

ESTUDO HIDROSSEDIMENTOLÓGICO À JUSANTE DA CASA DE FORÇA

SUMÁRIO

1.	INTRODUÇÃO	4
2. 2.1 2.2	DADOS DISPONÍVEIS Seções Topobatimétricas Caracterização dos Sedimentos de Fundo	5 5 6
3.	CARACTERIZAÇÃO DOS SEDIMENTOS EM SUSPENSÃO E ESTRATIFICAÇÃO DE VELOCIDADES	6
4. 4.1 4.2 4.3	MODELAGEM MATEMÁTICA Modelo Hec-Ras Descrição dos Princípios de Modelagem Considerações para a Modelagem.	18 18 23 26
5. 5.1 5.2 5.3 5.4	RESULTADOS DAS SIMULAÇÕES Calibração Avaliação do Potencial de Erosão Considerações Complementares Efeitos Hidrodinâmicos Localizados	32 32 36 42 58
6.	CONSIDERAÇÕES FINAIS	.60
7.	EQUIPE TÉCNICA	63
8.	REFERÊNCIAS BIBLIOGRÁFICAS	63
9.	ANEXOS	64

LISTA DE FIGURAS

FIGURA	3-1 -	Localização dos pontos de medição e amostragem de concentração ao longo de cada uma das cinco verticais na Seção 8
FIGURA	4-1 -	Painel principal do modelo HEC-RAS
FIGURA	4-2 -	Painel do arguivo de Plano do modelo HEC-RAS
FIGURA	4-3 -	Painel do arquivo de dados Geométricos (Topologia)19
FIGURA	4-4 -	Painel de inserção de dados geométricos das seções de cálculo
FIGURA	4-5 -	Painel de inserção da série de vazões e níveis
FIGURA	4-6 -	Painel de inserção de vazões com variação nos incrementos de tempo no
		cálculo da variação do leito
FIGURA	4-7 -	Painel de inserção de níveis a jusante21
FIGURA	4-8 -	Painel de inserção dos dados sedimentométricos22
FIGURA	4-9 -	Painel de inserção da granulometria de fundo22
FIGURA	4-10 -	Painel de inserção das condições de fronteira, no caso foi utilizada vazão
		sólida nula a montante23
FIGURA	4-11 -	Esquema de discretização da vazão ao longo do tempo
FIGURA	4-12 -	Esquema de cálculo com o uso da equação da conservação da quantidade
		de movimento
FIGURA	4-13 -	Esquema de cálculo do balanço de massa de sedimentos
FIGURA	4-14 -	Esquema da variação do leito numa dada seção
FIGURA	4-15 -	Seções de Calculo no rio Xingu
FIGURA	4-16 -	Envoltorias das curvas granulometricas em toda a extensão
FIGURA	4-17 -	Envoltorias das curvas granulometricas da seção 1 a seção 16
FIGURA	4-18 -	
FIGURA	5-1 -	Perfil do leito no trecho simulado para diferentes métodos de cálculo 37
FIGURA	5-2 -	Variação máxima em cada seção após simulação (em metros)
FIGURA	5-3 –	Perfil do leito da simulação com o método de Engelund-Hansen
FIGURA	5-4 –	Perfil do leito da simulação com o método de Ackers-White
FIGURA	5-5 –	Perfil do leito da simulação com o método de Yang40
FIGURA	5-6 –	Perfil do leito da simulação com o método de Toffaleti
FIGURA	5-7 –	Perfil do leito da simulação com o método de Laursen
FIGURA	5-8 –	Distribuição de Concentrações ao longo da vertical com a=0,05.h (Vanoni-
		1977)
FIGURA	5-9 -	Distribuição de Concentrações na seção 8
FIGURA	5-10 -	Variação da velocidade média ao longo do percurso
FIGURA	5-11 -	Variação da declividade da linha de energia ao longo do percurso
FIGURA	5-12 -	Variação da tensão de cisalhamento no leito ao longo do percurso
FIGURA	5-13 -	Variação do parametro de Shields ao longo do percurso
FIGURA	5-14 -	Variação do parametro de Rouse. Valores superiores a 3 indicam
	F 4 F	praticamente a imobilização dos sedimentos do leito
	5-15 -	Viração upico num trecho meandrado de rio
FIGURA	0-10-	Zona de sombra a jusante de lína
FIGURA	6-1 -	Detalhamento das seções de monitoramento e bancos62

LISTA DE TABELAS

TABELA 3-1	Medidas de velocidades e sedimentos em suspensão na seção 08, vertical 01
TABELA 3-2	Medidas de velocidades e sedimentos em suspensão na seção 08, vertical 02
TABELA 3-3	Medidas de velocidades e sedimentos em suspensão na seção 08, vertical 03
TABELA 3-4	Medidas de velocidades e sedimentos em suspensão na seção 08, vertical 04
TABELA 3-5	Medidas de velocidades e sedimentos em suspensão na seção 08, vertical 05 16
TABELA 3-6	Valores de velocidade média nas seções18
TABELA 4-1	Subintervalos de tempo considerados24
TABELA 4-2	Posição das seções
TABELA 5-1	Manning Calibrado - Seções S1 a S1135
TABELA 5-2	Manning Calibrado - Seções S12 a S28
TABELA 5-3	Resultados da Aferição
TABELA 5-4	Profundidade máxima em cada seção na condição original e após simulação de 75 anos para cada um dos métodos (cotas em metros)
TABELA 5-5	Variação máxima em cada seção após simulação (em metros)
TABELA 5-6	Distribuição de velocidades e concentrações na Seção 844
TABELA 5-7	Características hidráulicas da simulação com o método de Engelund* 46
TABELA 5-8	Variação dos parâmetros de Shields (*) e Rouse (z)53

LISTA DE GRÁFICOS

GRÁFICO 3-1 –	Medidas de concentração de sedimentos e velocidades em função variação da profundidade na seção 08. vertical 01	de 9
GRÁFICO 3-2 –	Medidas de concentração de sedimentos e velocidades em função variação da profundidade na seção 08, vertical 02.	de 11
GRÁFICO 3-3 –	Medidas de concentração de sedimentos e velocidades em função variação da profundidade na seção 08 vertical 03	de 13
GRÁFICO 3-4 –	Medidas de concentração de sedimentos e velocidades em função variação da profundidade na seção 08, vertical 04	de 15
GRÁFICO 3-5 –	Medidas de concentração de sedimentos e velocidades em função variação da profundidade na seção 08, vertical 05	de 17
GRÁFICO 5-1 –	Vazões (m3/s) Mensais Típicas em Óbidos e Belo Monte	33
GRÁFICO 5-2 – GRÁFICO 5-3 –	Curva-chave em Porto de Moz Curva-chave em Belo Monte (Boca de Santo Antonio)	33 34

1. Introdução

A condicionante (nº 2.40) da Licença Prévia do Empreendimento da UHE Belo Monte (LP nº 342/2010) contempla o estudo sobre a possibilidade de erosão do rio Xingu a jusante da barragem e das corredeiras da Volta Grande do Xingu, além da avaliação da estabilidade de alguns bancos de areia que afloram nesse trecho da ria e que servem de nidificação para os quelônios. Os principais esclarecimentos solicitados podem ser resumidos nos seguintes itens:

- Questionamento sobre a "utilização das cartas da Marinha como fonte de dados para se estipular as seções topobatimétricas", além das "relações feitas com os dados de maré" para se inferir as "cotas absolutas das seções em estudo". A preocupação seria sobre o "excesso de relações e estimativas na elaboração do modelo, principalmente relacionado à definição das seções topobatimétricas e aos níveis d'água utilizados como balizadores na aferição do modelo, os quais não foram devidamente explicitados (somente a curva-chave Boca de Santo Antonio)". Foram solicitados então, "esclarecimentos e questiona-se o porquê de não terem sido efetuadas seções topobatiméricas em campo".
- Verificação da "situação de vazões elevadas no rio Xingu e vazões baixas no rio Amazonas", com as linhas d'água apresentando "elevada declividade nos trechos de logo a jusante da casa de força" acentuando mais no "trecho de 40.000 m ate 60.000 m na região de ocorrências das praias". Para não parecer um contra-senso, foram solicitados esclarecimentos "haja vista o trecho ser caracterizado por haver grandes deposições de areia".
- Apresentação de uma variação "bastante significativa" nos "resultados da capacidade de transporte de sedimentos para cada equação empregada". Para as vazões no rio Xingu, "com exceção de um dos métodos para o qual o valor atingiu 10g/l, os demais forneceram concentrações abaixo de 400 mg/l". Apesar de considerável variação entre as equações aplicadas, para os outros cenários os valores teriam ficado "em sua grande parte abaixo de 10mg/l". Para concluir, foi constado que "com base nos gráficos apresentados, verifica-se que a seção onde se encontram as praias de desova possui relativamente, no trecho em estudo, uma grande capacidade de transporte de sólidos". Mesmo assim, o rio Xingu apresenta "valores bastante inferiores, quando comparado a rios de águas brancas da Amazônia".
- Recomendação de "solicitação de esclarecimentos acerca das conclusões citadas" sobre os "resultados apresentados no trecho onde há ocorrência de praias (S11 a S15), transporte de partículas de até 1,4 mm (S12)". Neste caso, teria sido dado destaque "somente à Seção S15, a qual representa a última seção do trecho principal em análise".
- Consideração sobre "retenção dos sedimentos nos reservatórios e os impactos a jusante", com base na simulação da capacidade de transporte de sedimentos na situação natural do rio Xingu. Esta consideração foi solicitada devido à avaliação inicial de que não haveria concordância com a conclusão sobre "os critérios para a determinação da condição crítica de início de transporte de fundo e em suspensão (conclusão iii)". Neste caso foi utilizada a simulação hidráulica anteriormente analisada e, sob a qual, "existem questionamentos acerca da representatividade das seções topobatimétricas adotadas, associadas principalmente ao uso da cartografia da Marinha e da aferição do modelo, entendemos ser necessária a apresentação dos esclarecimentos pertinentes, destacados ao longo deste Parecer, os quais poderão suscitar pedidos de complementações dos estudos".

Como forma de responder a esses questionamentos, foi prevista a realização de campanhas que possam fornecer as condições necessárias à modelação matemática do escoamento e da dinâmica de sedimentos nesse trecho da ria. Basicamente estes levantamentos tiveram como objetivo, além de levantar as seções de cálculo, fazer a caracterização sedimentométrica e do campo de velocidades na região dos bancos de areia.

Para a modelação matemática foi escolhido o Modelo HEC-RAS (River Analysis Sistem) desenvolvido pelo Hydrologic Engineering Center (HEC) – U.S.Corps of Engineering (www.hec.usace.army.mil). Trata-se de um sistema que reúne vários modelos unidimensionais que respondem a vários propósitos da fluviologia, dentre os quais a análise de transporte sólido (Sediment Transport Analysis). Trata-se de um sistema bastante versátil e suficiente para responder aos propósitos dos questionamentos tratados neste trabalho.

Para alimentar o modelo matemático foram realizadas campanhas topo-batimétricas em 28 seções onde foram também feitas as caracterizações granulométricas do material do leito. Procurou-se reproduzir as mesmas seções utilizadas em estudos anteriores para permitir que fosse feita uma comparação com os resultados estimados na fase do EIA/RIMA. Além destes levantamentos foram feitos outros complementares no sentido de melhorar as interpretações dos resultados de modelação matemática.

