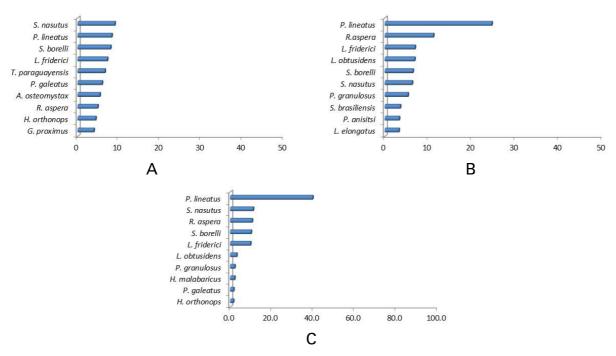


Figura 56. Frequência relativa em número (A), em biomassa (B) e dominância específica (C) no reservatório de Ilha Solteira.

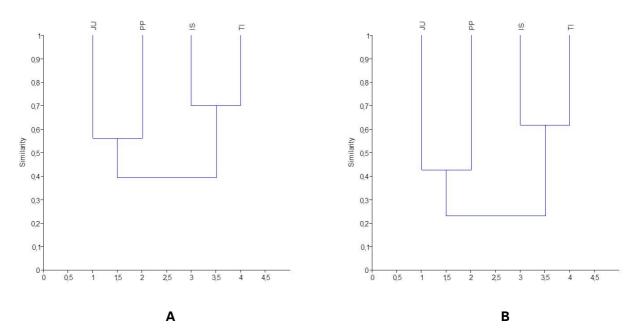

Figura 57. Frequência relativa em número (A), em biomassa (B) e dominância específica (C) no reservatório de Jupiá.

Figura 58. Frequência relativa em número (A), em biomassa (B) e dominância específica (C) no reservatório de Porto Primavera.

A Figura 59 apresenta os resultados de similaridade. De acordo com os resultados obtidos utilizando tanto o método de Jaccard quanto o de Bray-Curtis, foram observados dois agrupamentos distintos (Jupiá com Porto Primavera e Ilha Solteira e Três Irmãos), como se pode observar nos dendogramas abaixo. Os coeficientes de correlação cofenética foram significativos para as duas análises.

Figura 59. Dendogramas de similaridade de Jaccard (A), com coeficiente de correlação cofenética de 0.849, e de Bray-Curtis (B), com coeficiente de correlação cofenética de 0.697, entre os reservatórios do Alto Paraná.

A ordenação espacial da ictiofauna dos reservatórios pela NMDS é apresentada na Figura 60.

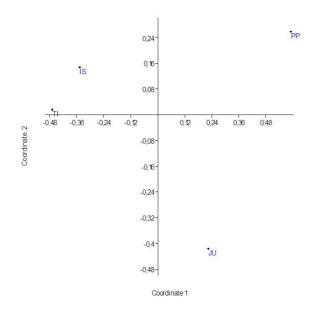
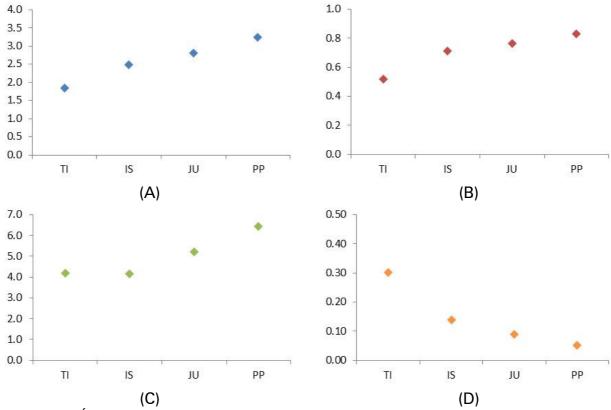



Figura 60. Ordenação espacial (NMDS) da ictiofauna dos reservatórios do Alto Paraná.

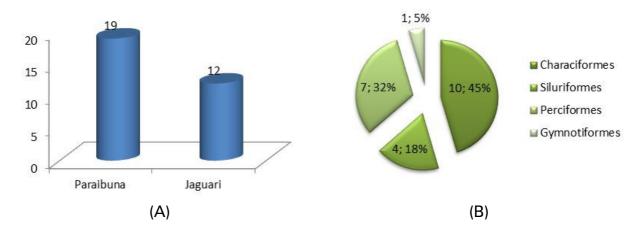
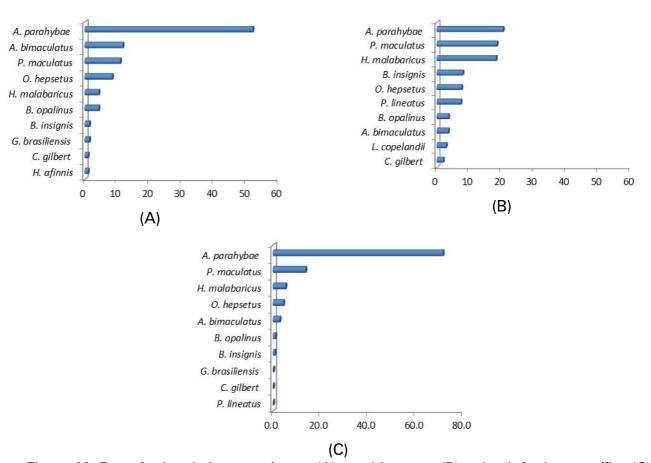
A Tabela 22 e a Figura 61 expõem os dados de diversidade (índice de Shannon), equitabilidade, riqueza e dominância das estações dos reservatórios da CESP na bacia hidrográfica do Alto Paraná.

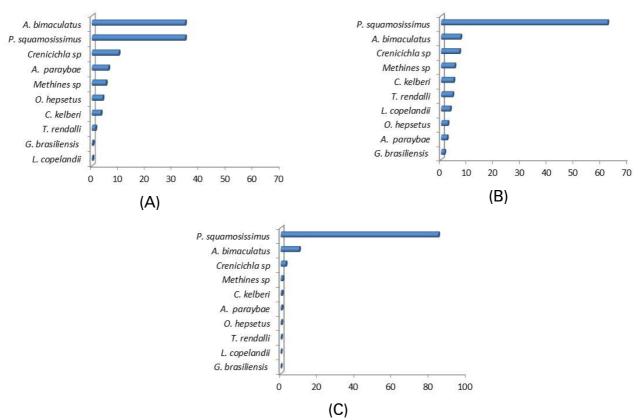
Figura 61. Índices de diversidade de Shannon (A), equitabilidade (B), riqueza (C) e dominância (D) dos reservatórios do Alto Paraná (TI: Três Irmãos; IS: Ilha Solteira; JU: Jupiá; PP: Primavera).

5.2.8 Análise integrada: bacia do Alto Paraíba do Sul

Na bacia do Alto Paraíba do Sul foram coletados 1.517 exemplares de 22 espécies, pertencentes a quatro ordens, 11 famílias e 18 gêneros. A composição de espécies do reservatório está representada no Quadro 10.

A Figura 62A apresenta o número de espécies por reservatório e a Figura 62B apresenta a composição obtida de espécies por ordem taxonômica.


Figura 62. Número de espécies por reservatório (A) e por ordem taxonômica (B).

A frequência absoluta das espécies por estação está apresentada na Tabela 22. Os valores de dominância de espécies e frequência relativa por reservatório estão apresentados nas Figuras 63 e 64.

Figura 63. Frequência relativa em número (A), em biomassa (B) e dominância específica (C) no reservatório de Paraibuna.

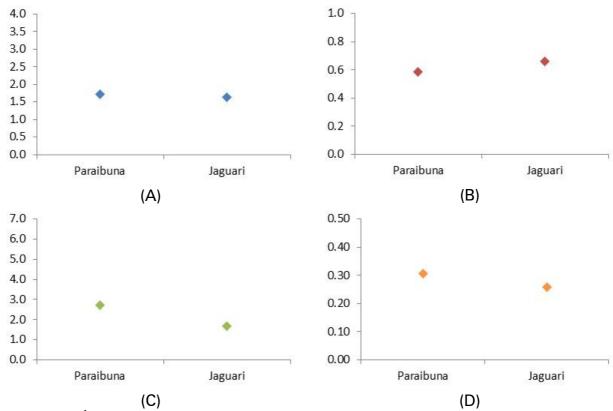


Figura 64. Frequência relativa em número (A), em biomassa (B) e dominância específica (C) no reservatório de Jaguari.

A Tabela 23 e a Figura 65 expõem os dados de diversidade (índice de Shannon), equitabilidade, riqueza e dominância das estações dos reservatórios de Jaguari e Paraibuna.

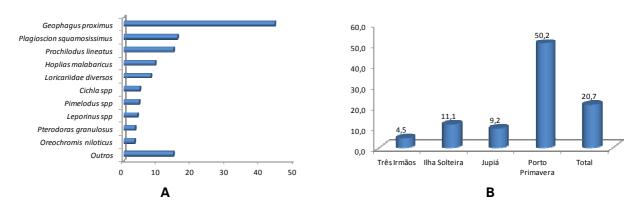
Figura 65. Índices de diversidade de Shannon (A), equitabilidade (B), riqueza (C) e dominância (D) dos reservatórios do Alto Paraiba do Sul.

5.3 Caracterização de áreas de reprodução de peixes em tributários.

Esse estudo está sendo desenvolvido no reservatório da UHE Engenheiro Sérgio Motta (Porto Primavera), e é objeto de relatório específico (Apêndice 1).

5.4 Operação de equipamentos de transposição para peixes na UHE Engenheiro Sergio Motta (Porto Primavera)

Esse programa é objeto de relatórios específicos. Para o período 2012/2013 está previsto a retomada do monitoramento através do sistema RFID.


5.5 Levantamento da produção pesqueira

No ano de 2011 participaram desse levantamento uma média mensal de 30 pescadores no reservatório de Porto Primavera, 20 em Jupiá, 30 em Três Irmãos e 30 em Ilha Solteira. A produção pesqueira e o volume das fichas apresentadas neste demonstrativo expressam as informações obtidas com uma parcela dos pescadores profissionais, cuja representatividade do universo da categoria não é conhecida. Portanto, esses dados não representam a produção pesqueira total dos

reservatórios. Nos reservatórios de Ilha Solteira e de Três Irmãos, diversos pescadores têm deixado a atividade pesqueira nos últimos anos, a fim de dedicar-se à atividade rural na região, onde muitos foram contemplados com lotes rurais em assentamentos. Outros, não contemplados, têm se dedicado a outras atividades, como por exemplo, em usinas de açúcar e álcool instaladas em sua região.

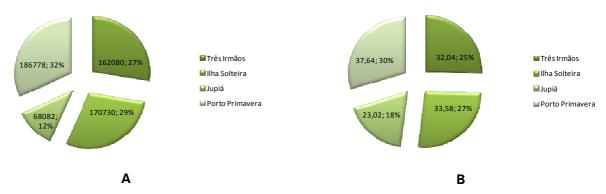

A Tabela 24 apresenta a captura por unidade de esforço (CPUE), aqui considerada como rendimento em kg de pescado por pescador por dia. A CPUE por espécie no conjunto dos reservatórios está apresentada na Figura 66A, e a Figura 66B demonstra a porcentagem de espécies migratórias em relação à CPUE total de cada reservatório. O porquinho (Geophagus proximus) é a espécie mais capturada no conjunto dos reservatórios, seguido pela corvina (Plagioscion squamosissimus) e do curimbatá (Prochilodus lineatus). O reservatório de Porto Primavera apresentou a maior porcentagem de captura de espécies migratórias (50.2%).

Figura 66. Captura por Unidade de Esforço (CPUE) em biomassa das principais espécies na produção pesqueira do conjunto dos reservatórios da CESP no Alto Paraná (A) e contribuição das espécies migratórias à CPUE total por reservatório, no ano de 2011 (B).

A Figura 67A apresenta a captura total amostrada por reservatório, em kg e como porcentagem do conjunto dos reservatórios do Alto Paraná, e a Figura 67B apresenta CPUE por reservatório e como porcentagem do conjunto dos reservatórios. Observa-se que o reservatório de Porto Primavera apresentou maiores valores tanto de captura absoluta quanto de produtividade, expressa em CPUE.

Figura 67. Captura total amostrada (em kg) e captura por unidade de esforço (CPUE) em biomassa nos reservatórios da CESP no Alto Paraná no ano de 2011.

5.6 Salvamento de peixes

Os resultados de salvamentos do período de julho de 2011 a junho de 2012 estão apresentados na Tabela 25.

5.7 Produção de alevinos e estocagem em reservatórios

Os resultados de produção de alevinos no período 2011/2012 estão expostos na Tabela 26, e os dados de estocagem no mesmo período estão apresentados na Tabela 27. As propostas de produção de alevinos para o período 2012/2013 são apresentadas na Tabela 28, e a Tabela 29 consolida a proposta de estocagem para o mesmo período. A estocagem será feita com alevinos com tamanho médio de dez centímetros, de forma a minimizar a mortalidade por predação, uma vez que ocorre grande biomassa de ictiófagos nos reservatórios. Nos reservatórios de Jupiá e Três Irmãos, essa situação é agravada pela inexistência de ambientes que proporcionem abrigos para as formas jovens de peixes, o que condiciona também a proposta de maior densidade de estocagem nesses reservatórios. O fato de serem reservatórios com dados de ictiologia e limnologia disponíveis em séries históricas consente um monitoramento mais eficaz dos resultados da estocagem. O processo de produção continuará fundamentado em técnicas de manejo genético conservacionista.

6 PRODUÇÃO CIENTÍFICA

No período de 2011 e 2012 foram elaborados vários relatórios técnicos específicos dos diversos subprogramas e reservatórios, bem como trabalhos científicos apresentados em congressos e seminários, alguns dos quais fazem parte do presente relatório como anexos, conforme abaixo. Foram apresentados seis resumos em dois eventos nacionais e um internacional, dois trabalhos completos publicados em anais de congressos, dois artigos submetidos à publicação, sete publicados em revistas científicas nacionais e internacionais, duas matérias em revistas e um capítulo de livro publicado. Há também cinco dissertações de mestrado e uma tese de doutorado em andamento em quatro instituições de pesquisa, três trabalhos de iniciação científica, um trabalho de conclusão de curso e duas teses de doutorado concluídas no período, em três instituições, utilizando dados gerados pelo Programa de Manejo Pesqueiro da CESP, além de um evento organizado e outro com apoio formal, conforme relacionado adiante.

6.1 Resumos em eventos científicos

- a. ARAUJO, R.V.; CARVALHO, I.C.; SANCHES, E.A.; CANEPPELE, D.; LEAL, M.C.; VIVEIROS, A.T.M.. Fertility, velocities and motility of surubim-do-Paraíba *Steindachneridion parahybae* sperm cryopreserved in lactose and lactose-free media. *III International Workshop on the Biology of Fish Gametes*. Budapest, Hungary, 7 a 9 de Setembro de 2011.
- b. CANEPPELE, D.; SANCHES, E.A.; ROMAGOSA, E.. Correlações espermáticas de *Steindachneridion parahybae* (Steindachner,1876) III EPgIP Encontro de pós-graduandos do Instituto de Pesca APTA Instituto de Pesca Anais 22 e 23 de setembro de 2011- São Paulo, SP.
- c. OKAWARA, R.Y.; SANCHES, E.A.; DAMASCENO, D.Z.; CANEPPELE, D.; ROMAGOSA, E.. Efeito da temperatora na desova do surubim do Paraíba, Steindachneridion parahybae. III EPgIP Encontro de pós-graduandos do Instituto de Pesca APTA Instituto de Pesca Anais 22 e 23 de setembro de 2011- São Paulo, SP. (Anexo 1)
- d. OKAWARA, R.Y.; SANCHES, E.A.; DAMASCENO, D.Z.; CANEPPELE, D.; ROMAGOSA, E.. Desenvolvimento inicial de larvas de *Steindachneridion*

- parahyba. V Congresso da Sociedade Brasileira de Aquicultura e Biologia Aquática AQUACIÊNCIA 2012 Anais 01 a 05 de julho Palmas, TO. (Anexo 2)
- e. SANCHES, E.A.; ARAÚJO, R.V.; OKAWARA, R.Y.; CANEPPELE, D.; ROMAGOSA, E.. Utilização do Azul de Trypan para estimativa da viabilidade de ovócitos em *Steindachneridion parahybae*. V Congresso da Sociedade Brasileira de Aquicultura e Biologia Aquática AQUACIÊNCIA 2012 Anais 01 a 05 de julho Palmas, TO.
- f. SANCHES, E.A.; OKAWARA, R.Y.; DAMASCENO, D.Z.; CANEPPELE, D.; BOMBARDELLI, R.A.; ROMAGOSA, E.. Doses Inseminantes e volumes de água necessários para a fertilização de ovócitos de Steindachneridion parahybae. V Congresso da Sociedade Brasileira de Aquicultura e Biologia Aquática AQUACIÊNCIA 2012 Anais 01 a 05 de julho Palmas, TO.

