

Universidade de Brasília - UnB

RELATÓRIO TRIMESTRAL

Programa de Monitoramento Sismológico Aproveitamento Hidrelétrico (AHE) Jirau/RO Energia Sustentável do Brasil S.A. (ESBR)

DEZEMBRO/2011 - FEVEREIRO/2012

Brasília, 19 de abril de 2012.

CENTRO DE APOIO AO DESENVOLVIMENTO TECNOLÓGICO - CDT

SUMÁRIO

1.	APRESENTAÇÃO2
2.	INTRODUÇÃO2
3.	ATENDIMENTO AOS OBJETIVOS DO PROGRAMA4
4.	ATENDIMENTO ÀS METAS DO PROGRAMA6
5.	MÉTODO DE INVESTIGAÇÃO8
5.1.	MAGNITUDE
5.1.1.	MAGNITUDES DE DURAÇÃO (M_D)8
5.2.	LOCALIZAÇÃO HIPOCENTRAL9
5.2.1.	LOCALIZAÇÃO COM UMA ÚNICA ESTAÇÃO11
6.	ANÁLISE DE DADOS
6.1.	EVENTOS DETECTADOS NO PERÍODO DE DEZEMBRO DE 2011 A FEVEREIRO
DE 20	12 13
DE 20 6.1.1.	12
DE 20 6.1.1. 6.1.2.	12
DE 20 6.1.1. 6.1.2. 6.1.3.	12
DE 20 6.1.1. 6.1.2. 6.1.3. 6.1.4.	1213EVENTOS LOCAIS (ARTIFICIAIS)13EVENTOS REGIONAIS (ARTIFICIAIS)19EVENTOS REGIONAIS (NATURAIS)20EVENTOS DISTANTES (TELESSISMOS)22
DE 20 6.1.1. 6.1.2. 6.1.3. 6.1.4. 7.	1213EVENTOS LOCAIS (ARTIFICIAIS)13EVENTOS REGIONAIS (ARTIFICIAIS)19EVENTOS REGIONAIS (NATURAIS)20EVENTOS DISTANTES (TELESSISMOS)22INDICADORES26
DE 20 6.1.1. 6.1.2. 6.1.3. 6.1.4. 7. 8.	1213EVENTOS LOCAIS (ARTIFICIAIS)13EVENTOS REGIONAIS (ARTIFICIAIS)19EVENTOS REGIONAIS (NATURAIS)20EVENTOS DISTANTES (TELESSISMOS)22INDICADORES26INTERFACES26
DE 20 6.1.1. 6.1.2. 6.1.3. 6.1.4. 7. 8. 9.	1213EVENTOS LOCAIS (ARTIFICIAIS)13EVENTOS REGIONAIS (ARTIFICIAIS)19EVENTOS REGIONAIS (NATURAIS)20EVENTOS DISTANTES (TELESSISMOS)22INDICADORES26INTERFACES26ATENDIMENTO AO CRONOGRAMA DO PROGRAMA27
DE 20 6.1.1. 6.1.2. 6.1.3. 6.1.4. 7. 8. 9. 10.	1213EVENTOS LOCAIS (ARTIFICIAIS)13EVENTOS REGIONAIS (ARTIFICIAIS)19EVENTOS REGIONAIS (NATURAIS)20EVENTOS DISTANTES (TELESSISMOS)22INDICADORES26INTERFACES26ATENDIMENTO AO CRONOGRAMA DO PROGRAMA27ATIVIDADES FUTURAS27
DE 20 6.1.1. 6.1.2. 6.1.3. 6.1.4. 7. 8. 9. 10. 11.	1213EVENTOS LOCAIS (ARTIFICIAIS)13EVENTOS REGIONAIS (ARTIFICIAIS)19EVENTOS REGIONAIS (NATURAIS)20EVENTOS DISTANTES (TELESSISMOS)22INDICADORES26INTERFACES26ATENDIMENTO AO CRONOGRAMA DO PROGRAMA27ATIVIDADES FUTURAS27DISCUSSÃO E CONCLUSÕES28

1. APRESENTAÇÃO

O presente relatório trimestral tem por objetivo descrever as atividades desenvolvidas e as metodologias empregadas no âmbito do Programa de Monitoramento Sismológico do AHE Jirau, previsto no item 4.4 do Projeto Básico Ambiental (PBA) do empreendimento, no período de dezembro de 2011 a fevereiro de 2012. Desta forma, são descritos os procedimentos relativos à implantação e como está sendo implementado o Programa, comprovando o atendimento integral ao previsto no PBA, incluindo as atividades realizadas pelas seguintes empresas contratadas pela Energia Sustentável do Brasil S.A. (ESBR):

Berrocal & Associados Soluções e Inovações Geofísicas Ltda.: A empresa Berrocal & Associados Soluções e Inovações Geofísicas Ltda. foi contratada pela ESBR para instalar e realizar a manutenção periódica da estação sismográfica do AHE Jirau.

UnB: O recebimento das informações em tempo real, a análise e a interpretação dos resultados está sendo realizado pelo Centro de Apoio ao Desenvolvimento Tecnológico (CDT) da Universidade de Brasília (UnB).

Durante o período contemplado neste relatório, foram utilizados os dados das estações sismográficas SAML (UHE de Samuel/RO) e JIR1 (AHE de Jirau/RO).

A estação sismográfica SAML, pertence ao Consórcio de Universidades Americanas IRIS (Incorporated Research Institutions for Seismology) e está localizada próxima ao reservatório da UHE de Samuel, no estado de Rondônia.

A estação JIR1, por sua vez, pertence à Energia Sustentável do Brasil S.A. (ESBR), tendo sido instalada em fevereiro de 2011 pela empresa Berrocal & Associados Soluções e Inovações Geofísicas Ltda., na margem direita do futuro reservatório do AHE Jirau, para monitorar a atividade sísmica na área do entorno do empreendimento.

2. INTRODUÇÃO

Este relatório descreve os trabalhos realizados sob a responsabilidade técnica do Centro de Apoio ao Desenvolvimento Tecnológico (CDT) da Universidade de Brasília (UnB), relacionados à consultoria especializada na área de sismologia para atender ao Programa de Monitoramento Sismológico do AHE Jirau, localizado no município de Porto Velho/RO.

São apresentados os resultados da análise e interpretação dos dados sísmicos gerados pelas estações SAML e JIR1, no período de dezembro de 2011 a fevereiro de 2012.

São listados parâmetros sísmicos de eventos detectados pela estação SAML, considerando um limiar de magnitude de 1,2 m_D, e eventos de quaisquer magnitudes detectados pela estação JIR1. Estes eventos foram classificados em locais (naturais ou artificiais), regionais (naturais ou artificiais) e distantes (telessismos) em relação às estações registradoras. A Figura 1 apresenta o mapa com a localização do futuro reservatório do AHE Jirau e das estações SAML e JIR1, a qual entrou em operação em 19 de fevereiro de 2011. São mostrados também as localizações do reservatório da UHE Samuel, pertencente à ELETRONORTE e do reservatório da UHE de Santo Antônio, pertencente à empresa Santo Antonio Energia S.A. (SAE).

Os dados produzidos foram analisados com o auxílio do software Geotool (Miljanovic, 2007). As localizações epicentrais foram determinadas utilizando-se o método de movimento de partícula (*Particle Motion*) com o programa Hypocenter (Lienert, 1994), cuja grande vantagem é poder determinar, sob certas condições, o epicentro de um sismo com dados de uma única estação triaxial.

As magnitudes dos eventos locais foram calculadas usando uma fórmula de magnitude de duração (m_D) e para o cálculo das magnitudes dos sismos regionais (m_R) utilizou-se a fórmula desenvolvida por Assumpção (1983).

Figura 1 – Mapa com a localização do futuro reservatório do AHE Jirau e das estações SAML e JIR1, cujos dados foram utilizados na confecção deste relatório. São mostrados também as localizações do reservatório da UHE Samuel, pertencente à ELETRONORTE, e do reservatório da UHE de Santo Antônio.

3. ATENDIMENTO AOS OBJETIVOS DO PROGRAMA

O objetivo principal do Programa de Monitoramento Sismológico é caracterizar e acompanhar, através do monitoramento sismográfico em nível local e regional, a evolução das atividades sísmicas, antes, durante e após o enchimento do futuro reservatório do AHE Jirau. Este objetivo está sendo devidamente atendido nesta fase de pré-enchimento do reservatório, visto que as estações SAML e JIR1 tem apresentado um excelente desempenho operacional e todos os dados gerados foram analisados e os resultados apresentados em relatórios analíticos de sismicidade.

A Tabela 1 apresenta o status de atendimento aos demais objetivos deste Programa.

Tabela 1 -	Atendimento	aos Ob	ojetivos	do P	rograma

Objetivo	Status	Justificativa
Atualização dos eventos sísmicos registrados na região em um raio de 350 km do eixo da barragem.	Em atendimento.	A partir do início do monitoramento com as estações SAML e JIR1, todos os registros sísmicos ocorridos neste raio de abrangência passaram a ser atualizados, conforme apresentados no presente relatório e em relatórios anteriores.
Transmissão dos dados e deração de sismodramas redistrados		Os dados da estação SAML são enviados via satélite e podem ser acessados livremente. A transmissão dos dados gerados na estação JIR1 é realizada pela empresa Primenet Informática Ltda.
pelos sismógrafos para detectar possíveis atividades sísmic induzidas após o enchimento do reservatório.	Em atendimento.	Vale ressaltar que os dados adquiridos por esta estação são armazenados continuamente nos discos de memória do registrador DAS-130, de modo que na hipótese de falha no sistema de transmissão de dados da estação JIR1 esses podem ser recuperados dos HD do registrador DAS-130.
Avaliação dos dados sismológicos obtidos.	Em atendimento.	Conforme mencionado anteriormente, os dados sismológicos gerados pelas estações SAML e JIR1 estão sendo analisados pelo CDT/UnB. No presente relatório são sumarizados os resultados da análise e da interpretação dos dados sísmicos gerados no período de dezembro de 2011 a fevereiro de 2012.
Fornecimento de subsídios ao Programa de Comunicação Social para realização de campanha de esclarecimento à população.	Em atendimento.	Conforme as etapas do Programa de Monitoramento Sismológico são realizadas coletas de diversas informações, que foram repassadas ao Programa de Comunicação Social, sendo divulgadas através de palestras e meios de comunicações da região.

4. ATENDIMENTO ÀS METAS DO PROGRAMA

As metas definidas no Programa apresentado no PBA e o *status* de atendimento às mesmas estão apresentados na Tabela 2 a seguir.

Meta	Status	Justificativa
Determinar as condições específicas de monitoramento que devem ser adotadas.	Atendido.	As 02 (duas) estações usadas no monitoramento da área do futuro reservatório do AHE Jirau estão em pleno funcionamento. O monitoramento sísmico da área foi iniciado mais de 01 (um) anoe 6 meses antes do enchimento previsto do reservatório, atendendo ao previsto no PBA. A implantação de uma segunda estação na área do futuro reservatório do AHE de Jirau está condicionada a um parecer técnico a ser emitido pelo responsável pela implantação e execução do Programa de Monitoramento Sismológico do AHE Jirau. Entretanto, pode-se afirmar que o monitoramento sismológico na fase pré-enchimento do reservatório vem sendo atendido a contento Além disso, a ESBR se compromete em instalar uma estação acelerográfica na estruturada barragem para medir as acelerações triaxiais produzidas por sismos que excitem a barragem com intensidades suficientes para superar o ruído natural do local. Vale ressaltar que o monitoramento acelerográfico de uma barragem acontece apenas na fase de operação do empreendimento.
Determinar epicentros e magnitudes de sismos que possam, de alguma forma, afetar a estrutura da barragem e/ou populações de áreas circunvizinhas ao empreendimento.	Em atendimento.	Esses parâmetros vem sendo determinados para eventos de interesse registrados desde o início do monitoramento sismológico.
Avaliar as intensidades, por meio da aplicação de questionários sísmicos, causados por terremotos naturais ou induzidos na Área de Influência Indireta do empreendimento.	Não aplicável para o momento	Não foi o caso ainda, visto que nenhum sismo natural foi percebido pela população. Este questionário sísmico, que subsidia as observações instrumentais, somente é aplicado quando da ocorrência de sismos sentidos pela população local.
Correlacionar, quando possível, sismos e feições geológicas e estruturais da área.	Não aplicável para o momento.	Não foram detectados sismo naturais na área. Portanto, não houve a necessidade de correlacionar sismicidade com feições geológicas.
Monitorar as atividades sísmicas eventualmente induzidas pela formação do futuro reservatório.	Não aplicável para o momento.	Meta a ser atingida após a formação do futuro reservatório do AHE Jirau.
Orientar a continuidade do monitoramento sismológico durante a operação da usina.	Não aplicável para o momento.	Meta a ser atingida até o enchimento do futuro reservatório do AHE Jirau, previsto para julho de 2012.
Desenvolver campanha de esclarecimento sobre sismicidade natural e induzida, dirigida à população da área de influência do aproveitamento.	Em atendimento	Foram realizadas palestras no Grupo de Trabalho (GT) de Meio Ambiente, com a participação de várias instituições públicas da região (CPRM, IBAMA-RO, SIPAM, UNIR, DNPM, ICMBIO, SEMA/Porto Velho e SEDAM). Divulgações e reportagens através do site da ESBR e os meios comunicações sobre o Programa em geral e sismicidade induzida e natural.