De posse destes novos dados e com as informações hidrológicas do trecho, tais como série de vazões na extremidade de montante e níveis na extremidade de jusante, informações estas necessárias para estabelecer as condições de fronteira na modelação passou-se à fase de calibração do modelo. Conhecendo-se a curva-chave a montante foram feitos os cálculos de remanso para diferentes vazões, ajustando os coeficientes de resistência (n de Manning) em todos os trechos. Este ajuste considerou a variabilidade do coeficiente de resistência com a profundidade de escoamento.

Com o modelo devidamente aferido passou-se a simulação utilizando uma série de vazões médias mensais disponíveis com duração de 75 anos (1931 a 2006). Considerou-se a hipótese mais conservativa que pressupõe a retenção total de sedimentos no reservatório a montante. Uma segunda consideração conservativa foi a de desprezar os efeitos de maré que no caso da estiagem do Xingu causa inversões do sentido do escoamento e com isto tende a arrastar o material de fundo para montante. Portanto, ao longo de toda a série histórica simulada, considerou-se a situação mais desfavorável para efeito de erosão com o escoamento permanentemente para jusante, condicionado pelos níveis na foz, junto ao rio Amazonas.

2. Dados Disponíveis

Foram feitos levantamentos topobatimétricos de 28 seções convenientemente distribuídas no trecho, coleta e análise de sedimentos de fundo em todas as seções e de sedimentos em suspensão na seção de referência, perfil de velocidades na seção de referência e velocidades médias nas seções nas imediações dos bancos Juncal e ilha do Cosme.

No **Anexo 1** constam algumas fotos que registram a execução dos serviços de coleta de amostras de sedimentos.

2.1 Seções Topobatimétricas

No **Anexo 2** constam a planta de localização e as 28 seções transversais topobatimétricas levantadas no trecho de 190 km do rio Xingu situado entre a futura Casa de Força da UHE Belo Monte e sua foz no rio Amazonas. Estas seções são suficientes e com elas é possível representar perfeitamente a morfologia da ria.

No **Anexo 3** constam as 28 seções em tabelas Excel, discretizadas na forma de pontos x/y/z (as duas primeiras informações correspondem às coordenadas planialtimétricas e a terceira à altimetria de cada ponto levantado).

O levantamento topo-batimétrico foi feito com o uso de estação total nos níveis acima da linha d'água, devidamente georreferenciados em relação aos marcos do IBGE. As batimetrias correspondentes foram levantadas fazendo uso de eco-batímetro apoiados com equipamentos de referenciamento de posição (estação total de apoio posicionada na margem).

Em cinco das seções foram feitas também as medições do campo de velocidades (S8 e S12 a S15).

2.2 Caracterização dos Sedimentos de Fundo

Em todas as seções de cálculo (28) foram colhidas amostras compostas do material constituinte do leito, para serem utilizadas na modelação sedimentológica. Além destas amostras foram coletadas amostragens em 16 pontos do banco Juncal e 5 pontos a jusante da Ilha São Cosme para estudos específicos sobre as formações destes bancos. A localização do ponto de coleta foi registrada por um GPS comum.

As amostragens foram realizadas com o uso de draga de coleta de material do leito em cinco verticais, colhendo um volume aproximado de 1 litro por vertical. Esta amostra foi quarteada até atingir um volume da ordem de 0,5 litro, que foi devidamente embalada em saco plástico resistente com etiqueta de identificação da amostra, data e local da amostragem, conforme fotos apresentadas no **Anexo 1**.

As amostras foram remetidas ao laboratório de sedimentometria para a realização dos ensaios de granulometria convencional por peneiramento.

Nas tabelas e gráficos apresentadas no **Anexo 4** constam os resultados das análises das amostras dos sedimentos de fundo coletadas em cada seção topobatimétrica e também das amostras coletadas nos bancos Juncal e a jusante da ilha São Cosme.

3. Caracterização dos Sedimentos em Suspensão e Estratificação de Velocidades

Por ocasião dos levantamentos topo-batimétricos das seções S8 e S12 a S15 foram registradas as velocidades médias ao longo das seções, seguindo os mesmos critérios de medição de vazão para rios com esta dimensão. Para tanto foi utilizado aparelho de hidrometria convencional (molinete calibrado, guincho com graduação e apoio de terra para determinação do posicionamento do ponto de medição de velocidades).

Estas velocidades foram levantadas numa situação de maré baixa e no período das cheias para caracterizar as condições mais desfavoráveis em termos de erosão dos bancos de areia.

Ainda na seção S8 foi feita uma medição detalhada da distribuição de velocidades e concentrações de sedimentos em 5 verticais distribuídas ao longo da largura da seção, juntamente com a coleta de sedimentos do leito em cada vertical separadamente. A distribuição dos pontos onde foram feitas as medições de velocidade e amostragem de sedimentos situaram-se a 0,05 h, 0,10 h, 0,2 h, 0,3 h, 0,4 h, 0,5 h, 0,6 h e 0,8 h em relação ao fundo, em que h é a profundidade na respectiva vertical. A **FIGURA 3-1** ilustra essa distribuição de pontos de medição e amostragens.

FIGURA 3-1 - Localização dos pontos de medição e amostragem de concentração ao longo de cada uma das cinco verticais na Seção 8

Este levantamento permitirá caracterizar melhor o transporte sólido numa seção onde ainda não há processo de deposição. As amostras de concentração foram devidamente identificadas, com indicação do local, posição na vertical e data.

Estas amostras foram enviadas ao laboratório de sedimentometria onde foram determinadas as concentrações. A metodologia empregada foi a de filtração por gravidade.

Os resultados das análises dos sedimentos em suspensão e das velocidades nas cinco verticais a diversas profundidades na seção de referência, bem como as velocidades médias nas seções próximas aos bancos Juncal e ilha São Cosme constam das tabelas e gráficos apresentados a seguir.

TABELA 3-1Medidas de velocidades e sedimentos em suspensão na seção 08, vertical 01

			RIO XINGU			
		ESTRATIFIC/	ação de veloc	CIDADES		
	E	STRATIFICA	ção de conce	NTRAÇÃO		
SEÇÃO ()8		NÍVEL DAGUA	0,84		
VERTICAL	.01	COOR	DENADAS			
		LESTE	N ORTE			
		397943	9677804			
PROFUNDIDADE	PROF. (m)	ROTAÇÃO	VELOCIDADE	profundidades	CONCEN	ſRAÇÃO
TOTAL	7,44	(N)	(m/s)	(m)	GARRAFA	(mg/l)
				7,44		
0,2	1,49	115	0,60	7,19	332	35
0,3	2,23	107	0,56	5,95		
0,4	2,98	95	0,50	5,21	1445	37
0,5	3,72	93	0,49	4,46	4	41
0,6	4,46	91	0,48	3,72	1451	45
0,7	5,21	89	0,47	2,98	1452	53
0,8	5 <i>,</i> 95	87	0,46	2,23	126	55
0,9	6,70	82	0,43	1,49	333	57
0,95	7 <i>,</i> 07	79	0,42	0,74	1446	69
FUNDO - 0,25	7,19	76	0,40	0,37		

GRÁFICO 3-1 – Medidas de concentração de sedimentos e velocidades em função de variação da profundidade na seção 08, vertical 01

TABELA 3-2Medidas de velocidades e sedimentos em suspensão na seção 08, vertical 02

			RIO XINGU			
		ESTRATIFIC/	AÇÃO DE VELOO	CIDADES		
	E:	STRATIFICA	ÇÃO DE CONCEI	NTRAÇÃO		
SEÇÃO ()8		NÍVEL DAGUA	0,84		
VERTICAL	.02	COOR	DENADAS			
		LESTE	NORTE			
		398188	9677962			
PROFUNDIDADE	PROF. (m)	ROTAÇÃO	VELOCIDADE	profundidades	CONCEN	TRAÇÃO
TOTAL	12 <i>,</i> 53	(N)	(m/s)	(m)	GARRAFA	(mg/l)
				12,53		
0,2	2,51	162	0,84	12,28	2366	48
0,3	3,76	142	0,74	10,02		
0,4	5,01	164	0,85	8,77	134	51
0,5	6,27	144	0,75	7,52	135	55
0,6	7,52	135	0,70	6,27	132	55
0,7	8,77	128	0,67	5,01	133	55
0,8	10,02	117	0,61	3,76	128	57
0,9	11,28	109	0,57	2,51	129	57
0,95	11 <i>,</i> 90	98	0,51	1,25	35	59
FUNDO - 0,25	12,28	91	0,48	0,63		

GRÁFICO 3-2 – Medidas de concentração de sedimentos e velocidades em função de variação da profundidade na seção 08, vertical 02

11

TABELA 3-3

Medidas de velocidades e sedimentos em suspensão na seção 08, vertical 03

			RIO XINGU			
	E	STRATIFICA	ção de veloc	IDADES		
	ES	TRATIFICAÇ	ÃO DE CONCEN	ITRAÇÃO		
SEÇÃO (08		NÍVEL DAGUA	0,84		
VERTICAL	. 03	COOR	DENADAS			
		LESTE	NORTE			
		398643	9678200			
PROFUNDIDADE	PROF. (m)	ROTAÇÃO	VELOCIDADE	profundidades	CONCENT	RAÇÃO
TOTAL	10,01	(N)	(m/s)	(m)	GARRAFA	(mg/l)
				10,01		
0,2	2,002	156	0,81	9,76	1080	32
0,3	3,003	153	0,79	8,01		
0,4	4,004	154	0,80	7,01	145	49
0,5	5,005	148	0,77	6,01	200	56
0,6	6,006	142	0,74	5,01	158	56
0,7	7,007	144	0,75	4,00	718	57
0,8	8,008	142	0,74	3,00	709	58
0,9	9,009	109	0,57	2,00	131	61
0,95	9,5095	96	0,50	1,00	7	62
FUNDO - 0,25	9,76	72	0,38	0,50		

GRÁFICO 3-3 – Medidas de concentração de sedimentos e velocidades em função de variação da profundidade na seção 08, vertical 03

LEME

TABELA 3-4Medidas de velocidades e sedimentos em suspensão na seção 08, vertical 04

			RIO XINGU			
		ESTRATIFIC	AÇÃO DE VELOC	IDADES		
	E	STRATIFICA	ÇÃO DE CONCEN	ITRAÇÃO		
SEÇÃO ()8		NÍVEL DAGUA	0,84		
VERTICAL	. 04	COOR	RDENADAS			
		LESTE	NORTE			
		399083	9678366			
PROFUNDIDADE	PROF. (m)	ROTAÇÃO	VELOCIDADE	profundidades	CONCENT	RAÇÃO
TOTAL	9,17	(N)	(m/s)	(m)	GARRAFA	(mg/l)
				9,17		
0,2	1,83	123	0,64	8,92	1441	33
0,3	2,75	124	0 <i>,</i> 65	7,34		
0,4	3,67	110	0,57	6,42	42	37
0,5	4,59	107	0,56	5 <i>,</i> 50	294	42
0,6	5 <i>,</i> 50	102	0,53	4,59	199	46
0,7	6,42	78	0,41	3,67	43	56
0,8	7 <i>,</i> 34	50	0,27	2,75	41	59
0,9	8 <i>,</i> 25	42	0,23	1,83	40	59
0,95	8,71	37	0,20	0,92	201	60
FUNDO - 0,25	8 <i>,</i> 92	33	0,18	0,46		

GRÁFICO 3-4 – Medidas de concentração de sedimentos e velocidades em função de variação da profundidade na seção 08, vertical 04

TABELA 3-5Medidas de velocidades e sedimentos em suspensão na seção 08, vertical 05

