

10° RELATÓRIO DE ANDAMENTO DO PBA E DO ATENDIMENTO DE CONDICIONANTES

CAPÍTULO 2 - ANDAMENTO DO PROJETO BÁSICO AMBIENTAL

Anexo 11.4.1 – 7 – Resultados de qualidade e granulometria do sedimento dos pontos monitorados trimestralmente no Projeto Básico Ambiental – Projeto de Monitoramento Limnológico e de Qualidade da Água Superficial da UHE Belo Monte

Os resultados de qualidade do sedimento de maneira "ponto a ponto" do monitoramento trimestral do Projeto Básico Ambiental – Projeto de Monitoramento Limnológico e da Qualidade da Água Superficial da UHE Belo Monte referentes ao período entre dezembro de 2011 a abril de 2016 são apresentados a seguir.

As campanhas de monitoramento desde dezembro de 2011 até outubro de 2015 foram realizadas na fase de pré-enchimento dos reservatórios do Xingu e Intermediário. Já a campanha de janeiro de 2016 foi realizada durante a fase de enchimento e formação tanto do reservatório do Xingu quanto do reservatório Intermediário, a qual terminou em 24 de fevereiro de 2016. A campanha de abril de 2016 foi realizada no período de pós-enchimento de ambos reservatórios.

As variáveis selecionadas para comporem este documento foram àquelas que são regulamentadas quanto aos valores norteadores pela Resolução CONAMA 454/2012, a qual estabelece valores orientadores em dois níveis, o nível 1: limiar abaixo do qual há menor probabilidade de efeitos adversos à biota e nível 2: limiar acima do qual há maior probabilidade de efeitos adversos à biota. Os resultados obtidos serão comparados entre as fases de pré e pós-enchimento dos reservatórios para verificar possíveis alterações.

As coordenadas dos pontos da malha amostral são apresentadas no **Anexo 11.4.1- 2**. O **Anexo11.4.1- 3** apresenta o mapa dos pontos do monitoramento trimestral.

1. DESCRIÇÃO LIMNOLÓGICA DOS SEDIMENTOS

1.1 ÁREA 1: MONTANTE DO RESERVATÓRIO DO XINGU

Ponto RX19: Ponto localizado no rio Xingu, distante 7,5 km do remanso previsto para o Reservatório do Xingu

As amostras de sedimento coletadas no ponto RX19 estão em conformidade com a Resolução CONAMA 454/2012 (Quadro - 1).

Não foram observadas diferenças nas concentrações de nutrientes, carbono orgânico total e metais analisados nos sedimentos nas etapas de pré-enchimento, enchimento e pós-enchimento do reservatório do Xingu, sendo que os valores observados se encontram dentro da média observada em todo o monitoramento.

Em todas as campanhas houve predominância de material arenoso, sendo que no período de seca as areias mais finas do leito do rio foram as predominantes (**Figura - 1**).

A predominância de sedimentos arenosos finos refletiu na baixa concentração de nutrientes e poluentes, o que também se deve à localização do ponto de coleta,

distante de áreas urbanas como Altamira-PA e a montante do remanso do Reservatório do Xingu.

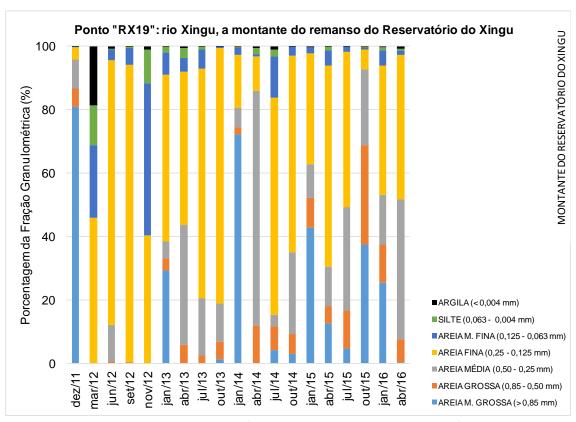


Figura - 1 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RX 19 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

Quadro - 1 – Resultados das variáveis de qualidade dos sedimentos registrados no ponto RX19 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

	MONTANTE DO RESERVATÓRIO DO XINGU													VALORES	
VARIÁVEL			Ponto	"RX 19":	rio Xingu,	a montai	nte do ren	nanso do	Reserva	tório do X	(ingu			ORIENTA	DORES *
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	160,4	201,7	6,8	13,0	0,0	85,6	36,0	70,6	52,2	19,0	57,0	43,0	58,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	152,5	641,5	193,2	0,0	840,0	110,0	109,6	185,1	176,8	250,0	130,0	180,0	110,0	4800	4800
Carbono Orgânico Total (%)	0,01	0,05	0,05	0,29	0,30	0,30	2,89	0,61	0,01	0,74	0,41	0,20	0,11	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	< LD	12,00	11,52	< LD	21,10	3,79	11,27	4,70	3,28	6,14	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,06	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	0,07	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA

		MONTANTE DO RESERVATÓRIO DO XINGU													
VARIÁVEL			Ponto	"RX 19":	rio Xingu,	a montar	nte do ren	nanso do	Reservat	tório do X	(ingu			ORIENTA	DORES *
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
(µg/kg)															
Clordano- gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs- Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

VARIÁVEL	Ponto '		Xingu, a m		DO XINGU remanso d		VALORES ORIENTADORES *		
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2	
Fósforo Total (mg/kg)	195,0	103,0	52,0	77,0	138,0	71,0	2000	2000	
Nitrogênio Total Kjeldahl (mg/kg)	240,0	110,0	40,0	80,0	330,0	10,0	4800	4800	
Carbono Orgânico Total (%)	0,29	0,37	0,01	0,01	1,56	0,01	10	10	
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0	

VARIÁVEL	Ponto '		Xingu, a m	ERVATÓRIO ontante do ingu			VALORES ORIENTADORES *		
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2	
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0	
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9	
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5	
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3	
Zinco (mg/kg)	3,99	8,18	3,04	4,26	9,94	10,05	123	315	
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	0,08	0,05	5,9	17,0	
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5	
Alfa-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA	
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA	
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4	
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA	
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA	
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5	
DDE (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8	
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8	
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7	
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4	
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0	

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

1.2 ÁREA 2: RESERVATÓRIO DO XINGU

Ponto RX01: Ponto localizado no rio Xingu, distante 12 km a montante da cidade de Altamira-PA

As amostras de sedimento coletadas no ponto RX01 estão em conformidade com a Resolução CONAMA 454/2012 (**Quadro - 2**). Não foram observadas diferenças significativas nas concentrações de nutrientes, carbono orgânico total e metais analisados nos sedimentos nas etapas de pré-enchimento, enchimento e pósenchimento do reservatório do Xingu, sendo que os valores observados se encontram dentro da média observada em todo o monitoramento.

Na maioria das campanhas houve predominância de material arenoso fino, sendo que no final do período de seca as areias mais grossas do leito do rio foram as predominantes (**Figura - 2**).

A sua localização a montante da cidade de Altamira e, portanto, sem a influência direta da área urbana, pode ser um dos fatores que conferiram ao ponto RX01 sedimentos de boa qualidade.

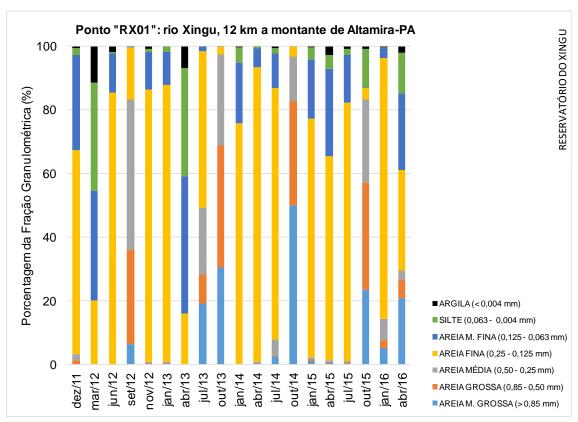


Figura - 2 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RX01 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

Quadro - 2 – Resultados das variáveis de qualidade dos sedimentos registrados no ponto RX01 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

	RESERVATÓRIO DO XINGU Ponto "RX 01": rio Xingu, 12 km a montante de Altamira-PA													VALORES ORIENTADORES	
VARIÁVEL			1	Ponto "R	X 01": rio	Xingu, '	12 km a n	nontante	de Altai	mira-PA				OKIENT	*
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	42,3	238,8	2,9	56,0	22,0	18,1	172,4	68,9	126,7	10,0	42,0	30,0	112,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	132,3	1028,4	305,2	30,0	110,0	10,0	20,2	130,6	101,3	400,0	130,0	180,0	50,0	4800	4800
Carbono Orgânico Total (%)	< LD	0,01	0,01	0,31	0,30	0,09	2,15	0,01	0,01	0,13	0,01	0,01	0,01	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	23,44	11,87	< LD	1,58	< LD	11,13	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	0,01	< LD	< LD	< LD	< LD	0,37	< LD	< LD	< LD	0,16	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,05	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5

VARIÁVEL		RESERVATÓRIO DO XINGU Ponto "RX 01": rio Xingu, 12 km a montante de Altamira-PA													VALORES ORIENTADORES *	
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2	
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8	
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8	
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7	
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4	
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0	

VARIÁVEL	Ponto '	RE RX 01": rio	nira-PA	VALORES ORIENTADORES *				
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	47,0	42,0	41,0	166,0	29,0	60,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	230,0	90,0	110,0	150,0	80,0	160,0	4800	4800
Carbono Orgânico Total (%)	0,10	0,20	0,23	0,28	0,05	0,25	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	2,89	1,72	11,95	2,94	3,54	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	0,11	0,04	0,03	5,9	17,0

	DE	SERVATÓR					
Danie I		nina DA	VALORES ORIENTADORES				
Ponto	'KX U1": rio	Xingu, 12 i	cm a monta	nte de Altar	nira-PA	OKILITY	DONLO
jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5
< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
	jan/15 < LD < LD	jan/15 abr/15 < LD	jan/15 abr/15 jul/15 < LD	jan/15 abr/15 jul/15 out/15 < LD	jan/15 abr/15 jul/15 out/15 jan/16 < LD	< LD	jan/15 abr/15 jul/15 out/15 jan/16 abr/16 Nível 1 < LD

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Ponto PAN02: Ponto localizado no igarapé Panelas, próximo a cidade de Altamira-PA

As amostras de sedimento coletadas no ponto PAN02 estão em conformidade com a Resolução CONAMA 454/2012 (**Quadro - 3**). Foi registrada a presença de cobre, tanto no período chuvoso como na seca, mas dentro da conformidade com a legislação. Estes valores podem ser reflexo da localização do igarapé, no limite urbano da cidade de Altamira-PA. Após a formação do reservatório do Xingu (abril de 2016), foi observada uma diminuição das concentrações de nutrientes e carbono orgânico total nos sedimentos coletados, porém, isto não significa que esta situação seja permanente devido à heterogeneidade dos sedimentos do leito do igarapé.

Na maioria das campanhas houve predominância de material arenoso fino, com boa proporção de silte e argila. Nos meses de abril de 2013, 2014 e 2015 houve predominância de frações mais grossas, provavelmente devido ao aumento do volume do rio (período de cheia) e consequente carreamento das frações mais finas fato que não se repetiu em 2016 quando predominaram sedimentos de granulometria mais fina (**Figura - 3**).

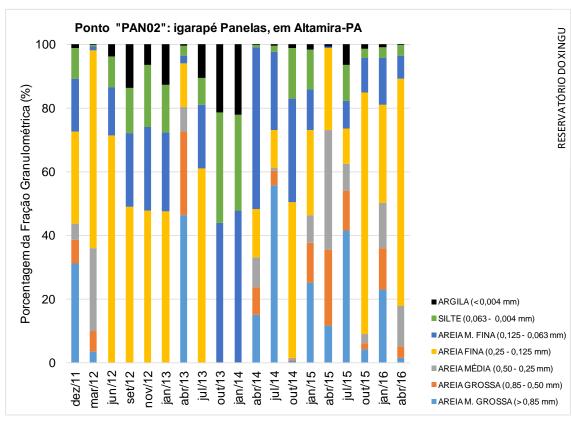


Figura - 3 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto PAN 02 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril 2016

Quadro - 3 – Resultados das variáveis de qualidade do sedimento registrados no ponto PAN02 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril 2016

VARIÁVEL				VALORES ORIENTADORES *											
	dez/11	mar/12	jun/12	set/12	to "PAN0 nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	136,1	20,1	4,4	87,0	110,0	163,9	221,4	110,4	8,1	70,0	6,0	139,0	254,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	254,3	40,7	457,8	20,0	0,0	270,0	206,9	201,8	489,0	460,0	120,0	310,0	670,0	4800	4800
Carbono Orgânico Total (%)	0,08	0,07	0,08	0,19	0,20	0,55	0,81	0,79	1,10	0,72	0,01	0,36	0,79	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	7,07	33,48	< LD	22,37	29,99	30,09	< LD	29,34	29,06	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	< LD	< LD	12,34	< LD	6,65	11,03	9,05	< LD	3,41	13,69	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,78	< LD	0,38	0,08	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	0,05	< LD	< LD	< LD	< LD	0,10	0,11	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5

VARIÁVEL				Pon	RE to "PAN0		ΓÓRIO Do pé Panel			PA				VALORES ORIENTADORES *	
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8				
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8				
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7				
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4				
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0				
* Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado															

VARIÁVEL	Pont	RES to "PAN02"		RIO DO XIN Panelas, e		a-PA	VALORES ORIENTADORES *		
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2	
Fósforo Total (mg/kg)	135,0	39,0	272,0	31,0	206,0	25,0	2000	2000	
Nitrogênio Total Kjeldahl (mg/kg)	180,0	330,0	380,0	300,0	250,0	20,0	4800	4800	
Carbono Orgânico Total (%)	3,70	0,09	1,81	1,83	4,27	0,01	10	10	
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0	
Cobre (mg/kg)	22,00	< LD	32,02	< LD	18,07	17,07	35,7	197,0	
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9	
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5	
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3	
Zinco (mg/kg)	3,30	1,95	28,44	< LD	7,58	6,88	123	315	

ORES
*
Nível 2
17,0
0,5
NA
NA
1,4
NA
NA
8,5
6,8
4,8
6,7
62,4
277,0

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Ponto RX02: Ponto localizado no rio Xingu, próximo à cidade de Altamira-PA e da foz do Igarapé Panelas

As amostras de sedimento coletadas no ponto RX02 estão em conformidade com a Resolução CONAMA 454/2012 (**Quadro - 4**). Após a formação do reservatório do Xingu, na campanha de abril de 2016, foi observado um aumento das concentrações de nutrientes e carbono orgânico total nos sedimentos coletados, provavelmente devido à deposição de material vegetal em decomposição no fundo do reservatório recém formado.

As frações granulométricas predominantes foram areia média e areia fina em todas as campanhas, com exceção da amostra coletada em janeiro de 2014, quando porções ainda mais finas foram predominantes (**Figura - 4**).

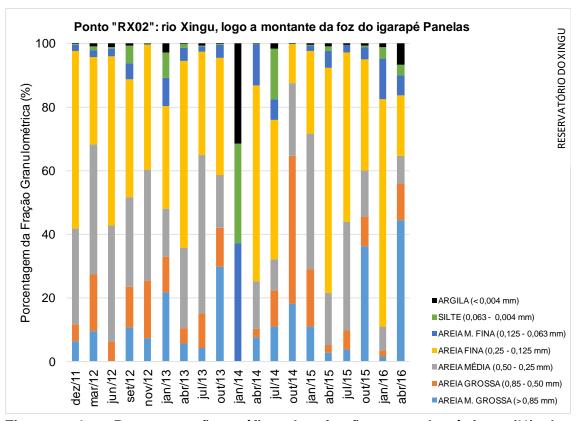


Figura - 4 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RX02 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

Quadro - 4 – Resultados das variáveis de qualidade do sedimento registrados no ponto RX02 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

					R	ESERVA	TÓRIO D	O XING	U					VALO	DRES
VARIÁVEL			Pon	to "RX02	2": rio Xin	gu, logo	a monta	nte da fo	oz do iga	rapé Pan	elas			ORIENTA	DORES *
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	185,4	59,4	1,9	95,0	85,0	84,7	17,0	66,2	20,2	15,0	64,0	546,0	24,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	71,2	112,0	203,4	330,0	90,0	160,0	141,5	66,2	101,2	190,0	320,0	2380,0	60,0	4800	4800
Carbono Orgânico Total (%)	0,02	0,01	0,01	1,23	1,20	0,34	0,27	0,14	0,01	0,44	0,72	6,42	4,23	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	3,51	< LD	< LD	< LD	13,77	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	< LD	< LD	2,80	< LD	< LD	< LD	4,66	3,09	32,96	0,67	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,51	< LD	0,73	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,11	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA

	RESERVATÓRIO DO XINGU Ponto "RX02": rio Xingu, logo a montante da foz do igarapé Panelas														ORES ADORES *
VARIÁVEL			Pon	to "RX02	?": rio Xin	gu, logo	a montai	nte da fo	z do iga	rapé Pan	elas			OKIENTA	IDUKES
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
gama (µg/kg)															
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs- Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos	pela Reso	olução CO	NAMA 45	54/2012 p	ara sedim	entos; N	A: não se	aplica; L	D: limite	de detecç	ão; NC: n	ão coleta	do		

VARIÁVEL	Ponto	RE "RX02": rio	Xingu, logo	RIO DO XINO a montanto elas		igarapé		ORES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	17,0	36,0	78,0	99,0	34,0	183,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	450,0	20,0	20,0	50,0	90,0	420,0	4800	4800
Carbono Orgânico Total (%)	0,01	0,19	0,11	0,12	0,43	1,50	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5

VARIÁVEL	Ponto	RE "RX02": rio	igarapé	VALORES ORIENTADORES *				
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	4,66	0,64	0,89	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Ponto ALT02: Ponto localizado no igarapé Altamira, na cidade de Altamira-PA

As amostras de sedimento coletadas no ponto ALT02 estão em conformidade com a Resolução CONAMA 454/2012, com exceção de valores de não conformidade das variáveis cobre em abril e julho de 2015 e janeiro e abril de 2016 e mercúrio no mês de abril com o nível 1 da legislação e mercúrio em outubro de 2015 com o nível 2 (**Quadro - 5**). Provavelmente reflexo da ocupação humana da bacia de contribuição, principalmente oriunda da área urbana de Altamira. Estes valores de mercúrio acima da legislação observados no mês de outubro podem ser devidos à remoção de sedimentos antigos depositados na região próxima a construção da nova ponte que cruzam o igarapé e que tenham sido lixiviado para o leito do igarapé. Em relação aos valores de cobre, os mesmos provavelmente têm origem na área urbana de Altamira, resultante das atividades diversas que fazem uso desse metal.

Após a formação do reservatório do Xingu (abril de 2016), foi observada uma leve diminuição das concentrações de nutrientes e carbono orgânico total nos sedimentos coletados, porém, isto não significa que esta situação seja permanente devido à heterogeneidade dos sedimentos do leito do igarapé.

Na maioria das campanhas houve predominância de material arenoso muito grosso, sendo que em junho de 2012, abril de 2013 e outubro de 2014 a fração predominante foi a de areia fina (**Figura - 5**).