 Tabela 2 - Atendimento às Metas do Programa

5. MÉTODO DE INVESTIGAÇÃO

Os dados produzidos pelas estações SAML e JIR1 foram analisados com o auxílio da ferramenta Geotool (Miljanovic, 2007). O programa de localização utilizado foi o Hypocenter (Lienert, 1994), cuja grande vantagem é poder localizar, sob certas condições, o epicentro de um sismo com dados de uma única estação triaxial.

As magnitudes dos eventos locais foram calculadas usando a fórmula de magnitude de duração (mD = Ao + A1 x log D), detalhada na seção 5.1. As magnitudes dos sismos regionais foram calculadas usando a fórmula desenvolvida por Assumpção (1983). Na sequência, é apresentada uma breve exposição desses 02 (dois) conceitos, seguida de informações sobre a forma como eles foram empregados na investigação da sismicidade na área de influência do futuro reservatório do AHE Jirau.

5.1. Magnitude

A magnitude de um terremoto está relacionada com o seu tamanho. Desta forma, é possível, apenas com essa informação, avaliar o seu poder de destruição, uma vez que expressa a energia sísmica liberada na área de ruptura. Diferentes fórmulas foram desenvolvidas com o objetivo de estabelecer uma medida quantitativa única para o tamanho de um terremoto. Isto estabeleceu um marco no advento da sismologia quantitativa, especialmente no momento em que se passou a registrar os terremotos de forma sistemática, utilizando-se sismógrafos padronizados.

A magnitude é uma medida adimensional, com aplicações no estudo de sismicidade, engenharia sísmica, cálculo de perigo sísmico, dentre outras. Este conceito foi introduzido por Richter (1935), quando elaborou a escala de magnitude MI para os terremotos do sul da Califórnia. No Brasil, Assumpção (1983) desenvolveu fórmulas de magnitude para sismos brasileiros, equivalentes a magnitudes de ondas de corpo (m_b).

A magnitude é calculada a partir de leituras de características do registro no sismograma, como amplitude, frequência, duração do registro, dentre outras. Como apenas uma parcela da energia sísmica liberada no foco atinge o receptor e considerando, também, que as perdas por espalhamento e absorção dependem das características elásticas do meio, é de se esperar certa inconsistência entre as diversas medidas de magnitudes, especialmente em se tratando de sismos locais.

5.1.1. Magnitudes de Duração (m_D)

As escalas de magnitude de duração (mD) desenvolvidas para resolver o problema de saturação de sinais em registradores de baixa faixa dinâmica são baseadas na duração do

sinal. No caso de eventos sísmicos próximos, a duração total do sinal (o parâmetro D) é controlada, principalmente, pelo comprimento de sua cauda (coda do sinal). Uma descrição teórica da envoltória da cauda como uma função do decaimento exponencial com o tempo foi apresentada por Herrmann (1975). Ele propôs uma fórmula de magnitude de duração, qual seja:

$$m_{\rm D} = A_{\rm o} + A_1 \, x \log D + A_2 \, x \, \Delta \tag{1}$$

onde A_0 , A_1 e A_2 são constantes; D é a duração do sinal e Δ é a distância epicentral. Outra equação de magnitude de duração com a mesma estrutura foi definida por Lee e Lahr (1975) para a Rede Sismográfica do norte da Califórnia. A duração do evento é medida a partir da primeira chegada da onda P até o ponto do sismograma onde a amplitude do sinal é de algumas contagens digitais (CD), maior do que o nível do ruído natural; cerca de 50 CD, para sismógrafos de 140 dB de faixa dinâmica. O Programa Hipocenter (Lienert, 1994) emprega a equação seguinte (2) para calcular as magnitudes de duração.

$$m_{\rm D} = A_{\rm o} + A_1 \log x \, D \tag{2}$$

onde os parâmetros são: $A_o = -1.61$, $A_1 = 2.05$ e D é a duração do sinal (em segundos), medido na componente vertical de movimento.

Assim, é possível obter rápidas estimativas de magnitudes de eventos locais, mesmo sem conhecer a distância exata entre as estações e a fonte.

Como as estruturas crustais variam de região para região, a dispersão e a atenuação das ondas sísmicas também variam. Dessa forma, não existe uma fórmula geral aplicável em todas as regiões da Terra. Os coeficientes da equação (1) podem ser diferentes. Por isso, eles devem ser determinados localmente para cada rede ou estação e apropriadamente ajustados para a melhor escala de magnitude local disponível, baseada na amplitude do sinal. Além disso, a equação resultante dependerá também da distância D, das condições de ruído local e da sensibilidade da estação sismográfica. Futuramente, será necessário determinar as constantes da equação (2) para sismos locais na área de influência do reservatório do AHE Jirau. Enquanto isso, serão usados coeficientes genéricos apropriados para a área.

5.2. Localização Hipocentral

A localização precisa de terremotos é um assunto de enorme interesse em diversos campos da sismologia, especialmente em sismotectônica, pois permite associar a distribuição espacial dos hipocentros com falhas geológicas ativas e estas com processos dinâmicos presentes no interior da Terra.

9

Não é um problema muito simples de ser resolvido, pois além de uma boa formulação matemática e computacional, exige registros de boa qualidade, feitos por um número suficiente de estações sismográficas, bem distribuídas em torno da fonte sísmica.

Outro aspecto importante a ser considerado na solução do problema de localização é a adoção de um modelo realístico de velocidade, baseado em outros métodos geofísicos e em informações geológicas da área em estudo (Lay & Wallace, 1995).

A localização de um terremoto é feita determinando-se as coordenadas espacial e temporal de seu foco, isto é, determinando-se o hipocentro (x_0, y_0, z_0) e o tempo de origem (T_0) . O hipocentro é a localização física do foco (latitude, x_0 ; longitude, y_0 e profundidade, z_0). O tempo de origem é o momento de ocorrência do terremoto e o epicentro é a projeção do hipocentro na superfície, representado pelas coordenadas x_0 e y_0 .

Para grandes terremotos, quando são grandes as dimensões da superfície de ruptura e que envolvem a quebra de blocos falhados da ordem de centenas de quilômetros, o hipocentro pode ser localizado, em princípio, em algum lugar da superfície de ruptura (Havskov, 2001). Entretanto, como o hipocentro e o tempo de origem são determinados a partir dos tempos de chegadas de diferentes fases do sinal sísmico, geradas a partir do início da ruptura e registradas em diferentes estações de uma rede sismográfica, a localização calculada corresponde ao ponto onde se iniciou o processo de ruptura e o tempo de origem corresponde ao tempo de início da ruptura. Sabe-se, por outro lado, que o tempo de deslocamento da ruptura é muito menor do que o tempo de propagação das perturbações geradas em diferentes pontos da superfície de ruptura, isto é, a velocidade da energia sísmica que se propaga na forma de ondas (P e S, por exemplo) é cerca de três vezes maior do que a velocidade com que os blocos falhados se movimentam, um em relação ao outro. Assim, mesmo aquelas ondas emitidas a partir da extremidade final de uma longa falha chegam mais tarde do que as geradas no início da ruptura (Lay & Wallace, 1995 e Monge, 1997).

Ao longo dos últimos anos, foram desenvolvidas muitas técnicas para localização de terremotos, tais como: localização com uma única estação, pelo uso de método gráfico, de métodos interativos (1-D) e de métodos probabilísticos (3-D), dentre outras. Os métodos interativos são amplamente empregados em caso de redes sismográficas e aplicados a diferentes programas, a saber: Hypocenter (Lienert, 1994), Hypoinverse (Klein, 2000), Hypo71PC (Lee & Lahr, 1975), VELEST (Kissling et al, 1995) e NonLinLoc (Lomax, 2005).

5.2.1. Localização com uma Única Estação

Apesar dos terremotos serem mais comumente localizados usando-se os tempos de chegada das ondas sísmicas em diferentes estações de uma rede sismográfica, é possível também localizar um tremor de terra com dados de uma única estação triaxial (estação que registra o movimento do chão em 03 (três) direções tri-ortogonais: Z (vertical), NS (norte-sul) e EW (leste-oeste)). Isto ocorre porque as ondas compressionais (P) têm um alto grau de polarização linear e os seus movimentos de partículas coincidem com o azimute reverso (backazimuth) de propagação da energia contida nas ondas compressionais (P). Dessa forma, podem-se usar as amplitudes e as polaridades das componentes de movimento do chão, nas direções NS, EW e Z, para se determinar o azimute reverso do epicentro (Solares & Moreno, 1997), conforme exemplo na Figura 2. É importante salientar que as componentes sismográficas (EW, NS e Z) devem ter a mesma resposta em frequência e polaridades corretas. Caso contrário, o método de localização produz erros, tanto maiores quanto maiores forem os desajustes.

Figura 2 - Esquema do método de determinação do epicentro de um terremoto usando as amplitudes das primeiras chegadas da onda P, registradas por um único sismógrafo triaxial.

Três outros aspectos importantes devem ser observados relativamente à localização com apenas uma estação:

 As componentes do movimento do chão devem estar bem orientadas, isto é, o sismômetro deve ter sido corretamente orientado no ato de sua instalação;

 A polaridade da componente vertical (componente Z) deve ser conhecida e preferencialmente, neste caso, o primeiro movimento do chão para cima deve produzir no registro sismográfico um movimento também para cima; 3) Uma boa localização somente pode ser garantida para chegadas fortes e impulsivas. Baixa relação sinal-ruído (*SNR – Signal Noise Ratio*), que, inclusive, torna o sinal mais vulnerável ao efeito de *aliasing* (efeito de amostragem introduzido na conversão do sinal analógico para digital), pode induzir erros na determinação do azimute.

O sentido da frente de onda é determinado pelo vetor A_z . Se A_z for negativo, o vetor resultante A_R aponta na direção da fonte e, se for positivo, a fonte está em sentido contrário. O ângulo entre o vetor resultante (A_R) e o norte verdadeiro é o azimute reverso da fonte. No caso, o ângulo α = arctg (A_W/A_S). Entretanto, podem existir de 0 a 360° possibilidades de localizações de fonte que satisfaçam o valor de α . A distância da fonte até a estação de registro pode ser obtida a partir da diferença entre os tempos de chegada das ondas S e P ($T_S - T_P$). Para longas distâncias, são usadas tabelas de tempo de percurso (Jefreys & Bullen, 1967).

Para um meio homogêneo (onde as propriedades elásticas das rochas e, portanto, as velocidades, não variam com a posição) e isotrópico (onde as propriedades não variam com a direção), os tempos de chegadas das ondas P e S (T_P e T_S) são dados por:

$$T_{P} = T_{0} + D/V_{P} e T_{S} = T_{0} + D/V_{S}$$
 (3)

onde D é a distância epicentral, $V_P e V_S$ são as velocidades das ondas P e S, respectivamente, e T₀ é o tempo de origem. Eliminando-se T₀ em (3), a distância epicentral, D, pode ser calculada como:

$$D = (T_s - T_p) \times \frac{V_p \cdot V_s}{V_p - V_s}$$
(4)

Dividindo-se o numerador e o denominador por V_S, temos:

$$D = (T_{s} - T_{p}) \frac{V_{p}}{V_{p} / V_{s} - 1}$$
(5)

onde $rac{V_{\scriptscriptstyle P}}{V_{\scriptscriptstyle p}\,/V_{\scriptscriptstyle S}\,-1}$ é uma constante.

Para um sólido de Poisson, o que corresponde à maioria das rochas (coeficiente de Poisson, σ = 0,25) (Borman *et al.*, 2002), tem-se que V_P/V_S = 1,73. Para V_P = 6,2 km/s, que é um valor razoável para muitos modelos locais, tem-se:

$$D = 8.5 (T_{\rm S} - T_{\rm P}), \tag{6}$$

Finalmente, conhecendo D, é possível determinar o tempo de origem (T_0) a partir de (3) e, dessa forma, determinar a localização do sismo com dados de apenas uma estação de 03 (três) componentes.