			RIOXINGU			
		ESTRATIFIC	AÇÃO DE VELOCI	DADES		
	ES	STRATIFICAÇ	CÃO DE CONCEN	TRAÇÃO		
SEÇÃO ()8		NÍVEL DAGUA	0,84		
VERTICAL	.05	COOF	RDENADAS			
		LESTE	NORTE			
		399538	9678576			
PROFUNDIDADE	PROF. (m)	ROTAÇÃO	VELOCIDADE	profundidades	CONCENT	RAÇÃO
TOTAL	8 <i>,</i> 54	(N)	(m/s)	(m)	GARRAFA	(mg/l)
				8,54		
0,2	1,71	138	0,72	8,29	166	33
0,3	2 <i>,</i> 56	121	0,63	6,83		
0,4	3,42	104	0,54	5,98	48	35
0,5	4,27	96	0,50	5,12	45	40
0,6	5,12	81	0,43	4,27	161	44
0,7	5 <i>,</i> 98	75	0,40	3,42	47	48
0,8	6 <i>,</i> 83	68	0,36	2,56	37	61
0,9	7,69	54	0,29	1,71	39	64
0,95	8,11	51	0,27	0,85	44	76
FUNDO - 0,25	8,29	45	0,24	0,43		
FUNDO - 0,25						

GRÁFICO 3-5 – Medidas de concentração de sedimentos e velocidades em função de variação da profundidade na seção 08, vertical 05

	RIO XINGU								
	ESTRATIFICAÇÃO DE VELOCIDADES								
	ESTRATIFICAÇÃO DE CONCENTRAÇÃO								
seção	rotações velocidade								
	(N1)	(N 2)	(N3)	média					
				(m/s)					
12	120	56	110	0,50					
13	89	95	92	0,48					
14	70	58	35	0,29					
15	67	65	63	0,35					

TABELA 3-6 Valores de velocidade média nas seções

4. modelagem Matemática

4.1 Modelo Hec-Ras

O Sistema HEC-RAS reúne quatro modelos unidimensionais que tratam do escoamento permanente gradualmente variado, escoamento não permanente (modelo hidrodinâmico), análise de transporte de sedimentos e qualidade da água. Estes modelos são integrados e utilizam a mesma base de informações para a caracterização da geometria das seções, posicionamento, e outras informações que podem ser utilizadas em comum a todos os modelos, dando-lhe com isto grande versatilidade na sua utilização.

A Figura a seguir mostra o painel principal do projeto Xingu que resultou na modelagem do trecho de interesse. Os botões na parte superior deste painel habilitam as principais ações tais como a inserção da geometria, dados para a modelação hidrodinâmica em regime permanente, não permanente e quase permanente, dados para a caracterização sedimentométrica, entre outros. Os botões mais a direita apresentam os resultados na forma gráfica, com possibilidade de animação, ou na forma de tabela com a possibilidade de escolha dos dados de saída.

File Edit	Run View Options GIS Tools Help	
		⊻ጄெ₩₽Ľ≆⋈陞◨▦┏₨ ∦ゐ
Project:	KINGU2011COMPLETOENGELUND	C:\\ModelodetesteHECRAS\XINGU2011COMPLETOEN.prj
Plan:	XINGU2011_COMPLETO_ENGELUND	C:\\ModelodetesteHECRAS\XINGU2011COMPLETOEN.p25
Geometry:	Calibragem_n4	C:\\ModelodetesteHECRAS\XINGU2011COMPLETOEN.g04
Steady Flow: Quasi Unstea	l dyQuaseUniformeXingu_2011_70ANOS	C:\\ModelodetesteHECRAS\XINGU2011COMPLETOEN.g04
Unsteady Flov Sediment:	v: I SedXingu2011COMP_ENGELUND.s03	I C:\\ModelodetesteHECRAS\XINGU2011C0MPLET0EN.s23
Description :	MODELO XINGU COMPLETO	🐣 🛄 SI Units

FIGURA 4-1 - Painel principal do modelo HEC-RAS

Na FIGURA 4-2 há a identificação dos seguintes arquivos:

- Projeto arquivo mestre que engloba os demais (primeira linha-caixa à esquerda) com o respectivo endereço (caixa a direita);
- Plano, correspondente à aplicação do modelo ("rodar o modelo");
- Geometria, arquivo com todos os dados das seções, posicionamento, fator de resistência de Manning já calibrado para cada seção.

File Options Help			
Plan : XINGU2011_COMP	LETO_ENGELUND	Short ID ENG	ELUND1
Geometry File :			
Quasi-Unsteady Flov	v: QuaseUniformeXing	u_2011_70ANOS	
Sediment Data :	SedXingu2011COM	P_ENGELUND.s03	
-Simulation Time Window- Starting Date: [Ending Date: [D1JAN1931	Starting Time: 000 Ending Time: 240	1
Plan D	escription :		
ROD/ 70 AM	ADA COMPLETA COM I NOS - ENGELUND	DS DADOS DE CAMPO -	
1	Compute		

FIGURA 4-2 - Painel do arquivo de Plano do modelo HEC-RAS

le Edit	options view	lables look	s GIS Tools Help			
Tools F	iver each Area →	n Pump Station	99 Description :		Plot WS extents for Profile:	(none)
lunct.	Add a stream	node to set rive	er stationing on a river reach	5 75	0	
ross ection				5600 5100		
g/Culv				4500 Euclid		
iline ucture				4325		
teral			K	4175		
acture			× 407	4100		
rage			\checkmark			
xrage rea			4025			
rage rea rage conn.			4025 4000 3875 3925 3900			
actore rea a Conn.			4025 3975 3920 3825 1700			
orage area ump ation	nna nžiha VCia sra	Opp Deferenced	4025 4000 3975 3900 3825 1700	Can Bef Internolated VS	lon filen Bef user entered VS Monte	Cao Ba

FIGURA 4-3 - Painel do arquivo de dados Geométricos (Topologia)

O arquivo de dados Geométricos apresenta uma ampla possibilidade de inserções tais como afluências, bifurcações, introdução de estruturas. A principal refere-se à inserção das seções de cálculo apresentado no painel da **FIGURA 4-4**.

FIGURA 4-4 - Painel de inserção de dados geométricos das seções de cálculo

Na **FIGURA 4-5** tem-se as condições do regime Quase Permanente, arquivo dos dados necessários aos cálculos hidrodinâmicos contendo a série de vazões, temperaturas e condição de fronteira a jusante na condição de regime quase permanente, aplicável à modelação sedimentológica:

Boundary Condition Types Flow Series Lateral Flow Series Uniform Latera Normal Depth Stage Series Rating Cur T.S. Gate Openings Select Location for Boundary Condition Reserved Series Add Flow Change Location(s) Delete Current Row Reserved Series I. Briver Reach RS Boundary Condition Type I. Briver Reach FS Boundary Condition Type	_ateral Flov g Curve	Uniform Late Rating C	ondition Types Flow Series	Boundary C Lateral	orion		
Flow Series Lateral Flow Series Uniform Latera Normal Depth Stage Series Rating Cur T.S. Gate Openings Select Location for Boundary Condition Rating Cur (Add Flow Change Location(s)) Delete Current Row Reach RS 1 Briver Reach FS Boundary Condition Type 1 Exclidit F250 Elever Series Redition Type	.ateral Flou g Curve	Uniform Late Rating C	Flow Series	Lateral	orion		
Normal Depth Stage Series Rating Cur T.S. Gate Openings Select Location for Boundary Condition (Add Flow Change Location(s)) Delete Current Row River Reach RS Boundary Condition Type 1 Exclid 5750 Flow Series	g Curve	Rating C			ciles	Flow S	
T.S. Gate Openings Select Location for Boundary Condition (Add Flow Change Location(s)) Delete Current Row River Reach RS Boundary Condition Type 1 Euclid Fixed F			Stage Series		Normal Depth		
Select Location for Boundary Condition Add Flow Change Location(s)) Delete Current Row River Reach RS Boundary Condition Type I Fundin From France					Openings	T.S. Gate	
Add Flow Change Location(s)) Delete Current Row River Reach RS Boundary Condition Type Fundid Euclid 5750 Flow Series		an	r Boundary Condi	lect Location to	Se		
River Reach RS Boundary Condition Type			Current Row	Delete (ge Location(s))	d Flow Chan	Ă
1 Euclid Euclid 5750 Flow Series	/pe	ary Condition Type	Boun	RS	Reach	River	0
The state of the s			Flow Series	5750	Euclid	Euclid	1
2 Euclid Euclid 1700 Stage Series			Stage Series	1700	Euclid	Euclid	2

FIGURA 4-5 - Painel de inserção da série de vazões e níveis

A tela da **FIGURA 4-6** mostra a entrada de dados que possibilita a série histórica de dados de vazões seja discretizada em passos (time step) que variáveis em função da capacidade de transporte sólido de vazão considerada. Assim sendo, as vazões mais elevadas, com maior capacidade de transporte tem incrementos de tempo (time step) menores no cálculo das variações do leito ao contrário do que ocorre com as vazões menores.

۰.	Jse Simulation Fixed Start Time	Time: :		Date Date	01JAN1931	Time: 0001 Time: 0001	
	2010		Hyd	drograph Data			_
No	o. Ordinates	Inter	polate Values	Del Row	Ins Row		
	Simulatio	n	Elapsed	Flow	Computation		
	Time		Time	Duration	Increment	Flow	
			(hours)	(hours)	(hours)	(m3/s)	_
1	01jan1931 0	0001	744	744	240	6812	
2	01fev1931 0	0001	1416	672	120	11821	
3	01mar1931	0001	2160	744	60	17142	
4	01abr1931 (0001	2880	720	24	25713	
5	01mai1931 (0001	3624	744	24	21060	
6	01jun1931 0	0001	4344	720	240	9464	
7	01jul1931 0	001	5088	744	360	3026	-
8	01ago1931	0001	5832	744	720	1621	•
	Compute comp	utation	n increments bas Qhigh	sed on flow]		
_	1	1	2000	720]		
1	2 20	00	4000	360			
	3 40	00	6000	240			
12	4 60	UŬ	8000	240			
	5 80	00	10000	240			
1	6 <u>1</u> 100	00	12000	120	2		

FIGURA 4-6 - Painel de inserção de vazões com variação nos incrementos de tempo no cálculo da variação do leito

⊂ [] • F	Ise Simulation Time: ixed Start Time:		Date: 01. Date: 01.	JAN1931 Time: 0001 JAN1931 Time: 0001
		Hyd	rograph Data	
No	. Ordinates Inter	polate Values	Del Row Ins	Row
	Simulation	Elapsed	Stage	
	Time	Time	Duration	Stage
		(hours)	(hours)	(m)
1	01jan1931 0001	744	744	2.84
2	01fev1931 0001	1416	672	2 3.06
3	01mar1931 0001	2160	744	3.4
4	01abr1931 0001	2880	720	3.89
5	01mai1931 0001	3624	744	4.1
6	01jun1931 0001	4344	720	3.97
7	01jul1931 0001	5088	744	3.58
8	01ago1931 0001	5832	744	3.13
9	01set1931 0001	6552	720	2.66
10	01out1931 0001	7296	744	1 2.35
11	01nov1931 0001	8016	720	2.46
12	01dez1931 0001	8760	744	2.62
13	01jan1932 0001	9504	744	2.93
14	01fev1932 0001	10200	696	3.39
15	01mar1932 0001	10944	744	3.84
16	01abr1932 0001	11664	720	4.19

FIGURA 4-7 - Painel de inserção de níveis a jusante

FIGURA 4-8, sedimento, arquivo que contém os dados sedimentométricos e opções de métodos de cálculo da capacidade de transporte sólido, equações para as considerações quanto ao efeito de pavimentação do leito e equações que definem a velocidade de queda do sedimento. Existem ainda opções para a inserção de outras características tais como o peso específico do sedimento, profundidade máxima de erosão, calibração de equações.

