

11° RELATÓRIO DE ANDAMENTO DO PBA E DO ATENDIMENTO DE CONDICIONANTES

CAPÍTULO 2 – ANDAMENTO DO PROJETO BÁSICO AMBIENTAL

Anexo 11.4.1 – 7/2017 – Resultados de qualidade e granulometria do sedimento dos pontos monitorados trimestralmente no Projeto Básico Ambiental – Projeto de Monitoramento Limnológico e de Qualidade da Água Superficial da UHE Belo Monte

Os resultados de qualidade do sedimento de maneira "ponto a ponto" do monitoramento trimestral do Projeto Básico Ambiental – Projeto de Monitoramento Limnológico e da Qualidade da Água Superficial da UHE Belo Monte referentes ao período entre dezembro de 2011 a outubro de 2016 são apresentados a seguir.

As campanhas de monitoramento desde dezembro de 2011 até outubro de 2015 foram realizadas na fase de pré-enchimento dos reservatórios do Xingu e Intermediário. Já a campanha de janeiro de 2016 foi realizada durante a fase de enchimento e formação, tanto do reservatório do Xingu quanto do reservatório Intermediário, a qual terminou em 24 de fevereiro de 2016. As campanhas de abril, julho e outubro de 2016 foram realizadas no período de pós-enchimento e operação de ambos reservatórios.

As variáveis selecionadas para comporem este documento foram àquelas que são regulamentadas quanto aos valores norteadores pela Resolução CONAMA 454/2012, a qual estabelece valores orientadores em dois níveis, o nível 1: limiar abaixo do qual há menor probabilidade de efeitos adversos à biota e nível 2: limiar acima do qual há maior probabilidade de efeitos adversos à biota. Os resultados obtidos serão comparados entre as fases de pré e pós-enchimento dos reservatórios para verificar possíveis alterações.

As coordenadas dos pontos da malha amostral são apresentadas no **Anexo 11.4.1- 2**. O **Anexo11.4.1- 3** apresenta o mapa dos pontos do monitoramento trimestral.

1. DESCRIÇÃO LIMNOLÓGICA DOS SEDIMENTOS

1.1 ÁREA 1: MONTANTE DO RESERVATÓRIO DO XINGU

Ponto RX19: Ponto localizado no rio Xingu, distante 7,5 km do remanso do Reservatório do Xingu

As amostras de sedimento coletadas no ponto RX19 estão em conformidade com a Resolução CONAMA 454/2012 (**Quadro - 1**). Não foi observada uma diferença significativa nas concentrações de nutrientes, carbono orgânico total e metais analisados nos sedimentos nas etapas de pré-enchimento, enchimento e pósenchimento do reservatório do Xingu, sendo que os valores observados se encontram dentro da média observada em todo o monitoramento. Porém, durante o período de pós-enchimento observaram-se baixas concentrações de nutrientes se comparadas com os valores observados nas campanhas anteriores, muito em função das baixas vazões registradas no período em comparação com os outros ciclos hidrológicos, conforme já informado no corpo principal do presente relatório. Estes valores apresentam um leve incremento nas últimas campanhas (julho e outubro 2016), o que se correlaciona com a presença de sedimentos mais finos como silte e argila (**Figura - 1**). Em todas as campanhas houve predominância de material arenoso, sendo que no

período de seca as areias mais finas do leito do rio foram as predominantes (**Figura - 1**).

A predominância de sedimentos arenosos finos refletiu na baixa concentração de nutrientes e poluentes, o que também se deve à localização do ponto de coleta, distante de áreas urbanas como Altamira-PA e a montante do remanso do Reservatório do Xingu.

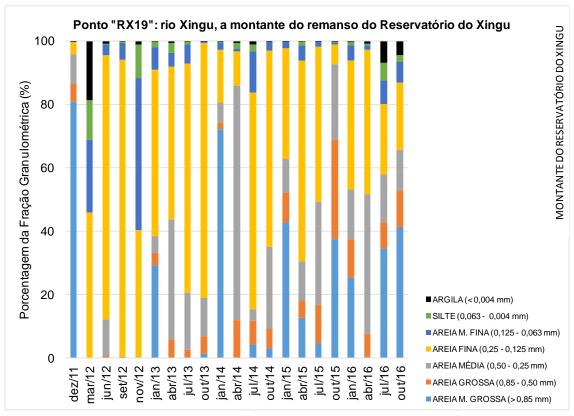


Figura - 1 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RX 19 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

Quadro - 1 – Resultados das variáveis de qualidade dos sedimentos registrados no ponto RX19 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

				N	MONTANT	TE DO RE	ESERVAT	TÓRIO D	O XINGU					VALO	DRES
VARIÁVEL			Ponto "F	RX 19": ri	o Xingu,	a monta	nte do re	manso d	lo Reserv	atório de	o Xingu			ORIENTA	
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	160,4	201,7	6,8	13,0	0,0	85,6	36,0	70,6	52,2	19,0	57,0	43,0	58,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	152,5	641,5	193,2	0,0	840,0	110,0	109,6	185,1	176,8	250,0	130,0	180,0	110,0	4800	4800
Carbono Orgânico Total (%)	0,01	0,05	0,05	0,29	0,30	0,30	2,89	0,61	0,01	0,74	0,41	0,20	0,11	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	< LD	12,00	11,52	< LD	21,10	3,79	11,27	4,70	3,28	6,14	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,06	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	0,07	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8

VARIÁVEL			Ponto "F		MONTANT io Xingu,						o Xingu			VALC ORIENTA	
	dez/11	mar/12	out/14	Nível 1	Nível 2										
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pela f	Resolução	CONAMA	454/201	2 para se	edimentos	; NA: não	se aplica	a; LD: lim	ite de det	ecção; N	C: não co	letado		•	

VARIÁVEL	Pon	to "RX 19":			RVATÓRIO		atório do X	ingu		DRES DORES *
.,	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	195,0	103,0	52,0	77,0	138,0	71,0	48,0	91,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	240,0	110,0	40,0	80,0	330,0	10,0	30,0	80,0	4800	4800
Carbono Orgânico Total (%)	0,29	0,37	0,01	0,01	1,56	0,01	0,05	0,08	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	3,99	8,18	3,04	4,26	9,94	10,05	9,55	13,00	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	0,08	0,05	< LD	0,03	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA

VARIÁVEL	Pon	to "RX 19":				DO XINGU do Reserv	atório do X	ingu		ORES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pela Res	olução CON	IAMA 454/20	012 para sed	dimentos; N	A: não se ap	lica; LD: limi	te de detec	ção; NC: não	coletado	

1.2 ÁREA 2: RESERVATÓRIO DO XINGU

Ponto RX01: Ponto localizado no rio Xingu, distante 12 km a montante da cidade de Altamira-PA

As amostras de sedimento coletadas no ponto RX01 estão em conformidade com a Resolução CONAMA 454/2012 (**Quadro - 2**). Não foram observadas diferenças significativas nas concentrações de nutrientes, carbono orgânico total e metais analisados nos sedimentos nas etapas de pré-enchimento, enchimento e pósenchimento do reservatório do Xingu, sendo que os valores observados se encontram dentro da média observada em todo o monitoramento.

Na maioria das campanhas houve predominância de material arenoso fino, sendo que no final do período de seca as areias mais grossas do leito do rio foram as predominantes (**Figura - 2**). No último ciclo hidrológico foi observado um incremento na percentagem dos materiais mais finos como silte e argila.

A sua localização a montante da cidade de Altamira e, portanto, sem a influência direta da área urbana, pode ser um dos fatores que conferiram ao ponto RX01 sedimentos de boa qualidade.

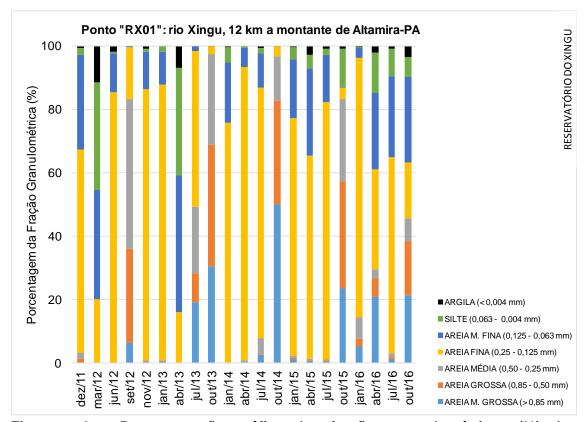


Figura - 2 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RX01 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

Quadro - 2 – Resultados das variáveis de qualidade dos sedimentos registrados no ponto RX01 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

					RE	SERVA	TÓRIO DO	O XINGU							DRES
VARIÁVEL			1	Ponto "R	X 01": ric	Xingu,	12 km a n	nontante	de Altar	nira-PA				ORIENT	ADORES *
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	42,3	238,8	2,9	56,0	22,0	18,1	172,4	68,9	126,7	10,0	42,0	30,0	112,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	132,3	1028,4	305,2	30,0	110,0	10,0	20,2	130,6	101,3	400,0	130,0	180,0	50,0	4800	4800
Carbono Orgânico Total (%)	< LD	0,01	0,01	0,31	0,30	0,09	2,15	0,01	0,01	0,13	0,01	0,01	0,01	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	23,44	11,87	< LD	1,58	< LD	11,13	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	0,01	< LD	< LD	< LD	< LD	0,37	< LD	< LD	< LD	0,16	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,05	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5

VARIÁVEL Ponto "RX 01": rio Xingu, 12 km a montante de Altamira-PA													VALO ORIENT	
dez/11														
dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 out/14 set/12 in (μg/kg) < LD < L													1,4	6,8
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
	< LD < LD < LD < LD	<ld <ld="" <ld<="" td=""><td>dez/11 mar/12 jun/12 < LD</td> < LD</ld>	dez/11 mar/12 jun/12 < LD	dez/11 mar/12 jun/12 set/12 < LD	Ponto "RX 01": rio dez/11 mar/12 jun/12 set/12 nov/12 < LD	Ponto "RX 01": rio Xingu, 1 dez/11 mar/12 jun/12 set/12 nov/12 jan/13 < LD	Ponto "RX 01": rio Xingu, 12 km a noma dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 < LD	Ponto "RX 01": rio Xingu, 12 km a montante dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 < LD	dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 < LD	Ponto "RX 01": rio Xingu, 12 km a montante de Altamira-PA dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 < LD	Ponto "RX 01": rio Xingu, 12 km a montante de Altamira-PA dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 < LD	Ponto "RX 01": rio Xingu, 12 km a montante de Altamira-PA dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 < LD	Ponto "RX 01": rio Xingu, 12 km a montante de Altamira-PA dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 out/14 < LD	Ponto "RX 01": rio Xingu, 12 km a montante de Altamira-PA

VARIÁVEL		Ponto "		SERVATÓF Xingu, 12 k		GU nte de Altar	nira-PA			ORES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	47,0	42,0	41,0	166,0	29,0	60,0	63,0	130,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	230,0	90,0	110,0	150,0	80,0	160,0	260,0	20,0	4800	4800
Carbono Orgânico Total (%)	0,10	0,20	0,23	0,28	0,05	0,25	0,30	0,13	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	2,89	1,72	11,95	2,94	3,54	2,84	11,30	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	0,11	0,04	0,03	< LD	0,04	5,9	17,0

			RE	SERVATÓF	RIO DO XIN	GU				DRES
VARIÁVEL		Ponto '	'RX 01": rio	Xingu, 12 k	km a monta	nte de Altar	nira-PA		ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pela Res	olução CON	NAMA 454/20	012 para sec	dimentos; N/	A: não se ap	lica; LD: limi	te de detec	ção; NC: não	coletado	

Ponto PAN02: Ponto localizado no igarapé Panelas, próximo a cidade de Altamira-PA

As amostras de sedimento coletadas no ponto PAN02 estão em conformidade com a Resolução CONAMA 454/2012 (**Quadro - 3**). Foi registrada a presença de cobre, tanto no período chuvoso como na seca, mas dentro da conformidade com a legislação. Estes valores podem ser reflexo da localização do igarapé, no limite urbano da cidade de Altamira-PA e próximo a área onde havia exploração atersal de argila. Após a formação do reservatório do Xingu (abril de 2016), foi observada uma diminuição das concentrações de nutrientes e carbono orgânico total nos sedimentos coletados, porém as mesmas aumentaram nos monitoramentos posteriores, colocando em evidencia a heterogeneidade dos sedimentos do leito do igarapé.

Na maioria das campanhas houve predominância de material arenoso fino, com boa proporção de silte e argila. Nos meses de abril de 2013, 2014 e 2015 houve predominância de frações mais grossas, provavelmente devido ao aumento do volume do rio (período de cheia) e consequente carreamento das frações mais finas fato que não se repetiu em 2016 quando predominaram sedimentos de granulometria mais fina (**Figura - 3**).

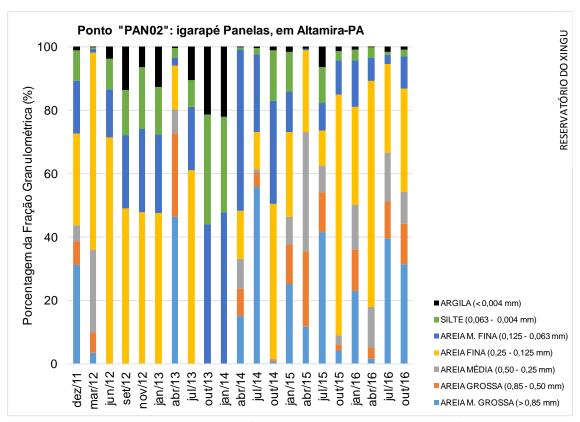


Figura - 3 - Representação gráfica das frações granulométricas (%) dos sedimentos do ponto PAN 02 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro 2016

Quadro - 3 – Resultados das variáveis de qualidade do sedimento registrados no ponto PAN02 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro 2016

				•	RI	ESERVA ⁻	TÓRIO D	O XINGL							DRES
VARIÁVEL				Pon	to "PAN0	2": igara	pé Panel	as, em A	Altamira-	PA				ORIENT	ADORES
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	136,1	20,1	4,4	87,0	110,0	163,9	221,4	110,4	8,1	70,0	6,0	139,0	254,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	254,3	40,7	457,8	20,0	0,0	270,0	206,9	201,8	489,0	460,0	120,0	310,0	670,0	4800	4800
Carbono Orgânico Total (%)	0,08	0,07	0,08	0,19	0,20	0,55	0,81	0,79	1,10	0,72	0,01	0,36	0,79	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0				
Cobre (mg/kg)	< LD	< LD	< LD	< LD	7,07	33,48	< LD	22,37	29,99	30,09	< LD	29,34	29,06	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9				
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5				
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3				
Zinco (mg/kg)	< LD	12,34	< LD	6,65	11,03	9,05	< LD	3,41	13,69	123	315				
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	0,78	< LD	0,38	0,08	5,9	17,0				
Mercúrio (mg/kg)	< LD	< LD	< LD	0,05	< LD	< LD	< LD	< LD	0,10	0,11	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Delta-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Gama-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4				
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5				
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8				

VARIÁVEL				Pon	RE to "PAN0		ΓÓRIO Do pé Panel			PA					ORES ADORES
	dez/11														Nível 2
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pel	la Resoluç	ão CONAI	MA 454/2	012 para	sediment	os; NA: n	ão se apli	ica; LD: I	imite de d	etecção;	NC: não	coletado			

			RE	SERVATÓF	RIO DO XIN	GU			VALO	DRES
VARIÁVEL		Po	nto "PAN0	2": igarapé	Panelas, en	n Altamira-I	PA		ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	135,0	39,0	272,0	31,0	206,0	25,0	67,0	81,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	180,0	330,0	380,0	300,0	250,0	20,0	350,0	340,0	4800	4800
Carbono Orgânico Total (%)	3,70	0,09	1,81	1,83	4,27	0,01	0,02	0,72	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	22,00	< LD	32,02	< LD	18,07	17,07	11,07	6,40	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	3,30	1,95	28,44	< LD	7,58	6,88	5,78	17,62	123	315
Arsênio (mg/kg)	< LD	< LD	0,12	< LD	0,13	0,13	< LD	0,08	5,9	17,0
Mercúrio (mg/kg)	0,11	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5

			RE	SERVATÓF	RIO DO XIN	GU				DRES
VARIÁVEL		Po	onto "PAN0	2": igarapé	Panelas, en	n Altamira-F	PA		ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pela Res	olução CON	IAMA 454/20	012 para sed	dimentos; NA	A: não se ap	lica; LD: limi	te de detecç	ção; NC: não	coletado	

Ponto RX02: Ponto localizado no rio Xingu, próximo à cidade de Altamira-PA e da foz do Igarapé Panelas

As amostras de sedimento coletadas no ponto RX02 estão em conformidade com a Resolução CONAMA 454/2012 (**Quadro - 4**). Após a formação do reservatório do Xingu, nas campanhas de abril, julho e outubro de 2016, foi observado um aumento das concentrações de nutrientes e carbono orgânico total nos sedimentos coletados. O incremento pode estar relacionado com à deposição/carreamento de material do entorno após o período de cheia, já que o mesmo incremento foi observado em outros períodos (junho e setembro 2012, julho e outubro 2014).

As frações granulométricas predominantes foram areia média e areia fina em todas as campanhas, com exceção da amostra coletada em janeiro de 2014, quando porções ainda mais finas foram predominantes (**Figura - 4**). No préiodo pós enchimento dos reservatórios, as frações mais finas como silte e argila apresentaram uma maior percentagem nos sedimentos coletados.

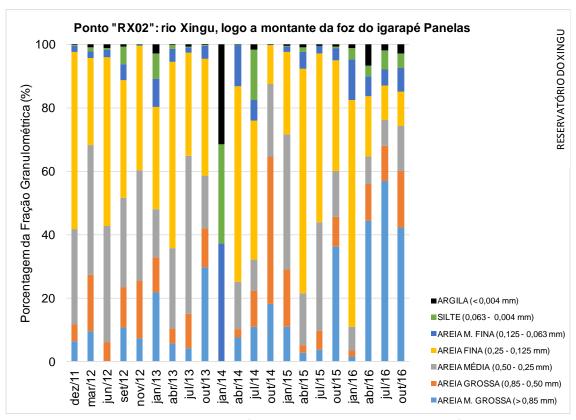


Figura - 4 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RX02 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

Quadro - 4 – Resultados das variáveis de qualidade do sedimento registrados no ponto RX02 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

					R	ESERVA	TÓRIO D	O XING	U					VALO	DRES
VARIÁVEL			Pon	to "RX 02	2": rio Xin	ıgu, logo	a monta	nte da f	oz do iga	rapé Pan	elas			ORIENTA	DORES *
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	185,4	59,4	1,9	95,0	85,0	84,7	17,0	66,2	20,2	15,0	64,0	546,0	24,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	71,2	112,0	203,4	330,0	90,0	160,0	141,5	66,2	101,2	190,0	320,0	2380,0	60,0	4800	4800
Carbono Orgânico Total (%)	0,02	0,01	0,01	1,23	1,20	0,34	0,27	0,14	0,01	0,44	0,72	6,42	4,23	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	3,51	< LD	< LD	< LD	13,77	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	< LD	< LD	2,80	< LD	< LD	< LD	4,66	3,09	32,96	0,67	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,51	< LD	0,73	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,11	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA

VARIÁVEL			Pon	to "RX 02	R 2": rio Xin		TÓRIO D a monta			rapé Par	ielas				DRES ADORES *
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
gama (µg/kg)															
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs- Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
	pela Reso	olução CO	NAMA 45	54/2012 p	ara sedim	entos; N	A: não se	aplica; L	.D: limite	de deteco	žão; NC: n	ão coleta	 do		

VARIÁVEL		Ponto "RX0		SERVATÓI ju, logo a m			apé Panelas	5		ORES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	17,0	36,0	78,0	99,0	34,0	183,0	384,0	259,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	450,0	20,0	20,0	50,0	90,0	420,0	1050,0	790,0	4800	4800
Carbono Orgânico Total (%)	0,01	0,19	0,11	0,12	0,43	1,50	1,60	4,68	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5

			PE	SERVATÓ	NO DO VIN	GII				
VARIÁVEL		Ponto "RX0					apé Panelas	,		DRES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	4,66	0,64	0,89	0,84	15,12	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pela Res	olução CON	NAMA 454/2	012 para se	dimentos; N	A: não se ap	lica; LD: lim	ite de detec	ção; NC: não	coletado	

Ponto ALT02: Ponto localizado no igarapé Altamira, na cidade de Altamira-PA

As amostras de sedimento coletadas no ponto ALT02 estão em conformidade com a Resolução CONAMA 454/2012, com exceção de valores de não conformidade das variáveis cobre em abril e julho de 2015 e janeiro, abril e julho de 2016 e mercúrio no mês de abril com o nível 1 da legislação e mercúrio em outubro de 2015 com o nível 2 (**Quadro - 5**). Provavelmente reflexo da ocupação humana da bacia de contribuição, principalmente oriunda da área urbana de Altamira, considerando que havia grande área de palafitas no entorno do referido igarapé. Em relação aos valores de cobre, os mesmos provavelmente têm origem somente da área urbana de Altamira, resultante das atividades diversas que fazem uso desse metal.

Na maioria das campanhas houve predominância de material arenoso muito grosso, sendo que em junho de 2012, abril de 2013 e outubro de 2014 a fração predominante foi a de areia fina (**Figura - 5**).

Após a formação do reservatório do Xingu (abril de 2016), não houve uma variação significativa das concentrações de nutrientes e carbono orgânico total nos sedimentos coletados sendo que as mesmas se encontram dentro da média dos valores observados durante todo o monitoramento.

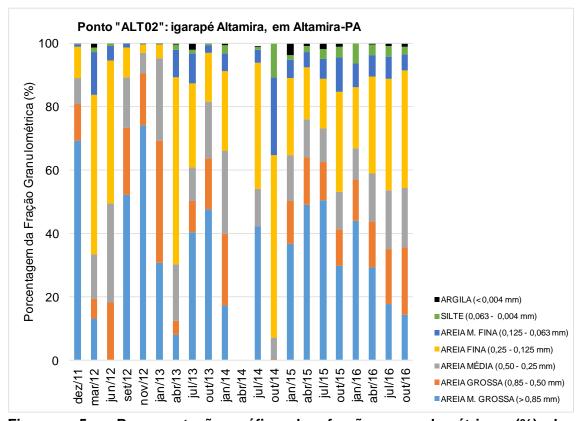


Figura - 5 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto ALT02 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

Quadro - 5 – Resultados das variáveis de qualidade do sedimento registrados no ponto ALT02 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

				<u>.</u>	RE	SERVA	TÓRIO DO) XINGL							DRES
VARIÁVEL				Pon	to "ALT0	2": igara	pé Altami	ira, em A	Altamira-	PA				ORIENT	ADORES *
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	580,2	95,7	9,0	170,0	360,0	230,4	220,0	412,2	266,7	98,0	NC	268,0	569,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	111,9	0,0	457,8	10,0	0,0	40,0	70,6	314,0	182,1	210,0	NC	130,0	870,0	4800	4800
Carbono Orgânico Total (%)	0,04	0,03	0,04	0,19	0,20	0,10	0,66	1,23	0,82	1,12	NC	0,37	0,21	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	10,32	8,14	< LD	23,14	< LD	11,43	NC	9,84	33,06	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	12,00	< LD	< LD	< LD	< LD	< LD	NC	< LD	17,16	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	< LD	14,00	12,51	< LD	21,56	10,12	18,81	NC	16,29	27,27	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	0,02	< LD	< LD	< LD	< LD	< LD	0,52	NC	< LD	0,09	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,06	0,06	NC	< LD	0,15	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	0,94	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	3,54	8,51

VARIÁVEL				Pon	RE to "ALT02		TÓRIO DO Dé Altami			PA				VALO ORIENTA	ORES ADORES
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	1,42	6,75				
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	1,19	4,77				
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	2,85	6,67				
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	2,67	62,40				
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	34,1	277,0				

Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

VARIÁVEL		Po		SERVATÓF 2": igarapé /			PA			ORES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	466,0	574,0	514,0	518,0	481,0	460,0	487,0	473,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	450,0	30,0	430,0	290,0	230,0	70,0	180,0	200,0	4800	4800
Carbono Orgânico Total (%)	4,35	0,30	1,53	1,60	1,12	0,65	0,79	1,78	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	33,76	59,78	40,77	23,83	64,27	67,37	52,17	< LD	35,7	197,0
Níquel (mg/kg)	11,68	10,56	< LD	< LD	13,40	12,30	9,10	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	16,96	6,50	18,33	2,82	14,58	13,68	11,02	26,72	123	315
Arsênio (mg/kg)	< LD	0,48	0,04	0,08	0,07	0,04	< LD	0,02	5,9	17,0

		D.	CEDVATÓ	NO DO VIN	CI I				
	Po					ΡΔ			
jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
0,15	0,32	< LD	0,72	< LD	< LD	< LD	< LD	0,2	0,5
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,94	1,4
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,54	8,51
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,42	6,75
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,19	4,77
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,85	6,67
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,67	62,40
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
	0,15 < LD	jan/15 abr/15 0,15 0,32 < LD	Ponto "ALTO jan/15 abr/15 jul/15 jul/15	Ponto "ALT02": igarapé jan/15 abr/15 jul/15 out/15 out	Ponto "ALT02": igarapé Altamira, er jan/15 abr/15 jul/15 out/15 jan/16	jan/15 abr/15 jul/15 out/15 jan/16 abr/16 0,15 0,32 < LD	Ponto "ALTO2": igarapé Altamira, em Altamira-PA jan/15 abr/15 jul/15 out/15 jan/16 abr/16 jul/16	Ponto "ALT02": igarapé Altamira, em Altamira-PA jan/15 abr/15 jul/15 out/15 jan/16 abr/16 jul/16 out/16	Ponto "ALTO2": igarapé Altamira, em Altamira-PA

Ponto AMB02: Ponto localizado no igarapé Ambé, na cidade de Altamira-PA

A maioria das amostras de sedimento coletadas no ponto AMB02 estão em conformidade com a Resolução CONAMA 454/2012, com exceção de quatro valores de não conformidade da variável cobre no mês de abril de 2015 e janeiro, abril e julho de 2016, da variável mercúrio no mês de setembro de 2012 e outubro 2015, as quatro acima do nível 1 da legislação e da variável mercúrio no mês de outubro de 2015 acima do nível 2 da legislação, o que corresponde a 1,30% dos pontos e variáveis amostrados (**Quadro - 6**). Estes valores de mercúrio acima da legislação observados no mês de outubro podem ser devidos a antiga atividade de extração de argila pelos oleiros e/ou à remoção de sedimentos antigos depositados na região próxima a construção da nova ponte que cruzam o igarapé e que tenham sido lixiviado para o leito do igarapé. Em relação aos valores de cobre, os mesmos provavelmente têm origem na área urbana de Altamira, resultante das atividades diversas que fazem uso desse metal, o qual é depositado nos sedimentos de fundo que ficam alagados nas campanhas de cheia, como foi na de abril de 2015, e nas primeiras campanhas realizadas após o enchimento do reservatório do Xingu (janeiro, abril e julho de 2016).