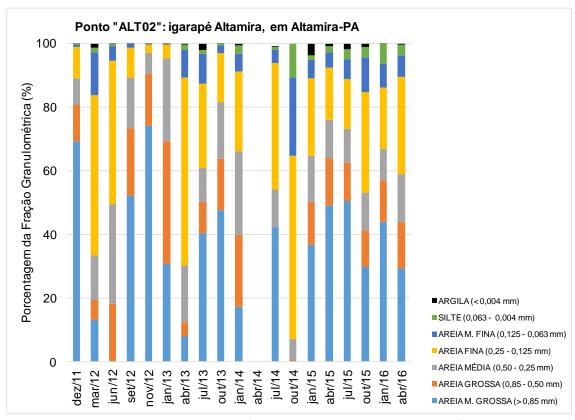


Figura - 5 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto ALT02 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

Quadro - 5 – Resultados das variáveis de qualidade do sedimento registrados no ponto ALT02 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

				<u>.</u>	RE	SERVA	TÓRIO DO	XINGU							DRES
VARIÁVEL				Pon	to "ALT0	2": igara	pé Altami	ira, em A	Altamira-	PA				ORIENT	ADORES *
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	580,2	95,7	9,0	170,0	360,0	230,4	220,0	412,2	266,7	98,0	NC	268,0	569,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	111,9	0,0	457,8	10,0	0,0	40,0	70,6	314,0	182,1	210,0	NC	130,0	870,0	4800	4800
Carbono Orgânico Total (%)	0,04	0,03	0,04	0,19	0,20	0,10	0,66	1,23	0,82	1,12	NC	0,37	0,21	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	10,32	8,14	< LD	23,14	< LD	11,43	NC	9,84	33,06	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	12,00	< LD	< LD	< LD	< LD	< LD	NC	< LD	17,16	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	< LD	14,00	12,51	< LD	21,56	10,12	18,81	NC	16,29	27,27	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	0,02	< LD	< LD	< LD	< LD	< LD	0,52	NC	< LD	0,09	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,06	0,06	NC	< LD	0,15	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	0,94	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	3,54	8,51

VARIÁVEL		RESERVATORIO DO XINGU Ponto "ALT02": igarapé Altamira, em Altamira-PA													
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	1,42	6,75
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	1,19	4,77
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	2,85	6,67
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	2,67	62,40
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	34,1	277,0

* Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA	NA: não se aplica;	; LD: limite de detecção; NC: não coletado
--	--------------------	--

VARIÁVEL	Po	RE onto "ALT02	SERVATÓF 2": igarapé /			PA		ORES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	466,0	574,0	514,0	518,0	481,0	460,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	450,0	30,0	430,0	290,0	230,0	70,0	4800	4800
Carbono Orgânico Total (%)	4,35	0,30	1,53	1,60	1,12	0,65	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	33,76	59,78	40,77	23,83	64,27	67,37	35,7	197,0
Níquel (mg/kg)	11,68	10,56	< LD	< LD	13,40	12,30	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	16,96	6,50	18,33	2,82	14,58	13,68	123	315
Arsênio (mg/kg)	< LD	0,48	0,04	0,08	0,07	0,04	5,9	17,0

_		RE	SERVATÓF	RIO DO XINO	GU			DRES
VARIÁVEL	Po	nto "ALT02	2": igarapé	Altamira, en	n Altamira-l	PA	ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Mercúrio (mg/kg)	0,15	0,32	< LD	0,72	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,94	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	3,54	8,51
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,42	6,75
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,19	4,77
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,85	6,67
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,67	62,40
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Ponto AMB02: Ponto localizado no igarapé Ambé, na cidade de Altamira-PA

A maioria das amostras de sedimento coletadas no ponto AMB02 estão em conformidade com a Resolução CONAMA 454/2012, com exceção de três valores de não conformidade da variável cobre no mês de abril de 2015 e janeiro e abril de 2016, da variável mercúrio no mês de setembro de 2012 e outubro 2015, as quatro acima do nível 1 da legislação e da variável mercúrio no mês de outubro de 2015 acima do nível 2 da legislação, o que corresponde a 1,26% dos pontos e variáveis amostrados (**Quadro - 6**). Estes valores de mercúrio acima da legislação observados no mês de outubro podem ser devidos à remoção de sedimentos antigos depositados na região próxima a construção da nova ponte que cruzam o igarapé e que tenham sido lixiviado para o leito do igarapé. Em relação aos valores de cobre, os mesmos provavelmente têm origem na área urbana de Altamira, resultante das atividades diversas que fazem uso desse metal, o qual é depositado nos sedimentos de fundo que ficam alagados nas campanhas de cheia, como foi na de abril de 2015, e nas primeiras campanhas realizadas após o enchimento do reservatório do Xingu (janeiro e abril 2016).

Na maioria das campanhas houve predominância de material arenoso fino. Porém, na primeira campanha, dezembro de 2011 e outubro de 2014, houve predominância de areia muito fina e silte (**Figura - 6**).

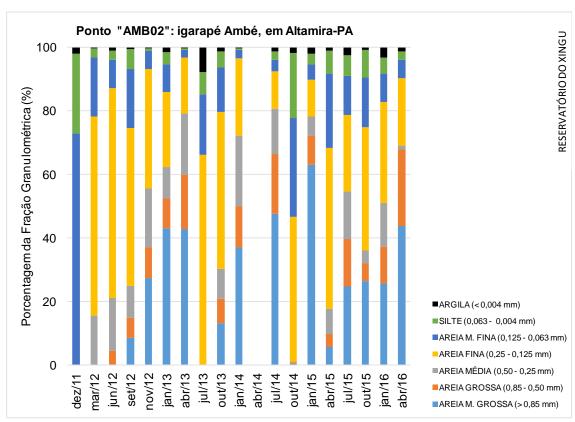


Figura - 6 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto AMB02 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

Quadro - 6 – Resultados das variáveis de qualidade do sedimento registrados no ponto AMB02 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril 2016

				<u> </u>	RI	ESERVA ⁻	TÓRIO D	O XINGL	J						DRES
VARIÁVEL				Po	nto "AMB	02": igar	apé Amb	é, em A	Itamira-P	Ά				ORIENT	ADORES
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	298,6	16,2	11,9	75,0	110,0	263,3	330,7	128,0	123,4	12,0	NC	92,0	311,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	254,1	122,2	274,7	20,0	20,0	560,0	40,4	269,1	404,8	70,0	NC	120,0	410,0	4800	4800
Carbono Orgânico Total (%)	0,03	0,01	0,02	0,28	0,31	2,45	0,02	0,64	0,63	0,09	NC	0,36	0,29	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	5,70	20,51	< LD	12,57	9,05	< LD	NC	8,06	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	< LD	8,00	7,57	< LD	2,17	4,58	5,73	NC	2,47	8,88	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,40	NC	< LD	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	0,22	< LD	< LD	< LD	< LD	0,08	< LD	NC	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	3,5	8,5

	RESERVATÓRIO DO XINGU Ponto "AMB02": igarapé Ambé, em Altamira-PA													
dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	1,4	6,8
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	1,2	4,8
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	2,9	6,7
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	2,7	62,4
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	34,1	277,0
	< LD < LD < LD < LD	<ld <ld="" <ld<="" td=""><td><ld <ld="" <ld<="" td=""><td>dez/11 mar/12 jun/12 set/12 < LD</td> < LD</ld></td> < LD</ld>	<ld <ld="" <ld<="" td=""><td>dez/11 mar/12 jun/12 set/12 < LD</td> < LD</ld>	dez/11 mar/12 jun/12 set/12 < LD	Ponto "AMB dez/11 mar/12 jun/12 set/12 nov/12 < LD	Ponto "AMB02": igar dez/11 mar/12 jun/12 set/12 nov/12 jan/13 < LD	Ponto "AMB02": igarapé Amb dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 < LD	Ponto "AMB02": igarapé Ambé, em A dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 < LD	Ponto "AMB02": igarapé Ambé, em Altamira-Podez/11 dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 < LD	Ponto "AMB02": igarapé Ambé, em Altamira-PA dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 < LD <	Ponto "AMB02": igarapé Ambé, em Altamira-PA dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 < LD	Ponto "AMB02": igarapé Ambé, em Altamira-PA dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 CLD CLD	Ponto "AMB02": igarapé Ambé, em Altamira-PA dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 out/14 cld cld	Description

Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

VARIÁVEL	Р		SERVATÓF 02": igarape		GU Altamira-P	A		ORES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	243,0	26,0	574,0	75,0	434,0	458,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	1660,0	20,0	560,0	590,0	780,0	30,0	4800	4800
Carbono Orgânico Total (%)	0,47	0,01	2,57	2,61	3,10	0,26	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	40,24	< LD	33,96	9,71	52,07	50,27	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	10,20	11,20	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	6,26	< LD	17,40	18,20	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	0,09	0,10	5,9	17,0

VARIÁVEL	P	RE Conto "AMB	SERVATÓF 02": igarape			A		ORES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Mercúrio (mg/kg)	0,18	< LD	< LD	0,88	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Ponto RX18: Ponto localizado no rio Xingu, a jusante 1 km da cidade de Altamira-PA

A maior parte das amostras de sedimento coletadas no ponto RX18 estão em conformidade com a Resolução CONAMA 454/2012, sendo que somente 1,91% delas se encontram em desconformidade para nível 1 (**Quadro - 7**). As principais variáveis a apresentar valores acima do nível 1 foram cobre, em julho de 2013, abril, julho e outubro de 2014 e abril e outubro de 2015, e níquel em abril e outubro de 2014, provavelmente devido à interferência antrópica proveniente da cidade de Altamira, em que, podem ter sido transportados pelo fluxo do rio Xingu e os materiais inorgânicos em suspensão contendo zinco, arsênio, níquel e cobre, oriundos de atividades diversas na área urbana, podem ter sido depositados nos sedimentos do leito do rio. Porém, as concentrações desses metais estiveram sempre abaixo dos limites recomendados pela legislação, exceto em relação ao níquel e ao cobre. A formação do reservatório do Xingu não originou alterações nas concentrações de nutrientes e carbono orgânico total nos sedimentos coletados nas fases de enchimento e pósenchimento, sendo que os resultados estão em conformidade com a resolução.

Neste ponto houve predominância de frações granulométricas mais finas (**Figura - 7**) com maior porcentagem de areia muito fina, silte e argila na maioria das campanhas realizadas, com exceção da campanha de abril de 2014, janeiro e abril de 2015 quando houve predominância de areias grossas.

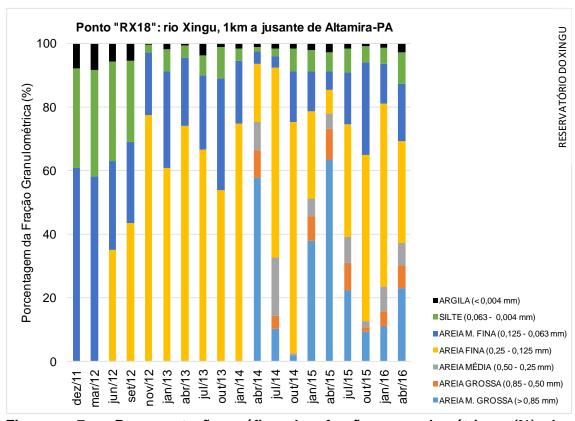


Figura - 7 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RX18 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

Quadro - 7 – Resultados das variáveis de qualidade do sedimento registrados no ponto RX18 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

timicstrui do i				•			TÓRIO DO		l a abi						ORES ADORES
VARIÁVEL				Ponto '	"RX18": r	io Xingu	, 1 km a j	usante d	le Altami	ra-PA				ORIZIVI	*
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	386,6	1311,0	31,0	336,0	275,0	370,5	320,9	906,8	431,4	127,0	487,0	498,0	560,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	315,2	743,3	3660,4	180,0	90,0	100,0	159,2	608,6	1243,2	560,0	930,0	590,0	620,0	4800	4800
Carbono Orgânico Total (%)	0,02	0,04	0,04	0,28	0,35	1,23	0,79	3,28	3,22	1,05	3,01	1,41	1,11	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	15,94	20,97	< LD	79,58	33,13	31,14	82,15	45,07	59,89	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	12,00	6,80	< LD	< LD	< LD	< LD	24,10	11,76	22,30	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	44,00	< LD	30,00	34,72	< LD	77,41	42,40	28,16	52,32	9,01	59,36	123	315
Arsênio (mg/kg)	< LD	< LD	0,06	< LD	< LD	< LD	< LD	< LD	0,43	2,14	0,06	0,23	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	0,05	< LD	< LD	< LD	< LD	0,10	0,07	0,06	< LD	< LD	0,2	0,5
Alfa-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5

VARIÁVEL				Ponto '	RE 'RX18": ri		ΓÓRIO DO ,1 km a ji			ra-PA				VALORES ORIENTADORES * Nível 1 Nível 2	
	dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 out/14 Nível														
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos p	ela Resolu	ıção CON	AMA 454/	2012 para	a sedimen	itos; NA:	não se ap	lica; LD:	limite de	detecção	; NC: não	coletado	0		

VARIÁVEL	Ponte		ESERVATÓF io Xingu, 1 I			ra-PA		ORES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	427,0	210,0	531,0	442,0	394,0	585,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	860,0	500,0	1480,0	1660,0	780,0	1180,0	4800	4800
Carbono Orgânico Total (%)	5,95	2,10	5,70	5,89	4,14	3,28	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	23,96	59,87	27,82	59,21	32,07	31,27	35,7	197,0
Níquel (mg/kg)	9,87	11,57	< LD	< LD	15,40	13,70	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	33,09	17,52	41,39	43,67	49,44	50,04	123	315
Arsênio (mg/kg)	< LD	0,75	0,06	0,10	0,11	0,13	5,9	17,0

		RE	SERVATÓ	RIO DO XINO	GU			DRES
VARIÁVEL	Ponto	o "RX18": ri	o Xingu, 1 l	km a jusant	e de Altami	ra-PA	ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Ponto RX24: Ponto localizado no rio Xingu, a jusante 7 km da cidade de Altamira-PA

As amostras de sedimento coletadas no ponto RX24 estão em conformidade com a Resolução CONAMA 454/2012, com exceção da variável mercúrio no mês de outubro de 2015 em que a concentração foi superior ao nível 2 da legislação, o qual foi um evento pontual (**Quadro - 8**). Não foram observadas diferenças significativas nas concentrações de nutrientes, carbono orgânico total e metais analisados nos sedimentos nas etapas de pré-enchimento, enchimento e pós-enchimento do reservatório do Xingu, sendo que os valores observados se encontram dentro da média observada em todo o monitoramento.

Na maioria das campanhas houve predominância de material arenoso muito grosso, porém, nas campanhas de junho de 2012, abril e julho de 2013 e abril e outubro de 2014 houve predominância de areia fina e muito fina (**Figura - 8**).

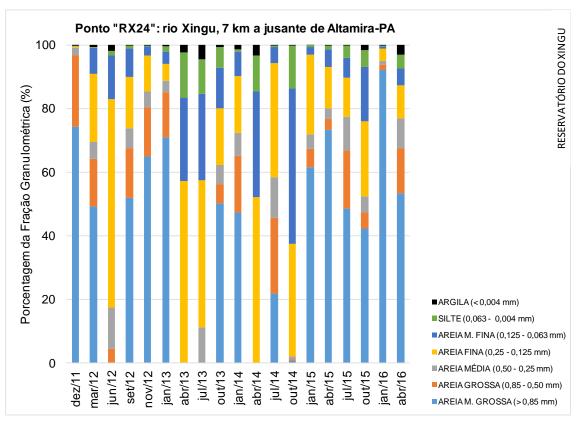


Figura - 8 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RX24 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

Quadro - 8 – Resultados das variáveis de qualidade do sedimento registrados no ponto RX24 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

trinicatial do 1 Bi				•			TÓRIO D								ORES ADORES
VARIÁVEL						ORIENT	*								
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	27,4	181,4	3,9	166,0	67,0	278,5	112,5	60,5	170,4	20,0	450,0	223,0	175,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	71,2	478,6	305,1	60,0	0,0	830,0	151,3	233,6	447,4	790,0	1700,0	200,0	350,0	4800	4800
Carbono Orgânico Total (%)	< LD	0,01	0,02	1,89	1,93	4,33	1,02	0,42	1,12	2,43	5,83	1,11	1,01	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0						
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0						
Níquel (mg/kg)	< LD	< LD	< LD	< LD	10,00	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5						
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3						
Zinco (mg/kg)	< LD	< LD	< LD	24,00	6,00	31,41	< LD	2,48	10,34	25,32	36,22	18,96	11,72	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	2,22	0,17	0,34	< LD	5,9	17,0						
Mercúrio (mg/kg)	< LD	< LD	0,07	0,11	0,08	< LD	< LD	0,2	0,5						
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA						
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA						
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4						
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA						
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA						
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5						
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8						
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8						

VARIÁVEL				Ponto	RI "RX24": r		TÓRIO D , 7 km a j			ra-PA				VALORES ORIENTADORES *	
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pela	Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado														

		RE	SERVATÓF	RIO DO XIN	GU		VALO	DRES
VARIÁVEL	Ponto	o "RX24": ri	o Xingu, 7 I	km a jusant	e de Altami	ra-PA	ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	83,0	252,0	262,0	193,0	232,0	136,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	430,0	720,0	290,0	190,0	180,0	390,0	4800	4800
Carbono Orgânico Total (%)	1,33	4,06	0,67	0,71	0,93	0,69	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	4,18	22,78	11,93	9,55	31,56	33,06	123	315
Arsênio (mg/kg)	< LD	0,43	0,05	0,08	0,10	0,07	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	1,29	< LD	< LD	0,2	0,5
Alfa-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA

		RE	SERVATÓF	RIO DO XINO	GU		VALO	DRES
VARIÁVEL	Ponto	o "RX24": ri	o Xingu, 7 I	km a jusant	e de Altami	ra-PA	ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Ponto RX25: Ponto localizado no rio Xingu, a montante 7 km do eixo da Barragem Principal (Pimental)

As amostras de sedimento coletadas no ponto RX25 estão em conformidade com a Resolução CONAMA 454/2012 (**Quadro - 9**). Na maioria das campanhas houve predominância de material arenoso fino, muito fino e silte, principalmente, nas campanhas de junho e setembro de 2012, janeiro, abril e julho de 2013 e abril de 2014. Em janeiro e abril de 2016, após a formação do Reservatório do Xingu os sedimentos coletados foram compostos, predominantemente, por areias mais grossas (**Figura - 9**). Em junho de 2012, janeiro de 2013, julho e abril de 2013 e abril de 2014 foram observadas as maiores concentrações de nutrientes no sedimento, o que pode estar relacionado com os sedimentos mais finos encontrados, principalmente siltes e argilas, os quais têm a propriedade de reter mais matéria orgânica.

Não foram evidenciadas diferenças significativas nas concentrações de nutrientes, carbono orgânico total e metais dos sedimentos de fundo entre as campanhas de préenchimento (outubro 2015), enchimento (janeiro 2016) e pós-enchimento (abril 2016).

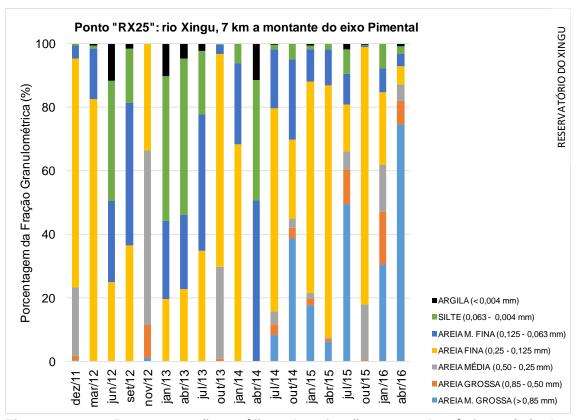


Figura - 9 - Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RX25 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

Quadro - 9 – Resultados das variáveis de qualidade do sedimento registrados no ponto RX25 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

				<u>.</u>	RI	ESERVAT	ÓRIO DO	XINGU							DRES
VARIÁVEL				Ponto "R	X25": rio	Xingu, 7	km a mo	ntante c	lo eixo P	imental				ORIENT	ADORES
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	34,0	62,2	23,8	37,0	65,0	593,0	529,5	339,7	35,1	68,0	457,0	124,0	192,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	122,1	91,6	2757,1	30,0	0,0	1800,0	161,1	973,7	121,3	850,0	1570,0	210,0	590,0	4800	4800
Carbono Orgânico Total (%)	< LD	0,01	0,03	1,41	1,60	5,43	6,25	3,56	0,01	2,53	8,30	0,70	0,70	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	3,82	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	8,40	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	36,00	< LD	8,00	32,10	< LD	18,96	3,77	16,85	36,74	8,34	11,40	123	315
Arsênio (mg/kg)	< LD	< LD	0,07	< LD	< LD	< LD	< LD	< LD	< LD	0,57	0,18	0,38	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,10	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5

VARIÁVEL				Ponto "R	RI X25": rio	ESERVAT Xingu, 7				imental				VALO ORIENTA *		
	dez/11	dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 out/14 Nível 1 Níve														
DDE (µg/kg)	< LD	LD														
DDT (µg/kg)	< LD															
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7	
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4	
PCBs-Bifenilas Policloradas (µg/kg)																
(μg/kg) * Estabelecidos p	ela Resoli	ução CON	AMA 454	/2012 par	a sedimer	ntos; NA:	não se ap	lica; LD:	limite de	detecção	; NC: não	coletado)			

VARIÁVEL	Ponto '	RE "RX25": rio	SERVATÓF Xingu, 7 km			imental	VALORES ORIENTADORES		
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2	
Fósforo Total (mg/kg)	69,0	50,0	331,0	54,0	93,0	321,0	2000	2000	
Nitrogênio Total Kjeldahl (mg/kg)	90,0	30,0	530,0	610,0	250,0	400,0	4800	4800	
Carbono Orgânico Total (%)	0,44	0,23	2,22	2,45	1,04	2,76	10	10	
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0	
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0	
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9	
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5	
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3	
Zinco (mg/kg)	1,93	5,07	12,84	1,78	3,08	3,89	123	315	
Arsênio (mg/kg)	< LD	< LD	0,05	0,05	0,04	0,03	5,9	17,0	

		RE	SERVATÓ	RIO DO XIN	GU			DRES
VARIÁVEL	Ponto '	"RX25": rio	Xingu, 7 kn	n a montant	e do eixo P	imental	ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabalacidas nala Das	aluaãa CON	IANAA 4E 4/0/	012 nore ee	dimonton NI	1. 500 00 05	lica I Dulim	ita da dataa	SOL NICL

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Ponto RX03: Ponto localizado no rio Xingu, próximo à saída para o Canal de Derivação

As amostras de sedimento coletadas no ponto RX03 estão em conformidade com a Resolução CONAMA 454/2012 (Quadro - 10). Na maioria das campanhas houve predominância de material arenoso fino e muito fino (Figura - 10) sendo que os meses que apresentaram maiores percentagens de material mais fino como o silte foram os que tiveram maiores concentrações de nutrientes (junho 2012, julho 2013 e abril 2014). Na campanha de abril de 2016, após a formação do Reservatório do Xingu foram coletados sedimentos com granulometria maior neste local (areia muito grossa), provavelmente devido à deposição de sedimentos carregados na formação do reservatório, que podem ter se desprendido das margens do rio durante o enchimento. Por outro lado, as características destes sedimentos em termos de concentrações de nutrientes e metais foram muito similares aos observados nas campanhas anteriores ao enchimento do reservatório.

