

P184 – PROCESSAMENTO DE DADOS LIDAR, VALIDAÇÃO DE LEVANTAMENTOS GNSS E LEVANTAMENTO TOPOBATIMÉTRICO EM TRECHO E ENTORNO DO RIO PARAÍBA DO SUL NO ESTADO DO RIO DE JANEIRO

Relatório Técnico Final

Jan/2016

COORDENAÇÃO E EXECUÇÃO DO TRABALHO

Institutos Lactec Departamento de Recursos Ambientais Divisão de Geossoluções

COORDENAÇÃO E RESPONSABILIDADE TÉCNICA

faliano 1. heinaz

Engº Fabiano Scheer Hainosz, M. Sc. CREA/PR 99359/D Gerente Divisão de Geossoluções

LISTA DE ILUSTRAÇÕES

FIGURA 1 - ÁREA D	DE ESTUDO	.2
FIGURA 2 -LOCALIZ	IZAÇAO DOS MARCOS GEODÉSICOS NA ÁREA DE INTERESSE.	.4
FIGURA 3 -LOCALIZ	IZAÇÃO DOS MARCOS GEODÉSICOS NA ÁREA DE INTERESSE (DETALHE)	.4
FIGURA 4 -NUVEM	I DE PONTOS REPROCESSADA	.5
FIGURA 5 -NUVEM	I DE PONTOS REPROCESSADA	.7
FIGURA 6 - DISTRIE	BUIÇÃO ESPACIAL DOS VÉRTICES DE PARTIDA DO IBGE	.8
FIGURA 7 - ÁREA D	DE ESTUDO1	3
FIGURA 8 - EMBAR	RCAÇÃO E SISTEMA BATIMÉTRICO COM RTK1	4
FIGURA 9 - SEÇÒE	S BATIMÉTRICAS LEVANTADAS EM CAMPO1	6
FIGURA 10 - NUV	VEM DE PONTOS CONSOLIDADA COM A BATIMETRIA 1	7
FIGURA 11 - CUR	RVAS DE NÍVEL OBTIDAS COM EQUIDISTÂNCIA DE METRO EM METRO1	8

LISTA DE TABELAS

TABELA 1 -	COORDENADAS DOS MARCOS GEODÉSICOS	3
TABELA 2 -	COORDENADAS DOS PONTOS HOMÓLOGOS LEVANTADOS EM CAMPO E OBTIDOS NA NUVI	EM DE
PONTOS LIDA	R. 5	
TABELA 3 -	DISCREPÂNCIAS DOS PONTOS DE APOIO, MÉDIA, DESVIO PADRÃO E REMQ.	6
TABELA 4 -	COORDENADAS DOS PONTOS GNSS LEVANTADOS EM CAMPO.	9
TABELA 5 -	COORDENADAS DOS PONTOS GNSS FORNECIDA PELA CONTRATANTE.	9
TABELA 6 -	COORDENADAS DOS PONTOS GNSS FORNECIDA PELA CONTRATANTE.	10
TABELA 7 -	COORDENADAS OBTIDAS POR IRRADIAÇ ÃO DE PONTOS EM CAMPO.	10

SUMÁRIO

1	OBJETIVO	1
2	ÁREA DE ESTUDO	2
3	REPROCESSAMENTO DA NUVEM DE PONTOS LIDAR	3
	3.1 VALIDAÇÃO DA NUVEM DE PONTOS	5
4	REPROCESSAMENTO E VALIDAÇÃO DE DADOS GNSS	8
5	LEVANTAMENTO BATIMÉTRICO	13
	5.3 LEVANTAMENTO DAS SEÇÕES BATIMÉTRICAS	15
6	CONSOLIDAÇÃO DO MODELO DO TERRENO E BATIMÉTRICO	17
	6.1 CURVAS DE NÍVEL	17
7	PRODUTOS	20

1 OBJETIVO

Neste documento seguem apresentadas, de modo geral, os métodos, atividades e resultados obtidos com a prestação de serviços técnicos especializados de Engenharia Cartográfica para a área e entorno de um trecho localizado no Rio Paraíba do Sul no Estado do Rio de Janeiro.