6.2 Trabalhos completos publicados em anais de congressos

- a. AZEVEDO, A. V.; GIANSANTE, M. A. V.; ASSUMPÇÃO, L.; SILVA, P. S.; PAULA, S.; MAKRAKIS, M. C.. Ictioplâncton na escada para peixes da UHE Engenheiro Sergio Motta, alto rio Paraná: variações na composição e abundância. XX Encontro Anual de Iniciação Científica EAIC e X Encontro de Pesquisa EPUEPG. Ponta Grossa, PR, 2011. (Anexo 3)
- b. CASSIANO, K.D.; MAKRAKIS, M.C.; SILVA, P.S.; ASSUMPÇÃO, L.; MAKRAKIS, S.; MARQUES, H. Distribuição de ovos e larvas em três tributários do Alto rio Paraná, Brasil.. In: III Simpósio Nacional de Engenharia de Pesca e I Feira Tecnológica de Aquicultura e Pesca, 2012, Toledo, PR. III Simpósio Nacional de Engenharia de Pesca e I Feira Tecnológica de Aquicultura e Pesca, 2012. (Anexo 4)
- c. GIANSANTE, M. A. V.; AZEVEDO, A. V.; SILVA, P. S.; LIMA, A. F.; ASSUMPÇÃO, L.; MAKRAKIS, M. C.; BIRON, R. P.. Lagoas marginais do rio Verde-MS, alto rio Paraná: variações na composição e abundância do ictioplâncton e juvenis de peixes, e importância para o recrutamento. XX Encontro Anual de Iniciação Científica EAIC e X Encontro de Pesquisa EPUEPG. Ponta Grossa, PR, 2011. (Anexo 5)
- d. MAKRAKIS, S.; FONTES-JUNIOR, H.M.; MAKRAKIS, M.C.; FERNANDEZ, D.R.;

- DIAS, J.H.P.; BELMONT, R.A.F. Downstream migration of Neotropical potamodromous species through hydroelectric reservoir: myth or reality?. In: II International Symposium on Fish Passages in South America, 2012, Toledo, PR. II International Symposium on Fish Passages in South America Extended Abstracts, 2012. (Anexo 6)
- e. NETTSON, L.V.; MAKRAKIS, M.C.; SILVA, P.S.; ASSUMPÇÃO, L.; MAKRAKIS, S.; MARQUES, H. Ocorrência de larvas e juvenis em duas lagoas marginais do alto Rio Paraná. In: III Simpósio Nacional de Engenharia de Pesca e I Feira Tecnológica de Aquicultura e Pesca, 2012, Toledo, PR. III Simpósio Nacional de Engenharia de Pesca e I Feira Tecnológica de Aquicultura e Pesca, 2012. (Anexo 7)
- f. SILVA, P.S.; MAKRAKIS, M.C.; ASSUMPÇÃO, L.; PAULA, S.; MAKRAKIS, S.; DIAS, J.H.P.; MARQUES, H. Preferencial spawning areas of Neotropical migratory fish species in tributaries of Porto Primavera Reservoir, Upper Paraná River. In: II International Symposium on Fish Passages in South America, 2012, Toledo, PR. II International Symposium on Fish Passages in South America Extended Abstracts, 2012. (Anexo 8)
- g. SILVA, P.S.; MAKRAKIS, M.C.; ANDRADE, F.F.; AZEVEDO, A.V.; MAKRAKIS, S.; DIAS, J.H.P.; MARQUES, H. Downstream passage of fish eggs and larvae through the Porto Primavera fish ladder, Upper Paraná River, Brazil. In: II International Symposium on Fish Passages in South America, 2012, Toledo, PR. II International Symposium on Fish Passages in South America Extended Abstracts, 2012. (Anexo 9)

6.3 Artigos Científicos Submetidos para Publicação

- a. HONJI, R.M.; CANEPPELE, D.; MOREIRA, R.G.. Caracterização macroscópica das gônadas e reprodução induzida em cativeiro de *Steindachneridion* parahybae (Teleostei), uma espécie ameaçada de extinção. Pesquisa Agropecuária Brasileira (PAB).
- b. SANCHES, E.A.; MARCOS, R.M.; OKAWARA, R.Y.; CANEPPELE, D.; BOMB.ARDELLI R.A.; ROMAGOSA, E.. Sperm motility parameters for Steindachneridion parahybae based on open-source software. Journal of Applied Ichthyology. (Anexo 10)

6.4 Artigos Científicos Publicados

- a. DIAS, J.H.P.; CANEPPELE, D.; BELMONT, R. A. F. . Manejo genético em programas de estocagem de reservatórios: a experiência da CESP. Ação Ambiental (UFV), v. 47, p. 35-41, 2012. (Anexo 11)
- b. HONJI, R.M.; TOLUSSI, C.E.; MELLO, P.H.; CANEPPELE, D.; MOREIRA R.G.. Embryonic development and larval stages of *Steindachneridion parahybae* (Siluriformes: Pimelodidae) - implications for the conservation and rearing of this endangered Neotropical species - **Neotropical Ichthyology**, 10(2): 313-327, 2012. (Anexo 12)
- c. MAKRAKIS, M.C.; MIRANDA, L.E.; MAKRAKIS, S.; FONTES JÚNIOR, H.M.; MORLIS, W.G.; DIAS, J.H.P.; GARCIA, J.O. Diversity in migratory patterns among Neotropical fishes in a highly regulated river basin. Journal of Fish Biology, v. 81, p. 866-881, 2012. (Anexo 13)
- d. SILVA, P.S.; MAKRAKIS, M.C.; ASSUMPÇÃO, L.; LIMA, A.F.; MAKRAKIS, S.; DIAS, J.H.P. Distribuição espacial e temporal de ovos e larvas de peixes no rio Aguapeí SP, alto rio Paraná. Fórum Ambiental da Alta Paulista, v. 7, p. 1-10, 2011.
- e. VIVEIROS, A.T.M.; ISAÚ, Z.A.; CANEPPELE, D.; LEAL, M.C. Sperm cryopreservation affects postthaw motility, but not embryogenesis or larval growth in the Brazilian fish *Brycon insignis* (Characiformes) **Theriogenology** 78 (2012) 803–810. (Anexo 14)
- f. VIVEIROS A.T.M.; ORFÃO, L.H., NASCIMENTO, A.F., CORRÊA, F.M., CANEPPELE, D. Effects of extenders, cryoprotectants and freezing methods on sperm quality of the threatened Brazilian freshwater fish pirapitinga-do-sul *Brycon opalinus* (Characiformes). Theriogenology 78 (2012) 361–368 (ANEXO 15)
- g. WAGNER, R.L.; MAKRAKIS, S.; CASTRO-SANTOS, T.; MAKRAKIS, M.C.; DIAS, J.H.P.; BELMONT, R.A.F. Passage performance of long-distance upstream migrants at a large dam on the Paraná River and the compounding effects of entry and ascent. **Neotropical Ichthyology**, v. 10, p. 785-795, 2012.

6.5 Matérias em Revistas

- a. Nova Chance aos Surubins do Paraíba. Revista ECOAVENTURA Pesca
 Esportiva Meio Ambiente e Turismo. Ed 33 78-85p (Anexo 16)
- b. A Volta da Prata da Casa. Revista ECOAVENTURA Pesca Esportiva Meio
 Ambiente e Turismo. Ed 34 22-27p (Anexo 17)

6.6 Capitulo de livro publicado

a. MAKRAKIS, M. C.; SILVA, P. S.; MAKRAKIS, S.; LIMA, A. F.; ASSUMPÇÃO, L.; PAULA, S.; MIRANDA, L. E.; DIAS, J. H. P.. Spawning and nursery habitats of Neotropical fish species in the tributaries of a regulated river. In: Kia Pourali; Vafa Niroomand Raad. (Org.). Larvae: Morphology, Biology and Life Cycle. Larvae: Morphology, Biology and Life Cycle. 1ed.New York: Nova Science Publishers, 2012, v. 1, p. 153-166. (Anexo 18)

6.7 Dissertações e Teses em Desenvolvimento

a. Centro de Aquicultura da UNESP – Programa de Pós-Graduação em Aquicultura.

Mestrando: Hugo Marques

Orientadora: Prof. Dr. Edmir Daniel Carvalho

Projeto: Avaliação espaço-temporal nas assembleias de peixes associadas à formação do reservatório de Porto Primavera, alto rio Paraná.

 b. Universidade Estadual do Oeste do Paraná – Programa de Pós-Graduação em Conservação e Manejo de Recursos Naturais.

Mestranda: Miriam Carla Mumbach

Orientadora: Prof. Dra. Maristela Cavicchioli Makrakis

Projeto: Comportamento migratório de peixes na bacia do rio Paraná.

c. Universidade Estadual do Oeste do Paraná – Programa de Pós-Graduação em Recursos Pesqueiros e Engenharia de Pesca.

Mestrando: Diego de Morais

Orientadora: Prof. Dra. Maristela Cavicchioli Makrakis

Projeto: Variações na abundancia e recrutamento de peixes em tributários de reservatório.

d. Instituto de Pesca de São Paulo – Programa de Pós-Graduação em Aquicultura e Pesca.

Mestrando: Renan Okawara

Orientadora: Prof. Dra. Elizabeth Romagosa

Projeto: Efeitos do pH, fosfatos e nitratos na produção e qualidade das larvas de Surubim do Paraíba, *Steindachneridion parahybae* (Steindachner, 1876).

e. Universidade de Mogi das Cruzes – Programa de Pós-Graduação em Biotecnologia.

Mestranda: Jackeline Alves Vilar

Orientador: Prof. Dr. Alexandre Wagner da Silva Hilsdorf

Projeto: Desenvolvimento e caracterização de marcadores microssatélites do surubim-do-paraíba, *Steindachneridion parahybae* (Siluriformes: Pimelodidae) e análise genética de suas populações pela comparação de sequências da região D-loop do DNA mitocondrial para conservação e manejo sustentável da espécie.

f. Centro de Aquicultura da UNESP – Programa de Pós-Graduação em Aquicultura.

Doutorando: Eduardo Antônio Sanches

Orientadora: Prof. Dra. Elizabeth Romagosa

Projeto: Fertilização artificial e qualidade de gametas do Surubim do Paraíba, *Steindachneridion parahybae* (Steindachner, 1876).

6.8 Teses Concluídas

a. Universidade de São Paulo – Programa de Pós-Graduação em Fisiologia

Doutoranda: Cristiéli da Silva Ribeiro

Orientadora: Prof. Dra. Renata Guimarães Moreira

Projeto: A influência térmica na dinâmica das membranas celulares: uma contribuição na conservação de *Steindachneridion parahybae* (Siluriformes: Pimelodidae) uma espécie de peixe ameaçada de extinção. (Anexo 19)

b. Universidade Federal de Lavras - Programa de Pós-Graduação em Zootecnia

Doutorando: Rafael Venâncio

Orientadora: Prof. Dra. Ana Tereza Mendonça Viveiros

Projeto: Avaliação computadorizada do sêmen criopreservado do Surubim do Paraíba, *Steindachneridion parahybae* (Steindachner, 1876). (Anexo 20)

6.9 Trabalhos de Iniciação Científica e Conclusão de Curso de Graduação

a. Universidade Estadual do Oeste do Paraná – Curso de Engenharia de Pesca

Aluno: Marco Antonio Valladão Giansante

Orientador: Prof. Dra. Maristela Cavicchioli Makrakis

Trabalho de iniciação científica: Lagoas marginais do rio Verde-MS, alto rio Paraná: variações na composição e abundância do ictioplâncton e juvenis de peixes. 2011.

b. Universidade Estadual do Oeste do Paraná - Curso de Engenharia de Pesca

Aluno: Adriano Vitor Azevedo

Orientador: Prof. Dra. Maristela Cavicchioli Makrakis

Trabalho de iniciação científica: Ictioplâncton na escada para peixes da UHE Engenheiro Sergio Motta, alto rio Paraná: variações na composição e abundância. 2011.

c. Universidade Estadual do Oeste do Paraná – Curso de Engenharia de Pesca

Graduando: Marco Antonio Valladão Giansante

Orientador: Prof. Dra. Maristela Cavicchioli Makrakis

Trabalho de conclusão de curso de graduação: Estrutura da assembleia de larvas e juvenis de peixes em duas lagoas marginais do rio Verde-MS, alto rio Paraná. 2011.

6.10 Apoio e Organização de Eventos

- a. "I Encontro dos Pesquisadores Parceiros do PAN Paraíba do Sul: Diretrizes e Linhas Prioritárias – Ictiofauna", realizado entre os dias 21 e 22 de maio de 2012, nas dependências da Unidade de Produção Rio Paraíba, Companhia Energética de São Paulo – CESP. Evento organizado em parceria pelo CEPTA/ICMBio, como parte das ações desenvolvidas no "Plano de Ação Nacional para a Conservação das Espécies Aquáticas Ameaçadas da Bacia do Rio Paraíba do Sul".
- b. "Il SYMPASS Simpósio Internacional de transposição de Peixes da América do Sul", realizado entre os dias 5 e 9 de novembro de 2012, na cidade de Toledo, PR. Evento organizado pela Universidade Estadual do Oeste do Paraná, com apoio da CESP.

7 REFERÊNCIAS BIBLIOGRÁFICAS

AGOSTINHO, A.A. & GOMES, L.C., 1997. Manejo e monitoramento de recursos pesqueiros. In: _____ (Ed.) Reservatório de Segredo: bases ecológicas para o manejo. Maringá: EDUEM, p. 319-364.

AGOSTINHO, A.A.; HAHN, N.S.; GOMES, L.C.; BINI, L.M. Estrutura trófica. In: VAZZOLER, A.E.A.M.; AGOSTINHO, A.A.; HAHN, N.S. (Editores) **A planície de inundação do Alto Rio Paraná**: aspectos físicos, biológicos e socioeconômicos. Maringá: EDUEM, 1997, p. 229-248.

AGOSTINHO, A.A.; OKADA, E.; GREGORIS, J. A pesca no reservatório de Itaipu: aspectos socioeconômicos e impactos do represamento. In: HENRY, R. (Editor). **Ecologia de reservatórios: estrutura, função e aspectos sociais**. Botucatu: FEPAF, 1999, p. 281-319.

BENNEMANN, S.T.; CAPRA, L.G.; GALVEZ, W.; SHIBATTA, O.A. Dinâmica trófica de *Plagioscion squamosissimus* (Perciformes, Sciaenidae) em trechos de influência da represa Capivara (rios Paranapanema e Tibagi). **Iheringia, Série Zoologia**, vol. 96, n.1, p.115-119, 2006.

BIALETZKI, A.; NAKATANI, K.; BAUMGARTNER, G.; BOND-BUCKUP, G. Occurrence of *Macrobrachium amazonicum* (Heller) (Decapoda, Palaemonidae) in Leopoldo's inlet (Ressaco do Leopoldo), Upper Paraná River, Porto Rico, Brazil. **Revista Brasileira de Zoologia** v. 14, n. 2, p. 379-390, 1997.

BUCKUP, P.A.; MENEZES, N.A. & GHAZI, M.S., 2007 (Ed.) Catálogo das espécies de peixes de água doce do Brasil. Rio de Janeiro: Museu Nacional, 195 p.

CARNELÓS, R.C.; BENEDITO-CECILIO, E. Reproductive strategies of *Plagioscion squamosissimus* Heckel, 1840 (Osteychthyes, Sciaenidae) in the Itaipu reservoir, Brazil. *Brazilian Archives of Biology and Technology* v. 45, n. 3, p. 317-324, 2002.

GRAÇA, W.J. & PAVANELLI, C.S., 2007. Peixes da planície de inundação do Alto Rio Paraná e áreas adjacentes. Maringá, EDUEM, 241 p.

HAHN, N.S.; AGOSTINHO, A.A.; GOITEIN, R. Feeding ecology of curvina *Plagioscion* squamosissimus (Hechel, 1840) (Osteichthyes, Perciformes) in the Itaipu reservoir and Porto Rico foodplain. **Acta Limnologica Brasiliensia** v. 9, p. 11-22, 1997.

HAHN, N.S.; ANDRIAN, I.F.; FUGI, R.; ALMEIDA, V.L.L. Ecologia trófica. In: VAZZOLER, A.E.A.M.; AGOSTINHO, A.A.; HAHN, N.S. (Editores) **A planície de inundação do Alto Rio Paraná**: aspectos físicos, biológicos e socioeconômicos. Maringá: EDUEM, 1997, p. 209-228.

HAHN, N.S.; FUGI, R.; LOURERO-CRIPPA, V.E.; PERETTI, D.; RUSSO, M.R. Trophic structure of the fish fauna. In: AGOSTINHO, A.A.; RODRIGUES, L.; GOMES, L.C.; THOMAZ, S.M.; MIRANDA, L.E. (Editores) **Structure and functioning of the Paraná river and its foodplain**: LTER – site 6 – (PELD – sítio 6). Maringá: EDUEM, 2004, p. 139-143.

HAMMER, Ø.; HARPER, D.A.T. & RYAN, P.D., 2007. **PAST**: **Palaentological Statistics, version 1.76**. Disponível on line em: http://folk.uio.no/ ohammer/past.

LANGEANI, F.; CASTRO, R.M.C.; OYAKAWA, O.T.; SHIBATTA, O.A.; PAVANELLI, C.S.; CASATTI, L., 2007. Diversidade da ictiofauna do Alto Rio Paraná: composição atual e perspectivas futuras. **Biota Neotropica** v. 7, n. 3, p. 1-17.

MACHADO, A.B.M; DRUMMOND, G.M.; PAGLIA, A.P. (Editores), 2008. **Livro vermelho da fauna brasileira ameaçada de extinção**. Brasília: MMA / Belo Horizonte: Fundação Biodiversitas. 2 v. (1420 p.)

MORETTO, E.M. A comunidade de peixes dos reservatórios dos trechos médio e baixo do rio Tietê, com ênfase nas espécies introduzidas *Plagioscion squamosissimus* e *Geophagus surinamensis*. São Carlos, 2006, 142 p., Tese (Doutorado em Ecologia e Recursos Naturais) – Universidade Federal de São Carlos, São Carlos, 2006.

NAKATANI, K.; BAUMGARTNER, G.; BAUMGARTNER, M.S.T. Larval development of *Plagioscion squamosissimus* (Heckel, 1840) (Perciformes, Sciaenidae) of the Itaipu reservoir (Paraná River, Brazil). **Revista Brasileira de Zoologia** v. 14, n. 1, p. 35-44, 1997.

ROSA, D. M., 2009. Hábitos alimentares da ictiofauna do reservatório de Ilha Solteira (alto rio Paraná): uma ênfase na participação do mexilhão dourado *Limnoperna fortunei* (Dunker, 1857). Dissertação (Mestrado). Belo Horizonte, 78 p.

SUZUKI, H.I.; PELICICE, F.M.; LUIZ, E.A.; LATINI, J.D.; AGOSTINHO, A.A. Reproductive strategies of the fish community of the Upper Paraná River. In: AGOSTINHO, A.A.; RODRIGUES, L.; GOMES, L.C.; THOMAZ, S.M.; MIRANDA, L.E. (Editores) **Structure and functioning of the Paraná river and its foodplain**: LTER – site 6 – (PELD – sítio 6). Maringá: EDUEM, 2004, p. 125-130.

THOMAZ, S.M.; ROBERTO, M.C.; BINI, L.M., 1997. Limnologia do reservatório de Segredo: padrões de variação espacial e temporal. In: AGOSTINHO, A.A. & GOMES, L.C. (Ed.) Reservatório de Segredo: bases ecológicas para o manejo. Maringá: EDUEM, p. 19-37.

TOLEDO-FILHO, S.A.; ALMEIDA-TOLEDO, L.F.; FORESTI, F.; GALHARDO, E.; DONOLA, E., 1992. Conservação genética de peixes em projeto de repovoamento de reservatório. **Cadernos de Ictiogenética**, n.1, p 01-39.

VAZZOLLER, A.E.A.M. Biologia da reprodução de peixes teleósteos: teoria e prática. Maringá: EDUEM, S. Paulo: SBI, 1996, 169 p.

8 EQUIPE TÉCNICA

René Alberto Fuster Belmont Engenheiro de Pesca - CREA 189.253/D http://lattes.cnpq.br/2583714463111044

Danilo Caneppele

Biólogo, MSc. - CRBio 31656/01-D http://lattes.cnpg.br/4463868661478186

Hugo Marques

Biólogo - CRBio 68970/01-D http://lattes.cnpq.br/2827054024099451

João Henrique Pinheiro Dias Biólogo, Dr. - CRBio 2273/01 http://lattes.cnpq.br/5174560654469800

Antônio Sylvio Boccardo
Técnico em Meio Ambiente

Benedito Piedade Pereira Barros Técnico em Meio Ambiente

Roberto Martins Hernandes
Técnico em Meio Ambiente

Sérgio Bovolenta

Técnico em Meio Ambiente

Milton Miranda da Rosa Auxiliar de Meio Ambiente

Tabela 1. Características dos empreendimentos da CESP na bacia do Alto Paraná.