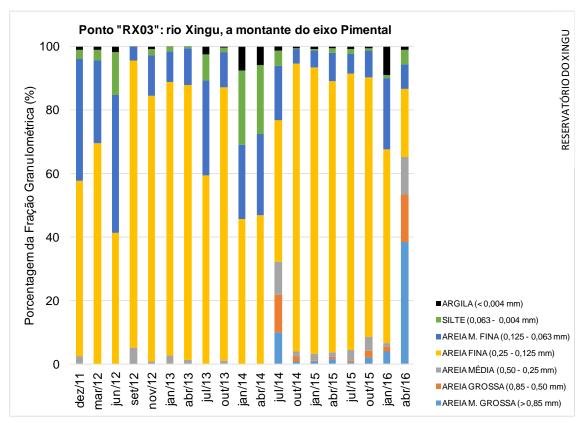


Figura - 10 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RX03 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

Quadro - 10 - Resultados das variáveis de qualidade do sedimento registrados no ponto RX03 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

				<u> </u>	R	ESERVA	TÓRIO D	O XINGU							DRES
VARIÁVEL				Ponto	"RX03":	rio Xing	u, a mont	ante do e	eixo Pime	ental				ORIENT	ADORES *
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	234,6	46,1	11,6	26,0	34,0	39,2	406,0	561,8	37,7	119,0	327,0	174,0	28,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	661,0	112,0	1954,1	10,0	90,0	770,0	719,0	1059,7	111,3	250,0	1000,0	780,0	70,0	4800	4800
Carbono Orgânico Total (%)	0,03	0,02	0,04	0,27	0,27	0,09	0,02	3,34	0,14	0,63	2,60	2,00	1,22	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	< LD	2,00	8,96	< LD	26,49	2,42	14,85	29,46	11,68	6,00	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,21	0,18	0,30	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,06	0,08	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5

RESERVATÓRIO DO XINGU Ponto "RX03": rio Xingu, a montante do eixo Pimental														VALORES ORIENTADORES		
lez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 out/14 Nível 1 Nível																
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8		
<ld <ld="" <ld<="" td=""><td>4,8</td></ld>														4,8		
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7		
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4		
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0		
	< LD < LD < LD < LD	< LD	<pre></pre>	ez/11 mar/12 jun/12 set/12 < LD	ez/11 mar/12 jun/12 set/12 nov/12 < LD	ez/11 mar/12 jun/12 set/12 nov/12 jan/13 < LD	ez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 < LD	ez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 < LD	ez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 < LD	ez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 < LD	ez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 < LD	ez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 < LD	ez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 out/14 < LD	Ponto "RX03": rio Xingu, a montante do eixo Pimental Pez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 out/14 Nível 1		

Estabelecidos pela Resolução CONAINA 434/2012 para sedimentos, IVA. Hao se aplica, ED. littlite de detecção, IVC. Hao coletado

		RE	SERVATÓF	RIO DO XINO	GU		VALC	DRES
VARIÁVEL	Pont	to "RX03": r	io Xingu, a	montante d	lo eixo Pim	ental	ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	40,0	72,0	50,0	136,0	50,0	89,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	150,0	90,0	130,0	110,0	490,0	390,0	4800	4800
Carbono Orgânico Total (%)	0,49	0,37	0,25	0,28	0,04	2,24	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	7,95	3,55	7,35	5,06	4,66	123	315
Arsênio (mg/kg)	< LD	0,11	< LD	0,08	0,03	0,02	5,9	17,0

		0-0/4-6	NO DO WIN				
	RE			DRES			
Pont	to "RX03": r	rio Xingu, a	montante d	lo eixo Pim	ental	ORIENTA	DORES *
jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5
< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
	jan/15 < LD < LD	Ponto "RX03": I jan/15	Ponto "RX03": rio Xingu, a jan/15 abr/15 jul/15 < LD	Ponto "RX03": rio Xingu, a montante of jan/15 Jan/15 Jan/15 Jan/15 Out/15 < LD	jan/15 abr/15 jul/15 out/15 jan/16 < LD	Ponto "RX03": rio Xingu, a montante do eixo Pimental jan/15 abr/15 jul/15 out/15 jan/16 abr/16 < LD	Ponto "RX03": rio Xingu, a montante do eixo Pimental ORIENTA jan/15

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Ponto IGLH: Ponto localizado no igarapé Galhoso - ou Gaioso, que ocupa o Canal de Derivação, a 334 m da via Leste-Oeste

Somente 0,48% das amostras de sedimento coletadas no ponto IGLH não estão em conformidade com a Resolução CONAMA 454/2012, para nível 1, sendo estas as variáveis: carbono orgânico total, em outubro de 2013, valor que se corresponde com altas concentrações de nutrientes e sedimentos finos como silte e argila, e mercúrio em julho de 2013 (**Quadro - 11**).

Na maioria das campanhas houve predominância de material arenoso muito grosso, seguido de areia grossa e areia fina. No mês de outubro de 2013 as frações predominantes foram areia muito fina e argila, padrão que também foi parcialmente observado em outubro de 2015 com maior predominância das frações mais finas. Já em janeiro e abril de 2016 as frações predominantes foram as mais grossas (**Figura-11**). Esta variação ao longo do tempo exemplifica a variação do leito do rio com a hidrodinâmica do curso d'água.

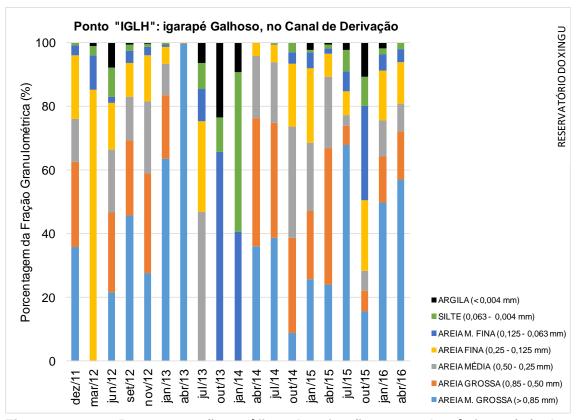


Figura - 11 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto IGLH no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

Quadro - 11 – Resultados das variáveis de qualidade do sedimento registrados no ponto IGLH no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

		RESERVATÓRIO DO XINGU Ponto "IGLH": igarapé Galhoso, no Canal de Derivação													
VARIÁVEL				Ponto	"IGLH": i	garapé G	alhoso,	no Cana	l de Deriv	vação				ORIENT	ADORES
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	58,2	159,2	3,5	28,0	40,0	142,5	214,1	937,4	592,3	39,0	43,0	186,0	363,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	172,8	203,6	254,2	20,0	150,0	260,0	250,2	517,2	2893,4	1200,0	50,0	90,0	200,0	4800	4800
Carbono Orgânico Total (%)	0,01	0,06	0,06	0,28	0,25	0,70	1,17	5,98	10,64	3,31	0,01	0,25	0,15	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	7,40	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	< LD	< LD	1,66	< LD	16,33	23,76	25,61	12,86	13,98	13,49	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,79	0,05	0,12	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,24	0,20	0,17	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5

VARIÁVEL				Ponto	RI "IGLH": i		TÓRIO Do Salhoso, i			/ação				VALO ORIENTA		
	dez/11	ez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 out/14 Nível 1 Níve														
DDE (µg/kg)	< LD															
DDT (µg/kg)	< LD															
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7	
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4	
PCBs-Bifenilas Policloradas (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0	
* Estabelecidos p	ela Resolu	ıção CON	AMA 454	/2012 pai	ra sedime	ntos; NA:	não se a	olica; LD	: limite de	detecção	; NC: não	coletad	0			

VARIÁVEL	Pont	RE o "IGLH": iç	⁄ação	VALORES ORIENTADORES				
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	339,0	542,0	620,0	598,0	623,0	488,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	880,0	1760,0	1490,0	1880,0	690,0	90,0	4800	4800
Carbono Orgânico Total (%)	6,06	8,27	7,97	8,09	0,74	0,70	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	17,99	13,14	35,29	24,43	2,84	3,04	123	315
Arsênio (mg/kg)	< LD	< LD	0,06	0,11	0,08	0,08	5,9	17,0

			,					
		RE	SERVATOR	RIO DO XIN	GU			DRES
VARIÁVEL	Pont	o "IGLH": iç	garapé Galh	ioso, no Cai	nal de Deriv	/ação	ORIENTA	ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
PCBs-Bifenilas	< LD	< LD	< LD	< LD	< LD	< LD	34,1	27

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Ponto IDM: Ponto localizado no igarapé Di Maria, a jusante do Canal de Derivação

As amostras de sedimento coletadas no ponto IDM estão em conformidade com a Resolução CONAMA 454/2012, (Quadro - 12). Na maioria das campanhas houve predominância de material arenoso muito grosso, seguido das demais frações, mais equilibradas na sua distribuição (Figura - 12). As campanhas dos meses do período de seca (junho a novembro de 2012, outubro de 2013, abril, julho e outubro 2014) apresentaram uma composição diferente com maior porcentagem de areia fina, areia muito fina, silte e argila, correspondente a composição do leito do igarapé.

Figura - 12 - Representação gráfica das frações granulométricas (%) dos sedimentos do ponto IDM no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

Quadro - 12 – Resultados das variáveis de qualidade do sedimento registrados no ponto IDM no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

				•	R	ESERVA ⁻	TÓRIO D	O XINGL	J						ORES ADORES
VARIÁVEL			P	onto "IDI	И": igarap	oé Di Mar	ia, a jusa	nte do C	anal de	Derivação				OTGER 17	*
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	392,0	160,1	21,6	91,0	270,0	332,0	71,8	92,4	200,6	284,0	480,0	247,0	202,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	1219,9	224,0	701,6	40,0	590,0	1300,0	217,1	64,7	280,3	2470,0	2060,0	280,0	450,0	4800	4800
Carbono Orgânico Total (%)	0,02	0,02	0,03	0,89	0,91	3,63	1,15	0,32	1,29	5,06	7,25	0,56	1,91	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	< LD	16,00	16,66	< LD	20,85	16,26	36,38	47,47	3,60	8,96	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	0,05	< LD	< LD	< LD	< LD	< LD	0,93	0,13	< LD	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,11	0,19	0,05	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5

		P	onto "IDI						Derivação)				DRES ADORES
dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
	< LD < LD < LD < LD	<ld <ld="" <ld<="" td=""><td>dez/11 mar/12 jun/12 < LD</td> < LD</ld>	dez/11 mar/12 jun/12 < LD	dez/11 mar/12 jun/12 set/12 < LD	Ponto "IDM": igaraça dez/11 mar/12 jun/12 set/12 nov/12 < LD	Ponto "IDM": igarapé Di Mar dez/11 mar/12 jun/12 set/12 nov/12 jan/13 < LD	Ponto "IDM": igarapé Di Maria, a jusa dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 < LD	Ponto "IDM": igarapé Di Maria, a jusante do Company dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 < LD	dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 < LD	Ponto "IDM": igarapé Di Maria, a jusante do Canal de Derivação dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 < LD	Ponto "IDM": igarapé Di Maria, a jusante do Canal de Derivação dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 < LD	Ponto "IDM": igarapé Di Maria, a jusante do Canal de Derivação dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 < LD	Ponto "IDM": igarapé Di Maria, a jusante do Canal de Derivação dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 out/14 < LD	Column

VARIÁVEL	Ponto "II	RE OM": igarape	SERVATÓF é Di Maria, a			Derivação .		DRES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	392,0	272,0	99,0	269,0	575,0	279,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	790,0	500,0	110,0	90,0	1850,0	510,0	4800	4800
Carbono Orgânico Total (%)	5,11	0,14	0,04	0,05	7,94	2,19	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	7,27	6,37	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	11,00	11,00	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	12,62	32,45	2,25	6,24	40,12	40,85	123	315
Arsênio (mg/kg)	< LD	0,57	< LD	0,07	0,09	0,09	5,9	17,0

		RE	SERVATÓ	RIO DO XIN	GU			DRES
VARIÁVEL	Ponto "I	OM": igarap	é Di Maria, a	a jusante do	Canal de I	Derivação	ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Mercúrio (mg/kg)	0,11	0,11	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
PCBs-Bifenilas	< LD	< LD	< LD	< LD	< LD	< LD	34,1	27

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Ponto PIMENTAL: Ponto localizado no rio Xingu, na margem esquerda, logo a montante do eixo da Barragem Principal (Pimental)

As amostras de sedimento coletadas no ponto PIMENTAL estão em conformidade com a Resolução CONAMA 454/2012 no nível 1 da legislação, com exceção de um valor de não conformidade da variável carbono no mês de abril de 2015 (**Quadro - 13**). No sedimento deste local houve predominância de material arenoso muito grosso, areia grossa e areia fina (**Figura - 13**). Nos meses de janeiro e abril de 2016, durante e após o enchimento do Reservatório do Xingu houve predominância de sedimentos com granulometria maior: areia muito grossa e areia grossa, provavelmente material depositado no local na formação do reservatório, proveniente das margens ou da montante do rio.

Em termos de concentração de nutrientes nos sedimentos foi observado um leve incremento entre as campanhas de pré-enchimento (outubro 2015), enchimento (janeiro 2016) e pós-enchimento (abril 2016). Porém, se comparado com o histórico de monitoramento, as concentrações se encontram dentro das médias observadas no local.

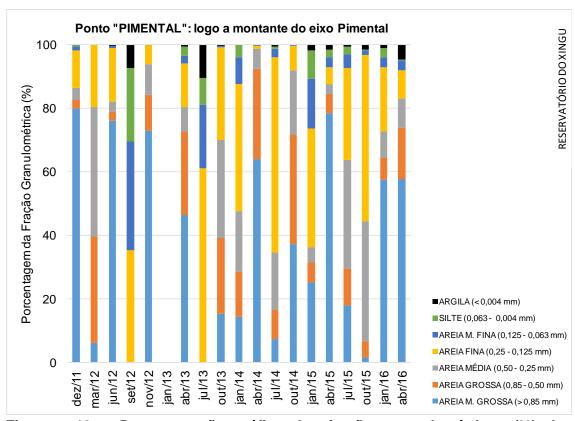


Figura - 13 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto PIMENTAL no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

Quadro - 13 – Resultados das variáveis de qualidade do sedimento registrados no ponto PIMENTAL no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

				_	RE	SERVA	TÓRIO DO	XINGU							DRES
VARIÁVEL				Ponto	"PIMENT	AL": log	o a mont	ante do	eixo Pim	ental				ORIENT	ADORES
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	78,3	62,4	5,2	82,0	100,0	NC	42,2	121,7	108,4	15,0	137,0	65,0	380,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	559,8	71,3	183,0	40,0	70,0	NC	90,4	33,6	151,8	370,0	150,0	80,0	80,0	4800	4800
Carbono Orgânico Total (%)	< LD	0,01	0,01	1,00	1,01	NC	0,03	0,01	0,01	0,82	0,36	0,27	0,13	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	<ld< td=""><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>37,3</td><td>90,0</td></ld<>	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>NC</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>< LD</td><td>< LD</td><td>35,7</td><td>197,0</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>NC</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>< LD</td><td>< LD</td><td>35,7</td><td>197,0</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>NC</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>< LD</td><td>< LD</td><td>35,7</td><td>197,0</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td>NC</td><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>< LD</td><td>< LD</td><td>35,7</td><td>197,0</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	NC	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>< LD</td><td>< LD</td><td>35,7</td><td>197,0</td></ld<></td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td><ld< td=""><td>< LD</td><td>< LD</td><td>35,7</td><td>197,0</td></ld<></td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td><ld< td=""><td>< LD</td><td>< LD</td><td>35,7</td><td>197,0</td></ld<></td></ld<></td></ld<>	<ld< td=""><td><ld< td=""><td>< LD</td><td>< LD</td><td>35,7</td><td>197,0</td></ld<></td></ld<>	<ld< td=""><td>< LD</td><td>< LD</td><td>35,7</td><td>197,0</td></ld<>	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	< LD	18,00	NC	< LD	24,44	9,33	3,71	27,42	4,07	29,78	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	0,08	< LD	0,18	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	0,11	< LD	NC	< LD	< LD	0,05	< LD	0,04	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5

			Ponto						ental				VALO ORIENT	
dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
	< LD < LD < LD	<ld <ld="" <ld<="" td=""><td>< LD < LD</td><td>dez/11 mar/12 jun/12 set/12 < LD</td> < LD</ld>	< LD	dez/11 mar/12 jun/12 set/12 < LD	Ponto "PIMENT dez/11 mar/12 jun/12 set/12 nov/12 < LD	Ponto "PIMENTAL": logo dez/11 mar/12 jun/12 set/12 nov/12 jan/13 < LD	Ponto "PIMENTAL": logo a monta dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 < LD	Ponto "PIMENTAL": logo a montante do dez/11 dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 < LD	dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 < LD	Ponto "PIMENTAL": logo a montante do eixo Pimental dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 < LD	Ponto "PIMENTAL": logo a montante do eixo Pimental dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 < LD	Ponto "PIMENTAL": logo a montante do eixo Pimental dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 < LD	Ponto "PIMENTAL": logo a montante do eixo Pimental dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 out/14 < LD	Column

VARIÁVEL	Pont	RE to "PIMENT.		RIO DO XINO montante d		ental		DRES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	138,0	657,0	254,0	187,0	508,0	556,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	490,0	2800,0	650,0	590,0	1980,0	2110,0	4800	4800
Carbono Orgânico Total (%)	1,92	11,05	0,03	0,09	8,92	0,63	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	6,87	7,77	35,7	197,0
Níquel (mg/kg)	< LD	12,17	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	8,21	48,47	15,27	7,11	32,56	30,26	123	315
Arsênio (mg/kg)	< LD	1,29	< LD	0,07	0,12	0,13	5,9	17,0

		PE	SEDVATÓ	RIO DO XIN	GII			
VARIÁVEL	Pont			montante d		ental		DRES ADORES *
711171122	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Mercúrio (mg/kg)	0,11	0,15	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

1.3 ÁREA 3: TRECHO DE VAZÃO REDUZIDA/VOLTA GRANDE

Ponto RX23: Ponto localizado no rio Xingu, em um canal da margem esquerda, a jusante do eixo da Barragem Principal (Pimental)

Do total de amostras coletadas no monitoramento do ponto RX23, somente 0,51% não estão em conformidade com a Resolução CONAMA 454/2012 para nível 2: mercúrio em outubro de 2013 e 2015 (Quadro - 14). A presença de apenas dois registros de mercúrio no sedimento é considerado como um valor esporádico em não conformidade com a legislação e, portanto, não caracteriza impactos significativos à qualidade do sedimento no ponto RX23, uma vez que todas as demais variáveis quantificadas estiveram em conformidade com os valores norteadores da legislação e esta variável permaneceu em conformidade em todas as outras campanhas. É importante ressaltar que apesar da sua localização próxima às áreas das maiores intervenções do empreendimento, a jusante do eixo da Barragem Principal em Pimental, esse ponto apresentou todas as outras variáveis em conformidade com a legislação, não evidenciando, portanto, alterações significativas na qualidade dos sedimentos do rio Xingu durante o monitoramento. Neste local houve predominância de material arenoso fino e muito fino nos meses de dezembro de 2011 e março e junho de 2012, julho 2015 e abril de 2016 (Figura - 14). Nos restantes meses do monitoramento o material predominante foi de frações mais grosseiras como areia grossa, média e fina.

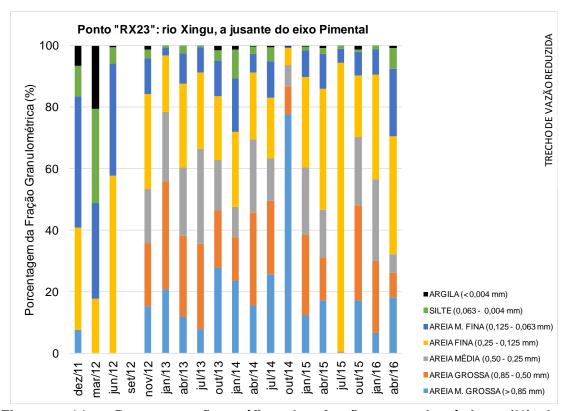


Figura - 14 - Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RX23 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

Quadro - 14 – Resultados das variáveis de qualidade do sedimento registrados no ponto RX 23 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

				•	TRE	CHO DE	VAZÃO I	REDUZIO	DA .						DRES
VARIÁVEL				Ponte	o "RX23"	rio Xing	ıu, a jusa	nte do e	ixo Pime	ntal				ORIENT	ADORES *
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	392,4	405,4	3,6	NC	30,0	56,7	38,4	19,0	151,3	13,0	32,0	81,0	594,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	1465,6	702,6	721,9	NC	0,0	140,0	141,2	202,4	786,3	310,0	130,0	260,0	210,0	4800	4800
Carbono Orgânico Total (%)	0,05	0,05	0,04	NC	0,05	0,89	0,80	0,12	3,19	1,33	0,30	0,59	0,50	10	10
Cromo (mg/kg)	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	12,21	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	NC	4,00	4,23	< LD	< LD	10,14	7,85	3,64	7,31	63,19	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,13	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	1,07	0,07	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (μg/kg)	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (μg/kg)	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8

VARIÁVEL				Ponte	TRE "RX23"		VAZÃO I u, a jusa			ntal					ORES ADORES
dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 ou										out/14	Nível 1	Nível 2			
Dieldrin (µg/kg)	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0

		TRE	CHO DE VA	ZÃO REDU	ZIDA			DRES
VARIÁVEL	Por	nto "RX23":	rio Xingu, a	a jusante do	eixo Pime	ntal	ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	42,0	102,0	77,0	39,0	21,0	99,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	140,0	60,0	90,0	110,0	120,0	50,0	4800	4800
Carbono Orgânico Total (%)	0,56	0,68	0,01	0,01	0,27	0,40	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	8,50	2,12	< LD	3,58	2,78	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	0,05	< LD	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	1,28	< LD	< LD	0,2	0,5
Alfa-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA

·				ZÃO REDU				DRES
VARIÁVEL	Por	nto "RX23":	rio Xingu, a	a jusante do	eixo Pime	ntal	ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Ponto RXMBS: Ponto localizado no rio Xingu, a montante da área de Mineração

Conforme descrito no **Anexo 11.4.1 - 6** este ponto foi incluído na malha amostral do projeto a partir de janeiro de 2015, localizada próxima à comunidade da Ressaca.