O escopo dos serviços técnicos realizados contemplou os seguintes itens:

- 1. Reprocessamento e validação da nuvem de pontos LiDAR utilizando um modelo geoidal local e pontos de controle fornecidos pela Contratante;
- 2. Reprocessamento, ajustamento e validação dos dados GNSS levantados em campo fornecidos pela Contratante; e
- Levantamento batimétrico e compatibilização dos dados com a nuvem de pontos LiDAR obtida no item 1.

2 ÁREA DE ESTUDO

A área de estudo corresponde ao trecho e entorno de 4 km de extensão ao longo do Rio Paraíba do Sul no Estado do Rio de Janeiro. A referida área segue apresentada na FIGURA 1.

FIGURA 1 - ÁREA DE ESTUDO. FONTE: Google Earth Pro (2015)

3 REPROCESSAMENTO DA NUVEM DE PONTOS LIDAR

Com base nos dados oriundos de um aerolevantamento a laser realizado no ano de 2009 e, utilizando dados recentes de levantamentos de apoio em campo realizados na área de estudo, os dados do aerolevantamento foram reprocessados e obteve-se uma nova nuvem de pontos LiDAR (*Light Detection and Ranging*) para a área de estudo.

A referida nuvem de pontos LiDAR, a qual corresponde ao MDS (Modelo Digital de Superfície) da área de estudo, também foi classificada em MDT (Modelo Digital de Terreno) e ajustada conforme as coordenadas de três marcos geodésicos implantados na área de estudo (M1, M2 e M3). As coordenadas destes marcos seguem descritas na TABELA 1 a seguir.

TABELA 1	- COORDENADAS	DOS MARCOS	GEODESICOS

3GR 3AD09/90 01WI 235								
PONTO	E	N	H (geométrico)	H (ortométrico)				
M1	795.624,860	7.598.708,644	157,382	152,382				
M2	795.086,499	7.598.975,382	107,554	102,554				
M3	794.459,927	7.597.804,130	133,568	128,568				

SCD SADGO/06 LITM 22S

Nas FIGURAS 2 e 3 seguem apresentadas as posições dos marcos M1, M2 e M3.

FIGURA 2 - LOCALIZAÇAO DOS MARCOS GEODÉSICOS NA ÁREA DE INTERESSE. FONTE: O Autor (2016)

FIGURA 3 - LOCALIZAÇÃO DOS MARCOS GEODÉSICOS NA ÁREA DE INTERESSE (DETALHE).

FONTE: O Autor (2016)

A nuvem de pontos reprocessada, ajustada e obtida para a área de estudo segue apresentada na FIGURA 4 a seguir.

FIGURA 4 - NUVEM DE PONTOS REPROCESSADA. FONTE: O Autor (2016)

3.1 VALIDAÇÃO DA NUVEM DE PONTOS

A fim de validar a nuvem de pontos, foram levantados 7 pontos em campo e os resultados obtidos seguem apresentados na TABELA 2 e 3.

TABELA 2 - COORDENADAS	DOS	PONTOS	HOMÓLOGOS	LEVANTADOS	ΕM	CAMPO	Е
OBTIDOS NA NUVEM DE PON	ITOS L	IDAR.					

	P	PONTOS LIDAR			PONTOS LE	VANTADOS EM CAI	МРО
ΡΟΝΤΟ	ESTE (m)	NORTE (m)	ALT. GEOM. (m)	ΡΟΝΤΟ	ESTE (m)	NORTE (m)	ALT. GEOM. (m)
Р3	794504,64	7597228,24	58,89	Р3	794504,67	7597228,28	59,06
P4	795173,55	7598549,36	58,45	P4	795173,56	7598549,35	58,40
P5	796097,06	7597876,66	59,58	P5	796097,04	7597876,67	59,57

P6	798410,56	7597569,05	60,26	P6	798410,52	7597569,07	60,33
P7	797826,89	7597958,83	56,94	P7	797826,91	7597958,84	56,83
P8	797005,04	7597546,55	56,60	P8	797005,06	7597546,56	56,62
P9	796114,07	7596221,17	58,19	P9	796114,07	7596221,15	58,15

TABELA 3 - DISCREPÂNCIAS DOS PONTOS DE APOIO, MÉDIA, DESVIO PADRÃO E REMQ.