Empreendimento	UHE Três Irmãos	UHE Ilha Solteira	UHE Engenheiro Souza Dias (Jupiá)	a UHE Engenheiro Sérgio Motta (Porto Primavera)				
Localização	Pereira Barreto, SP	Rosana, SP Batayporã, MS						
Início de construção	1980	1961	1978					
Início de operação	12 de março de 1991	18 de julho de 1973	14 de abril de 1969	Dezembro de 1998				
Turbinas	Cinco unidades Francis	18 unidades Kaplan *						
Potência instalada	1.292 MW	3.230 MW	1.411,2 MW	1.814,40 MW *				
Comprimento da barragem	3.710 m	6.100 m	5.604 m	11.380 m				
Reservatório								
Área	817 km²	1.195 km²	330 km ²	2.250 km ²				
Perímetro	1.400 km	1.513 km	482 km	1.385 km				
Volume	13.800 x 10 ⁶ m ³	21.060 x 10 ⁶ m ³	3.680. 10 ⁶ m ³	20.000 x 10 ⁶ m ³				
Profundidade média	16,9 m	17,6 m	6,8 m	8,9 m				
Vazão média	733 m ³ .s ⁻¹	5121 m ³ .s ⁻¹	6158 m ³ .s ⁻¹	6981 m ³ .s ⁻¹				
Tempo de residência	217,9 dias	47,6 dias	6,9 dias	33,9 dias				
Nível de água mínimo	323,00 m	314,00 m	277,00 m	257,00 m				
Nível de água normal	328,00 m	328,00 m	280,00 m	259,00 m**				
Nível de água máximo	328,40 m	329,00 m	280,50 m	259,70 m				

^{*} A UHE Engenheiro Sergio Motta está atualmente com 14 unidades geradoras em operação. ** O reservatório da UHE Engenheiro Sergio Motta está operando na cota 257 m.

Observações: Nível de água expresso em metros do nível do mar, fonte CESP (1993).

Tabela 2. Características dos empreendimentos da CESP na bacia do rio Paraíba do Sul.

Empreendimento	UHE Jaguari	UHE Paraibuna
Localização	Jacareí, SP São José dos Campos, SP	Paraibuna, SP
Início de construção	1963	1964
Início de operação	Cinco de maio de 1972	20 de abril de 1978
Turbinas	Duas unidades Francis	Duas unidades Francis
Potência instalada	27,6 MW	86 MW
Comprimento da barragem	435 m	2 x 585 m
Reservatório		
Área	69 km²	206 km²
Perímetro	504 km	1.266 km
Volume	1.350 m ³ .10 ⁶	4.740 m ³ .10 ⁶
Profundidade média	19,6 m	23,0 m
Vazão média	46 m ³ .s ⁻¹	111 m ³ .s ⁻¹
Tempo de residência	493,3 dias	784,6 dias
Nível de água mínimo	603,20 m	694,60 m
Nível de água normal	623,00 m	714,00 m
Nível de água máximo	625,60 m	716,50 m

Observações: nível de água expresso em metros do nível do mar; fonte CESP (1993).

Tabela 3. Programa de Manejo Pesqueiro: subprogramas previstos por reservatório, no período de julho de 2011 a junho de 2012.

SUBPROGRAMA	Ilha Solteira	Engenheiro Souza Dias	Engenheiro Sergio Motta	Três Irmãos	Jaguari	Paraibuna
Caracterização limnológica e monitoramento da qualidade da água superficial	Trimestral (set, dez, mar, jun)	Trimestral (ago, nov, fev, mai)	Trimestral (ago, nov, fev, mai)	Trimestral (set, dez, mar, jun)	Trimestral (set, dez, mar, jun)	Trimestral (ago, nov, fev, mai)
Monitoramento da ictiofauna e dinâmica populacional	Trimestral (set, dez, mar, jun)	Trimestral (ago, nov, fev, mai)	Trimestral (ago, nov, fev, mai)	Trimestral (set, dez, mar, jun)	Trimestral (set, dez, mar, jun)	Trimestral (ago, nov, fev, mai)
Caracterização de áreas de reprodução de peixes em tributários			Rios, Aguapeí, Verde, Pardo e (outubro a março)			
Levantamento da produção pesqueira	Bimestral	Bimestral	Bimestral	Bimestral		
Estocagem de alevinos (peixamento)	Março a maio, setembro a outubro	Março a maio, setembro a outubro	Março a maio, setembro a outubro	Março a maio, setembro a outubro	Setembro a março	Setembro a março
Operação e monitoramento de equipamentos de transposição e marcação de peixes			Novembro a fevereiro			

Tabela 4. Estações de amostragens ictiológicas e limnológicas no reservatório da UHE Três Irmãos.

Estação	Coordenadas	Características
Jusante de Nova Avanhandava (JNA)	21° 07' 39.0" S; 50° 13' 03.6"W	Situada a jusante da UHE Nova Avanhandava, ambiente lótico, com margens ocupadas por pastagens.
Córrego Jacaré (JAC)	20°50' 76.7" S, 50° 49' 38.0" W	Localizada no rio Tietê, próximo ao córrego Jacaré, município de Sud Mennucci; ambiente lótico, com margens ocupadas por pastagens e reflorestamento ciliar.
Pereira Barreto (PBR)	20°40' 24.8" S, 51°08' 47.0" W	No rio Tietê, a montante da ponte entre Andradina e Pereira Barreto; ambiente lêntico, com margens ocupadas por pastagens e reflorestamento ciliar.

Tabela 5. Estações de amostragens ictiológicas e limnológicas no reservatório da UHE Ilha Solteira.

Estação	Coordenadas	Características
Jusante de Água Vermelha (JAV)	19° 47' 44.1" S; 50° 25' 56.7" W	Localizada no rio Grande, cerca de 10 km a jusante da UHE Antônio Ermírio de Moraes (Água Vermelha); ambiente lêntico, com margens ocupadas por vegetação ciliar.
Córrego do Cigano (CCI)	20° 14' 40,9" S; 51° 0,3' 18,0" W	Localizada no rio Paraná, após junção dos rios Grande e Paranaíba, a jusante da ponte entre Rubinéia (SP) e Aparecida do Taboado (MS); ambiente lêntico, com margens ocupadas por atividades antrópicas diversas.
Montante de Ilha Solteira (MIS)	20° 22' 15.6" S; 51° 21' 32,5" W	Localizado no rio Paraná à montante da UHE de Ilha Solteira; ambiente lótico, com margens ocupadas por matas ciliares, pastagens e equipamentos de lazer.
Rio São José dos Dourados (SJD)	20° 26' 00.7" S; 51° 15' 28,8" W	Localizada no rio São José dos Dourados, próxima à ponte entre Ilha Solteira e Santa Fé do Sul; ambiente lêntico, com margens ocupadas por pastagens e mais recentemente por cultivo de cana.

Tabela 6. Estações de amostragens ictiológicas e limnológicas no reservatório da UHE Engenheiro Souza Dias (Jupiá), bacia do Paraná.

Estação	Coordenadas	Características
Jusante de Ilha Solteira (JIS)	20° 24' 44.6" S, 51°22' 51.2" W	Situada no rio Paraná, a jusante da UHE de Ilha Solteira; ambiente lótico, com margens principalmente por pastagens.
Sucuriú (SUC)	20°36' 01.6" S, 51°51' 09.5" W	Situada no rio Sucuriú, cerca de seis km a montante da ponte entre Três Lagoas e Selvíria; ambiente lêntico, com a margem direita ocupada por pastagens e esquerda por fragmentos de mata ciliar e pastagens.
Timboré (TIM)	20° 41' 33.0" S, 51°23' 14.3" W	Localizada no rio Tietê, a jusante da UHE Três Irmãos, próximo ao córrego Timboré; ambiente lótico, com margens ocupadas principalmente por pastagens.
Montante de Jupiá (MJU)	20° 45' 25.4" S, 51° 38' 11.3" W	Situada no rio Paraná, dois km a montante da UHE Engenheiro Souza Dias (Jupiá); ambiente lêntico, margem direita com vegetação ciliar e esquerda com vegetação ciliar e ranchos.

Tabela 7. Estações de amostragens ictiológicas e limnológicas no reservatório da UHE Engenheiro Sergio Motta (Porto Primavera).

Estação	Coordenadas	Características
Jusante de Jupiá (E2)	20°51'20,3" S; 51°37'51,9" W	Localizada no rio Paraná, a jusante da usina de Jupiá; ambiente lótico, com margens ocupadas por pastagens.
Panorama (E5)	21°15'20,8" S; 51°51'10,9" W	Localizado no rio Paraná, a jusante das desembocaduras dos rios Verde e Aguapeí; ambiente semilótico, com margem direita ocupada por planície aluvionar e margem esquerda por pastagens.
Presidente Epitácio – canal (E8) e	E8: 21°50'48,1" S; 52°11'53,3" W	Localizado no rio Paraná, a jusante das desembocaduras dos rios Pardo e Santo Anastácio; ambiente lêntico, com
margem direita (E9)	E9: 21°51'01" S, 52°11'41,4" W	margens ocupadas por pastagens.
Montante de Primavera - margem direita (E12)	22°27'12,1" S; 52°54'48,1" W	Situada a montante da UHE Engenheiro Sergio Motta, margem direita; ambiente lêntico, margem ocupada por matas.
Montante de Primavera (E11)	22°27'37,3" S; 52°54'34,6" N	Situada a montante da UHE Engenheiro Sérgio Motta, no canal principal; ambiente lêntico, margem (esquerda) ocupada por pastagens.
Jusante de Primavera (E13)	22°31'22,0" S; 53°00'51,2" N	Localizado a jusante da UHE Engenheiro Sergio Motta; ambiente lótico, com margem direita ocupada por mata ciliar e áreas alagadas e a margem esquerda por núcleo urbano.

Tabela 8. Estações de amostragens ictiológicas e limnológicas no reservatório da UHE Paraibuna.

Estação	Coordenadas UTM	Características
Jusante da UHE Paraibuna	E 438217; N 7410434	Localizada no rio Paraibuna, a jusante da UHE; ambiente lótico, com influência do remanso da UHE Santa Branca (Light) em períodos de cheias; margens ocupadas por remanescentes de mata ciliar.
Barragem Paraibuna	E 439897; N 7411325	Localizada a montante da barragem do rio Paraibuna; ambiente lêntico, com margens ocupadas por pastagens, com ocupação imobiliária.
Redenção da Serra	E 442236; N 7419498	Localizada no leito original do rio Paraitinga; ambiente lêntico, com influência da bacia de contribuição do rio Paraitinga; margens ocupadas por pastagens e silvicultura de eucaliptos.
Natividade da Serra	E 452495; N 7412571	Localizada no leito original do rio Paraibuna; ambiente lêntico, com influência dos rios Paraibuna e do Peixe, que drenam bacias mais preservadas; margens desprovidas de mata ciliar com cobertura predominante de pastagens.
Lourenço Velho	E 443166; N 7393721	Localizada no leito original do rio Lourenço Velho; ambiente lêntico, passando a semi-lêntico nos períodos de seca; margem esquerda recoberta por pastagens e alguma ocupação imobiliária enquanto a direita ainda possui fragmentos de mata ciliar.

Tabela 9. Estações de amostragens ictiológicas e limnológicas no reservatório da UHE Jaguari.

Estação	Coordenadas UTM	Características							
Jusante da UHE Jaguari	E 395329, N 7434113	Localizada no rio Jaguari, a jusante da barragem; ambiente lótico, com as margens desprotegidas, com poucas áreas de regeneração.							
Barragem Jaguari (P1)	E 394826, N 7435029	Localizada imediatamente a montante da barragem; ambiente lêntico, com a margem direita recoberta por silvicultura de eucaliptos e esquerda com pastagens e fragmentos florestais.							
Rio Jaguari (P2)	E 378708; N 7429083	Localizada entre os municípios de Igaratá e Santa Isabel, cerca de quatro km a montante da ponte da Rodovia D. Pedro; ambiente lêntico, influenciado por efluentes da cidade de Santa Isabel; possui fragmentos florestais em ilhas e nas margens, dividindo espaço com pastagens e ocupação imobiliária.							
Rio do Peixe (P3)	E 388236; N 7440201	Localizada no rio do Peixe, entre os municípios de Jacare e São José dos Campos; ambiente lêntico; margens cobertas por pastagens e fragmentos florestais, com ocupação imobiliária menos adensada.							

Tabela 10. Dados limnológicos do reservatório de Três Irmãos, no período de julho/2011 a junho/2012, os dados em vermelho estão incompatíveis com os limites da Resolução CONAMA 357/2005.

Variáve	is		Dia de coleta	Hora da Coleta in:	Temp. Ambiente (°C)	Transparência (m)		Temp. água (°C)	Hd	Oxigênio dissolvido (°C)	Condutividade (µS/cm)	Alcalinidade (mg/l)	Nitrato (mg/l)	Nitrito (mg/l)	Nitrogênio Org. total (mg/l)	Sólidos em suspensão total (mg/l)	Sólidos em	Sólidos em suspensão org.	Amônia (mg/l)	Ortofosfato (mg/l)	Fósforo Total (mg/l)	Turbidez (NTU)	Clorofila (□g/l)	Feofitina (□g/l)	Profundidade (m)
		C	- 22	11.00	20.5	F 1	S	26.1	7.4	7.6 6.5	120	36			0.19	5.8 5.0	2.4	3.4			0.021	1.9	0.0	7.0	0.0
		Set	23	11:30	29.5	5.1	M	26.8 27.2	7.6 7.6	6.4	121 128	41 41			0.12 0.13	6.0	1.6 1.2	3.4 4.8			0.026 0.067	2.9 5.8	0.0	5.0 2.9	2.8 5.5
	2011						S	26.7	6.1	5.3	149	39		0.02	0.10	2.4	0.8	1.6		0.00	0.007	2.1	0.0	2.6	0.0
		Dez	28	12:15	25.7	3.5	М	26.5	6.3	5.0	150	39		0.02	0.11	1.8	0.6	1.2		0.00	0.018	1.2	0.0	3.6	2.8
Jusante de Nova							F	26.5	6.3	5.1	154	44		0.02	0.24	1.4	0.4	1.0		0.00	0.020	1.3	0.0	4.1	5.5
Avanhandava							S	27.8	6.4	6.0	167	41	0.75	0.03	0.16	3.4	3.2	0.2	0.01	0.01	0.015	0.9	0.0	3.9	0.0
		Ma	r 24	11:15	24.6	5.5	M	27.6	6.6	5.3	167	41	1.07	0.03	0.10	5.6	5.4	0.2	0.01	0.02	0.012	1.4	0.0	0.4	3.0
	2012						F	26.7	6.8	5.1	170	44	0.91	0.02	0.16	4.4	3.8	0.6	0.37	0.01	0.008	1.3	0.0	2.1	6.0
		Jur	. 26	12:00	21.0	5.2	S M	22.3 22.0	7.5 7.7	8.1 7.9	143 138	39 42	0.65 1.08	0.00	0.05	1.2 1.6	0.6 0.8	0.6 0.8	0.01	0.01	0.006 0.012	0.8 1.0	0.0	1.6 3.3	0.0 3.5
		Jui	1 20	12.00	21.0	5.2	F	21.8	7.7	7.9	152	43	1.05	0.00	0.04	1.4	0.6	0.8	0.01	0.01	0.012	1.0	2.1	0.0	3.5 7.0
							S	25.4	7.5	7.7	128	40		0.00	0.12	4.8	1.4	3.4			0.004	8.2	0.0	6.6	0.0
		Set	20	12:30	29.6	5.6	М	25.7	7.3	6.4	130	42			0.13	2.2	1.0	1.2			0.026	3.2	0.0	6.2	16.0
	2011						F	26.6	7.4	6.3	149	44			0.17	5.8	1.0	4.8			0.008	2.6	0.0	6.2	32.0
							S	27.7	6.3	6.2	120	35		0.02	0.07	1.4	0.4	1.0			0.015	8.0	0.0	9.9	0.0
		Jar	24	08:00	26.3	3.9	M	27.1	5.9	5.7	120	42		0.03	0.13	2.4	1.0	1.4		0.00		1.0	0.0	1.8	17.5
Jacaré							F S	26.7 28.3	5.7 5.9	5.2 5.7	118 138	44 0.90	0.46	0.01	0.11 0.14	2.2 1.2	1.2 0.6	1.0 0.6	0.10	0.00	0.018 0.009	1.4 3.5	0.0	2.1 1.8	35.0 0.0
		Ма	r 21	07:30	25.4	4.9	M	27.3	5.9	4.3	132	1.00	0.45	0.02	0.14	2.0	1.4	0.6	0.03	0.01	0.003	3.8	0.5	0.0	15.5
	0040	ivia		07.00	20.4	-1.0	F	26.7	6.3	3.9	130	1.10	0.57	0.01	0.19	2.4	2.0	0.4	0.04	0.01	0.004	4.3	0.0	1.5	31.0
	2012						S	23.3	7.3	7.8	150	41	0.60	0.00	0.15	1.4	0.0	1.4	0.04	0.01	0.006	1.1	2.1	0.0	0.0
		Jur	19	07:45	21.8	5.5	М	22.9	7.4	6.5	152	45	0.75	0.00	0.08	1.2	0.4	8.0	0.04	0.01	0.008	0.9	0.0	1.8	15.5
							F	22.6	7.4	5.9	153	47	0.61	0	0.09	1.4	0.2	1.2	0.03	0.01	0.009	2.0	0.0	10.1	31.0

Tabela 10 (continuação). Dados limnológicos do reservatório de Três Irmãos, no período de julho/2011 a junho/2012, os dados em vermelho estão incompatíveis com os limites da Resolução CONAMA 357/2005.

Variáve	is		Dia de coleta	Hora da Coleta in:	Temp. Ambiente (°C)	Transparência (m)		Temp. água (°C)	Hd	Oxigênio dissolvido (°C)	Condutividade (µS/cm)	Alcalinidade (mg/l)	Nitrato (mg/l)	Nitrito (mg/l)	Nitrogênio Org. total (mg/l)	Sólidos em suspensão total (mg/l)	Sólidos em suspensão inorg.	Sólidos em suspensão org.	Amônia (mg/l)	Ortofosfato (mg/l)	Fósforo Total (mg/l)	Turbidez (NTU)	Clorofila (∏g/l)	Feofitina (∏g/I)	Profundidade (m)
							S	28.8	7.7	7.6	121	34			0.14	2.6	8.0	1.8			0.005	2.8	0.0	6.2	0.0
		Set	19	11:00	28.6	7.9	M	26.4	7.7	6.4	117	39			0.16	4.0	8.0	3.2			0.009	2.8	0.0	5.7	17.5
	2011						F	27.7	7.5	6.3	146	42			0.21	2.6	8.0	1.8			0.067	2.3	0.0	4.8	35.0
							S	28.9	6.3	5.5	89	30		0.01	0.10	1.6	1.2	0.4		0.00	0.013	1.9	0.0	3.2	0.0
		Dez	25	13:00	28.4	4.3	Μ	27.7	6.1	4.3	110	40		0.00	0.11	1.2	0.6	0.6		0.00	0.013	1.7	0.0	2.3	19.5
Pereira Barreto							F	26.7	6.0	3.5	119	41		0.00	0.21	8.0	0.4	0.4		0.00	0.010	0.9	0.0	2.5	39.0
i erena barreto							S	29.6	6.8	6.7	98	34	0.21	0.02	0.12	3.6	3.2	0.4	0.40	0.01	0.009	2.4	0.0	1.8	0.0
		Mar	22	12:30	29.3	5.1	M	28.8	6.7	5.9	78	35	0.27	0.01	0.13	3.8	3.6	0.2	0.11	0.01	0.008	2.1	0.0	2.3	17.5
	2012						F	28.6	6.7	4.3	102	39	0.29	0.01	0.15	3.4	3.0	0.4	0.03	0.01	0.009	1.9	0.0	2.0	35.0
	2012						S	23.8	7.5	8.5	123	40	0.60	0.01	0.06	0.6	0.0	0.6	0.04	0.00	0.009	1.1	1.6	0.0	0.0
		Jun	18	11:50	24.5	5.9	M	23.6	7.6	7.2	126	39	0.58	0.00	0.06	1.0	0.0	1.0	0.04	0.01	0.010	0.7	2.7	0.0	18.0
							F	23.6	7.4	6.4	118	43	0.58	0.00	0.09	1.0	0.0	1.2	0.04	0.01	800.0	0.9	1.1	0.0	36.0

Tabela 11. Dados limnológicos do reservatório de Ilha Solteira, no período de julho/2011 a junho/2012, os dados em vermelho estão incompatíveis com os limites da Resolução CONAMA 357/2005.