As amostras de sedimento coletadas no ponto RXMBS estão em conformidade com a Resolução CONAMA 454/2012 (**Quadro - 15**). No sedimento deste local houve predominância de material arenoso fino e muito fino e silte no mês de janeiro e julho de 2015 e areia média e areia fina no mês de abril e outubro de 2015 e janeiro e abril de 2016 (**Figura - 15**).

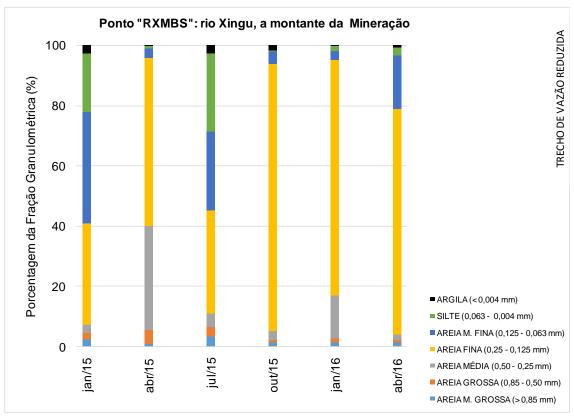


Figura - 15 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RXMBS, no monitoramento limnológico trimestral do PBA da UHE Belo Monte, no período entre janeiro de 2015 a abril de 2016

Quadro - 15 – Resultados das variáveis de qualidade do sedimento registrados no ponto RXMBS, no monitoramento limnológico trimestral do PBA da UHE Belo Monte, no período entre janeiro de 2015 a abril de 2016

		TRECH	O DE VA	ZÃO RED	UZIDA		VALO	ORES
VARIÁVEL	Ponto "	RXMBS":	rio Xingu	, a monta	nte da Mi	neração	ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	115,0	88,0	165,0	31,0	64,0	114,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	230,0	50,0	310,0	220,0	100,0	230,0	4800	4800
Carbono Orgânico Total (%)	3,65	0,68	1,49	1,39	0,28	0,74	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	10,85	9,82	8,04	< LD	6,08	6,59	123	315
Arsênio (mg/kg)	< LD	0,06	< LD	0,19	0,06	0,06	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Ponto RXJBS: Ponto localizado no rio Xingu, a jusante da área de Mineração

Conforme descrito no Anexo 11.4.1 - 6 este ponto foi incluído na malha amostral do projeto a partir de janeiro de 2015, e está localizado próximo às comunidades Ressaca e Ilha da Fazenda.

As amostras de sedimento coletadas no ponto RXJBS estão em conformidade com a Resolução CONAMA 454/2012 (**Quadro - 16**). No sedimento deste local houve predominância de material arenoso fino e muito fino nos seis meses de amostragem (**Figura - 16**).

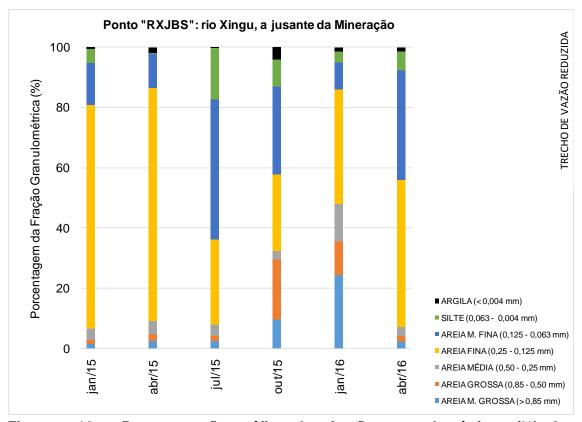


Figura - 16 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RXJBS no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre janeiro de 2015 a abril de 2016

Quadro - 16 – Resultados das variáveis de qualidade do sedimento registrados no ponto RXJBS no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre janeiro de 2015 a abril de 2016

		TRECH	IO DE VA	ZÃO RED	UZIDA		VALC	
VARIÁVEL	Ponto	"RXJBS"	: rio Xing	u, a jusar	nte da Bel	o Sun	ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	51,0	142,0	254,0	105,0	386,0	275,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	260,0	40,0	550,0	370,0	570,0	460,0	4800	4800
Carbono Orgânico Total (%)	1,62	0,55	2,32	2,20	1,42	0,94	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	3,19	< LD	14,40	12,30	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	20,46	14,58	4,84	56,80	53,80	123	315
Arsênio (mg/kg)	< LD	0,52	0,15	0,27	0,39	0,45	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	0,16	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Ponto RESSACA: Ponto localizado no rio Xingu, próximo à localidade Ressaca

Do total de amostras de sedimento coletadas no ponto RESSACA 3,35% se encontram em não conformidade com a Resolução CONAMA 454/2012, sendo estas: cromo, nível 1 em janeiro de 2013 e 2015 e nível 2 em abril 2015; níquel em janeiro, abril e julho de 2015 e janeiro e abril de 2016, arsênio em janeiro de 2013 e 2014, e abril de 2015, sendo este último acima do nível 2; mercúrio em junho e setembro de 2012 (nível 1) e em outubro de 2013 (nível 2) (**Quadro - 17**). Estes metais fazem parte do histórico da região, como consequência da extração de ouro.

Devido à presença de frações granulométricas mais finas nos sedimentos como silte e argila (**Figura - 17**), os metais ficam mais facilmente adsorvidos. Porém, é importante ressaltar que a maioria das concentrações observadas se encontram próximas ao nível 1 da legislação, e não foram detectadas na água, diminuindo assim o risco à biota.

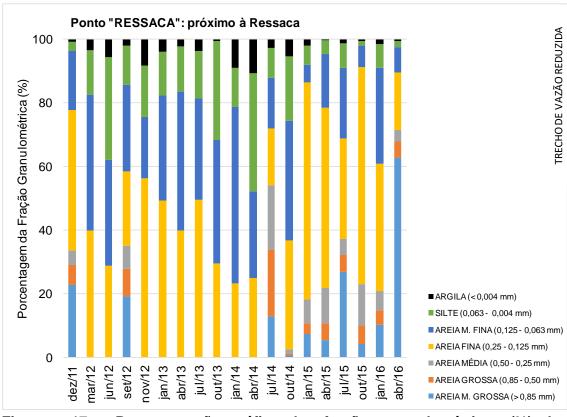


Figura - 17 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RESSACA no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

Quadro - 17 – Resultados das variáveis de qualidade do sedimento registrados no ponto RESSACA no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

					TRE	CHO DE	VAZÃO I	REDUZII	DA						ORES ADORES
VARIÁVEL					Ponto "	RESSAC	A": próxi	mo à Re	essaca						*
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	67,9	400,0	18,2	216,0	360,0	317,2	268,9	364,7	339,5	26,0	301,0	186,0	259,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	40,7	743,3	71,2	60,0	310,0	610,0	648,1	724,3	837,7	310,0	520,0	590,0	230,0	4800	4800
Carbono Orgânico Total (%)	<ld< td=""><td>0,01</td><td>0,01</td><td>1,13</td><td>1,25</td><td>1,67</td><td>1,43</td><td>2,54</td><td>3,10</td><td>0,74</td><td>1,50</td><td>0,63</td><td>0,92</td><td>10</td><td>10</td></ld<>	0,01	0,01	1,13	1,25	1,67	1,43	2,54	3,10	0,74	1,50	0,63	0,92	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	43,97	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	8,00	< LD	11,87	20,53	< LD	< LD	8,75	15,93	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	14,00	12,60	< LD	< LD	< LD	< LD	13,78	< LD	14,38	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	36,00	36,00	14,00	29,02	< LD	34,50	34,33	14,91	28,14	12,70	19,18	123	315
Arsênio (mg/kg)	< LD	< LD	4,18	0,33	< LD	10,09	< LD	3,28	10,40	7,51	1,53	1,52	1,04	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	0,35	0,25	< LD	< LD	< LD	< LD	0,49	< LD	< LD	0,20	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8

VARIÁVEL															
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Dieldrin (µg/kg)	< LD	2,9	6,7												
Endrin (µg/kg)	< LD	2,7	62,4												
PCBs-Bifenilas Policloradas (µg/kg)	< LD	34,1	277,0												

		TRE	CHO DE VA	ZÃO REDU	ZIDA		VALO	DRES
VARIÁVEL		Ponto "F	RESSACA":	próximo à	Ressaca		ORIENTA	ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	386,0	196,0	257,0	175,0	179,0	105,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	1260,0	360,0	160,0	210,0	220,0	10,0	4800	4800
Carbono Orgânico Total (%)	5,91	0,42	0,55	0,65	0,67	0,25	10	10
Cromo (mg/kg)	64,00	93,89	< LD	0,08	< LD	< LD	37,3	90,0
Cobre (mg/kg)	25,90	29,96	31,20	17,94	22,47	24,37	35,7	197,0
Níquel (mg/kg)	26,31	22,37	22,28	< LD	26,00	24,00	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	29,05	19,92	20,83	13,12	21,30	23,30	123	315
Arsênio (mg/kg)	0,97	24,88	2,17	1,91	3,41	2,93	5,9	17,0
Mercúrio (mg/kg)	0,15	< LD	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA

VARIÁVEL				ZÃO REDU próximo à				ORES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Ponto FAZENDA: Ponto localizado no rio Xingu, próximo à ilha da Fazenda

As amostras de sedimento coletadas no ponto FAZENDA estão em conformidade com a Resolução CONAMA 454/2012, com exceção do mercúrio no nível 1, no mês de abril de 2015 (**Quadro - 18**). Neste local houve predominância de material arenoso fino e areia média (**Figura - 18**). No mês de janeiro de 2013, no período de enchente, houve predominância de sedimentos mais grosseiros (areia muito grossa) e siltes, provavelmente devido ao aumento da vazão do rio e consequente carreamento das frações mais finas.

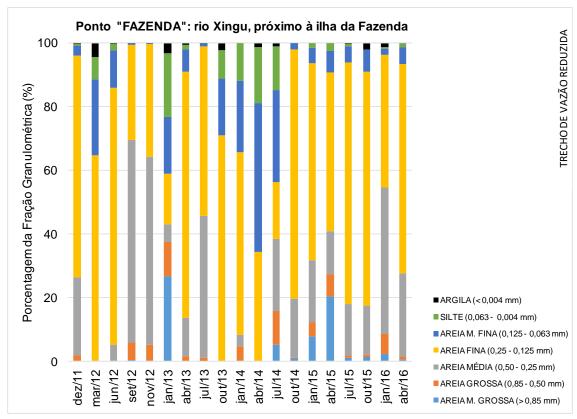


Figura - 18 - Representação gráfica das frações granulométricas (%) dos sedimentos do ponto FAZENDA no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

Quadro - 18 – Resultados das variáveis de qualidade do sedimento registrados no ponto FAZENDA no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

					DRES										
VARIÁVEL				Ponto	"FAZEND	A": rio X	ingu, próx	imo à ilh	na da Faze	enda				ORIENTA	DORES *
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	63,2	283,7	4,5	30,0	65,0	90,6	79,1	27,7	32,2	12,0	170,0	140,0	65,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	152,7	804,4	71,2	10,0	30,0	30,0	205,7	0,0	185,5	250,0	520,0	490,0	30,0	4800	4800
Carbono Orgânico Total (%)	< LD	0,01	0,01	0,30	0,36	0,51	0,66	0,01	0,01	0,59	1,02	2,36	2,91	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0				
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0				
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9				
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5				
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3				
Zinco (mg/kg)	< LD	< LD	< LD	86,00	6,00	13,79	< LD	19,08	< LD	8,11	23,32	11,52	5,79	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	0,01	< LD	< LD	< LD	< LD	< LD	0,97	0,23	0,23	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	0,15	< LD	< LD	< LD	< LD	0,08	0,09	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4				
Clordano-alfa	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				

VARIÁVEL		TRECHO DE VAZÃO REDUZIDA Ponto "FAZENDA": rio Xingu, próximo à ilha da Fazenda													
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
(µg/kg)															
Clordano- gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs- Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0

Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

VARIÁVEL	Ponto	TRE		ZÃO REDU u, próximo a		zenda		ORES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	157,0	170,0	92,0	104,0	95,0	88,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	530,0	800,0	70,0	90,0	100,0	20,0	4800	4800
Carbono Orgânico Total (%)	2,84	5,43	0,26	0,24	0,54	0,13	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	2,96	< LD	< LD	< LD	18,0	35,9

		TRE	CHO DE VA	ZÃO REDU	ZIDA			DRES
VARIÁVEL	Ponto	"FAZENDA	\": rio Xing	u, <mark>próximo</mark> a	à ilha da Fa	zenda	ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	14,38	23,89	11,87	5,33	10,36	12,06	123	315
Arsênio (mg/kg)	< LD	0,70	< LD	0,16	0,09	0,10	5,9	17,0
Mercúrio (mg/kg)	< LD	0,23	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Ponto RX04: Ponto localizado no rio Xingu, a jusante da Ilha da Fazenda

As amostras de sedimento coletadas no ponto RX04 estão em conformidade com a Resolução CONAMA 454/2012 (Quadro - 19). Neste local houve predominância de material arenoso fino e areia média (Figura - 19). Nos meses dezembro de 2011, março de 2012, janeiro de 2014 e abril de 2014 houve uma maior porcentagem de sedimentos mais grosseiros (areia muito grossa) e areias finas, indicando variação na composição dos sedimentos de fundo com deposição de material arenoso mais fino em meses de menor vazão e chuvas. As frações mais finas do mês de janeiro de 2015 (areia muito fina e silte) permitiram uma maior retenção de nutrientes, principalmente nitrogênio e fósforo.

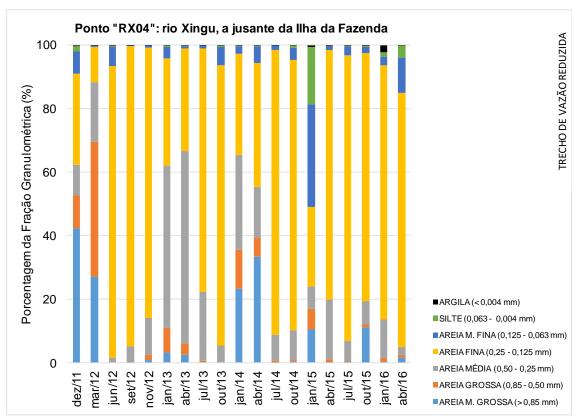


Figura - 19 - Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RX04 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

Quadro - 19 – Resultados das variáveis de qualidade do sedimento registrados no ponto RX04 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

	TRECHO DE VAZÃO REDUZIDA Ponto "RX04": rio Xingu, a jusante da ilha da Fazenda														DRES
VARIÁVEL				Ponto	"RX04":	rio Xingı	ı, a jusan	te da ilh	a da Faz	enda				ORIENT	ADORES *
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	254,6	73,6	3,1	21,0	59,0	118,6	80,6	54,3	66,4	18,0	168,0	46,0	65,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	478,5	213,8	0,0	10,0	80,0	0,0	91,1	16,9	172,1	50,0	130,0	230,0	100,0	4800	4800
Carbono Orgânico Total (%)	0,03	0,02	0,03	0,28	0,38	0,09	0,02	0,01	0,14	0,01	0,01	0,01	0,01	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	< LD	4,00	11,60	< LD	3,59	5,72	16,03	21,49	3,19	6,61	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,30	0,10	< LD	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,05	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5

TRECHO DE VAZÃO REDUZIDA Ponto "RX04": rio Xingu, a jusante da ilha da Fazenda dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 o												ORIENT	ADORES	
dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
< LD													1,2	4,8
< LD														6,7
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
	< LD < LD < LD < LD	< LD	< LD	ez/11 mar/12 jun/12 set/12 < LD	ez/11 mar/12 jun/12 set/12 nov/12 < LD	ez/11 mar/12 jun/12 set/12 nov/12 jan/13 < LD	ez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 < LD	ez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 < LD	ez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 < LD	ez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 < LD	ez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 < LD	ez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 < LD	ez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 out/14 < LD	Ponto "RX04": rio Xingu, a jusante da ilha da Fazenda Ponto "RX04": rio Xingu, a jusante da ilha da ilha da ilha da ilha da ilha da ilha d

* Estabelecidos pela Resolução	CONAMA 454/2012 para sedimentos;	NA: não se aplica; LD: limite	de detecção; NC: não coletado

VARIÁVEL	Pont			ZÃO REDU jusante da	ZIDA ilha da Fazo	enda	VALO ORIENTA	DRES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	486,0	79,0	44,0	61,0	46,0	84,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	2510,0	40,0	50,0	90,0	80,0	70,0	4800	4800
Carbono Orgânico Total (%)	0,01	0,01	0,01	0,01	0,05	0,41	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	7,11	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	12,12	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	38,29	11,45	2,63	2,01	7,42	5,42	123	315
Arsênio (mg/kg)	< LD	0,43	< LD	0,13	0,05	0,06	5,9	17,0

		TRE	CHO DE VA	ZÃO REDU	ZIDA		VALO	ORES
VARIÁVEL	Pon	to "RX04": ı	rio Xingu, a	jusante da	ilha da Faz	enda	ORIENTA	ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Mercúrio (mg/kg)	0,15	< LD	0,2	0,5				
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Fatabalasidas pala Das	aluaãa COA	IANAA 454/20	012 para aa	dimantanı NI	1. 566 66 65	lica I Di lim	ita da dataa	São: NIC:

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Ponto RX20: Ponto localizado no rio Xingu, margem esquerda, em frente à aldeia Paquiçamba

As amostras de sedimento coletadas no ponto RX20 estão em conformidade com a Resolução CONAMA 454/2012 (**Quadro - 20**).

Neste local houve predominância de material arenoso muito fino e silte nos meses dezembro de 2011, junho e novembro de 2012 (**Figura - 20**). Após este período, a composição granulométrica sofreu uma mudança, com maior porcentagem de sedimentos mais grosseiros (areia grossa e areia média).

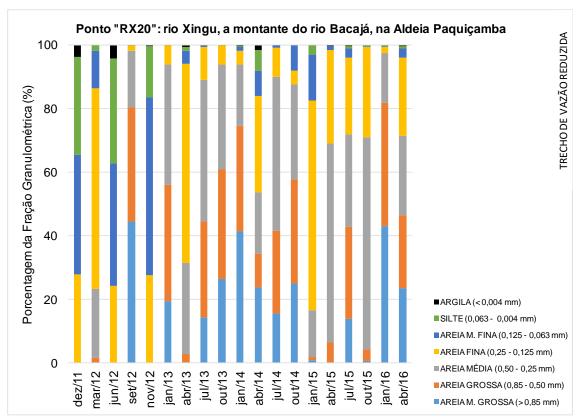


Figura - 20 — Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RX20 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

Quadro - 20 - Resultados das variáveis de qualidade do sedimento registrados no ponto RX20 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

	TRECHO DE VAZÃO REDUZIDA Ponto "RX20": rio Xingu, a montante do rio Bacajá, na Aldeia Paquiçamba												VALC	DRES	
VARIÁVEL			Ponto "	'RX20": ri	o Xingu,	a montar	nte do rio	Bacajá,	, na Aldei	a Paquiç	amba			ORIENTA	DORES *
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	19,6	131,6	21,2	250,0	72,0	234,4	70,8	88,6	186,4	24,0	387,0	86,0	104,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	254,3	71,3	2390,4	1360,0	0,0	80,0	20,1	71,2	120,7	320,0	2220,0	990,0	70,0	4800	4800
Carbono Orgânico Total (%)	< LD	0,01	0,01	0,31	0,29	0,09	0,42	0,01	0,01	1,72	5,36	0,01	1,20	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	10,00	<ld< td=""><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>18,0</td><td>35,9</td></ld<>	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	<ld< td=""><td><ld< td=""><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>0,6</td><td>3,5</td></ld<></td></ld<>	<ld< td=""><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>0,6</td><td>3,5</td></ld<>	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	<ld< td=""><td><ld< td=""><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>35,0</td><td>91,3</td></ld<></td></ld<>	<ld< td=""><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>35,0</td><td>91,3</td></ld<>	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	40,00	18,00	<ld< td=""><td>18,72</td><td>< LD</td><td>24,86</td><td>18,65</td><td>19,83</td><td>40,44</td><td>10,90</td><td>16,63</td><td>123</td><td>315</td></ld<>	18,72	< LD	24,86	18,65	19,83	40,44	10,90	16,63	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	<ld< td=""><td><ld< td=""><td>< LD</td><td>< LD</td><td>< LD</td><td>0,34</td><td>0,79</td><td>0,16</td><td>0,40</td><td>0,15</td><td>5,9</td><td>17,0</td></ld<></td></ld<>	<ld< td=""><td>< LD</td><td>< LD</td><td>< LD</td><td>0,34</td><td>0,79</td><td>0,16</td><td>0,40</td><td>0,15</td><td>5,9</td><td>17,0</td></ld<>	< LD	< LD	< LD	0,34	0,79	0,16	0,40	0,15	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	<ld< td=""><td>0,20</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>< LD</td><td>0,2</td><td>0,5</td></ld<>	0,20	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8

VARIÁVEL			Ponto "	'RX20": ri	TRE0 o Xingu, a		VAZÃO F nte do rio			a Paquiç	amba			VALC ORIENTA	
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado															

VARIÁVEL	Ponto "	TRE0 RX20": rio X	(ingu, a mo	ZÃO REDU ntante do ri çamba		a Aldeia		ORES ADORES *	
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2	
Fósforo Total (mg/kg)	96,0	99,0	105,0	100,0	132,0	83,0	2000	2000	
Nitrogênio Total Kjeldahl (mg/kg)	250,0	20,0	80,0	90,0	10,0	60,0	4800	4800	
Carbono Orgânico Total (%)	1,89	0,01	0,25	0,30	0,06	0,15	10	10	
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0	
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0	
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9	
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5	
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3	
Zinco (mg/kg)	12,32	14,24	11,36	4,48	20,02	19,02	123	315	
Arsênio (mg/kg)	< LD	0,40	< LD	0,15	0,13	0,11	5,9	17,0	
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5	
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA	

VARIÁVEL	Ponto "		(ingu, a mo	ZÃO REDU ntante do ri çamba		a Aldeia		ORES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Ponto RX05: Ponto localizado no rio Xingu, margem direita, a montante do rio Bacajá, próximo à aldeia Arara (Maia)

As amostras de sedimento coletadas no ponto RX05 estão em conformidade com a Resolução CONAMA 454/2012 (**Quadro - 21**). Neste ponto houve predominância de material arenoso fino e muito fino (**Figura - 21**). Nos meses de setembro e novembro de 2012, janeiro e abril de 2013, abril de 2014 e outubro 2015 as porcentagens de silte foram maiores.