Ponto	DX (m)	DY (m)	DZ (m)	D XYZ (m)
Р3	-0,030	-0,040	-0,170	0,177
Р4	-0,010	0,010	0,050	0,052
Р5	0,020	-0,010	0,010	0,024
P6	0,040	-0,020	-0,070	0,083
Р7	-0,020	0,000	0,110	0,112
P8	-0,020	-0,010	-0,020	0,030
Р9	0,000	0,030	0,040	0,050
Média	-0,003	-0,006	-0,007	0,076
Desvio Padrão	0,025	0,022	0,091	0,054
REMQ	0,023	0,021	0,085	0,091

A FIGURA 5 a seguir ilustra a localização dos pontos de apoio levantados em campo.

FONTE: O Autor (2016)

4 REPROCESSAMENTO E VALIDAÇÃO DE DADOS GNSS

Conforme solicitado pela Contratante dos serviços, foram reprocessados pontos de rastreio GNSS e pontos levantados por irradiação com estação total.

Para o processamento dos pontos GNSS, primeiramente, foram determinadas as coordenadas dos marcos geodésicos base através de 3 vértices da RBMC (Rede Brasileira de Monitoramento Contínuo) do IBGE (Instituto Brasileiro de Geografia e Estatística). A distribuição espacial dessas bases da RBMC com relação aos pontos reprocessados segue ilustrada na FIGURA 6 a seguir.

As coordenadas obtidas no processamento GNSS seguem descritas na TABELA 4 a seguir

SAD69/96 UTM 23S								
Pto	E	N	H (geo)	Ν	H (orto)	N (MAPGEO)	H (orto MAPGEO)	
E10D	794.649,668	7.598.062,815	69,224	5,000	64,224	4,93	64,294	
E11D	794.668,027	7.598.054,367	69,151	5,000	64,151	4,93	64,221	
E4E	795.481,728	7.598.355,921	68,783	5,000	63,783	4,94	63,843	
E5E	795.324,599	7.598.472,286	70,018	5,000	65,018	4,94	65,078	
E6E	795.136,271	7.598.644,776	78,185	5,000	73,185	4,93	73,255	
m1	795.624,860	7.598.708,644	157,382	5,000	152,382	4,93	152,452	
m2	795.086,499	7.598.975,382	107,554	5,000	102,554	4,93	102,624	
m3	794.459,927	7.597.804,130	133,568	5,000	128,568	4,92	128,648	
RN2616	794.422,773	7.598.086,642	68,189	5,000	63,189	4,94	63,249	
RN3498	793.987,097	7.598.721,522	69,440	5,000	64,440	4,96	64,480	
RN4010	795.504,539	7.598.136,301	68,837	5,000	63,837	4,96	63,877	
RN4616	797.741,987	7.597.849,879	67,045	5,000	62,045	4,98	62,065	
RN5400	797.815,700	7.597.950,457	68,744	5,000	63,744	4,93	63,814	
RN5527	777.488,861	7.593.425,985	93,653	5,000	88,653	4,93	88,723	

TABELA 4 - COORDENADAS DOS PONTOS GNSS LEVANTADOS EM CAMPO.

Na TABELA 5 seguem as coordenas dos pontos fornecidas pela Contratante.