A técnica discutida acima é de grande utilidade no caso de sismos de pequena magnitude, registrados por uma única estação ou em caso de zonas com baixa cobertura azimutal de estações onde existe uma única estação sismográfica.

6. ANÁLISE DE DADOS

Os dados produzidos no período, para efeito de análise, são divididos em eventos locais (distâncias epicentrais de até 150 km), regionais (distâncias epicentrais superiores a 150 km até 1.500 km) e distantes ou telessismos (acima de 1.500 km). Os eventos locais e regionais são classificados ainda como naturais, cuja origem está associada à tectônica de placas, que geram as forças que produzem naturalmente as rupturas ou os sismos, e artificiais, como as detonações realizadas nos Canteiros de Obras dos AHE Jirau e Santo Antônio, bem como em pedreiras da região.

No período de dezembro de 2011 a fevereiro de 2012, foram detectados 392 (trezentos e noventa e dois) eventos sísmicos, sendo 123 (cento e vinte e três) eventos classificados como locais artificiais (detonações), 7 (sete) eventos regionais artificiais (detonações), 24 (vinte e quatro) eventos regionais naturais (tectônicos), além de 238 (duzentos e trinta e oito) eventos distantes (telessismos). No período não foram detectados eventos locais naturais.

A discriminação entre eventos locais naturais e artificiais (detonações) se fundamentou nos horários de ocorrências, nas polaridades da primeira chegada da onda P e na densidade espectral de energia nas baixas frequências. Detonações, por serem fontes superficiais, geralmente produzem ondas de superfície de maior energia quando registradas em estações próximas.

6.1. Eventos Detectados no Período de Dezembro de 2011 a Fevereiro de 2012

6.1.1. Eventos Locais (Artificiais)

No período dezembro de 2011 a fevereiro de 2012, foram registrados 123 (cento e vinte e três) eventos locais classificados como eventos artificiais (detonações), sendo 3 (três) registrados apenas pela estação SAML, 6 (seis) pelas estações SAML e JIR1 e 114 (cento e quatorze) pela estação JIR1, conforme mostram a Figura 4 (distribuição dos eventos por categoria).

Foi observado nos registros das estações SAML e JIR1 que o percentual de semelhança entre os eventos é superior a 75%. Com isso, pressupõe-se que as fontes das atividades sejam as mesmas, considerando-se que a realização de estudos comparativos do padrão das formas de ondas com as análises espectrais dos sinais sísmicos confirmaram essa evidência.

Distribuição dos eventos locais por estação

Figura 4 – Distribuição do número de eventos locais artificiais detectados pelas estações SAML e JIR1.

Tabela 3 – Distribuição dos eventos da Tabela 4 por distâncias epicentrais associados a possíveis locais de ocorrência das atividades detectadas pelas estações sismográficas SAML e JIR1 no período de dezembro de 2011 a fevereiro de 2012.

Estação	Intervalo (km)	Provável origem (Localidade)			
JIR1	25 ≤ ∆ (km) ≤ 66	Canteiro de obras do AHE Jirau/RO			
JIR1	111 ≤ Δ (km) ≤ 154	Canteiro de obras do AHE Santo Antônio/RO e/ou pedreiras próximas à Porto Velho/RO			
SAML	79 ≤ Δ (km) ≤ 94	Canteiro de obras do AHE Santo Antônio/RO e/ou pedreiras próximas à Porto Velho/RO			
SAML	160 ≤ ∆ (km) ≤ 170	Canteiro de obras do AHE Jirau/RO			

Do total de eventos locais artificiais detectados, observa-se que a grande maioria está associado a detonações realizadas nos canteiros de obras dos AHE Santo Antônio e Jirau, particularmente no AHE Jirau, com algumas poucas localizadas em pedreiras próxima à capital Porto Velho/RO e adjacências. Os desmontes associados aos canteiros de obras foram confirmados pelo controle de detonações fornecido pela ESBR.

Como comentado em relatórios anteriores, os eventos detectados pela estação SAML, com distâncias epicentrais superiores a 150 km estão relacionados com atividade de

desmonte no Canteiro de Obras do AHE de Jirau. Apesar de não corresponderem à classificação de eventos locais adotada para este relatório, foram classificados como tais pelo fato de terem sido também registrados pela estação JIR1. Esses eventos foram confirmados pelo controle de detonações enviado pela ESBR.

A Figura 5 apresenta o registro das formas de ondas do evento de número 33 da Tabela 4.

NIO	Data	Hora	S-P	Δ	Mag.	Ectopão
IN°	(dd/mm/aa)	(hh:mm:ss,s)	(seg.)	(km)	(m _D)	Estação
1	1/12/11	07:59:26.015	15.220	124	2.1	JIR1
2	1/12/11	08:20:04.205	15.090	124	2.7	JIR1
3	1/12/11	09:32:21.324	14.650	120	-	JIR1
4	1/12/11	09:33:00.640	14.710	120	3.1	JIR1
5	1/12/11	09:58:10.430	14.660	120	3.1	JIR1
6	1/12/11	10:03:17.530	12.350	102	2.2	JIR1
7	1/12/11	10:50:12.004	14.110	115	2.8	JIR1
8	1/12/11	09:16:59.245	2.220	18	1.2	JIR1
9	1/12/11	10:02:11.515	12.020	98	-	JIR1
10	1/12/11	10:12:57.950	3.300	27	-	JIR1
11	1/12/11	10:14:17.036	3.539	29	-	JIR1
12	1/12/11	10:14:41.040	3.770	30	3.1	JIR1
13	1/12/11	17:53:02.815	0.750	7	0.7	JIR1
14	2/12/11	10:09:21.103	4.232	34	2.7	JIR1
15	3/12/11	07:48:28.830	3.675	30	3.0	JIR1
16	3/12/11	10:25:36.299	4.006	33	2.4	JIR1
17	4/12/11	09:51:36.900	8.420	69	2.3	SAML
18	6/12/11	09:57:31.205	10.360	85	2.8	SAML
19	6/12/11	17:11:11.983	3.775	31	2.9	JIR1
20	7/12/11	10:07:25.393	4.112	34	2.7	JIR1
21	7/12/11	10:30:36.855	4.050	34	2.1	JIR1
22	8/12/11	09:54:16.806	12.710	104	3.5	JIR1
23	8/12/11	01:31:02.086	3.399	28	2.7	JIR1
24	8/12/11	18:14:07.314	6.651	55	3.2	JIR1
25	8/12/11	22:09:15.575	3.890	32	2.2	JIR1
26	8/12/11	22:10:30.020	3.175	26	2.9	JIR1
27	9/12/11	01:03:03.606	9.099	75	2.4	JIR1
20	10/10/11	09:54:50.619	8.150	67	2.0	SAML
20	10/12/11	09:54:55.908	15.890	131	3.0	JIR1
29	10/12/11	09:40:16.523	6.872	57	2.7	JIR1
30	10/12/11	10:23:29.015	4.020	33	2.8	JIR1
31	11/12/11	10:04:48.864	14.480	119	3.0	JIR1
20	10/10/11	10:00:56.370	7.101	58	0.7	SAML
32	13/12/11	10:01:01.805	15.204	124	2.1	JIR1
22	12/12/11	10:20:33.956	4.029	33	2.0	JIR1
33	13/12/11	10:20:55.615	12,702	104	2.ŏ	SAML

Tabela 4 – Relação dos prováveis eventos artificiais locais detectados pelas estações sismográficas SAML e JIR1 no período de dezembro de 2011 a fevereiro de 2012.

NIO	Data	Hora	S-P	Δ	Mag.	Ectopão
IN°	(dd/mm/aa)	(hh:mm:ss,s)	(seg.)	(km)	(m _D)	Estação
34	17/12/11	10:08:13.945	14.440	118	3.0	JIR1
35	17/12/11	09:22:02.065	3.560	29	2.5	JIR1
36	17/12/11	10:19:59.335	4.300	35	2.2	JIR1
37	18/12/11	09:59:20.085	13.790	113	-	JIR1
38	18/12/11	10:00:00.195	13.680	112	2.8	JIR1
39	20/12/11	10:12:02.513	4.142	34	2.4	JIR1
40	21/12/11	10:03:57.030	13.870	114	2.8	JIR1
41	21/12/11	09:48:26.900	11.540	85	2.3	SAML
42	22/12/11	10:44:20.577	4.198	34	2.4	JIR1
43	26/12/11	19:59:22.515	1.970	16	1.9	JIR1
44	27/12/11	07:34:43.146	3.119	25	2.5	JIR1
45	29/12/11	09:58:19.969	9.102	75	20	SAML
45	20/12/11	09:58:25.534	14.961	123	2.0	JIR1
46	28/12/11	08:35:37.636	4.069	34	2.5	JIR1
47	28/12/11	10:12:42.665	3.740	30	2.3	JIR1
48	28/12/11	10:09:01.795	3.910	32	2.5	JIR1
49	28/12/11	10:35:00.945	4.020	33	3.0	JIR1
50	29/12/11	09:55:07.425	15.170	124	3.0	JIR1
51	20/12/11	10:04:08.670	8.200	67	2.4	SAML
51	30/12/11	10:04:14.643	15.612	128	3.4	JIR1
52	30/12/11	09:42:38.663	3.282	27	2.5	JIR1
53	30/12/11	09:42:38.663	3.612	29	2.8	JIR1
54	4/1/12	09:58:05.448	14.340	117	2.6	JIR1
55	4/1/12	10:15:23.985	13.560	111	3.0	JIR1
56	6/1/12	10:14:41.050	14.580	120	2.8	JIR1
57	06/1/12	10:25:27.840	3.884	32	2.1	JIR1
58	07/1/12	08:12:01.409	4.096	34	-	JIR1
59	24/1/12	08:06:49.460	3.906	32	2.0	JIR1
60	24/1/12	10:37:33.450	4.254	34	2.0	JIR1
61	25/1/12	09:56:41.810	16.576	137	2.7	JIR1
62	25/1/12	10:27:05.646	4.467	37	1.9	JIR1
63	25/1/12	10:54:33.429	3.916	32	2.0	JIR1
64	25/1/12	11:24:07.869	11.911	97	1.9	JIR1
65	26/1/12	10:02:24.262	16.432	136	-	JIR1
66	26/1/12	09:49:08.167	3.984	32	1.4	JIR1
67	27/1/12	10:16:28.582	4.288	35	2.0	JIR1
68	27/1/12	10:48:46.896	4.491	37	-	JIR1
69	28/1/12	18:01:31.076	14.816	121	-	JIR1
70	28/1/12	10:07:20.651	3.815	31	2.3	JIR1
71	31/1/12	21:31:04.161	13.826	113	2.4	JIR1
72	1/2/12	10:09:57.855	15.720	129	2.9	JIR1
73	01/2/12	10:25:26.825	4.020	33	2.4	JIR1
74	01/2/12	10:44:28.165	3.920	32	2.3	JIR1
75	02/2/12	10:09:17.726	6.969	57	-	JIR1
76	02/2/12	10:10:34.130	3.855	32	2.7	JIR1
77	02/2/12	10:58:24.575	3.410	28	2.5	JIR1
78	03/2/12	07:34:10.286	6.056	50	2.8	JIR1