No caso da análise de transporte sólido, que é o interesse principal deste trabalho, o modelo permite trabalhar com até sete equações de transporte sólido não coesivo (Engelund-Hansen, Ackers-White, Yang, Toffaleti, Laursen, Meyer-Peter e Muller, Wilcock), algumas das quais podendo ter seus parâmetros ajustados no caso de haver necessidade de aferição. Além destas equações o modelo também permite tratar do transporte sólido de sedimentos coesivos, se for o caso.

FIGURA 4-8 - Painel de inserção dos dados sedimentométricos

FIGURA 4-9, existe a opção de definir a granulometria de fundo em cada seção de cálculo, a série de vazões na seção de montante e correspondente granulometria do material transportado.

FIGURA 4-9 - Painel de inserção da granulometria de fundo

🖌 Sediment Data	- SedXingu2011C	DMP_ENGELU	ND.s03		
File Options V	ïew Help				
Initial Conditions a	nd Transport Parame	ters Boundar	y Conditions		
l.		Select Loc	ation for Sedim	ent Boundary Condition	
Add Sediment E	oundary Location(s)	Delete Cu	rrent Row		
		Sedi	ment Boundary	Condition Types	
Rating (Curve	Sediment Loa	d Series	Equilibrium Load	
Riv\SA	Reach	RS	1		
1 Euclid	Euclid	5750	Rating Curv	/e.	

FIGURA 4-10 - Painel de inserção das condições de fronteira, no caso foi utilizada vazão sólida nula a montante.

Mais detalhes das opções de cálculo podem ser consultadas nos arquivos disponibilizados na página da instituição (www.hec.usace.army.mil).

4.2 Descrição dos Princípios de Modelagem

Na análise sedimentológica, o modelo HEC-RAS considera o escoamento como sendo quase permanente, ou seja, dentro de intervalos de tempo pré-definidos considera-se que não haja variação temporal das características hidráulicas. A capacidade de transporte sólido ao longo do curso d'água é calculada para estas condições de escoamento em regime permanente a cada intervalo de tempo.

Os intervalos de tempo podem ser subdivididos em intervalos menores para considerar as variações das características hidráulicas decorrentes das mudanças do leito, porém mantendo a invariabilidade das condições no tempo. Assim sendo, nas vazões de cheias, quando a capacidade de transporte sólido é mais significativa, estes intervalos são menores no período de estiagem estes intervalos podem ser ampliados (ver ilustração da **FIGURA 4-11**). Nas aplicações ao Xingu foram considerados intervalos mensais, utilizando a vazão média do período (ver dados em anexo). Os subintervalos adotados foram os seguintes:

Q	dt
(m³/s)	(horas)
10.000 a 14.000	120
14.000 a 20.000	60
20.000 a 40.000	24

TABELA 4-1 Subintervalos de tempo considerados

Será visto mais adiante que os resultados de cálculo apresentaram variações discretas no trecho de montante e, portanto não houve necessidade de ajustes nestes intervalos de tempo adotados.

O cálculo da fase líquida é feito pela aplicação do princípio da conservação da quantidade de movimento, conforme o seguinte esquema de cálculo:

FIGURA 4-12 - Esquema de cálculo com o uso da equação da conservação da quantidade de movimento (Figura extraída do Reference Manual – HEC-RAS)

Na equação da conservação da quantidade de movimento da **FIGURA 4-12** as simbologias são as seguintes:

- Q1 e Q2 são as vazões nas seções de saída (1) e entrada (2);
- β coeficiente de Boussinesq;
- A área da seção de escoamento;
- Y profundidade de escoamento;
- L distância entre as seções;
- So declividade do leito;
- Sf declividade da linha de energia.

O balanço de massa de sedimentos transportado no volume de controle que abrange uma determinada seção é feito de acordo com o seguinte esquema:

FIGURA 4-13 - Esquema de cálculo do balanço de massa de sedimentos (Figura extraída do Reference Manual – HEC-RAS)

Da diferença entre a vazão sólida procedente do trecho de montante e da capacidade do trecho onde está sendo feito o cálculo ocorrerá a modificação do leito produzindo rebaixamento (erosão) ou elevação (assoreamento) entre os pontos definidos como limites de erosão, conforme o esquema da **FIGURA 4-14**.

FIGURA 4-14 - Esquema da variação do leito numa dada seção (Figura extraída do Reference Manual – HEC-RAS)

Detalhes sobre os métodos de cálculo de capacidade de transporte sólido ou opções de cálculos podem ser vistos na página da instituição (www.hec.usace.army.mil).

4.3 Considerações para a Modelagem

A extensão de modelagem do rio Xingu é de cerca de 185 km entre a primeira seção a jusante do aproveitamento (seção 1) e a foz (seção 28 – ver item 2). Procurou-se posicionar as 28 seções em locais próximos aos utilizados nos estudos do EIA/RIMA, aproveitando os mesmos critérios de escolha da época e também para possibilitar uma análise comparativa com os resultados anteriores.

FIGURA 4-15 - Seções de Cálculo no rio Xingu

TABELA 4-2 Posição das seções

Seção	х
	(Km)
1	0.0
2	6.6
3	8.5
4	11.9
5	15.1
6	19.2
7	22.2
8	28.0
9	32.0
10	40.2
11	45.9
12	53.5
13	56.9
14	59.7
15	67.4
16	75.1
17	83.7
18	92.7
19	103.3
20	118.4
21	130.9
22	138.4
23	147.1
24	159.7
25	168.8
26	177.1
27	180.3
28	185.3

As seções 11 e 15 delimitam o trecho que compreendem a região dos bancos de areia Juncal e da Ilha S. Cosme. Este trecho se estende aproximadamente entre 46 Km e 67 Km a jusante da seção 1. A seção 8 indica o local onde foram feitos levantamentos adicionais de distribuição de concentrações e velocidades.

Como condição de fronteira da seção de montante (seção 1) adotou-se uma série de vazões médias mensais do período compreendido entre janeiro de 1931 e dezembro de 2006, perfazendo um total de 75 anos. A condição de fronteira de jusante (seção 28) são os níveis d'água correspondentes às vazões médias mensais de montante.

Adotando um critério conservativo considerou-se o escoamento sem influência de maré, portanto sem inversão de correntes e a retenção de todos os sedimentos no reservatório do aproveitamento. Na primeira consideração as correntes alcançam os maiores valores de tensão sobre o leito uma vez que não ocorrerão situações de estagnação ou inversão de correntes. Na segunda o potencial erosivo fica maximizado uma vez que não haverá qualquer suprimento de sedimentos na seção 1 de montante.

Na modelação foram utilizadas as granulometrias de cada seção. O modelo, conforme já foi visto, permite considerar a distribuição granulométrica dos sedimentos nos cálculos de capacidade de transporte sólido, não ficando restrito a apenas um diâmetro significativo. Para melhor visualizar a faixa de variação da distribuição granulométrica, apresentam-se na **FIGURA 4-16** as curvas que representam a envoltória granulométrica de todo o trecho modelado. Observa-se nesta Figura que a seção 1 apresenta uma granulometria na faixa das areias grossas (d50 = 2,0 mm) que se destaca em relação às demais ao longo de toda a extensão estudada. Há uma predominância maior das areias finas na faixa com d50 da ordem de 0,2 mm 0,4 mm. Em algumas seções do trecho intermediário a jusante da seção 16 apresentam granulometrias notadamente mais finas devido a sua baixa capacidade de transporte.

FIGURA 4-16 - Envoltórias das curvas granulométricas em toda a extensão

No trecho superior, entre as seções 1 e 16, que compreende a região dos bancos de Juncal e Ilha S. Cosme a granulometria varia gradualmente da areia grossa à areia fina como podese observar na **FIGURA 4-17** com d50 variando entre 2,0 mm da seção 1 a 0,2 mm na seção 14, região dos bancos.

FIGURA 4-17 - Envoltórias das curvas granulométricas da seção 1 à seção 16

A **FIGURA 4-18** mostra a variação do diâmetro mediano d50 entre as seções 1 e 16, trecho de maior interesse ao estudo. Pode-se verificar um decaimento das dimensões dos grãos, devido à seleção granulométrica natural que ocorre com o decaimento da capacidade de transporte.

FIGURA 4-18 - Variação do d50 até a seção 16

5. Resultados das Simulações

5.1 Calibração

Antes de dar início à modelagem sedimentológica foi necessário realizar a aferição hidráulica do modelo matemático (HEC-RAS 4.1) através do ajuste dos coeficientes de rugosidade de Manning até que os níveis d'água simulados coincidissem com os valores conhecidos a partir da curva-chave de montante em Belo Monte.

Os dados básicos utilizados na aferição do modelo foram as vazões no rio Xingu, abrangendo toda a gama de interesse, os níveis d'água na foz do Xingu e na seção correspondente ao Canal de Fuga da Casa de Força Principal da AHE Belo Monte (Boca do Santo Antonio). Os **GRÁFICOS 5-1 a 5-3**, mostram os dados básicos utilizados.

GRÁFICO 5-1 – Vazões (m³/s) Mensais Típicas em Óbidos e Belo Monte

Conforme se verifica no Gráfico acima as vazões do rio Amazonas são de ordem de 10 vezes as do rio Xingu nas cheias e de ordem de 100 vezes na estiagem. Ou seja, o nível d'água em Porto de Moz depende fundamentalmente da vazão do Amazonas.

GRÁFICO 5-2 – Curva-chave em Porto de Moz

Observação: correlação obtida utilizando-se as vazões médias mensais de Óbidos e níveis médios mensais de Porto de Moz no período de 1979 a 1998; cotas na referência do IBGE.

GRÁFICO 5-3 – Curva-chave em Belo Monte (Boca de Santo Antonio)

Observação: Curva chave obtida dos Estudos de Viabilidade da AHE Belo Monte; cotas na referencia do IBGE

O processo de calibragem se iniciou a partir da escolha nas séries históricas de vazões típicas em Óbidos, no Amazonas e Belo Monte no Xingu (**GRÁFICO 5-1**), que fossem representativas das vazões médias mensais nestes dois locais. Em seguida, com a correlação das vazões em Óbidos e cotas em Porto Moz (**GRÁFICO 5-2**), foi possível definir os níveis de jusante na foz do Xingu.

A aferição da ria do Xingu foi o resultado do ajuste das rugosidades de Manning no modelo matemático de forma a reproduzir os níveis de montante observados em Belo Monte (**GRÁFICO 5-3**). As **TABELAS 5-1 e 5-2** apresentam o ajuste final do coeficiente de Manning entre as seções S1 a S28. A **TABELA 5-3** mostra o resultado desta aferição.

TABELA 5-1 Manning Calibrado - Seções S1 a S11

Cota (m)	n
0,00	0,055
3,50	0,045
3,90	0,035
4,90	0,030
5,00	0,030
6,00	0,025
7,00	0,025

TABELA 5-2Manning Calibrado - Seções S12 a S28

Cota (m)	n
0,00	0,055
2,90	0,045
3,00	0,035

TABELA 5-3 Resultados da Aferição

Vazão	Cota	DIFERENÇA	
(m3/s)	OBSERVADO	AFERIÇÃO	(m)
1.328	3,20	3,13	0,07
9.209	4,80	4,76	0,04
13.885	5,45	5,6	-0,15
18.273	6,3	6,45	-0,15
19.343	6,60	6,65	-0,05

5.2 Avaliação do Potencial de Erosão

Fazendo-se as simulações, atendendo aos critérios vistos anteriormente, foram obtidas as variações dos perfis de fundo. Estas variações são apresentadas na **TABELA 5-4**. e **FIGURA 5-1**. A **TABELA 5-2** e **FIGURA 5-2** apresentam as respectivas variações do leito em relação a posição original. Os valores desta última tabela correspondem às diferenças entre os valores da cota de fundo após o período de simulação (75 anos) e a cota original. Assim sendo, valores negativos são referentes a processos erosivos e os positivos a processos de assoreamento. Foram utilizados todos os métodos disponíveis para a modelação a menos os de Meyer-Peter e Muller e de Wilcock por não terem apresentado alterações de leito em simulações realizadas previamente.