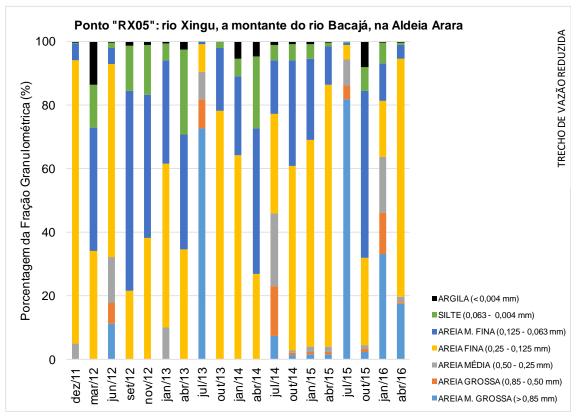


Figura - 21 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RX05 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

Quadro - 21 – Resultados das variáveis de qualidade do sedimento registrados no ponto RX05 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

VARIÁVEL			Pon	ito "RX0!	TRE rio Xin:"5		VAZÃO			Aldeia Ara	ara				ORES ADORES
77	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	22,4	664,6	5,8	171,0	333,0	173,6	537,7	323,3	286,7	143,0	251,0	591,0	363,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	213,6	2209,5	40,7	60,0	1720,0	310,0	411,9	83,6	1018,9	600,0	420,0	920,0	1000,0	4800	4800
Carbono Orgânico Total (%)	< LD	0,01	0,01	1,49	1,53	1,26	5,90	0,15	2,51	3,40	0,74	2,94	1,02	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	14,00	< LD	< LD	< LD	< LD	18,0	35,9				
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	< LD	30,00	24,52	< LD	20,57	16,97	20,64	13,72	26,68	21,73	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,13	0,85	0,12	1,01	0,12	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,06	0,03	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8

VARIÁVEL			Pon	to "RX05	TRE 5": rio Xin		VAZÃO ontante d			Aldeia Ara	ara			VALO ORIENT	ORES ADORES
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
DDT (µg/kg)	< LD														4,8
Dieldrin (µg/kg)	< LD													2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (μg/kg) PCBs-Bifenilas Policloradas (LD < LD												277,0			
* Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado															

VARIÁVEL	Ponto "	TRE0 RX05": rio X				a Aldeia	VALO ORIENTA	ORES DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	105,0	109,0	132,0	319,0	218,0	64,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	700,0	2290,0	110,0	190,0	1430,0	30,0	4800	4800
Carbono Orgânico Total (%)	1,00	0,37	0,33	0,32	3,68	0,29	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	7,27	5,47	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	8,51	12,17	14,16	14,14	29,50	23,50	123	315
Arsênio (mg/kg)	< LD	0,78	0,07	0,20	0,17	0,18	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5

VARIÁVEL	Ponto "		ORES ADORES *					
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Ponto RX06: Ponto localizado no rio Xingu, a jusante do rio Bacajá

Somente 0,48% das amostras de sedimento coletadas no ponto RX06 não estão em conformidade com a Resolução CONAMA 454/2012 para nível 1: mercúrio em outubro de 2013 e abril de 2015 (**Quadro - 22**). A presença de mercúrio no sedimento pode estar relacionada com atividades de garimpo na bacia, cuja ocupação histórica já registrou áreas de garimpo, ou ter origem natural. Não obstante, como em outros pontos de coleta, valores esporádicos registrados em não conformidade com a legislação não caracterizam impactos significativos à qualidade do sedimento no ponto RX06, uma vez que todas as demais variáveis quantificadas estiveram em conformidade com os valores norteadores da legislação e esta variável permaneceu em conformidade em todas as outras campanhas.

Neste ponto houve predominância de material arenoso fino (**Figura - 22**). No mês de outubro de 2013 as porcentagens de areia muito fina, silte e argila foram predominantes o que favorece a presença de compostos metálicos como o mercúrio, já que o mesmo se adsorve em partículas de argila.

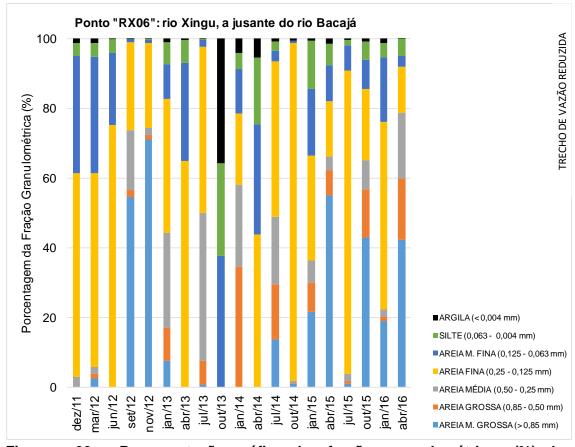


Figura - 22 — Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RX06 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

Quadro - 22 — Resultados das variáveis de qualidade do sedimento registrados no ponto RX06 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

				•	TR	ECHO D	E VAZÃO	REDUZ	IDA						DRES
VARIÁVEL				Po	onto "RX()6": rio X	ingu, a ju	usante d	o rio Bac	ajá				ORIENT	ADORES *
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	2,4	187,4	7,9	440,0	95,0	114,4	283,7	86,1	448,4	279,0	522,0	582,0	41,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	50,8	529,5	30,5	0,0	0,0	300,0	323,4	79,3	1551,8	2560,0	2430,0	2650,0	70,0	4800	4800
Carbono Orgânico Total (%)	< LD	0,01	0,01	0,18	0,21	0,97	2,26	0,25	4,68	9,67	7,75	6,99	5,16	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0				
Cobre (mg/kg)	< LD	< LD	< LD	< LD	11,83	13,57	14,26	11,17	< LD	35,7	197,0				
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	8,22	< LD	< LD	< LD	18,0	35,9				
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5				
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3				
Zinco (mg/kg)	< LD	< LD	< LD	< LD	6,00	10,36	< LD	10,18	53,24	59,56	59,53	48,34	4,43	123	315
Arsênio (mg/kg)	< LD	< LD	0,12	< LD	< LD	< LD	< LD	< LD	< LD	0,95	0,25	0,61	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	0,05	< LD	< LD	< LD	< LD	0,27	0,19	0,10	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4				
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5				
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8				
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8				

VARIÁVEL				P	TR onto "RX(E VAZÃO (ingu, a ju			ajá					ORES ADORES *
	dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 out/14											Nível 1	Nível 2		
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0

		TRE	CHO DE VA	ZÃO REDU	ZIDA		VALO	DRES
VARIÁVEL	P	onto "RX06	": rio Xingu	, a jusante	do rio Baca	já	ORIENTA	ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	203,0	552,0	108,0	77,0	99,0	202,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	1340,0	2430,0	270,0	330,0	350,0	560,0	4800	4800
Carbono Orgânico Total (%)	8,21	8,77	0,41	0,50	1,51	2,91	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	13,94	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	13,54	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	16,29	46,08	10,87	4,02	13,16	2,00	123	315
Arsênio (mg/kg)	< LD	0,33	0,10	0,16	0,10	0,10	5,9	17,0
Mercúrio (mg/kg)	0,10	0,23	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA

		TRE	CHO DE VA	ZÃO REDU	ZIDA			ORES
VARIÁVEL	P	onto "RX06	": rio Xingu	, a jusante	do rio Baca	já	ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Ponto RX21: Ponto localizado no rio Xingu, em um canal da margem esquerda, a jusante da foz com o igarapé Paquiçamba

Das amostras de sedimento coletadas no ponto RX21, 0,51% estão em não conformidade com a Resolução CONAMA 454/2012 para nível 1: mercúrio em janeiro de 2014 e abril de 2015 (**Quadro - 23**). Como já discutido na apresentação dos resultados da qualidade de sedimentos registrados no ponto RX20 (neste anexo), a presença de mercúrio no sedimento pode estar relacionada com atividades de garimpo. Não obstante, valores esporádicos registrados em não conformidade com a legislação também não caracterizam impactos significativos à qualidade do sedimento no ponto RX21, uma vez que todas as demais variáveis quantificadas estiveram em conformidade com os valores norteadores da legislação e esta variável permaneceu em conformidade em todas as outras campanhas.

Neste ponto houve predominância de material arenoso muito grosso, principalmente nos meses de dezembro de 2011, março de 2012, abril, julho e outubro de 2013, janeiro de 2014 e abril 2015 e 2016 (**Figura - 23**). Nos meses de junho, setembro e novembro de 2012 e janeiro de 2013, julho e outubro de 2014 e 2015 as porcentagens de areia fina e silte foram maiores.

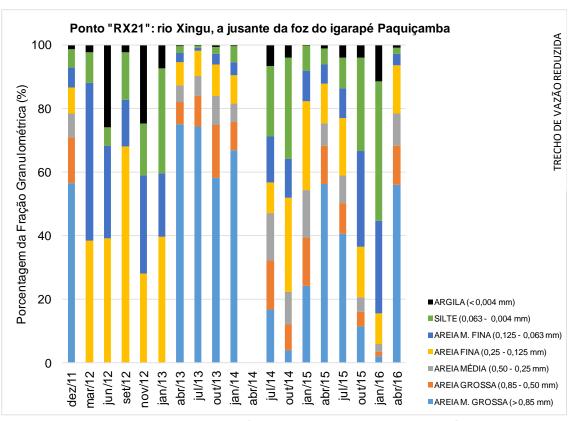


Figura - 23 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RX21 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

Quadro - 23 — Resultados das variáveis de qualidade do sedimento registrados no ponto RX21 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

				-	TRE	CHO DE	VAZÃO	REDUZII	DA					VALO	DRES
VARIÁVEL			Poi	nto "RX2	1": rio Xii	ngu, a ju	sante da	foz do iç	garapé Pa	aquiçaml	oa			ORIENTA	DORES *
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	150,7	436,6	563,5	320,0	340,0	566,1	871,7	542,7	449,7	535,0	NC	595,0	490,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	518,3	549,8	3230,4	60,0	970,0	60,0	90,6	179,2	608,4	130,0	NC	170,0	1240,0	4800	4800
Carbono Orgânico Total (%)	0,02	0,02	0,02	1,86	2,00	9,74	0,42	1,05	1,62	1,09	NC	2,70	2,01	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	3,82	< LD	13,36	< LD	14,38	NC	7,90	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	15,28	NC	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	30,00	< LD	28,00	22,24	< LD	56,20	56,91	39,15	NC	27,90	34,50	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,30	NC	< LD	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	0,08	0,17	< LD	< LD	< LD	< LD	0,10	0,21	NC	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	NA	NA
Clordano-gama (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	1,2	4,8

VARIÁVEL			Poi	nto "RX2	TRE 1": rio Xir		VAZÃO I sante da			aquiçaml	ра			VALC ORIENTA	
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	34,1	277,0
* Estabelecidos pela I	Resolução	CONAMA	454/201	2 para se	dimentos;	NA: não	se aplica	; LD: limi	te de dete	ecção; NC	: não col	etado			

VARIÁVEL	Por	TRE0 to "RX21":	rio Xingu, a	ZÃO REDU a jusante da çamba		apé		ORES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	366,0	581,0	411,0	362,0	184,0	487,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	320,0	170,0	1920,0	1660,0	430,0	140,0	4800	4800
Carbono Orgânico Total (%)	1,35	0,76	8,58	8,68	3,34	0,78	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	3,41	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	5,18	15,00	22,36	17,17	14,04	12,14	123	315
Arsênio (mg/kg)	< LD	0,06	< LD	0,21	0,06	0,05	5,9	17,0
Mercúrio (mg/kg)	0,13	0,31	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA

VARIÁVEL	Por	TRE(to "RX21":	rio Xingu, a	ZÃO REDU a jusante da çamba		apé		ORES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Ponto RX17: Ponto localizado no rio Xingu, a montante das comunidades de Belo Monte e Belo Monte do Pontal

A maioria das amostras de sedimento coletadas no ponto RX17 estão em conformidade com a Resolução CONAMA 454/2012. Somente uma das variáveis se encontra em não conformidade para nível 1: cobre em julho de 2013 (**Quadro - 24**). Neste ponto houve predominância de material arenoso fino ao longo de todo o monitoramento (**Figura - 24**), com exceção do mês de julho de 2013 quando predominaram as frações mais finas como areia fina, silte e argila, as quais refletiram em maiores concentrações de nutrientes (fósforo, nitrogênio e carbono orgânico) nos sedimentos observadas na mesma amostra.

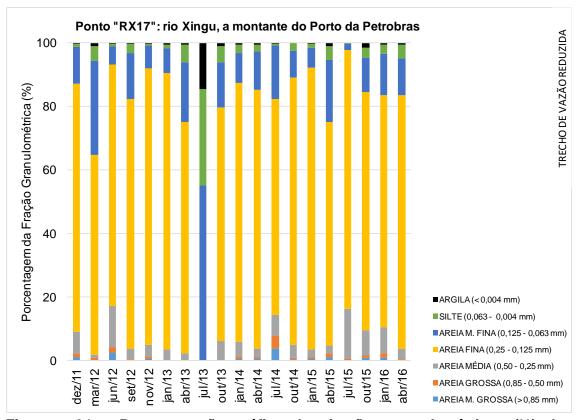


Figura - 24 - Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RX17 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

Quadro - 24 – Resultados das variáveis de qualidade do sedimento registrados no ponto RX17 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

				•	TRE	CHO DE	VAZÃO I	REDUZII	DA						DRES
VARIÁVEL				Ponto "F	X17": rio	Xingu, a	montant	te do Po	rto da Pe	trobras				ORIENT	ADORES
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	36,4	48,1	2,0	1,0	24,0	16,6	38,7	267,5	76,7	5,0	30,0	59,0	28,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	101,7	122,2	152,5	10,0	50,0	30,0	151,6	674,5	332,6	70,0	90,0	210,0	80,0	4800	4800
Carbono Orgânico Total (%)	< LD	0,01	0,01	0,28	0,31	0,10	0,16	2,68	0,92	0,01	0,08	1,10	1,02	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	44,43	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	32,15	4,10	< LD	2,31	5,72	2,44	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	0,05	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8

VARIÁVEL				Ponto "R	TRE		VAZÃO I montant			trobras				VALO ORIENT/	ORES ADORES
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pela	a Resoluçã	ão CONAN	лА 454/20	012 para	sedimento	s; NA: ná	ão se apli	ca; LD: li	mite de d	etecção;	NC: não d	coletado			

		TRE	CHO DE VA	ZÃO REDU	ZIDA		VALO	DRES
VARIÁVEL	Ponto '	'RX17": rio	Xingu, a mo	ontante do l	Porto da Pe	trobras	ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	23,0	64,0	55,0	39,0	34,0	65,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	70,0	60,0	30,0	110,0	50,0	20,0	4800	4800
Carbono Orgânico Total (%)	0,74	0,55	0,01	0,01	0,19	0,01	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	5,14	2,31	1,75	3,70	2,06	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	0,16	0,04	0,03	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA

VARIÁVEL	Danta			ZÃO REDU		(male ma		DRES ADORES *
VARIAVEL	jan/15	'RX17": rio abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Ponto IGCHOCAI: Ponto localizado no Igarapé Chocaí, próximo ao Porto da Petrobras e a 339 m da BR230

Somente seis variáveis do total (1,44%) das amostras de sedimento coletadas no ponto IGCHOCAI não estão em conformidade com a Resolução CONAMA 454/2012, para nível 1: nitrogênio total Kjeldahl em janeiro 2015; carbono orgânico total em janeiro de 2013, abril 2015 e janeiro de 2016; cobre em julho de 2015 e para nível 2: mercúrio em outubro de 2015 (**Quadro - 25**).

Apesar da inconformidade descrita, verifica-se que os impactos resultantes do entorno não são evidentes, haja vista que este ponto localiza-se em uma área sem influência direta do canteiro de obras. Além disso, a composição do sedimento (**Figura - 25**), em janeiro e abril tanto de 2013 quanto de 2014, apresentou apenas as frações menores (argila, silte e areia muito fina), e os maiores valores de carbono orgânico total, provavelmente favorecido pela sua retenção nos sedimentos mais finos. Nas demais amostras as areias mais grossas foram os sedimentos mais predominantes. As altas concentrações de nutrientes provavelmente tem origem na matéria orgânica alóctone, folhas em decomposição que são transportadas pelas águas e ficam retidas nos sedimentos.

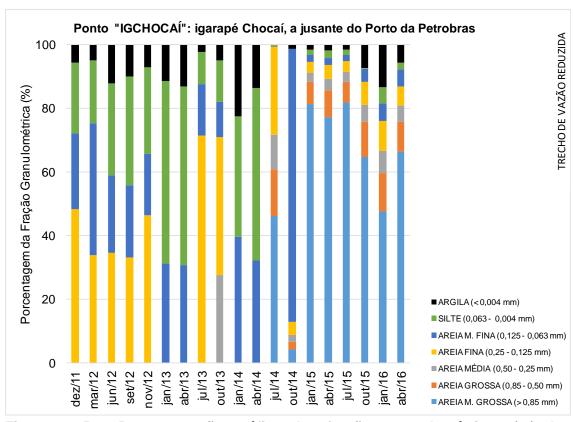


Figura - 25 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto IGCHOCAI no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

Quadro - 25 – Resultados das variáveis de qualidade do sedimento registrados no ponto IGCHOCAI no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

				•	TR	ECHO DE	VAZÃO	REDUZII	DA						DRES
VARIÁVEL			Pon	to "IGCH	IOCAI": iç	garapé Cl	nocaí, a ju	usante d	o Porto d	da Petrob	ras			ORIENT	ADORES
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	521,3	577,8	15,9	424,0	164,0	782,8	650,7	174,5	390,0	416,0	539,0	481,0	532,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	2592,2	2026,2	3304,5	200,0	3020,0	1610,0	2334,6	116,5	890,3	2770,0	2570,0	2350,0	2910,0	4800	4800
Carbono Orgânico Total (%)	0,05	0,05	0,06	5,29	5,33	10,10	8,44	0,64	4,80	8,64	9,33	9,06	8,21	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	2,6	8,6	< LD	29,6	< LD	7,8	9,5	9,65	15,93	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	14,0	10,0	< LD	< LD	< LD	< LD	< LD	12,77	9,84	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	42,00	< LD	62,00	55,18	< LD	20,74	23,81	45,73	43,14	43,64	39,67	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,10	0,14	0,89	0,05	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	0,05	< LD	< LD	< LD	< LD	0,12	0,15	0,05	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8

VARIÁVEL			Por	ito "IGCH	TRI IOCAI": iç		VAZÃO nocaí, a ji			da Petrob	ras			VALO ORIENTA	ORES ADORES
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pe	ela Resolu	ção CONA	MA 454/2	2012 para	sediment	os; NA: na	ão se apli	ca; LD: li	mite de de	etecção; N	NC: não co	oletado	•	•	•

VARIÁVEL	Ponto		l": igarapé (ZÃO REDUZ Chocaí, a ju obras	ZIDA sante do Po	rto da		DRES DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	692,0	546,0	566,0	559,0	519,0	364,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	33470,0	2290,0	2440,0	2200,0	500,0	1370,0	4800	4800
Carbono Orgânico Total (%)	9,11	11,23	0,03	0,02	11,96	9,10	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	9,71	11,96	38,52	9,87	11,87	10,77	35,7	197,0
Níquel (mg/kg)	13,33	< LD	5,16	< LD	15,00	13,00	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	40,15	50,57	36,79	28,08	47,86	46,56	123	315
Arsênio (mg/kg)	< LD	0,17	0,06	0,26	0,14	0,18	5,9	17,0
Mercúrio (mg/kg)	0,20	0,20	< LD	0,99	< LD	< LD	0,2	0,5

VARIÁVEL	Ponto		l": igarapé	ZÃO REDU Chocaí, a ju obras		orto da		ORES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Ponto RX11: Ponto localizado no rio Xingu, a jusante do Porto da Petrobras

De todas as amostras de sedimento coletadas no ponto RX11 somente duas se encontram em não conformidade com a Resolução CONAMA 454/2012, a variável cobre no mês de julho de 2013 para nível 1 e a variável mercúrio em outubro de 2015 para nível 2 (**Quadro - 26**), fatos estes pontuais, não sendo observados novamente ao longo do monitoramento.