NIO	Data	Hora	S-P	Δ	Mag.	Estação
IN°	(dd/mm/aa)	(hh:mm:ss,s)	(seg.)	(km)	(m _D)	Estação
79	4/2/12	04:36:46.865	14.208	116	3.4	JIR1
80	04/2/12	09:47:27.695	3.680	30	2.8	JIR1
81	04/2/12	10:15:40.645	4.180	34	2.4	JIR1
82	04/2/12	17:12:26.865	8.100	66	2.7	JIR1
83	5/2/12	10:10:08.985	13.820	113	-	JIR1
84	5/2/12	10:36:09.255	14.590	120	2.9	JIR1
85	7/2/12	10:05:57.265	15.550	128	-	JIR1
86	7/2/12	10:07:27.915	15.360	126	2.8	JIR1
87	07/2/12	10:21:23.065	4.850	39	2.6	JIR1
88	07/2/12	10:45:11.325	4.180	34	2.7	JIR1
89	07/2/12	10:47:47.445	4.170	34	2.8	JIR1
90	8/2/12	09:57:59.325	14.050	115	-	JIR1
91	08/2/12	10:31:04.915	4.180	34	2.4	JIR1
92	9/2/12	10:02:00.165	14.180	116	2.8	JIR1
93	9/2/12	21:44:05.955	13.140	107	2.8	JIR1
94	09/2/12	07:58:55.415	1.880	16	2.3	JIR1
95	09/2/12	10:51:04.655	3.280	27	2.3	JIR1
96	10/2/12	09:57:23.025	14.900	122	2.9	JIR1
97	10/2/12	07:57:38.725	4.200	34	2.5	JIR1
98	11/2/12	10:01:08.385	14.970	123	2.9	JIR1
99	11/2/12	10:21:51.715	4.640	38	2.7	JIR1
100	11/2/12	20:31:03.105	4.930	40	2.8	JIR1
101	13/2/12	11:51:38.156	16.599	137	2.9	JIR1
102	13/2/12	15:23:41.995	6.890	57	2.7	JIR1
103	14/2/12	10:07:13.485	15.310	125	-	JIR1
104	14/2/12	10:07:53.315	15.101	124	3.0	JIR1
105	14/2/12	22:45:27.065	13.450	111	2.7	JIR1
106	14/2/12	10:02:46.644	3.611	29	2.8	JIR1
107	15/2/12	10:00:24.615	14.662	120	2.3	JIR1
108	15/2/12	10:01:41.429	4.006	33	2.0	JIR1
109	16/2/12	10:11:02.208	15.327	125	2.5	JIR1
110	16/2/12	10:12:09.492	15.112	124	2.5	JIR1
111	16/2/12	09:57:52.327	4.223	34	2.2	JIR1
112	17/2/12	10:15:15.482	14.022	115	2.4	JIR1
113	17/2/12	10:16:23.404	13.837	113	2.2	JIR1
114	17/2/12	10:02:52.732	4.326	35	2.3	JIR1
115	17/2/12	10:52:21.435	4.430	36	2.2	JIR1
116	17/2/12	10:53:55.383	4.285	35	2.3	JIR1
117	18/2/12	10:10:38.712	14.803	121	2.0	JIR1
118	18/2/12	07:45:35.487	3.647	29	2.2	JIR1
119	18/2/12	10:58:41.252	4.279	35	2.4	JIR1
400	10/0/10	06:04:57.423	4.090	34	0.0	JIR1
120	19/2/12	06:05:18.700	20.100	170	2.2	SAML
121	20/2/12	15:31:18.068	16.457	136	2.5	JIR1
122	22/2/12	10:58:41.498	3.653	30	2.3	JIR1
123	23/2/12	02:31:26.834	12.652	104	2.4	JIR1

Figura 5 - Registro das formas de ondas nas estações JIR1 (três traços superiores) e SAML (três traços inferiores) do evento artificial (detonação) ocorrido no dia 13/12/2011, às 10:20:33,956 UTC (JIR1). O evento foi localizado a uma distância de 33 km da estação JIR1 e 104 km da estação SAML, sendo interpretado como detonação no Canteiro de Obras do AHE Jirau. Estimou-se para esse evento uma magnitude de 2,8 m_D (evento 22 da Tabela 4).

Figura 6 – Mapa com os raios epicentrais (vermelho – estação JIR1) e (preto – estação SAML) dos eventos artificiais (detonações) ocorridos nos Canteiros de Obras dos AHE Jirau e Santo Antônio, detectados pelas estações JIR1 e SAML no período de dezembro de 2011 a fevereiro de 2012. As estrelas vermelha (AHE Jirau) e preta (AHE Santo Antônio) correspondem às intersecções dos raios epicentrais para as estações JIR1 e SMAL, prováveis pontos de realização de detonações.

6.1.2. Eventos Regionais (Artificiais)

Durante o período, as estações SAML e JIR1 detectaram 7 (sete) eventos regionais artificiais (detonações). Os resultados obtidos pela análise comparativa de formas de ondas e de distâncias epicentrais (S-P) demonstram um percentual de semelhança na assinatura sísmica dos traços gerados por esses eventos da ordem de 68 a 75%. Com isso, evidencia-se que as fontes sísmicas para essa atividade estão relacionados com atividades de desmonte por detonações.

NIO	Data	Hora	S-P	Δ	Mag.	Ectopão
IN*	(dd/mm/aa)	(hh:mm:ss,s)	(seg.)	(km)	(m _D)	ESIAÇÃO
1	20/12/11	00:35:37.115	17.620	151	3.1	JIR1
I	29/12/11	00:36:02.717	32.003	294		SAML
2	8/1/12	20:18:44.485	19.100	161	3.2	JIR1
3	8/2/12	09:58:45.255	55.050	549	3.0	JIR1
4	15/2/12	10:00:38.604	19.477	164	2.3	JIR1
5	20/2/12	15:31:18.068	16.457	136	2.5	JIR1
6	20/2/12	22:17:55.724	32.682	301	2.6	JIR1
7	22/2/12	17:29:02.802	22.935	196	2.8	JIR1

Tabela 5 – Relação dos eventos regionais artificiais (detonações) detectados pelas estaçõessismográficas SAML e JIR1 no período de dezembro de 2011 a fevereiro de 2012.

Figura 7 - Registro das formas de ondas na estação JIR1 do evento regional artificial ocorrido no dia 22/2/2012, às 17:29:02.802 UTC a uma distância de 196 km da estação.

6.1.3. Eventos Regionais (Naturais)

No período de dezembro de 2011 a fevereiro de 2012 foram registrados pelas estações SAML e JIR1 25 (vinte e cinco) eventos regionais naturais (tectônicos).

Esses eventos estão associados com a sismicidade gerada pela subducção da placa de Nazca sob a Placa Sul-Americana, o que a torna uma das regiões com maior atividade sísmica do planeta. Esta sismicidade ocorre nas mais variadas distâncias e profundidades, aqueles localizados a distâncias inferiores a 1500 km das estações foram caracterizados como sismos regionais naturais.

A Figura 8 apresenta o registro das formas de ondas, nas estações JIR1 e SAML, do evento regional natural registrado no dia 08/01/2012, às 20:10:12,374 UTC (JIR1), ocorrido a aproximadamente 229 km da estação JIR1 e 258 km da estação SAML (evento 7, Tabela 6).

NIO	Data	Hora	S-P	Δ	Mag.	Fotooão
IN*	(dd/mm/aa)	(hh:mm:ss,s)	(seg.)	(km)	(m _D)	Estação
1	6/12/11	18:07:04.616	20.669	176	3.0	JIR1
2	6/1/12	08:02:06.154	26.961	237	3.4	JIR1
2	0/1/12	08:02:11.880	34.540	321		SAML
2	6/1/12	08:11:39.505	25.558	222	3.1	JIR1
3		08:11:44.960	29.730	268		SAML
4	6/1/10	08:15:32.120	26.850	236	3.3	JIR1
4	0/1/12	08:15:37.920	29.844	269		SAML
Б	6/1/12	08:19:41.133	26.251	229	3.3	JIR1
5	0/1/12	08:19:46.090	29.201	263		SAML
6	6/1/12	08:35:23.973	25.420	220	3.0	JIR1
7	9/1/10	20:10:12.374	26.340	229	3.7	JIR1
1	0/1/12	20:10:17.578	28.792	258		SAML
0	0/1/12	04:18:29.530	24.100	207	3.8	JIR1
0	9/1/12	04:18:35.670	33.800	314		SAML
0	0/1/12	04:32:00.160	25.510	222	3.1	JIR1
9	9/1/12	04:32:05.516	34.954	327		SAML
10	0/1/12	04:35:32.300	28.380	254	3.2	JIR1
10	9/1/12	04:35:37.370	31.296	286		SAML
11	0/1/12	04:47:09.680	26.940	236	3.8	JIR1
11	9/1/12	04:47:15.140	34.020	316		SAML
10	0/1/12	07:24:21.826	26.490	232	3.1	JIR1
12	9/1/12	07:24:26.128	32.142	295		SAML
12	0/1/12	08:00:36.623	28.900	259	3.6	JIR1
15	9/1/12	08:00:42.236	31.682	290		SAML
14	0/1/12	08:43:30.542	30.100	272	-	JIR1
14	9/1/12	08:43:36.500	32.650	301		SAML
15	9/1/12	08:45:45.636	29.790	269	3.1	JIR1
16	9/1/12	09:58:27.040	28.131	250	2.4	JIR1
17	9/1/12	13:02:02.783	28.165	251	2.9	JIR1
18	0/1/12	13:19:01.830	29.270	264	2.7	JIR1
10	3/1/12	13:19:09.620	33.650	312		SAML
10	0/1/12	13:42:01.523	29.128	261	3.2	JIR1
19	3/1/12	13:42:07.170	33.500	310		SAML
20	15/2/12	08:19:34.870	37.152	350	2.9	SAML
21	15/2/12	08:19:42.478	28.931	259	-	JIR1
22	21/2/12	05:22:53.021	50.645	500	2.9	JIR1
23	22/2/12	18:03:22.951	72.305	740	3.6	JIR1
24	22/2/12	18:03:44.100	104.200	1096	3.5	SAML

Tabela 6 – Relação dos eventos regionais naturais detectados pelas estações sismográficas SAML eJIR1 no período de dezembro de 2011 a fevereiro de 2012.

Figura 8 - Registro das formas de ondas nas estações JIR1 (três traços superiores) e SMAL (três traços inferiores) do evento regional natural (tectônico) ocorrido no dia 08/01/2012, às 20:10:12,374 UTC (JIR1), a aproximadamente 229 km de JIR1 e 258 km de SAML.

6.1.4. Eventos Distantes (Telessismos)

No período de dezembro de 2011 a fevereiro de 2012 foram detectados pelas estações SAML e JIR1 238 (duzentos e trinta e oito) telessismos, confirmados a partir dos dados dos boletins sísmicos fornecidos pelo *"National Earthquake Information Service" (NEIS), do "United States Geological Survey" (USGS)*.

Figura 9 – Distribuição mensal dos eventos telessísmicos detectados pelas estações JIR1 e SAML no período de dezembro de 2011 a fevereiro de 2012.

Merecem destaques alguns eventos registrados pelas estações JIR1 e SAML. O primeiro ocorreu em 07/12/2012, às 22:27:43 (UTC), com magnitude 6,1 M_w, no Atacama, Chile (Figura 10). O segundo evento, no dia 30/12/2011, às 09:24:49 (UTC), com magnitude 5,1 m_B, próximo a costa central do Peru (Figura 11). O terceiro, no dia 31/12/2011, às

16:18:21 (UTC), com magnitude 5,3 m_B, em Salta, Argentina (Figura 12), e o quarto evento, no dia 23/01/2012, às 16:10:50 (UTC), com magnitude 5,8 m_B, em Bio-Bio, Chile (Figura 13).

A Figura 14 apresenta o mapa com as localizações epicentrais dos telessismos detectados pelas estações SAML e JIR1 no período deste relatório.

Figura 10 - Registro das formas de ondas, nas estações JIR1 (três traços superiores e verdes) e SAML (três traços inferiores e vermelho) do telessismo ocorrido em Atacama, Chile, no dia 07/12/2011, às 22:27:43 (UTC), com magnitude 6,1 M_w.

Figura 12 - Registro das formas de ondas, na estação JIR1 do telessismo ocorrido em Salta, Argentina, no dia 31/12/2011, às 16:18:21 (UTC), com magnitude 5,3 M_w.

Figura 13 - Registro das formas de ondas, na estação JIR1 do telessismo ocorrido em Bio-Bio, Chile, no dia 23/01/2012, às 16:10:50 (UTC), com magnitude 5,8 M_{w.}

Figura 14 – Mapa de localização epicentral dos telessismos detectados no período de dezembro de 2011 a fevereiro de 2012. Os tamanhos dos círculos vermelhos estão de acordo com as magnitudes e os triângulos azul e amarelo denotam, respectivamente, as localizações das estações SAML e JIR1.

7. INDICADORES

A Tabela 7 apresenta os indicadores do Programa de Monitoramento Sismológico do AHE Jirau e o status quanto ao seu atendimento.