Na maioria das campanhas houve predominância de material arenoso fino. Porém, na primeira campanha, dezembro de 2011 e outubro de 2014, houve predominância de areia muito fina e silte (**Figura - 6**).

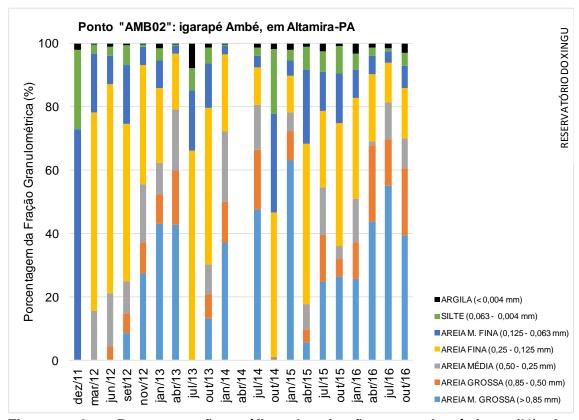


Figura - 6 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto AMB02 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

Quadro - 6 – Resultados das variáveis de qualidade do sedimento registrados no ponto AMB02 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro 2016

							TÓRIO DO								ORES ADORES
VARIÁVEL		1		Po	nto "AMB	02": igar	apé Amb	é, em A	Itamira-P					,	*
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	298,6	16,2	11,9	75,0	110,0	263,3	330,7	128,0	123,4	12,0	NC	92,0	311,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	254,1	122,2	274,7	20,0	20,0	560,0	40,4	269,1	404,8	70,0	NC	120,0	410,0	4800	4800
Carbono Orgânico Total (%)	0,03	0,01	0,02	0,28	0,31	2,45	0,02	0,64	0,63	0,09	NC	0,36	0,29	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	37,3	90,0				
Cobre (mg/kg)	< LD	< LD	< LD	< LD	5,70	20,51	< LD	12,57	9,05	< LD	NC	8,06	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	18,0	35,9				
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	0,6	3,5				
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	35,0	91,3				
Zinco (mg/kg)	< LD	< LD	< LD	< LD	8,00	7,57	< LD	2,17	4,58	5,73	NC	2,47	8,88	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	0,40	NC	< LD	< LD	5,9	17,0				
Mercúrio (mg/kg)	< LD	< LD	< LD	0,22	< LD	< LD	< LD	< LD	0,08	< LD	NC	< LD	< LD	0,2	0,5
Alfa-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	NA	NA				
Delta-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	NA	NA				
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	0,9	1,4				
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	NA	NA				
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	NA	NA				
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	3,5	8,5				

VARIÁVEL				Poi	RE nto "AMB		ΓÓRIO Dα apé Amb			Α				VALO ORIENT	
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	1,4	6,8				
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	1,2	4,8				
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	2,9	6,7				
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	2,7	62,4				
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	34,1	277,0				

VARIÁVEL		P		SERVATÓF 02": igarape		GU Altamira-P	A			ORES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	243,0	26,0	574,0	75,0	434,0	458,0	712,0	546,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	1660,0	20,0	560,0	590,0	780,0	30,0	240,0	240,0	4800	4800
Carbono Orgânico Total (%)	0,47	0,01	2,57	2,61	3,10	0,26	0,29	1,12	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	40,24	< LD	33,96	9,71	52,07	50,27	38,87	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	10,20	11,20	10,10	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	6,26	< LD	17,40	18,20	14,30	11,14	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	0,09	0,10	< LD	0,08	5,9	17,0

		RE	SERVATÓF	KIO DO XINI	3 U			\/AI/	
		onto "AMR	02": igarapé	Ambá am		۸		ORIENTA	DRES DORES *
jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
0,18	< LD	< LD	0,88	< LD	< LD	< LD	< LD	0,2	0,5
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD

Ponto RX18: Ponto localizado no rio Xingu, a jusante 1 km da cidade de Altamira-PA

A maior parte das amostras de sedimento coletadas no ponto RX18 estão em conformidade com a Resolução CONAMA 454/2012, sendo que somente 1,95% delas se encontram em desconformidade para nível 1 (**Quadro - 7**). As principais variáveis a apresentar valores acima do nível 1 foram cobre, em julho de 2013, abril, julho e outubro de 2014 e abril e outubro de 2015 e julho 2016, e níquel em abril e outubro de 2014, provavelmente, devido à interferência antrópica proveniente da cidade de Altamira, em que, podem ter sido transportados pelo fluxo do rio Xingu e os materiais inorgânicos em suspensão contendo zinco, arsênio, níquel e cobre, oriundos de atividades diversas, podem ter sido depositados nos sedimentos do leito do rio. Porém, as concentrações desses metais estiveram sempre abaixo dos limites recomendados pela legislação, exceto em relação ao níquel e ao cobre. A formação do reservatório do Xingu não originou alterações significativas nas concentrações de nutrientes e carbono orgânico total nos sedimentos coletados, sendo que os resultados estão em conformidade com a resolução.

Neste ponto houve predominância de frações granulométricas mais finas (**Figura - 7**) com maior porcentagem de areia muito fina, silte e argila na maioria das campanhas realizadas, com exceção da campanha de abril de 2014, janeiro e abril de 2015 quando houve predominância de areias grossas.

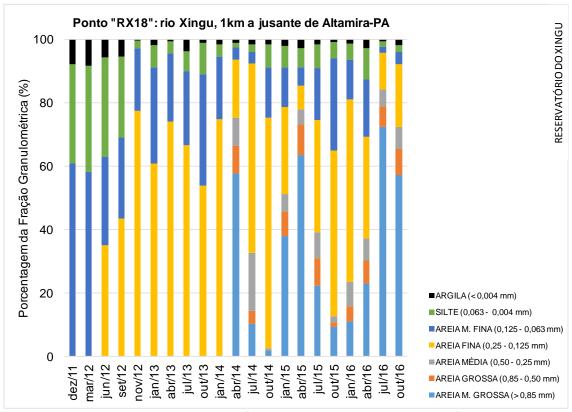


Figura - 7 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RX18 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

Quadro - 7 – Resultados das variáveis de qualidade do sedimento registrados no ponto RX18 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

	RESERVATÓRIO DO XINGU											VALORES ORIENTADORES			
VARIÁVEL				Ponto '	'RX18": r	io Xingu	1 km a j	usante c	le Altami	ra-PA				ORIENT	ADORES *
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	386,6	1311,0	31,0	336,0	275,0	370,5	320,9	906,8	431,4	127,0	487,0	498,0	560,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	315,2	743,3	3660,4	180,0	90,0	100,0	159,2	608,6	1243,2	560,0	930,0	590,0	620,0	4800	4800
Carbono Orgânico Total (%)	0,02	0,04	0,04	0,28	0,35	1,23	0,79	3,28	3,22	1,05	3,01	1,41	1,11	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	15,94	20,97	< LD	79,58	33,13	31,14	82,15	45,07	59,89	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	12,00	6,80	< LD	< LD	< LD	< LD	24,10	11,76	22,30	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	44,00	< LD	30,00	34,72	< LD	77,41	42,40	28,16	52,32	9,01	59,36	123	315
Arsênio (mg/kg)	< LD	< LD	0,06	< LD	< LD	< LD	< LD	< LD	0,43	2,14	0,06	0,23	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	0,05	< LD	< LD	< LD	< LD	0,10	0,07	0,06	< LD	< LD	0,2	0,5
Alfa-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5

		VALORES ORIENTADORES *												
dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
	<ld <ld <ld <ld< td=""><td><ld <ld="" <ld<="" td=""><td><ld <ld="" <ld<="" td=""><td>dez/11 mar/12 jun/12 set/12 < LD</td> < LD</ld></td> < LD</ld></td> < LD</ld<></ld </ld </ld 	<ld <ld="" <ld<="" td=""><td><ld <ld="" <ld<="" td=""><td>dez/11 mar/12 jun/12 set/12 < LD</td> < LD</ld></td> < LD</ld>	<ld <ld="" <ld<="" td=""><td>dez/11 mar/12 jun/12 set/12 < LD</td> < LD</ld>	dez/11 mar/12 jun/12 set/12 < LD	Ponto "RX18": ri dez/11 mar/12 jun/12 set/12 nov/12 < LD	Ponto "RX18": rio Xingu, dez/11 mar/12 jun/12 set/12 nov/12 jan/13 < LD	Ponto "RX18": rio Xingu, 1 km a ju dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 < LD	Ponto "RX18": rio Xingu, 1 km a jusante di dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 < LD	dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 < LD	Ponto "RX18": rio Xingu, 1 km a jusante de Altamira-PA	Ponto "RX18": rio Xingu, 1 km a jusante de Altamira-PA	Ponto "RX18": rio Xingu, 1 km a jusante de Altamira-PA dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 < LD	Ponto "RX18": rio Xingu, 1 km a jusante de Altamira-PA dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 out/14 < LD	Ponto "RX18": rio Xingu, 1 km a jusante de Altamira-PA

VARIÁVEL		RESERVATÓRIO DO XINGU Ponto "RX18": rio Xingu, 1 km a jusante de Altamira-PA												
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2				
Fósforo Total (mg/kg)	427,0	210,0	531,0	442,0	394,0	585,0	527,0	402,0	2000	2000				
Nitrogênio Total Kjeldahl (mg/kg)	860,0	500,0	1480,0	1660,0	780,0	1180,0	710,0	410,0	4800	4800				
Carbono Orgânico Total (%)	5,95	2,10	5,70	5,89	4,14	3,28	2,96	1,88	10	10				
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0				
Cobre (mg/kg)	23,96	59,87	27,82	59,21	32,07	31,27	42,17	6,00	35,7	197,0				
Níquel (mg/kg)	9,87	11,57	< LD	< LD	15,40	13,70	11,30	< LD	18,0	35,9				
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5				
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3				
Zinco (mg/kg)	33,09	17,52	41,39	43,67	49,44	50,04	42,21	39,58	123	315				
Arsênio (mg/kg)	< LD	0,75	0,06	0,10	0,11	0,13	< LD	0,08	5,9	17,0				

				VALO	DRES								
VARIÁVEL		Ponto	o "RX18": ri	o Xingu, 1 I	km a jusant	e de Altami	ra-PA		ORIENTA	DORES *			
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2			
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5			
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA			
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA			
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4			
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA			
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA			
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5			
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8			
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8			
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7			
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4			
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0			
* Estabelecidos pela Res	olução CON	NAMA 454/20	012 para sed	dimentos; N	A: não se ap	lica; LD: lim	ite de detec	ção; NC: não	coletado	1			

Ponto RX24: Ponto localizado no rio Xingu, a jusante 7 km da cidade de Altamira-PA

As amostras de sedimento coletadas no ponto RX24 estão em conformidade com a Resolução CONAMA 454/2012, com exceção da variável mercúrio no mês de outubro de 2015 em que a concentração foi superior ao nível 2 da legislação, o qual foi um evento pontual (**Quadro - 8**). Não foram observadas diferenças significativas nas concentrações de nutrientes, carbono orgânico total e metais analisados nos sedimentos nas etapas de pré-enchimento, enchimento e pós-enchimento do reservatório do Xingu, sendo que os valores observados se encontram dentro da média observada em todo o monitoramento.

Na maioria das campanhas houve predominância de material arenoso muito grosso, porém, nas campanhas de junho de 2012, abril e julho de 2013 e abril e outubro de 2014 houve predominância de areia fina e muito fina (**Figura - 8**).

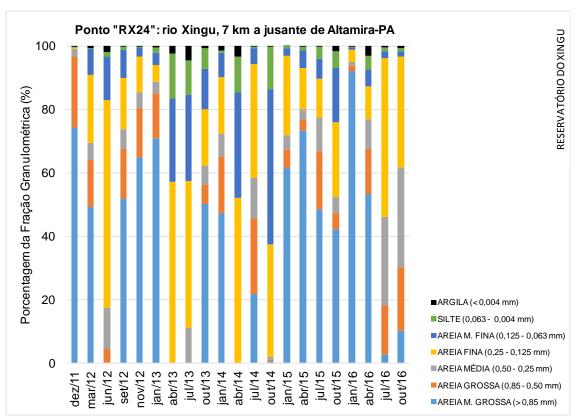


Figura - 8 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RX24 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

Quadro - 8 — Resultados das variáveis de qualidade do sedimento registrados no ponto RX24 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

				-	R	ESERVA	TÓRIO D	O XINGL	J						DRES
VARIÁVEL				Ponto	"RX24": r	io Xingu	, 7 km a	jusante d	de Altami	ira-PA				ORIENT	ADORES
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	27,4	181,4	3,9	166,0	67,0	278,5	112,5	60,5	170,4	20,0	450,0	223,0	175,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	71,2	478,6	305,1	60,0	0,0	830,0	151,3	233,6	447,4	790,0	1700,0	200,0	350,0	4800	4800
Carbono Orgânico Total (%)	< LD	0,01	0,02	1,89	1,93	4,33	1,02	0,42	1,12	2,43	5,83	1,11	1,01	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0				
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0				
Níquel (mg/kg)	< LD	< LD	< LD	< LD	10,00	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5				
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3				
Zinco (mg/kg)	< LD	< LD	< LD	24,00	6,00	31,41	< LD	2,48	10,34	25,32	36,22	18,96	11,72	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	2,22	0,17	0,34	< LD	5,9	17,0				
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	0,07	0,11	0,08	< LD	< LD	0,2	0,5				
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4				
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5				
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8				
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8				

VARIÁVEL				Ponto	RI "RX24": r		TÓRIO D , 7 km a j			ra-PA				VALORES ORIENTADORES *		
	dez/11	ez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 out/1														
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7	
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4	
PCBs-Bifenilas Policloradas (µg/kg)														34,1	277,0	
* Estabelecidos pela	Resolução	CONAM	A 454/20	12 para s	edimentos	; NA: não	se aplica	a; LD: lim	ite de de	tecção; N	C: não co	letado				

		RESERVATÓRIO DO XINGU												
VARIÁVEL		Ponto	o "RX24": ri	o Xingu, 7 I	km a jusant	e de Altami	ra-PA		ORIENTA	DORES *				
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2				
Fósforo Total (mg/kg)	83,0	252,0	262,0	193,0	232,0	136,0	334,0	811,0	2000	2000				
Nitrogênio Total Kjeldahl (mg/kg)	430,0	720,0	290,0	190,0	180,0	390,0	650,0	250,0	4800	4800				
Carbono Orgânico Total (%)	1,33	4,06	0,67	0,71	0,93	0,69	0,72	1,06	10	10				
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0				
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0				
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9				
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5				
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3				
Zinco (mg/kg)	4,18	22,78	11,93	9,55	31,56	33,06	21,45	101,08	123	315				
Arsênio (mg/kg)	< LD	0,43	0,05	0,08	0,10	0,07	< LD	0,04	5,9	17,0				
Mercúrio (mg/kg)	< LD	< LD	< LD	1,29	< LD	< LD	< LD	< LD	0,2	0,5				
Alfa-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				

		RESERVATÓRIO DO XINGU													
VARIÁVEL		Ponto	"RX24": ri	o Xingu, 7 I	km a jusant	e de Altami	ra-PA		ORIENTA	ADORES *					
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2					
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA					
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4					
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA					
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA					
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5					
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8					
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8					
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7					
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4					
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0					
* Estabelecidos nela Res	olucão CON	ΙΔΙΜΔ 454/20	112 nara sa	dimentes: N	۸· مقم ده عم	lica: I D: lim	to do dotoc	são: NC: não	coletado						

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Ponto RX25: Ponto localizado no rio Xingu, a montante 7 km do eixo da Barragem Principal (Pimental)

As amostras de sedimento coletadas no ponto RX25 estão em conformidade com a Resolução CONAMA 454/2012 (**Quadro - 9**). Na maioria das campanhas houve predominância de material arenoso fino, muito fino e silte, principalmente, nas campanhas de junho e setembro de 2012, janeiro, abril e julho de 2013 e abril de 2014. Em janeiro e abril de 2016, após a formação do Reservatório do Xingu os sedimentos coletados foram compostos, predominantemente, por areias mais grossas (**Figura - 9**). Nas campanhas seguintes, julho e outubro de 2016, as frações granulométricas do sedimento predominantes voltaram a ser as mais finas.

Em junho de 2012, janeiro de 2013, julho e abril de 2013, abril de 2014 e outubro de 2016 foram observadas as maiores concentrações de nutrientes no sedimento, o que pode estar relacionado com os sedimentos mais finos encontrados, principalmente siltes e argilas, os quais têm a propriedade de reter mais matéria orgânica.

Não foram evidenciadas diferenças significativas nas concentrações de nutrientes, carbono orgânico total e metais dos sedimentos de fundo entre as campanhas de préenchimento, enchimento e pós-enchimento sendo que as concentrações observadas se encontram dentro da média observada para todo o monitoramento.

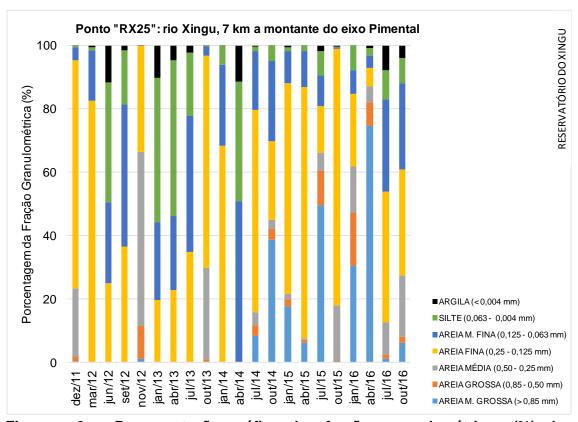


Figura - 9 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RX25 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

Quadro - 9 – Resultados das variáveis de qualidade do sedimento registrados no ponto RX25 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

		RESERVATÓRIO DO XINGU													
VARIÁVEL				Ponto "F	X25": rio	Xingu, 7	km a mo	ntante c	lo eixo P	imental				ORIENT	ADORES
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	34,0	62,2	23,8	37,0	65,0	593,0	529,5	339,7	35,1	68,0	457,0	124,0	192,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	122,1	91,6	2757,1	30,0	0,0	1800,0	161,1	973,7	121,3	850,0	1570,0	210,0	590,0	4800	4800
Carbono Orgânico Total (%)	< LD	0,01	0,03	1,41	1,60	5,43	6,25	3,56	0,01	2,53	8,30	0,70	0,70	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	3,82	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	8,40	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	36,00	< LD	8,00	32,10	< LD	18,96	3,77	16,85	36,74	8,34	11,40	123	315
Arsênio (mg/kg)	< LD	< LD	0,07	< LD	< LD	< LD	< LD	< LD	< LD	0,57	0,18	0,38	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,10	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5

VARIÁVEL				Ponto "R	RI X25": rio	ESERVAT Xingu, 7				imental				VALO ORIENTA	
	dez/11	ez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 out/													Nível 2
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos p	ela Resolu	ıção CON	AMA 454	/2012 par	a sedimer	ntos; NA:	não se ap	lica; LD:	limite de	detecção	; NC: não	coletado)		

VARIÁVEL		Ponto '		SERVATÓI Xingu, 7 kn		GU e do eixo P	imental			ORES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	69,0	50,0	331,0	54,0	93,0	321,0	152,0	313,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	90,0	30,0	530,0	610,0	250,0	400,0	330,0	940,0	4800	4800
Carbono Orgânico Total (%)	0,44	0,23	2,22	2,45	1,04	2,76	2,99	5,67	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	1,93	5,07	12,84	1,78	3,08	3,89	2,56	79,90	123	315
Arsênio (mg/kg)	< LD	< LD	0,05	0,05	0,04	0,03	< LD	0,02	5,9	17,0

		RF	SERVATÓE	SIO DO XIN	GU			VAL	NDE0
	Ponto "					imental			
jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
	< LD	jan/15 abr/15 < LD	Ponto "RX25": rio jan/15 abr/15 jul/15 < LD	Ponto "RX25": rio Xingu, 7 km jan/15 abr/15 jul/15 out/15 c LD c L	Ponto "RX25": rio Xingu, 7 km a montant jan/15 abr/15 jul/15 out/15 jan/16	jan/15 abr/15 jul/15 out/15 jan/16 abr/16 < LD	Ponto "RX25": rio Xingu, 7 km a montante do eixo Pimental jan/15 abr/15 jul/15 out/15 jan/16 abr/16 jul/16	Ponto "RX25": rio Xingu, 7 km a montante do eixo Pimental jan/15	Ponto "RX25": rio Xingu, 7 km a montante do eixo Pimental ORIENTA jan/15

Ponto RX03: Ponto localizado no rio Xingu, próximo à saída para o Canal de Derivação

As amostras de sedimento coletadas no ponto RX03 estão em conformidade com a Resolução CONAMA 454/2012 (**Quadro - 10**). Na maioria das campanhas houve predominância de material arenoso fino e muito fino (**Figura - 10**) sendo que os meses que apresentaram maiores percentagens de material mais fino como o silte foram os que tiveram maiores concentrações de nutrientes (junho 2012, julho 2013 e abril 2014). Nas campanhas de abril, julho e outubro de 2016, após a formação do Reservatório do Xingu foi observado sedimentos com granulometria maior neste local (areia muito grossa). As características destes sedimentos em termos de concentrações de nutrientes e metais foram muito similares aos observados nas campanhas anteriores ao enchimento do reservatório.