Variáveis			Dia de coleta	Hora da Coleta:	Temp. Ambiente (°C)	Transparência (m)	Profundidade (m)	Temp. água (ºC)	Hd	Oxigênio dissolvido (mg/l)	Condutividade (uS/cm)	Alcalinidade (mg/l)	Nitrogênio Org. total(mg/l)	Sólidos em suspensão total (mg/l)	Sólidos em suspensão inorg.	Sólidos em suspensão org.	Fósforo Total (mg/l)	Turbidez (NTU)	Clorofila (ug/l)	Feofitina (ug/l)
		Set	17	10:00	26.7	6.1	S	23.9	7.2	7.3	47	25	0.11	1.0	1.0	0.0	0.009	4.6	8.5	0.0
							10	24.2	7.4	6.9	49	26	0.13	1.2	1.2	0.0	0.028	4.9	8.5	0.0
							20 F	24.3 24.9	7.3 7.5	6.9 6.7	49 58	28 30	0.11 0.13	0.6 0.4	0.6 0.4	0.0 0.0	0.031 0.040	4.4 4.7	10.7 0.0	0.0 3.4
	2011	Jan	31	08:15	24.8	2.7	S	27.3	5.9	5.5	45	25	0.09	2.2	0.6	1.6	0.040	1.9	0.0	2.0
		oun	٠.	00.10	24.0	2.7	10	27.1	6.0	5.4	45	25	0.07	1.4	0.6	0.8	0.006	1.8	0.0	3.7
							20	26.9	6.2	5.4	45	26	0.08	1.6	0.4	1.0	0.011	2.5	0.0	1.6
Jusante de Água Vermelha							F	26.6	6.2	5.1	51	27	0.08	1.6	0.4	1.2	0.007	1.9	0.0	1.1
Jusante de Agua vermeina		Abr	16	07:40	25.2	3.2	S	27.9	5.5	5.1	43	21	0.04				0.013	1.9		
							10	27.6	5.7	4.9	43	22	0.04				0.015	1.8		
							20	27.4	5.9	4.5	44	24	0.05				0.016	2.9		
	2012						F	27.3	6.3	4.4	44	26	0.03				0.014	2.2		
		Jun	16	07:30	20.5	4.7	S	23.9	7.0	7.5	44	26	0.10	1.4	0.4	1.0	0.019	1.8	1.1	0.0
							10	23.7	7.1	7.2	45 47	26	0.10	2.0	8.0	1.2	0.020	1.9	1.6	0.0
							20 F	23.6 22.8	7.1 7.2	7.2 7.0	47 47	26 27	0.05 0.07	1.8 1.4	0.8 0.2	1.0 1.2	0.020 0.021	2.1 2.0	0.5 1.1	0.0 0.0
		Set	16	09:45	25.8	5.4	S	23.9	7.5	7.6	44	25	0.12	2.4	0.8	1.6	0.005	3.8	0.0	3.4
				551.0	_0.0	• • • • • • • • • • • • • • • • • • • •	10	23.9	7.4	7.1	47	25	0.12	1.0	0.2	0.8	0.032	4.8	0.0	5.9
	2011						20	23.7	7.3	6.8	49	26	0.10	2.2	0.6	1.6	0.052	5.3	0.0	3.0
Córrego Cigano							30	23.5	7.1	6.5	54	27	0.12	2.2	8.0	1.4	0.093	4.3	0.0	5.5
							F	23.6	7.0	6.5	61	27	0.11	1.0	1.0	0.0	0.207	5.1	0.0	3.5
		Fev	1	08:30	25.6	3.2	S	28.1	5.7	5.9	37	20	0.04	3.4	1.8	1.6	0.010	2.4	0.0	0.7
							10	27.3	5.8	4.8	37	20	0.10	3.0	2.0	1.0	0.011	2.6	0.0	3.2
	2012						20	27.1	5.8	4.5	39	21	0.08	1.4	0.4	1.0	0.009	2.7	0.0	1.9
							30 F	27.0 26.9	6.0 6.4	4.6 4.6	41 42	23 25	0.06 0.08	3.0 2.6	1.4 1.0	1.6 1.6	0.012 0.013	3.0 2.5	0.0 2.1	1.3 0.0

Tabela 11 (continuação). Dados limnológicos do reservatório de Ilha Solteira, no período de julho/2011 a junho/2012, os dados em vermelho estão incompatíveis com os limites da Resolução CONAMA 357/2005.

Variáveis			Dia de coleta	Hora da Coleta	Temp. Ambiente (°C)	Transparência (m)	Profundidade (m)	Temp. água (ºC)	Hd	Oxigênio dissolvido (mg/l)	Condutividade (uS/cm)	Alcalinidade (mg/l)	Nitrogênio Org. total(mg/l)	Sólidos em suspensão total	Sólidos em suspensão inorg.	Sólidos em suspensão org.	Fósforo Total (mg/l)	Turbidez (NTU)	Clorofila (ug/l)	Feofitina (ug/l)
		Mar	14	11:30	27.4	2.6	S	28.9	5.9	5.8	41	25	0.12				0.011	4.1		
							10	28.4	6.0	5.4	41	26	0.23				0.011	4.6		
							20 30	28.3 28.3	6.0 6.1	4.8 4.9	41 40	26 28	0.06 0.15				0.016 0.013	4.8 4.9		
							30 F	28.2	6.2	4.8	44	29	0.13				0.013	5.2		
Córrego Cigano	2012	Jun	13	8:30	21.6	4.8	S	24.3	7.4	7.4	40	20	0.09	1.2	0.4	0.8	0.006	1.1	8.5	0.0
							10	24.1	7.4	7.4	42	21	0.11	1.2	0.2	1.0	0.008	1.4	0.0	2.7
							20	24.0	7.3	6.0	43	21	0.10	1.2	0.6	0.6	0.011	2.0	0.0	4.1
							30	23.6	7.5	5.6	43	24	0.08	1.2	0.2	1.0	0.009	2.2	0.0	0.5
							F	23.4	7.7	5.5	49	27	0.09	1.6	0.2	1.4	0.006	2.1	0.0	0.0
		Set	12	10:45	28.5	6.2	S	23.7	7.3	7.5 6.8	47 48	21	0.09 0.12	3.0	1.2 0.8	1.8 1.8	0.015 0.016	1.8 1.9	0.0 0.0	5.7 7.6
	2011						10	23.6 23.3	7.5 7.4	6.6	46 51	22 23	0.12	2.6 2.0	0.6	1.6	0.016	3.1	0.0	7.0 5.0
							20 F	23.2	7.4 7.5	6.2	54	26 26	0.10	1.6	1.0	0.6	0.011	2.8	0.0	5.5
		Fev	6	13:10	28.9	4.9	S	29.9	5.4	5.9	40	1	0.14	2.0	0.6	1.4	0.011	21.0	0.0	1.3
			_				10	29.1	5.6	5.8	40	1	0.12	2.2	1.2	1.0	0.015	23.0	0.0	1.3
							20	28.6	5.2	5.2	40	1	0.10	2.2	8.0	1.4	0.012	23.0	0.0	0.0
São José dos Dourados							F	29.3	5.3	5.0	40	2	0.10	0.0	8.0	0.0	0.011	25.0	0.0	0.9
ouo oose uos bouruos		Mar	15	13:00	30.9	3.3	S	30.1	6.7	6.7	42	21	0.08				0.008	1.6		
	2012						10	29.4	6.2	5.7	41	25	0.21				0.008	1.9		
							20	29.1	6.2	5.3	41	24	0.14				0.005	2.0		
			11	12.20	25.0	4 5	F	28.9	6.4	5.0	41	27	0.12	1.6	0.0	0.0	0.005	2.2	0.0	1.0
		Jun	14	12:30	25.8	4.5	S 10	25.0 24.5	7.3 7.3	7.9 6.8	42 42	21 21	0.08 0.06	1.6 1.2	0.8 0.6	0.8 0.6	0.002 0.008	1.6 1.3	0.0 0.0	1.3 0.0
							20	24.4	7.3	6.6	42	22	0.07	1.0	0.0	1.2	0.000	1.3	0.0	0.0
							F	24.4	7.4	6.4	43	24	0.11	1.0	0.2	0.8	0.002	1.5	0.0	0.9

Tabela 11 (continuação). Dados limnológicos do reservatório de Ilha Solteira, no período de julho/2011 a junho/2012, os dados em vermelho estão incompatíveis com os limites da Resolução CONAMA 357/2005.

Variáveis			Dia de coleta	Hora da Coleta in:	Temp. Ambiente (°C)	Transparência (m)	Profundidade (m)	Temp. água (ºC)	Hd	Oxigênio dissolvido (mg/l)	Condutividade (uS/cm)	Alcalinidade (mg/l)	Nitrogênio Org. total(mg/l)	Sólidos em suspensão total (mg/l)	Sólidos em suspensão inorg.	Sólidos em suspensão org.	Fósforo Total (mg/l)	Turbidez (NTU)	Clorofila (ug/l)	Feofitina (ug/l)
		Set	22	13:00	28.4	6.4	S	24.6	7.0	7.5	44	22	0.12	5.0	1.2	3.8	0.008	2.9	0.0	4.1
							10	24.6	6.9	6.9	45	24	0.20	4.2	1.0	3.2	0.008	3.2	0.0	4.5
							20 30	24.7 25.1	6.7 6.9	7.0 6.3	45 46	24 25	0.13 0.13	5.4 4.8	0.8 1.2	4.6 3.6	0.011 0.015	2.2 2.4	0.0 0.0	7.8 4.6
							40	25.6	6.9	6.1	47	25	0.13	5.6	0.6	5.0	0.013	2.3	0.0	4.5
	2011						F	26.0	7.2	6.1	65	27	0.11	5.0	1.4	3.6	0.010	2.7	0.0	4.6
	2011	Dez	6	11:15	26.2	4.4	S	29.4	5.2	5.6	39	2	0.08	4.6	3.4	1.2	0.013	19.0	0.0	4.8
							10	28.8	5.2	5.3	40	2	0.10	2.0	1.2	8.0	0.015	21.0	0.0	2.0
							20	28.2	5.2	5.0	40	2	0.08	2.4	1.4	1.0	0.015		0.0	1.6
							30	27.9	5.1	4.9	40	2	0.06	1.8	1.0	8.0	0.018		0.0	2.1
							40	27.7	5.2	4.8	41	2	0.11		4.0		0.016	24.0	0.0	0.4
Montante de Ilha Solteira		Mar	17	11:30	29.1	3.4	F S	27.5 29.2	5.5 6.0	4.6 6.4	42 71	2	0.11 0.06	2.4	1.0	1.4	0.012	25.0 2.8	0.0	3.7
		IVIAI	17	11.30	29.1	3.4	10	28.9	6.0	5.8	41	20 22	0.00				0.011	3.0		
							20	28.8	6.1	5.3	41	23	0.03				0.005	3.0		
							30	28.6	6.2	5.1	42	23	0.03				0.006	2.9		
							40	28.6	6.3	5.0	43	24	0.04				0.009	2.9		
	2012						F	28.6	6.5	4.9	44	27	0.04				0.006	3.8		
	2012	Jun	16	11:45	14.7	5.2	S	24.9	7.5	8.3	42	25	0.09	0.2	0.0	0.2	0.008	1.3	0.5	1.7
							10	24.6	7.5	7.4	42	26	0.10	0.2	0.0	0.2	0.006	1.1	0.0	3.4
							20	24.4	7.4 7.4	6.8 6.7	42 42	26	80.0 80.0	1.0 0.8	0.2	0.8	0.003	0.9 1.1	0.0 1.1	0.5 0.0
							30 40	24.4 24.4	7.4 7.5	6.7 6.7	42 42	29 30	0.08	1.0	0.4 0.4	0.4 0.6	0.004	0.8	0.5	0.0
							F	24.4	7.5	6.6	42	30	0.08	1.2	0.4	0.6	0.002	1.2	0.0	0.0

Tabela 12. Dados limnológicos do reservatório de Jupiá, no período de julho/2011 a junho/2012, os dados em vermelho estão incompatíveis com os limites da Resolução CONAMA 357/2005.

Variáveis			Dia de coleta	Hora da Coleta in:	Temp. Ambiente (°C)	Transparência (m)		Temp. água (°C)	Hd	Oxigênio dissolvido (mg/l)	Condutividade (µS/cm)	Alcalinidade (mg/l)	Nitrogê nio Org. total(mg/l)	Sólidos em suspensão total (mg/l)	Sólidos em suspensão inorg.	Sólidos em suspensão org.	Fósforo Total (mg/l)	Turbidez (NTU)	Clorofila (∏g/l)	Feofitina (∏g/l)	Profundidade (m)
							S	22.8	7.8	8.6	35	25	0.07	5.8	4.4	1.4	0.015	8.0	0.0	3.2	0.0
		Ago	25	10:00	25.6	5.6	M	22.8	8.4	8.5	39	25	0.14	4.0	2.8	1.2	0.020	1.6	0.0	2.3	3.0
	2011						F	23.1	7.8	8.3	55	26	0.19	4.6	3.6	1.0	0.018	2.1	0.0	6.6	6.0
				10.45	00.4	- 0	S	27.3	6.1	7.5	41	22	0.11	2.4	0.0	3.2	0.048	1.4	0.0	5.1	0.0
		Nov	14	10:45	26.4	5.6	M	26.9	6.2	6.7	42	22	0.17	2.0	1.0	1.0	0.035	1.1	0.0	8.7	3.0
Jusante de Ilha Solteira							F S	26.8 28.1	6.3 5.2	6.5 5.4	45 41	24 21	0.10 0.10	1.2 3.4	0.4 2.8	0.8 0.6	0.052 0.010	0.9 3.4	0.0 0.5	7.5 0.0	6.0 0.0
		Mar	8	07:20	26.4	2.9	S M	27.8	4.9	5.4 5.0	41	22	0.10	3.0	2.0	0.8	0.010	3.4	0.5	0.0	3.5
		IVIAT	0	07.20	20.4	2.9	F	27.8	4.8	5.0 4.9	43	24	0.12	2.4	1.6	0.8	0.008	3.1	0.0	1.9	3.5 7.0
	2012						S	24.5	7.1	7.1	41	25	0.07	0.6	0.2	0.4	0.013	3.2	1.1	3.0	0.0
		Mai	25	08:00	21 2	6.5	M	24.1	7.4	6.5	42	25	0.06	1.0	0.4	0.6	0.008		0.0	0.5	3.5
		IVIMI		00.00	2112	0.0	F	24.1	7.4	6.4	59	27	0.11	0.8	0.4	0.4	0.010		2.7	0.0	7.0
							S	22.0	7.4	8.9	114	40	0.18	4.0	2.4	1.6	0.020	1.4	0.0	5.1	0.0
		Ago	26	09:00	25.5	7.5	M	22.2	7.7	8.7	114	45	0.14	4.0	3.4	0.6	0.028	1.2	0.0	2.3	4.0
	2011						F	22.4	7.7	8.4	123	40	0.14	4.6	3.0	1.6	0.024	1.3	1.1	0.0	8.0
	2011						S	26.0	6.1	6.6	119	37	0.12	2.8	1.0	1.8	0.043	0.2	0.0	5.1	0.0
		Dez	14	09:30	25.8	6.7	M	25.8	6.3	6.0	119	42	0.10	1.0	0.6	0.4	0.052	0.3	0.0	3.9	3.5
Timboré							F	26.1	6.3	5.9	120	41	0.17	2.0	0.8	1.2	0.047	0.4	0.0	6.6	7.0
							S	28.1	5.8	5.3	97	33	0.07	4.8	3.8	1.0	0.006	1.1	0.0	0.0	0.0
		Mar	8	07:45	26.3	6.0	M	27.6	6.0	5.1	98	36	0.07	3.8	3.2	0.6	0.005	1.0	1.1	0.0	3.0
	2012						F	27.4	6.1	5.1	99	41	0.07	4.2	3.4	0.8	0.008	0.9	0.0	0.2	6.0
		NA- ·	25	10.00	21.0	C E	S	24.1	7.1	7.4	81	31	0.09	1.4	0.4	1.0	0.012		0.0	3.2	0.0
		Mai	25	10:00	21.9	6.5	M F	23.7 23.4	7.4 7.4	6.3 6.0	82 82	36 35	0.10 0.08	0.8 1.0	0.4 0.4	0.4 0.6	0.019 0.016		0.5 0.0	0.0 2.5	3.3 6.5
								20.4	, .→	0.0	02	00	0.00	1.0	0.7	0.0	3.010		0.0	2.0	0.5

Tabela 12 (continuação). Dados limnológicos do reservatório de Jupiá, no período de julho/2011 a junho/2012, os dados em vermelho estão incompatíveis com os limites da Resolução CONAMA 357/2005.