Indicadores	Status	Justificativa
Ocorrência de sismos naturais e induzidos (dados relatados e registrados - históricos e atuais) em uma região circunscrita por um raio de 350 km a partir da barragem.	Em atendimento.	Esta informação, no que diz respeito aos sismos naturais, está sendo atualizada na medida em que estão sendo detectados e localizados eventos com essas características.
Eventos sísmicos registrados por estações sismográficas instaladas para controle de sismos locais e regionais.	Em atendimento.	A estação JIR1, instalada e operando na área de influência do futuro reservatório do AHE Jirau, dada a sua proximidade e sensibilidade, pode detectar quaisquer eventos de interesse, desde microtremores (magnitude de até zero na Escala Richter) até terremotos distantes grandes (magnitude 7 ou maior), pois os instrumentos são de banda larga com alta faixa dinâmica (140 dB).
Dados estruturais locais e regionais (alinhamentos aero magnéticos; presença de falhas; altitude das rochas) que indiquem uma possível relação sismo-estrutural na área de estudo.	Não aplicável para o momento.	Não houve necessidade de se correlacionar sismos com estruturas geológicas presentes na área do empreendimento.
Relatos de pessoas sobre os efeitos dos tremores de terra sentidos na região.	Não aplicável para o momento.	Não foi o caso até o momento.

Tabela 7 - Atendimento aos Indicadores do Programa

8. INTERFACES

As informações geradas no Programa de Monitoramento Sismológico, seja no período de implantação, seja no período de funcionamento e monitoramento, através das estações SAML e JIR1, subsidiam ao Programa de Comunicação Social.

9. ATENDIMENTO AO CRONOGRAMA DO PROGRAMA

O enchimento do futuro reservatório do AHE Jirau, conforme informado no primeiro Relatório Semestral do AHE Jirau, estava previsto para fevereiro de 2012, com a antecipação da geração de energia em relação ao Contrato de Concessão nº 002/2008-MME-UHE Jirau para o mês de março de 2012.

Desta forma, considerando a previsão de início do monitoramento sismológico 01 (um) ano antes do enchimento do reservatório, de acordo com o determinado no PBA, a estação sismográfica JIR1 foi instalada em fevereiro de 2011, conforme exposto no decorrer deste relatório. Vale ressaltar, entretanto, que o monitoramento sismológico foi iniciado em maio de 2010, com os dados da estação SAML.

Conforme informado ao IBAMA no dia 21/06/2011, através da correspondência VP/TS 1201-2011, em função dos atos de vandalismos ocorridos no Canteiro de Obras no mês de março de 2011, houve a necessidade de revisão do cronograma das obras do AHE Jirau e de replanejamento e priorização de determinadas atividades, de forma a permitir o cumprimento do compromisso assumido junto ao Governo Federal de antecipação da geração de energia do empreendimento. O enchimento do reservatório será realizado no mês de julho de 2012 e a operação comercial das unidades geradoras será iniciada em outubro de 2012.

Sendo assim, verifica-se que o monitoramento preenchimento ultrapassará o período de 01 (um) ano, atendendo integralmente ao previsto no PBA.

10. ATIVIDADES FUTURAS

Conforme previsto no PBA, durante o enchimento do futuro reservatório do AHE Jirau (Fase 2) e no período de 03 (três) anos após a entrada em operação (Fase 3) deste empreendimento, deverão ser feitas observações das possíveis atividades sísmicas naturais e/ou induzidas na área de influência do reservatório. Esta atividade será acompanhada por meio da emissão de relatórios semestrais contendo a análise e interpretação das formas de ondas de todos os eventos detectados pela estação JIR1 e pela estação acelerográfica (triaxial) a ser instalada no eixo da barragem no início de operação da Usina.

Na hipótese de ocorrência do fenômeno da SIR (Sismicidade Induzida/Desencadeada por Reservatório), a Energia Sustentável do Brasil por meio de sua equipe de consultores responsável pela execução do Programa de Monitoramento Sismológico do AHE Jirau irá avaliar a necessidade de instalar uma ou duas estações adicionais, além de usar os dados gerados pela estação SAML e pela estação do AHE Santo Antônio.

11. DISCUSSÃO E CONCLUSÕES

Os dados utilizados para a confecção desse relatório foram gerados pela estação SAML (Samuel/RO), que é parte da Rede Sismográfica Global (Global Seismographic Network (GSN)) disponível no IRIS-DMS (Incorporated Research Institutions for Seismology – Data Management System) e pela estação JIR1 (Jirau/RO), instalada pela ESBR no âmbito do Programa de Monitoramento Sismológico do AHE Jirau.

A classificação dos eventos fundamentou-se na análise do padrão das formas de ondas dos eventos locais e regionais, especialmente das detonações, para as quais, utilizando-se o critério de semelhança das formas de ondas e análise espectral dos sinais, pressupõe-se que a fonte geradora seja a mesma. Outra característica descritiva desses eventos é o alto conteúdo de energia nas frequências baixas, que indica tratar-se de sinais sísmicos gerados por fontes sísmicas superficiais, como é o caso de detonações em pedreiras.

Foram registrados, no trimestre dezembro de 2011 a fevereiro de 2012, 392 (trezentos e noventa e dois)) eventos sísmicos, sendo 123 (cento e vinte e três) eventos classificados como locais artificiais (detonações), 7 (sete) eventos regionais artificiais (detonações), 24 (vinte e quatro) eventos regionais naturais (tectônicos), além de 238 (duzentos e trinta e oito) telessismos (eventos distantes). Nesse período não foram detectados eventos classificados como locais naturais (tectônicos). A Figura 15 apresenta a distribuição dos eventos (percentual) de acordo com a classificação adotada para este relatório. Como se observa nesta figura, além da grande quantidade de telessismos, foi registrado também um grande número de eventos locais artificiais (detonações), relacionados às detonações feitas nos Canteiros de Obras dos AHE Jirau e Santo Antônio e em outros locais com atividades de exploração mineral nas proximidades de Porto Velho.

Distribuição da atividade sísmica neste relatório

Figura 15 – Distribuição da atividade sísmica de acordo com a classificação dos eventos adotada para este relatório. Como se observa não foi registrado nenhum evento natural local próximo ao empreendimento.

Em alguns eventos, foi constatada variação na distância epicentral, que pode ser atribuído a pequenos erros de leituras das fases P e S dos eventos devido à qualidade do sinal e/ou associado a locais distintos de detonações.

Brasília, 19 de abril de 2012.

Prof. Dr. Lucas Vieira Barros

12. REFERÊNCIAS BIBLIOGRÁFICAS

ASSUMPÇÃO, M., 1983. A Regional mag. for Brasil. Bull. Sism. Soc. Am. 73, 237-246.

BORMANN, P.; ENGDAHL, B. & KIND, R. **Seismic wave propagation and Earth models**, In: New manual of Seismological Observatory Practice v. 1. 70 p. 2002.

HAVSKOV, J. & OTTEMÖLLER, L. (Eds). **SEISAN: The Earthquake Analysis Software**, **Version 8.1**. Inst. of Solid Earth Physics, University of Bergen, Norway, 2008. 227 p.

HAVSKOV, J. Earthquake loc.. Instit. of Solid Earth Physics. Univ. of Bergen, Norway, 2001.

HERRMANN, R.B. **The use of duration as a measure of seismic moment and magnitude**. Bull. Seism. Soc. Am., 65, 899-913. 1975.

JEFFREYS, H. & BULLEN, K.E. Seismological Tables, British Assoc. Adv., SCI, 50pp. 1967.

KISSLING, E., KRADOLFER, U. & MAURER, H. **VELEST version 3.1 (10.4.95)**. Institute of Geophysics and Swiss Seism. Service, ETH-Hoenggerberg. 1995.

KLEIN, F. W. Hypoinverse - A FORTRAN program to solve for earthquake locations and magnitudes. Open file report 02-171. Version 1.0. USGS, 2000.

LAY, T. & WALLACE, T. C. **Modern Global Seismology**. Academic Press, International Geophysics series, V. 58, 1995. 521 p.

LEE, W.H.K. & J. C. LAHR, J. C. **HYPO71 (revised): A computer program for determining hypocenter, magnitude, and first motion pattern of local earthquakes**. U.S. Geological Survey Open-File Report p.75-311, 1975. 100 p.

LIENERT, B. R. Hypocenter 3.2: A computer Program for Locating Earthquakes Locally, regionally and Globally. Ha waii Institute of Geop. & Planetology, Corea, 1994.

LOMAX, A. NLLoc - Non-linear, earthquake location program. Earthquake Location in 3D models using Non-Linear search techniques. http://alomax.free.fr/nlloc/index.html, 2005.

MILJANOVIC, V. "Geotool – Software User Tutorial, CTBTO/IMS/IDC 1.0 13.07.2007. Vera Miljanovic Software User Tutorial <GT_tutorial_ver01.pdf>.

MONGE, J. B. B. **Problema de la localización del terremotos**, Publicación Técnica. Num. 31 p.17-47. Ministério de Fomento, Instituto Geográfico Nacional, Madrid, 31 p. 1997.

RICHTER, C. F. An instrumental earth. Mag. scale. Bull. Seism. Soc. Am., 25, 1-32. 1935.

SOLARES, J. M. M. & MORENO, C. L. **Determinación de la dirección de propagación en estaciones de três componentes Num**. 31 p.49-63. Ministerio de Fomento, Instituto Geográfico Nacional, Madrid, 1997.

ANEXO I

Relação dos telessismos detectados no período de dezembro de 2011 a fevereiro de 2012 pelas estações SAML (Samuel) e JIR1 (Jirau)

Dezembro/2013	1
---------------	---

EST	DATA	HORA DE CHEGADA	HORA DE ORIGEM	LAT	LONG	H (Km)	mb	Nº EST	REGIÃO
IIR1	1-Dec-11	034255	0350578	31.8/	83 81	10	51	83	WESTERN XIZANG
SAMI	1-Dec-11	214334	2135097	32.16	-40.29	10	5.2	239	
	2-Dec-11	070301	0657479	8 / 7	-82 77	10	5.0	233	
SAMI	2-Dec-11	070301	0657479	8.47	-82.77	47	5.0	243	
SAMI	2 Dec 11	211507	2055204	25.77	140.15	20	5.0	245	
	2-Det-11	041448	0442120	25.27	06.76	30	2.2	16	
	3-Dec-11	002258	0027112	17.00	-90.70	10	5.5	200	
	3-Dec-11	093238	0442120	25.52	-59.83	10	5.4	309	
SAIVIL	3-Dec-11	041725	0442120	35.52	-96.76	9	3.3	16	
SAML	3-Dec-11	093243	0927113	17.89	-59.83	10	5.4	309	EAST OF BARBUDA, LEEWARD
SAML	3-Dec-11	103241	1029403	-21.62	-/1.66	10	5.1	109	OFF THE COAST OF
SAML	4-Dec-11	004644	0047365	19.27	-66.53	34	3.0	6	PUERTO RICO REGION.
SAML	4-Dec-11	010305	0047365	19.27	-66.53	34	2.8	6	PUERTO RICO REGION.
SAML	4-Dec-11	154534	1535377	25.99	-111.81	10	5.2	372	BAJA CALIFORNIA SUR, MEXI
SAML	4-Dec-11	191246	1853023	-5.35	140.27	41	5.4	70	PAPUA, INDONESIA
SAML	6-Dec-11	180639	1818383	13.21	-52.62	15	4.7	105	NORTH ATLANTIC OCEAN
SAML	6-Dec-11	182358	1818383	13.21	-52.62	15	4.7	105	NORTH ATLANTIC OCEAN
JIR1	7-Dec-11	061318	0513174	17.66	-93.98	203	5.0	177	VERACRUZ, MEX.
JIR1	7-Dec-11	222731	2223101	-27.90	-70.92	23	6.1	468	ATACAMA, CHILE.
JIR1	7-Dec-11	222743	2223101	-27.90	-70.92	23	6.1	468	ATACAMA, CHILE.
SAML	7-Dec-11	053346	0513174	17.66	-93.98	203	5.0	177	VERACRUZ, MEX.
SAML	7-Dec-11	061340	0513174	17.66	-93.98	203	5.0	177	VERACRUZ, MEX.
SAML	7-Dec-11	120702	1157120	18.06	120.39	28	4.2	15	LUZON, PHILIPPINES.
SAML	7-Dec-11	135832	1338280	-1.44	126.51	29	5.8	319	KEPULAUAN SULA, INDONESIA
SAML	7-Dec-11	142809	1342562	-1.43	126.40	10	4.9	18	KEPULAUAN SULA, INDONESIA
SAML	8-Dec-11	011758	0113225	-27.90	-71.19	20	4.6	24	OFFSHORE ATACAMA, CHILE
SAML	8-Dec-11	071339	0633479	33.91	-118.33	16	2.7	12	GREATER LOS ANGELES AREA,
SAML	8-Dec-11	140941	1403021	13.24	-89.93	77	4.6	70	OFFSHORE EL SALVADOR
SAML	8-Dec-11	144048	1434101	13.33	-89.96	80	4.8	161	OFFSHORE EL SALVADOR.
SAML	8-Dec-11	162206	1612377	-58.64	-26.35	151	5.2	165	SOUTH SANDWICH ISL REGION
SAML	9-Dec-11	034714	0323355	27.20	53.14	20	4.9	125	SOUTHERN IRAN.
SAML	9-Dec-11	200127	1942562	47.00	144.62	378	5.8	619	SEA OF OKHOTSK.
SAML	9-Dec-11	220708	2135527	1.82	127.65	80	4.6	40	HALMAHERA, INDONESIA
SAML	10-Dec-11	144707	1429157	15.50	-94.74	28	4.3	25	OFFSHORE OAXACA, MEXICO
SAML	10-Dec-11	213206	2112354	-6.14	147.75	68	4.9	54	E NEW GUINEA REG,
JIR1	11-Dec-11	015524	0147256	17.99	-99.77	59	6.5	517	GUERRERO, MEXICO.
JIR1	11-Dec-11	100409	0954552	-55.99	-28.17	116	6.1	405	SOUTH SANDWICH ISLANDS
SAML	11-Dec-11	014235	0122456	28.07	129.40	37	5.7	363	RYUKYU ISLANDS, JAPAN.
SAML	11-Dec-11	015532	0147256	17.99	-99.77	59	6.5	517	GUERRERO, MEXICO.
SAMI	11-Dec-11	100410	0954552	-55.99	-28.17	116	6.1	405	SOUTH SANDWICH ISLANDS
SAMI	11-Dec-11	122859	1238560	39.43	94.26	10	4.6	47	GANSU-OINGHAI
SAMI	11-Dec-11	224153	2156033	-6.87	155.66	95	5.2	43	BOUGAINVILLE
SAML	12-Dec-11	144119	1502055	-12.18	166.88	230	4.9	150	SANTA CRUZ ISLANDS