Neste ponto houve predominância de material arenoso fino durante todo o período de monitoramento (**Figura - 26**), e em julho e outubro de 2013 e abril de 2016 as frações de areia muito fina e silte aumentaram a sua proporção, temporariamente.

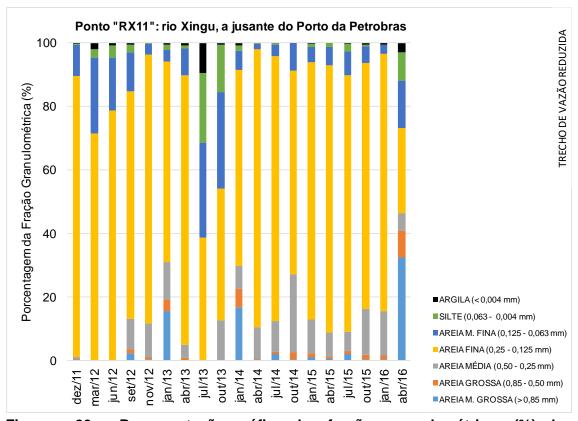


Figura - 26 — Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RX11 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

Quadro - 26 – Resultados das variáveis de qualidade do sedimento registrados no ponto RX11 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

VADIÁVE!							VAZÃO I								ORES ADORES
VARIÁVEL					RX11": ric										*
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	38,2	207,0	4,7	98,0	70,0	61,7	88,1	376,6	61,0	11,0	62,0	49,0	56,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	132,2	336,0	640,9	20,0	60,0	20,0	120,6	917,3	241,2	150,0	140,0	320,0	50,0	4800	4800
Carbono Orgânico Total (%)	< LD	0,01	0,01	0,70	0,80	0,35	0,17	3,67	0,47	0,12	0,01	0,05	0,10	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0				
Cobre (mg/kg)	< LD	< LD	< LD	41,43	< LD	35,7	197,0								
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9				
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5				
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3				
Zinco (mg/kg)	< LD	< LD	< LD	< LD	4,00	3,48	< LD	28,22	3,47	3,66	6,00	3,22	6,17	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	5,9	17,0				
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5				
Alfa-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Delta-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Gama-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4				
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5				

			Ponto "						robras				VALO ORIENT	
dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
	< LD < LD < LD < LD	< LD	<ld <ld="" <ld<="" td=""><td>dez/11 mar/12 jun/12 set/12 < LD</td> < LD</ld>	dez/11 mar/12 jun/12 set/12 < LD	Ponto "RX11": ric dez/11 mar/12 jun/12 set/12 nov/12 < LD	Ponto "RX11": rio Xingu, dez/11 mar/12 jun/12 set/12 nov/12 jan/13 < LD	Ponto "RX11": rio Xingu, a jusante dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 < LD	Ponto "RX11": rio Xingu, a jusante do Porto dez/11 dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 < LD	dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 < LD	Ponto "RX11": rio Xingu, a jusante do Porto da Petrobras	Ponto "RX11": rio Xingu, a jusante do Porto da Petrobras dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 < LD	Ponto "RX11": rio Xingu, a jusante do Porto da Petrobras dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 < LD	Ponto "RX11": rio Xingu, a jusante do Porto da Petrobras	Ponto "RX11": rio Xingu, a jusante do Porto da Petrobras ORIENTA Ponto "RX11": rio Xingu, a jusante do Porto da Petrobras ORIENTA Ponto "RX11": rio Xingu, a jusante do Porto da Petrobras ORIENTA Ponto "RX11": rio Xingu, a jusante do Porto da Petrobras ORIENTA Ponto "RX11": rio Xingu, a jusante do Porto da Petrobras ORIENTA Ponto "RX11": rio Xingu, a jusante do Porto da Petrobras ORIENTA Ponto "RX11": rio Xingu, a jusante do Porto da Petrobras ORIENTA Ponto "RX11": rio Xingu, a jusante do Porto da Petrobras ORIENTA Ponto "RX11": rio Xingu, a jusante do Porto da Petrobras ORIENTA Ponto "RX11": rio Xingu, a jusante do Porto da Petrobras ORIENTA Ponto "RX11": rio Xingu, a jusante do Porto da Petrobras ORIENTA Ponto "RX11": rio Xingu, a jusante do Porto da Petrobras Ponto "RX11": rio Xingu, a jusante do Porto da Petrobras Ponto "RX11": rio Xingu, a jusante do Porto da Petrobras Ponto "RX11": rio Xingu, a jusante do Porto da Petrobras Ponto "RX11": rio Xingu, a jusante do Porto da Petrobras Ponto "RX11": rio Xingu, a jusante do Porto da Petrobras Ponto "RX11": rio Xingu, a jusante do Porto da Petrobras Ponto "RX11": rio Xingu, a jusante do Ponto da Petrobras Ponto "RX11": rio Xingu, a jusante do Ponto da Petrobras Ponto "RX11": rio Xingu, a jusante do Ponto da Petrobras Ponto "RX11": rio Xingu, a jusante do Ponto da Petrobras Ponto "RX11": rio Xingu, a jusante do Ponto da Petrobras Ponto "RX11": rio Xingu, a jusante do Ponto da Petrobras Ponto "RX11": rio Xingu, a jusante do Ponto da Petrobras Ponto "RX11": rio Xingu, a jusante do Ponto da Petrobras Ponto "RX11": rio Xingu, a jusante do Ponto da Petrobras Ponto "RX11": rio Xingu, a jusante do Ponto da Petrobras Ponto "RX11": rio Xingu, a jusante do Ponto da Petrobras Ponto "RX11": rio Xingu, a jusante do Ponto da Petrobras Ponto "RX11": rio Xingu, a jusante do Ponto da Petrobras Ponto "RX11": rio Xingu, a jusante do Ponto da Petrobras Ponto "RX11": rio Xingu, a jusante do Ponto da

VARIÁVEL	Ponto	TRE		ZÃO REDU Isante do P		robras		ORES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	55,0	87,0	38,0	73,0	53,0	37,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	50,0	120,0	30,0	90,0	180,0	30,0	4800	4800
Carbono Orgânico Total (%)	0,11	0,74	0,13	0,13	0,07	0,07	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	2,16	11,32	1,86	3,59	5,90	4,50	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	0,19	0,06	0,07	5,9	17,0

Ponto jan/15 < LD	TRE0 "RX11": rio abr/15	Xingu, a ju	ZÃO REDU		ohras	VALC ORIENTA	
jan/15			isante do P	orto da Peti	ohras	ORIENTA	DURES *
-	abr/15	1 1/4 5			Oblas	O1 I I(1)	DOILE
< I D		jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
`	< LD	< LD	0,95	< LD	< LD	0,2	0,5
< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
	<ld <ld="" <ld<="" td=""><td><ld <ld="" <ld<="" td=""><td>< LD</td> < LD</ld></td> < LD</ld>	<ld <ld="" <ld<="" td=""><td>< LD</td> < LD</ld>	< LD	< LD	< LD	<ld< td=""> <ld< td=""></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<></ld<>	< LD

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

1.4 ÁREA 4: JUSANTE DA CASA DE FORÇA PRINCIPAL/TRECHO DE RESTITUIÇÃO DA VAZÃO

Ponto RX07 (TRIMESTRAL): Ponto localizado no rio Xingu, a jusante da Casa de Força Principal no canteiro Belo Monte

Das amostras de sedimento coletadas no ponto RX07 somente 0,72% estão em não conformidade com a Resolução CONAMA 454/2012 para nível 1: cobre no mês de julho de 2013 e nitrogênio total Kjeldahl e carbono orgânico total em janeiro de 2016, provavelmente devido à presença de matéria orgânica acumulada no local de coleta, não tendo relação com a formação dos reservatórios já que o fato não se repetiu (**Quadro - 27**). As restantes variáveis monitoradas se encontram dentro da conformidade.

Neste ponto houve predominância da areia fina e muito fina (**Figura - 27**). Nos primeiros meses do monitoramento houve uma maior porcentagem de areia média e posteriormente foi registrado aumento da porcentagem de silte, areia fina e areia grossa, sendo que, no mês de abril de 2016 foi registrada a predominância de areia grossa. Isto pode ser devido ao arrasto de sedimentos mais grossos pela vazão do rio Xingu e o Canal de Fuga e a subsequente deposição no local.

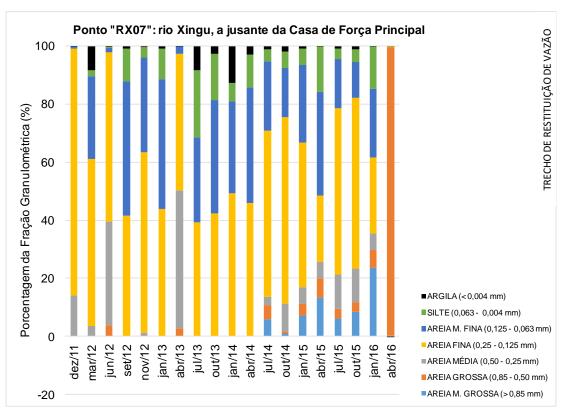


Figura - 27 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RX07 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

Quadro - 27 – Resultados das variáveis de qualidade do sedimento registrados no ponto RX07 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

				-	TRECH	O DE RE	STITUIÇ	ÃO DE V	AZÃO						DRES
VARIÁVEL			Р	onto "RX	(07": rio)	(ingu, a j	usante d	a Casa d	de Força	Principal				ORIENT	ADORES *
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	47,0	173,7	3,8	38,0	101,0	224,1	66,4	261,5	328,2	12,0	115,0	162,0	218,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	0,0	753,5	122,0	20,0	170,0	360,0	353,7	785,7	1423,3	120,0	590,0	380,0	550,0	4800	4800
Carbono Orgânico Total (%)	< LD	0,01	0,01	0,27	0,31	1,80	0,02	2,83	5,43	0,69	1,48	2,47	1,06	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	40,94	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	< LD	8,00	13,68	< LD	25,61	22,82	7,42	11,69	17,08	12,29	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,19	< LD	0,06	0,58	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	0,05	< LD	< LD	< LD	< LD	0,08	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8

VARIÁVEL			P	onto "RX	TRECH((07": rio)		STITUIÇ <i>î</i> usante d			Principal					ORES ADORES
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pel	la Resoluç	ão CONAI	MA 454/2	012 para	sediment	os; NA: n	ão se apli	ca; LD: I	imite de d	etecção;	NC: não d	coletado			

VARIÁVEL	Ponto "F	TRECHO		TUIÇÃO DE inte da Cas		Principal		ORES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	232,0	194,0	100,0	145,0	375,0	232,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	700,0	1220,0	200,0	250,0	6460,0	1060,0	4800	4800
Carbono Orgânico Total (%)	5,18	7,25	1,08	1,10	11,64	3,24	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	10,00	9,00	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	12,18	5,81	8,43	6,61	28,48	30,48	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	0,24	0,14	0,13	5,9	17,0

		TRECHO	DE RESTI	TUIÇÃO DE	VAZÃO		VALO	ORES
VARIÁVEL	Ponto "F	RX07": rio X	ingu, a jusa	ante da Cas	a de Força	Principal	ORIENTA	ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Mercúrio (mg/kg)	< LD	0,17	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Fatabalasidas pala Pas	olucão CON	10100 454/04	012 para aa	l dimontos Ni	l N. não oo on	liaar I Dr lim	ita da dataa	i iño: NC:

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Ponto IGSA/SEBM: Ponto localizado no igarapé Santo Antonio, a montante do canteiro Belo Monte, no Travessão km 50 e a 418 m da LT projetada

As amostras de sedimento coletadas no ponto IGSA/SEBM estão em conformidade com a Resolução CONAMA 454/2012 (**Quadro - 28**). Neste ponto houve grande variação na predominância das frações granulométricas, com tendência a dominância das areias muito grossas, grossas e finas e presença de silte (**Figura - 28**).

Nos meses de novembro de 2012, outubro 2013, janeiro e outubro 2015 e janeiro 2016 não foi realizada a coleta de sedimento devido à baixa vazão do igarapé.

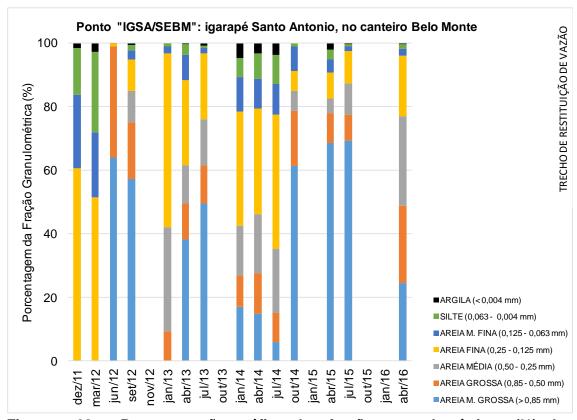


Figura - 28 - Representação gráfica das frações granulométricas (%) dos sedimentos do ponto IGSA/SEBM no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

Quadro - 28 – Resultados das variáveis de qualidade do sedimento registrados no ponto IGSA/SEBM no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

	TRECHO DE RESTITUIÇÃO DE VAZÃO Ponto "IGSA/SEBM": igarapé Santo Antonio, no canteiro Belo Monte													VALORES ORIENTADORES *	
VARIÁVEL															
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	115,4	94,8	96,6	37,0	NC	74,9	128,6	150,6	NC	8,0	86,0	456,0	392,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	203,6	224,0	81,1	40,0	NC	20,0	109,9	117,1	NC	140,0	190,0	360,0	320,0	4800	4800
Carbono Orgânico Total (%)	0,01	0,01	0,02	1,63	NC	0,97	0,32	0,32	NC	0,27	0,45	0,83	0,61	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	1,95	10,06	5,47	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	3,5	8,5

VARIÁVEL			Pont	o "IGSA/	TRECHO SEBM": iç		STITUIÇ <i>Î</i> anto Ant			Belo Mo	nte			VALO ORIENT	
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
DDE (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	34,1	277,0

VARIÁVEL	Ponto "	TRECHO	": igarapé S	TUIÇÃO DE Santo Anton nte		iro Belo	VALO ORIENTA	ORES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	NC	604,0	775,0	NC	NC	451,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	NC	1680,0	90,0	NC	NC	20,0	4800	4800
Carbono Orgânico Total (%)	NC	8,81	0,35	NC	NC	0,85	10	10
Cromo (mg/kg)	NC	< LD	< LD	NC	NC	< LD	37,3	90,0
Cobre (mg/kg)	NC	< LD	< LD	NC	NC	< LD	35,7	197,0
Níquel (mg/kg)	NC	< LD	2,98	NC	NC	< LD	18,0	35,9
Cádmio (mg/kg)	NC	< LD	< LD	NC	NC	< LD	0,6	3,5
Chumbo (mg/kg)	NC	< LD	< LD	NC	NC	< LD	35,0	91,3
Zinco (mg/kg)	NC	45,53	5,58	NC	NC	4,56	123	315
Arsênio (mg/kg)	NC	0,28	0,04	NC	NC	0,08	5,9	17,0

VARIÁVEL	Ponto "		l": igarapé S	TUIÇÃO DE Santo Anton Inte		iro Belo		ORES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Mercúrio (mg/kg)	NC	0,18	< LD	NC	NC	< LD	0,2	0,5
Alfa-HCH (µg/kg)	NC	< LD	< LD	NC	NC	< LD	NA	NA
Delta-HCH (µg/kg)	NC	< LD	< LD	NC	NC	< LD	NA	NA
Gama-HCH (µg/kg)	NC	< LD	< LD	NC	NC	< LD	0,9	1,4
Clordano-alfa (µg/kg)	NC	< LD	< LD	NC	NC	< LD	NA	NA
Clordano-gama (μg/kg)	NC	< LD	< LD	NC	NC	< LD	NA	NA
DDD (µg/kg)	NC	< LD	< LD	NC	NC	< LD	3,5	8,5
DDE (µg/kg)	NC	< LD	< LD	NC	NC	< LD	1,4	6,8
DDT (µg/kg)	NC	< LD	< LD	NC	NC	< LD	1,2	4,8
Dieldrin (µg/kg)	NC	< LD	< LD	NC	NC	< LD	2,9	6,7
Endrin (µg/kg)	NC	< LD	< LD	NC	NC	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	NC	< LD	< LD	NC	NC	< LD	34,1	277,0

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Ponto TUC01: Ponto localizado no igarapé Tucuruí, próximo à cidade Vitória do Xingu

Das amostras de sedimento coletadas no ponto TUC01, 2,39% se encontram em não conformidade com a Resolução CONAMA 454/2012 para nível 1: julho de 2014 a variável nitrogênio total Kjeldhal; abril, julho, outubro de 2014 e janeiro, julho e outubro de 2015 e abril de 2016 a variável carbono orgânico total e julho de 2014 e 2015 a variável mercúrio (**Quadro - 29**). As maiores concentrações de carbono e nutrientes observadas nos monitoramentos dos meses de abril, julho e outubro de 2014 e janeiro e julho de 2015 se correspondem com a maior presença de sedimentos capazes de reter mais matéria orgânica como argila e silte. Neste ponto houve predominância da areia muito fina e silte (**Figura - 29**). Nas primeiras duas campanhas de monitoramento, em dezembro de 2011 e março de 2012, e em julho de 2013 houve uma maior porcentagem de areia média.

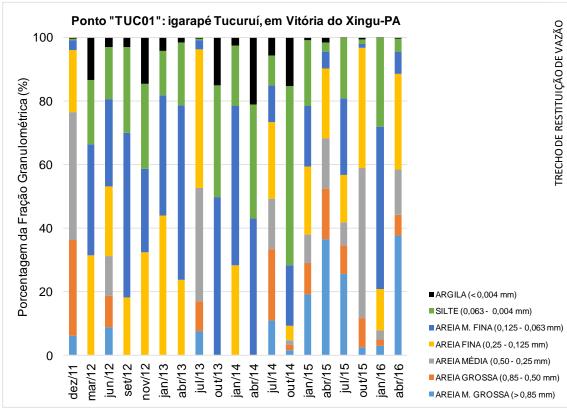


Figura - 29 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto TUC01 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

Quadro - 29 – Resultados das variáveis de qualidade do sedimento registrados no ponto TUC01 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

					TRECH	IO DE RE	STITUIÇ	ÃO DE	VAZÃO						DRES
VARIÁVEL				Ponto	"TUC01":	igarapé	Tucuruí,	em Vitó	ria do Xi	ngu-PA				ORIENT	ADORES *
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	12,0	423,1	14,3	137,0	410,0	219,2	144,0	111,8	275,3	57,0	422,0	515,0	397,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	1057,7	3533,1	1210,7	180,0	3120,0	50,0	150,7	134,8	2250,6	1090,0	4390,0	4900,0	2890,0	4800	4800
Carbono Orgânico Total (%)	< LD	0,01	0,02	0,71	7,11	4,85	3,83	0,01	9,75	4,18	19,53	27,73	10,16	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0				
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	7,59	8,40	< LD	35,7	197,0				
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9				
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5				
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3				
Zinco (mg/kg)	< LD	< LD	< LD	< LD	14,00	6,68	< LD	< LD	6,35	6,13	6,96	14,90	12,23	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,11	0,57	< LD	5,9	17,0				
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	0,15	0,10	0,09	0,36	< LD	0,2	0,5				
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4				
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5				

			Ponto			,			ngu-PA					
dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13		out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
	< LD < LD < LD < LD	< LD	<ld <ld="" <ld<="" td=""><td>dez/11 mar/12 jun/12 set/12 < LD</td> < LD</ld>	dez/11 mar/12 jun/12 set/12 < LD	Ponto "TUC01": dez/11 mar/12 jun/12 set/12 nov/12 < LD	Ponto "TUC01": igarapé dez/11 mar/12 jun/12 set/12 nov/12 jan/13 < LD	Ponto "TUC01": igarapé Tucuruí, dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 < LD	Ponto "TUC01": igarapé Tucuruí, em Vitó dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 < LD	dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 < LD	Ponto "TUC01": igarapé Tucuruí, em Vitória do Xingu-PA dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 < LD	Ponto "TUC01": igarapé Tucuruí, em Vitória do Xingu-PA dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 < LD	Ponto "TUC01": igarapé Tucuruí, em Vitória do Xingu-PA dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 < LD	Ponto "TUC01": igarapé Tucuruí, em Vitoria do Xingu-PA dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 out/14 < LD	Ponto "TUC01": igarapé Tucuruí, em Vitória do Xingu-PA dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 out/14 Nível 1 < LD

VARIÁVEL	Ponto	TRECHO	DE RESTI garapé Tuc			gu-PA		DRES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	213,0	284,0	306,0	16,0	105,0	187,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	770,0	270,0	2090,0	660,0	600,0	290,0	4800	4800
Carbono Orgânico Total (%)	18,23	1,76	15,80	15,55	5,13	12,86	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	3,38	24,71	10,92	< LD	6,92	5,98	123	315

		TRECHO	DE RESTI	TUIÇÃO DE	VAZÃO		VALO	DRES
VARIÁVEL	Ponto	"TUC01": i	garapé Tuc	uruí, em Vit	ória do Xin	gu-PA	ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Arsênio (mg/kg)	< LD	< LD	< LD	0,21	0,05	0,03	5,9	17,0
Mercúrio (mg/kg)	0,16	< LD	0,48	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Ponto RX15: Ponto localizado no rio Xingu, a jusante da cidade de Vitória do Xingu, início da ria do Xingu

A maioria das amostras de sedimento coletadas no ponto RX15 estão em conformidade com a Resolução CONAMA 454/2012, somente 0,96% se encontra em não conformidade para nível 1: a variável cobre no monitoramento do mês de julho de 2013, a variável nitrogênio total kjeldahl em abril de 2015 e a variável mercúrio em julho de 2015, sendo que em outubro de 2015 apresentou valores em não conformidade para nível 2 (**Quadro - 30**). Neste ponto houve predominância de areia fina em todas as amostras, exceto em janeiro de 2014 cuja amostra foi composta principalmente por areia muito fina, silte e argila (**Figura - 30**).