Variávei	s		Dia de coleta	Hora da Coleta in:	Temp. Ambiente (°C)	Transparência (m)		Temp. água (°C)	Hd	Oxigênio dissolvido (mg/l)	Condutividade (µS/cm)	Alcalinidade (mg/l)	Nitrogênio Org. total(mg/l)	Sólidos em suspensão total (mg/l)	Sólidos em suspensão inorg.	Sólidos em suspensão org.	Fósforo Total (mg/l)	Turbidez (NTU)	Clorofila (∏g/l)	Feofitina (∏g/l)	Profundidade (m)
		_		11.00	00.7	0.0	S	22.8	7.3	8.7	18	15	0.06	4.6	3.6	1.0	0.017	3.3	0.0	3.4	0.0
		Ago	23	11:00	26.7	3.3	M F	22.6 22.6	8.0 8.0	8.7 8.4	33 107	17 15	0.08 0.13	4.8 1.4	3.8 0.8	1.0 0.6	0.016 0.019	3.2 4.3	0.0 0.0	3.6 1.8	4.5 9.0
	2011						S	22.0	5.8	6.4 7.9	25	19	0.13	3.2	1.4	1.8	0.019	4.3 3.6	0.0	1.6 8.5	0.0
		Nov	13	08:45	26.9	2.7	М	28.1	5.9	6.8	26	19	0.10	4.4	3.2	1.2	0.025	4.6	0.0	5.7	5.5
• • • • • • • • • • • • • • • • • • • •		1404					F	27.8	6.1	6.5	30	21	0.14	4.0	1.2	2.8	0.031	5.7	0.0	6.9	11.0
Sucuriú							S	29.3	6.2	5.5	22	17	0.06	6.8	5.6	1.2	0.012	9.7	0.0	4.9	0.0
		Mar	6	07:45	25.8	1.6	M	28.5	6.4	5.1	24	17	0.12	7.4	6.2	1.2	0.017	9.9	0.0	0.0	4.0
	2012						F	28.1	6.4	4.9	38	19	0.08	5.2	4.2	1.0	0.012	10.1	1.1	0.0	8.0
	2012						S	22.8	6.9	7.5	21	12	0.07	1.0	0.6	0.4	0.019	8.6	1.6	0.0	0.0
		Mai	22	08:45	21.6	2.0	М	22.4	7.2	6.6	21	13	0.07	0.4	0.2	0.2	0.012	6.2	0.0	0.3	4.5
							F	22.1	7.5	6.5	23	14	0.05	0.6	0.4	0.2	0.017	6.7	0.5	0.0	9.0
				00.00	25.0	4.4	S	22.1	7.2	8.7	46 46	25	0.12	5.4	3.8	1.6	0.008	3.5	0.0	4.1	0.0
		Ago	22	09:00	25.9	4.4	M F	21.5 21.6	7.6 7.6	8.9 8.7	46 50	27 24	0.10 0.11	2.8 4.2	1.6 2.4	1.2 1.8	0.011 0.011	3.5 2.6	0.0 0.0	3.7 4.8	16.0 32.0
	2011						S	28.7	6.4	7.7	32	22	0.11	2.8	1.0	1.8	0.011	2.0	0.0	3.2	0.0
		Dez	12	09:30	27.9	3.9	M	27.2	6.5	6.7	55	29	0.08	1.0	0.4	0.6	0.187	1.4	0.0	1.1	13.5
		202					F	27.3	6.8	6.4	76	33	0.10	1.4	0.6	0.8	0.050	2.1	0.0	4.3	27.0
Montante de Jupiá							S	28.7	6.3	5.9	42	27	0.13	6.0	5.4	0.6	0.011	2.8	0.0	0.0	0.0
		Mar	7	08:20	26.6	2.7	M	27.6	4.5	5.3	54	28	0.15	4.8	3.8	1.0	0.013	2.5	0.0	3.7	14.0
	2012						F	27.3	6.5	5.0	88	34	0.06	4.0	3.0	1.0	0.013	2.4	0.0	2.7	28.0
	2012						S	24.3	7.6	8.1	43	22	0.08	0.6	0.4	0.2	0.011	2.1	0.5	0.0	0.0
		Mai	21	10:20	25.2	4.9	M	24.1	7.5	7.5	41	13	0.04	0.4	0.2	0.2	0.009	2.2	0.0	0.7	9.5
							F	24.0	7.6	7.2	37	25	0.07	0.6	0.4	0.2	0.009	2.9	1.6	0.0	19.0

Tabela 13. Dados limnológicos do reservatório de Porto Primavera, no período de julho/2011 a junho/2012, os dados em vermelho estão incompatíveis com os limites da Resolução CONAMA 357/2005.

Variávei	is		Dia de coleta	Hora da Coleta in:	Temp. Ambiente (°C)	Transparência (m)		Temp. água (°C)	На	Oxigênio dissolvido (mg/l)	Condutividade (µS/cm)	Alcalinidade (mg/l)	Nitrogênio Org. total (mg/l)	Sólidos em suspensão total (mg/l)	Sólidos em suspensão inorg.	Sólidos em suspensão org.	Fósforo Total (mg/l)	Turbidez (NTU)	Clorofila (∏g/l)	Feofitina (∏g/l)	Profundidade (m)
		Λ	8	10.10	24.2	6.0	S	22.3 22.4	5.7 6.2	8.5 8.1	41	28 25	0.07 0.09	3.4 6.2	2.2	1.2 1.6	0.011 0.006	1.3 0.5	0.0	6.6 5.5	0.0 6.0
		Ago	0	10:10	24.2	6.2	M F	22.4 22.5	6.0	7.6	41 43	25 26	0.09	5.4	4.6 3.6	1.8	0.006	1.1	0.0	5.5 6.6	12.0
	2011						S	27.1	6.8	7.0 7.9	54	20	0.10	2.4	0.8	1.6	0.012	0.1	0.0	4.3	0.0
		Nov	6	09:10	26.2	7.1	M	26.8	7.6	6.8	62	22	0.14	5.8	5.0	0.8	0.023	0.3	0.0	2.5	5.5
Jusante de Jupiá			_				F	26.7	7.8	6.5	63	23	0.18	2.8	1.8	1.0	0.027	0.7	0.0	5.3	11.0
(E2)							S	29.7	6.0	5.5	49		0.10	2.6	1.2	1.4	0.018	1.8	0.0	0.2	0.0
		Fev	28	10:00	29.8	6.4	M	29.0	6.4	5.0	51		0.05	2.0	0.6	1.4	0.012	1.7	0.0	0.7	6.0
	2012						F	30.0	6.7	4.9	55		0.16	1.4	0.6	8.0	0.018	2.1	1.1	0.0	12.0
	2012						S	25.3	7.3	8.4	41	37	0.07	6.6	6.0	0.6	0.003	1.3			0.0
		Mai	8	08:00	22.1	4.4	M	24.6	7.4	8.1	42	57	0.07	5.2	4.6	0.6	0.008	1.8			5.5
							F	24.4	7.3	8.1	53	57	0.03	6.4	5.8	0.6	0.006	1.8	0.0	0.0	11.0
		۸	10	00-00	22.0	F 2	S	22.6	6.9	8.8	44	27	0.11	4.6	3.8	0.8	0.017	1.9	0.0	2.3	0.0
		Ago	10	09:00	22.6	5.3	M F	22.4 22.5	7.3 7.2	8.4 7.7	48 46	25 25	0.19 0.10	5.6 5.0	4.4 3.2	1.2 1.8	0.025 0.011	5.1 2.0	0.0 0.0	3.4 5.0	6.0 12.5
	2011						S	27.8	6.5	7.7 7.7	53	26	0.10	2.4	1.6	0.8	0.011	1.1	0.0	4.3	0.0
		Dez	9	09:00	26.1	7.7	M	27.5	6.6	6.4	54	27	0.09	3.0	1.4	1.6	0.019	1.5	0.0	1.1	7.0
D (EE)			_				F	27.4	6.7	6.6	60	29	0.13	0.8	0.2	0.6	0.038	1.7	0.0	7.3	14.0
Panorama (E5)							S	28.8	4.6	5.4	51	22	80.0	1.2	0.6	0.6	0.016	2.3	0.0	1.0	0.0
		Fev	8	08:50	26.6	4.8	M	28.4	4.6	5.1	51	25	0.33	3.6	2.4	1.2	800.0	1.9	1.1	0.0	6.0
	2012						F	28.1	4.6	5.0	52	28	0.10	3.4	2.4	1.0	0.008	1.7	0.0	0.3	12.0
							S	25.3	7.4	9.0	43	52	0.07	7.4	7.0	0.4	0.019	1.5	2.7	0.0	0.0
		Mai	9	07:30	20.0	4.3	M F	24.6 24.2	7.5 7.7	8.4 8.2	43 47	55 61	0.07 0.03	3.8 4.6	3.2 4.0	0.6 0.6	0.019 0.018	2.3 2.4	0.5 1.6	0.9 0.0	5.5 11.0

Tabela 13 (continuação). Dados limnológicos do reservatório de Porto Primavera, no período de julho/2011 a junho/2012, os dados em vermelho estão incompatíveis com os limites da Resolução CONAMA 357/2005.

Variávei	s		Dia de coleta	Hora da Coleta in:	Temp. Ambiente (°C)	Transparência (m)		Temp. água (°C)	Hd	Oxigênio dissolvido (°C)	Condutividade (µS/cm)	Alcalinidade (mg/l)	Nitrogênio Org. total (mg/l)	Sólidos em suspensão total (mg/l)	Sólidos em suspensão inorg.	Sólidos em suspensão org.	Fósforo Total (mg/l)	Turbidez (NTU)	Clorofila (∏g/l)	Feofitina (∏g/l)	Profundidade (m)
			44	11.00	05.4		S	22.3	6.8	8.6	50	30	0.12	4.2	2.4	1.8	0.020	0.0	0.0	7.9	0.0
		Ago	11	11:30	25.1	5.5	M F	22.0 22.3	7.3 7.6	8.3 8.1	53 64	30 33	0.10 0.23	6.4 4.6	4.8 3.6	1.6 1.0	0.017 0.017	0.2 0.8	0.0 0.0	5.4 1.1	7.5 15.0
	2011						S	22.3 27.4	7.0 7.7	7.8	58	26	0.23	1.6	0.8	0.8	0.007	0.0	0.0	5.5	0.0
		Dez	7	08:10	28.0	4.8	M	27.2	7.8	6.8	58	26	0.10	3.0	1.2	1.8	0.000	0.2	0.0	3.6	9.0
Presidente Epitácio)		•	00110	2010	110	F	26.9	7.4	6.8	58	28	0.17	1.6	0.8	0.8	0.000	0.8	0.0	3.3	18.0
- canal (E8)							S	29.8	6.6	6.2	53	26	0.06	0.0	0.0	0.6	0.006	2.3	0.0	0.2	0.0
		Fev	9	10:15	29.8	3.3	M	29.5	6.8	5.2	54	29	0.10	1.0	0.4	0.6	0.010	2.5	0.0	0.5	9.5
	2012						F	29.6	7.3	5.0	54	30	0.12	4.2	3.4	8.0	800.0	2.8	0.0	0.4	19.0
	2012						S	23.8	7.6	8.2	46		0.08	4.2	3.6	0.6	0.019	2.2	0.0	9.6	0.0
		Mai	10	09:30	20.3	4.9	M	23.5	7.6	7.5	46		0.07	4.2	3.4	8.0	0.015	2.3	0.0	7.8	9.0
							F	22.8	7.8	7.1	47		0.07	5.0	4.4	0.6	0.031	2.7	3.7	0.7	18.0
				10.15	040	4.0	S	21.8	6.8	8.6	43	25	0.09	4.0	2.2	1.8	0.009	1.8	0.0	5.2	0.0
		Ago	11	10:15	24.6	4.2	M F	21.8	7.4	8.3	46	31	0.11	3.4	1.8	1.6	0.018	1.9	0.0	5.8	4.0
	2011						F S	22.0 27.2	7.6 7.3	8.0 8.0	44 45	33 25	0.06 0.16	5.4 0.8	3.6 0.4	1.8 0.4	0.029 0.035	1.4 0.1	0.5 0.0	1.3 3.4	8.0 0.0
		Dez	7	07:30	28.1	3.6	M	27.4	7.8	6.5	45	26	0.16	1.0	0.8	0.2	0.040	1.1	0.0	3.1	4.0
Presidente Epitácio)		•	07.00	2011	010	F	27.6	7.8	6.6	45	27	0.19	1.4	1.0	0.4	0.016	0.7	0.0	3.9	8.0
- margem direita							S	29.8	6.3	6.0	45	21	0.15	1.8	1.0	0.8	0.008	2.3	1.6	0.0	0.0
(E9)		Fev	9	09:30	29.1	3.4	M	29.6	5.9	5.1	46	21	0.13	1.8	1.4	0.4	0.001	2.4	0.0	0.9	4.5
	2012						F	29.5	5.3	4.9	54	26	0.05	2.0	1.4	0.6	0.009	2	0.0	2.7	9.0
	2012						S	22.9	7.9	8.4	42		0.03	6.0	5.4	0.6	0.016	3.1	2.1	4.8	0.0
		Mai	10	09:05	22.0	3.0	M	22.5	7.9	7.9	42		0.07	5.6	5.2	0.4	0.015	3.3	0.0	6.0	4.0
							F	22.7	7.7	7.6	45		0.07	5.0	4.4	0.6	0.010	3.3	0.5	3.8	8.0

Tabela 13 (continuação). Dados limnológicos do reservatório de Porto Primavera, no período de julho/2011 a junho/2012, os dados em vermelho estão incompatíveis com os limites da Resolução CONAMA 357/2005.

Variáveis	5		Dia de coleta	Hora da Coleta in:	Temp. Ambiente (°C)	Transparência (m)		Temp. água (°C)	Hd	Oxigênio dissolvido (°C)	Condutividade (µS/cm)	Alcalinidade (mg/l)	Nitrogênio Org. total (mg/l)	Sólidos em suspensão total (mg/l)	Sólidos em suspensão inorg.	Sólidos em suspensão org.	Fósforo Total (mg/l)	Turbidez (NTU)	Clorofila (∏g/l)	Feofitina (∏g/l)	Profundidade (m)
		Λ	31	11.00	22.4	4.0	S	21.2 21.2	7.6 7.7	8.5 7.4	58	24 25	0.16	2.8 3.0	1.0	1.8 1.8	0.010	1.1 1.8	0.0	5.4	0.0
		Ago	31	11:00	22.4	4.8	M F	21.2	7.7 7.5	7.4 7.8	63 74	28	0.10 0.13	2.2	1.2 0.8	1.6	0.034 0.013	0.9	0.0	6.8 6.6	4.0 8.0
	2011						S	27.3	7.3	7.0 8.4	52	24	0.10	8.0	2.6	5.4	0.018	1.1	0.0	8.5	0.0
		Dez	1	08:30	25.9	4.4	M	26.4	7.6	7.3	52	26	0.10	6.4	2.0	4.4	0.016	0.9	0.0	5.4	11.5
Montante de Porto							F	26.1	7.6	7.7	54	27	0.12	6.2	1.8	4.4	0.020	1.4	0.0	6.2	23.0
Primavera - canal (E11)							S	28.9	6.9	5.8	52	26	0.09	1.4	0.6	8.0	0.019	0.9	0.0	0.0	0.0
(EII)		Fev	29	07:35	26.3	5.4	M	28.4	7.1	5.3	53	28	0.00	2.0	1.4	0.6	0.004	1.1	0.5	0.0	11.5
	2012						F	27.8	7.3	5.1	56	29	0.06	1.8	1.2	0.6	0.012	1.0	0.0	0.5	23.0
							S	24.2	7.3	8.1	49		0.04				0.012	1.2	2.7	0.0	0.0
		Mai	15	12:00	22.7	4.6	M	23.9	7.5	7.2	49		0.02				0.012	1.5	0.0	6.5	11.0
							F S	23.7	7.5 7.9	7.0 8.9	49 61	24	0.03	7.0	1.0	6.0	0.009	1.7	1.6 0.0	0.0 4.2	0.0
		Ago	30	12:00	23.1	3.7	S M	22.4	7.9 7.6	o.s 7.7	62	29	0.00	7.0 4.6	1.6	3.0	0.009	1.7	0.0	4.2 5.6	10.5
		Agu	30	12.00	23.1	5.7	F	23.5	7.5	7.9	67	29	0.09	2.4	0.8	1.6	0.009	2.0	0.0	8.0	21.0
	2011						S	27.9	7.3	8.1	30	23	0.08	5.0	1.8	3.2	0.020	0.7	0.0	7.5	0.0
Montante de Porto		Dez	1	09:10	26.4	4.2	М	26.7	7.6	7.0	50	25	0.72	6.6	1.8	4.8	0.011	0.6	0.0	4.8	5.5
Primavera -							F	25.9	7.5	6.6	52	26	0.14	6.4	8.0	5.6	0.013	0.9	0.0	5.4	11.0
margem direita							S	28.1	6.5	5.3	45	23	0.03	2.2	1.6	0.6	0.015	1.3	0.0	0.4	0.0
(E12)		Fev	29	08:10	26.9	6.6	M	27.8	6.7	4.9	45	23	0.05	3.0	2.2	8.0	0.012	0.9	0.5	0.2	4.5
	2012						F	27.5	6.9	4.8	46	25	0.04	2.4	1.4	1.0	0.011	1.3	0.0	0.0	9.0
			4-	44.00	00 7		S	23.3	7.3	8.2	46		0.06				0.009	1.1	0.5	5.3	0.0
		Mai	15	11:30	22.7	4.4	M	23.2 23.0	7.5 7.6	7.6 7.1	45 45		0.05 0.03				800.0 800.0	1.1 1.2	1.1 1.1	4.8 5.5	4.5 9.0

Tabela 13 (continuação). Dados limnológicos do reservatório de Porto Primavera, no período de julho/2011 a junho/2012, os dados em vermelho estão incompatíveis com os limites da Resolução CONAMA 357/2005.

Variáveis	S		Dia de coleta	Hora da Coleta in:	Temp. Ambiente (°C)	Transparência (m)		Temp. água (°C)	Hd	Oxigênio dissolvido (°C)	Condutividade (µS/cm)	Alcalinidade (mg/l)	Nitrogênio Org. total (mg/l)	Sólidos em suspensão total (mg/l)	Sólidos em suspensão inorg.	Sólidos em suspensão org.	Fósforo Total (mg/l)	Turbidez (NTU)	Clorofila (∏g/l)	Feofitina (∏g/l)	Profundidade (m)
				44.00			S	21.6	7.5	9.0	44	26	0.08	6.6	5.0	1.6	0.020	3.8	0.0	10.7	0.0
		Ago	16	11:30	29.9	6.2	M	22.0	7.4	8.5	46	28	0.05	7.2	5.6	1.6	0.010	1.7	0.0	6.4	6.5
	2011						F	22.7	7.5	7.8	88	28	0.07	5.8	4.4	1.4	0.010	1.5	0.0	6.4	13.0
							S	26.3	6.5	8.0	51	28	0.10	6.0	0.6	5.4	0.009	1.0	0.0	6.4	0.0
Jusante de Porto		Dez	2	07:30	26.6	4.5	M	25.6	7.5	7.3	51	27	0.20	5.0	2.6	2.4	0.013	1.9	0.0	4.4	3.5
Primavera -							F	25.6	7.6	7.1	52	29	0.13	2.0	0.6	1.4	0.006	1.3	0.0	6.8	7.0
margem direita							S	28.7	6.7	5.6	51	25	0.08	4.0	3.4	0.6	0.016	1.8	0.0	0.9	0.0
(E13)		Mar	1	10:10	29.3	6.5	M	27.4	6.8	5.2	51	26	0.07	3.2	2.4	8.0	0.017	1.7	0.5	0.2	6.0
	2012						F	27.1	6.9	5.2	51	29	0.05	2.6	2.0	0.6	0.018	2.1	0.0	0.7	12.0
	2012						S	22.4	7.4	8.5	48		0.08				0.008	1.2	0.0	11.1	0.0
		Mai	17	07:45	20.3	4.4	M	22.4	7.3	7.7	48		0.03				0.006	1.4	1.6	5.4	3.5
							F	21.9	7.5	7.4	55		0.05				0.013	1.3	1.6	0.6	7.0

Tabela 14. Dados limnológicos do reservatório de Paraibuna, no período de julho/2011 a dezembro/2011, os dados em vermelho estão incompatíveis com os limites da Resolução CONAMA 357/2005.