SAD69/96 UTM 23S							
Pto	E	N	H (geo)	H (orto MAPGEO)			
E10D	794.649,661	7.598.062,814	69,023	64,093			
E11D	794.668,019	7.598.054,365	68,949	64,019			
E4E	795.481,724	7.598.355,921	68,574	63,634			
E5E	795.324,595	7.598.472,286	69,809	64,869			
E6E	795.136,267	7.598.644,776	77,976	73,046			
m1	795.624,860	7.598.708,636	157,318	152,388			
m2	795.086,495	7.598.975,382	107,345	102,415			
m3	794.459,919	7.597.804,129	133,366	128,436			
RN2616	794.422,776	7.598.086,636	68,132	63,202			
RN3498	793.987,094	7.598.721,515	69,389	64,469			
RN4010	795.504,527	7.598.136,292	68,837	63,907			
RN4616	797.741,983	7.597.849,875	67,002	62,042			
RN5400	797.815,697	7.597.950,454	68,690	63,730			
RN5527	777.488,863	7.593.425,977	93,587	88,607			

TABELA 5 - COORDENADAS DOS PONTOS GNSS FORNECIDA PELA CONTRATANTE.

Na TABELA 6 seguem apresentadas as discrepâncias observadas entre as coordenas fornecidas pela Contratante e as mesmas reprocessadas neste trabalho.

DISCREPÂNCIAS ENTRE COORDENADAS FORNECIDAS E REPROCESSADAS							
Pto	dE	dN	dH (geo)	dH (orto)			
E10D	-0.008	-0.001	-0.202	-0.132			
E11D	-0.008	-0.001	-0.202	-0.132			
E4E	-0.004	0.000	-0.209	-0.149			
E5E	-0.004	0.000	-0.209	-0.149			
E6E	-0.004	0.000	-0.209	-0.139			
m1	0.000	-0.008	-0.065	0.005			
m2	-0.004	0.000	-0.209	-0.139			
m3	-0.008	-0.001	-0.202	-0.132			
RN2616	0.003	-0.006	-0.057	0.013			
RN3498	-0.003	-0.007	-0.050	0.030			
RN4010	-0.011	-0.010	0.000	0.070			
RN4616	-0.003	-0.004	-0.043	-0.003			
RN5400	-0.003	-0.003	-0.054	-0.014			
RN5527	0.001	-0.008	-0.066	-0.046			

TARFIA6.	- COORDENADAS	S DOS PONTOS	GNSS FORNECIDA	PELA CONTRATANTE

Acredita-se que a discrepância altimétrica sistemática observada, a qual possui aproximadamente 20cm, se deve a provável negligência da posição precisa do centro de fase das antenas GNSS no processamento anterior dos pontos de campo.

Também foram recalculadas as irradiações realizadas com Estação Total em campo. As coordenadas obtidas neste novo processamento apresentaram uma discrepância sistemática, da ordem de 14 cm, com relação as mesmas fornecidas pela Contratante. Isso se deve provavelmente pela diferença nas coordenadas dos vértices de partidas obtidas pelo rastreio GNSS, conforme descrito anteriormente.

SAD69/96 UTM 23S						
Pto	E	N	H (orto)			
A1E	795307.456	7598452.130	64.222			
A1E	795307.453	7598452.128	64.221			
A1E	795307.456	7598452.130	64.222			
A1E	795307.453	7598452.128	64.221			
A2E	795269.770	7598427.521	65.159			
A2E	795269.770	7598427.521	65.159			
A2E	795269.770	7598427.520	65.231			
A3E	795296.258	7598374.286	63.087			
A4E	795185.239	7598609.485	67.528			

TABELA 7 - COORDENADAS OBTIDAS POR IRRADIAÇÃO DE PONTOS EM CAMPO.