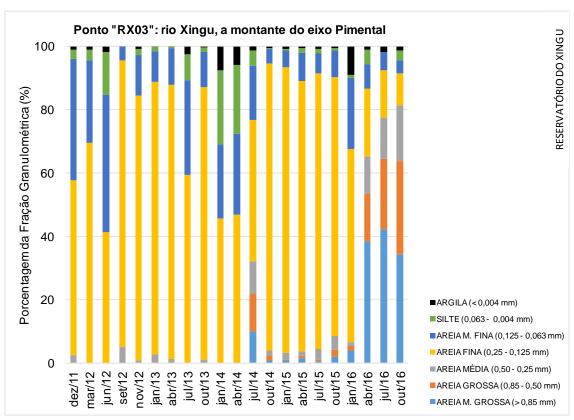


Figura - 10 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RX03 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

Quadro - 10 – Resultados das variáveis de qualidade do sedimento registrados no ponto RX03 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

VARIÁVEL				Ponto	R "RX03":			O XINGU	eixo Pime	ental					ORES ADORES *
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	234,6	46,1	11,6	26,0	34,0	39,2	406,0	561,8	37,7	119,0	327,0	174,0	28,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	661,0	112,0	1954,1	10,0	90,0	770,0	719,0	1059,7	111,3	250,0	1000,0	780,0	70,0	4800	4800
Carbono Orgânico Total (%)	0,03	0,02	0,04	0,27	0,27	0,09	0,02	3,34	0,14	0,63	2,60	2,00	1,22	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0				
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0				
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9				
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5				
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3				
Zinco (mg/kg)	< LD	< LD	< LD	< LD	2,00	8,96	< LD	26,49	2,42	14,85	29,46	11,68	6,00	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	1,21	0,18	0,30	< LD	5,9	17,0				
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	0,06	0,08	< LD	< LD	< LD	0,2	0,5				
Alfa-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Delta-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4				
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5				

VARIÁVEL				Ponto	R "RX03":		TÓRIO D u, a mont		eixo Pime	ental				VALO ORIENTA	
	dez/11														Nível 2
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos p	ela Resolu	ıção CON	AMA 454	/2012 par	a sedimer	ntos; NA:	não se ap	olica; LD:	limite de d	detecção;	NC: não	coletado			

VARIÁVEL		Pont		SERVATÓF io Xingu, a		GU lo eixo Pim	ental			ORES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	40,0	72,0	50,0	136,0	50,0	89,0	114,0	48,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	150,0	90,0	130,0	110,0	490,0	390,0	170,0	60,0	4800	4800
Carbono Orgânico Total (%)	0,49	0,37	0,25	0,28	0,04	2,24	2,19	0,19	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	7,95	3,55	7,35	5,06	4,66	3,52	6,86	123	315
Arsênio (mg/kg)	< LD	0,11	< LD	0,08	0,03	0,02	< LD	0,02	5,9	17,0

			RE	SERVATÓ	RIO DO XIN	GU			VALO	DRES
VARIÁVEL		Pont	to "RX03": ı	rio Xingu, a	montante d	lo eixo Pim	ental		ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pela Res	olução CON	IAMA 454/20	012 para sed	dimentos; N	A: não se ap	lica; LD: limi	te de detec	ção; NC: não	coletado	

Ponto IGLH: Ponto localizado no igarapé Galhoso - ou Gaioso, próximo à entrada do Canal de Derivação, a 334 m da via Leste-Oeste

Somente 0,43% das amostras de sedimento coletadas no ponto IGLH não estão em conformidade com a Resolução CONAMA 454/2012, para nível 1, sendo estas as variáveis: carbono orgânico total, em outubro de 2013, valor que se corresponde com altas concentrações de nutrientes e sedimentos finos como silte e argila, e mercúrio em julho de 2013 (**Quadro - 11**).

Na maioria das campanhas houve predominância de material arenoso muito grosso, seguido de areia grossa e areia fina. No mês de outubro de 2013 as frações predominantes foram areia muito fina e argila, padrão que também foi parcialmente observado em outubro de 2015 com maior predominância das frações mais finas. Já em janeiro e abril de 2016 as frações predominantes foram as mais grossas (**Figura - 11**). Esta variação ao longo do tempo exemplifica a variação do leito do rio com a hidrodinâmica do curso d'água.

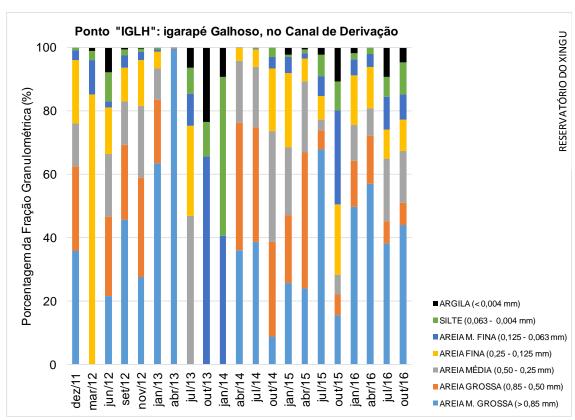


Figura - 11 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto IGLH no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

Quadro - 11 – Resultados das variáveis de qualidade do sedimento registrados no ponto IGLH no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

VARIÁVEL		OTTE BO				ESERVA	TÓRIO D	O XING	J						ORES ADORES
VARIAVEL	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	58,2	159,2	3,5	28,0	40,0	142,5	214,1	937,4	592,3	39,0	43,0	186,0	363,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	172,8	203,6	254,2	20,0	150,0	260,0	250,2	517,2	2893,4	1200,0	50,0	90,0	200,0	4800	4800
Carbono Orgânico Total (%)	0,01	0,06	0,06	0,28	0,25	0,70	1,17	5,98	10,64	3,31	0,01	0,25	0,15	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	7,40	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	< LD	< LD	1,66	< LD	16,33	23,76	25,61	12,86	13,98	13,49	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,79	0,05	0,12	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,24	0,20	0,17	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5

			Ponto						/ação					
dez/11														Nível 2
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
	< LD < LD < LD < LD	<ld <ld="" <ld<="" td=""><td>< LD</td> < LD</ld>	< LD	dez/11 mar/12 jun/12 set/12 < LD	Ponto "IGLH": i dez/11 mar/12 jun/12 set/12 nov/12 < LD	Ponto "IGLH": igarapé G dez/11 mar/12 jun/12 set/12 nov/12 jan/13 < LD	Ponto "IGLH": igarapé Galhoso, igarapé	Ponto "IGLH": igarapé Galhoso, no Canadez/11 dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 < LD	dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 < LD	Ponto "IGLH": igarapé Galhoso, no Canal de Derivação dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 < LD	Ponto "IGLH": igarapé Galhoso, no Canal de Derivação dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 < LD	Ponto	Ponto "IGLH": igarapé Galhoso, no Canal de Derivação dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 out/14 < LD	Ponto "IGLH": igarapé Galhoso, no Canal de Derivação dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 out/14 Nível 1 < LD

VARIÁVEL		Ponte		SERVATÓF Jarapé Galh		GU nal de Deriv	⁄ação			ORES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	339,0	542,0	620,0	598,0	623,0	488,0	387,0	396,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	880,0	1760,0	1490,0	1880,0	690,0	90,0	150,0	160,0	4800	4800
Carbono Orgânico Total (%)	6,06	8,27	7,97	8,09	0,74	0,70	0,71	1,20	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	17,99	13,14	35,29	24,43	2,84	3,04	2,54	6,04	123	315
Arsênio (mg/kg)	< LD	< LD	0,06	0,11	0,08	0,08	< LD	0,04	5,9	17,0

			,						
		RE	SERVATOR	RIO DO XIN	GU				DRES
	Ponte	o "IGLH": iç	garapé Galh	oso, no Ca	nal de Deriv	/ação		ORIENTA	DORES *
jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
	< LD	jan/15 abr/15 < LD	Ponto	Ponto "IGLH": igarapé Galh jan/15	Ponto "IGLH": igarapé Galhoso, no Calign/15 abr/15 jul/15 out/15 jan/16	jan/15 abr/15 jul/15 out/15 jan/16 abr/16 < LD	Ponto	Ponto "IGLH": igarapé Galhoso, no Canal de Derivação jan/15 abr/15 jul/15 out/15 jan/16 abr/16 jul/16 out/16 < LD	Ponto

Ponto IDM: Ponto localizado no igarapé Di Maria, a jusante do Canal de Derivação

As amostras de sedimento coletadas no ponto IDM estão em conformidade com a Resolução CONAMA 454/2012, (**Quadro - 12**). Na maioria das campanhas houve predominância de material arenoso muito grosso, seguido das demais frações, mais equilibradas na sua distribuição (**Figura - 12**). As campanhas dos meses do período de seca (junho a novembro de 2012, outubro de 2013, abril, julho e outubro 2014, julho 2015, julho e outubro 2016) apresentaram uma composição diferente com maior porcentagem de areia fina, areia muito fina, silte e argila, correspondente a composição do leito do igarapé.

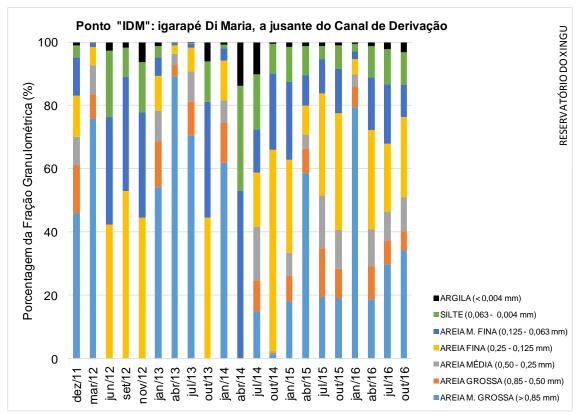


Figura - 12 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto IDM no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

Quadro - 12 – Resultados das variáveis de qualidade do sedimento registrados no ponto IDM no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

				•	R	ESERVA [*]	TÓRIO D	O XINGL	J						ORES ADORES
VARIÁVEL			P	onto "IDI	И": igarap	oé Di Mar	ia, a jusa	nte do C	anal de	Derivação				ORIZIO	*
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	392,0	160,1	21,6	91,0	270,0	332,0	71,8	92,4	200,6	284,0	480,0	247,0	202,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	1219,9	224,0	701,6	40,0	590,0	1300,0	217,1	64,7	280,3	2470,0	2060,0	280,0	450,0	4800	4800
Carbono Orgânico Total (%)	0,02	0,02	0,03	0,89	0,91	3,63	1,15	0,32	1,29	5,06	7,25	0,56	1,91	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	< LD	16,00	16,66	< LD	20,85	16,26	36,38	47,47	3,60	8,96	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	0,05	< LD	< LD	< LD	< LD	< LD	0,93	0,13	< LD	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,11	0,19	0,05	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5

VARIÁVEL			Po	onto "IDI	R M": igarap	ESERVA ⁻ oé Di Mari				Derivação)				ORES ADORES
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos p	ela Resol	ução CON	IAMA 454	l/2012 pa	ra sedime	ntos; NA:	não se a _l	olica; LD	: limite de	detecção	; NC: não	coletad)		

VARIÁVEL		Ponto "ID			RIO DO XINo a jusante do	GU o Canal de I	Derivação			ORES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	392,0	272,0	99,0	269,0	575,0	279,0	413,0	427,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	790,0	500,0	110,0	90,0	1850,0	510,0	1910,0	600,0	4800	4800
Carbono Orgânico Total (%)	5,11	0,14	0,04	0,05	7,94	2,19	2,89	3,72	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	7,27	6,37	4,87	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	11,00	11,00	8,60	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	12,62	32,45	2,25	6,24	40,12	40,85	38,05	21,74	123	315
Arsênio (mg/kg)	< LD	0,57	< LD	0,07	0,09	0,09	< LD	0,04	5,9	17,0

			RE	SERVATÓ	RIO DO XIN	GU				ORES
VARIÁVEL		Ponto "ID	M": igarap	é Di Maria, a	a jusante do	Canal de D	Derivação		ORIENTA	ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Mercúrio (mg/kg)	0,11	0,11	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pela Res	olução CON	IAMA 454/20	012 para sed	dimentos; N	A: não se ap	lica; LD: limi	te de detec	ção; NC: não	coletado	

Ponto PIMENTAL: Ponto localizado no rio Xingu, na margem esquerda, logo a montante do eixo da Barragem Principal (Pimental)

As amostras de sedimento coletadas no ponto PIMENTAL estão em conformidade com a Resolução CONAMA 454/2012 no nível 1 da legislação, com exceção de um valor de não conformidade da variável carbono no mês de abril de 2015 (**Quadro - 13**). No sedimento deste local houve predominância de material arenoso muito grosso, areia grossa e areia fina (**Figura - 13**). Nos meses de janeiro e abril de 2016, durante e após o enchimento do Reservatório do Xingu houve predominância de sedimentos com granulometria maior: areia muito grossa e areia grossa. Nas campanhas seguintes foram observados sedimentos mais finos, com maior percentagem de silte e argila, provavelmente originados da sedimentação do material transportado pelo reservatório.

Em termos de concentração de nutrientes nos sedimentos foi observado um leve incremento durante as campanhas de pré-enchimento (outubro 2015), enchimento (janeiro 2016) e pós-enchimento (abril 2016), mas as concentrações se encontram dentro das médias observadas no local.

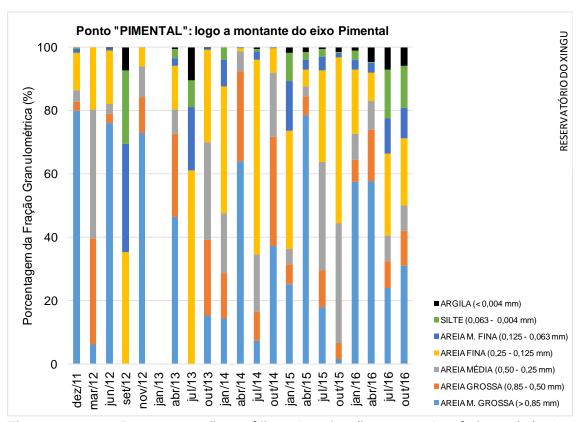


Figura - 13 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto PIMENTAL no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

Quadro - 13 – Resultados das variáveis de qualidade do sedimento registrados no ponto PIMENTAL no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

					RE	SERVA	TÓRIO DO	XINGU							DRES
VARIÁVEL				Ponto	"PIMENT	AL": log	o a mont	ante do	eixo Pim	ental				ORIENT	ADORES
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	78,3	62,4	5,2	82,0	100,0	NC	42,2	121,7	108,4	15,0	137,0	65,0	380,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	559,8	71,3	183,0	40,0	70,0	NC	90,4	33,6	151,8	370,0	150,0	80,0	80,0	4800	4800
Carbono Orgânico Total (%)	< LD	0,01	0,01	1,00	1,01	NC	0,03	0,01	0,01	0,82	0,36	0,27	0,13	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	<ld< td=""><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>37,3</td><td>90,0</td></ld<>	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>NC</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>< LD</td><td>< LD</td><td>35,7</td><td>197,0</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>NC</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>< LD</td><td>< LD</td><td>35,7</td><td>197,0</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>NC</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>< LD</td><td>< LD</td><td>35,7</td><td>197,0</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>NC</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>< LD</td><td>< LD</td><td>35,7</td><td>197,0</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	NC	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>< LD</td><td>< LD</td><td>35,7</td><td>197,0</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>< LD</td><td>< LD</td><td>35,7</td><td>197,0</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>< LD</td><td>< LD</td><td>35,7</td><td>197,0</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>< LD</td><td>< LD</td><td>35,7</td><td>197,0</td></ld<></td></ld<>	<ld< td=""><td>< LD</td><td>< LD</td><td>35,7</td><td>197,0</td></ld<>	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	< LD	18,00	NC	< LD	24,44	9,33	3,71	27,42	4,07	29,78	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	0,08	< LD	0,18	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	0,11	< LD	NC	< LD	< LD	0,05	< LD	0,04	< LD	< LD	0,2	0,5
Alfa-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5

VARIÁVEL				Ponto	RE "PIMENT		ΓÓRIO DO o a mont			ental				VALO ORIENTA	ORES ADORES *
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
(μg/kg) * Estabelecidos p	ela Resol	l ução CON	 AMA 454	/2012 pa	ra sedime	ntos; NA:	não se a	plica; LD	: limite de	e detecçã	o; NC: nã	o coleta	do		

VARIÁVEL		Pont		SERVATÓF AL": logo a		GU do eixo Pim	ental			DRES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	138,0	657,0	254,0	187,0	508,0	556,0	97,0	225,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	490,0	2800,0	650,0	590,0	1980,0	2110,0	380,0	620,0	4800	4800
Carbono Orgânico Total (%)	1,92	11,05	0,03	0,09	8,92	0,63	0,73	2,07	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	6,87	7,77	5,97	< LD	35,7	197,0
Níquel (mg/kg)	< LD	12,17	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	8,21	48,47	15,27	7,11	32,56	30,26	27,84	13,68	123	315

			RE	SERVATÓ	RIO DO XIN	GU			VALO	ORES
VARIÁVEL		Pont	o "PIMENT	AL": logo a	montante d	do eixo Pim	ental		ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Arsênio (mg/kg)	< LD	1,29	< LD	0,07	0,12	0,13	< LD	0,05	5,9	17,0
Mercúrio (mg/kg)	0,11	0,15	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pela Res	olução CON	IAMA 454/20	012 para sec	dimentos; N	A: não se ap	lica; LD: limi	te de detec	ção; NC: não	coletado	

1.3 ÁREA 3: TRECHO DE VAZÃO REDUZIDA/VOLTA GRANDE

Ponto RX23: Ponto localizado no rio Xingu, em um canal da margem esquerda, a jusante do eixo da Barragem Principal (Pimental)

Do total de amostras coletadas no monitoramento do ponto RX23, somente 0,45% não estão em conformidade com a Resolução CONAMA 454/2012 para nível 2: mercúrio em outubro de 2013 e 2015 (Quadro - 14). A presença de apenas dois registros de mercúrio no sedimento é considerado como um valor esporádico em não conformidade com a legislação e, portanto, não caracteriza impactos significativos à qualidade do sedimento no ponto RX23, uma vez que todas as demais variáveis quantificadas estiveram em conformidade com os valores norteadores da legislação e esta variável permaneceu em conformidade em todas as outras campanhas. É importante ressaltar que apesar da sua localização próxima às áreas das maiores intervenções do empreendimento, a jusante da Barragem Principal em Pimental, esse ponto apresentou todas as outras variáveis em conformidade com a legislação, não evidenciando, portanto, alterações na qualidade dos sedimentos do rio Xingu durante o monitoramento. Neste local houve predominância de material arenoso fino e muito fino nos meses de dezembro de 2011 e março e junho de 2012, julho 2015 e abril, julho e outubro de 2016 (Figura - 14). Nos restantes meses do monitoramento o material predominante foi de frações mais grosseiras como areia grossa, média e fina.

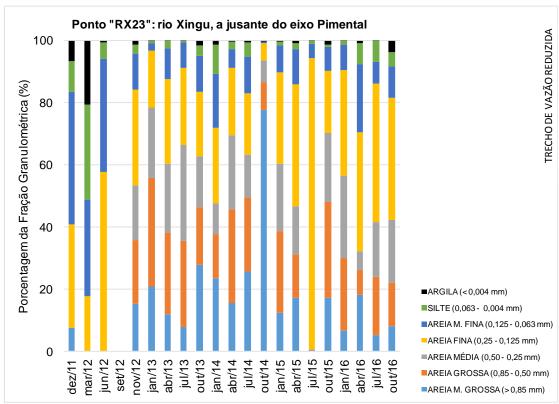


Figura - 14 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RX23 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

Quadro - 14 – Resultados das variáveis de qualidade do sedimento registrados no ponto RX 23 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

				•	TRE	CHO DE	VAZÃO I	REDUZIO	DA .						DRES
VARIÁVEL				Ponte	o "RX23"	rio Xing	u, a jusa	nte do e	ixo Pime	ntal				ORIENT	ADORES *
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	392,4	405,4	3,6	NC	30,0	56,7	38,4	19,0	151,3	13,0	32,0	81,0	594,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	1465,6	702,6	721,9	NC	0,0	140,0	141,2	202,4	786,3	310,0	130,0	260,0	210,0	4800	4800
Carbono Orgânico Total (%)	0,05	0,05	0,04	NC	0,05	0,89	0,80	0,12	3,19	1,33	0,30	0,59	0,50	10	10
Cromo (mg/kg)	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	12,21	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	NC	4,00	4,23	< LD	< LD	10,14	7,85	3,64	7,31	63,19	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,13	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	1,07	0,07	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (μg/kg)	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (μg/kg)	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8

VARIÁVEL				Ponte	TRE "RX23"		VAZÃO I u, a jusa			ntal					ORES ADORES *
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Dieldrin (µg/kg)	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0

VARIÁVEL		Por		CHO DE VA rio Xingu, a			ntal			ORES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	42,0	102,0	77,0	39,0	21,0	99,0	39,0	35,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	140,0	60,0	90,0	110,0	120,0	50,0	60,0	30,0	4800	4800
Carbono Orgânico Total (%)	0,56	0,68	0,01	0,01	0,27	0,40	0,40	0,46	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	8,50	2,12	< LD	3,58	2,78	1,58	8,66	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	0,05	< LD	< LD	< LD	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	1,28	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA

			TRE	CHO DE VA	ZÃO REDII	ZIDA			VAL	
VARIÁVEL		Por				o eixo Pime	ntal			DRES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pela Res	olução CON	IAMA 454/20)12 para sed	dimentos; N	A: não se ap	lica; LD: lim	ite de detec	ção; NC: não	coletado	•

Ponto RXMBS: Ponto localizado no rio Xingu, a montante da área de Mineração

Conforme descrito no **Anexo 11.4.1 - 6** este ponto foi incluído na malha amostral do projeto a partir de janeiro de 2015, localizada próxima à comunidade da Ressaca.

As amostras de sedimento coletadas no ponto RXMBS estão em conformidade com a Resolução CONAMA 454/2012 (**Quadro - 15**). No sedimento deste local houve predominância de material arenoso fino e muito fino e silte no mês de janeiro e julho de 2015 e areia média e areia fina no mês de abril e outubro de 2015 e janeiro e abril de 2016, sendo mais heterogêneo nas campanhas de julho e outubro de 2016 (**Figura - 15**).

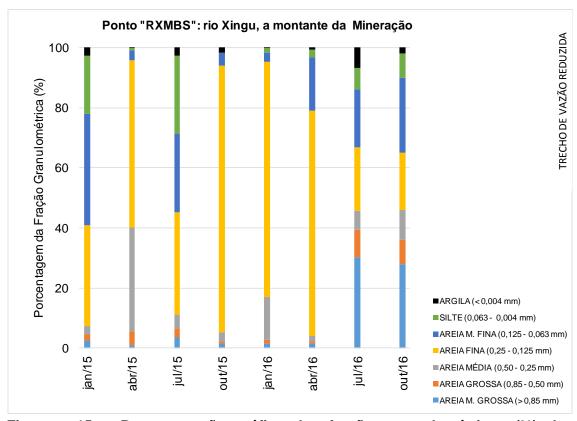


Figura - 15 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RXMBS, no monitoramento limnológico trimestral do PBA da UHE Belo Monte, no período entre janeiro de 2015 a outubro de 2016

Quadro - 15 – Resultados das variáveis de qualidade do sedimento registrados no ponto RXMBS, no monitoramento limnológico trimestral do PBA da UHE Belo Monte, no período entre janeiro de 2015 a outubro de 2016

			TRECI	HO DE VA	ZÃO RED	UZIDA			VALO	DRES
VARIÁVEL		Ponto	"RXMBS"	: rio Xingı	u, a monta	ante da Be	lo Sun		ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	115,0	88,0	165,0	31,0	64,0	114,0	15,0	91,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	230,0	50,0	310,0	220,0	100,0	230,0	140,0	150,0	4800	4800
Carbono Orgânico Total (%)	3,65	0,68	1,49	1,39	0,28	0,74	0,82	0,90	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	10,85	9,82	8,04	< LD	6,08	6,59	5,78	14,88	123	315
Arsênio (mg/kg)	< LD	0,06	< LD	0,19	0,06	0,06	< LD	0,04	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7

VARIÁVEL		Ponto		HO DE VA : rio Xingı			lo Sun		VALORES ORIENTADORES *		
	jan/15 abr/15 jul/15 out/15 jan/16 abr/16 jul/16 out/16										
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4	
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0	

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Ponto RXJBS: Ponto localizado no rio Xingu, a jusante da área de Mineração

Conforme descrito no Anexo 11.4.1 - 6 este ponto foi incluído na malha amostral do projeto a partir de janeiro de 2015, e está localizado próximo às comunidades Ressaca e Ilha da Fazenda.

As amostras de sedimento coletadas no ponto RXJBS estão em conformidade com a Resolução CONAMA 454/2012 (**Quadro - 16**). No sedimento deste local houve predominância de material arenoso fino e muito fino nos oito meses de amostragem (**Figura - 16**).