TABELA 5-4

Profundidade máxima em cada seção na condição original e após simulação de 75 anos para cada um dos métodos (cotas em metros)

SEÇÃO	ORIGINAL	ENGELUND	ACKERS	YANG	TOFFALETI	LAURSEN
1	-12.1	-13.3	-12.1	-12.1	-12.1	-12.1
2	-16.1	-17.7	-16.9	-16.9	-16.9	-16.9
3	-16.1	-20.9	-16.0	-16.0	-16.0	-16.0
4	-4.4	-4.5	-4.4	-4.4	-4.4	-4.4
5	-16.3	-16.8	-16.3	-16.3	-16.3	-16.3
6	-11.5	-11.5	-11.5	-11.5	-11.5	-11.5
7	-6.2	-6.3	-6.2	-6.2	-6.2	-6.2
8	-8.0	-7.8	-8.0	-8.0	-8.0	-8.0
9	-5.7	-7.1	-5.7	-5.7	-5.7	-5.7
10	-14.0	-14.4	-14.0	-14.0	-14.0	-14.0
11*	-13.6	-13.2	-13.6	-13.6	-13.6	-13.6
12	-22.1	-21.3	-22.1	-22.1	-22.1	-22.1
13	-17.5	-17.0	-17.5	-17.5	-17.5	-17.5
14	-24.2	-23.9	-24.2	-24.2	-24.2	-24.2
15	-21.4	-21.3	-21.4	-21.4	-21.4	-21.4
16	-9.4	-9.4	-9.4	-9.4	-9.4	-9.4
17	-12.9	-12.9	-12.9	-12.9	-12.9	-12.9
18	-8.8	-8.8	-8.8	-8.8	-8.8	-8.8
19	-9.6	-9.6	-9.6	-9.6	-9.6	-9.6
20	-38.2	-38.2	-38.2	-38.2	-38.2	-38.2
21	-34.5	-34.5	-34.5	-34.5	-34.5	-34.5
22	-17.8	-17.8	-17.8	-17.8	-17.8	-17.8
23	-25.3	-25.3	-25.3	-25.3	-25.3	-25.3
24	-19.0	-19.1	-19.0	-19.0	-19.0	-19.0
25	-22.8	-23.4	-22.8	-22.8	-22.8	-22.8
26	-28.4	-28.5	-28.4	-28.4	-28.4	-28.4
27	-18.7	-19.2	-18.7	-18.7	-18.7	-18.7
28	-43.3	-43.3	-43.3	-43.3	-43.3	-43.3

*Obs: As células sombreadas compreendem o trecho onde estão os bancos de areia.

Observa-se nos resultados apresentados nesta tabela que não há variações expressivas do leito. Apenas no método de Engelund-Hansen houve alguma erosão no trecho inicial com maior intensidade na seção 3, chegando a uma variação da ordem de 5,0 m. Neste mesmo método, foi notado um ligeiro assoreamento no trecho dos bancos, provavelmente devido à erosão de montante. Nos demais métodos observou-se apenas situação de estabilidade.

FIGURA 5-1 - Perfil do leito no trecho simulado para diferentes métodos de cálculo (seção 1 ordenada zero)

.

SEÇÃO	ENGELUND	ACKERS	YANG	TOFFALETI	LAURSEN
1	-1.2	0.0	0.0	0.0	0.0
2	-1.6	-0.8	-0.8	-0.8	-0.8
3	-4.9	0.1	0.1	0.1	0.1
4	-0.1	0.0	0.0	0.0	0.0
5	-0.5	-0.0	-0.0	-0.0	-0.0
6	0.0	0.0	0.0	0.0	0.0
7	-0.0	0.0	0.0	0.0	0.0
8	0.2	0.0	0.0	0.0	0.0
9	-1.4	0.0	0.0	0.0	0.0
10	-0.4	0.0	0.0	0.0	0.0
11*	0.4	-0.0	-0.0	-0.0	-0.0
12	0.7	-0.0	-0.0	-0.0	-0.0
13	0.5	0.0	0.0	0.0	0.0
14	0.4	0.0	0.0	0.0	0.0
15	0.1	-0.0	-0.0	-0.0	-0.0
16	0.0	0.0	0.0	0.0	0.0
17	0.0	0.0	0.0	0.0	0.0
18	0.0	0.0	0.0	0.0	0.0
19	0.0	0.0	0.0	0.0	0.0
20	0.0	0.0	0.0	0.0	0.0
21	0.0	0.0	0.0	0.0	0.0
22	0.0	0.0	0.0	0.0	0.0
23	0.0	0.0	0.0	0.0	0.0
24	-0.1	0.0	0.0	0.0	0.0
25	-0.6	0.0	0.0	0.0	0.0
26	-0.1	0.0	0.0	0.0	0.0
27	-0.5	0.0	0.0	0.0	0.0
28	0.0	0.0	0.0	0.0	0.0

TABELA 5-5Variação máxima em cada seção após simulação (em metros)

*Obs: As células sombreadas compreendem o trecho onde estão os bancos de areia; Valores negativos- erosão e positivos - assoreamento.

FIGURA 5-2 - Variação máxima em cada seção após simulação (em metros)

As **FIGURAS 5-3 a 5-7** apresentam as telas com os gráficos dos perfis de linha d'água e evolução do leito original e do final do período de simulação (75 anos) para os cinco métodos de cálculo utilizados. É possível visualizar novamente que somente o método de Engelund-Hansen apresenta erosão mais significativa no trecho superior, porém sem alterações na região dos bancos.

FIGURA 5-3 – Perfil do leito da simulação com o método de Engelund-Hansen

FIGURA 5-4 – Perfil do leito da simulação com o método de Ackers-White

FIGURA 5-5 – Perfil do leito da simulação com o método de Yang

FIGURA 5-6 – Perfil do leito da simulação com o método de Toffaleti

FIGURA 5-7 – Perfil do leito da simulação com o método de Laursen

5.3 Considerações Complementares

Para melhorar a confiabilidade dos resultados é interessante fazer uma abordagem secundária a respeito de algumas características do escoamento na seção 8, imediatamente a montante da região de formação de ilhas e bancos (zona deposicional).

Sedimentos granulares sem coesão distribuem-se em suspensão conforme a equação de O'Brien:

$$\frac{C}{C_{a}} = \left(\frac{h-y}{y}, \frac{a}{h-a}\right)^{Z}$$

onde:

C e Ca são, respectivamente, as concentrações a uma distância do leito "y" e "a" (distância de referência);

h é a profundidade local;

z

é o parâmetro de Rouse, definido por:

 $z = \frac{\omega_o}{\chi . v_{\star}}$

ωο é a velocidade de queda do sedimento;

 χ é a constante de Von Karmann (= 0,4);

v* é a velocidade de atrito definida por:

$$\tau_o = \rho . v_*^2 = \gamma . h. Sf$$

em que γ é o peso específico da água, Rh o raio hidráulico e Sf representa a declividade da linha de energia.

O parâmetro de Rouse (z) é um indicativo importante, pois valores elevados de z indicam a presença de sedimentos graúdos em suspensão (ωο elevado) ou que o nível de turbulência é baixo (v* pequeno), como é o caso de escoamentos que afluem a reservatórios ou em zonas estuarinas. Deve-se ressaltar que a região da ria do Xingu pode ser considerada como um estuário interno, sujeito a efeitos de maré inclusive. Neste caso, em que os valores do parâmetro de Rouse (z) são elevados os sedimentos concentram-se mais próximos ao leito, não tendo condições de atingir alturas elevadas na coluna líquida, tendendo a se depositar mais rapidamente.

O raciocínio inverso também pode ser feito, de forma que partículas finas (siltes e argilas) ou situações de alto nível de turbulência (rios de grande declividade), apresentam uma distribuição de concentração de sedimentos em suspensão mais uniformemente distribuída ao longo da coluna líquida. Por esta razão, em situações como esta somente sedimentos muito finos é que conseguem avançar além dos limites da barragem ou de áreas estuarinas. A **FIGURA 5-8** apresenta exemplos de distribuição de concentrações para diferentes valores de z, ilustrando melhor estes conceitos.

FIGURA 5-8 – Distribuição de Concentrações ao longo da vertical com a=0,05.h (Vanoni-1977)

Nas campanhas realizadas em 2011 foram feitos levantamentos dos perfis de velocidade e concentrações em cinco verticais da seção 8, que precede o trecho de ilhas e bancos de areia, com resultados apresentados na **TABELA 5-6**.

	Ve	ertical	1	Ve	ertical	2	Ve	ertical 3	3	Vertical 4			Vertical 5		5
	у	V	С	у	V	С	у	V	С	у	V	С	у	V	С
	(m)	(m/s)	(mg/l)	(m)	(m/s)	(mg/l)	(m)	(m/s)	(mg/l)	(m)	(m/s)	(mg/l)	(m)	(m/s)	(mg/l)
	7.4			12.5			10.0			9.2			8.5		
	7.2	0.60	35	12.3	0.84	48	9.8	0.81	32	8.9	0.64	33	8.3	0.72	33
	6.0	0.56		10.0	0.74		8.0	0.79		7.3	0.65		6.8	0.63	
	5.2	0.50	37	8.8	0.85	51	7.0	0.80	49	6.4	0.57	37	6.0	0.54	35
	4.5	0.49	41	7.5	0.75	55	6.0	0.77	56	5.5	0.56	42	5.1	0.50	40
	3.7	0.48	45	6.3	0.70	55	5.0	0.74	56	4.6	0.53	46	4.3	0.43	44
	3.0	0.47	53	5.0	0.67	55	4.0	0.75	57	3.7	0.41	56	3.4	0.40	48
	2.2	0.46	55	3.8	0.61	57	3.0	0.74	58	2.8	0.27	59	2.6	0.36	61
	1.5	0.43	57	2.5	0.57	57	2.0	0.57	61	1.8	0.23	59	1.7	0.29	64
	0.7	0.42	69	1.3	0.51	59	1.0	0.50	62	0.9	0.20	60	0.9	0.27	76
	0.4	0.40		0.6	0.48		0.5	0.38		0.5	0.18		0.4	0.24	
Ca	1	9	4			60			63			74			90

TABELA 5-6Distribuição de velocidades e concentrações na Seção 8

A partir da equação de distribuição de velocidades:

$$\frac{V_y}{V_{\star}} = \frac{1}{\kappa} \ln \left(\frac{y}{Ks} \right) + 8,5$$

Determina-se a velocidade de atrito local (v*) e com a granulometria da seção calcula-se a correspondente velocidade de queda e com isto o parâmetro de Rouse z.

A **FIGURA 5-9** apresenta os valores da distribuição de concentrações medidas nas 5 verticais e as curvas que melhor aderem a estes pontos. Estas curvas com valores de z variando entre 0,033 e 0,24 correspondem a dimensões que variam entre 0,015 mm e 0,04 mm, na faixa dos siltes, distribuindo-se quase que uniformemente na vertical. Já os valores de z para a granulometria, com diâmetro médio variando entre 0,2 mm e 0,5 mm resulta valores de z da ordem de 4 a 8 concentram-se muito próximo ao fundo, conferindo baixa mobilidade dos sedimentos.