Variável			Dia de coleta	Hora da coleta	Temp. ambiente ($^{\circ}$ C)	Transparência (m)		Temp. água (℃)	Hd	OD (mg/l)	Condutividade (µS/cm)	Alcalinidade (mg/l)	Sólidos em suspensão total (mg/l)	Sólidos em suspensão inorg.	Sólidos em suspensão org.	Turbidez (NTU)	Profund. (m)
		Ago	18	10:11	23	2,5	S	20,9	7,1	7,6	31	14	1,2	0,5	0,7	3,2	0,0
							M	19,3	6,3	3,7	54	13	6,4	3,8	2,6	3,9	39,5
Barragem Paraibuna	2011						F	18,8	6,1	2,6	26	13	1,5	0,5	1,0	8,8	79,0
Burrugem r urubunu	2011	Nov	3	10:00	30	2.8	S	21,8	7,5	7,3	29	14	2,7	1,9	8,0	1,2	0,0
							M	20,5	7,2	6,5	32	15	4,3	2,7	1,6	3,3	35,0
							F	19,6	7,0	2,5	44	14	4,1	2,2	1,9	14,0	70,0
		Ago	18	11:15	26	5,0	S	20,9	7,0	8,3	24	13	1,3	0,7	0,6	1,5	0,0
							M	19,9	6,4	5,6	25	12	1,3	0,4	0,9	3,0	17,5
Natividade	2011						F	19,4	6,3	4,0	25	12	1,3	0,6	0,7	3,1	35,0
144114444		Nov	3	11:20	29	3,6	S	22,7	6,6	7,3	23	12	2,7	1,5	1,2	0,4	0,0
							M	21,2	6,5	6,3	23	13	1,8	1,0	0,8	0,7	14,0
							F	20,3	6,2	3,0	25	13	3,4	1,9	1,5	1,4	28,0
		Ago	18	9:10	22	5,5	S	20,7	7,0	7,5	36	15	0,3	0,1	0,2	1,3	0,0
							M	19,1	6,8	6,7	39	16	1,0	0,5	0,5	6,2	24,5
Redenção	2011						F	18,0	6,5	5,9	40	18	3,8	2,4	1,4	9,4	49,0
	•	Nov	3	9:00	27	3,4	S	23.1	8.1	7.0	39	17	2,4	1,6	8,0	1.2	0,0
							M	19.9	7.8	6.3	39	17	2,4	1,3	1,1	1.3	22.5
							F	19.3	7.6	2.6	42	18	2,6	1,3	1,3	2.2	45,0
		Ago	18	12:45	23	3,5	S	21,5	7,0	8,2	28	13	2,2	1,3	0,9	1,9	0,0
							M	19,3	5,8	5,8	29	13	1,1	0,5	0,6	5,1	23,0
Lourenço Velho	2011		_				F	19,2	5,8	4,1	32	14	1,6	0,7	0,9	9,7	46,0
3		Nov	3	12:30	26	3,5	S	22,3	6,3	7,3	27	13	3,4	1,8	1,6	0,9	0,0
							M	21,1	6,2	5,9	30	14	5,0	3,5	1,5	1,0	18,5
							F	20,2	6,2	3,7	31	14	4,0	2,8	1,2	1,2	37,0
Jusante Paraibuna	2011	Ago	18	14:56	21	-	S	19,1	6,7	6,2	32	12	1,2	0,4	0,8	6,8	-
		Nov	3	15:00	24	-	S	21,3	6,7	7,8	32	13	2,6	1,3	1,3	2,3	-

Tabela 15. Dados limnológicos do reservatório de Jaguari, no período de julho/2011 a dezembro/2011, os dados em vermelho estão incompatíveis com os limites da Resolução CONAMA 357/2005.

Variável			Dia de coleta	Hora da coleta	Temp. ambiente (${}^{\circ}\!\!\mathrm{C}$)	Transparência (m)		Temp. água (℃)	Hd	OD (mg/l)	Condutividade (µS/cm)	Alcalinidade (mg/l)	Sólidos em suspensão total (mg/l)	Sólidos em suspensão inorg.	Sólidos em suspensão org.	Turbidez (NTU)	Profund. (m)
		Set	8	12:21	40	7,9	S	22,7	7,0	7,6	29	13	5,0	1,7	3,3	1,1	0,0
							М	21,4	6,7	4,7	40	13	4,4	2,2	2,2	0,7	30,5
Barragem Jaguari	2011						F	20,8	6,5	3,2	34	12	4,5	1,6	2,9	2,2	61,0
g		Dez	14	13:01	39	5,2	S	28,1	6,6	7,8	29	12	4,2	1,5	2,7	0,6	0,0
							М	25,0	6,5	6,9	32	13	3,2	2	1,2	0,9	30,0
							F	23,8	6,5	2,9	35	13	4,6	3,1	1,5	8,6	60,0
		Set	8	10:40	36	5,0	S	22,0	6,9	8,4	31	15	5,2	2,8	2,4	2,1	0,0
							M	21,4	6,6	4,9	40	14	5,1	2,1	3,0	2,4	13,0
Rio Jaguari	2011	_					F	20,9	6,4	3,0	46	14	4,7	1,6	3,1	4,9	26,0
_		Dez	14	11:37	34	4,6	S	26,8	6,8	7,1	31	14	3,9	1,9	2	0,8	0,0
							M	24,7	6,5	6,1	53	15	4,6	2	2,6	1,6	12,0
		0 - 1		11.00	40		F	24,0	6,5	2,2	62	15	3	1,1	1,9	9,1	24,0
		Set	8	11:30	40	5,7	S	22,1	7,0	8,5	32	12	4,9	1,4	3,5	2,1	0,0
							М	21,5	6,5	8,1	29	12	4,2	1,1	3,1	2,4	16,5
Rio do Peixe	2011	D	1.4	12.22	27	1 1	F S	20,9	6,5	6,0	38	13	7,8	3,3	4,5 1	4,9	33,0
		Dez	14	12:22	37	4,4	_	27,9 25.0	6,8	7,4	26 26	13	2,9	1,9	1	0,4 6.0	0,0
							M F	25,0 23,3	6,7 6 <i>.</i> 5	6,6 <mark>3,3</mark>	26 29	13 14	5,3 4,9	2,8 3,1	2,5 1,8	6,0	10,5
		Set	8	13:20	37		S	19,5	6,6	10,1	30	14	5,0	0,6		14,0 0,4	21,0
Jusante Jaguari	2011	Dez	o 14	14:45	3 <i>7</i> 36	-	S	20.6	6,3	11,2	32	13	2,9	1,2	4,4 1,7		-
		Dez	14	14:45	30	-	3	20.0	0,3	11,2	32	13	۷,5	2, ا	1,1	1,0	-

Taguara (n)

Zoiudo*

Quadro 3. Composição e posição taxonômica das espécies coletadas no reservatório de Três Irmãos.

Ordem Characiformes

Acestrorhynchidae

Acestrorhychus lacustris (Lütken, 1875) Peixe cachorro amarelo

Anostomidae

Leporinus elongatusValenciennes, 1850Piapara bicuda**Leporinus friderici(Bloch, 1794)Piava três pintasLeporinus lacustrisCampos, 1945Piau de lagoaLeporinus octofasciatusSteindachner, 1915FerreirinhaSchizodon borellii(Boulenger, 1900)Piava catinguda

Schizodon nasutus Kner, 1858

Characidae

Astyanax altiparanaeGarutti & Britski, 2000Lambari tambiúBrycon orbignyanus (Valenciennes 1850)Piracanjuba**Galeocharax knerii (Steindachner, 1879)CigarraMetynnis maculatus (Kner, 1858)Pacu prata*Piaractus mesopotamicus (Holmberg, 1887)Pacu guaçu**Roeboides descalvadensis Fowler, 1932Lambari dentuço*

Roeboides descalvadensis Fowler, 1932

Salminus brasiliensis (Cuvier, 1816)

Serrasalmus maculatus Kner, 1858

Serrasalmus marginatus Valenciennes, 1837

Triportheus angulatus (Spix & Agassiz, 1829)

Lambari dentuço Dourado**

Pirambeba

Pirambeba

Sardinha*

Curimatidae

Cyphocharax nagelii (Steindachner, 1881) Saguiru branco

Cynodontidae

Rhaphiodon vulpinus Spix & Agassiz, 1829 Dourado cadela, facão

Erythrinidae

Hoplias malabaricus (Bloch, 1794) Traíra

Prochilodontidae

Prochilodus lineatus (Valenciennes, 1836) Curimbatá**

Ordem Siluriformes

Loricariidae

Megalancistrus parananus (Peters, 1881) Cascudo abacaxi
Pterygoplichthys anisitsi Eigenmann & Kennedy, 1903 Cascudo lixa bote

Pimelodidae

Pimelodus maculatus La Cepède, 1803 Mandi guaçu Pinirampus pirinampu (Spix & Agassiz, 1829) Barbado

Ordem Perciformes

Cichlidae

Astronotus crassipinis (La Cepède, 1802)

Cichla kelberi Kullander & Ferreira, 2006

Cichla piquiti Kullander & Ferreira, 2006

Crenicichla britskii Kullander, 1982

Geophagus proximus (Castelnau, 1855)

Creochromis niloticus (Linnaeus, 1758)

Apaiari*

Tucunaré (k)*

Tucunaré (p)*

Patrona

Porquinho*

Tilápia do Nilo*

Satanoperca pappaterra (Heckel, 1840)

Scianidae

Plagioscion squamosissimus (Heckel, 1840) Corvina*

Quadro 4. Composição e posição taxonômica das espécies coletadas no reservatório de Ilha Solteira.

Ordem Characiformes

Acestrorhynchidae

Acestrorhychus lacustris (Lütken, 1875) Peixe cachorro amarelo

Anostomidae

Leporinus elongatusValenciennes, 1850Piapara bicuda**Leporinus friderici(Bloch, 1794)Piava três pintasLeporinus lacustrisCampos, 1945Piau de lagoaLeporinus octofasciatusSteindachner, 1915FerreirinhaSchizodon borellii(Boulenger, 1900)Piava catingudaSchizodon nasutusKner, 1858Taguara (n)

Characidae

Astyanax altiparanae Garutti & Britski, 2000

Brycon orbignyanus (Valenciennes 1850)

Galeocharax knerii (Steindachner, 1879)

Metynnis maculatus (Kner, 1858)

Piaractus mesopotamicus (Holmberg, 1887)

Roeboides descalvadensis Fowler, 1932

Salminus brasiliensis (Cuvier, 1816)

Lambari tambiú

Piracanjuba**

Cigarra

Pacu prata*

Pacu guaçu**

Lambari dentuço*

Dourado**

Salminus brasiliensis (Cuvier, 1816)

Serrasalmus maculatus Kner, 1858

Serrasalmus marginatus Valenciennes, 1837

Triportheus angulatus (Spix & Agassiz, 1829)

Dourado**

Pirambeba

Sardinha*

Curimatidae

Cyphocharax nagelii (Steindachner, 1881) Saguiru branco

Cynodontidae

Rhaphiodon vulpinus Spix & Agassiz, 1829 Dourado cadela, facão

Erythrinidae

Hoplias malabaricus (Bloch, 1794) Traíra

Prochilodontidae

Prochilodus lineatus (Valenciennes, 1836) Curimbatá**

Ordem Siluriformes

Loricariidae

Megalancistrus parananus (Peters, 1881) Cascudo abacaxi Pterygoplichthys anisitsi Eigenmann & Kennedy, 1903 Cascudo lixa bote

Pimelodidae

Pimelodus maculatus La Cepède, 1803 Mandi guaçu Pinirampus pirinampu (Spix & Agassiz, 1829) Barbado

Ordem Perciformes

Cichlidae

Astronotus crassipinis (La Cepède, 1802)

Cichla kelberi Kullander & Ferreira, 2006

Cichla piquiti Kullander & Ferreira, 2006

Crenicichla britskii Kullander, 1982

Geophagus proximus (Castelnau, 1855)

Oreochromis niloticus (Linnaeus, 1758)

Catenara and analysis (Market 1840)

Castelnau, 1855

Catenara analysis (Market 1840)

Castelnau, 1855

Catenara analysis (Market 1840)

Satanoperca pappaterra (Heckel, 1840) Zoiudo*

Scianidae

Plagioscion squamosissimus (Heckel, 1840) Corvina*

Quadro 5. Composição e posição taxonômica das espécies coletadas no reservatório de Jupiá.

Ordem Myliobatiformes

Potamotrygonidae

Potamotrygon sp Arraia*

Ordem Characiformes

Acestrorhynchidae

Acestrorhychus lacustris (Lütken, 1875) Peixe cachorro amarelo

Anostomidae

Leporellus vittatus (Valenciennes, 1850)CampineiroLeporinus elongatus Valenciennes, 1850Piapara bicuda**Leporinus friderici (Bloch, 1794)Piava três pintasLeporinus lacustris Campos, 1945Piau de lagoaLeporinus octofasciatus Steindachner, 1915FerreirinhaSchizodon borellii (Boulenger, 1900)Piava catingudaSchizodon nasutus Kner, 1858Taguara (n)

Characidae

Brycon orbignyanus (Valenciennes 1850)Piracanjuba**Metynnis maculatus (Kner, 1858)Pacu prata*Piaractus mesopotamicus (Holmberg, 1887)Pacu guaçu**Roeboides descalvadensis Fowler, 1932Lambari dentuço*Serrasalmus maculatus Kner, 1858Pirambeba (mac)Serrasalmus marginatus Valenciennes, 1837Pirambeba (mar)

Curimatidae

Steindachnerina insculpta (Fernández-Yépez, 1948) Saguiru riscado

Cynodontidae

Rhaphiodon vulpinus Spix & Agassiz, 1829 Dourado cadela, facão

Erythrinidae

Hoplerythrinus unitaeniatus (Agassiz, 1829)

Hoplias malabaricus (Bloch, 1794)

Traíra

Prochilodontidae

Prochilodus lineatus (Valenciennes, 1836) Curimbatá**

Ordem Siluriformes

Auchnipteridae

Auchenipterus osteomystax (Miranda Ribeira, 1918) Peixe gato Parauchenipterus galeatus (Linnaeus, 1766) Bobo

Heptapteridae

Rhamdia quelen (Quoy & Gaimard, 1824) Bagre

Loricariidae

Loricariichthys platymetopon Isbrücker & Nijssen, 1979 Cascudo viola bundinha*
Megalancistrus parananus (Peters, 1881) Cascudo abacaxi

Pterygoplichthys anisitsi Eigenmann & Kennedy, 1903 Cascudo lixa bote cf. Rineloricaria sp Cascudo viola barbinha

Pimelodidae

Hemisorubim platyrhynchos (Valenciennes, 1840)Jurupoca**Pimelodus maculatus La Cepède, 1803Mandi guaçuPimelodus ornatus Kner, 1858Mandi riscado*Pinirampus pirinampu (Spix & Agassiz, 1829)Barbado

Ordem Perciformes

Cichlidae

Cichla kelberiKullander & Ferreira, 2006Tucunaré (k)*Cichla piquitiKullander & Ferreira, 2006Tucunaré (p)*Crenicichla britskiiKullander, 1982PatronaGeophagus proximus(Castelnau, 1855)Porquinho*Satanoperca pappaterra(Heckel, 1840)Zoiudo*

Quadro 5 (continuação). Composição e posição taxonômica das espécies coletadas no reservatório de Jupiá.

Scianidae

Plagioscion squamosissimus (Heckel, 1840) Corvina*

Ordem Gymnotiformes

Rhamphichthyidae

Rhamphichthys hahni (Meinken, 1937)

Tuvira bicuda*

Ordem Pleuronectiformes

Achiridae

Catathyridium jenynsii (Günter, 1862) Linguado*

Quadro 6. Composição e posição taxonômica das espécies coletadas no reservatório de Porto Primavera.

Ordem Myliobatiformes

Potamotrygonidae

Potamotrygon sp Arraia*

Ordem Characiformes

Acestrorhynchidae

Acestrorhychus lacustris (Lütken, 1875) Peixe cachorro amarelo

Anostomidae

Leporellus vittatus (Valenciennes, 1850)

Leporinus elongatus Valenciennes, 1850

Piapara bicuda**

Leporinus friderici (Bloch, 1794)

Leporinus lacustris Campos, 1945

Leporinus macrocephalus Garavello & Britski, 1988

Leporinus obtusidens (Valenciennes, 1836)

Leporinus octofasciatus Steindachner, 1915

Campineiro

Piapara bicuda**

Piava três pintas

Piau de lagoa

Piauçu*

Piapara curta**

Ferreirinha

Schizodon altoparanae Garavello & Britski, 1990 Taguara (a)
Schizodon borellii (Boulenger, 1900) Piava catinguda
Schizodon nasutus Kner, 1858 Taguara (n)

Characidae

Astyanax altiparanae Garutti & Britski, 2000

Galeocharax knerii (Steindachner, 1879)

Metynnis maculatus (Kner, 1858)

Piaractus mesopotamicus (Holmberg, 1887)

Salminus brasiliensis (Cuvier, 1816)

Salminus hilarii Valenciennes, 1850

Lambari tambiú

Cigarra

Pacu prata*

Pacu guaçu**

Dourado**

Tabarana

Sarrasalmus maculatus Kner, 1858 Pirambeba (mac)
Serrasalmus marginatus Valenciennes, 1837 Pirambeba (mar)

Curimatidae

Steindachnerina insculpta (Fernández-Yépez, 1948) Saguiru riscado

Cynodontidae

Rhaphiodon vulpinus Spix & Agassiz, 1829 Dourado cadela, facão

Erythrinidae

Hoplias malabaricus (Bloch, 1794) Traíra

Hemiodontidae

Hemiodus orthonops Eigenmann & Kennedy, 1903 Bananinha*

Prochilodontidae

Prochilodus lineatus (Valenciennes, 1836) Curimbatá**

Continua

Quadro 6 (continuação). Composição e posição taxonômica das espécies coletadas no reservatório de Porto Primavera.

Ordem Siluriformes

Auchnipteridae

Ageneiosus inermis (Linnaeus, 1766) Mandi leiteiro, Palmito*

Auchenipterus osteomystax (Miranda Ribeira, 1918)

Peixe gato
Parauchenipterus galeatus (Linnaeus, 1766)

Bobo

Doradidae

Pterodoras granulosus (Valenciennes, 1821) Armau*
Trachydoras paraguayensis (Eigenmann& Ward, 1907) Armadinho*

Heptapteridae

Rhamdia quelen (Quoy & Gaimard, 1824) Bagre

Loricariidae

Loricariichthys platymetopon Isbrücker & Nijssen, 1979 Cascudo viola bundinha*

Megalancistrus parananus (Peters, 1881)

Pterygoplichthys anisitsi Eigenmann & Kennedy, 1903

Cascudo lixa bote

Cascudo viola barbinha

Rhinelepis aspera Spix& Agassiz, 1828 Cascudo preto**

Pimelodidae

Hemisorubim platyrhynchos (Valenciennes, 1840)

Hypophthalmus edentatus Spix & Agassiz, 1829

Mapará*

Iheringichthys labrosus (Lütken, 1874)Pimelodus maculatus La Cepède, 1803Mandi boca de velhaMandi guaçu

Pimelodus ornatus Kner, 1858 Mandi riscado*
Pinirampus pirinampu (Spix & Agassiz, 1829) Barbado
Pseudoplatystoma corruscans (Spix & Agassiz, 1829) Pintado**
Sorubim lima (Bloch & Schneider, 1801) Jurupecem*

Pseudopimelodidae

Pseudopimelodus mangurus (Valenciennes, 1835) Jaú Sapo

Ordem Perciformes

Cichlidae

Astronotus crassipinis (La Cepède, 1802)

Cichla kelberi Kullander & Ferreira, 2006

Cichla piquiti Kullander & Ferreira, 2006

Crenicichla britskii Kullander, 1982

Geophagus proximus (Castelnau, 1855)

Satanoperca pappaterra (Heckel, 1840)

Apaiari*

Tucunaré (k)*

Tucunaré (p)*

Patrona

Porquinho*

Zoiudo*

Scianidae

Plagioscion squamosissimus (Heckel, 1840) Corvina*

Ordem Gymnotiformes

Gymnotidae

Gymnotus carapo Linnaeus, 1758 Tuvira

Ordem Pleuronectiformes

Achiridae

Catathyridium jenynsii (Günter, 1862) Linguado*

Quadro 7. Composição e posição taxonômica das espécies coletadas no reservatório de Paraibuna.