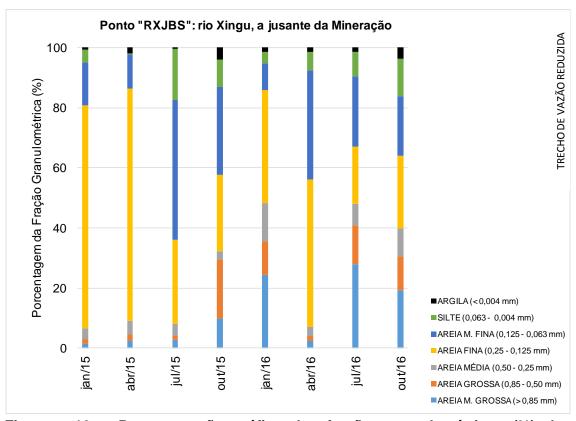


Figura - 16 — Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RXJBS no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre janeiro de 2015 a outubro de 2016

Quadro - 16 – Resultados das variáveis de qualidade do sedimento registrados no ponto RXJBS no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre janeiro de 2015 a outubro de 2016

			TREC	HO DE VA	ZÃO RED	UZIDA			VALORES	
VARIÁVEL		Ponto	"RXJBS	": rio Xing	ju, a jusar	nte da Belo	o Sun		ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	51,0	142,0	254,0	105,0	386,0	275,0	175,0	228,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	260,0	40,0	550,0	370,0	570,0	460,0	430,0	600,0	4800	4800
Carbono Orgânico Total (%)	1,62	0,55	2,32	2,20	1,42	0,94	1,10	3,20	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	3,19	< LD	14,40	12,30	10,20	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	20,46	14,58	4,84	56,80	53,80	43,40	20,82	123	315
Arsênio (mg/kg)	< LD	0,52	0,15	0,27	0,39	0,45	< LD	0,10	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	0,16	< LD	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7

VARIÁVEL		Ponto		HO DE VA		UZIDA nte da Belo	Sun		VALORES ORIENTADORES		
VALUATO EL	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2	
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4	
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0	

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Ponto RESSACA: Ponto localizado no rio Xingu, próximo à localidade Ressaca

Do total de amostras de sedimento coletadas no ponto RESSACA 3,25% se encontram em não conformidade com a Resolução CONAMA 454/2012, sendo estas: cromo, nível 1 em janeiro de 2013 e 2015 e nível 2 em abril 2015; níquel em janeiro, abril e julho de 2015 e janeiro e abril e julho de 2016, arsênio em janeiro de 2013 e 2014, e abril de 2015, sendo este último acima do nível 2; mercúrio em junho e setembro de 2012 (nível 1) e em outubro de 2013 (nível 2) (**Quadro - 17**). Estes metais fazem parte do histórico da região, como consequência da extração de ouro.

Devido à presença de frações granulométricas mais finas nos sedimentos como silte e argila (**Figura - 17**), os metais ficam mais facilmente adsorvidos. Porém, é importante ressaltar que a maioria das concentrações observadas se encontram próximas ao nível 1 da legislação, e não foram detectadas na água, diminuindo assim o risco à biota.

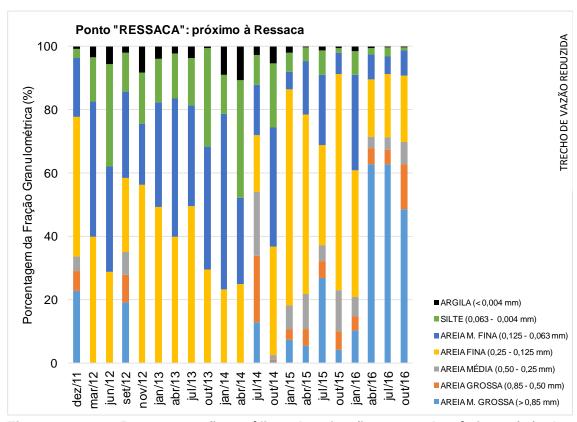


Figura - 17 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RESSACA no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

Quadro - 17 – Resultados das variáveis de qualidade do sedimento registrados no ponto RESSACA no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

VARIÁVEL							VAZÃO I							VALORES ORIENTADORES	
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	67,9	400,0	18,2	216,0	360,0	317,2	268,9	364,7	339,5	26,0	301,0	186,0	259,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	40,7	743,3	71,2	60,0	310,0	610,0	648,1	724,3	837,7	310,0	520,0	590,0	230,0	4800	4800
Carbono Orgânico Total (%)	<ld< td=""><td>0,01</td><td>0,01</td><td>1,13</td><td>1,25</td><td>1,67</td><td>1,43</td><td>2,54</td><td>3,10</td><td>0,74</td><td>1,50</td><td>0,63</td><td>0,92</td><td>10</td><td>10</td></ld<>	0,01	0,01	1,13	1,25	1,67	1,43	2,54	3,10	0,74	1,50	0,63	0,92	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	43,97	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	8,00	< LD	11,87	20,53	< LD	< LD	8,75	15,93	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	14,00	12,60	< LD	< LD	< LD	< LD	13,78	< LD	14,38	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	36,00	36,00	14,00	29,02	< LD	34,50	34,33	14,91	28,14	12,70	19,18	123	315
Arsênio (mg/kg)	< LD	< LD	4,18	0,33	< LD	10,09	< LD	3,28	10,40	7,51	1,53	1,52	1,04	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	0,35	0,25	< LD	< LD	< LD	< LD	0,49	< LD	< LD	0,20	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8

VARIÁVEL							VAZÃO I A": próxi							VALORES ORIENTADORES	
	dez/11	dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 out/14 I													
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0

			TRE	CHO DE VA	ZÃO REDU	ZIDA			VALO	DRES
VARIÁVEL			Ponto "F	RESSACA":	próximo à	Ressaca			ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	386,0	196,0	257,0	175,0	179,0	105,0	140,0	220,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	1260,0	360,0	160,0	210,0	220,0	10,0	160,0	190,0	4800	4800
Carbono Orgânico Total (%)	5,91	0,42	0,55	0,65	0,67	0,25	0,37	0,72	10	10
Cromo (mg/kg)	64,00	93,89	< LD	0,08	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	25,90	29,96	31,20	17,94	22,47	24,37	22,57	8,00	35,7	197,0
Níquel (mg/kg)	26,31	22,37	22,28	< LD	26,00	24,00	27,20	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	29,05	19,92	20,83	13,12	21,30	23,30	20,45	24,34	123	315
Arsênio (mg/kg)	0,97	24,88	2,17	1,91	3,41	2,93	1,52	0,36	5,9	17,0
Mercúrio (mg/kg)	0,15	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5

			TRE	CHO DE VA	ZÃO REDU	ZIDA			VALORES			
VARIÁVEL			Ponto "F	RESSACA":	próximo à	Ressaca			ORIENTA	DORES *		
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2		
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA		
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA		
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4		
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA		
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA		
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5		
DDE (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8		
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8		
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7		
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4		
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0		
* Estabelecidos pela Res	olução CON	IAMA 454/20	012 para sed	dimentos; N	A: não se ap	lica; LD: limi	te de detec	ção; NC: não	coletado			

Ponto FAZENDA: Ponto localizado no rio Xingu, próximo à ilha da Fazenda

As amostras de sedimento coletadas no ponto FAZENDA estão em conformidade com a Resolução CONAMA 454/2012, com exceção do mercúrio no nível 1, no mês de abril de 2015 (**Quadro - 18**). Neste local houve predominância de material arenoso fino e areia média (**Figura - 18**). No mês de janeiro de 2013, no período de enchente, houve predominância de sedimentos mais grosseiros (areia muito grossa) e siltes, provavelmente devido ao aumento da vazão do rio e consequente carreamento das frações mais finas. Não houve alterações na qualidade dos sedimentos após a formação do Reservatório Xingu e TVR, considerando as campanhas anteriores.

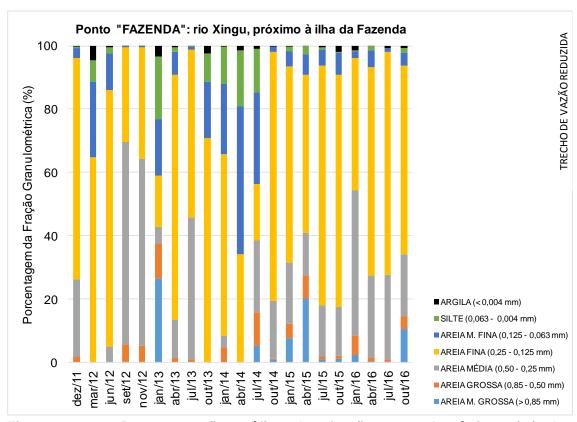


Figura - 18 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto FAZENDA no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

Quadro - 18 – Resultados das variáveis de qualidade do sedimento registrados no ponto FAZENDA no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

		TRECHO DE VAZÃO REDUZIDA													ORES ADORES
VARIÁVEL				Ponto "	FAZEND	A": rio Xi	ngu, pró	ximo à il	ha da Fa	zenda				OKILIVI	*
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	63,2	283,7	4,5	30,0	65,0	90,6	79,1	27,7	32,2	12,0	170,0	140,0	65,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	152,7	804,4	71,2	10,0	30,0	30,0	205,7	0,0	185,5	250,0	520,0	490,0	30,0	4800	4800
Carbono Orgânico Total (%)	< LD	0,01	0,01	0,30	0,36	0,51	0,66	0,01	0,01	0,59	1,02	2,36	2,91	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	86,00	6,00	13,79	< LD	19,08	< LD	8,11	23,32	11,52	5,79	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	0,01	< LD	< LD	< LD	< LD	< LD	0,97	0,23	0,23	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	0,15	< LD	< LD	< LD	< LD	0,08	0,09	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5

			Ponto "						zenda				VALORES ORIENTADORES *	
dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
	< LD < LD < LD < LD	<ld <ld="" <ld<="" td=""><td><ld <ld="" <ld<="" td=""><td>dez/11 mar/12 jun/12 set/12 < LD</td> < LD</ld></td> < LD</ld>	<ld <ld="" <ld<="" td=""><td>dez/11 mar/12 jun/12 set/12 < LD</td> < LD</ld>	dez/11 mar/12 jun/12 set/12 < LD	Ponto "FAZENDA dez/11 mar/12 jun/12 set/12 nov/12 < LD	Ponto "FAZENDA": rio Xi dez/11 mar/12 jun/12 set/12 nov/12 jan/13 < LD	Ponto "FAZENDA": rio Xingu, próxidez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 < LD	Ponto "FAZENDA": rio Xingu, próximo à il dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 < LD	dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 < LD	Ponto "FAZENDA": rio Xingu, próximo à ilha da Fazenda dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 < LD	Ponto "FAZENDA": rio Xingu, próximo à ilha da Fazenda dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 < LD	Ponto "FAZENDA": rio Xingu, próximo à ilha da Fazenda dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 < LD	Ponto "FAZENDA": rio Xingu, próximo à ilha da Fazenda dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 out/14 < LD	Ponto FAZENDA : rio Xingu, próximo à ilha da Fazenda ORIENTA Ponto FAZENDA : rio Xingu, próximo à ilha da Fazenda ORIENTA Ponto FAZENDA : rio Xingu, próximo à ilha da Fazenda ORIENTA Ponto FAZENDA : rio Xingu, próximo à ilha da Fazenda ORIENTA Ponto FAZENDA : rio Xingu, próximo à ilha da Fazenda ORIENTA Ponto Ponto

ı	 * Estabelecidos pela Resolução C 	CONAMA 454/2012 para sedimentos	; NA: não se aplica; LD: limit	te de detecção; NC: não coletado

VARIÁVEL		Ponto		CHO DE VA A": rio Xing			zenda		VALO ORIENTA	DRES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	157,0	170,0	92,0	104,0	95,0	88,0	63,0	103,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	530,0	800,0	70,0	90,0	100,0	20,0	110,0	30,0	4800	4800
Carbono Orgânico Total (%)	2,84	5,43	0,26	0,24	0,54	0,13	0,24	0,45	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	2,96	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	14,38	23,89	11,87	5,33	10,36	12,06	10,41	16,34	123	315
Arsênio (mg/kg)	< LD	0,70	< LD	0,16	0,09	0,10	< LD	0,09	5,9	17,0

			TRE	CHO DE VA	ZÃO REDU	ZIDA			VALO	DRES		
VARIÁVEL		Ponto	"FAZENDA	A": rio Xing	u, próximo	à ilha da Fa	zenda		ORIENTA	DORES *		
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2		
Mercúrio (mg/kg)	< LD	0,23	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5		
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA		
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA		
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4		
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA		
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA		
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5		
DDE (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8		
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8		
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7		
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4		
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0		
* Estabelecidos pela Res	olução CON	IAMA 454/20	012 para sed	dimentos; N	A: não se ap	lica; LD: limi	te de detec	ção; NC: não	coletado	·		

Ponto RX04: Ponto localizado no rio Xingu, a jusante da Ilha da Fazenda

As amostras de sedimento coletadas no ponto RX04 estão em conformidade com a Resolução CONAMA 454/2012 (**Quadro - 19**). Neste local houve predominância de material arenoso fino e areia média (**Figura - 19**). Nos meses dezembro de 2011, março de 2012, janeiro de 2014 e abril de 2014 e julho e outubro de 2016 houve uma maior porcentagem de sedimentos mais grosseiros (areia muito grossa) e areias finas, indicando variação na composição dos sedimentos de fundo com deposição de material arenoso mais fino em meses de menor vazão e chuvas. As frações mais finas do mês de janeiro de 2015 (areia muito fina e silte) permitiram uma maior retenção de nutrientes, principalmente nitrogênio e fósforo.

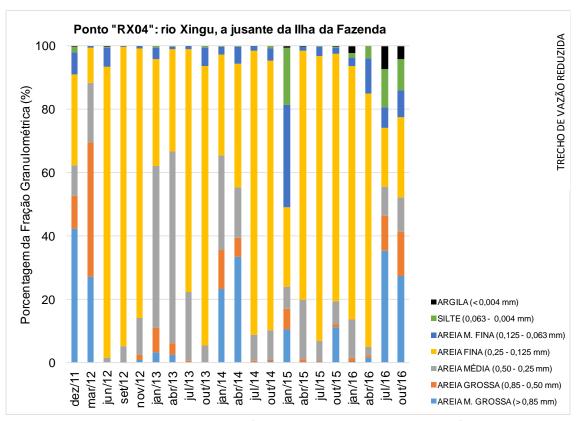


Figura - 19 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RX04 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

Quadro - 19 – Resultados das variáveis de qualidade do sedimento registrados no ponto RX04 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

				•	TRE	CHO DE	VAZÃO I	REDUZII	DA						DRES
VARIÁVEL				Ponto	"RX04":	rio Xingı	ı, a jusan	te da ilh	a da Faz	enda				ORIENT	ADORES
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	254,6	73,6	3,1	21,0	59,0	118,6	80,6	54,3	66,4	18,0	168,0	46,0	65,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	478,5	213,8	0,0	10,0	80,0	0,0	91,1	16,9	172,1	50,0	130,0	230,0	100,0	4800	4800
Carbono Orgânico Total (%)	0,03	0,02	0,03	0,28	0,38	0,09	0,02	0,01	0,14	0,01	0,01	0,01	0,01	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0				
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0				
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9				
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5				
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3				
Zinco (mg/kg)	< LD	< LD	< LD	< LD	4,00	11,60	< LD	3,59	5,72	16,03	21,49	3,19	6,61	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	1,30	0,10	< LD	< LD	5,9	17,0				
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	0,05	< LD	< LD	< LD	< LD	0,2	0,5				
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4				
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5				

VARIÁVEL				Ponto	TRE		VAZÃO I ı, a jusan			enda				VALO ORIENTA	
	dez/11												out/14	Nível 1	Nível 2
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pe	ela Resolu	ção CON	AMA 454/	2012 par	a sedimer	itos; NA:	não se ap	olica; LD:	limite de	detecção	; NC: não	coletad	0		

VARIÁVEL		Pont		CHO DE VA rio Xingu, a		ZIDA ilha da Faz	enda			ORES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	486,0	79,0	44,0	61,0	46,0	84,0	80,0	69,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	2510,0	40,0	50,0	90,0	80,0	70,0	40,0	20,0	4800	4800
Carbono Orgânico Total (%)	0,01	0,01	0,01	0,01	0,05	0,41	0,50	0,08	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	7,11	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	12,12	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5

< LD

2,01

0,13

< LD

7,42

0,05

< LD

5,42

0,06

< LD

4,32

< LD

< LD

8,82

0,02

35,0

123

5,9

91,3

315

17,0

< LD

2,63

< LD

Chumbo (mg/kg)

Arsênio (mg/kg)

Zinco (mg/kg)

< LD

38,29

< LD

< LD

11,45

0,43

			TRE	CHO DE VA	ZÃO REDU	ZIDA			VAL	DRES
VARIÁVEL		Pont	to "RX04": ı	rio Xingu, a	jusante da	ilha da Faz	enda		ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Mercúrio (mg/kg)	0,15	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pela Res	olução CON	IAMA 454/20	012 para sed	dimentos; N	A: não se ap	lica; LD: lim	ite de detec	ção; NC: não	coletado	

Ponto RX20: Ponto localizado no rio Xingu, margem esquerda, em frente à aldeia Paquiçamba

As amostras de sedimento coletadas no ponto RX20 estão em conformidade com a Resolução CONAMA 454/2012 (Quadro - 20). Neste local houve predominância de material arenoso muito fino e silte nos meses dezembro de 2011, junho e novembro de 2012 (Figura - 20). Após este período, a composição granulométrica sofreu uma mudança, com maior porcentagem de sedimentos mais grosseiros (areia grossa e areia média). Nos meses de julho e outubro de 2016, foi observado um aumento da fração mais fina dos sedimentos, talves devido à deposição pela diminuição do fluxo durante o período de estiagem.

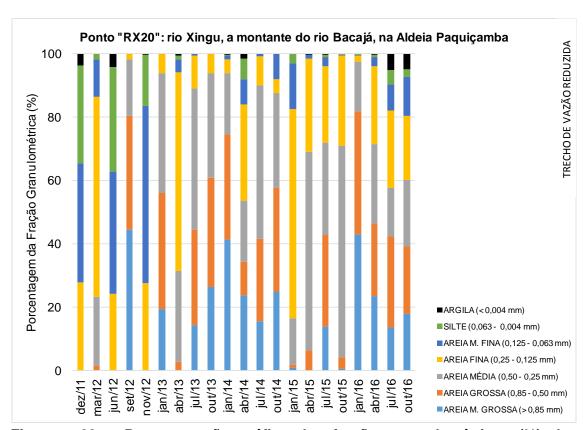


Figura - 20 — Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RX20 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

Quadro - 20 – Resultados das variáveis de qualidade do sedimento registrados no ponto RX20 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

				_	TRE	CHO DE	VAZÃO F	REDUZIO)A					VALC	DRES
VARIÁVEL			Ponto '	'RX20": ri	o Xingu,	a montar	nte do rio	Bacajá,	, na Aldei	a Paquiç	amba			ORIENTA	DORES *
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	19,6	131,6	21,2	250,0	72,0	234,4	70,8	88,6	186,4	24,0	387,0	86,0	104,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	254,3	71,3	2390,4	1360,0	0,0	80,0	20,1	71,2	120,7	320,0	2220,0	990,0	70,0	4800	4800
Carbono Orgânico Total (%)	< LD	0,01	0,01	0,31	0,29	0,09	0,42	0,01	0,01	1,72	5,36	0,01	1,20	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	10,00	<ld< td=""><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>18,0</td><td>35,9</td></ld<>	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	<ld< td=""><td><ld< td=""><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>0,6</td><td>3,5</td></ld<></td></ld<>	<ld< td=""><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>0,6</td><td>3,5</td></ld<>	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	<ld< td=""><td><ld< td=""><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>35,0</td><td>91,3</td></ld<></td></ld<>	<ld< td=""><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>35,0</td><td>91,3</td></ld<>	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	40,00	18,00	<ld< td=""><td>18,72</td><td>< LD</td><td>24,86</td><td>18,65</td><td>19,83</td><td>40,44</td><td>10,90</td><td>16,63</td><td>123</td><td>315</td></ld<>	18,72	< LD	24,86	18,65	19,83	40,44	10,90	16,63	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	<ld< td=""><td><ld< td=""><td>< LD</td><td>< LD</td><td>< LD</td><td>0,34</td><td>0,79</td><td>0,16</td><td>0,40</td><td>0,15</td><td>5,9</td><td>17,0</td></ld<></td></ld<>	<ld< td=""><td>< LD</td><td>< LD</td><td>< LD</td><td>0,34</td><td>0,79</td><td>0,16</td><td>0,40</td><td>0,15</td><td>5,9</td><td>17,0</td></ld<>	< LD	< LD	< LD	0,34	0,79	0,16	0,40	0,15	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	<ld< td=""><td>0,20</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>0,2</td><td>0,5</td></ld<>	0,20	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8

VARIÁVEL			Ponto "	'RX20": ri	TRE0		VAZÃO R nte do rio			a Paquiç	amba			VALC ORIENTA	DRES DORES *
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pela I	Resolução	CONAMA	454/201	2 para sec	dimentos;	NA: não s	se aplica;	LD: limit	e de dete	cção; NC	: não cole	tado			

VARIÁVEL	Poi	nto "RX20":		CHO DE VA a montante			ia Paquiçan	nba		DRES DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	96,0	99,0	105,0	100,0	132,0	83,0	115,0	94,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	250,0	20,0	80,0	90,0	10,0	60,0	80,0	80,0	4800	4800
Carbono Orgânico Total (%)	1,89	0,01	0,25	0,30	0,06	0,15	0,20	0,04	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	12,32	14,24	11,36	4,48	20,02	19,02	18,01	17,08	123	315
Arsênio (mg/kg)	< LD	0,40	< LD	0,15	0,13	0,11	< LD	0,23	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA

					_~					
VARIÁVEL	Poi	nto "RX20":		CHO DE VA a montante		ZIDA ajá, na Alde	ia Paquiçan	nba	VALO ORIENTA	DRES ADORES '
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pela Res	olucão CON	ΙΔΜΔ 454/20)12 nara sa	dimentos: NA	7. užu se an	lica: I D: limi	te de detecc	são: NC: não	coletado	·

Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Ponto RX05: Ponto localizado no rio Xingu, margem direita, a montante do rio Bacajá, próximo à aldeia Arara (Maia)

As amostras de sedimento coletadas no ponto RX05 estão em conformidade com a Resolução CONAMA 454/2012 (**Quadro - 21**). Neste ponto houve predominância de material arenoso fino e muito fino (**Figura - 21**). Nos meses de setembro e novembro de 2012, janeiro e abril de 2013, abril de 2014 e outubro 2015 as porcentagens de silte foram maiores. Não houve variação na qualidade de sendimento no 5° ciclo hidrológico.

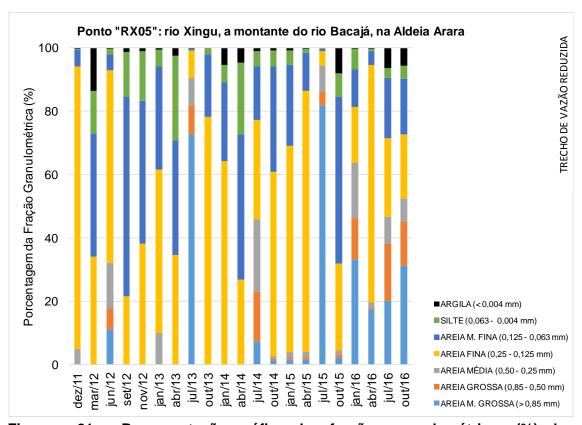


Figura - 21 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RX05 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

Quadro - 21 – Resultados das variáveis de qualidade do sedimento registrados no ponto RX05 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

				-	TRE	CHO DE	VAZÃO	REDUZI	DA						ORES
VARIÁVEL			Pon	to "RX05	5": rio Xin	gu, a mo	ntante d	o rio Ba	cajá, na A	Aldeia Ar	ara			ORIENT	ADORES *
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	22,4	664,6	5,8	171,0	333,0	173,6	537,7	323,3	286,7	143,0	251,0	591,0	363,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	213,6	2209,5	40,7	60,0	1720,0	310,0	411,9	83,6	1018,9	600,0	420,0	920,0	1000,0	4800	4800
Carbono Orgânico Total (%)	< LD	0,01	0,01	1,49	1,53	1,26	5,90	0,15	2,51	3,40	0,74	2,94	1,02	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	14,00	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	< LD	30,00	24,52	< LD	20,57	16,97	20,64	13,72	26,68	21,73	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,13	0,85	0,12	1,01	0,12	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,06	0,03	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8

VARIÁVEL			Pon	to "RX05	TRE 5": rio Xin		VAZÃO ntante d			Aldeia Ara	ara			VALO ORIENTA	ORES ADORES *
	dez/11	, , ,												Nível 1	Nível 2
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pe	la Resolu	ção CONA	MA 454/2	2012 para	sedimen	tos; NA: r	não se ap	lica; LD:	limite de	detecção	; NC: não	coletado)		

VARIÁVEL		Ponto "RX(CHO DE VA			Ideia Arara			ORES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	105,0	109,0	132,0	319,0	218,0	64,0	313,0	269,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	700,0	2290,0	110,0	190,0	1430,0	30,0	660,0	770,0	4800	4800
Carbono Orgânico Total (%)	1,00	0,37	0,33	0,32	3,68	0,29	0,20	3,28	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	7,27	5,47	3,77	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	8,51	12,17	14,16	14,14	29,50	23,50	21,30	26,16	123	315
Arsênio (mg/kg)	< LD	0,78	0,07	0,20	0,17	0,18	< LD	0,18	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5

			TRE	CHO DE VA	ZÃO REDU	ZIDA				DRES
VARIÁVEL		Ponto "RX)5": rio Xinຸ	gu, a monta	nte do rio E	Bacajá, na A	Ideia Arara		ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pela Res	olução CON	IAMA 454/20	012 para sed	dimentos; N	A: não se ap	lica; LD: limi	te de detecç	ão; NC: não	coletado	•

Ponto RX06: Ponto localizado no rio Xingu, a jusante do rio Bacajá

Somente 0,43% das amostras de sedimento coletadas no ponto RX06 não estão em conformidade com a Resolução CONAMA 454/2012 para nível 1: mercúrio em outubro de 2013 e abril de 2015 (**Quadro - 22**). A presença de mercúrio no sedimento pode estar relacionada com atividades de garimpo na bacia, cuja ocupação histórica já registrou áreas de garimpo. Não obstante, como em outros pontos de coleta, valores esporádicos registrados em não conformidade com a legislação não caracterizam impactos significativos à qualidade do sedimento no ponto RX06, uma vez que todas as demais variáveis quantificadas estiveram em conformidade com os valores norteadores da legislação e esta variável permaneceu em conformidade em todas as outras campanhas.