FIGURA 5-9 – Distribuição de Concentrações na seção 8

Existem outras possibilidades de saídas de dados do modelo utilizado. A título de exemplo, apresenta-se a **TABELA 5-7**, com algumas características relevantes para o estudo, considerando o método de Engelund-Hansen, que foi o que apresentou maior potencial de erosão. Foram selecionados os anos de 1931,1941,1951,1961,1971,1981,1991,2001, portanto com intervalo a cada 10 anos desde o início da série histórica e o ano final de 2006. Selecionou-se também os dados do mês de abril, que concentra as maiores vazões médias mensais.

Apesar destes resultados representarem apenas a seleção do mês de maior vazão, ou seja, de maior capacidade de transporte na simulação que resultou ser mais desfavorável (Engelund-Hansen), é possível visualizar o comportamento de algumas grandezas associadas ao transporte de sedimentos ao longo do percurso nas **FIGURAS 5-10 a 5-13**. Observa-se uma tendência ao decaimento destas grandezas ao longo do percurso, com alguma recuperação no trecho da foz. Nestes gráficos as linhas tracejadas na vertical mostra o trecho que compreende os bancos de areia.

Características hidráulicas da simulação com o método de Engelund*												
SEÇÕES	DATAS	Q	Zfundo	N.A.	Veloc.	Área	Largura	Sf	h	Rh	Manning	το
		(m³/s)	(m)	(m)	(m/s)	(m²)	(m)	(m/m)	(m)	(m)		(N/m²)
S1	1931	25713	-12.12	7.68	1.13	22661	1904	3.40E-05	11.90	11.87	0.025	3.46
	1941	17722	-12.30	6.50	0.85	20751	1902	2.10E-05	10.91	10.89	0.025	2.02
	1951	9902	-12.50	5.28	0.53	18820	1899	1.20E-05	9.91	9.89	0.029	1.03
	1961	14266	-12.69	5.82	0.71	20218	1901	1.70E-05	10.64	10.62	0.026	1.49
	1971	14097	-12.82	5.79	0.69	20394	1901	1.60E-05	10.73	10.71	0.026	1.44
	1981	16853	-12.98	6.29	0.78	21648	1902	1.70E-05	11.38	11.35	0.025	1.65
	1991	23169	-13.14	7.08	0.99	23453	1904	2.60E-05	12.32	12.28	0.025	2.59
	2001	18449	-13.24	6.51	0.82	22549	1903	1.80E-05	11.85	11.82	0.025	1.8
	2006	25057	-13.30	7.29	1.04	24168	1905	2.80E-05	12.69	12.65	0.025	2.83
S2	1931	25713	-16.91	7.44	1.29	19908	1672	3.60E-05	11.90	11.88	0.025	4.48
	1941	17722	-17.02	6.35	0.97	18249	1640	2.00E-05	11.13	11.11	0.025	2.59
	1951	9902	-17.15	5.20	0.60	16544	1619	1.00E-05	10.22	10.20	0.029	1.36
	1961	14266	-17.27	5.71	0.81	17527	1629	1.40E-05	10.76	10.74	0.026	2.06
	1971	14097	-17.35	5.67	0.80	17581	1629	1.30E-05	10.79	10.77	0.027	2.03
	1981	16853	-17.45	6.16	0.91	18519	1639	1.30E-05	11.30	11.28	0.025	2.26
	1991	23169	-17.54	6.89	1.17	19842	1663	2.00E-05	11.93	11.91	0.025	3.66
	2001	18449	-17.61	6.37	0.97	19072	1643	1.40E-05	11.61	11.59	0.025	2.53
	2006	25057	-17.66	7.09	1.23	20322	1668	2.10E-05	12.18	12.16	0.025	4.05
62	1021	25712	16.09	7 24	1 /0	17/22	1072	2 405 05	16 24	16 10	0.025	F 77
35	1041	23/13	-10.00	7.54 6.20	1.40	171452	1075	3.40E-05	16.24	16.19	0.025	5.27
	1941	0002	-10.00	0.3U	1.05	16764	1007	2.20E-05	10.07	10.05	0.025	2.0
	1951	990Z	-17.08	5.18	0.59	10/04	1058	1.30E-05	15.84	15.80	0.029	1.10
	1901	14200	-18.42	5.08 E.CE	0.79	10572	1067	1.70E-05	17.40	17.25	0.027	1.09
	1001	14097	-10.95	5.05	0.70	10752	1072	1.000-05	10.40	10.24	0.027	1.50
	1001	22160	20.21	6.96	1.00	21175	1075	2 105 05	10.40	10.54	0.025	1.09
	2001	10110	-20.21	6.25	0.07	21175	1000	1 505 05	19.02	19.54	0.025	2.72
	2001	25057	20.07	7.06	0.07	21110	1077	2 205 05	20.46	20.27	0.025	1.74 2.00
	2000	23037	-20.92	7.00	1.15	22124	1001	2.202-03	20.40	20.57	0.025	2.00
S4	1931	25713	-4.40	7.28	0.84	30542	4573	3.30E-05	6.68	6.67	0.025	2.31
	1941	17722	-4.40	6.25	0.69	25829	4567	2.30E-05	5.66	5.65	0.025	1.62
	1951	9902	-4.40	5.14	0.48	20759	4559	1.60E-05	4.55	4.55	0.029	1.16
	1961	14266	-4.40	5.63	0.62	23018	4562	2.30E-05	5.05	5.04	0.027	1.58
	1971	14097	-4.40	5.60	0.62	22897	4562	2.20E-05	5.02	5.02	0.027	1.58
	1981	16853	-4.41	6.10	0.67	25205	4566	2.20E-05	5.52	5.52	0.025	1.55
	1991	23169	-4.43	6.80	0.81	28476	4570	3.00E-05	6.23	6.23	0.025	2.21
	2001	18449	-4.45	6.31	0.70	26313	4567	2.30E-05	5.76	5.76	0.025	1.68
	2006	25057	-4.46	7.00	0.85	29521	4572	3.20E-05	6.46	6.45	0.025	2.37

TABELA 5-7

*Obs: Valores correspondentes ao mês de abril, em média a situação de maior vazão. Foram selecionados dados a cada 10 anos desde o início e na condição final (2006)

							-					Cont.
SEÇÕES	DATAS	Q	Zfundo	N.A.	Veloc.	Área	Largura	Sf	h	Rh	Manning	το
		(m³/s)	(m)	(m)	(m/s)	(m²)	(m)	(m/m)	(m)	(m)		(N/m ²)
S6	1931	25713	-11.50	6.98	1.31	19660	1670	4.40E-05	11.77	11.75	0.025	4.61
	1941	17722	-11.49	6.07	0.97	18200	1529	2.70E-05	11.91	11.88	0.025	2.55
	1951	9902	-11.48	5.03	0.59	16652	1474	1.70E-05	11.29	11.27	0.03	1.38
	1961	14266	-11.48	5.47	0.83	17290	1487	2.60E-05	11.63	11.60	0.028	2.26
	1971	14097	-11.48	5.44	0.82	17244	1486	2.60E-05	11.61	11.58	0.028	2.24
	1981	16853	-11.49	5.93	0.94	17993	1523	2.60E-05	11.81	11.79	0.025	2.43
	1991	23169	-11.48	6.54	1.22	18933	1605	4.00E-05	11.80	11.77	0.025	4.03
	2001	18449	-11.48	6.12	1.01	18283	1539	2.80E-05	11.88	11.86	0.025	2.74
	2006	25057	-11.49	6.71	1.30	19218	1638	4.50E-05	11.73	11.71	0.025	4.59
S7	1931	25713	-6.20	6.86	1.11	23094	2863	4.10E-05	8.07	8.06	0.025	3.79
	1941	17722	-6.21	6.00	0.86	20629	2853	2.80E-05	7.23	7.23	0.025	2.34
	1951	9902	-6.21	4.98	0.56	17746	2841	1.90E-05	6.25	6.24	0.03	1.49
	1961	14266	-6.21	5.39	0.75	18916	2846	3.00E-05	6.65	6.64	0.028	2.33
	1971	14097	-6.21	5.37	0.75	18833	2845	3.00E-05	6.62	6.62	0.028	2.32
	1981	16853	-6.21	5.86	0.83	20241	2851	2.90E-05	7.10	7.10	0.026	2.34
	1991	23169	-6.22	6.43	1.06	21905	2858	4.00E-05	7.66	7.66	0.025	3.48
	2001	18449	-6.24	6.05	0.88	20865	2853	3.00E-05	7.31	7.31	0.025	2.47
	2006	25057	-6.25	6.59	1.12	22436	2860	4.40E-05	7.85	7.84	0.025	3.85
S8	1931	25713	-8.00	6.63	1.05	24516	2633	4.70E-05	9.31	9.31	0.025	3.21
	1941	17722	-8.00	5.84	0.79	22433	2624	3.10E-05	8.55	8.55	0.026	1.99
	1951	9902	-7.98	4.88	0.50	19871	2587	1.80E-05	7.68	7.68	0.03	1.12
	1961	14266	-7.95	5.23	0.69	20716	2602	2.90E-05	7.96	7.96	0.029	1.94
	1971	14097	-7.93	5.20	0.68	20586	2600	2.90E-05	7.92	7.92	0.029	1.94
	1981	16853	-7.90	5.69	0.77	21780	2620	2.70E-05	8.31	8.31	0.027	2.04
	1991	23169	-7.87	6.20	1.01	23035	2627	3.50E-05	8.77	8.77	0.025	3.01
	2001	18449	-7.84	5.87	0.83	22107	2623	2.70E-05	8.43	8.43	0.026	2.2
	2006	25057	-7.82	6.34	1.08	23280	2628	3.80E-05	8.86	8.86	0.025	3.43
S9	1931	25713	-5.73	6.43	1.14	22611	3429	8.90E-05	6.59	6.59	0.025	4.23
	1941	17722	-6.04	5.71	0.84	21142	3340	6.40E-05	6.33	6.33	0.026	2.6
	1951	9902	-6.31	4.80	0.52	19032	3167	2.70E-05	6.01	6.01	0.03	1.36
	1961	14266	-6.54	5.11	0.69	20732	3283	4.70E-05	6.32	6.31	0.029	2.18
	1971	14097	-6.67	5.08	0.67	21062	3294	4.40E-05	6.39	6.39	0.03	2.07
	1981	16853	-6.84	5.59	0.72	23291	3401	4.70E-05	6.85	6.84	0.027	1.98
	1991	23169	-7.00	6.07	0.91	25463	3430	5.40E-05	7.42	7.42	0.025	2.6
	2001	18449	-7.10	5.77	0.74	24778	3427	4.10E-05	7.23	7.22	0.026	1.92
	2006	25057	-7.13	6.19	0.95	26330	3432	5.50E-05	7.67	7.67	0.025	2.82