B1	795326.113	7598518.106	64.826
B3	795257.459	7598414.198	83.153
EO	795481.622	7598355.997	63.779
E1	795324.644	7598472.282	65.027
E11D	794668.022	7598054.369	64.136
E2E	794465.707	7597928.873	115.623
E2E	795111.856	7598263.675	116.677
E2E	795138.344	7598210.440	114.451
E40	795001.274	7598475.549	119.005
E4E	795481.623	7598355.998	63.776
E4E	795481.625	7598355.997	63.772
E4E	795481.625	7598355.997	63.772
E5E	795324.599	7598472.283	65.027
E5E	795324.486	7598472.389	65.022
E5E	795324.600	7598472.288	65.017
E5E	795324.600	7598472.288	65.017
E6E	795136.272	7598644.776	73.193
PI103	795438.329	7598581.007	87.189
PI104	795494.091	7598646.522	103.778
SM104	794712.438	7598029.398	63.206
SM111	795217.264	7598458.520	64.031
SM114	795285.019	7598516.130	64.485
SM116	795440.612	7598582.947	86.210
SP105	795320.202	7598403.848	64.671
SP105	795320.202	7598403.848	64.671
SP106	795351.512	7598500.001	64.250
SP106	795351.512	7598500.001	64.250
SP107	795471.507	7598607.199	95.908
SP114	794667.041	7598071.265	64.253
SP118	795295.512	7598680.204	64.340
SP121	795092.611	7598540.314	65.895
SR103	794654.162	7597979.846	59.553
SR110	795198.881	7598490.111	65.051
SR111	795217.264	7598458.520	64.031
SR112	795234.905	7598436.386	62.194
SR112	795234.905	7598436.386	62.194
SR113	795307.311	7598366.314	61.107

Face ao material disponibilizado, ficamos impossibilitados de realizar uma análise mais apurada dos pontos irradiados devido a inexistência de imagens, fotografias e croquis dos pontos levantados.

Com base nos arquivos fornecidos pela Contratante, só foi possível realizar o cálculo das coordenadas obtidas através das medidas de distância e ângulos,

porém acredita-se que erros grosseiros possam ter ocorrido no levantamento devido a algumas indicações de altura do prisma estarem zeradas. Nestas mesmas coordenadas observaram-se algumas incoerências de valores como, por exemplo, pontos muitos próximos entre si, porém com alta variação altimétrica.

Face ao exposto, recomenda-se que estes pontos levantados por irradiação sejam validados através do levantamento amostral em campo de pontos de verificação.

5 LEVANTAMENTO BATIMÉTRICO

O planejamento das seções batimétricas para serem levantadas em campo segue ilustrado na FIGURA 7 a seguir.

FIGURA 7 - ÁREA DE ESTUDO. FONTE: Google Earth Pro (2015)

O sistema de medição batimétrica utilizado é composto por três unidades independentes: a embarcação, um sistema GNSS RTK composto por um sensor base e um sensor móvel, e o ecobatímetro. A FIGURA 8 ilustra o referido sistema integrado.

FIGURA 8 - EMBARCAÇÃO E SISTEMA BATIMÉTRICO COM RTK. FONTE: O Autor (2015)

O ecobatímetro utilizado no projeto é o modelo HD – 380 da marca Hi-Target, equipamento de dupla frequência, capaz de realizar medições de profundidades de 0,30m até 600m em alta frequência com precisão de 10mm. Para isso é necessário uma calibração do transdutor, componente do ecobatímetro responsável pelas medidas de profundidade através de ondas sonoras. O transdutor ficou submerso a água 10 cm neste projeto. Para sua calibração foram realizadas medidas de profundidade em vários locais onde era possível medir a profundidade com uma régua. A calibração consiste em ajustar a velocidade do som emitido pelo transdutor até as medidas do ecobatímetro sejam iguais a medida efetuada com a régua.

Totalmente integrado ao ecobatímetro temos o sensor GNSS RTK modelo V30, também da marca Hi-Target, com precisão horizontal nominal de 8mm + 1ppm e vertical de 15mm + 1ppm no modo RTK. Para obter a informação posicional com essa precisão é preciso instalar um sensor GNSS sobre um ponto geodésico com coordenadas conhecidas (as quais foram fornecidas anteriormente pelo contratante),

e posicionar o outro sensor GNSS na embarcação de maneira a determinar a posição do transdutor. Essa integração é possível através dos programas instalados na estação de trabalho do ecobatímetro HD-380. A estação tem a capacidade de receber os dados de posicionamento obtidos pelo sistema GNSS RTK e combinar com as profundidades medidas pelo transdutor, com isso é possível determinar as coordenadas no fundo do rio. Como o sensor GNSS RTK fica posicionado exatamente acima do transdutor, não existe a necesidade de fazer nenhuma translação horizontal, a única translação a ser realizada é vertical, determinada pela altura do sensor GNSS RTK em relação ao nível da água, neste caso 1,90m, e da mesma forma a produndidade do transdutor em relação ao nível da água, como mencionado anteriormente de 0,10m.