Ordem Characiformes

Anostomidae

Leporinus copelandii Steindachner, 1875 Piau palhaço

Characidae

Astyanax parahybae Eigenmann, 1908 Lambari rabo vermelho

Astyanax bimaculatus (Linnaeus, 1758) Lambari tambiú Methynnis sp. Pacu prata Brycon insignis Steindachner, 1877 Piabanha

Brycon opalinus (Cuvier, 1819) Pirapitinga do sul

Oligosarcus hepsetus (Cuvier, 1829) Taiá

Curimatidae

Cyphocharax gilbert (Quoy & Gaimard, 1824) Saguiru

Erythrinidae

Traíra Hoplias malabaricus (Bloch, 1794)

Prochilodontidae

Prochilodus lineatus (Valenciennes, 1836) Curimbatá**

Ordem Siluriformes

Heptapteridae

Rhamdia quelen (Quoy & Gaimard, 1824) Bagre

Loricariidae

Hypostomus affinis (Steindachner, 1877) Cascudo pintado Hypostomus luetkeni (Steindachner, 1876) Cascudo amarelo

Pimelodidae

Pimelodus maculatus La Cepède, 1803 Mandi guaçu

Ordem Perciformes

Cichlidae

Cichla kelberi Kullander & Ferreira, 2006 Tucunaré* Crenicichla sp.1 Inhacundá Geophagus brasiliensis (Quoy & Gaimard, 1824) Acará

Tilapia rendalli (Boulenger, 1897)

Tilápia Rendali

Ordem Gymnotiformes

Gymnotidae

Gymnotus carapo Linnaeus, 1758 Tuvira

Quadro 8. Composição e posição taxonômica das espécies coletadas no reservatório de Jaquari.

Ordem Characiformes

Anostomidae

Leporinus copelandii Steindachner, 1875 Piau palhaço

Characidae

Astyanax parahybae Eigenmann, 1908 Lambari rabo vermelho Astyanax bimaculatus (Linnaeus, 1758) Lambari tambiú Methynnis sp. Pacu prata

Brycon insignis Steindachner, 1877 Piabanha Oligosarcus hepsetus (Cuvier, 1829) Taiá

Ordem Siluriformes

Heptapteridae

Rhamdia quelen (Quoy & Gaimard, 1824) Bagre

Ordem Perciformes

Cichlidae

Cichla kelberi Kullander & Ferreira, 2006 Tucunaré* Joaninha Crenicichla sp. 2 Geophagus brasiliensis (Quoy & Gaimard, 1824) Acará

Tilapia rendalli (Boulenger, 1897) Tilápia Rendali

Scianidae

Plagioscion squamosissimus (Heckel, 1840) Corvina*

Quadro 9. Composição e posição taxonômica das espécies coletadas no nos reservatórios do Alto Paraná.

Ordem Myliobatiformes

Potamotrygonidae

Potamotrygon sp. Arraia*

Ordem Characiformes

Acestrorhynchidae

Acestrorhychus lacustris (Lütken, 1875) Peixe cachorro amarelo

Anostomidae

Leporellus vittatus (Valenciennes, 1850)CampineiroLeporinus elongatus Valenciennes, 1850Piapara bicuda**Leporinus friderici (Bloch, 1794)Piava três pintasLeporinus lacustris Campos, 1945Piau de lagoaLeporinus macrocephalus Garavello & Britski, 1988Piauçu*

Leporinus obtusidens (Valenciennes, 1836)

Leporinus octofasciatus Steindachner, 1915

Leporinus striatus Kner, 1859

Piapara curta**

Ferreirinha

Canivete riscado

Schizodon altoparanae Garavello & Britski, 1990 Taguara (a)
Schizodon borellii (Boulenger, 1900) Piava catinguda
Schizodon nasutus Kner, 1858 Taguara (n)

Characidae

Astyanax altiparanae Garutti & Britski, 2000 Lambari tambiú Brycon orbignyanus (Valenciennes 1850) Piracanjuba** Galeocharax knerii (Steindachner, 1879) Cigarra Metynnis maculatus (Kner, 1858) Pacu prata* Moenkhausia dichroura (Kner, 1858) Lambari branco Piaractus mesopotamicus (Holmberg, 1887) Pacu guaçu** Roeboides descalvadensis Fowler, 1932 Lambari dentuço* Salminus brasiliensis (Cuvier, 1816) Dourado** Salminus hilarii Valenciennes, 1850 Tabarana

Serrasalmus maculatus Kner, 1858 Pirambeba (mac)
Serrasalmus marginatus Valenciennes, 1837 Pirambeba (mar)
Triportheus angulatus (Spix & Agassiz, 1829) Sardinha*

Curimatidae

Cyphocharax nagelii (Steindachner, 1881) Saguiru branco Steindachnerina insculpta (Fernández-Yépez, 1948) Saguiru riscado

Cynodontidae

Rhaphiodon vulpinus Spix & Agassiz, 1829 Dourado cadela, facão

Erythrinidae

Hoplerythrinus unitaeniatus (Agassiz, 1829)

Hoplias malabaricus (Bloch, 1794)

Traíra

Hemiodontidae

Hemiodus orthonops Eigenmann & Kennedy, 1903 Bananinha*

Prochilodontidae

Prochilodus lineatus (Valenciennes, 1836) Curimbatá**

Ordem Siluriformes

Auchnipteridae

Ageneiosus inermis (Linnaeus, 1766) Mandi leiteiro, Palmito*

Auchenipterus osteomystax (Miranda Ribeira, 1918) Peixe gato Parauchenipterus galeatus (Linnaeus, 1766) Bobo

Callichthyidae

Hoplosternum littorale (Hancock, 1828) Caborja, Tamboatá

Continua

Cascudo abacaxi

Quadro 9 (continuação). Composição e posição taxonômica das espécies coletadas no nos reservatórios do Alto Paraná.

Doradidae

Pterodoras granulosus (Valenciennes, 1821)

Rhinodoras dorbignyi (Kner, 1855)

Trachydoras paraguayensis (Eigenmann& Ward, 1907)

Armadinho*

Heptapteridae

Rhamdia quelen (Quoy & Gaimard, 1824) Bagre

Loricariidae

Hypostomus sp1 Cascudo sp1

Loricariichthys platymetopon Isbrücker & Nijssen, 1979 Cascudo viola bundinha*

Megalancistrus parananus (Peters, 1881)

Pterygoplichthys anisitsi Eigenmann & Kennedy, 1903 Cascudo lixa bote cf. Rineloricaria sp. Cascudo viola barbinha

Rhinelepis aspera Spix & Agassiz, 1828 Cascudo preto**

Pimelodidae

Hemisorubim platyrhynchos (Valenciennes, 1840)

Hypophthalmus edentatus Spix & Agassiz, 1829

Mapará*

Iheringichthys labrosus (Lütken, 1874)Pimelodus maculatus La Cepède, 1803Mandi guaçu

Pimelodus ornatus Kner, 1858 Mandi riscado*
Pinirampus pirinampu (Spix & Agassiz, 1829) Barbado
Pseudoplatystoma corruscans (Spix & Agassiz, 1829) Pintado**

Sorubim lima (Bloch & Schneider, 1801) Jurupecem*

Pseudopimelodidae

Pseudopimelodus mangurus (Valenciennes, 1835) Jaú Sapo

Ordem Perciformes

Cichlidae

Astronotus crassipinis (La Cepède, 1802)

Cichla kelberi Kullander & Ferreira, 2006

Cichla piquiti Kullander & Ferreira, 2006

Crenicichla britskii Kullander, 1982

Geophagus proximus (Castelnau, 1855)

Oreochromis niloticus (Linnaeus, 1758)

Cattelnau 1855

Satanoperca pappaterra (Heckel, 1840) Zoiudo*

Scianidae

Plagioscion squamosissimus (Heckel, 1840) Corvina*

Ordem Gymnotiformes

Gymnotidae

Gymnotus carapo Linnaeus, 1758 Tuvira

Rhamphichthyidae

Rhamphichthys hahni (Meinken, 1937)

Tuvira bicuda*

Ordem Pleuronectiformes

Achiridae

Catathyridium jenynsii (Günter, 1862) Linguado*

Quadro 10. Composição e posição taxonômica das espécies coletadas no nos reservatórios do Alto Paraíba do Sul.

Ordem Characiformes

Anostomidae

Leporinus copelandii Steindachner, 1875 Piau palhaço

Characidae

Astyanax parahybae Eigenmann, 1908 Lambari rabo vermelho

Astyanax bimaculatus (Linnaeus, 1758)

Methynnis sp.

Pacu prata

Brycon insignis Steindachner, 1877

Piabanha

Brycon opalinus (Cuvier, 1819) Pirapitinga do sul

Oligosarcus hepsetus (Cuvier, 1829) Taiá

Curimatidae

Cyphocharax gilbert (Quoy & Gaimard, 1824) Saguiru

Erythrinidae

Hoplias malabaricus (Bloch, 1794) Traíra

Prochilodontidae

Prochilodus lineatus (Valenciennes, 1836) Curimbatá**

Ordem Siluriformes

Heptapteridae

Rhamdia quelen (Quoy & Gaimard, 1824) Bagre

Loricariidae

Hypostomus affinis (Steindachner, 1877) Cascudo pintado Hypostomus luetkeni (Steindachner, 1876) Cascudo amarelo

Pimelodidae

Pimelodus maculatus La Cepède, 1803 Mandi guaçu

Ordem Perciformes

Cichlidae

Cichla kelberiKullander & Ferreira, 2006Tucunaré*Crenicichla sp.1InhacundáCrenicichla sp. 2JoaninhaGeophagus brasiliensis(Quoy & Gaimard, 1824)Acará

Oreochromis niloticus (Linnaeus, 1758) Tilápia do Nilo*
Tilapia rendalli (Boulenger, 1897) Tilápia Rendali*

Scianidae

Plagioscion squamosissimus (Heckel, 1840) Corvina*

Ordem Gymnotiformes

Gymnotidae

Gymnotus carapo Linnaeus, 1758 Tuvira

Tabela 16. Frequência absoluta de espécies em número (n) e em biomassa (g) nas estações de amostragem do reservatório de Três Irmãos.

Estações de amostragem		NA		JAC	Р	ВА
Espécies	n	g	n	g	n	g
Astronotus crassipinis					2	857
Rhamdia quelen	17	1753				
Pinirampus pirinampu	1	650				
Hoplosternum littorale	1	221				
Leporinus striatus	2	67				
Megalancistrus parananus	1	551				
Pterigoplychthys anisitsi	17	15458			2	1450
Rhineleps aspera	1	624				
Hypostomus sp1	2	282				
Plagioscion squamosissimus	880	194453	374	108587	446	113423
Prochilodus lineatus	21	43265	2	635	2	1458
Rhaphiodon vulpinus			5	1463		
Leporinus octofasciatus	17	2335				
Moenkhausia dichroura	1	111				
Roeboides descalvadensis	1	8				
Astyanax altiparanae	12	560	1	50	5	226
Pimelodus maculatus	9	2527				
Rhinodoras dorbignyi	1	109				
Piaractus mesopotamicus			1	155	2	398
Metynnis maculatus	4	350	194	15744	118	11770
Crenicichla britski	23	3285	1	88		
Acestrorhynchus lacustris			2	159	2	253
Leporinus elongatus			3	695	1	139
Schizodon borelli	53	16537	21	10463	22	6538
Leporinus friderici	53	14280	3	491	3	536
Serrasalmus maculatus	6	1264	175	26233	185	26232
Geophagus proximus	110	6735	47	4733	95	10069
Cyphocharax nagelii	14	1493				
Triportheus angulatus			10	1417	5	595
Schizodon nasutus	42	17269	16	6927	12	5642
Oreochromis niloticus	1	1535			1	343
Hoplias malabaricus	1	206	28	9011	29	10132
Cichla kelberi	6	3202	51	10268	77	14833
Cichla piquiti	2	998	6	508	2	1930
Satanoperca pappaterra			7	937	12	1343
35 Espécies	1299	330128	947	198564	1023	208167

Tabela 17. Frequência absoluta de espécies em número (n) e em biomassa (g) nas estações de amostragem do reservatório de Ilha Solteira.

Espécies		JAV		CCI		SJD		MIS
Especies							n	g
Astronotus crassipinis			2	1197				
Pinirampus pirinampu	1	284	1	503				
Megalancistrus parananus	1	50						
Pterigoplychthys anisitsi	4	3282	2	1887	39	29748		
Plagioscion	119	32238	171	88401	95	45874	274	127450
squamosissimus	113	32230						
Prochilodus lineatus			5	2315	37	34919	4	2937
Salminus brasiliensis							1	3289
Rhaphiodon vulpinus	19	8698	12	2651	7	2133	31	8698
Leporinus octofasciatus			2	218				
Roeboides paranensis					1	14	2	16
Astyanax altiparanae					1	38	1	15
Pimelodus maculatus	41	6283	9	1639	17	4383	31	8976
Piaractus mesopotamicus	7	7952	5	5715				
Metynnis maculatus	68	5425	72	9412	12	1002	54	5756
Crenicichla britski	3	154						
Acestrorhynchus lacustris			1	114	8	1012	26	2727
Galeocharax knerii					4	321		
Leporinus elongatus			3	1337	2	795	5	1624
Leporinus lacustris			1	120	3	469	1	126
Schizodon borelli	14	5343	14	4819	38	12677	19	6153
Leporinus friderici	7	1584	34	11053	19	5344	42	15131
Brycon orbygnianus					1	235	4	2775
Serrasalmus maculatus	23	5724	15	3466	21	4315	93	18684
Serrasalmus marginatus	1	87			1	105	3	340
Geophagus proximus	84	6955	79	8882	44	3758	157	19920
Cyphocharax nagelii					11	490		
Triportheus angulatus			18	1685	11	1478	3	360
Schizodon nasutus	65	16284	6	1539				
Oreochromis niloticus	1	1105			4	1610	8	5487
Hoplias malabaricus	18	4864	8	3040	46	18941	23	9070
Cichla kelberi	6	1417	2	1449	3	1309	10	3494
Cichla piquiti	2	252	2	662	4	624	12	5680
Satanoperca pappaterra	12	774	9	1357	20	2230	13	1660
33 Espécies	496	108755	473	153461	449	173824	817	250368

Tabela 18. Frequência absoluta de espécies em número (n) e em biomassa (g) nas estações de amostragem do reservatório de Jupiá.

Espécies		JIS		ГІМ		SUC
Especies	n	g				
Potamotrygon sp	5	2558			1	198
Rhamdia quelen	10	878	10	1393		
Pinirampus pirinampu	1	1880			3	5481
Parauchenipterus galeatus	27	2943	11	1234	44	6571
Megalancistrus parananus	1	652			5	1586
Pterigoplychthys anisitsi	1	771	1	1451		
cf. Rineloricaria sp.	1	58			13	853
Loricariichthys						
olatymetopon	62	6408	2	270	24	2267
Leporellus vittatus	30	7706				
Plagioscion						
squamosissimus	112	18263	16	7782	86	17035
Prochilodus lineatus			5	13407	3	2176
Raphiodon vulpinus	54	18960	18	8302	13	3895
Leporinus octafaciatus	8	851				
Hoplerythrinus unitaeniatus					1	134
Hemisorubim						
plathyrhynchos	2	700				
Roeboides paranensis					1	5
Catathyridium jenynsii					1	280
Pimelodus maculatus	5	1321	1	763	1	327
Pimelodus ornatus	1	569				
Piaractus mesopotamicus	2	2971				
Metynnis maculatus	15	1503	3	433	46	5551
Crenicichla britski	7	678	23	2720		
Acestrorhynchus lacustris	3	338				
Auchenipterus osteomystax	2	624			10	2542
Leporinus elongatus	1	463	5	3489	1	174
Leporinus lacustris	5	852				
Schizodon borelli			1	201	2	707
Leporinus friderici	22	6848	1	431	28	8862
Brycon orbignyianus	1	258	2	286	2	1128
Serrasalmus maculatus	18	4640	5	923	4	475
Serrasalmus marginatus	18	1128	3	403	3	328
Geophagus proximus	114	15975	42	5035	108	12291
Steindachnerina insculpta	68	7116				
Schizodon nasutus	35	8809	50	21864	1	199
Hoplias malabaricus	101	35117	57	16949	29	7859
Cichla kelberi	12	3253	12	2858	4	2548
Cichla piquiti	7	2008	1	88	6	1633
Rhamphichthys rostratus					1	271
Satanoperca pappaterra	11	1188	3	633	16	1474
39 Espécies	762	158287	272	90915	457	8685

Tabela 19. Frequência absoluta de espécies em número (n) e em biomassa (g) nas estações de amostragem do reservatório de Porto Primavera

Espécies		JJU		PAN		PEP		MPP		JPP
Especies	n	g	n	g	n	g	n	g	n	g
Astronotus crassipinis	1	366								
Trachydoras paraguayensis	70	2123	56	1517	9	281				
Potamotrygon sp	1	815								
Pterodoras granulosus			4	5597	38	37216			9	18166
Rhamdia quelen					1	135				
Hemiodus orthonops	16	1976	66	10742	7	1162			28	6566
Pinirampus pirinampu									1	3747
Parauchenipterus galeatus	64	5734	44	3916	11	1112	2	394		
Megalancistrus aculeatus					1	941	2	1496		
Pterigoplychthys anisitsi	16	11183	23	12186	3	3184				
Rhineleps aspera							99	90171	1	661
cf. Rineloricaria sp			3	150	5	362				
Loricariichthys										
platymetopon	30	3116	17	1664	19	2471				
Leporellus vittatus							28	2309		
Plagioscion squamosissimus			32	7504	7	2826	9	976		
Prochilodus lineatus	20	19553	18	17217	7	9223	124	152723	143	97662
Salminus brasiliensis							10	28531	8	8339
Raphiodon vulpinus	3	1507			1	1190	2	924		
Leporinus octofasciatus			1	79	2	100	7	851	4	333
Pseudopimelodus mangurus									5	4547
Sorubim lima	13	6543	2	1561	1	414	1	970		
Hemisorubim	_	4577	_	000					_	004
plathyrhynchos	5	1577	7	908			_	40	1	601
Astyanax altiparanae							1	18	2	52
Catathyridium jenynsii		4-00	_						5	1773
Iheringichthys labrosus	17	1728	5	453	_		_			
Pimelodus maculatus	37	3995	11	1746	6	2339	7	1413	13	3617
Ageneiosus inermis					1	105				
Pimelodus ornatus	1	404	1	261						
Hypophthalmus edentatus	2	975	15	5599	1	614				
Piaractus mesopotamicus									1	3490
Metynnis maculatus	15	1744	33	3572	14	1822				
Crenicichla britski							1	162		
Acestrorhynchus lacustris	11	912							1	50
Galeocharax knerii			1	81						
Auchenipterus osteomystax	25	1986	82	8783	3	174				
Leporinus elongatus	2	323					18	25660	43	27161
Leporinus obtusidens			14	1798	1	116	32	53313	11	8016
Leporinus lacustris	2	265	1	95						
Leporinus macrocephalus			1	405			1	2520	11	24525
Schizodon borelli	78	23906	78	25159	2	770	5	2155	16	7413
Leporinus friderici			21	5039	9	1216	117	49637	114	26484
Pseudoplatystoma corruscans	S						1	4280	1	675
Serrasalmus maculatus	3	711	5	1709	6	2270	4	220	1	56
Serrasalmus marginatus	18	2789	10	1521	2	156	5	555		
Geophagus proximus	27	2557	30	2569	18	2219	5	190	4	504
Steidachnerina insculpta	14	382								
Salminus hilarii							6	2346		

Tabela 19 (continuação). Frequência absoluta de espécies em número (n) e em biomassa (g) nas estações de amostragem do reservatório de Porto Primavera.