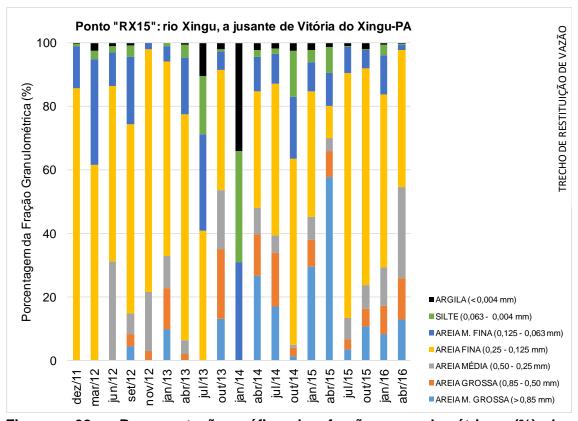


Figura - 30 — Representação gráfica das frações granulométricas (%) dos sedimentos do ponto RX15 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

Quadro - 30 – Resultados das variáveis de qualidade do sedimento registrados no ponto RX15 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

				<u>.</u>	TRECH	O DE RE	STITUIÇ	ÃO DE V	AZÃO						DRES
VARIÁVEL				Ponto '	'RX15": ri	o Xingu,	a jusanto	e de Vitói	ria do Xin	gu-PA				ORIENT	ADORES
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	428,9	185,9	6,8	4,0	0,0	21,3	42,1	310,1	344,8	246,0	64,0	272,0	168,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	142,4	519,3	447,5	50,0	90,0	40,0	20,2	1053,5	747,7	2110,0	220,0	460,0	830,0	4800	4800
Carbono Orgânico Total (%)	0,04	0,05	0,06	0,96	1,06	0,10	0,38	2,96	3,57	6,38	0,61	1,44	1,19	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	36,12	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,49	16,08	26,21	7,07	11,33	13,73	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,11	0,68	< LD	0,05	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	0,06	< LD	< LD	< LD	< LD	0,06	0,08	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5

VARIÁVEL				Ponto "	TRECH RX15": ri		STITUIÇ. a jusante			gu-PA				VALO ORIENT/	ORES ADORES
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos p	ela Resolu	ução CON	AMA 454	/2012 pa	ra sedime	ntos; NA:	não se a	plica; LD:	limite de	detecção;	NC: não	coletado			

VARIÁVEL	Ponto			TUIÇÃO DE sante de Vi	VAZÃO tória do Xin	ıgu-PA		ORES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	435,0	490,0	137,0	245,0	81,0	98,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	1430,0	7680,0	330,0	210,0	180,0	20,0	4800	4800
Carbono Orgânico Total (%)	7,33	7,84	1,10	1,20	0,50	0,07	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	13,91	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	15,07	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	27,36	49,60	7,48	8,62	8,06	7,86	123	315
Arsênio (mg/kg)	< LD	0,10	< LD	0,25	0,05	0,04	5,9	17,0

VADIÁVEI	Danie			TUIÇÃO DE		DA		DRES ADORES *
VARIÁVEL	Ponto	"RX15": rio	Xingu, a ju	sante de Vi	toria do Xir	igu-PA	OKILITY	DONLO
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Mercúrio (mg/kg)	0,13	0,15	0,37	1,12	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabolacidas pala Das	-1	10840 454/04	040	d: N l :	۸	line I D. line		~~. NIC.

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

1.5 ÁREA 5: RESERVATÓRIO INTERMEDIÁRIO

1.5.1 IGARAPÉS INTERCEPTADOS PELOS DIQUES

Ponto ATURIA: Ponto localizado no igarapé Aturiá, a jusante do dique 8 A

Um ponto de coleta no igarapé Aturiá foi adicionado à campanha trimestral (água, sedimento e biota aquática) e à campanha mensal (sonda multiparamétrica), em atendimento à recomendação do IBAMA, apresentada no Parecer 168/2012, encaminhado em dezembro de 2012, no âmbito do Programa de Monitoramento dos Igarapés Interceptados pelos Diques. Neste sentido, o monitoramento trimestral neste igarapé foi iniciado em abril de 2013.

As amostras de sedimento coletadas no ponto ATURIA estão em conformidade com a Resolução CONAMA 454/2012 (**Quadro - 31**).

Neste ponto houve predominância de material arenoso muito grosso, grosso e médio durante todo o monitoramento, sendo que as frações de silte e argila estiveram presentes, mas em muito baixa proporção (**Figura - 31**).

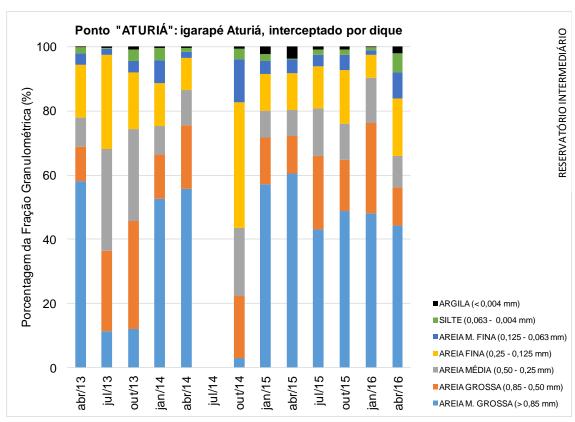


Figura - 31 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto ATURIA no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre abril de 2013 a abril de 2016

Quadro - 31 – Resultados das variáveis de qualidade do sedimento registrados no ponto ATURIA no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre abril de 2013 a abril de 2016

Carbono Orgânico Total (%) Cromo (mg/kg) Cobre (mg/kg) Níquel (mg/kg) Cádmio (mg/kg) Chumbo (mg/kg) Zinco (mg/kg) Arsênio (mg/kg) Mercúrio (mg/kg) Alfa-HCH (µg/kg) Delta-HCH (µg/kg)				Dont			RIO INTE			diama					ORES ADORES *
VARIAVEL	abr/13	jul/13	out/13	jan/14	abr/14	iul/14	oé Aturiá, out/14	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Fásfara Total (mg/kg)	469.6	44,9	321.7	634,0	56,0	NC	280,0	329,0	582,0	333,0	182,0	37,0	525,0	2000	2000
(0 0)	409,0	44,9	321,7	034,0	36,0	INC	200,0	329,0	362,0	333,0	102,0	37,0	525,0	2000	2000
Kjeldahl (mg/kg)	223,1	75,6	232,5	320,0	120,0	NC	440,0	530,0	320,0	600,0	790,0	90,0	480,0	4800	4800
Carbono Orgânico Total (%)	0,88	0,30	0,96	0,41	0,43	NC	0,73	5,13	1,42	2,16	2,20	0,38	4,20	10	10
Cromo (mg/kg)	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	<ld< td=""><td>37,3</td><td>90,0</td></ld<>	37,3	90,0				
Cobre (mg/kg)	< LD	NC	< LD	< LD	< LD	< LD	< LD	17,47	<ld< td=""><td>35,7</td><td>197,0</td></ld<>	35,7	197,0				
Níquel (mg/kg)	< LD	NC	< LD	< LD	< LD	< LD	< LD	16,00	<ld< td=""><td>18,0</td><td>35,9</td></ld<>	18,0	35,9				
Cádmio (mg/kg)	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	<ld< td=""><td>0,6</td><td>3,5</td></ld<>	0,6	3,5				
Chumbo (mg/kg)	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	<ld< td=""><td>35,0</td><td>91,3</td></ld<>	35,0	91,3				
Zinco (mg/kg)	< LD	< LD	4,31	6,78	2,31	NC	8,40	11,75	11,80	8,80	3,21	16,22	2,10	123	315
Arsênio (mg/kg)	< LD	NC	< LD	< LD	< LD	< LD	0,22	0,07	0,04	5,9	17,0				
Mercúrio (mg/kg)	< LD	< LD	0,05	< LD	< LD	NC	< LD	0,10	0,10	< LD	< LD	< LD	<ld< td=""><td>0,2</td><td>0,5</td></ld<>	0,2	0,5
Alfa-HCH (µg/kg)	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Delta-HCH (µg/kg)	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Gama-HCH (µg/kg)	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4				
Clordano-alfa (µg/kg)	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
Clordano-gama (µg/kg)	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA				
DDD (µg/kg)	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5				
DDE (µg/kg)	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8				
DDT (µg/kg)	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8				
Dieldrin (µg/kg)	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7				
Endrin (µg/kg)	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4				
PCBs-Bifenilas Policloradas (μg/kg)	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0				

Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não cole

Ponto IGPAQ: Ponto localizado no igarapé Paquiçamba, a jusante do dique 28, no Travessão km 55 e a 127 m da LT 34,5 kV

As amostras de sedimento coletadas no ponto IGPAQ estão em conformidade com a Resolução CONAMA 454/2012 (**Quadro - 32**). Neste ponto houve predominância de material arenoso muito grosso e fino durante todo o monitoramento (**Figura - 32**).

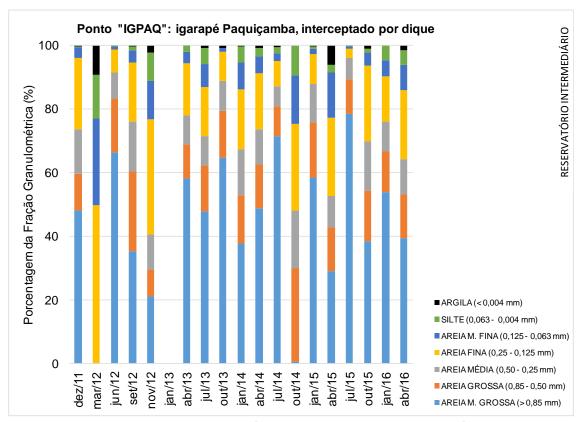


Figura - 32 — Representação gráfica das frações granulométricas (%) dos sedimentos do ponto IGPAQ no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

Quadro - 32 – Resultados das variáveis de qualidade do sedimento registrados no ponto IGPAQ no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

				•	RESE	ERVATÓ	RIO INTE	RMEDIÁ	RIO						DRES
VARIÁVEL			F	onto "IG	PAQ": ig	arapé Pa	quiçamb	a, interc	eptado p	or dique				ORIENT	ADORES
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	105,0	1372,6	77,6	32,0	370,0	NC	469,6	416,7	255,1	125,0	528,0	647,0	1107,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	132,2	1028,4	302,0	10,0	220,0	NC	223,1	135,5	218,9	100,0	220,0	400,0	250,0	4800	4800
Carbono Orgânico Total (%)	0,01	0,02	0,02	0,27	0,40	NC	0,88	0,71	0,46	0,21	0,50	1,40	1,19	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	7,21	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	11,19	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	< LD	2,00	NC	< LD	2,30	6,03	2,47	12,61	3,88	10,82	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	0,08	0,16	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	0,08	0,11	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8

VARIÁVEL			F	onto "IG	RESE		RIO INTE			or dique				VALO ORIENTA	ORES ADORES
	dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 out/14										Nível 1	Nível 2			
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pe	la Resolu	ção CONA	MA 454/2	2012 para	a sedimen	tos; NA: r	não se ap	lica; LD:	limite de	detecção	; NC: não	coletado)		

		RESE	RVATÓRIO	INTERMED	IÁRIO			DRES
VARIÁVEL	Ponto "	IGPAQ": iga	rapé Paqui	çamba, inte	erceptado p	or dique	ORIENTA	ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	172,0	500,0	373,0	431,0	504,0	615,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	4540,0	360,0	120,0	200,0	240,0	180,0	4800	4800
Carbono Orgânico Total (%)	0,46	1,30	0,62	0,65	0,83	0,90	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	11,90	3,39	< LD	< LD	10,20	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	17,35	29,04	14,37	6,21	3,18	7,14	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	0,20	0,03	0,10	5,9	17,0

		RESE	RVATÓRIO	INTERMED	IÁRIO			ORES
VARIÁVEL	Ponto "	IGPAQ": iga	arapé Paqui	çamba, inte	erceptado p	or dique	ORIENTA	ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Mercúrio (mg/kg)	0,12	< LD	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabolacidas pola Pos	ALUGÃO COL	10000 AE 4/20	012 nore 60	dimontoni NI	۸ . » ق م م م م م م م	lica I D. lim	ita da dataa	SOL NICI

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Ponto IGTIC: Ponto localizado no igarapé Ticaruca, a jusante do dique 19 B, no Travessão km 55 e a 376 m da LT 34,5 kV

As amostras de sedimento coletadas no ponto IGTIC estão em conformidade com a Resolução CONAMA 454/2012 (Quadro - 33). Neste local houve predominância de material arenoso muito grosso e fino durante todo o monitoramento, no entanto, um aumento na porcentagem das frações de silte foi registrado na amostra da campanha de abril de 2014 e janeiro de 2016 (Figura - 33).

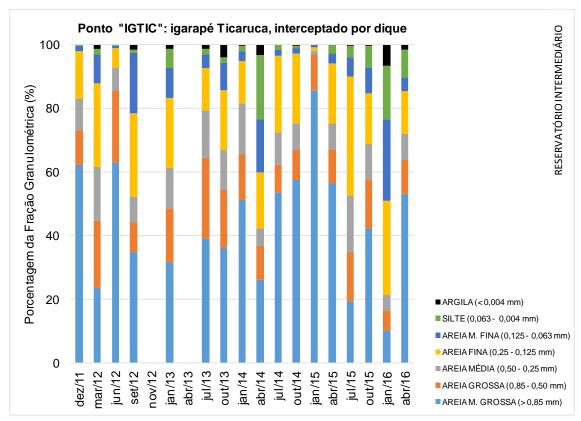


Figura - 33 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto IGTIC no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

Quadro - 33 – Resultados das variáveis de qualidade do sedimento registrados no ponto IGTIC no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

				<u> </u>	RESE	RVATÓF	RIO INTE	RMEDIÁ	RIO						DRES
VARIÁVEL				Ponto '	'IGTIC": i	garapé T	icaruca,	intercep	tado por	dique				ORIENT	ADORES *
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	119,4	168,0	302,6	349,0	NC	902,7	NC	416,7	181,1	125,0	601,0	412,0	343,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	396,9	0,0	286,6	40,0	NC	190,0	NC	135,5	111,2	100,0	210,0	90,0	130,0	4800	4800
Carbono Orgânico Total (%)	0,01	0,02	0,03	0,88	NC	0,44	NC	0,71	0,22	0,21	0,53	0,01	0,40	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	26,00	NC	4,68	NC	4,68	7,34	7,00	15,59	5,61	7,73	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	0,12	NC	< LD	NC	< LD	< LD	< LD	0,06	< LD	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	0,08	0,08	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5

			Ponto "						dique				_	
										abr/14	jul/14	out/14	Nível 1	Nível 2
< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
	< LD < LD < LD < LD	<ld <ld="" <ld<="" td=""><td><ld <ld="" <ld<="" td=""><td>dez/11 mar/12 jun/12 set/12 < LD</td> < LD</ld></td> < LD</ld>	<ld <ld="" <ld<="" td=""><td>dez/11 mar/12 jun/12 set/12 < LD</td> < LD</ld>	dez/11 mar/12 jun/12 set/12 < LD	Ponto "IGTIC": ig	Ponto "IGTIC": igarapé T dez/11 mar/12 jun/12 set/12 nov/12 jan/13 < LD	Ponto "IGTIC": igarapé Ticaruca, i dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 < LD	Ponto "IGTIC": igarapé Ticaruca, intercep dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 < LD	dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 < LD	Ponto "IGTIC": igarapé Ticaruca, interceptado por dique	Description Description			

VARIÁVEL	Ponto	RESE IGTIC": iç		INTERMED ruca, interc		dique		DRES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	533,0	369,0	221,0	642,0	498,0	790,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	530,0	530,0	110,0	90,0	420,0	680,0	4800	4800
Carbono Orgânico Total (%)	4,90	0,34	0,43	0,50	1,40	3,44	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	2,77	< LD	9,80	12,20	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	2,55	13,38	5,21	3,55	9,14	52,72	123	315

		RESE	RVATÓRIO	INTERMED	IÁRIO		VALO	DRES
VARIÁVEL	Ponto	o "IGTIC": iç	garapé Tica	ruca, interc	eptado por	dique	ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Arsênio (mg/kg)	< LD	< LD	< LD	0,22	0,07	0,05	5,9	17,0
Mercúrio (mg/kg)	0,10	0,16	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Ponto IGCAJ: Ponto localizado no igarapé Cajueiro, a jusante do dique 14 C, a 182 m da LT 34,5 kV e a 165 m do Travessão km 55

As amostras de sedimento coletadas no ponto IGCAJ estão em conformidade com a Resolução CONAMA 454/2012 (**Quadro - 34**), com exceção da variável nitrogênio total Kjeldahl no mês de janeiro de 2015.

Neste local houve predominância de material arenoso muito grosso, grosso e fino durante todo o monitoramento, e apenas em dezembro de 2011, março 2012 e outubro de 2014, julho 2015, janeiro e abril de 2016 houve predominância de frações mais finas como a areia fina e silte e argila (**Figura - 34**).

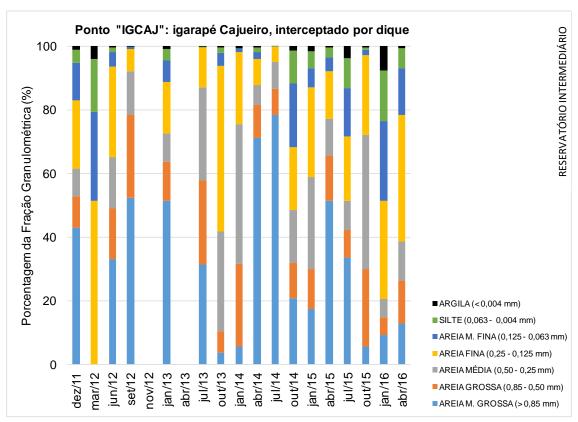


Figura - 34 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto IGCAJ no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

Quadro - 34 – Resultados das variáveis de qualidade do sedimento registrados no ponto IGCAJ no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

				•	RESE	RVATÓF	RIO INTE	RMEDIÁ	RIO						DRES
VARIÁVEL				Ponto "	IGCAJ": i	igarapé (Cajueiro,	intercep	tado por	dique				ORIENT	ADORES
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	263,8	650,8	95,1	39,0	NC	312,1	NC	37,7	137,6	8,0	477,0	494,0	636,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	254,3	132,4	253,9	10,0	NC	280,0	NC	81,4	90,7	160,0	140,0	100,0	530,0	4800	4800
Carbono Orgânico Total (%)	0,02	0,02	0,03	0,18	NC	2,97	NC	0,12	0,66	0,42	0,43	0,01	0,40	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	11,87	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	42,00	NC	6,86	NC	21,43	4,81	5,74	10,82	8,79	13,01	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	0,19	NC	< LD	NC	< LD	< LD	< LD	0,05	< LD	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	0,12	NC	< LD	NC	< LD	0,09	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5

VARIÁVEL				Ponto "			RIO INTEI			dique				VALC ORIENTA	ORES ADORES
7711171722	RIÁVEL Ponto "IGCAJ": igarapé Cajueiro, interceptado por dique dez/11 mar/12 jun/12 set/12 nov/12 jan/13 abr/13 jul/13 out/13 jan/14 abr/14 jul/14 out/14										Nível 1	Nível 2			
DDE (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	NC	< LD	NC	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos po	ela Resolu	ıção CON	AMA 454	/2012 par	a sedimer	ntos; NA:	não se ar	olica; LD:	limite de	detecção	; NC: não	coletad	О		

VARIÁVEL	Ponto	RESE "IGCAJ": i	RVATÓRIO garapé Cajı			dique		DRES ADORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	416,0	483,0	654,0	257,0	554,0	401,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	5330,0	240,0	430,0	660,0	1110,0	100,0	4800	4800
Carbono Orgânico Total (%)	2,74	0,63	0,11	0,11	1,91	0,24	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	16,46	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	10,20	18,00	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	5,14	7,94	3,45	7,67	50,72	14,82	123	315

					. (
				INTERMED				DRES
VARIÁVEL	Ponto	"IGCAJ": i	garapé Caji	ueiro, interc	eptado por	dique	ORIENTA	DORES *
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Arsênio (mg/kg)	< LD	< LD	< LD	0,2	0,06	0,07	5,9	17,0
Mercúrio (mg/kg)	0,10	< LD	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Ponto IGCO: Ponto localizado no igarapé Cobal, a jusante do dique 13, no Travessão km 55

A maior parte das amostras de sedimento coletadas no ponto IGCO se encontram em conformidade com a Resolução CONAMA 454/2012. Somente a variável cromo do monitoramento de janeiro de 2014 se encontra em não conformidade para nível 2 da Resolução CONAMA 454/2012 (**Quadro - 35**), porém este fato foi pontual, não sendo observado novamente ao longo do monitoramento.