Neste ponto houve predominância de material arenoso fino (**Figura - 22**). No mês de outubro de 2013 as porcentagens de areia muito fina, silte e argila foram predominantes o que favorece a presença de compostos metálicos como o mercúrio, já que o mesmo se adsorve em partículas de argila.

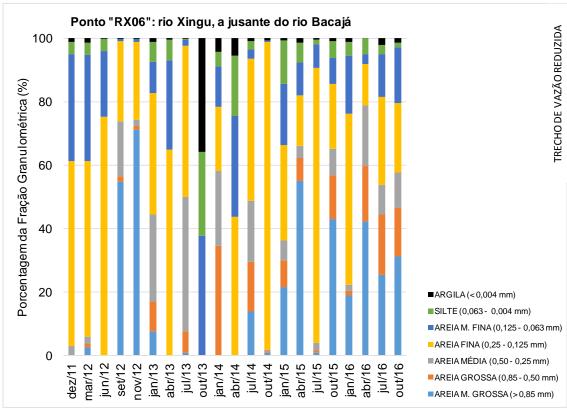


Figura - 22 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RX06 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

Quadro - 22 — Resultados das variáveis de qualidade do sedimento registrados no ponto RX06 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

trimestrar do 1 B/				•		ECHO D	E VAZÃC	REDUZ	IDA						DRES
VARIÁVEL				P	onto "RX	06": rio X	(ingu, a j	usante d	o rio Bac	ajá				ORIENT	ADORES
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	2,4	187,4	7,9	440,0	95,0	114,4	283,7	86,1	448,4	279,0	522,0	582,0	41,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	50,8	529,5	30,5	0,0	0,0	300,0	323,4	79,3	1551,8	2560,0	2430,0	2650,0	70,0	4800	4800
Carbono Orgânico Total (%)	< LD	0,01	0,01	0,18	0,21	0,97	2,26	0,25	4,68	9,67	7,75	6,99	5,16	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0				
Cobre (mg/kg)	< LD	< LD	< LD	< LD	11,83	13,57	14,26	11,17	< LD	35,7	197,0				
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	8,22	< LD	< LD	< LD	18,0	35,9				
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5				
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3				
Zinco (mg/kg)	< LD	< LD	< LD	< LD	6,00	10,36	< LD	10,18	53,24	59,56	59,53	48,34	4,43	123	315
Arsênio (mg/kg)	< LD	< LD	0,12	< LD	< LD	< LD	< LD	< LD	< LD	0,95	0,25	0,61	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	0,05	< LD	< LD	< LD	< LD	0,27	0,19	0,10	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4				
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5				
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8				
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8				

VARIÁVEL				P	TR onto "RX(E VAZÃO (ingu, a ju			ajá					DRES ADORES
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7				
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4				
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0				

			TRE	CHO DE VA	ZÃO REDU	ZIDA			VALO	DRES
VARIÁVEL		P	onto "RX06	": rio Xingu	, a jusante	do rio Baca	já		ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	203,0	552,0	108,0	77,0	99,0	202,0	117,0	91,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	1340,0	2430,0	270,0	330,0	350,0	560,0	230,0	50,0	4800	4800
Carbono Orgânico Total (%)	8,21	8,77	0,41	0,50	1,51	2,91	2,02	0,59	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	13,94	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	13,54	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	16,29	46,08	10,87	4,02	13,16	2,00	2,46	10,16	123	315
Arsênio (mg/kg)	< LD	0,33	0,10	0,16	0,10	0,10	< LD	0,28	5,9	17,0
Mercúrio (mg/kg)	0,10	0,23	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA

						.,			DRES
	Pe	onto "RX06	": rio Xingu	, a jusante	do rio Baca	ja		OKILITY	DONES
jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
	< LD	jan/15 abr/15 < LD	Ponto "RX06 jan/15 jul/15 jul/15	Ponto "RX06": rio Xingui jan/15	Ponto "RX06": rio Xingu, a jusante jan/15	jan/15 abr/15 jul/15 out/15 jan/16 abr/16 < LD	Ponto "RX06": rio Xingu, a jusante do rio Bacajá jan/15 abr/15 jul/15 out/15 jan/16 abr/16 jul/16	Ponto "RX06": rio Xingu, a jusante do rio Bacajá jan/15	Ponto "RX06": rio Xingu, a jusante do rio Bacajá

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Ponto RX21: Ponto localizado no rio Xingu, em um canal da margem esquerda, a jusante da foz com o igarapé Paquiçamba

Das amostras de sedimento coletadas no ponto RX21, 0,45% estão em não conformidade com a Resolução CONAMA 454/2012 para nível 1: mercúrio em janeiro de 2014 e abril de 2015 (**Quadro - 23**). Como já discutido na apresentação dos resultados da qualidade de sedimentos registrados no ponto RX20 (neste anexo), a presença de mercúrio no sedimento pode estar relacionada com atividades de garimpo. Não obstante, valores esporádicos registrados em não conformidade com a legislação também não caracterizam impactos significativos à qualidade do sedimento no ponto RX21, uma vez que todas as demais variáveis quantificadas estiveram em conformidade com os valores norteadores da legislação e esta variável permaneceu em conformidade em todas as outras campanhas.

Neste ponto houve predominância de material arenoso muito grosso, principalmente nos meses de dezembro de 2011, março de 2012, abril, julho e outubro de 2013, janeiro de 2014 e abril 2015 e 2016 (**Figura - 23**). Nos meses de junho, setembro e novembro de 2012 e janeiro de 2013, julho e outubro de 2014 e 2015 as porcentagens de areia fina e silte foram maiores.



Figura - 23 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RX21 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

Quadro - 23 – Resultados das variáveis de qualidade do sedimento registrados no ponto RX21 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

				-	TRE	CHO DE	VAZÃO	REDUZII	DA					VALO	DRES
VARIÁVEL			Poi	nto "RX2	1": rio Xi	ngu, a ju	sante da	foz do iç	garapé Pa	aquiçaml	ba			ORIENTA	DORES *
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	150,7	436,6	563,5	320,0	340,0	566,1	871,7	542,7	449,7	535,0	NC	595,0	490,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	518,3	549,8	3230,4	60,0	970,0	60,0	90,6	179,2	608,4	130,0	NC	170,0	1240,0	4800	4800
Carbono Orgânico Total (%)	0,02	0,02	0,02	1,86	2,00	9,74	0,42	1,05	1,62	1,09	NC	2,70	2,01	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	3,82	< LD	13,36	< LD	14,38	NC	7,90	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	15,28	NC	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	30,00	< LD	28,00	22,24	< LD	56,20	56,91	39,15	NC	27,90	34,50	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,30	NC	< LD	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	0,08	0,17	< LD	< LD	< LD	< LD	0,10	0,21	NC	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	NA	NA
Clordano-gama (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	1,2	4,8

VARIÁVEL			Poi	nto "RX2	TRE 1": rio Xir		VAZÃO I sante da			aquiçaml	ра			VALC ORIENTA	
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	34,1	277,0
* Estabelecidos pela I	Resolução	CONAMA	454/201	2 para se	dimentos;	NA: não	se aplica	; LD: limi	te de dete	ecção; NC	C: não col	etado			

VARIÁVEL		Ponto "RX		CHO DE VA ıgu, a jusan			aquicamba			DRES DORES *
· · · · · · · · · · · · · · · · · · ·	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	366,0	581,0	411,0	362,0	184,0	487,0	458,0	230,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	320,0	170,0	1920,0	1660,0	430,0	140,0	1420,0	620,0	4800	4800
Carbono Orgânico Total (%)	1,35	0,76	8,58	8,68	3,34	0,78	0,87	3,78	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	3,41	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	5,18	15,00	22,36	17,17	14,04	12,14	11,03	16,34	123	315
Arsênio (mg/kg)	< LD	0,06	< LD	0,21	0,06	0,05	< LD	0,02	5,9	17,0
Mercúrio (mg/kg)	0,13	0,31	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA

			TRE	CHO DE VA	ZÃO REDU	ZIDA			VALO	DRES
VARIÁVEL		Ponto "RX	21": rio Xin	igu, a jusan	te da foz do	o igarapé Pa	quiçamba			DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos nela Res	olucão CON	ΙΔΜΔ 454/20	112 nara sec	dimentos: NA	∆· não se an	lica: I D: limi	te de detecc	são: NC: não	n coletado	•

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Ponto RX17: Ponto localizado no rio Xingu, a montante das comunidades de Belo Monte e Belo Monte do Pontal

A maioria das amostras de sedimento coletadas no ponto RX17 estão em conformidade com a Resolução CONAMA 454/2012. Somente uma das variáveis se encontra em não conformidade para nível 1: cobre em julho de 2013 (**Quadro - 24**). Neste ponto houve predominância de material arenoso fino ao longo de todo o monitoramento (**Figura - 24**), com exceção do mês de julho de 2013 quando predominaram as frações mais finas como areia fina, silte e argila, as quais refletiram em maiores concentrações de nutrientes (fósforo, nitrogênio e carbono orgânico) nos sedimentos observadas na mesma amostra. Nos meses de julho e outubro de 2016 foram predominantes as frações de areia mais grossas o que se reflete na baixa concentração de nutrientes retidos nos sedimentos.

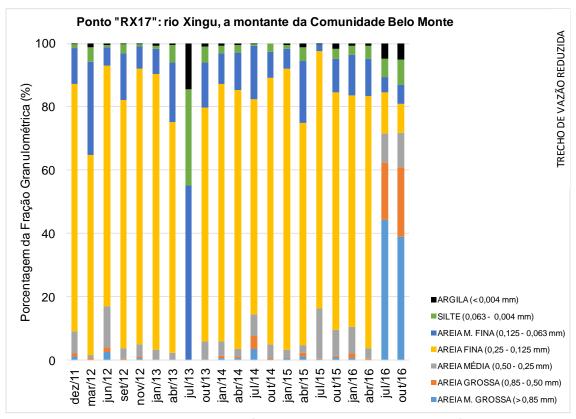


Figura - 24 - Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RX17 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

Quadro - 24 – Resultados das variáveis de qualidade do sedimento registrados no ponto RX17 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

				•			VAZÃO								ORES ADORES
VARIÁVEL			Po	nto "RX1	7": rio Xi	ngu, a m	ontante d	da Comu	ınidade E	Belo Mon	te			,	*
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	36,4	48,1	2,0	1,0	24,0	16,6	38,7	267,5	76,7	5,0	30,0	59,0	28,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	101,7	122,2	152,5	10,0	50,0	30,0	151,6	674,5	332,6	70,0	90,0	210,0	80,0	4800	4800
Carbono Orgânico Total (%)	< LD	0,01	0,01	0,28	0,31	0,10	0,16	2,68	0,92	0,01	0,08	1,10	1,02	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	44,43	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	32,15	4,10	< LD	2,31	5,72	2,44	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	0,05	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8

VARIÁVEL			Po	nto "RX1	TRE 7": rio Xi		VAZÃO I ontante d			Belo Mon	te				DRES ADORES
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0

			TRE	CHO DE VA	ZÃO REDU	ZIDA			VALO	DRES
VARIÁVEL		Ponto "R)	(17": <mark>rio Xi</mark> r	ngu, a mont	ante da Coi	munidade B	elo Monte		ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	23,0	64,0	55,0	39,0	34,0	65,0	32,0	50,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	70,0	60,0	30,0	110,0	50,0	20,0	110,0	130,0	4800	4800
Carbono Orgânico Total (%)	0,74	0,55	0,01	0,01	0,19	0,01	0,18	0,50	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	5,14	2,31	1,75	3,70	2,06	3,41	7,68	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	0,16	0,04	0,03	< LD	0,02	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA

			TRE	CHO DE VA	ZÃO REDII	ZIDA			VAL	200
VARIÁVEL		Ponto "RX				munidade B	selo Monte			DRES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pela Res	olução CON	IAMA 454/20	012 para sed	dimentos; N	A: não se ap	lica; LD: lim	ite de detecç	ão; NC: não	coletado	•

Ponto IGCHOCAI: Ponto localizado no Igarapé Chocaí, próximo ao Porto da Petrobras e a 339 m da BR230

Somente seis variáveis do total (1,30%) das amostras de sedimento coletadas no ponto IGCHOCAI não estão em conformidade com a Resolução CONAMA 454/2012, para nível 1: nitrogênio total Kjeldahl em janeiro 2015; carbono orgânico total em janeiro de 2013, abril 2015 e janeiro de 2016; cobre em julho de 2015 e para nível 2: mercúrio em outubro de 2015 (**Quadro - 25**).

Apesar da inconformidade descrita, verifica-se que os impactos resultantes do entorno não são evidentes, haja vista que este ponto localiza-se em uma área sem influência direta do canteiro de obras. Além disso, a composição do sedimento (**Figura - 25**), em janeiro e abril tanto de 2013 quanto de 2014, apresentou apenas as frações menores (argila, silte e areia muito fina), e os maiores valores de carbono orgânico total, provavelmente favorecido pela sua retenção nos sedimentos mais finos. Nas demais amostras as areias mais grossas foram os sedimentos mais predominantes. As altas concentrações de nutrientes provavelmente tem origem na matéria orgânica alóctone, folhas em decomposição que são transportadas pelas águas e ficam retidas nos sedimentos.

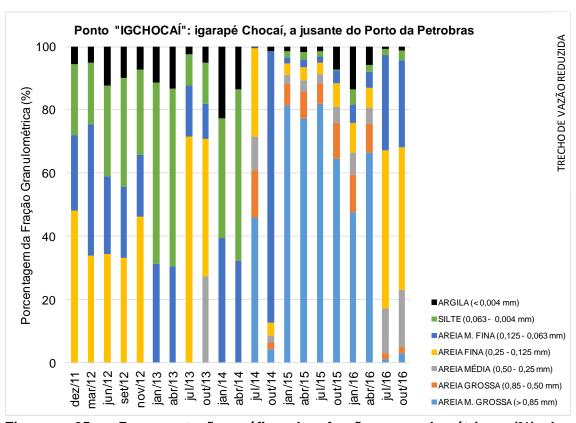


Figura - 25 — Representação gráfica das frações granulométricas (%) dos sedimentos do ponto IGCHOCAI no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

Quadro - 25 – Resultados das variáveis de qualidade do sedimento registrados no ponto IGCHOCAI no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

VARIÁVEL				•	TR	ECHO DE	VAZÃO	REDUZII	DA						ORES ADORES
VARIAVEL					lOCAI": i				1					,	*
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	521,3	577,8	15,9	424,0	164,0	782,8	650,7	174,5	390,0	416,0	539,0	481,0	532,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	2592,2	2026,2	3304,5	200,0	3020,0	1610,0	2334,6	116,5	890,3	2770,0	2570,0	2350,0	2910,0	4800	4800
Carbono Orgânico Total (%)	0,05	0,05	0,06	5,29	5,33	10,10	8,44	0,64	4,80	8,64	9,33	9,06	8,21	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0				
Cobre (mg/kg)	< LD	< LD	< LD	< LD	2,6	8,6	< LD	29,6	< LD	7,8	9,5	9,65	15,93	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	14,0	10,0	< LD	< LD	< LD	< LD	< LD	12,77	9,84	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5				
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3				
Zinco (mg/kg)	< LD	< LD	42,00	< LD	62,00	55,18	< LD	20,74	23,81	45,73	43,14	43,64	39,67	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	1,10	0,14	0,89	0,05	5,9	17,0				
Mercúrio (mg/kg)	< LD	< LD	< LD	0,05	< LD	< LD	< LD	< LD	0,12	0,15	0,05	< LD	< LD	0,2	0,5
Alfa-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4				
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5				
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8				

VARIÁVEL			Por	ito "IGCH	TRI IOCAI": iç		VAZÃO l nocaí, a ju			da Petrob	ras			VALO ORIENTA	RES ADORES
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pe	la Resolu	ção CONA	MA 454/2	2012 para	sediment	os; NA: na	ão se aplic	ca; LD: li	mite de de	etecção; N	NC: não c	oletado			•

vanáve		D (CHO DE VA			D. C. I			ORES ADORES *
VARIÁVEL				<u> </u>		do Porto d				
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	692,0	546,0	566,0	559,0	519,0	364,0	491,0	492,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	33470,0	2290,0	2440,0	2200,0	500,0	1370,0	2070,0	1250,0	4800	4800
Carbono Orgânico Total (%)	9,11	11,23	0,03	0,02	11,96	9,10	10,02	6,86	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	9,71	11,96	38,52	9,87	11,87	10,77	8,37	< LD	35,7	197,0
Níquel (mg/kg)	13,33	< LD	5,16	< LD	15,00	13,00	8,40	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	40,15	50,57	36,79	28,08	47,86	46,56	38,89	30,68	123	315
Arsênio (mg/kg)	< LD	0,17	0,06	0,26	0,14	0,18	< LD	0,09	5,9	17,0
Mercúrio (mg/kg)	0,20	0,20	< LD	0,99	< LD	< LD	< LD	< LD	0,2	0,5

			TRE	CHO DE VA	ZÃO REDU	ZIDA				ORES
VARIÁVEL		Ponto "IGC	HOCAI": iga	arapé Choca	aí, a jusante	do Porto d	a Petrobras		ORIENTA	NDORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pela Res	olução CON	IAMA 454/20	12 para sed	imentos; NA	: não se apli	ca; LD: limite	de detecçã	o; NC: não d	coletado	

Ponto RX11: Ponto localizado no rio Xingu, a jusante do Porto da Petrobras

De todas as amostras de sedimento coletadas no ponto RX11 somente duas se encontram em não conformidade com a Resolução CONAMA 454/2012, a variável cobre no mês de julho de 2013 para nível 1 e a variável mercúrio em outubro de 2015 para nível 2 (**Quadro - 26**), fatos estes pontuais, não sendo observados novamente ao longo do monitoramento.

Neste ponto houve predominância de material arenoso fino durante todo o período de monitoramento (**Figura - 26**), e em julho e outubro de 2013 e abril, julho e outubro de 2016 as frações de areia muito fina e silte aumentaram a sua proporção, temporariamente.

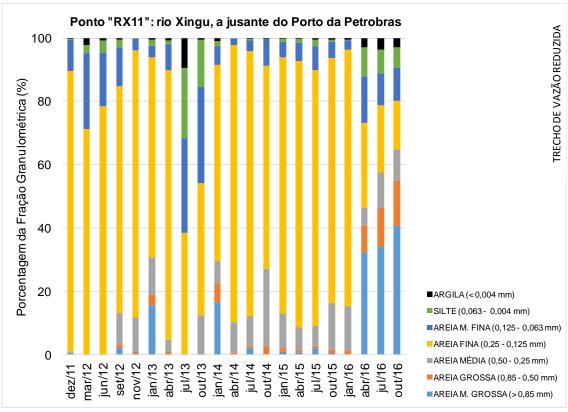


Figura - 26 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RX11 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

Quadro - 26 – Resultados das variáveis de qualidade do sedimento registrados no ponto RX11 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

				•	TRE	CHO DE	VAZÃO I	REDUZII	DA						DRES
VARIÁVEL				Ponto "	RX11": ric	o Xingu,	a jusante	do Por	to da Pet	robras				ORIENT	ADORES
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	38,2	207,0	4,7	98,0	70,0	61,7	88,1	376,6	61,0	11,0	62,0	49,0	56,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	132,2	336,0	640,9	20,0	60,0	20,0	120,6	917,3	241,2	150,0	140,0	320,0	50,0	4800	4800
Carbono Orgânico Total (%)	< LD	0,01	0,01	0,70	0,80	0,35	0,17	3,67	0,47	0,12	0,01	0,05	0,10	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	41,43	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	< LD	4,00	3,48	< LD	28,22	3,47	3,66	6,00	3,22	6,17	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5

VARIÁVEL				Ponto "	TRE RX11": ric		VAZÃO F a jusante			robras				VALO ORIENT	
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0

VARIÁVEL		Ponto		CHO DE VA o Xingu, a ju		ZIDA orto da Peti	robras			ORES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	55,0	87,0	38,0	73,0	53,0	37,0	124,0	180,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	50,0	120,0	30,0	90,0	180,0	30,0	460,0	240,0	4800	4800
Carbono Orgânico Total (%)	0,11	0,74	0,13	0,13	0,07	0,07	0,09	0,98	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	2,16	11,32	1,86	3,59	5,90	4,50	3,81	14,84	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	0,19	0,06	0,07	< LD	0,04	5,9	17,0

			TRE	CHO DE VA	ZÃO REDU	ZIDA			VALO	DRES
VARIÁVEL		Ponto	"RX11": ric	Xingu, a ju	ısante do P	orto da Peti	robras		ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Mercúrio (mg/kg)	< LD	< LD	< LD	0,95	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pela Res	olução CON	NAMA 454/20	012 para sed	dimentos; N	A: não se ap	lica; LD: limi	te de detec	ção; NC: não	coletado	·

1.4 ÁREA 4: JUSANTE DA CASA DE FORÇA PRINCIPAL/TRECHO DE RESTITUIÇÃO DA VAZÃO

Ponto RX07 (TRIMESTRAL): Ponto localizado no rio Xingu, a jusante da Casa de Força Principal em Belo Monte

Das amostras de sedimento coletadas no ponto RX07 somente 0,65% estão em não conformidade com a Resolução CONAMA 454/2012 para nível 1: cobre no mês de julho de 2013 e nitrogênio total Kjeldahl e carbono orgânico total em janeiro de 2016, provavelmente devido à presença de matéria orgânica acumulada no local de coleta (**Quadro - 27**). As restantes variáveis monitoradas se encontram dentro da conformidade.

Neste ponto houve predominância da areia fina e muito fina (**Figura - 27**). Nos primeiros meses do monitoramento houve uma maior porcentagem de areia média e posteriormente foi registrado aumento da porcentagem de silte, areia fina e areia grossa, sendo que, no mês de abril de 2016 foi registrada a predominância de areia grossa. Nos meses seguintes os sedimentos coletados foram similares aos coletados nos monitoramentos anteriores, com predomínio de areias médias, finas, muito finas, silte e argila.