5.3 LEVANTAMENTO DAS SEÇÕES BATIMÉTRICAS

O levantamento das seções batimétricas consistiu em definir os critérios de medição, os quais foram gravar posição e profundidade somente se a variável posição estivesse com o vetor das ambiguidades apresentando solução fixa, o que garante a precisão do levantamento. Com essa condição atendida restou navegar sobre as linhas definidas no planejamento, o que exigiu muita capacidade do piloto da embarcação, que conseguiu com muito mérito cumprir a missão, pois em função do alto nível do rio e de sua grande vazão, a correnteza estava muito forte em alguns trechos. Mas também foi em função dessa grande cheia do rio que tornou-se possível navegar por todo o rio e realizar as seções batimétricas.

O resultado desse trabalho é uma nuvem de pontos contendo as coordenadas UTM no Fuso 23 Sul, referidas ao SGR (Sistema Geodésico de Referência) SIRGAS 2000, e altitudes geométricas. Posteriormente, para compatibilização com a nuvem de pontos LiDAR, esses dados foram transformados para SGR SAD69 com altitudes ortométricas.

FIGURA 9 - SEÇÕES BATIMÉTRICAS LEVANTADAS EM CAMPO. FONTE: O Autor (2015)

Todo o levantamento batimétrico em campo foi realizado no mês de Dezembro de 2015.

6 CONSOLIDAÇÃO DO MODELO DO TERRENO E BATIMÉTRICO

A nuvem de pontos LiDAR foi consolidada com a nuvem de pontos proveniente do levantamento batimétrico conforme segue ilustrada na FIGURA 10 a seguir.

FIGURA 10 - NUVEM DE PONTOS CONSOLIDADA COM A BATIMETRIA. FONTE: O Autor (2015)

6.1 CURVAS DE NÍVEL

A partir da nuvem de pontos classificada como terreno (MDT) e a batimetria realizada em campo foi obtida uma superfície interpolada pelo método de triangulação de Delaunay. O critério utilizado na triangulação de Delaunay é o de maximização dos ângulos mínimos de cada triângulo. Isto é equivalente a dizer que, a malha final, deve conter triângulos o mais próximo de equiláteros possível

evitando-se a criação de triângulos afinados, ou seja, triângulos com ângulos internos muito agudo.

Por meio dessa superfície interpolada foram geradas, através de processo automatizado, as curvas de nível e os pontos cotados. Os parâmetros definidos para este processo foram:

- Curvas de nível intermediárias com equidistância de 1m;
- Curvas mestras com equidistância de 5m;
- Inserção de pontos cotados em curvas fechadas (elevação e depressão).

Os pontos cotados em divisores d'água e áreas planas, bem como os níveis d'água foram inseridos manualmente, usando como referência a mesma superfície gerada. Também foram inseridos manualmente as cotas das curvas mestras.

Na FIGURA 11 observamos as curvas de nível obtidas para a região de interesse deste trabalho.

FIGURA 11 - CURVAS DE NÍVEL OBTIDAS COM EQUIDISTÂNCIA DE METRO EM METRO. FONTE: O autor (2015)

As curvas de nível de metro em metro também passaram por um processo de validação e edição cartográfica a fim de identificar e corrigir eventuais erros que possam ter ocorrido no processo automático.

7 PRODUTOS

Os produtos obtidos neste trabalho foram:

- ✓ Relatório técnico;
- Nuvem de pontos reprocessada consolidada com o levantamento LiDAR (2009) e batimétrico (2015); e
- Tabela de coordenadas e comparações entre as mesmas reprocessadas;
- ✓ Curvas de nível equidistantes de metro em metro em formato DWG.