EST	DATA	HORA DE CHEGADA hhmmsss	HORA DE ORIGEM hhmmsss	LAT	LONG	H (Km)	mb	Nº EST	REGIÃO
SAML	12-Dec-11	153644	1502208	36.43	71.17	138	4.9	58	HINDU KUSH REG, AFGHANIST
SAML	12-Dec-11	202935	2023599	-34.77	-71.75	41	4.8	46	LIBERTADOR O'HIGGINS, CHILE
SAML	13-Dec-11	073321	0728110	4.75	-82.58	7	5.5	439	SOUTH OF PANAMA.
SAML	13-Dec-11	081200	0752119	0.013	123.03	161	6.3	536	MINAHASA, SULAWESI,
SAML	13-Dec-11	220838	2204322	19.58	-64.39	14	4.7	63	VIRGIN ISLANDS REGION
SAML	13-Dec-11	223244	2204322	19.58	-64.39	14	4.7	63	VIRGIN ISLANDS REGION
SAML	13-Dec-11	232435	2336220	36.73	-113.02	5	2.8	49	ARIZONA.
SAML	14-Dec-11	032647	0401078	35.32	137.24	51	4.9	57	EASTERN HONSHU, JAPAN
SAML	14-Dec-11	042043	0401078	35.32	137.24	51	4.9	57	EASTERN HONSHU, JAPAN
SAML	14-Dec-11	052422	0504585	-7.54	146.76	135	6.6	444	EASTERN NEW GUINEA REG,
SAML	15-Dec-11	015706	0153032	6.72	-73.03	161	4.3	64	N COLOMBIA.
SAML	15-Dec-11	030831	0259140	-55.36	-28.44	35	5.2	31	S SANDWICH ISL REG.
SAML	15-Dec-11	132437	1305548	31.66	141.67	10	5.3	189	IZU ISLANDS, JAPAN REGION
SAML	15-Dec-11	153231	1512440	31.75	141.69	6	5.5	358	IZU ISLANDS, JAPAN REGION
SAML	16-Dec-11	035918	0406171	6.95	-73.18	172	4.1	19	NORTHERN COLOMBIA
SAML	16-Dec-11	041021	0406171	6.95	-73.18	172	4.1	19	NORTHERN COLOMBIA
SAML	16-Dec-11	053159	0527272	38.43	142.17	10	4.9	67	NEAR E COAST HONSHU, JAPA
SAML	16-Dec-11	120725	1202572	-45.85	-76.07	10	5.2	57	OFF CST AISEN, CHILE.
SAML	16-Dec-11	121017	1202572	-45.85	-76.07	10	5.2	57	OFF CST AISEN, CHILE.
SAML	16-Dec-11	130146	1254252	-45.85	-76.26	10	5.5	94	OFF THE COAST OF AISEN,
SAML	16-Dec-11	185658	1930174	4.22	93.31	26	5.2	97	OFF WEST COAST OF N SUMAT
SAML	16-Dec-11	232127	2316456	7.25	-77.92	35	4.6	25	PANAMA-COLOMBIA BORDER RE
SAML	17-Dec-11	061154	0606120	18.18	-67.37	14	5.1	397	MONA PASSAGE, PUERTO RICO
SAML	17-Dec-11	061452	0609092	18.17	-67.37	17	5.3	410	MONA PASSAGE, PUERTO RICO
SAML	17-Dec-11	205935	2054204	-59.76	-26.48	63	5.3	86	SOUTH SANDWICH ISL REGION
SAML	18-Dec-11	051009	0503193	15.79	-92.01	221	4.5	152	CHIAPAS, MEXICO
SAML	18-Dec-11	134030	1347072	7.41	-82.13	10	4.6	112	SOUTH OF PANAMA
SAML	18-Dec-11	134945	1347072	7.41	-82.13	10	4.6	112	SOUTH OF PANAMA
SAML	18-Dec-11	142526	1347072	7.41	-82.13	10	4.6	112	SOUTH OF PANAMA
SAML	18-Dec-11	201922	2008301	-5.59	148.40	149	4.7	14	NEW BRITAIN REG, P.N.G.
SAML	18-Dec-11	202727	2008301	-5.59	148.40	149	4.7	14	NEW BRITAIN REG, P.N.G.
JIR1	19-Dec-11	054049	0538004	-12.07	-76.91	67	4.8	31	NEAR THE COAST OF CENTRAL
SAML	19-Dec-11	052805	0524488	-23.74	-66.79	185	4.7	62	JUJUY, ARG.
SAML	19-Dec-11	054112	0538004	-12.07	-76.91	67	4.8	31	NEAR THE COAST OF CENTRAL
SAML	19-Dec-11	070858	0701484	35.42	140.96	45	4.6	63	NR E CST HONSHU, JAPAN.
SAML	19-Dec-11	112208	1112505	-56.01	-27.64	98	5.4	174	SOUTH SANDWICH ISLANDS
SAML	19-Dec-11	113913	1112505	-56.01	-27.64	98	5.4	174	SOUTH SANDWICH ISLANDS
SAML	19-Dec-11	135843	1409382	38.83	-122.83	2	2.9	29	CALIFORNIA NC
SAML	19-Dec-11	161915	1651210	41.81	-111.58	0	3.0	70	UTAH.
SAML	20-Dec-11	020113	0154198	14.21	-93.17	46	5.0	241	OFF CST CHIAPAS, MEX. ML
SAML	20-Dec-11	020113	0154198	14.21	-93.17	46	5.0	241	OFF CST CHIAPAS, MEX. ML
SAML	20-Dec-11	073847	0733528	7.35	-78.53	20	4.7	95	PANAMA
SAML	20-Dec-11	080848	0733528	7.35	-78.53	20	4.7	95	PANAMA
SAML	20-Dec-11	125128	1226372	28.73	128.68	158	4.8	66	RYUKYU ISLANDS, JAPAN. ML

EST	DATA	HORA DE CHEGADA hhmmsss	HORA DE ORIGEM hhmmsss	LAT	LONG	H (Km)	mb	Nº EST	REGIÃO
SAML	20-Dec-11	191641	1911135	-33.83	-72.32	42	4.8	78	OFFSHORE VALPARAISO, CHIL
SAML	21-Dec-11	054048	0533192	1.73	-102.17	10	4.8	195	GALAPAGOS TRIPLE JUNCTION
SAML	21-Dec-11	164121	1636008	7.55	-82.01	10	4.6	81	SOUTH OF PANAMA
SAML	21-Dec-11	165748	1654528	-21.61	-66.47	209	4.3	43	POTOSI, BOLIVIA
JIR1	22-Dec-11	164346	1641160	-19.57	-69.33	107	4.7	113	TARAPACA, CHILE.
SAML	22-Dec-11	045719	0450210	14.14	-92.05	49	4.7	156	OFFSHORE GUATEMALA.
SAML	22-Dec-11	164358	1641160	-19.57	-69.33	107	4.7	113	TARAPACA, CHILE.
SAML	22-Dec-11	230520	2342597	31.92	86.32	27	4.8	47	WESTERN XIZANG.
SAML	23-Dec-11	053934	0530292	39.41	-120.12	7	3.1	52	NORTHERN CALIFORNIA.
SAML	23-Dec-11	072142	0620551	-3.51	131.37	36	4.6	23	CERAM SEA, INDONESIA
SAML	23-Dec-11	151348	1454051	-2.96	148.28	10	4.8	28	ADMIRALTY ISL REG.,
SAML	23-Dec-11	192230	1912333	-52.13	28.01	7	5.5	146	SOUTH OF AFRICA
SAML	24-Dec-11	094455	0938240	12.87	-88.68	78	4.5	128	OFFSHORE EL SALVADOR.
SAML	24-Dec-11	204643	2049050	43.53	144.43	151	4.7	83	HOKKAIDO, JAPAN REGION
SAML	25-Dec-11	004043	0007555	6.71	126.39	62	4.9	39	MINDANAO, PHILIPPINES.
SAML	25-Dec-11	010115	0007555	6.71	126.39	62	4.9	39	MINDANAO, PHILIPPINES.
SAML	25-Dec-11	164159	1641012	8.44	-73.89	35	4.6	17	NORTHERN COLOMBIA
SAML	26-Dec-11	203250	2029400	-12.89	-76.98	41	4.3	10	NR CST CEN PERU.
JIR1	27-Dec-11	092402	0904309	31.20	140.46	94	5.4	356	IZU ISLANDS, JAPAN.
SAML	27-Dec-11	092407	0904309	31.20	140.46	94	5.4	356	IZU ISLANDS, JAPAN REGION
SAML	27-Dec-11	154112	1521568	51.83	95.92	15	6.1	521	SOUTHWESTERN SIBERIA,
SAML	28-Dec-11	002742	0018110	37.62	-104.86	5	2.7	19	COLORADO.
SAML	28-Dec-11	094823	0918321	43.71	147.10	64	4.7	52	KURIL ISLANDS
SAML	28-Dec-11	204215	2032318	-60.63	-25.91	31	5.4	117	SOUTH SANDWICH ISLANDS
SAML	29-Dec-11	004238	0030548	-58.43	-139.85	10	5.6	145	PACIFIC-ANTARCTIC RIDGE
SAML	29-Dec-11	033500	0332467	-15.57	-70.47	197	4.6	68	SOUTHERN PERU
SAML	29-Dec-11	120233	1158298	6.80	-73.15	147	4.3	32	N COLOMBIA.
SAML	29-Dec-11	134849	1345411	-12.68	-76.85	73	4.8	20	NEAR COAST OF CENTRAL PER
SAML	29-Dec-11	195514	2005507	-18.78	168.11	41	5.3	109	VANUATU.
SAML	29-Dec-11	224417	2225509	-4.65	155.19	505	5.3	155	BOUGAINVILLE REGION, PAPU
JIR1	30-Dec-11	092459	0922166	-14.45	-75.52	51	5.1	150	COAST OF CENTRAL PERU.
JIR1	30-Dec-11	161347	1609327	47.38	-114.36	6	5.0	37	WESTERN MONTANA.
JIR1	30-Dec-11	172624	1707243	30.78	138.40	415	5.0	295	IZU ISLANDS, JAPAN.
SAML	30-Dec-11	071649	0713024	-1.95	-78.72	128	4.6	61	ECUADOR. Felt at Daule.
SAML	30-Dec-11	092449	0922166	-14.45	-75.52	51	5.1	150	NEAR THE COAST OF CENTRAL
SAML	30-Dec-11	102438	1035300	19.84	-156.08	39	2.7	7	HAWAII REGION, HAWAII.
SAML	30-Dec-11	161404	1609327	47.38	-114.36	6	3.2	37	WESTERN MONTANA.
SAML	30-Dec-11	164354	1634343	-56.22	-27.14	106	5.2	58	SOUTH SANDWICH ISL REGION
SAML	30-Dec-11	165742	1634343	-56.22	-27.14	106	5.2	58	SOUTH SANDWICH ISL REGION
SAML	30-Dec-11	172626	1707243	30.78	138.40	415	5.0	295	IZU ISLANDS, JAPAN REGION
JIR1	31-Dec-11	161821	1615088	-23.26	-64.20	13	5.3	125	SALTA, ARGENTINA
SAML	31-Dec-11	005752	0053551	1.74	-77.26	95	4.8	122	COLOMBIA. Felt at Bogota.
SAML	31-Dec-11	013513	0053551	1.74	-77.26	95	4.8	122	COLOMBIA. Felt at Bogota.
SAML	31-Dec-11	015411	0053551	1.74	-77.26	95	4.8	122	COLOMBIA. Felt at Bogota.