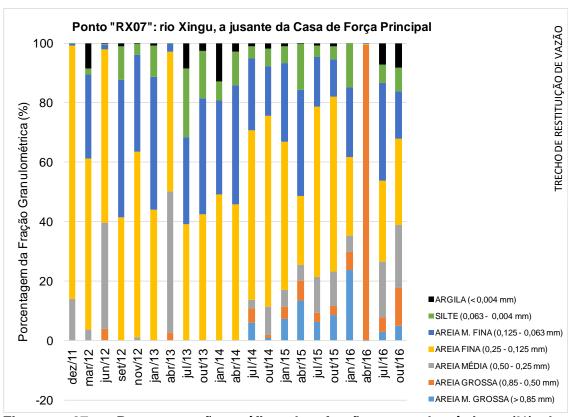


Figura - 27 — Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RX07 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

Quadro - 27 – Resultados das variáveis de qualidade do sedimento registrados no ponto RX07 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

				-	TRECH	O DE RE	STITUIÇ	ÃO DE V	AZÃO						DRES
VARIÁVEL			Р	onto "RX	(07": rio)	(ingu, a j	usante d	a Casa d	de Força	Principal				ORIENT	ADORES
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	47,0	173,7	3,8	38,0	101,0	224,1	66,4	261,5	328,2	12,0	115,0	162,0	218,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	0,0	753,5	122,0	20,0	170,0	360,0	353,7	785,7	1423,3	120,0	590,0	380,0	550,0	4800	4800
Carbono Orgânico Total (%)	< LD	0,01	0,01	0,27	0,31	1,80	0,02	2,83	5,43	0,69	1,48	2,47	1,06	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	40,94	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	< LD	8,00	13,68	< LD	25,61	22,82	7,42	11,69	17,08	12,29	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,19	< LD	0,06	0,58	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	0,05	< LD	< LD	< LD	< LD	0,08	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8

VARIÁVEL			P	onto "R)	TRECH((07": rio)		STITUIÇ <i>i</i> usante d			Principal	l			VALO ORIENTA	ORES ADORES
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pel	a Resoluç	ão CONAI	MA 454/2	012 para	sediment	os; NA: n	ão se apl	ca; LD: I	imite de d	etecção;	NC: não d	coletado			•

			TRECHO	DE RESTI	TUIÇÃO DE	VAZÃO			VALO	DRES
VARIÁVEL		Ponto "F	XX07": rio X	ingu, a jusa	inte da Cas	a de Força l	Principal		ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	232,0	194,0	100,0	145,0	375,0	232,0	200,0	123,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	700,0	1220,0	200,0	250,0	6460,0	1060,0	520,0	270,0	4800	4800
Carbono Orgânico Total (%)	5,18	7,25	1,08	1,10	11,64	3,24	2,98	0,92	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	10,00	9,00	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	12,18	5,81	8,43	6,61	28,48	30,48	4,12	11,82	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	0,24	0,14	0,13	< LD	0,16	5,9	17,0
Mercúrio (mg/kg)	< LD	0,17	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5

			TRECHO	DE RESTI	TUICÃO DE	: VAZÃO			VAL	DRES
VARIÁVEL		Ponto "R			•	a de Força l	Principal			DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pela Res	olução CON	IAMA 454/20	012 para sed	dimentos; N	A: não se ap	lica; LD: limi	te de detec	ção; NC: não	coletado	

Ponto IGSA/SEBM: Ponto localizado no igarapé Santo Antonio, a montante do canteiro Belo Monte, no Travessão km 50 e a 418 m da LT projetada

As amostras de sedimento coletadas no ponto IGSA/SEBM estão em conformidade com a Resolução CONAMA 454/2012 (**Quadro - 28**). Neste ponto houve grande variação na predominância das frações granulométricas, com tendência a dominância das areias muito grossas, grossas e finas e alguma presença esporádica de silte (**Figura - 28**).

Nos meses de novembro de 2012, outubro 2013, janeiro e outubro 2015 e janeiro 2016 não foi realizada a coleta de sedimento devido à baixa vazão do igarapé.

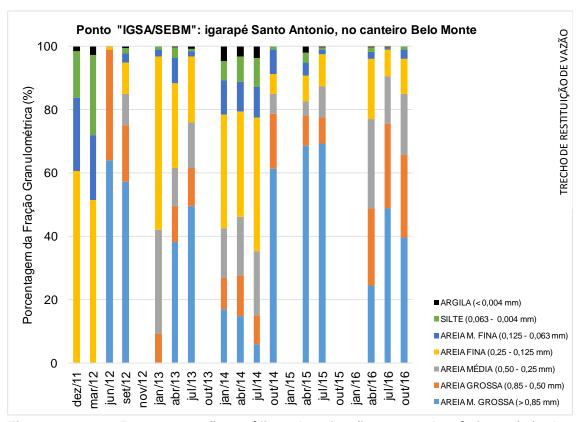


Figura - 28 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto IGSA/SEBM no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

Quadro - 28 – Resultados das variáveis de qualidade do sedimento registrados no ponto IGSA/SEBM no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

					TRECH	O DE RE	STITUIÇ <i>İ</i>	ÃO DE V	AZÃO						ORES ADORES
VARIÁVEL			Pont	o "IGSA/	SEBM": i	garapé S	anto Ant	onio, no	canteiro	Belo Mo	onte			ORIENT	*
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	115,4	94,8	96,6	37,0	NC	74,9	128,6	150,6	NC	8,0	86,0	456,0	392,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	203,6	224,0	81,1	40,0	NC	20,0	109,9	117,1	NC	140,0	190,0	360,0	320,0	4800	4800
Carbono Orgânico Total (%)	0,01	0,01	0,02	1,63	NC	0,97	0,32	0,32	NC	0,27	0,45	0,83	0,61	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	1,95	10,06	5,47	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	3,5	8,5

VARIÁVEL			Pont	o "IGSA/	TRECHO SEBM": iç		STITUIÇ <i>Î</i> anto Ant			Belo Mo	nte			VALO ORIENT	
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
DDE (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	34,1	277,0

VARIÁVEL		Ponto "IGS <i>i</i>		DE RESTI garapé Sant			Belo Monte	9		ORES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	NC	604,0	775,0	NC	NC	451,0	483,0	86,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	NC	1680,0	90,0	NC	NC	20,0	90,0	100,0	4800	4800
Carbono Orgânico Total (%)	NC	8,81	0,35	NC	NC	0,85	0,93	0,47	10	10
Cromo (mg/kg)	NC	< LD	< LD	NC	NC	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	NC	< LD	< LD	NC	NC	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	NC	< LD	2,98	NC	NC	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	NC	< LD	< LD	NC	NC	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	NC	< LD	< LD	NC	NC	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	NC	45,53	5,58	NC	NC	4,56	4,58	7,48	123	315
Arsênio (mg/kg)	NC	0,28	0,04	NC	NC	0,08	< LD	0,02	5,9	17,0

				DE RESTI						ORES
VARIÁVEL		Ponto "IGS/	A/SEBM": iç	garapé Sant	o Antonio,	no canteiro	Belo Monte	е	ORIENTA	ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Mercúrio (mg/kg)	NC	0,18	< LD	NC	NC	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	NC	< LD	< LD	NC	NC	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	NC	< LD	< LD	NC	NC	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	NC	< LD	< LD	NC	NC	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	NC	< LD	< LD	NC	NC	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	NC	< LD	< LD	NC	NC	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	NC	< LD	< LD	NC	NC	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	NC	< LD	< LD	NC	NC	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	NC	< LD	< LD	NC	NC	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	NC	< LD	< LD	NC	NC	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	NC	< LD	< LD	NC	NC	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	NC	< LD	< LD	NC	NC	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pela Res	olução CON	NAMA 454/20	012 para sed	dimentos; N	A: não se ap	lica; LD: limi	te de detec	ção; NC: não	coletado	

Ponto TUC01: Ponto localizado no igarapé Tucuruí, próximo à cidade Vitória do Xingu

Das amostras de sedimento coletadas no ponto TUC01, 2,38% se encontram em não conformidade com a Resolução CONAMA 454/2012 para nível 1: julho de 2014 a variável nitrogênio total Kjeldhal; abril, julho, outubro de 2014 e janeiro, julho e outubro de 2015 e abril e julho de 2016 a variável carbono orgânico total e julho de 2014 e 2015 a variável mercúrio (**Quadro - 29**). As maiores concentrações de carbono e nutrientes observadas nos monitoramentos dos meses de abril, julho e outubro de 2014 e janeiro e julho de 2015 se correspondem com a maior presença de sedimentos capazes de reter mais matéria orgânica como argila e silte. Neste ponto houve predominância da areia muito fina e silte (**Figura - 29**). Nas primeiras duas campanhas de monitoramento, em dezembro de 2011 e março de 2012, e em julho de 2013 houve uma maior porcentagem de areia média.

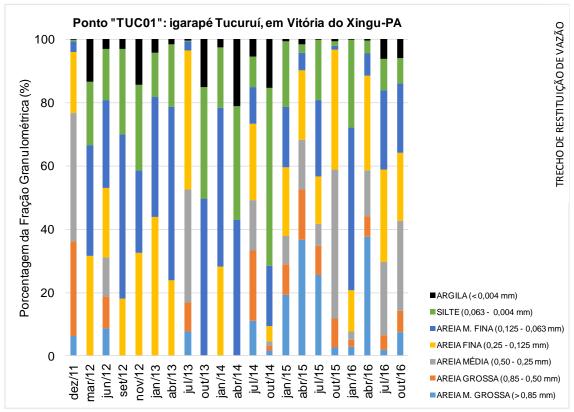


Figura - 29 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto TUC01 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

Quadro - 29 – Resultados das variáveis de qualidade do sedimento registrados no ponto TUC01 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

					TRECH	IO DE RE	STITUIÇ	ÃO DE	VAZÃO						ORES ADORES
VARIÁVEL				Ponto	"TUC01":	igarapé	Tucuruí,	em Vitó	ria do Xi	ngu-PA				ORIENT	*
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	12,0	423,1	14,3	137,0	410,0	219,2	144,0	111,8	275,3	57,0	422,0	515,0	397,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	1057,7	3533,1	1210,7	180,0	3120,0	50,0	150,7	134,8	2250,6	1090,0	4390,0	4900,0	2890,0	4800	4800
Carbono Orgânico Total (%)	< LD	0,01	0,02	0,71	7,11	4,85	3,83	0,01	9,75	4,18	19,53	27,73	10,16	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0				
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	7,59	8,40	< LD	35,7	197,0				
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9				
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5				
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3				
Zinco (mg/kg)	< LD	< LD	< LD	< LD	14,00	6,68	< LD	< LD	6,35	6,13	6,96	14,90	12,23	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,11	0,57	< LD	5,9	17,0				
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	0,15	0,10	0,09	0,36	< LD	0,2	0,5				
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4				
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5				

VARIÁVEL				Ponto	TRECH		STITUIÇ Tucuruí,			ngu-PA				VALO ORIENT	
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8						
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8						
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7						
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4						
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0						

_											
				TRECHO	DE RESTI	TUIÇÃO DE	VAZÃO			VALO	DRES
	VARIÁVEL		Ponto	"TUC01": i	garapé Tuc	uruí, em Vit	ória do Xin	gu-PA		ORIENTA	DORES *
		jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
- 1											

VARIÁVEL		Ponto	"TUC01": i	garapé Tuc	uruí, em Vit	tória do Xin	gu-PA		ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	213,0	284,0	306,0	16,0	105,0	187,0	19,0	182,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	770,0	270,0	2090,0	660,0	600,0	290,0	140,0	700,0	4800	4800
Carbono Orgânico Total (%)	18,23	1,76	15,80	15,55	5,13	12,86	13,52	4,57	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	<ld< td=""><td>< LD</td><td>18,0</td><td>35,9</td></ld<>	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	<ld< td=""><td>< LD</td><td>0,6</td><td>3,5</td></ld<>	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	<ld< td=""><td>< LD</td><td>35,0</td><td>91,3</td></ld<>	< LD	35,0	91,3
Zinco (mg/kg)	3,38	24,71	10,92	< LD	6,92	5,98	2,27	11,28	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	0,21	0,05	0,03	< LD	0,03	5,9	17,0

			TRECHO	DE RESTI	TUIÇÃO DE	VAZÃO			VALO	DRES
VARIÁVEL		Ponto	"TUC01": i	garapé Tuc	uruí, em Vit	tória do Xin	gu-PA		ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Mercúrio (mg/kg)	0,16	< LD	0,48	< LD	< LD	< LD	<ld< td=""><td>< LD</td><td>0,2</td><td>0,5</td></ld<>	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pela Res	olução CON	IAMA 454/20	012 para sed	dimentos; N	A: não se ap	lica; LD: limi	te de detec	ção; NC: não	coletado	·

Ponto RX15: Ponto localizado no rio Xingu, a jusante da cidade de Vitória do Xingu, início da ria do Xingu

A maioria das amostras de sedimento coletadas no ponto RX15 estão em conformidade com a Resolução CONAMA 454/2012, somente 0,87% se encontra em não conformidade para nível 1: a variável cobre no monitoramento do mês de julho de 2013, a variável nitrogênio total kjeldahl em abril de 2015 e a variável mercúrio em julho de 2015, sendo que em outubro de 2015 apresentou valores em não conformidade para nível 2 (**Quadro - 30**). Neste ponto houve predominância de areia fina em todas as amostras, exceto em janeiro de 2014 cuja amostra foi composta principalmente por areia muito fina, silte e argila (**Figura - 30**).

As concetrações de nutrientes não apresentaram variações significativas entre os períodos de pré e pós-enchimento dos reservatórios.

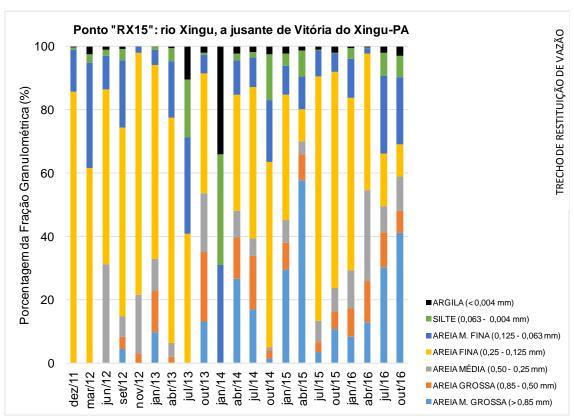


Figura - 30 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RX15 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

Quadro - 30 – Resultados das variáveis de qualidade do sedimento registrados no ponto RX15 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

trinicstrar do r				<u> </u>				ÃO DE V							ORES ADORES
VARIÁVEL				Ponto '	'RX15": ri	o Xingu,	a jusante	e de Vitói	ria do Xin	gu-PA				ORIENTA	*
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	428,9	185,9	6,8	4,0	0,0	21,3	42,1	310,1	344,8	246,0	64,0	272,0	168,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	142,4	519,3	447,5	50,0	90,0	40,0	20,2	1053,5	747,7	2110,0	220,0	460,0	830,0	4800	4800
Carbono Orgânico Total (%)	0,04	0,05	0,06	0,96	1,06	0,10	0,38	2,96	3,57	6,38	0,61	1,44	1,19	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	36,12	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,49	16,08	26,21	7,07	11,33	13,73	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,11	0,68	< LD	0,05	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	0,06	< LD	< LD	< LD	< LD	0,06	0,08	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5

			Ponto "						gu-PA				VALO ORIENT	
dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
	< LD < LD < LD < LD	< LD	<ld <ld="" <ld<="" td=""><td>dez/11 mar/12 jun/12 set/12 < LD</td> < LD</ld>	dez/11 mar/12 jun/12 set/12 < LD	Ponto "RX15": ri dez/11 mar/12 jun/12 set/12 nov/12 < LD	Ponto "RX15": rio Xingu, dez/11 mar/12 jun/12 set/12 nov/12 jan/13 < LD	Ponto "RX15": rio Xingu, a jusante dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 < LD	Ponto "RX15": rio Xingu, a jusante de Vitón dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 < LD	dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 < LD	Ponto "RX15": rio Xingu, a jusante de Vitória do Xingu-PA dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 < LD	Ponto "RX15": rio Xingu, a jusante de Vitória do Xingu-PA dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 < LD	Ponto "RX15": rio Xingu, a jusante de Vitória do Xingu-PA dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 < LD	Ponto "RX15": rio Xingu, a jusante de Vitória do Xingu-PA dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 out/14 < LD	Ponto "RX15": rio Xingu, a jusante de Vitória do Xingu-PA

VARIÁVEL		Ponto		DE RESTI Xingu, a ju			ngu-PA			ORES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	435,0	490,0	137,0	245,0	81,0	98,0	409,0	268,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	1430,0	7680,0	330,0	210,0	180,0	20,0	750,0	550,0	4800	4800
Carbono Orgânico Total (%)	7,33	7,84	1,10	1,20	0,50	0,07	0,11	0,48	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	13,91	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	15,07	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	27,36	49,60	7,48	8,62	8,06	7,86	6,84	< LD	123	315
Arsênio (mg/kg)	< LD	0,10	< LD	0,25	0,05	0,04	< LD	< LD	5,9	17,0

			TRECHO	DE RESTI	TUIÇÃO DE	VAZÃO			VALO	DRES
VARIÁVEL		Ponto	"RX15": rio	Xingu, a ju	sante de Vi	tória do Xin	igu-PA		ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Mercúrio (mg/kg)	0,13	0,15	0,37	1,12	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pela Res	olução CON	IAMA 454/20	012 para sed	dimentos; N	A: não se ap	lica; LD: limi	ite de detec	ção; NC: não	coletado	·

1.5 ÁREA 5: RESERVATÓRIO INTERMEDIÁRIO

1.5.1 IGARAPÉS INTERCEPTADOS PELOS DIQUES

Ponto ATURIA: Ponto localizado no igarapé Aturiá, a jusante do dique 8 A

Um ponto de coleta no igarapé Aturiá foi adicionado à campanha trimestral (água, sedimento e biota aquática) e à campanha mensal (sonda multiparamétrica), em atendimento à recomendação do IBAMA, apresentada no Parecer 168/2012, encaminhado em dezembro de 2012, no âmbito do Programa de Monitoramento dos Igarapés Interceptados pelos Diques. Neste sentido, o monitoramento trimestral neste igarapé foi iniciado em abril de 2013.

As amostras de sedimento coletadas no ponto ATURIA estão em conformidade com a Resolução CONAMA 454/2012 (**Quadro - 31**). Não foram observadas diferenças significativas nas concentrações de nutrientes entre os períodos de pré e pósenchimento dos reservatórios.

Neste ponto houve predominância de material arenoso muito grosso, grosso e médio durante todo o monitoramento, sendo que as frações de silte e argila estiveram presentes, mas em baixa proporção (**Figura - 31**).

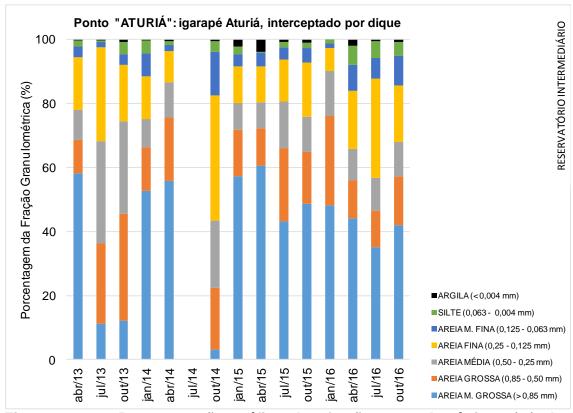


Figura - 31 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto ATURIA no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre abril de 2013 a outubro de 2016

Quadro - 31 – Resultados das variáveis de qualidade do sedimento registrados no ponto ATURIA no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre abril de 2013 a outubro de 2016

VARIÁVEL				_					ERMEDIÁ							VALC ORIENTA	DRES
VARIAVEL					Ponto "AT	ı —	<u> </u>	,	1	•	<u> </u>	1					
	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	469,6	44,9	321,7	634,0	56,0	NC	280,0	329,0	582,0	333,0	182,0	37,0	525,0	66,0	110,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	223,1	75,6	232,5	320,0	120,0	NC	440,0	530,0	320,0	600,0	790,0	90,0	480,0	170,0	170,0	4800	4800
Carbono Orgânico Total (%)	0,88	0,30	0,96	0,41	0,43	NC	0,73	5,13	1,42	2,16	2,20	0,38	4,20	5,60	0,01	10	10
Cromo (mg/kg)	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	<ld< td=""><td>< LD</td><td>< LD</td><td>37,3</td><td>90,0</td></ld<>	< LD	< LD	37,3	90,0				
Cobre (mg/kg)	< LD	NC	< LD	< LD	< LD	< LD	< LD	17,47	<ld< td=""><td>< LD</td><td>< LD</td><td>35,7</td><td>197,0</td></ld<>	< LD	< LD	35,7	197,0				
Níquel (mg/kg)	< LD	NC	< LD	< LD	< LD	< LD	< LD	16,00	<ld< td=""><td>< LD</td><td>< LD</td><td>18,0</td><td>35,9</td></ld<>	< LD	< LD	18,0	35,9				
Cádmio (mg/kg)	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	<ld< td=""><td>< LD</td><td><ld< td=""><td>0,6</td><td>3,5</td></ld<></td></ld<>	< LD	<ld< td=""><td>0,6</td><td>3,5</td></ld<>	0,6	3,5				
Chumbo (mg/kg)	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	<ld< td=""><td>< LD</td><td><ld< td=""><td>35,0</td><td>91,3</td></ld<></td></ld<>	< LD	<ld< td=""><td>35,0</td><td>91,3</td></ld<>	35,0	91,3				
Zinco (mg/kg)	< LD	< LD	4,31	6,78	2,31	NC	8,40	11,75	11,80	8,80	3,21	16,22	2,10	2,03	4,92	123	315
Arsênio (mg/kg)	< LD	NC	< LD	< LD	< LD	< LD	0,22	0,07	0,04	< LD	0,02	5,9	17,0				
Mercúrio (mg/kg)	< LD	< LD	0,05	< LD	< LD	NC	< LD	0,10	0,10	< LD	< LD	< LD	<ld< td=""><td>< LD</td><td><ld< td=""><td>0,2</td><td>0,5</td></ld<></td></ld<>	< LD	<ld< td=""><td>0,2</td><td>0,5</td></ld<>	0,2	0,5
Alfa-HCH (μg/kg)	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Delta-HCH (µg/kg)	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Gama-HCH (µg/kg)	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4				
Clordano-alfa (µg/kg)	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Clordano- gama (µg/kg)	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				

			F	onto "AT						por diqu	e					
abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
	<ld <ld="" <ld<="" td=""><td>< LD < LD</td><td><pre></pre></td><td>abr/13 jul/13 out/13 jan/14 < LD</td> < LD</ld>	< LD	<pre></pre>	abr/13 jul/13 out/13 jan/14 < LD	abr/13 jul/13 out/13 jan/14 abr/14 < LD	Ponto "ATURIA": abr/13 jul/13 out/13 jan/14 abr/14 jul/14 < LD	Ponto "ATURIA": igarapé A	Ponto "ATURIA": igarapé Aturiá, a abr/13 jul/13 out/13 jan/14 abr/14 jul/14 out/14 jan/15	NC September 1 September 2 September 3 September 3 September 4 September 4 September 4 September 5 September 5 September 5 September 6 September	abr/13 jul/13 out/13 jan/14 abr/14 jul/14 out/14 jan/15 abr/15 jul/15 < LD	NC See See NC See NC	Ponto "ATURIA": igarapé Aturiá, a ser interceptado por dique abr/13 jul/13 out/13 jan/14 abr/14 jul/14 out/14 jan/15 abr/15 jul/15 out/15 jan/16 < LD	Ponto "ATURIA": igarapé Aturiá, a ser interceptado por dique abr/13 jul/13 out/13 jan/14 abr/14 jul/14 out/14 jan/15 jul/15 jul/15 out/15 jan/16 abr/16 < LD	Ponto "ATURIA": igarapé Aturiá, a ser interceptado por dique" abr/13 jul/13 out/13 jan/14 abr/14 jul/14 out/14 jan/15 abr/15 jul/15 out/15 jan/16 abr/16 jul/16 < LD	Bonto "ATURIA": igarapé Aturiá, a ser interceptado por dique abr/13 jul/13 out/13 jan/14 abr/14 jul/14 out/14 jan/15 abr/15 jul/15 out/15 jan/16 abr/16 jul/16 out/16 < LD	Abr/13 jul/13 out/13 jan/14 abr/14 jul/14 out/14 jan/15 abr/15 jul/15 out/15 jan/16 abr/16 jul/16 out/16 Nível 1

Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Ponto IGPAQ: Ponto localizado no igarapé Paquiçamba, a jusante do dique 28, no Travessão km 55 e a 127 m da LT 34,5 kV

As amostras de sedimento coletadas no ponto IGPAQ estão em conformidade com a Resolução CONAMA 454/2012 (**Quadro - 32**). Neste ponto houve predominância de material arenoso muito grosso e fino durante todo o monitoramento (**Figura - 32**).