TABELA 5-7 Características hidráulicas da simulação com o método de Engelund*

							-					Cont.
SEÇÕES	DATAS	Q	Zfundo	N.A.	Veloc.	Área	Largura	Sf	h	Rh	Manning	το
		(m³/s)	(m)	(m)	(m/s)	(m²)	(m)	(m/m)	(m)	(m)		(N/m²)
S9	1931	25713	-5.73	6.43	1.14	22611	3429	8.90E-05	6.59	6.59	0.025	4.23
	1941	17722	-6.04	5.71	0.84	21142	3340	6.40E-05	6.33	6.33	0.026	2.6
	1951	9902	-6.31	4.80	0.52	19032	3167	2.70E-05	6.01	6.01	0.03	1.36
	1961	14266	-6.54	5.11	0.69	20732	3283	4.70E-05	6.32	6.31	0.029	2.18
	1971	14097	-6.67	5.08	0.67	21062	3294	4.40E-05	6.39	6.39	0.03	2.07
	1981	16853	-6.84	5.59	0.72	23291	3401	4.70E-05	6.85	6.84	0.027	1.98
	1991	23169	-7.00	6.07	0.91	25463	3430	5.40E-05	7.42	7.42	0.025	2.6
	2001	18449	-7.10	5.77	0.74	24778	3427	4.10E-05	7.23	7.22	0.026	1.92
	2006	25057	-7.13	6.19	0.95	26330	3432	5.50E-05	7.67	7.67	0.025	2.82
S10	1931	25713	-14.00	5.71	1.00	25607	7077	7.40E-05	3.62	3.62	0.026	4.5
	1941	17722	-14.07	5.19	0.79	22300	6770	5.80E-05	3.29	3.29	0.029	3.52
	1951	9902	-14.14	4.58	0.51	19373	4043	2.20E-05	4.79	4.79	0.032	1.52
	1961	14266	-14.19	4.73	0.71	20210	4525	4.60E-05	4.47	4.46	0.031	2.83
	1971	14097	-14.22	4.72	0.70	20280	4544	4.60E-05	4.46	4.46	0.031	2.75
	1981	16853	-14.28	5.20	0.72	23530	6906	5.20E-05	3.41	3.41	0.029	2.81
	1991	23169	-14.34	5.63	0.86	26862	7078	6.70E-05	3.80	3.79	0.027	3.38
	2001	18449	-14.39	5.43	0.72	25747	7073	4.90E-05	3.64	3.64	0.028	2.54
	2006	25057	-14.40	5.74	0.89	28003	7079	6.80E-05	3.96	3.95	0.026	3.43
S11	1931	25713	-13.59	5.31	0.73	35430	6913	4.40E-05	5.12	5.12	0.028	2.43
	1941	17722	-13.46	4.87	0.56	31703	6660	2.90E-05	4.76	4.76	0.03	1.66
	1951	9902	-13.38	4.46	0.35	28538	6228	1.20E-05	4.58	4.58	0.032	0.74
	1961	14266	-13.32	4.47	0.50	28279	6204	2.80E-05	4.56	4.56	0.032	1.56
	1971	14097	-13.30	4.46	0.50	28122	6188	2.90E-05	4.54	4.54	0.032	1.54
	1981	16853	-13.26	4.92	0.55	30803	6633	3.10E-05	4.64	4.64	0.03	1.58
	1991	23169	-13.22	5.25	0.71	32853	6861	5.00E-05	4.79	4.79	0.029	2.39
	2001	18449	-13.20	5.16	0.58	32080	6821	3.40E-05	4.70	4.70	0.029	1.65
	2006	25057	-13.20	5.36	0.75	33476	6904	5.70E-05	4.85	4.85	0.028	2.58
S12	1931	25713	-22.09	4.98	0.59	43545	7313	3.00E-05	5.95	5.95	0.035	2.31
-	1941	17722	-21.97	4.65	0.44	40332	7311	1.70E-05	5.52	5.51	0.035	1.31
	1951	9902	-21.85	4.36	0.27	37334	7309	6.00E-06	5.11	5.10	0.035	0.49
	1961	14266	-21.73	4.26	0.40	35726	7307	1.50E-05	4.89	4.89	0.035	1.13
	1971	14097	-21.66	4.25	0.40	35152	7307	1.50E-05	4.81	4.81	0.035	1.14
	1981	16853	-21.56	4.69	0.45	37655	7310	1.80E-05	5.15	5.15	0.035	1.39
	1991	23169	-21.45	4.88	0.60	38336	7311	3.20E-05	5.24	5.24	0.035	2.53
	2001	18449	-21.38	4.91	0.49	38037	7311	2.00E-05	5.20	5.20	0.035	1.63
	2006	25057	-21.35	4.93	0.66	38049	7312	3.80E-05	5.20	5.20	0.035	3.01

TABELA 5-7 Características hidráulicas da simulação com o método de Engelund*

							-					Cont.
SEÇÕES	DATAS	Q	Zfundo	N.A.	Veloc.	Área	Largura	Sf	h	Rh	Manning	το
		(m ³ /s)	(m)	(m)	(m/s)	(m²)	(m)	(m/m)	(m)	(m)		(N/m ²)
S13	1931	25713	-17.50	4.88	0.58	43971	4983	2.80E-05	8.82	8.82	0.035	1.99
	1941	17722	-17.45	4.60	0.42	42334	4980	1.50E-05	8.50	8.49	0.035	1.03
	1951	9902	-17.38	4.34	0.24	40784	4977	5.00E-06	8.19	8.19	0.035	0.35
	1961	14266	-17.31	4.21	0.36	39793	4975	1.20E-05	8.00	7.99	0.035	0.77
	1971	14097	-17.26	4.20	0.36	39528	4975	1.20E-05	7.95	7.94	0.035	0.77
	1981	16853	-17.18	4.63	0.41	41292	4980	1.50E-05	8.29	8.29	0.035	0.99
	1991	23169	-17.10	4.77	0.56	41602	4981	2.70E-05	8.35	8.35	0.035	1.84
	2001	18449	-17.03	4.84	0.44	41632	4982	1.70E-05	8.36	8.35	0.035	1.16
	2006	25057	-17.00	4.81	0.61	41335	4981	3.20E-05	8.30	8.29	0.035	2.18
S14	1931	25713	-24.20	4.80	0.63	40933	5606	1.70E-05	7.30	7.29	0.035	2.44
	1941	17722	-24.17	4.55	0.45	39396	5605	9.00E-06	7.03	7.02	0.035	1.27
	1951	9902	-24.13	4.33	0.26	37928	5604	3.00E-06	6.77	6.76	0.035	0.43
	1961	14266	-24.09	4.17	0.39	36827	5604	7.00E-06	6.57	6.56	0.035	0.96
	1971	14097	-24.06	4.16	0.39	36601	5604	7.00E-06	6.53	6.52	0.035	0.95
	1981	16853	-24.00	4.58	0.44	38662	5605	8.00E-06	6.90	6.89	0.035	1.2
	1991	23169	-23.94	4.69	0.60	38924	5605	1.50E-05	6.94	6.94	0.035	2.23
	2001	18449	-23.89	4.79	0.47	39217	5605	9.00E-06	7.00	6.99	0.035	1.39
	2006	25057	-23.86	4.71	0.65	38646	5605	1.80E-05	6.89	6.89	0.035	2.65
S15	1931	25713	-21.40	4.77	0.37	70096	8481	9.00E-06	8.27	8.23	0.035	0.8
	1941	17722	-21.39	4.54	0.26	68007	8481	4.00E-06	8.02	7.99	0.035	0.41
	1951	9902	-21.38	4.32	0.15	66021	8481	2.00E-06	7.78	7.76	0.035	0.14
	1961	14266	-21.36	4.16	0.22	64475	8481	3.00E-06	7.60	7.57	0.035	0.3
	1971	14097	-21.35	4.15	0.22	64284	8481	3.00E-06	7.58	7.55	0.035	0.29
	1981	16853	-21.33	4.57	0.25	67647	8481	4.00E-06	7.98	7.95	0.035	0.37
	1991	23169	-21.31	4.66	0.34	68254	8481	7.00E-06	8.05	8.02	0.035	0.69
	2001	18449	-21.30	4.77	0.27	69035	8481	4.00E-06	8.14	8.11	0.035	0.43
	2006	25057	-21.29	4.68	0.37	68182	8481	9.00E-06	8.04	8.01	0.035	0.81
S16	1931	25713	-9.40	4.67	0.33	77191	8744	8.00E-06	8.83	8.83	0.035	0.64
	1941	17722	-9.40	4.49	0.23	75530	8739	4.00E-06	8.64	8.64	0.035	0.32
	1951	9902	-9.39	4.31	0.13	73899	8733	1.00E-06	8.46	8.46	0.035	0.11
	1961	14266	-9.38	4.12	0.20	72240	8727	3.00E-06	8.28	8.28	0.035	0.23
	1971	14097	-9.38	4.11	0.20	72139	8727	3.00E-06	8.27	8.27	0.035	0.23
	1981	16853	-9.37	4.52	0.22	75663	8739	4.00E-06	8.66	8.66	0.035	0.29
	1991	23169	-9.37	4.58	0.30	76087	8741	7.00E-06	8.70	8.70	0.035	0.54
	2001	18449	-9.36	4.72	0.24	77279	8745	4.00E-06	8.84	8.84	0.035	0.33
	2006	25057	-9.36	4.58	0.33	76041	8741	8.00E-06	8.70	8.70	0.035	0.63

TABELA 5-7 Características hidráulicas da simulação com o método de Engelund*

							-					Cont.
SEÇÕES	DATAS	Q	Zfundo	N.A.	Veloc.	Área	Largura	Sf	h	Rh	Manning	το
		(m³/s)	(m)	(m)	(m/s)	(m²)	(m)	(m/m)	(m)	(m)		(N/m²)
S17	1931	25713	-12.90	4.60	0.32	80186	11168	8.00E-06	7.18	7.18	0.035	0.64
	1941	17722	-12.90	4.45	0.23	78494	11167	4.00E-06	7.03	7.03	0.035	0.32
	1951	9902	-12.90	4.29	0.13	76741	11166	1.00E-06	6.87	6.87	0.035	0.11
	1961	14266	-12.90	4.09	0.19	74512	11164	3.00E-06	6.67	6.67	0.035	0.23
	1971	14097	-12.90	4.09	0.19	74434	11164	3.00E-06	6.67	6.67	0.035	0.23
	1981	16853	-12.90	4.49	0.21	78948	11167	3.00E-06	7.07	7.07	0.035	0.29
	1991	23169	-12.90	4.52	0.29	79254	11168	6.00E-06	7.10	7.10	0.035	0.53
	2001	18449	-12.90	4.68	0.23	81091	11169	4.00E-06	7.26	7.26	0.035	0.32
	2006	25057	-12.90	4.51	0.32	79157	11168	8.00E-06	7.09	7.09	0.035	0.63
S18	1931	25713	-8.80	4.53	0.30	86510	10433	7.00E-06	8.29	8.29	0.035	0.52
	1941	17722	-8.80	4.42	0.21	85279	10423	4.00E-06	8.18	8.18	0.035	0.26
	1951	9902	-8.80	4.28	0.12	83878	10412	1.00E-06	8.06	8.06	0.035	0.08
	1961	14266	-8.80	4.07	0.17	81651	10394	3.00E-06	7.86	7.86	0.035	0.18
	1971	14097	-8.80	4.06	0.17	81586	10393	3.00E-06	7.85	7.85	0.035	0.18
	1981	16853	-8.80	4.46	0.20	85744	10427	3.00E-06	8.22	8.22	0.035	0.23
	1991	23169	-8.80	4.46	0.27	85755	10427	6.00E-06	8.22	8.22	0.035	0.43
	2001	18449	-8.80	4.65	0.21	87718	10443	3.00E-06	8.40	8.40	0.035	0.26
	2006	25057	-8.80	4.44	0.29	85562	10425	7.00E-06	8.21	8.21	0.035	0.51
S19	1931	25713	-9.60	4.46	0.30	84577	11601	1.00E-06	7.29	7.29	0.035	0.57
	1941	17722	-9.60	4.38	0.21	83659	11593	1.00E-06	7.22	7.22	0.035	0.28
	1951	9902	-9.60	4.27	0.12	82398	11583	0.00E+00	7.11	7.11	0.035	0.09
	1961	14266	-9.60	4.04	0.18	79737	11561	0.00E+00	6.90	6.90	0.035	0.2
	1971	14097	-9.60	4.03	0.18	79672	11561	0.00E+00	6.89	6.89	0.035	0.2
	1981	16853	-9.60	4.43	0.20	84233	11598	1.00E-06	7.26	7.26	0.035	0.25
	1991	23169	-9.60	4.40	0.28	83896	11595	1.00E-06	7.24	7.24	0.035	0.47
	2001	18449	-9.60	4.61	0.21	86390	11615	1.00E-06	7.44	7.44	0.035	0.28
	2006	25057	-9.60	4.37	0.30	83549	11592	1.00E-06	7.21	7.21	0.035	0.56
S20	1931	25713	-38.20	4.44	0.15	171789	8620	0.00E+00	19.93	19.92	0.035	0.1
	1941	17722	-38.20	4.37	0.10	171181	8611	0.00E+00	19.88	19.87	0.035	0.05
	1951	9902	-38.20	4.27	0.06	170290	8597	0.00E+00	19.81	19.79	0.035	0.02
	1961	14266	-38.20	4.03	0.08	168287	8567	0.00E+00	19.64	19.63	0.035	0.03
	1971	14097	-38.20	4.03	0.08	168236	8566	0.00E+00	19.64	19.63	0.035	0.03
	1981	16853	-38.20	4.42	0.10	171601	8617	0.00E+00	19.91	19.90	0.035	0.04
	1991	23169	-38.20	4.39	0.14	171288	8613	0.00E+00	19.89	19.87	0.035	0.08
	2001	18449	-38.20	4.61	0.11	173187	8641	0.00E+00	20.04	20.03	0.035	0.05
	2006	25057	-38.20	4.35	0.15	171005	8609	0.00E+00	19.86	19.85	0.035	0.1