EST	DATA	HORA DE CHEGADA hhmmsss	HORA DE ORIGEM hhmmsss	LAT	LONG	H (Km)	mb	Nº EST	REGIÃO
SAML	31-Dec-11	072828	0807170	35.39	-96.52	5	3.6	59	OKLAHOMA.
SAML	31-Dec-11	155100	1615088	-23.26	-64.20	13	5.3	125	SALTA, ARGENTINA
SAML	31-Dec-11	161830	1615088	-23.26	-64.20	13	5.3	125	SALTA, ARGENTINA
SAML	31-Dec-11	164501	1615088	-23.26	-64.20	13	5.3	125	SALTA, ARGENTINA

JANEIRO/2012

EST	DATA	HORA DE CHEGADA hhmmsss	HORA DE ORIGEM hhmmsss	LAT	LONG	H (Km)	mb	Nº EST	REGIÃO
JIR1	1-Jan-12	024753	0240364	6.67	-73.11	158	4.0	23	NORTHERN COLOMBIA
JIR1	1-Jan-12	054658	0527557	31.44	138.11	361	6.2	562	IZU ISLANDS, JAPAN REGION
SAML	1-Jan-12	024418	0240364	6.67	-73.11	158	4.0	23	NORTHERN COLOMBIA
SAML	1-Jan-12	054700	0527557	31.44	138.11	361	6.2	562	IZU ISLANDS, JAPAN REGION
JIR1	2-Jan-12	102332	0939574	16.38	-46.58	10	4.8	70	NORTHERN MID-ATLANTIC
SAML	2-Jan-12	102352	0939574	16.38	-46.58	10	4.8	70	NORTHERN MID-ATLANTIC RID
JIR1	3-Jan-12	071412	0740021	39.88	77.26	46	4.6	21	SOUTHERN XINJIANG, CHINA
SAML	3-Jan-12	071437	0740021	39.88	77.26	46	4.6	21	SOUTHERN XINJIANG, CHINA
JIR1	4-Jan-12	053944	0447350	-14.78	167.45	233	5.2	71	VANUATU.
JIR1	4-Jan-12	130213	1308113	51.68	95.92	10	4.7	43	SOUTHWESTERN SIBERIA, RUS
SAML	4-Jan-12	054004	0447350	-14.78	167.45	233	5.2	71	VANUATU.
JIR1	5-Jan-12	005500	0054300	-45.79	-76.27	8	5.3	145	OFF CST AISEN, CHILE.
JIR1	5-Jan-12	010145	0054300	-45.79	-76.27	8	5.3	145	OFF CST AISEN, CHILE.
JIR1	5-Jan-12	094120	0935296	18.42	-70.41	10	5.0	42	DOMINICAN REPUBLIC.
SAML	5-Jan-12	004729	0054300	-45.79	-76.27	8	5.3	145	OFF CST AISEN, CHILE.
SAML	5-Jan-12	005520	0054300	-45.79	-76.27	8	5.3	145	OFF CST AISEN, CHILE.
SAML	5-Jan-12	010150	0054300	-45.79	-76.27	8	5.3	145	OFF CST AISEN, CHILE.
SAML	5-Jan-12	094118	0935296	18.42	-70.41	10	5.0	42	DOMINICAN REPUBLIC.
SAML	6-Jan-12	004727	0038484	-14.07	-14.29	10	5.1	41	SOUTHERN MID-ATLANTIC RID
SAML	6-Jan-12	060011	0528567	25.50	96.55	53	4.4	14	MYANMAR
SAML	6-Jan-12	190241	1854399	-6.27	-107.28	10	5.0	208	CENTRAL EAST PACIFIC RISE
JIR1	7-Jan-12	095733	0914375	4.56	96.42	41	4.6	19	NORTHERN SUMATRA, INDONES
JIR1	7-Jan-12	101528	0914375	4.56	96.42	41	4.6	19	NORTHERN SUMATRA, INDONES
SAML	7-Jan-12	164715	1724514	-5.08	145.22	64	5.4	195	EASTERN NEW GUINEA REG,
SAML	7-Jan-12	174226	1724514	-5.08	145.22	64	5.4	195	EASTERN NEW GUINEA REG,
JIR1	8-Jan-12	034116	0321463	51.87	95.75	10	4.1	16	SOUTHWESTERN SIBERIA, RUS
JIR1	8-Jan-12	073754	0735410	-8.09	-74.29	156	4.5	23	CEN PERU. Felt at Pucallp
SAML	8-Jan-12	021951	0159535	33.73	-116.06	3	3.0	38	S CALIFORNIA
SAML	8-Jan-12	034116	0321463	51.87	95.75	10	4.1	16	SOUTHWESTERN SIBERIA, RUS
SAML	8-Jan-12	073813	0735410	-8.09	-74.29	156	4.5	23	CEN PERU.
SAML	8-Jan-12	201001	2025336	26.99	143.63	13	4.7	58	BONIN ISLANDS, JAPAN
JIR1	9-Jan-12	004117	2345191	1.47	128.22	80	4.8	41	HALMAHERA, INDONESIA. Fel
JIR1	9-Jan-12	042614	0407146	-10.61	165.15	28	6.6	558	SANTA CRUZ ISLANDS.
JIR1	9-Jan-12	042807	0407146	-10.61	165.15	28	6.6	558	SANTA CRUZ ISLANDS.

EST	DATA	HORA DE CHEGADA hhmmsss	HORA DE ORIGEM hhmmsss	LAT	LONG	H (Km)	mb	Nº EST	REGIÃO
SAML	9-Jan-12	004137	2345191	1.47	128.22	80	4.8	41	HALMAHERA, INDONESIA.
SAML	9-Jan-12	042618	0407146	-10.61	165.15	28	6.6	558	SANTA CRUZ ISLANDS.
SAML	9-Jan-12	201838	1953371	27.13	55.60	15	5.2	101	SOUTHERN IRAN.
SAML	9-Jan-12	213612	2130510	-32.57	-71.59	21	5.2	231	OFFSHORE VALPARAISO, CHILL
SAML	10-Jan-12	040924	0406167	-22.24	-67.39	175	4.9	36	POTOSI, BOLIVIA.
SAML	10-Jan-12	134648	1341444	4.21	-82.62	10	4.5	36	SOUTH OF PANAMA
SAML	10-Jan-12	181127	1807136	72	-80.21	55	5.0	154	NEAR THE COAST OF ECUADOR
SAML	10-Jan-12	185648	1836594	2.45	93.20	21	6.6	395	OFF THE WEST COAST OF
SAML	12-Jan-12	034021	0320500	36.99	141.07	16	5.7	459	NEAR THE EAST COAST OF
SAML	12-Jan-12	070318	0659018	.52	-79.74	45	4.4	37	NEAR THE COAST OF ECUADOR
SAML	12-Jan-12	142338	1411081	-52.10	28.12	10	5.5	42	SOUTH OF AFRICA
SAML	12-Jan-12	222038	2208113	-52.05	28.16	10	5.3	65	SOUTH OF AFRICA
SAML	13-Jan-12	051629	0513228	-14.38	-75.34	17	4.8	44	NEAR THE COAST OF CENTRAL
SAML	13-Jan-12	102028	1024027	1.37	126.48	115	4.6	14	MOLUCCA SEA.
SAML	13-Jan-12	160433	1554486	-60.56	-27.27	67	5.1	38	SOUTH SANDWICH ISL REGION
SAML	13-Jan-12	161214	1602285	-60.59	-27.07	54	5.3	39	SOUTH SANDWICH ISL REGION
SAML	13-Jan-12	231740	2300430	-16.75	-178.01	390	4.6	103	FIJI REGION
SAML	14-Jan-12	114447	1134566	-60.75	-26.12	10	5.0	52	SOUTH SANDWICH ISL REGION
SAML	14-Jan-12	165039	1645060	17.74	-61.60	30	4.6	52	ANTIGUA AND BARBUDA REG,
SAML	14-Jan-12	165737	1636218	19.23	121.10	22	5.8	330	BABUYAN ISLANDS REGION,
SAML	14-Jan-12	181457	1801412	53.86	-164.21	16	4.3	59	UNIMAK ISLAND REGION, ALA
SAML	15-Jan-12	021019	0240085	-7.24	155.15	95	4.7	27	SOLOMON ISLANDS
SAML	15-Jan-12	021122	0240085	-7.24	155.15	95	4.7	27	SOLOMON ISLANDS
SAML	15-Jan-12	134926	1340179	-60.76	-55.85	8	6.4	177	SOUTH SHETLAND ISLANDS.
SAML	15-Jan-12	143040	1421311	-60.86	-55.94	10	6.2	174	SOUTH SHETLAND ISLANDS
SAML	15-Jan-12	185023	1841108	-61.21	-53.52	16	5.1	33	SOUTH SHETLAND ISLANDS.
SAML	15-Jan-12	233337	2351110	-20.26	-70.32	54	4.2	10	OFFSHORE TARAPACA, CHILE.
SAML	16-Jan-12	040851	0359446	-60.70	-56.03	10	5.6	102	SOUTH SHETLAND ISLANDS.
SAML	16-Jan-12	092456	0920164	6.43	-77.85	14	4.4	26	NEAR WEST COAST OF COLOMB
SAML	16-Jan-12	125952	1250147	-56.70	-24.88	16	5.1	59	SOUTH SANDWICH ISLANDS
SAML	16-Jan-12	151542	1506023	-56.68	-24.91	8	5.1	41	SOUTH SANDWICH ISL REGION
SAML	16-Jan-12	180213	1753128	-2.23	-12.61	10	5.1	37	NORTH OF ASCENSION ISLAND
SAML	23-Jan-12	161050	1604529	-36.40	-73.02	20	5.8	353	OFFSHORE BIO-BIO, CHILE.
SAML	23-Jan-12	205614	2050149	19.56	-70.09	10	5.1	345	DOMINICAN REPUBLIC.
JIR1	24-Jan-12	100045	1034197	8.61	126.14	196	5.2	66	MINDANAO, PHILIPPINES.
JIR1	24-Jan-12	103733	1034197	8.61	126.14	196	5.2	66	MINDANAO, PHILIPPINES.
SAML	25-Jan-12	144132	1437022	5.51	-77.50	34	5.0	217	NEAR WEST COAST OF COLOMB
JIR1	26-Jan-12	035030	0337099	-22.93	179.89	648	4.8	13	SOUTH OF THE FIJI ISLANDS
JIR1	26-Jan-12	052101	0442058	14.29	145.11	117	5.3	95	ROTA REGION, NORTHERN
JIR1	26-Jan-12	110926	1144550	.23	120.91	136	4.6	19	MINAHASA, SULAWESI,
JIR1	26-Jan-12	115458	1150327	5.60	-77.39	22	4.5	56	NR W CST COLOMBIA.
JIR1	26-Jan-12	222316	2204068	21.64	142.85	313	5.5	358	MARIANA ISLANDS REGION
SAML	26-Jan-12	115504	1150327	5.60	-77.39	22	4.5	56	NR W CST COLOMBIA.
SAML	26-Jan-12	221318	2204068	21.64	142.85	313	5.5	358	MARIANA ISLANDS REGION

EST	DATA	HORA DE CHEGADA hhmmsss	HORA DE ORIGEM hhmmsss	LAT	LONG	H (Km)	mb	Nº EST	REGIÃO
JIR1	27-Jan-12	230251	2243153	35.47	138.89	30	5.2	199	EASTERN HONSHU, JAPAN.
JIR1	30-Jan-12	051343	0511010	-14.14	-75.61	43	6.4	331	NEAR THE COAST OF CENTRAL
JIR1	30-Jan-12	123733	1233174	15.86	-93.71	138	4.3	40	OFFSHORE CHIAPAS, MEXICO.
SAML	30-Jan-12	051405	0511010	-14.14	-75.61	43	6.4	331	NEAR THE COAST OF CENTRAL
JIR1	31-Jan-12	145955	1452488	5.09	-72.97	57	4.4	15	COLOMBIA
SAML	31-Jan-12	145938	1452488	5.09	-72.97	57	4.4	15	COLOMBIA