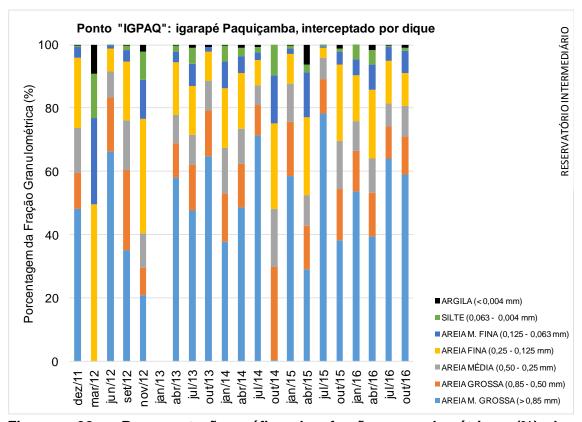


Figura - 32 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto IGPAQ no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

Quadro - 32 – Resultados das variáveis de qualidade do sedimento registrados no ponto IGPAQ no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

				-	RESE	ERVATÓ	RIO INTE	RMEDIÁ	RIO						DRES
VARIÁVEL			F	onto "IG	PAQ": ig	arapé Pa	quiçamb	a, interc	eptado p	or dique				ORIENT	ADORES
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	105,0	1372,6	77,6	32,0	370,0	NC	469,6	416,7	255,1	125,0	528,0	647,0	1107,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	132,2	1028,4	302,0	10,0	220,0	NC	223,1	135,5	218,9	100,0	220,0	400,0	250,0	4800	4800
Carbono Orgânico Total (%)	0,01	0,02	0,02	0,27	0,40	NC	0,88	0,71	0,46	0,21	0,50	1,40	1,19	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	7,21	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	11,19	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	< LD	2,00	NC	< LD	2,30	6,03	2,47	12,61	3,88	10,82	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	0,08	0,16	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	0,08	0,11	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8

VARIÁVEL			F	onto "IG	RESE		RIO INTE			or dique					ORES ADORES
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pe	la Resolu	ção CONA	MA 454/2	2012 para	sedimen	tos; NA: r	não se ap	lica; LD:	limite de	detecção	; NC: não	coletado)		

			RESE	RVATÓRIO	INTERMED	IÁRIO			VALO	DRES
VARIÁVEL		Ponto "I	GPAQ": iga	arapé Paqui	çamba, inte	erceptado p	or dique		ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	172,0	500,0	373,0	431,0	504,0	615,0	663,0	533,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	4540,0	360,0	120,0	200,0	240,0	180,0	150,0	260,0	4800	4800
Carbono Orgânico Total (%)	0,46	1,30	0,62	0,65	0,83	0,90	1,11	1,30	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	11,90	3,39	< LD	< LD	10,20	8,14	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	17,35	29,04	14,37	6,21	3,18	7,14	6,48	15,28	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	0,20	0,03	0,10	< LD	0,04	5,9	17,0
Mercúrio (mg/kg)	0,12	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5

			RESE	RVATÓRIO	INTERMED	IÁRIO			VALO	ORES
VARIÁVEL		Ponto "I	GPAQ": iga	rapé Paqui	çamba, inte	erceptado p	or dique		ORIENTA	ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Alfa-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pela Res	olução CON	IAMA 454/20	012 para sed	dimentos; N	A: não se ap	lica; LD: limi	te de detec	ção; NC: não	coletado	

Ponto IGTIC: Ponto localizado no igarapé Ticaruca, a jusante do dique 19 B, no Travessão km 55 e a 376 m da LT 34,5 kV

As amostras de sedimento coletadas no ponto IGTIC estão em conformidade com a Resolução CONAMA 454/2012 (Quadro - 33). Neste local houve predominância de material arenoso muito grosso e fino durante todo o monitoramento, no entanto, um aumento na porcentagem das frações de silte foi registrado na amostra da campanha de abril de 2014 e janeiro de 2016 (Figura - 33).

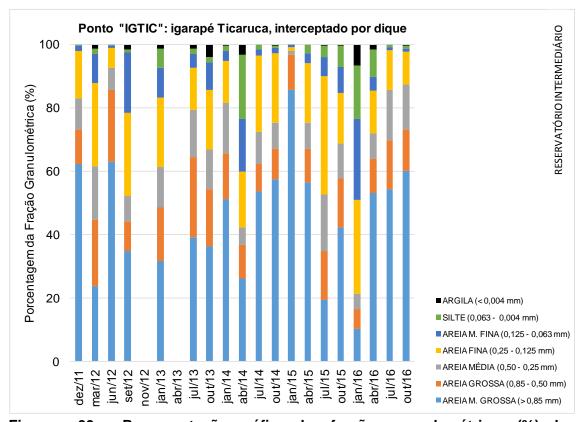


Figura - 33 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto IGTIC no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

Quadro - 33 – Resultados das variáveis de qualidade do sedimento registrados no ponto IGTIC no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

				<u>.</u>	RESE	RVATÓF	RIO INTE	RMEDIÁ	RIO						DRES
VARIÁVEL				Ponto '	'IGTIC": i	garapé T	icaruca,	intercep	tado por	dique				ORIENT	ADORES
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	119,4	168,0	302,6	349,0	NC	902,7	NC	416,7	181,1	125,0	601,0	412,0	343,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	396,9	0,0	286,6	40,0	NC	190,0	NC	135,5	111,2	100,0	210,0	90,0	130,0	4800	4800
Carbono Orgânico Total (%)	0,01	0,02	0,03	0,88	NC	0,44	NC	0,71	0,22	0,21	0,53	0,01	0,40	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	26,00	NC	4,68	NC	4,68	7,34	7,00	15,59	5,61	7,73	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	0,12	NC	< LD	NC	< LD	< LD	< LD	0,06	< LD	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	0,08	0,08	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5

VARIÁVEL				Ponto "	RESE		RIO INTEI			dique				VALO ORIENT/	
	dez/11													Nível 1	Nível 2
DDE (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos po	ela Resolu	ıção CON	AMA 454/	/2012 par	a sedimer	itos; NA:	não se ap	olica; LD:	limite de	detecção	; NC: não	coletad	0		

VARIÁVEL		Ponto			INTERMED	IÁRIO eptado por	dique			DRES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	533,0	369,0	221,0	642,0	498,0	790,0	244,0	535,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	530,0	530,0	110,0	90,0	420,0	680,0	120,0	190,0	4800	4800
Carbono Orgânico Total (%)	4,90	0,34	0,43	0,50	1,40	3,44	3,70	0,93	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	37,3	90,0				
Cobre (mg/kg)	< LD	< LD	< LD	< LD	35,7	197,0				
Níquel (mg/kg)	< LD	< LD	2,77	< LD	9,80	12,20	10,30	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	0,6	3,5				
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	35,0	91,3				
Zinco (mg/kg)	2,55	13,38	5,21	3,55	9,14	52,72	47,51	12,94	123	315

0,22

0,07

0,05

< LD

< LD

< LD

< LD

Arsênio (mg/kg)

5,9

17,0

0,03

			RESE	RVATÓRIO	INTERMED	IÁRIO			VALO	DRES
VARIÁVEL		Ponto	"IGTIC": iç	garapé Tica	ruca, interc	eptado por	dique		ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Mercúrio (mg/kg)	0,10	0,16	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pela Res	olução CON	NAMA 454/20	012 para sed	dimentos; N	A: não se ap	lica; LD: lim	te de detec	ção; NC: não	coletado	

Ponto IGCAJ: Ponto localizado no igarapé Cajueiro, a jusante do dique 14 C, a 182 m da LT 34,5 kV e a 165 m do Travessão km 55

As amostras de sedimento coletadas no ponto IGCAJ estão em conformidade com a Resolução CONAMA 454/2012 (**Quadro - 34**), com exceção da variável nitrogênio total Kjeldahl no mês de janeiro de 2015. Não foram observadas diferenças significativas nas concentrações de nutrientes entre os períodos de pré e pósenchimento dos reservatórios.

Neste local houve predominância de material arenoso muito grosso, grosso e fino durante todo o monitoramento, e apenas em dezembro de 2011, março 2012 e outubro de 2014, julho 2015, janeiro e abril de 2016 houve predominância de frações mais finas como a areia fina e muito fina, silte e argila (**Figura - 34**).

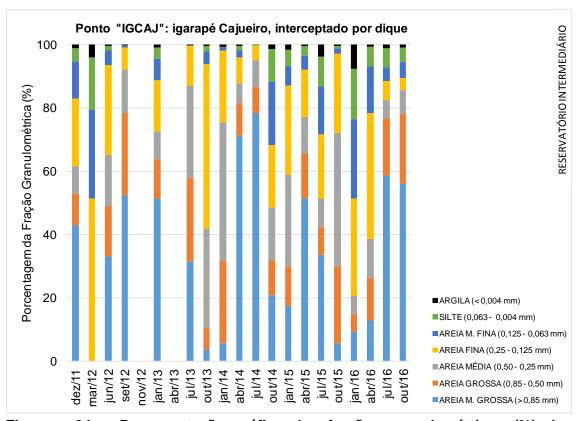


Figura - 34 — Representação gráfica das frações granulométricas (%) dos sedimentos do ponto IGCAJ no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

Quadro - 34 – Resultados das variáveis de qualidade do sedimento registrados no ponto IGCAJ no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

				•	RESE	RVATÓF	RIO INTE	RMEDIÁ	RIO						DRES
VARIÁVEL				Ponto "	IGCAJ": i	igarapé (Cajueiro,	intercep	tado por	dique				ORIENT	ADORES *
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	263,8	650,8	95,1	39,0	NC	312,1	NC	37,7	137,6	8,0	477,0	494,0	636,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	254,3	132,4	253,9	10,0	NC	280,0	NC	81,4	90,7	160,0	140,0	100,0	530,0	4800	4800
Carbono Orgânico Total (%)	0,02	0,02	0,03	0,18	NC	2,97	NC	0,12	0,66	0,42	0,43	0,01	0,40	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	11,87	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	42,00	NC	6,86	NC	21,43	4,81	5,74	10,82	8,79	13,01	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	0,19	NC	< LD	NC	< LD	< LD	< LD	0,05	< LD	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	0,12	NC	< LD	NC	< LD	0,09	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5

RESERVATÓRIO INTERMEDIÁRIO Ponto "IGCAJ": igarapé Cajueiro, interceptado por dique									VALORES ORIENTADORES *					
dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
< LD									< LD	2,9	6,7			
< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
Endrin (μg/kg)									34,1	277,0				
<	LD LD LD LD	<pre>< LD</pre>	& LD < LD	ez/11 mar/12 jun/12 set/12 c LD < LD	ez/11 mar/12 jun/12 set/12 nov/12 c LD < LD	ez/11 mar/12 jun/12 set/12 nov/12 jan/13 c LD < LD	ez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 c LD < LD	ez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 c LD < LD	ez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 < LD	ez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 c LD < LD	ez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 c LD < LD	ez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 c LD < LD	ez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 out/14 c LD < LD	Ponto "IGCAJ": igarapé Cajueiro, interceptado por dique Ponto "IGCAJ": igarapé Cajueiro,

VARIÁVEL		RESERVATÓRIO INTERMEDIÁRIO Ponto "IGCAJ": igarapé Cajueiro, interceptado por dique									
VARIATOLL	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2	
Fósforo Total (mg/kg)	416,0	483,0	654,0	257,0	554,0	401,0	160,0	407,0	2000	2000	
Nitrogênio Total Kjeldahl (mg/kg)	5330,0	240,0	430,0	660,0	1110,0	100,0	20,0	160,0	4800	4800	
Carbono Orgânico Total (%)	2,74	0,63	0,11	0,11	1,91	0,24	0,30	0,69	10	10	
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0	
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	16,46	13,76	< LD	35,7	197,0	
Níquel (mg/kg)	< LD	< LD	< LD	< LD	10,20	18,00	13,10	< LD	18,0	35,9	
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5	
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3	
Zinco (mg/kg)	5,14	7,94	3,45	7,67	50,72	14,82	11,89	14,74	123	315	

			RESE	RVATÓRIO	INTERMED	IÁRIO			VALORES	
VARIÁVEL		Ponto	"IGCAJ": i	garapé Cajı	ueiro, interc	eptado por	dique		ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Arsênio (mg/kg)	< LD	< LD	< LD	0,2	0,06	0,07	< LD	0,05	5,9	17,0
Mercúrio (mg/kg)	0,10	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pela Res	olução CON	IAMA 454/20	012 para sed	dimentos; N	A: não se ap	lica; LD: limi	ite de detec	ção; NC: não	coletado	•

Ponto IGCO: Ponto localizado no igarapé Cobal, a jusante do dique 13, no Travessão km 55

A maior parte das amostras de sedimento coletadas no ponto IGCO se encontram em conformidade com a Resolução CONAMA 454/2012. Somente a variável cromo do monitoramento de janeiro de 2014 se encontra em não conformidade para nível 2 da Resolução CONAMA 454/2012 (**Quadro - 35**), porém este fato foi pontual, não sendo observado novamente ao longo do monitoramento.

Neste local houve predominância de material arenoso muito grosso, areia fina e areia grossa (**Figura - 35**). O silte esteve presente durante o monitoramento, porém em muito baixa proporção. No entanto, em julho de 2013 a principal fração foi a areia muito fina seguida do silte e a argila. Em outubro de 2014 também foram predominantes as frações mais finas do sedimento, principalmente areia fina e muito fina.

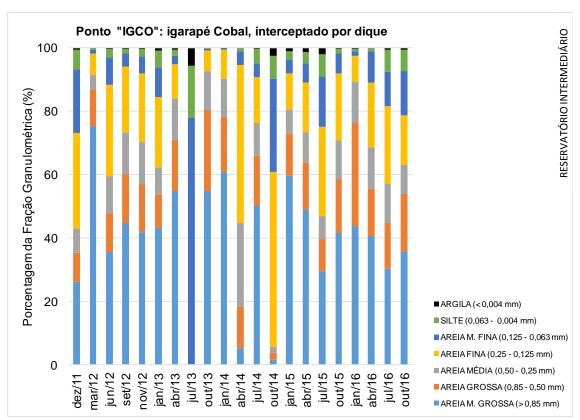


Figura - 35 — Representação gráfica das frações granulométricas (%) dos sedimentos do ponto IGCO no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

Quadro - 35 – Resultados das variáveis de qualidade do sedimento registrados no ponto IGCO no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

	RESERVATÓRIO INTERMEDIÁRIO								RIO						ORES ADORES
VARIÁVEL				Ponto	"IGCO":	igarapé	Cobal, in	tercepta	ido por d	ique				ORIZIO	*
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	275,5	66,9	136,1	97,0	380,0	157,2	269,1	503,4	54,4	7,0	545,0	316,0	307,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	284,8	40,7	203,1	10,0	60,0	120,0	157,3	297,1	40,4	60,0	100,0	270,0	430,0	4800	4800
Carbono Orgânico Total (%)	0,03	0,02	0,04	0,27	0,36	0,64	0,23	0,97	0,18	0,01	0,14	0,38	0,25	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	130,7	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	9,3	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	< LD	6,00	4,87	< LD	27,68	< LD	< LD	3,02	5,43	7,07	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	0,04	< LD	< LD	< LD	< LD	0,06	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5

VARIÁVEL		Ponto "IGCO": igarapé Cobal, interceptado por dique									VALO ORIENT				
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0

VARIÁVEL		Pon		RVATÓRIO igarapé Col		IÁRIO ptado por d	ique		VALORES ORIENTADORES *		
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2	
Fósforo Total (mg/kg)	288,0	567,0	173,0	242,0	91,0	384,0	533,0	96,0	2000	2000	
Nitrogênio Total Kjeldahl (mg/kg)	70,0	60,0	100,0	110,0	120,0	260,0	90,0	30,0	4800	4800	
Carbono Orgânico Total (%)	0,55	0,49	0,43	0,50	0,23	0,99	1,02	0,33	10	10	
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0	
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0	
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9	
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5	
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3	
Zinco (mg/kg)	2,23	5,55	1,76	1,09	3,58	2,98	2,45	4,22	123	315	

			RESE	RVATÓRIO	INTERMED	IÁRIO			VALORES	
VARIÁVEL		Pon	to "IGCO":	igarapé Col	bal, interce _l	ptado por d	ique		ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Arsênio (mg/kg)	< LD	< LD	< LD	0,23	0,04	0,04	< LD	0,03	5,9	17,0
Mercúrio (mg/kg)	0,14	0,16	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pela Res	olução CON	IAMA 454/20	012 para sec	dimentos; N	A: não se ap	lica; LD: lim	ite de detec	ção; NC: não	coletado	

1,5.2 RESERVATÓRIO INTERMEDIÁRIO

Pontos CN01, CN02, CN03, CN04, CN05, CN06, CN07, CN08, CN09, RIN1 e RIN2: Pontos localizados no Reservatório Intermediário

As amostras de sedimento coletadas nos pontos do Reservatório Intermediário (CN01, CN02, CN03, CN04, CN05, CN06, CN07, CN08, CN09, RIN1 e RIN2) estão em conformidade com a Resolução CONAMA 454/2012 (Quadro – 36 a Quadro - 46). As concentrações de nitrogênio total, fósforo total e carbono orgânico variam bastante entre os pontos amostrados, principalmente devido ao aporte para os sedimentos da matéria orgânica em decomposição depositada no fundo do reservatório. Não foram observadas diferenças significativas nas concentrações de nutrientes entre as três campanhas de monitoramento realizadas nos sedimentos do Reservatório Intermediário.

Nos diferentes pontos de coleta houve predominância de material arenoso muito grosso, grosso e fino com pequenas percentagens de silte, sendo que, os pontos de amostragem foram bastante similares entre sim desde o ponto de vista granulométrico (**Figura - 36**).

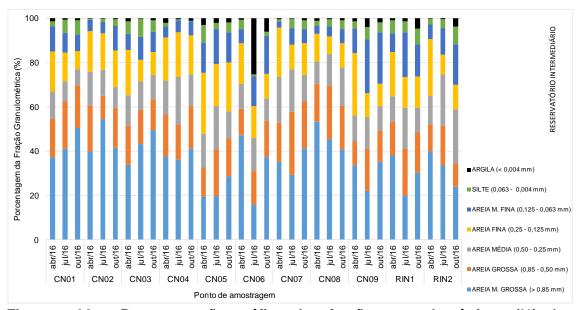


Figura - 36 – Representação gráfica das frações granulométricas (%) dos sedimentos dos pontos do Reservatório Intermediário no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período de abril, julho e outubro de 2016

Quadro - 36 – Resultados das variáveis de qualidade do sedimento registrados no ponto CN01 do Reservatório Intermediário durante o monitoramento limnológico trimestral do PBA da UHE Belo Monte no período de abril a outubro de 2016

	RESI	ERVATÓRIO INTERME	DIÁRIO	VAL 6056 65	JENTA DODEC :
VARIÁVEL	Ponto "CN01": ponto	o localizado na bacia d	o igarapé Paquiçamba	VALORES OR	IENTADORES *
	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	80,0	617,0	428,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	60,0	170,0	169,0	4800	4800
Carbono Orgânico Total (%)	0,43	0,56	0,54	10	10
Cromo (mg/kg)	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	8,51	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	3,05	2,01	14,10	123	315
Arsênio (mg/kg)	0,03	< LD	0,08	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	NA	NA
Gama-HCH (μg/kg)	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	3,5	8,5
DDE (μg/kg)	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	1,2	4,8
Dieldrin (μg/kg)	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	2,7	62,4

VARIÁVEL	RESER Ponto "CN01": ponto l	VALORES ORIENTADORES *			
	abr/16	jul/16	out/16	Nível 1	Nível 2
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pela Resolução CON	IAMA 454/2012 para sedi	mentos; NA: não se ap	olica; LD: limite de detecç	ão; NC: não cole	tado

Quadro - 37 – Resultados das variáveis de qualidade do sedimento registrados no ponto CN02 do Reservatório Intermediário durante o monitoramento limnológico trimestral do PBA da UHE Belo Monte no período de abril a outubro de 2016

VARIÁVEL		VATÓRIO INTERME	DIÁRIO ı do igarapé Ticaruca	VALORES ORIENTADORES *			
	abr/16	jul/16	out/16	Nível 1	Nível 2		
Fósforo Total (mg/kg)	307,0	111,0	398,0	2000	2000		
Nitrogênio Total Kjeldahl (mg/kg)	300,0	290,0	450,0	4800	4800		
Carbono Orgânico Total (%)	1,26	1,37	2,48	10	10		
Cromo (mg/kg)	< LD	< LD	< LD	37,3	90,0		
Cobre (mg/kg)	< LD	< LD	6,80	35,7	197,0		
Níquel (mg/kg)	10,01	< LD	< LD	18,0	35,9		
Cádmio (mg/kg)	< LD	< LD	< LD	0,6	3,5		
Chumbo (mg/kg)	< LD	< LD	< LD	35,0	91,3		
Zinco (mg/kg)	2,98	4,86	21,90	123	315		
Arsênio (mg/kg)	0,02	< LD	0,03	5,9	17,0		
Mercúrio (mg/kg)	< LD	< LD	< LD	0,2	0,5		
Alfa-HCH (μg/kg)	< LD	< LD	< LD	NA	NA		
Delta-HCH (µg/kg)	< LD	< LD	< LD	NA	NA		
Gama-HCH (µg/kg)	< LD	< LD	< LD	0,9	1,4		
Clordano-alfa (µg/kg)	< LD	< LD	< LD	NA	NA		

VARIÁVEL		VATÓRIO INTERME localizado na bacia	DIÁRIO ı do igarapé Ticaruca	VALORES ORIENTADORES *		
	abr/16	jul/16	out/16	Nível 1	Nível 2	
Clordano-gama (µg/kg)	< LD	< LD	< LD	NA	NA	
DDD (µg/kg)	< LD	< LD	< LD	3,5	8,5	
DDE (µg/kg)	< LD	< LD	< LD	1,4	6,8	
DDT (µg/kg)	< LD	< LD	< LD	1,2	4,8	
Dieldrin (μg/kg)	< LD	< LD	< LD	2,9	6,7	
Endrin (μg/kg)	< LD	< LD	< LD	2,7	62,4	
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	34,1	277,0	
* Estabelecidos pela Resolução CON	IAMA 454/2012 para se	dimentos; NA: não se	aplica; LD: limite de de	tecção; NC: não	coletado	

Quadro - 38 – Resultados das variáveis de qualidade do sedimento registrados no ponto CN03 do Reservatório Intermediário durante o monitoramento limnológico trimestral do PBA da UHE Belo Monte no período de abril a outubro de 2016

VARIÁVEL		RESERVATÓRIO INTERMEDIÁRIO Ponto "CN03": ponto localizado na bacia do igarapé Paquiçamba						
	abr/16	jul/16	out/16	Nível 1	Nível 2			
Fósforo Total (mg/kg)	451,0	130,0	333,0	2000	2000			
Nitrogênio Total Kjeldahl (mg/kg)	460,0	30,0	270,0	4800	4800			
Carbono Orgânico Total (%)	2,29	2,58	1,18	10	10			
Cromo (mg/kg)	< LD	< LD	< LD	37,3	90,0			
Cobre (mg/kg)	< LD	< LD	< LD	35,7	197,0			
Níquel (mg/kg)	< LD	< LD	< LD	18,0	35,9			
Cádmio (mg/kg)	< LD	< LD	< LD	0,6	3,5			
Chumbo (mg/kg)	< LD	< LD	< LD	35,0	91,3			
Zinco (mg/kg)	5,04	2,74	8,32	123	315			
Arsênio (mg/kg)	0,05	< LD	0,05	5,9	17,0			

VARIÁVEL	RESERVATÓRIO INTERMEDIÁRIO Ponto "CN03": ponto localizado na bacia do igarapé Paquiçamba			VALORES ORIENTADORES *			
	abr/16	jul/16	out/16	Nível 1	Nível 2		
Mercúrio (mg/kg)	< LD	< LD	< LD	0,2	0,5		
Alfa-HCH (µg/kg)	< LD	< LD	< LD	NA	NA		
Delta-HCH (µg/kg)	< LD	< LD	< LD	NA	NA		
Gama-HCH (μg/kg)	< LD	< LD	< LD	0,9	1,4		
Clordano-alfa (µg/kg)	< LD	< LD	< LD	NA	NA		
Clordano-gama (µg/kg)	< LD	< LD	< LD	NA	NA		
DDD (µg/kg)	< LD	< LD	< LD	3,5	8,5		
DDE (µg/kg)	< LD	< LD	< LD	1,4	6,8		
DDT (µg/kg)	< LD	< LD	< LD	1,2	4,8		
Dieldrin (μg/kg)	< LD	< LD	< LD	2,9	6,7		
Endrin (µg/kg)	< LD	< LD	< LD	2,7	62,4		
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	34,1	277,0		
* Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado							

Quadro - 39 – Resultados das variáveis de qualidade do sedimento registrados no ponto CN04 do Reservatório Intermediário durante o monitoramento limnológico trimestral do PBA da UHE Belo Monte no período de abril a outubro de 2016

VARIÁVEL	RESERVATÓRIO INTERMEDIÁRIO Ponto "CN04": ponto localizado na bacia do igarapé Ticaruca			VALORES ORIENTADORES *	
	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	379,0	514,0	402,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	780,0	670,0	420,0	4800	4800
Carbono Orgânico Total (%)	4,66	4,19	2,47	10	10
Cromo (mg/kg)	< LD	< LD	< LD	37,3	90,0

	RESE	RVATÓRIO INTERME	DIARIO	VALORES OR	IENTADORE:
VARIÁVEL	Ponto "CN04": pon	VALORES ORIENTADORES			
	abr/16	jul/16	out/16	Nível 1	Nível 2
Cobre (mg/kg)	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	3,12	5,03	6,22	123	315
Arsênio (mg/kg)	0,03	< LD	0,04	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (μg/kg)	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pela Resolução CON	NAMA 454/2012 para s	sedimentos; NA: não se	aplica; LD: limite de de	tecção; NC: não	coletado

Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Quadro - 40 – Resultados das variáveis de qualidade do sedimento registrados no ponto CN05 do Reservatório Intermediário durante o monitoramento limnológico trimestral do PBA da UHE Belo Monte no período de abril a outubro de 2016

VARIÁVEL	RESE Ponto "CN05": pon	VALORES ORIENTADORES *			
	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	250,0	313,0	292,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	20,0	160,0	430,0	4800	4800
Carbono Orgânico Total (%)	0,36	0,29	1,95	10	10
Cromo (mg/kg)	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	5,62	7,81	8,46	123	315
Arsênio (mg/kg)	0,04	< LD	0,08	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (μg/kg)	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	2,7	62,4

VARIÁVEL	RESERVATÓRIO INTERMEDIÁRIO Ponto "CN05": ponto localizado na bacia do igarapé Cajueiro			VALORES ORIENTADORES *	
	abr/16	jul/16	out/16	Nível 1	Nível 2
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pela Resolução CON	IAMA 454/2012 para se	dimentos; NA: não se	aplica; LD: limite de de	tecção; NC: não	coletado

Quadro - 41 – Resultados das variáveis de qualidade do sedimento registrados no ponto CN06 do Reservatório Intermediário durante o monitoramento limnológico trimestral do PBA da UHE Belo Monte no período de abril a outubro de 2016

VARIÁVEL	RESER Ponto "CN06": pont	VATÓRIO INTERME to localizado na bac	VALORES ORIENTADORES *		
	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	302,0	51,0	65,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	400,0	340,0	260,0	4800	4800
Carbono Orgânico Total (%)	1,87	1,92	1,25	10	10
Cromo (mg/kg)	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	8,02	6,84	6,94	123	315
Arsênio (mg/kg)	0,02	< LD	0,08	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (μg/kg)	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	NA	NA

VARIÁVEL	RESER	VALORES ORIENTADORES *			
	abr/16	jul/16	out/16	Nível 1	Nível 2
Clordano-gama (µg/kg)	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pela Resolução CON	NAMA 454/2012 para s	edimentos; NA: não	se aplica; LD: limite de	detecção; NC: n	ão coletado

Quadro - 42 – Resultados das variáveis de qualidade do sedimento registrados no ponto CN07 do Reservatório Intermediário durante o monitoramento limnológico trimestral do PBA da UHE Belo Monte no período de abril a outubro de 2016

VARIÁVEL	RESER Ponto "CN07": pon	VALORES ORIENTADORES *			
	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	89,0	158,0	312,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	20,0	270,0	660,0	4800	4800
Carbono Orgânico Total (%)	0,19	0,24	4,26	10	10
Cromo (mg/kg)	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	7,36	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	6,03	7,56	16,42	123	315

VARIÁVEL	RESER	VALORES ORIENTADORES			
	abr/16	jul/16	out/16	Nível 1	Nível 2
Arsênio (mg/kg)	0,03	< LD	0,05	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	3,5	8,5
DDE (μg/kg)	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	34,1	277,0

Quadro - 43 – Resultados das variáveis de qualidade do sedimento registrados no ponto CN08 do Reservatório Intermediário durante o monitoramento limnológico trimestral do PBA da UHE Belo Monte no período de abril a outubro de 2016

VARIÁVEL	RESER\ Ponto "CN08": ponto	VALORES OR	IENTADORES *		
	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	72,0	29,0	101,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	1130,0	150,0	170,0	4800	4800
Carbono Orgânico Total (%)	0,79	0,84	1,11	10	10

RESER	VATÓRIO INTERME	DIÁRIO	VALORES OF	JENTADODES :
Ponto "CN08": pont	VALORES ORIENTADORES *			
abr/16	jul/16	out/16	Nível 1	Nível 2
< LD	< LD	< LD	37,3	90,0
< LD	< LD	< LD	35,7	197,0
10,02	< LD	< LD	18,0	35,9
< LD	< LD	< LD	0,6	3,5
< LD	< LD	< LD	35,0	91,3
8,02	7,15	25,42	123	315
0,03	< LD	0,02	5,9	17,0
< LD	< LD	< LD	0,2	0,5
< LD	< LD	< LD	NA	NA
< LD	< LD	< LD	NA	NA
< LD	< LD	< LD	0,9	1,4
< LD	< LD	< LD	NA	NA
< LD	< LD	< LD	NA	NA
< LD	< LD	< LD	3,5	8,5
< LD	< LD	< LD	1,4	6,8
< LD	< LD	< LD	1,2	4,8
< LD	< LD	< LD	2,9	6,7
< LD	< LD	< LD	2,7	62,4
< LD	< LD	< LD	34,1	277,0
	## Ponto "CN08": ponto abr/16 < LD	Ponto "CN08": ponto localizado na bace de la pul/16 abr/16 jul/16 < LD	< LD	Ponto "CN08": ponto localizado na bacia do igarapé Aturia abr/16 jul/16 out/16 Nível 1 < LD

Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Quadro - 44 – Resultados das variáveis de qualidade do sedimento registrados no ponto CN09 do Reservatório Intermediário durante o monitoramento limnológico trimestral do PBA da UHE Belo Monte no período de abril a outubro de 2016

VARIÁVEL		RESERVATÓRIO INTERMEDIÁRIO Ponto "CN09": ponto localizado na bacia do igarapé Aturia			VALORES ORIENTADORES *	
	abr/16	jul/16	out/16	Nível 1	Nível 2	
Fósforo Total (mg/kg)	213,0	268,0	278,0	2000	2000	
Nitrogênio Total Kjeldahl (mg/kg)	30,0	320,0	150,0	4800	4800	
Carbono Orgânico Total (%)	0,89	0,79	0,97	10	10	
Cromo (mg/kg)	< LD	< LD	< LD	37,3	90,0	
Cobre (mg/kg)	< LD	< LD	< LD	35,7	197,0	
Níquel (mg/kg)	< LD	< LD	< LD	18,0	35,9	
Cádmio (mg/kg)	< LD	< LD	< LD	0,6	3,5	
Chumbo (mg/kg)	< LD	< LD	< LD	35,0	91,3	
Zinco (mg/kg)	7,02	8,52	14,96	123	315	
Arsênio (mg/kg)	0,05	< LD	0,03	5,9	17,0	
Mercúrio (mg/kg)	< LD	< LD	< LD	0,2	0,5	
Alfa-HCH (µg/kg)	< LD	< LD	< LD	NA	NA	
Delta-HCH (µg/kg)	< LD	< LD	< LD	NA	NA	
Gama-HCH (μg/kg)	< LD	< LD	< LD	0,9	1,4	
Clordano-alfa (µg/kg)	< LD	< LD	< LD	NA	NA	
Clordano-gama (µg/kg)	< LD	< LD	< LD	NA	NA	
DDD (µg/kg)	< LD	< LD	< LD	3,5	8,5	
DDE (µg/kg)	< LD	< LD	< LD	1,4	6,8	
DDT (µg/kg)	< LD	< LD	< LD	1,2	4,8	
Dieldrin (µg/kg)	< LD	< LD	< LD	2,9	6,7	
Endrin (µg/kg)	< LD	< LD	< LD	2,7	62,4	

VARIÁVEL	RESERVATÓRIO INTERMEDIÁRIO Ponto "CN09": ponto localizado na bacia do igarapé Aturia			VALORES ORIENTADORES	
	abr/16	jul/16	out/16	Nível 1	Nível 2
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pela Resolução CON	IAMA 454/2012 para se	edimentos; NA: não s	se aplica; LD: limite de	detecção; NC: na	ão coletado

Quadro - 45 – Resultados das variáveis de qualidade do sedimento registrados no ponto RIN1 do Reservatório Intermediário durante o monitoramento limnológico trimestral do PBA da UHE Belo Monte no período de abril a outubro de 2016

	RESER		IENTADORES *		
VARIÁVEL	Ponto "RIN1": ponto	Ponto "RIN1": ponto localizado na bacia do igarapé Cajueiro			
	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	392,0	366,0	181,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	270,0	410,0	70,0	4800	4800
Carbono Orgânico Total (%)	1,61	1,52	0,41	10	10
Cromo (mg/kg)	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	9,02	5,14	11,56	123	315
Arsênio (mg/kg)	0,05	< LD	0,02	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (μg/kg)	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	0,9	1,4

VARIÁVEL	RESER Ponto "RIN1": ponto	VATÓRIO INTERME localizado na bacia		VALORES ORIENTADORES			
	abr/16	jul/16	out/16	Nível 1	Nível 2		
Clordano-alfa (µg/kg)	< LD	< LD	< LD	NA	NA		
Clordano-gama (µg/kg)	< LD	< LD	< LD	NA	NA		
DDD (µg/kg)	< LD	< LD	< LD	3,5	8,5		
DDE (µg/kg)	< LD	< LD	< LD	1,4	6,8		
DDT (µg/kg)	< LD	< LD	< LD	1,2	4,8		
Dieldrin (μg/kg)	< LD	< LD	< LD	2,9	6,7		
Endrin (µg/kg)	< LD	< LD	< LD	2,7	62,4		
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	34,1	277,0		
* Estabelecidos pela Resolução CON	IAMA 454/2012 para se	edimentos; NA: não se	e aplica; LD: limite de de	etecção; NC: não	coletado		

Quadro - 46 – Resultados das variáveis de qualidade do sedimento registrados no ponto RIN2 do Reservatório Intermediário durante o monitoramento limnológico trimestral do PBA da UHE Belo Monte no período de abril a outubro de 2016

VADIÁVE		RESERVATÓRIO INTERMEDIÁRIO Ponto "RIN2": ponto localizado na bacia do igarapé Ticaruca								
VARIÁVEL		Nivel 4	Nivel 2							
	abr/16	jul/16	out/16	Nível 1	Nível 2					
Fósforo Total (mg/kg)	367,0	423,0	441,0	2000	2000					
Nitrogênio Total Kjeldahl (mg/kg)	380,0	620,0	640,0	4800	4800					
Carbono Orgânico Total (%)	1,77	1,89	3,28	10	10					
Cromo (mg/kg)	< LD	< LD	< LD	37,3	90,0					
Cobre (mg/kg)	< LD	< LD	< LD	35,7	197,0					
Níquel (mg/kg)	< LD	8,02	< LD	18,0	35,9					
Cádmio (mg/kg)	< LD	< LD	< LD	0,6	3,5					

			VALORES ORIENTADORES			
				1		
abr/16	jul/16	out/16	Nível 1	Nível 2		
< LD	< LD	< LD	35,0	91,3		
5,03	22,89	17,58	123	315		
0,04	< LD	0,01	5,9	17,0		
< LD	< LD	< LD	0,2	0,5		
< LD	< LD	< LD	NA	NA		
< LD	< LD	< LD	NA	NA		
< LD	< LD	< LD	0,9	1,4		
< LD	< LD	< LD	NA	NA		
< LD	< LD	< LD	NA	NA		
< LD	< LD	< LD	3,5	8,5		
< LD	< LD	< LD	1,4	6,8		
< LD	< LD	< LD	1,2	4,8		
< LD	< LD	< LD	2,9	6,7		
< LD	< LD	< LD	2,7	62,4		
< LD	< LD	< LD	34,1	277,0		
	Ponto "RIN2": ponto abr/16 < LD 5,03 0,04 < LD Ponto "RIN2": ponto localizado na bacia abr/16 jul/16 < LD	< LD	Ponto "RIN2": ponto localizado na bacia do igarapé Ticaruca VALORES OR abr/16 jul/16 out/16 Nível 1 < LD			

1.6 ÁREA 6: RIO BACAJÁ

Ponto BAC02: Ponto localizado no rio Bacajá, a 15 km da foz com o rio Xingu

As amostras de sedimento coletadas no ponto BAC02 estão em conformidade com a Resolução CONAMA 454/2012, nível 1, com exceção da variável mercúrio nos meses de janeiro e abril de 2015 (**Quadro - 47**). Neste ponto foi registrado predomínio de sedimentos arenosos finos, muito finos e uma pequena, porém significativa proporção de silte e argila na maioria dos meses amostrados (**Figura - 36**).



Figura - 36 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto BAC02 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

Quadro - 47 – Resultados das variáveis de qualidade do sedimento registrados no ponto BAC02 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

	RIO BACAJÁ														DRES
VARIÁVEL				Ponto "I	BAC02": r	io Bacaj	á, a 15 kr	n da foz	com o ric	o Xingu				ORIENT	ADORES *
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	187,1	823,4	9,6	39,0	420,0	377,3	295,5	39,5	463,1	18,0	337,0	110,0	613,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	458,0	1394,9	762,9	20,0	1040,0	450,0	474,1	89,4	1687,8	550,0	860,0	210,0	2210,0	4800	4800
Carbono Orgânico Total (%)	0,02	0,02	0,02	0,28	0,32	1,31	0,76	0,51	6,66	3,11	1,76	1,04	1,10	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	4,0	6,0	< LD	< LD	< LD	< LD	< LD	< LD	17,92	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	10,0	< LD	< LD	< LD	< LD	< LD	< LD	< LD	13,52	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	36,00	52,00	48,00	25,04	< LD	5,45	43,85	22,48	32,65	14,24	55,14	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	0,10	< LD	< LD	< LD	< LD	< LD	< LD	0,06	< LD	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	0,17	< LD	< LD	< LD	< LD	0,14	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8

VARIÁVEL Ponto "BAC02": rio Bacajá, a 15 km da foz com o rio Xingu													VALORES ORIENTADORES		
	dez/11	z/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 out/1													Nível 2
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas												34,1	277,0		
* Estabelecidos pe	la Resolu	ção CONA	MA 454/2	2012 para	sedimen	tos; NA: r	não se ap	lica; LD:	limite de	detecção	; NC: não	coletado)		•

				VALO	DRES					
VARIÁVEL		Ponto '	"BAC02": ri	o Bacajá, a	15 km da fo	oz com o ric	Xingu		ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	497,0	660,0	257,0	402,0	194,0	212,0	568,0	525,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	2970,0	330,0	220,0	190,0	530,0	310,0	650,0	1140,0	4800	4800
Carbono Orgânico Total (%)	4,96	1,21	0,70	0,70	3,51	2,60	2,91	5,62	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	12,66	< LD	24,87	9,98	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	10,46	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	46,44	18,90	22,03	27,54	19,44	18,44	15,84	44,34	123	315
Arsênio (mg/kg)	< LD	0,12	< LD	0,19	0,06	0,06	< LD	0,04	5,9	17,0
Mercúrio (mg/kg)	0,23	0,22	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5

,					DRES								
VARIÁVEL		Ponto '	'BAC02": ri	o Bacajá, a	15 km da fo	oz com o ric	Xingu		ORIENTA	DORES *			
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2			
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA			
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA			
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4			
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA			
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA			
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5			
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8			
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8			
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7			
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4			
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0			
* Estabelecidos pela Res	olução CON	IAMA 454/20	012 para sed	dimentos; N	A: não se ap	lica; LD: limi	te de detec	ção; NC: não	coletado				

Ponto BAC03: Ponto localizado no rio Bacajá a 25 km da foz com o rio Xingu

As amostras de sedimento coletadas no ponto BAC03 estão em conformidade com a Resolução CONAMA 454/2012 para nível 1, com exceção da variável mercúrio em julho de 2015 (**Quadro - 48**). Os sedimentos foram constituídos principalmente por areias grossas, areias finas, muito finas e siltes, variando as proporções ao longo do monitoramento (**Figura - 37**).

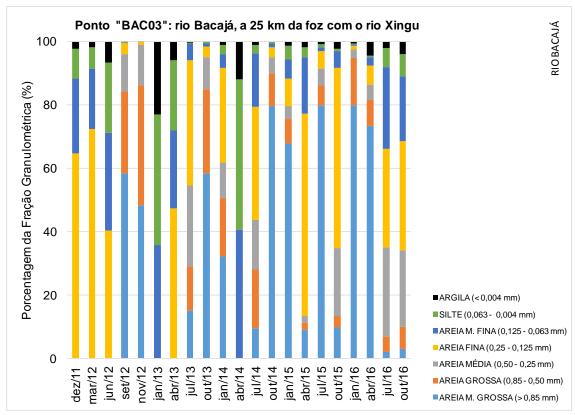


Figura - 37 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto BAC03 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

Quadro - 48 – Resultados das variáveis de qualidade do sedimento registrados no ponto BAC03 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a outubro de 2016

	RIO BACAJÁ												VALORES ORIENTADORES		
VARIÁVEL				Ponto "	BAC03": r	io Bacajá	i, a 25 km	da foz	com o rio	Xingu				ORIENT	
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	107,3	561,2	21,6	39,0	30,0	935,4	666,8	146,5	378,6	9,0	485,0	99,0	123,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	254,2	916,4	2348,3	10,0	30,0	1760,0	1731,4	704,0	1464,9	140,0	2290,0	710,0	360,0	4800	4800
Carbono Orgânico Total (%)	< LD	0,01	0,01	0,19	0,19	5,71	5,43	2,39	3,50	0,32	7,16	2,55	2,92	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	11,70	< LD	< LD	< LD	< LD	11,80	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	10,80	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	62,00	< LD	2,00	56,19	< LD	29,71	35,62	3,49	60,89	32,45	10,36	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,10	< LD	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	0,03	< LD	< LD	< LD	< LD	< LD	0,15	< LD	0,07	< LD	< LD	0,2	0,5
Alfa-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5

RIO BACAJÁ VARIÁVEL Ponto "BAC03": rio Bacajá, a 25 km da foz com o rio Xingu												VALORES ORIENTADORES			
	dez/11	ez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 out/14													Nível 2
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0

VARIÁVEL		Ponto		VALORES ORIENTADORES						
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	531,0	683,0	448,0	79,0	52,0	368,0	137,0	96,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	1650,0	1450,0	1070,0	880,0	1320,0	20,0	350,0	80,0	4800	4800
Carbono Orgânico Total (%)	5,54	6,15	7,04	7,14	0,02	8,53	7,62	0,34	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	11,33	< LD	28,84	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	11,12	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	42,71	25,70	34,71	7,59	4,88	6,88	6,01	13,92	123	315
Arsênio (mg/kg)	< LD	0,19	< LD	0,14	0,04	0,03	< LD	0,04	5,9	17,0

VARIÁVEL		Ponto	"BAC03": ri		ACAJÁ 25 km da fo	oz com o ric	o Xingu		VALORES ORIENTADORES *				
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	jul/16	out/16	Nível 1	Nível 2			
Mercúrio (mg/kg)	0,20	0,10	0,44	< LD	< LD	< LD	< LD	< LD	0,2	0,5			
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA			
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA			
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4			
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA			
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA			
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5			
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8			
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8			
Dieldrin (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7			
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4			
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0			
* Estabelecidos pela Res	solução CON	IAMA 454/20	012 para sed	dimentos; N	A: não se ap	lica; LD: lim	ite de detec	ção; NC: não	coletado				

2. CONSIDERAÇÕES FINAIS

De uma forma geral, as amostras de sedimento coletadas em toda a área de influência da UHE Belo Monte apresentam boa qualidade ambiental. Os resultados da caracterização química dos sedimentos são comparados com os valores orientadores previstos na Resolução CONAMA 454/2012, que estabelece valores orientadores para oito metais (cobre, cromo, níquel, arsênio, mercúrio, zinco, cádmio e chumbo), entre outros. De acordo com esta Resolução, os resultados são classificados em dois níveis: Nível 1, que é o limiar abaixo do qual há menor probabilidade de efeitos adversos à biota; e, Nível 2, que é o limiar acima do qual há maior probabilidade de efeitos adversos à biota.

Foi registrado um elevado contingente de valores de metais pesados não detectáveis pelos métodos empregados (método USEPA 3050B ver.2 - espectrometria de absorção atômica). Em cada amostra de sedimento, 11 metais são avaliados (além dos oito metais mencionados na Resolução CONAMA 454/2012, são também monitorados ferro, manganês e alumínio). Das 767 amostras de sedimentos coletadas (total de 19.175 resultados) um conjunto de aproximadamente 44% de valores de metais nos sedimentos foram analisados. Destes, apenas 59 valores (0,70%), das variáveis: cobre, níquel, cromo, arsênio e mercúrio, estiveram acima dos valores norteadores de Nível 1 e 2.

Ou seja, 99,30% das amostras de sedimentos estão em conformidade quanto aos metais pesados na legislação, em todo monitoramento referente às 21 campanhas realizadas de dezembro de 2011 a outubro de 2016. É importante ressaltar que na área do Reservatório Intermediário não foi detectada nenhuma inconformidade em relação a metais pesados ou nutrientes. Os metais cádmio e chumbo não foram detectados e todos os registros de zinco estiveram em conformidade com a legislação aplicável. Quanto aos valores de ferro, manganês e alumínio, como não existe legislação aplicável para contextualizá-los, a sua análise é descritiva e não indica variação nos padrões temporal e espacial, até o momento.

Foi registrada variação na predominância das frações granulométricas, e uma tendência a sedimentos mais arenosos em períodos de cheia, quando as frações mais finas são carreadas. Em contrapartida, variações quanto ao aumento da porcentagem de argila e silte foram correlacionadas com maiores teores de matéria orgânica, provavelmente, favorecidos pela retenção nos sedimentos mais finos. Apenas quatorze valores acima do valor de alerta para carbono orgânico total foram registrados: em outubro de 2013 no igarapé Galhoso, em janeiro de 2013, abril de 2015 e janeiro de 2016 no igarapé Chocaí, em abril de 2015 no ponto Pimental, em abril, julho e outubro de 2014 e janeiro, julho e outubro de 2015 e abril e julho de 2016 no igarapé Tucuruí e no ponto RX07 em janeiro de 2016.

Nenhuma amostra apresentou concentrações acima do limite de detecção para os pesticidas monitorados (11 tipos entre organoclorados, organofosforados e carbamatos).

Considerando todos os ciclos hidrológicos monitorados, as não conformidades apresentadas acima foram registradas em 20 dos 48 pontos de coleta do monitoramento limnológico trimestral considerando todos os setores: seis pontos na área do Reservatório do Xingu (três no rio Xingu, um no igarapé Altamira, um no igarapé Ambé e um no igarapé Galhoso), sete pontos no rio Xingu e um no igarapé Chocaí na área da Volta Grande, dois pontos no rio Xingu e um no igarapé Tucuruí, próximo a cidade de Vitória do Xingu, na área a jusante da Casa de Força Principal no Trecho de Restituição de Vazão. Também foram identificados um ponto no igarapé Cobal e um ponto no igarapé Cajueiro, nos igarapés interceptados pelos diques, na área do Reservatório Intermediário e nos dois pontos do rio Bacajá. Nenhuma amostra da área a Montante do Reservatório do Xingu nem do Reservatório Intermediário esteve em não conformidade, até o momento.

Desta forma, conclui-se que as não conformidades foram pontuais no tempo e no espaço, e especialmente quanto aos registros na área da Volta Grande/Trecho de Vazão Reduzida podem estar relacionadas ao uso e ocupação do solo nas áreas adjacentes, referente às antigas atividades na região como o garimpo de ouro (Ressaca). Mesmo com este histórico, é importante ressaltar que a conformidade da maioria das variáveis quantificadas em relação à legislação mostra que a qualidade dos sedimentos na área da Volta Grande se encontra em bom estado.

A conformidade das variáveis quantificadas nos pontos de coleta na área do Reservatório Intermediário também demonstra que apesar da intensa movimentação de sedimentos, supressão da vegetação e obras de engenharia durante a construção do reservatório, não houve impacto significativo nos sedimentos dos cursos de água monitorados. E mesmo agora com a sedimentação do material transportado pelas massas de água que circulam dentro do Reservatório Intermediário, não foram observadas mudanças significaticas na composição dos sedimentos de fundo do reservatório.

3. REFERÊNCIAS BIBLIOGRÁFICAS

APHA-AWWA-WEF. Standard Methods for the Examination of Water and Wastewater. 20th ed. Washington. 1998.

BRASIL. CONSELHO NACIONAL DO MEIO AMBIENTE – CONAMA. RESOLUÇÃO CONAMA Nº 454 - Estabelece as diretrizes gerais e os procedimentos mínimos para a avaliação do material a ser dragado em águas jurisdicionais brasileiras, e dá outras providências. Brasília, 17 p. 2012.

Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis - IBAMA. *Parecer Nº 168/2012*. Análise do 2º Relatório Semestral de Andamento do Projeto Básico Ambiental e das Condicionantes da Licença de Instalação Nº 795/2011, da Usina Hidrelétrica Belo Monte, processo Nº 02001.001848/2006-75, 20 de dezembro de 2012. 128 p. 2012.