Espécies		JJU		PAN		PEP		MPP		JPP	
Especies	n	g	n	g	n	g	n	g	n	g	
Schizodon altoparanae							1	457	1	1132	
Schizodon nasutus			2	753	144	41846	38	8059	15	4487	
Hoplias malabaricus	40	11286	21	6813	13	4295	2	683	7	2488	
Cichla kelberi	8	6791			5	1741					
Cichla piquiti	7	2231	5	1799	10	1520	3	5231	1	265	
Gymnotus carapo	1	562									
Satanoperca pappaterra	4	717	1	154	10	1580					
54 Espécies	551	118757	610	131350	357	123400	531	436244	447	252810	

Tabela 20. Frequência absoluta de espécies em número (n) e em biomassa (g) nas estações de amostragem do reservatório de Paraibuna.

Espécies		LV		ВР
Lapecies	n	g	n	g
Geophagus brasiliensis	5	620.13	6	507.93
Rhamdia quelen	3	466.23	1	79.88
Hypostomus luetkeni			2	237.83
Hypostomus afinnis			8	790.79
Prochilodus lineatus	1	2900	1	1629.34
Crenicichla sp			3	256.22
Astyanax parahybae	126	3676.27	271	8777.28
Astyanax bimaculatus	13	344.29	77	1811.35
Pimelodus maculatus	35	5900.88	49	5415.78
Methines sp			3	176.59
Brycon insignis	2	1280.18	9	3583.47
Leporinus copelandii	1	638.3	2	1130.63
Cyphocharax gilbert	8	1217.12		
Brycon opalinus			33	2200.84
Oligossarcos hepsetus	41	2936.2	24	1744.48
Oreochromis niloticus			1	482.35
Hoplias malabaricus	25	6513.8	8	4635.2
Cichla kelberi	3	306.97	1	243.76
Gymnotus carapo	3	246.8		
19 Espécies	266	27047.17	499	33703.72

Tabela 21. Frequência absoluta de espécies em número (n) e em biomassa (g) nas estações de amostragem do reservatório de Jaguari.

Espécie	Rio c	do Peixe	Ja	aguari	Barragem		
Lapetie	Quant.	Peso (g)	Quant.	Peso (g)	Quant.	Peso (g)	
Geophagus brasiliensis			1	425.2	2	206.9	
Rhandia quelen					1	414.6	
Plagioscion squamosissimus	79	9627.886	80	14636.73	101	7522.623	
Crenicichla sp	21	690.096	30	1417.453	24	1393.138	
Astyanax paraybae	11	388.753	31	691.866	4	38.67	
Astyanax bimaculatus	41	312.812	134	2926.17	85	474.342	
Methines sp	10	645.04	1	65.8	28	1855.979	
Brycon insignis	1	0.787					
Leporinus copelandii	2	1714.1					
Oligossarcus hepsetus	1	254.3	18	407.218	11	590.189	
Tilapia rendalli	1	0.11	3	2149.01	6	36.091	
Cichla kelberi	3	1.183	21	2374.98	1	0.17	
12 Espécies	170	13635.07	319	25094.43	263	12532.7	

Tabela 22. Frequência absoluta de espécies em número (n) e em biomassa (g) nos reservatórios do Alto Paraná.

Espécies	Três	Irmãos	llha	Solteira	J	lupiá	Porto	Primavera
Lapeties	n	g	n	g	n	g	n	g
Astronotus crassipinis	2	857	2	1197			1	366
Trachydoras								
paraguayensis							135	3921
Pterodoras granulosus							42	42813
Potamotrygon sp					6	2756	1	815
Rhamdia quelen	17	1753			20	2271	1	135
Hemiodus orthonops							89	13880
Pinirampus pirinampu	1	650	2	787	4	7361		
Parauchenipterus galeatus					82	10748	121	11156
Hoplosternum littorale	1	221						
Leporinus striatus	2	67						
Megalancistrus parananus	1	551	1	50	6	2238	3	2437
Pterigoplychthys anisitsi	19	16908	45	34917	2	2222	42	26553
Rhineleps aspera	1	624					99	90171
Hypostomus sp1	2	282						
cf. Rineloricaria sp					14	911	8	512
Loricariichthys								
platymetopon					88	8945	66	7251
Leporellus vittatus					30	7706	28	2309
Plagioscion								
squamosissimus	1700	416463	659	293963	214	43080	48	11306
Prochilodus lineatus	25	45358	46	40171	8	15583	169	198716
Salminus brasiliensis			1	3289			10	28531
Rhaphiodon vulpinus	5	1463	69	22180	85	31157	6	3621
Leporinus octofasciatus	17	2335	2	218	8	851	10	1030
Hoplerythrinus								
unitaeniatus					1	134		
Sorubim lima							17	9488

Continua

Tabela 22 (continuação). Frequência absoluta de espécies em número (n) e em biomassa (g) nos reservatórios do Alto Paraná.

Espécies	Três	Irmãos	IIha S	Solteira	J	upiá	Porto F	Primavera
<u>-</u>	n	g	n	g	n	g	n	g
Hemisorubim								
plathyrhynchos					2	700	12	2485
Moenkhausia dichroura	1	111						
Roeboides descalvadensis	1	8	3	30	1	5		
Astyanax altiparanae	18	836	2	53			1	18
Catathyridium jenynsii					1	280		
Iheringichthys labrosus							22	2181
Pimelodus maculatus	9	2527	98	21281	7	2411	61	9493
Ageneiosus inermis							1	105
Pimelodus ornatus					1	569	2	665
Rhinodoras dorbignyi	1	109						
Hypophthalmus edentatus							18	7188
Piaractus mesopotamicus	3	553	12	13667	2	2971		
Metynnis maculatus	316	27864	206	21595	64	7487	62	7138
Crenicichla britskii	24	3373	3	154	30	3398	1	162
Acestrorhynchus lacustris	4	412	35	3853	3	338	11	912
Galeocharax knerii			4	321			1	81
Auchenipterus								
osteomystax					12	3166	110	10943
Leporinus elongatus	4	834	10	3756	7	4126	20	25983
Leporinus obtusidens							47	55227
Leporinus lacustris			5	715	5	852	3	360
Leporinus macrocephalus							2	2925
Schizodon borellii	96	33538	85	28992	3	908	163	51990
Leporinus friderici	59	15307	102	33112	51	16141	147	55892
Pseudoplatystoma corruscar	าร						1	4280
Brycon orbignyianus			5	3010	5	1672		
Serrasalmus maculatus	366	53729	152	32189	27	6038	18	4910
Serrasalmus marginatus			5	532	24	1859	35	5021
Geophagus proximus	252	21537	364	39515	264	33301	80	7535
Cyphocharax nagelii	14	1493	11	490				
Steidachnerina insculpta					68	7116	14	382
Triportheus angulatus	15	2012	32	3523				
Salminus hilarii							6	2346
Schizodon altoparanae							1	457
Schizodon nasutus	70	29838	71	17823	86	30872	184	50658
Oreochromis niloticus	2	1878	13	8202				
Hoplias malabaricus	58	19349	95	35915	187	59925	76	23077
Cichla kelberi	134	28303	21	7669	28	8659	13	8532
Cichla piquiti	10	3436	20	7218	14	3729	25	10781
Gymnotus carapo							1	562
Rhamphichthys hahni					1	271		
Satanoperca pappaterra	19	2280	54	6021	30	3295	15	2451
65 Espécies	3269	736859	2235	686408	1491	336052	2049	809751

Tabela 23. Frequência absoluta de espécies em número (n) e em biomassa (g) nos reservatórios da CESP na bacia do Alto Paraíba do Sul.

Fanásia	P	araibuna		Jaguari
Espécie 	n	g	n	g
Geophagus brasiliensis	11	1128.06	3	632.1
Rhamdia quelen	4	546.11	1	414.6
Hypostomus luetkeni	2	237.83	0	0
Hypostomus afinnis	8	790.79	0	0
Plagioscion				
squamosissimus	0	0	260	31787.24
Prochilodus lineatus	2	4529.34	0	0
Crenicichla sp	3	256.22	0	0
Crenicichla sp	0	0	75	3500.687
Astyanax parahybae	397	12453.55	46	1119.289
Astyanax bimaculatus	90	2155.64	260	3713.324
Pimelodus maculatus	84	11316.66	0	0
Methines sp	3	176.59	39	2566.819
Brycon insignis	11	4863.65	1	0.787
Leporinus copelandii	3	1768.93	2	1714.1
Cyphocharax gilbert	8	1217.12	0	0
Brycon opalinus	33	2200.84	0	0
Oligossarcos hepsetus	65	4680.68	30	1251.707
Oreochromis niloticus	1	482.35	0	0
Tilapia rendalli	0	0	10	2185.211
Hoplias malabaricus	33	11149	25	2376.333
Cichla kelberi	4	550.73	0	0
Gymnotus carapo	3	246.8	0	0
22 Espécies	765	60750.89	752	51262.2

Tabela 24. Rendimento da produção pesqueira por espécie, em CPUE, nos reservatórios da CESP no Alto Paraná, no ano de 2011.

Nome Comum	Nome Científico	Três Irmãos	llha Solteira	Jupiá	Porto Primavera	Total
Lambaris	Astyanax spp		0,00			0,00
Mapará	Hypophthalmus edentatus				0,00	0,00
Caborja	Hoplosternum litoralle	0,01	0,01		0,00	0,02
Tambaqui	Colossoma macropomum	0,02				0,02
Dourado	Salminus brasiliensis	0,00	0,03		0,03	0,06
Piracanjuba	Brycon orbygnianus	0,02	0,12	0,01	0,00	0,15
Pintado	Pseudoplatystoma corruscans	0,00	0,12	0,00	0,26	0,38
Dourado cadela	Raphiodon vulpinus	0,02	0,28	0,15	0,09	0,54
Piauçu	Leporinus macrocephalus	0,08	0,39	0,08	0,18	0,73
Zoiudo	Satanoperca pappaterra	0,15	0,32	0,15	0,17	0,79
Pacu prata	Metynnis maculatus	0,34	0,61	0,02	0,25	1,22
Pirambebas	Serrasalmus spp	0,57	0,23	0,06	0,55	1,41
Taguaras	Schizodon spp	0,23	0,29	0,31	0,81	1,64
Pacu guaçu	Piaractus mesopotamicus	0,25	1,22	0,51	0,19	2,17
Piaparas	L. elongatus e L. obtusidens	0,30	0,32	0,28	1,58	2,48
Barbado	Pinirampus pirinampu	0,50	1,57	0,76	0,10	2,93
Talápia do Nilo	Oreochromis niloticus	1,15	1,47	0,29	0,32	3,23
Armau	Pterodoras granulosus			0,12	3,29	3,41
Piavas/Piau	Leporinus spp	0,40	1,82	0,49	1,40	4,11
Mandis	Pimelodus spp	0,30	2,56	0,99	0,68	4,53
Tucunarés	Cichla spp	1,28	1,47	1,12	0,92	4,79
Cascudos	Loricariidae diversos	1,77	1,31	0,15	4,67	7,9
Traíra	Hoplias malabaricus	1,85	1,47	3,44	2,40	9,16
Curimbatá	Prochilodus lineatus	0,38	0,34	0,44	13,46	14,62
Corvina	Plagioscion squamosissimus	6,35	4,02	3,34	1,99	15,7
Porquinho	Geophagus proximus	16,07	13,61	10,31	4,30	44,29
Total		32,04	33,58	23,02	37,64	126,28

Tabela 25. Salvamentos de peixes nas usinas da CESP no período de julho de 2011 a junho de 2012.

Bacia	UHE	Quantidade (kg)
	Três Irmãos	110
D	Ilha Solteira	125
Paraná	Engenheiro Souza Dias	899
***************************************	Engenheiro Sérgio Motta	67
Danatha ala Cod	Jaguari	20
Paraíba do Sul	Paraibuna	-
Total		1.221

Tabela 26. Programa de Manejo Pesqueiro: produção do ano piscícola, período de julho de 2011 a junho de 2012.

E.H.A.	Espécie	Programado	Produzido	Repovoado	Vendas/Doações
	Astyanax sp.	300.000	382.100	358.900	22.000
	Brycon opalinus	150.000	164.480	164.480	
ъ	Brycon insignis	60.000	83.810	76.510	7.300
Paraibuna	Stendachneridion parahybae(*)	5.000	11.200	10.880	320
	Leporinus conirostris (*)	1.000	0	0	
	Leporinus copelandii (*)	20.000	1.000	1.000	
	Prochilodus lineatus	20.000	20.000	0	20.000
	SUBTOTAL	536.000	662.590	611.770	49.620
	Prochilodus lineatus	800.000	820.000	820.000	
	Piaractus mesopotamicus	1.600.000	1.656.500	1.656.000	500
	Leporinus elongatus	350.000	364.500	364.000	500
l	Brycon orbygnianus	350.000	360.000	360.000	
Jupiá	Pseudoplatystoma corruscans	40.000	0	0	
	Salminus brasiliensis	50.000	50.000	50.000	
	Zungaro jahu (*)	1.000	1.000	1.000	
	Hemisorubim platyrhynchos (*)	1.000	0	0	
	SUBTOTAL	3.192.000	3.252.000	3.251.000	1.000
	TOTAL	3.728.000	3.914.590	3.862.770	50.620

Observações

Tabela 27. Programa de Manejo Pesqueiro: resultados de repovoamento por reservatório no período de julho de 2011 a junho de 2012.

E	Espécie	Engenheiro Souza Dias	Ilha Solteira	Três Irmãos	Engenheiro Sérgio Motta	Jaguari	Paraibuna
Corimbatá	P. lineatus	307.000	207.000	306.000	-	-	-
Pacu-guaçu	P. mesopotamicus	546.000	300.000	500.000	310.000	-	-
Piracanjuba	B. orbygnianus	150.000	50.000	110.000	50.000	-	-
Piapara	L. elongatus	144.000	112.000	108.000	-	-	-
Pintado	P. corruscans	0	0	0	-	-	-
Dourado	S. brasiliensis	20.000	10.000	20.000	-	-	-
Jaú	Zungaro jahu	1.000	-	-	-	-	-
Lambari	<i>Astyanax</i> sp.	-	-	-	-	212.000	146.900
Piava-bicuda	L. conirostris	-	-	-	-	-	0
Piau-palhaço	L. copelandii	-	-	-	-	0	1.000
Pirapitinga	B. opalinus	-	-	-	-	64.000	100.480
Piabanha	B. insignis	-	-	-	-	20.250	56.260
Surubim	S. parahybae	-	-	-	-	-	10.880
TOTAL		1.168.000	679.000	1.044.000	360.000	296.250	315.520

^(*) Espécies em geração e/ou aperfeiçoamento de tecnologia de reprodução em cativeiro.

Tabela 28. Programa de Manejo Pesqueiro: produção prevista para o ano piscícola, período de julho de 2012 a junho de 2013.

E.H.A.		Espécie	Repovoamento	
Paraibuna	Lambari	Astyanax sp.	300.000	
	Pirapitinga	Brycon opalinus	150.000	
	Piabanha	Brycon insignis	60.000	
	Piava-bicuda	Leporinus conirostris (*)	1.000	
	Piau-palhaço	Leporinus copelandi (*)	20.000	
	Surubim	S. parahybae	5.000	
Subtotal			536.000	
Jupiá	Corimbatá	Prochilodus lineatus	800.000	
	Pacu-guaçu	Piaractus mesopotamicus	1.600.000	
	Piapara-bicuda	Leporinus elongatus	350.000	
	Piracanjuba	Brycon orbygnianus	350.000	
	Pintado	Pseudoplatystoma corruscans	40.000	
	Dourado	Salminus brasiliensis	50.000	
	Jaú	Zungaro jahu (*)	1.000	
	Jurupoca	Hemisorubim platyrhynchos (*)	1.000	
Subtotal			3.192.000	
TOTAL			3.728.000	

Observações: (*) espécie em geração ou aperfeiçoamento de tecnologia de reprodução em cativeiro.

Tabela 29. Programa de Manejo Pesqueiro: previsão de repovoamento por reservatório no período de julho de 2012 a junho de 2013.

Espécie		Engenheiro Souza Dias	llha Solteira	Três Irmãos	Engenheiro Sérgio Motta	Jaguari	Paraibuna
Corimbatá	P. lineatus	300.000	200.000	300.000	-	-	-
Pacu-guaçu	P. mesopotamicus	500.000	300.000	500.000	300.000	-	-
Piracanjuba	B. orbygnianus	150.000	50.000	100.000	50.000	-	-
Piapara	L. elongatus	150.000	100.000	100.000	-	-	-
Dourado	S. brasiliensis	20.000	10.000	20.000	-	-	-
Pintado	P. corruscans	15.000	10.000	15.000	-	-	-
Jaú	Z. jahu	1.000	-	-	-	-	-
Jurupoca	H.platyrhynchos	1.000	-	-	-	-	-
Lambari	<i>Astyanax</i> sp.	-	-	-	-	200.000	100.000
Pirapitinga	B.opalinus	-	-	-	-	50.000	100.000
Piabanha	B. insignis	-	-	-	-	20.000	40.000
Piava-bicuda	L.conirostris	-	-	-	-	-	1.000
Piau-palhaço	L.copelandii	-	-	-	-	5.000	15.000
Surubim	S. parahybae	-	-	-	-	-	5.000
TOTAL		1.137.000	670.000	1.035.000	350.000	275.000	261.000

ANEXO CD – Cópia Digital do Relatório GA/200/2013 e Anexos de 1 a 20