FEVEREIRO/2012

EST	DATA	HORA DE CHEGADA hhmmsss	HORA DE ORIGEM hhmmsss	LAT	LONG	H (Km)	mb	Nº EST	REGIÃO
JIR1	1-Feb-12	045310	0449453	-8.62	-79.83	38	4.8	37	NR CST N PERU.
SAML	1-Feb-12	041719	0430541	11.70	125.58	61	5.2	54	SAMAR, PHILIPPINES
SAML	1-Feb-12	045332	0449453	-8.62	-79.83	38	4.8	37	NR CST N PERU.
SAML	1-Feb-12	154241	1538168	1.81	-79.50	56	4.5	21	NEAR THE COAST OF ECUADOR
SAML	1-Feb-12	161646	1557221	18.90	145.41	235	4.9	274	PAGAN REGION, N MARIANA
SAML	1-Feb-12	205453	2116578	40.49	122.34	16	4.6	26	LIAONING, CHINA. Felt
SAML	1-Feb-12	205351	2116578	40.49	122.34	16	4.6	26	LIAONING, CHINA. Felt
SAML	2-Feb-12	043054	0424221	13.33	-89.30	94	4.6	185	OFFSHORE EL SALVADOR.
SAML	2-Feb-12	045339	0450482	-16.22	-73.61	70	5.0	139	NR CST S PERU.
SAML	2-Feb-12	135335	1334446	-17.83	167.11	55	7.1	404	VANUATU.
SAML	3-Feb-12	000815	0005260	-19.27	-70.11	56	4.2	6	TARAPACA, CHILE.
SAML	3-Feb-12	050613	0502441	-9.97	-78.88	65	4.6	13	NEAR THE COAST OF NORTHER
SAML	3-Feb-12	072151	0718308	-23.49	-66.62	184	4.4	82	JUJUY, ARGENTINA
JIR1	4-Feb-12	132929	1309231	11.89	125.75	11	5.0	120	SAMAR, PHILIPPINES.
SAML	4-Feb-12	042909	0409352	42.29	105.60	10	5.4	304	CENTRAL MONGOLIA
SAML	4-Feb-12	201751	2005309	48.87	-127.95	11	5.5	446	VANCOUVER ISLAND, CANADA
JIR1	5-Feb-12	210043	2058469	-15.71	-70.76	189	4.7	29	SOUTHERN PERU.
SAML	5-Feb-12	142612	1419397	13.31	-89.03	93	4.8	197	OFFSHORE EL SALVADOR
SAML	5-Feb-12	210103	2058469	-15.71	-70.76	189	4.7	29	SOUTHERN PERU.
JIR1	6-Feb-12	040919	0349125	10.00	123.20	11	4.8	529	NEGROS - CEBU REGION,
JIR1	6-Feb-12	044005	0420000	10.11	123.24	10	5.7	141	NEGROS - CEBU REGION,
JIR1	6-Feb-12	100622	1010242	9.83	123.13	35	6.0	80	NEGROS - CEBU REGION,
JIR1	6-Feb-12	103027	1010242	9.83	123.13	35	6.2	80	NEGROS - CEBU REGION,
SAML	6-Feb-12	041441	0349125	10.00	123.20	11	6.7	529	NEGROS - CEBU REGION,
SAML	6-Feb-12	100130	1010242	9.83	123.13	35	5.8	80	NEGROS - CEBU REGION,
SAML	6-Feb-12	100553	1010242	9.83	123.13	35	5.3	80	NEGROS - CEBU REGION,
SAML	6-Feb-12	100928	1010242	9.83	123.13	35	4.3	80	NEGROS - CEBU REGION,
SAML	6-Feb-12	135228	1349246	-21.93	-66.89	173	4.5	80	POTOSI, BOLIVIA
JIR1	7-Feb-12	020012	0218268	-3.64	-77.35	54	4.8	151	PERU-ECUADOR BORDER REGIO
JIR1	7-Feb-12	081848	0831225	12.67	48.68	10	4.9	35	GULF OF ADEN
SAML	7-Feb-12	022158	0218268	-3.64	-77.35	54	4.8	151	PERU-ECUADOR BORDER REGIO
SAML	7-Feb-12	080911	0831225	12.67	48.68	10	4.9	35	GULF OF ADEN

EST	DATA	HORA DE CHEGADA hhmmsss	HORA DE ORIGEM hhmmsss	LAT	LONG	H (Km)	mb	Nº EST	REGIÃO
SAML	7-Feb-12	081848	0831225	12.67	48.68	10	4.9	35	GULF OF ADEN
SAML	7-Feb-12	145602	1420506	10.01	123.11	10	4.6	12	NEGROS - CEBU REGION,
JIR1	8-Feb-12	105838	1054430	.68	-79.18	70	5.6	372	NEAR THE COAST OF ECUADOR
JIR1	8-Feb-12	122113	1201376	37.83	138.09	10	5.6	390	NR W CST HONSHU, JAPAN.
SAML	8-Feb-12	105853	1054430	.68	-79.18	70	5.6	372	NEAR THE COAST OF ECUADOR
JIR1	9-Feb-12	085900	0849249	-56.37	-25.83	10	5.6	61	S SANDWICH ISL REG.
SAML	9-Feb-12	085900	0849249	-56.37	-25.83	10	5.6	61	S SANDWICH ISL REG.
SAML	9-Feb-12	112838	1121098	-41.09	44.65	15	4.8	56	CROZET ISL REG.
JIR1	10-Feb-12	021009	0205220	-30.79	-71.34	54	4.9	75	COQUIMBO, CHILE
JIR1	11-Feb-12	030416	0258234	-37.28	-73.20	35	5.0	307	BIO-BIO, CHILE.
SAML	11-Feb-12	004305	0012181	10.63	-62.54	92	4.6	38	SUCRE, VENEZUELA.
SAML	11-Feb-12	030425	0258234	-37.28	-73.20	35	5.6	307	BIO-BIO, CHILE.
SAML	11-Feb-12	043033	0444248	-6.32	-76.44	15	4.8	88	NORTHERN PERU.
SAML	11-Feb-12	044733	0444248	-6.32	-76.44	15	4.8	88	NORTHERN PERU.
SAML	11-Feb-12	072351	0719048	12.38	-60.16	10	4.6	62	BARBADOS REG, WINDWARD
SAML	11-Feb-12	093113	0927101	-3.50	135.48	35	4.4	20	PAPUA, INDONESIA
JIR1	12-Feb-12	093047	0928173	-15.59	-74.04	75	5.1	125	NR CST S PERU.
SAML	13-Feb-12	110053	1055115	9.22	-83.98	28	5.9	431	COSTA RICA.
SAML	13-Feb-12	211834	2107022	41.15	-123.81	33	5.6	442	NORTHERN CALIFORNIA.
JIR1	14-Feb-12	021750	0215387	-18.22	-69.60	132	4.7	27	TARAPACA, CHILE.
JIR1	14-Feb-12	044507	0442200	-12.41	-76.93	42	4.8	21	NR CST CEN PERU.
SAML	14-Feb-12	021808	0215387	-18.22	-69.60	132	4.7	27	TARAPACA, CHILE.
SAML	14-Feb-12	044531	0442200	-12.41	-76.93	42	4.8	21	NR CST CEN PERU.
SAML	14-Feb-12	064138	0621584	36.15	141.49	10	5.8	288	NEAR THE EAST COAST OF
SAML	14-Feb-12	083858	0819580	-10.38	161.26	55	6.4	125	SOLOMON ISLANDS.
SAML	14-Feb-12	141108	1408406	-18.25	-69.40	126	4.6	19	TARAPACA, CHILE
SAML	14-Feb-12	234603	2339164	.86	-29.23	10	5.3	235	CENTRAL MID-ATLANTIC RIDG
SAML	15-Feb-12	055706	0553561	-22.57	-66.87	180	4.5	98	JUJUY, ARG. ML 5.3 (GS).
JIR1	18-Feb-12	014145	0134239	15.54	-95.32	37	5.3	338	OFFSHORE OAXACA, MEXICO.
JIR1	18-Feb-12	021155	0206297	-34.75	-71.87	46	4.7	31	LIBERTADOR O'HIGGINS, CHILE
JIR1	18-Feb-12	063145	0624280	35.54	-97.27	5	2.6	17	OKLAHOMA.
SAML	18-Feb-12	014159	0134239	15.54	-95.32	37	5.3	338	OFFSHORE OAXACA, MEXICO.
JIR1	19-Feb-12	210549	2046212	-6.38	147.13	62	4.7	31	EASTERN NEW GUINEA REG,
JIR1	20-Feb-12	004359	0035536	-8.97	-109.55	10	4.8	77	CENTRAL EAST PACIFIC RISE
JIR1	20-Feb-12	012320	0050021	38.76	43.18	5	4.2	19	EASTERN TURKEY.
JIR1	20-Feb-12	021256	0211225	.00	67.13	10	4.8	40	CARLSBERG RIDGE
JIR1	20-Feb-12	034946	0313104	38.72	68.09	39	4.4	20	EASTERN UZBEKISTAN
JIR1	20-Feb-12	191641	1909438	14.39	-92.88	63	5.3	365	OFFSHORE CHIAPAS, MEXICO.
SAML	20-Feb-12	034713	0313104	38.72	68.09	39	4.4	20	EASTERN UZBEKISTAN
SAML	20-Feb-12	191649	1909438	14.39	-92.88	63	5.3	365	OFFSHORE CHIAPAS, MEXICO.
JIR1	21-Feb-12	073338	0704071	19.24	-64.85	17	3.2	5	VIRGIN ISLANDS REGION.
SAML	21-Feb-12	073400	0704071	19.24	-64.85	17	3.0	5	VIRGIN ISLANDS REGION.
JIR1	22-Feb-12	145742	1432290	67.77	-167.03	48	4.5	107	BERING STRAIT.
JIR1	23-Feb-12	051713	0508126	-17.72	-13.18	10	5.3	78	SOUTHERN MID-ATLANTIC RID

EST	DATA	HORA DE CHEGADA hhmmsss	HORA DE ORIGEM hhmmsss	LAT	LONG	H (Km)	mb	Nº EST	REGIÃO
SAML	23-Feb-12	051702	0508126	-17.72	-13.18	10	5.3	78	SOUTHERN MID-ATLANTIC RID
SAML	24-Feb-12	030004	0256460	-2.30	-76.24	159	4.6	173	PERU-ECUADOR BORDER REGIO
SAML	24-Feb-12	053843	0542312	9.94	125.96	101	5.0	159	MINDANAO, PHILIPPINES.
SAML	24-Feb-12	065244	0650090	-15.71	-72.82	119	4.7	42	S PERU. Felt at Arequipa.
SAML	24-Feb-12	134720	1343174	6.65	-72.97	171	5.3	427	NORTHERN COLOMBIA.
SAML	24-Feb-12	134720	1343174	6.65	-72.97	171	5.3	427	NORTHERN COLOMBIA.
SAML	24-Feb-12	200829	2001487	14.48	-90.72	172	4.7	118	GUATEMALA. Felt at San Pe
SAML	25-Feb-12	013133	0111597	19.12	145.77	119	5.1	293	MAUG ISLANDS REG., NORTHE
SAML	25-Feb-12	061914	0615104	6.64	-72.96	155	4.8	230	NORTHERN COLOMBIA. Felt a
SAML	26-Feb-12	003223	0029289	-21.42	-66.65	211	4.6	45	POTOSI, BOLIVIA
SAML	26-Feb-12	025500	0235000	22.66	120.87	25	6.0	338	TAIWAN.
SAML	26-Feb-12	063636	0617198	51.71	95.98	12	6.4	544	SOUTHWESTERN SIBERIA,
SAML	26-Feb-12	081128	0808528	-18.80	-69.20	109	5.4	182	TARAPACA, CHILE.
SAML	26-Feb-12	084931	0915430	35.63	-97.06	5	2.9	16	OKLAHOMA.
SAML	26-Feb-12	151201	1429249	51.76	-175.35	74	4.7	189	ANDREANOF ISLANDS, ALEUTI
SAML	27-Feb-12	062545	0616498	-34.63	-16.21	10	5.4	68	SOUTHERN MID-ATLANTIC RID
SAML	28-Feb-12	152631	1507349	28.20	139.39	503	5.4	454	BONIN ISLANDS, JAPAN REGI
SAML	29-Feb-12	145224	1432478	35.20	140.99	26	5.6	424	NEAR THE EAST COAST OF