Neste local houve predominância de material arenoso muito grosso, areia fina e areia grossa (**Figura - 35**). O silte esteve presente durante o monitoramento, porém em muito baixa proporção. No entanto, em julho de 2013 a principal fração foi a areia muito fina seguida do silte e a argila. Em outubro de 2014 também foram predominantes as frações mais finas do sedimento, principalmente areia fina e muito fina.

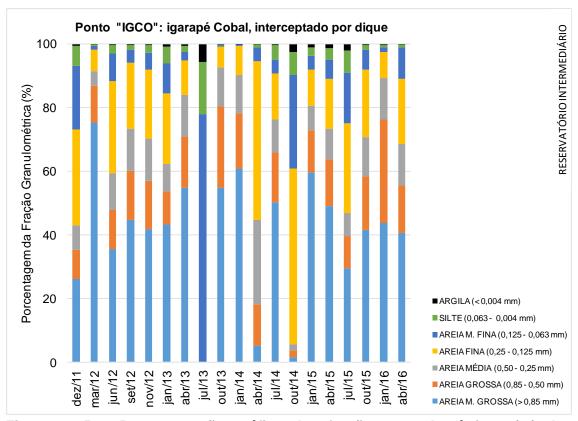


Figura - 35 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto IGCO no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

Quadro - 35 – Resultados das variáveis de qualidade do sedimento registrados no ponto IGCO no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

	RESERVATÓRIO INTERMEDIÁRIO													VALORES ORIENTADORES	
VARIÁVEL				Ponto	"IGCO":	igarapé	Cobal, in	tercepta	ido por d	ique				OKIENT	*
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	275,5	66,9	136,1	97,0	380,0	157,2	269,1	503,4	54,4	7,0	545,0	316,0	307,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	284,8	40,7	203,1	10,0	60,0	120,0	157,3	297,1	40,4	60,0	100,0	270,0	430,0	4800	4800
Carbono Orgânico Total (%)	0,03	0,02	0,04	0,27	0,36	0,64	0,23	0,97	0,18	0,01	0,14	0,38	0,25	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	130,7	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	9,3	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	< LD	< LD	6,00	4,87	< LD	27,68	< LD	< LD	3,02	5,43	7,07	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	0,04	< LD	< LD	< LD	< LD	0,06	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5

out/14		•
	Nível 1	Nível 2
< LD	1,4	6,8
< LD	1,2	4,8
< LD	2,9	6,7
< LD	2,7	62,4
< LD	34,1	277,0
1	< LD < LD	< LD 2,9 < LD 2,7 < LD 34,1

VARIÁVEL	Pon	RESE to "IGCO":	ique		DRES ADORES *			
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	288,0	567,0	173,0	242,0	91,0	384,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	70,0	60,0	100,0	110,0	120,0	260,0	4800	4800
Carbono Orgânico Total (%)	0,55	0,49	0,43	0,50	0,23	0,99	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	2,23	5,55	1,76	1,09	3,58	2,98	123	315

		RESE	RVATÓRIO	INTERMED	IÁRIO		VALO	DRES		
VARIÁVEL	Pon	to "IGCO":	igarapé Co	bal, interce _l	otado por d	ique	ORIENTA	DORES *		
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2		
Arsênio (mg/kg)	< LD	< LD	< LD	0,23	0,04	0,04	5,9	17,0		
Mercúrio (mg/kg)	0,14	0,16	< LD	< LD	< LD	< LD	0,2	0,5		
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA		
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA		
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4		
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA		
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA		
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5		
DDE (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8		
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8		
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7		
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4		
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0		

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

1,5.2 RESERVATÓRIO INTERMEDIÁRIO

Pontos CN01, CN02, CN03, CN04, CN05, CN06, CN07, CN08, CN09, RIN1 e RIN2: Pontos localizados no Reservatório Intermediário recém formado

As amostras de sedimento coletadas nos pontos do Reservatório Intermediário (CN01, CN02, CN03, CN04, CN05, CN06, CN07, CN08, CN09, RIN1 e RIN2) estão em conformidade com a Resolução CONAMA 454/2012 (**Quadro - 36**). As concentrações de nitrogênio total, fósforo total e carbono orgânico variam bastante entre os pontos amostrado, principalmente devido ao aporte para os sedimentos da matéria orgânica em decomposição depositada no fundo do reservatório recém formado.

Nos diferentes pontos de coleta houve predominância de material arenoso muito grosso, grosso e fino com pequenas percentagens de silte, sendo que, os pontos de amostragem foram bastante similares entre sim desde o ponto de vista granulométrico (**Figura - 36**).

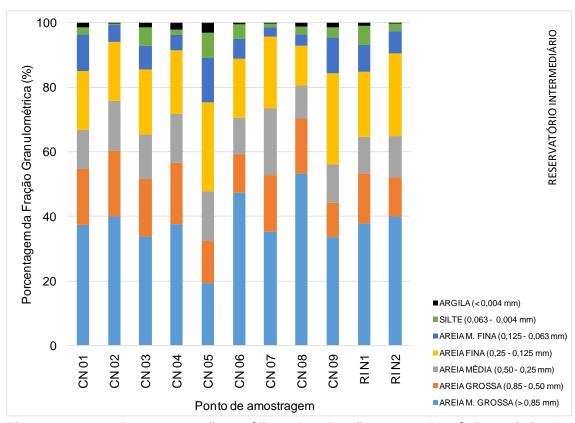


Figura - 36 – Representação gráfica das frações granulométricas (%) dos sedimentos dos pontos do Reservatório Intermediário no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período de abril de 2016

Quadro - 36 – Resultados das variáveis de qualidade do sedimento registrados nos pontos do Reservatório Intermediário (CN01, CN02, CN03, CN04, CN05, CN06, CN07, CN08, CN09, RIN1 e RIN2) no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período de abril de 2016

,					ESERVAT								ORES
VARIÁVEL					PANHA TI	RIMESTRA	L - ABRIL	2016				ORIENTA	ADORES *
	CN01	CN02	CN03	CN04	CN05	CN06	CN07	CN08	CN09	RIN1	RIN2	Nível 1	Nível 2
Fósforo Total (mg/kg)	80,0	307,0	451,0	379,0	250,0	302,0	89,0	72,0	213,0	392,0	367,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	60,0	300,0	460,0	780,0	20,0	400,0	20,0	1130,0	30,0	270,0	380,0	4800	4800
Carbono Orgânico Total (%)	0,43	1,26	2,29	4,66	0,36	1,87	0,19	0,79	0,89	1,61	1,77	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	10,01	< LD	< LD	< LD	< LD	< LD	10,02	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	3,05	2,98	5,04	3,12	5,62	8,02	6,03	8,02	7,02	9,02	5,03	123	315
Arsênio (mg/kg)	0,03	0,02	0,05	0,03	0,04	0,02	0,03	0,03	0,05	0,05	0,04	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0

1.6 ÁREA 6: RIO BACAJÁ

Ponto BAC02: Ponto localizado no rio Bacajá, a 15 km da foz com o rio Xingu

As amostras de sedimento coletadas no ponto BAC02 estão em conformidade com a Resolução CONAMA 454/2012, nível 1, com exceção da variável mercúrio nos meses de janeiro e abril de 2015 (**Quadro - 36**). Neste ponto foi registrado predomínio de sedimentos arenosos finos, muito finos e uma baixa proporção de silte e argila na maioria dos meses amostrados (**Figura - 36**).

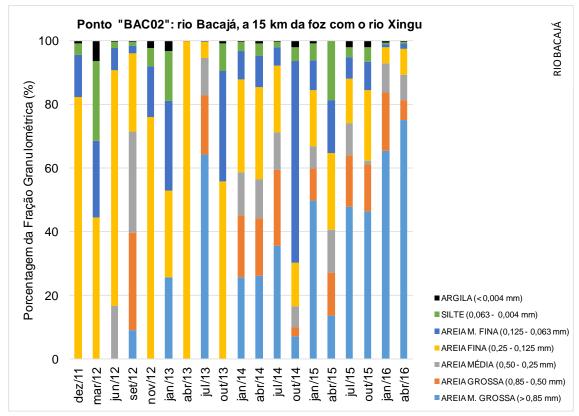


Figura - 36 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto BAC02 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

Quadro - 36 – Resultados das variáveis de qualidade do sedimento registrados no ponto BAC02 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

	RIO BACAJÁ												VALORES ORIENTADORES		
VARIÁVEL				Ponto "E	BAC02": r	io Bacaj	á, a 15 kr	n da foz	com o ric	o Xingu				ORIENT	ADORES *
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	187,1	823,4	9,6	39,0	420,0	377,3	295,5	39,5	463,1	18,0	337,0	110,0	613,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	458,0	1394,9	762,9	20,0	1040,0	450,0	474,1	89,4	1687,8	550,0	860,0	210,0	2210,0	4800	4800
Carbono Orgânico Total (%)	0,02	0,02	0,02	0,28	0,32	1,31	0,76	0,51	6,66	3,11	1,76	1,04	1,10	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	4,0	6,0	< LD	< LD	< LD	< LD	< LD	< LD	17,92	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	10,0	< LD	< LD	< LD	< LD	< LD	< LD	< LD	13,52	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	36,00	52,00	48,00	25,04	< LD	5,45	43,85	22,48	32,65	14,24	55,14	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	0,10	< LD	< LD	< LD	< LD	< LD	< LD	0,06	< LD	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	< LD	0,17	< LD	< LD	< LD	< LD	0,14	< LD	< LD	< LD	< LD	0,2	0,5
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8

VARIÁVEL				Ponto "E	BAC02": r		BACAJ á, a 15 kn		com o ric	o Xingu				VALORES ORIENTADORES *	
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (µg/kg)													< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0
* Estabelecidos pe	* Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado														

VARIÁVEL	Ponto	"BAC02": ri	Xingu	VALO ORIENTA	DRES DORES *			
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	497,0	660,0	257,0	402,0	194,0	212,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	2970,0	330,0	220,0	190,0	530,0	310,0	4800	4800
Carbono Orgânico Total (%)	4,96	1,21	0,70	0,70	3,51	2,60	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	12,66	< LD	24,87	9,98	< LD	< LD	35,7	197,0
Níquel (mg/kg)	10,46	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	46,44	18,90	22,03	27,54	19,44	18,44	123	315
Arsênio (mg/kg)	< LD	0,12	< LD	0,19	0,06	0,06	5,9	17,0

DIO DACA JÁ													
VARIÁVEL	Donto	"DAC02". #		ACAJÁ	#i	Vingu		ORES ADORES *					
VARIAVEL	jan/15	abr/15	о васаја, а jul/15	15 km da fo out/15	jan/16	abr/16	Nível 1	Nível 2					
			-		-								
Mercúrio (mg/kg)	0,23	0,22	< LD	< LD	< LD	< LD	0,2	0,5					
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA					
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA					
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4					
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA					
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA					
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5					
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8					
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8					
Dieldrin (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7					
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4					
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0					

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

Ponto BAC03: Ponto localizado no rio Bacajá a 25 km da foz com o rio Xingu

As amostras de sedimento coletadas no ponto BAC03 estão em conformidade com a Resolução CONAMA 454/2012 para nível 1, com exceção da variável mercúrio em julho de 2015 (**Quadro - 37**). Os sedimentos foram constituídos principalmente por areias grossas, areias finas, muito finas e siltes, variando as proporções ao longo do monitoramento (**Figura - 37**).

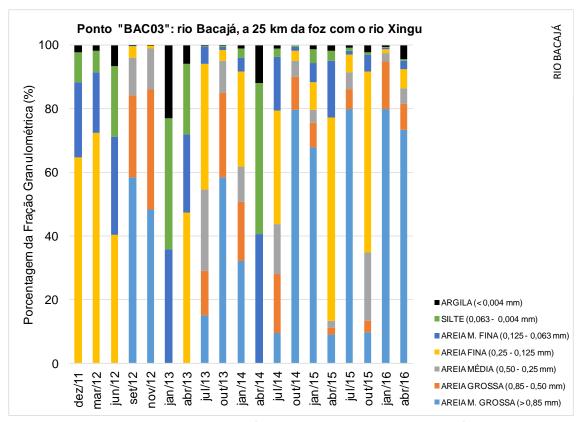


Figura - 37 – Representação gráfica das frações granulométricas (%) dos sedimentos do ponto BAC03 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

Quadro - 37 – Resultados das variáveis de qualidade do sedimento registrados no ponto BAC03 no monitoramento limnológico trimestral do PBA da UHE Belo Monte no período entre dezembro de 2011 a abril de 2016

	RIO BACAJÁ													VALORES ORIENTADORES	
VARIÁVEL				Ponto "	BAC03": r	io Bacajá	i, a 25 km	da foz	com o rio	Xingu					*
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2
Fósforo Total (mg/kg)	107,3	561,2	21,6	39,0	30,0	935,4	666,8	146,5	378,6	9,0	485,0	99,0	123,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	254,2	916,4	2348,3	10,0	30,0	1760,0	1731,4	704,0	1464,9	140,0	2290,0	710,0	360,0	4800	4800
Carbono Orgânico Total (%)	< LD	0,01	0,01	0,19	0,19	5,71	5,43	2,39	3,50	0,32	7,16	2,55	2,92	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	< LD	< LD	< LD	< LD	< LD	11,70	< LD	< LD	< LD	< LD	11,80	< LD	< LD	35,7	197,0
Níquel (mg/kg)	< LD	< LD	< LD	< LD	< LD	10,80	< LD	< LD	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	< LD	< LD	62,00	< LD	2,00	56,19	< LD	29,71	35,62	3,49	60,89	32,45	10,36	123	315
Arsênio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,10	< LD	< LD	5,9	17,0
Mercúrio (mg/kg)	< LD	< LD	0,03	< LD	< LD	< LD	< LD	< LD	0,15	< LD	0,07	< LD	< LD	0,2	0,5
Alfa-HCH (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5

VARIÁVEL			RIO BACAJÁ Ponto "BAC03": rio Bacajá, a 25 km da foz com o rio Xingu													
	dez/11	mar/12	jun/12	set/12	nov/12	jan/13	abr/13	jul/13	out/13	jan/14	abr/14	jul/14	out/14	Nível 1	Nível 2	
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8	
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8	
Dieldrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7	
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4	
Policloradas	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0	
PCBs-Bifenilas Policloradas < LD < L												34,1				

VARIÁVEL	Ponto	"BAC03": ri	Xingu	VALORES ORIENTADORES				
	jan/15	abr/15	jul/15	out/15	jan/16	abr/16	Nível 1	Nível 2
Fósforo Total (mg/kg)	531,0	683,0	448,0	79,0	52,0	368,0	2000	2000
Nitrogênio Total Kjeldahl (mg/kg)	1650,0	1450,0	1070,0	880,0	1320,0	20,0	4800	4800
Carbono Orgânico Total (%)	5,54	6,15	7,04	7,14	0,02	8,53	10	10
Cromo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	37,3	90,0
Cobre (mg/kg)	11,33	< LD	28,84	< LD	< LD	< LD	35,7	197,0
Níquel (mg/kg)	11,12	< LD	< LD	< LD	< LD	< LD	18,0	35,9
Cádmio (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,6	3,5
Chumbo (mg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	35,0	91,3
Zinco (mg/kg)	42,71	25,70	34,71	7,59	4,88	6,88	123	315
Arsênio (mg/kg)	< LD	0,19	< LD	0,14	0,04	0,03	5,9	17,0

	RIO BACAJÁ							
VARIÁVEL	Ponto "BAC03": rio Bacajá, a 25 km da foz com o rio Xingu						VALORES ORIENTADORES *	
	Mercúrio (mg/kg)	0,20	0,10	0,44	< LD	< LD	< LD	0,2
Alfa-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Delta-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Gama-HCH (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	0,9	1,4
Clordano-alfa (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
Clordano-gama (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	NA	NA
DDD (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	3,5	8,5
DDE (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,4	6,8
DDT (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	1,2	4,8
Dieldrin (μg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,9	6,7
Endrin (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	2,7	62,4
PCBs-Bifenilas Policloradas (µg/kg)	< LD	< LD	< LD	< LD	< LD	< LD	34,1	277,0

^{*} Estabelecidos pela Resolução CONAMA 454/2012 para sedimentos; NA: não se aplica; LD: limite de detecção; NC: não coletado

2. CONSIDERAÇÕES FINAIS

De uma forma geral, as amostras de sedimento coletadas em toda a área de influência da UHE Belo Monte apresentam boa qualidade ambiental. Os resultados da caracterização química dos sedimentos são comparados com os valores orientadores previstos na Resolução CONAMA 454/2012, que estabelece valores orientadores para oito metais (cobre, cromo, níquel, arsênio, mercúrio, zinco, cádmio e chumbo), entre outros. De acordo com esta Resolução, os resultados são classificados em dois níveis: Nível 1, que é o limiar abaixo do qual há menor probabilidade de efeitos adversos à biota; e, Nível 2, que é o limiar acima do qual há maior probabilidade de efeitos adversos à biota.

Foi registrado um elevado contingente de valores de metais pesados não detectáveis pelos métodos empregados (método USEPA 3050B ver.2 - espectrometria de absorção atômica). Em cada amostra de sedimento, 11 metais são avaliados (além dos oito metais mencionados na Resolução CONAMA 454/2012, são também monitorados ferro, manganês e alumínio). Das 714 amostras de sedimentos coletadas (total de 15.708 resultados) um conjunto de aproximadamente 50% de valores de metais nos sedimentos foram analisados. Destes, apenas 56 valores (0,71%), das variáveis: cobre, níquel, cromo, arsênio e mercúrio, estiveram acima dos valores norteadores de Nível 1 e 2.

Ou seja, 99,29% das amostras de sedimentos estão em conformidade quanto aos metais pesados na legislação, em todo monitoramento referente às 19 campanhas realizadas de 2011 a 2016. É importante ressaltar que na área do Reservatório Intermediário recém formado não foi detectada nenhuma inconformidade em relação a metais pesados ou nutrientes. Os metais cádmio e chumbo não foram detectados e todos os registros de zinco estiveram em conformidade com a legislação aplicável. Quanto aos valores de ferro, manganês e alumínio, como não existe legislação aplicável para contextualizá-los, a sua análise é descritiva e não indica variação nos padrões temporal e espacial, até o momento.

Foi registrada variação na predominância das frações granulométricas, e uma tendência a sedimentos mais arenosos em períodos de cheia, quando as frações mais finas são carreadas. Em contrapartida, variações quanto ao aumento da porcentagem de argila e silte foram correlacionadas com maiores teores de matéria orgânica, provavelmente, favorecidos pela retenção nos sedimentos mais finos. Apenas treze valores acima do valor de alerta para carbono orgânico total foram registrados: em outubro de 2013 no igarapé Galhoso, em janeiro de 2013, abril de 2015 e janeiro de 2016 no igarapé Chocaí, em abril de 2015 no ponto Pimental, em abril, julho e outubro de 2014 e janeiro, julho e outubro de 2015 e abril de 2016 no igarapé Tucuruí e no ponto RX07 em janeiro de 2016.

Nenhuma amostra apresentou concentrações acima do limite de detecção para os pesticidas monitorados (11 tipos entre organoclorados, organofosforados e carbamatos).

As não conformidades apresentadas acima foram registradas em 21 dos 48 pontos de coleta do monitoramento limnológico trimestral: seis pontos na área do Reservatório do Xingu (três no rio Xingu, um no igarapé Altamira, um no igarapé Ambé e um no igarapé Galhoso), sete pontos no rio Xingu e um no igarapé Chocaí na área da Volta Grande, dois pontos no rio Xingu e um no igarapé Tucuruí, próximo a cidade de Vitória do Xingu, na área a jusante da Casa de Força Principal no Trecho de Restituição de Vazão. Também foram identificados um ponto no igarapé Cobal e um ponto no igarapé Cajueiro, nos igarapés interceptados pelos diques, na área do Reservatório Intermediário e nos dois pontos do rio Bacajá. Nenhuma amostra da área a Montante do Reservatório do Xingu esteve em não conformidade, até o momento.

Desta forma, conclui-se que as não conformidades foram pontuais no tempo e no espaço, e especialmente quanto aos registros na área da Volta Grande/Trecho de Vazão Reduzida podem estar relacionadas ao uso e ocupação do solo nas áreas adjacentes, referente às antigas atividades na região como o garimpo de ouro (Ressaca). Mesmo com este histórico, é importante ressaltar que a conformidade da maioria das variáveis quantificadas em relação à legislação mostra que a qualidade dos sedimentos na área da Volta Grande se encontra em bom estado.

A conformidade das variáveis quantificadas nos pontos de coleta na área do Reservatório Intermediário também demonstra que apesar da intensa movimentação de sedimentos, supressão da vegetação e obras de engenharia não houve impacto significativo nos sedimentos dos cursos de água monitorados.

3. REFERÊNCIAS BIBLIOGRÁFICAS

APHA-AWWA-WEF. Standard Methods for the Examination of Water and Wastewater. 20th ed. Washington. 1998.

BRASIL. CONSELHO NACIONAL DO MEIO AMBIENTE – CONAMA. RESOLUÇÃO CONAMA Nº 454 - Estabelece as diretrizes gerais e os procedimentos mínimos para a avaliação do material a ser dragado em águas jurisdicionais brasileiras, e dá outras providências. Brasília, 17 p. 2012.

Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis - IBAMA. *Parecer Nº 168/2012*. Análise do 2º Relatório Semestral de Andamento do Projeto Básico Ambiental e das Condicionantes da Licença de Instalação Nº 795/2011, da Usina Hidrelétrica Belo Monte, processo Nº 02001.001848/2006-75, 20 de dezembro de 2012. 128 p. 2012.