TABELA 5-7 Características hidráulicas da simulação com o método de Engelund*

							-					Cont.
SEÇÕES	DATAS	Q	Zfundo	N.A.	Veloc.	Área	Largura	Sf	h	Rh	Manning	το
		(m ³ /s)	(m)	(m)	(m/s)	(m²)	(m)	(m/m)	(m)	(m)		(N/m²)
S21	1931	25713	-34.50	4.43	0.13	193536	9139	1.00E-06	21.18	21.17	0.035	0.08
	1941	17722	-34.50	4.37	0.09	192918	9138	0.00E+00	21.11	21.11	0.035	0.04
	1951	9902	-34.50	4.27	0.05	191990	9136	0.00E+00	21.01	21.01	0.035	0.01
	1961	14266	-34.50	4.03	0.08	189853	9128	0.00E+00	20.80	20.80	0.035	0.02
	1971	14097	-34.50	4.03	0.07	189802	9128	0.00E+00	20.79	20.79	0.035	0.02
	1981	16853	-34.50	4.42	0.09	193377	9139	0.00E+00	21.16	21.16	0.035	0.03
	1991	23169	-34.50	4.38	0.12	193029	9138	0.00E+00	21.12	21.12	0.035	0.06
	2001	18449	-34.50	4.60	0.09	195058	9142	0.00E+00	21.34	21.33	0.035	0.04
	2006	25057	-34.50	4.35	0.13	192725	9138	1.00E-06	21.09	21.09	0.035	0.07
S22	1931	25713	-17.80	4.43	0.18	142786	9795	1.00E-06	14.58	14.58	0.035	0.16
	1941	17722	-17.80	4.37	0.12	142152	9794	1.00E-06	14.51	14.51	0.035	0.08
	1951	9902	-17.80	4.27	0.07	141177	9792	0.00E+00	14.42	14.42	0.035	0.02
	1961	14266	-17.80	4.03	0.10	138880	9787	0.00E+00	14.19	14.19	0.035	0.05
	1971	14097	-17.80	4.03	0.10	138827	9787	0.00E+00	14.18	14.18	0.035	0.05
	1981	16853	-17.80	4.42	0.12	142656	9795	1.00E-06	14.56	14.56	0.035	0.07
	1991	23169	-17.80	4.38	0.16	142267	9794	1.00E-06	14.53	14.53	0.035	0.13
	2001	18449	-17.80	4.60	0.13	144459	9798	1.00E-06	14.74	14.74	0.035	0.08
	2006	25057	-17.80	4.34	0.18	141936	9793	1.00E-06	14.49	14.49	0.035	0.15
S23	1931	25713	-25.30	4.42	0.17	153522	14286	2.00E-06	10.75	10.75	0.035	0.15
	1941	17722	-25.30	4.36	0.12	152678	14284	1.00E-06	10.69	10.69	0.035	0.07
	1951	9902	-25.30	4.26	0.07	151308	14281	0.00E+00	10.59	10.59	0.035	0.02
	1961	14266	-25.30	4.03	0.10	147927	14274	1.00E-06	10.36	10.36	0.035	0.05
	1971	14097	-25.30	4.02	0.10	147852	14274	1.00E-06	10.36	10.36	0.035	0.05
	1981	16853	-25.30	4.41	0.11	153422	14286	1.00E-06	10.74	10.74	0.035	0.07
	1991	23169	-25.30	4.37	0.15	152/93	14284	2.00E-06	10.70	10.70	0.035	0.13
	2001	18449	-25.30	4.60	0.12	156042	14291	1.00E-06	10.92	10.92	0.035	0.08
	2006	25057	-25.30	4.33	0.16	152287	14283	2.00E-06	10.66	10.66	0.035	0.15
62.4	1021	25712	10.00	4.20	0.20	00000	5057		14.04	14.02	0.025	0.41
524	1931	25/13	-19.00	4.39	0.29	88998	5957	0.00E-06	14.94	14.93	0.035	0.41
	1941	1//22	-19.01	4.35	0.20	88772	5957	3.00E-06	14.90	14.89	0.035	0.19
	1951	990Z	-19.02	4.20	0.11	86020	5955	1.00E-06	14.85	14.82	0.035	0.00
	1071	1/1007	-10.03	4.02	0.10	86024	5952	2.00E-00	14.01	14.00	0.035	0.13
	1971	14097	-19.03	4.01	0.10	80934	5951	2.00E-00	14.01	14.00	0.035	0.13
	1001	10000	-19.04	4.4U 4.2E	0.19	03731	595/		14.99	14.98	0.035	0.17
	2001 1221	10110	-10.06	4.55 1 E0	0.20	03002	5060	3 00E-00	15 17	15 17	0.055	0.55
	2001	25057	-19.00	4.50 1 21	0.20	90443	5900		14 01	14 00	0.035	0.2
	2000	23037	-19.00	4.31	0.20	00012	3330	0.00E-00	14.91	14.90	0.055	0.39

TABELA 5-7 Características hidráulicas da simulação com o método de Engelund*

							5			0		Cont.
SEÇÕES	DATAS	Q	Zfundo	N.A.	Veloc.	Área	Largura	Sf	h	Rh	Manning	το
		(m³/s)	(m)	(m)	(m/s)	(m²)	(m)	(m/m)	(m)	(m)		(N/m²)
S25	1931	25713	-22.81	4.30	0.80	32149	2486	1.90E-05	12.93	12.91	0.035	3.28
	1941	17722	-22.88	4.30	0.55	32324	2486	9.00E-06	13.00	12.98	0.035	1.54
	1951	9902	-22.98	4.25	0.31	32435	2486	3.00E-06	13.05	13.03	0.035	0.48
	1961	14266	-23.07	3.99	0.45	32010	2482	6.00E-06	12.89	12.88	0.035	1.02
	1971	14097	-23.14	3.98	0.44	32162	2483	6.00E-06	12.95	12.94	0.035	0.98
	1981	16853	-23.23	4.36	0.51	33310	2488	8.00E-06	13.39	13.37	0.035	1.3
	1991	23169	-23.30	4.28	0.70	33281	2487	1.50E-05	13.38	13.36	0.035	2.45
	2001	18449	-23.35	4.54	0.54	34045	2491	9.00E-06	13.67	13.65	0.035	1.48
	2006	25057	-23.38	4.22	0.75	33344	2487	1.70E-05	13.41	13.39	0.035	2.86
S26	1931	25713	-28.40	4.15	0.58	44330	3723	1.90E-05	11.91	11.89	0.035	1.77
	1941	17722	-28.41	4.23	0.40	44669	3724	9.00E-06	12.00	11.98	0.035	0.83
	1951	9902	-28.43	4.22	0.22	44682	3724	3.00E-06	12.00	11.99	0.035	0.26
	1961	14266	-28.45	3.94	0.33	43665	3721	6.00E-06	11.74	11.72	0.035	0.56
	1971	14097	-28.46	3.94	0.32	43683	3721	6.00E-06	11.74	11.73	0.035	0.55
	1981	16853	-28.48	4.30	0.37	45087	3724	7.00E-06	12.11	12.09	0.035	0.73
	1991	23169	-28.50	4.16	0.52	44590	3723	1.40E-05	11.98	11.96	0.035	1.42
	2001	18449	-28.51	4.47	0.40	45774	3726	8.00E-06	12.29	12.27	0.035	0.85
	2006	25057	-28.51	4.09	0.56	44360	3722	1.70E-05	11.92	11.90	0.035	1.68
S27	1931	25713	-18.70	4.09	0.55	47052	6276	3.70E-05	7.50	7.49	0.035	1.83
	1941	17722	-18.75	4.21	0.37	48068	6285	1.60E-05	7.65	7.64	0.035	0.83
	1951	9902	-18.83	4.22	0.20	48644	6288	5.00E-06	7.74	7.73	0.035	0.25
	1961	14266	-18.90	3.92	0.30	47176	6271	1.20E-05	7.52	7.52	0.035	0.56
	1971	14097	-18.95	3.92	0.30	47466	6272	1.10E-05	7.57	7.56	0.035	0.54
	1981	16853	-19.02	4.28	0.34	50203	6296	1.30E-05	7.97	7.97	0.035	0.68
	1991	23169	-19.09	4.12	0.47	49586	6288	2.70E-05	7.89	7.88	0.035	1.32
	2001	18449	-19.13	4.45	0.36	51892	6307	1.40E-05	8.23	8.22	0.035	0.75
	2006	25057	-19.16	4.04	0.51	49483	6285	3.20E-05	7.87	7.87	0.035	1.55
S28	1931	25713	-43.30	3.89	0.74	34782	5838		5.96	5.95	0.035	3.62
	1941	17722	-43.30	4.12	0.49	36125	5843		6.18	6.17	0.035	1.58
	1951	9902	-43.30	4.19	0.27	36535	5844		6.25	6.24	0.035	0.48
	1961	14266	-43.30	3.86	0.41	34606	5838		5.93	5.92	0.035	1.13
	1971	14097	-43.30	3.86	0.41	34606	5838		5.93	5.92	0.035	1.1
	1981	16853	-43.30	4.21	0.46	36650	5845		6.27	6.26	0.035	1.38
	1991	23169	-43.30	3.97	0.66	35249	5840		6.04	6.02	0.035	2.85
	2001	18449	-43.30	4.37	0.49	37586	5848		6.43	6.41	0.035	1.56
	2006	25057	-43.30	3.86	0.72	34606	5838		5.93	5.92	0.035	3.48

TABELA 5-7 Características hidráulicas da simulação com o método de Engelund*

Com estes dados é possível também determinar alguns parâmetros secundários importantes, como o de Shields e o de Rouse:

SECÕES dist I.* 7 SECÕES dist I.* 7 SECÕES dist I	
	Z
(m) (m) (m)	
S1 0 1.05 1.08 S5 15143 1.23 1.00 S9 31956 1.7	8 0.98
0 0.61 1.41 15143 0.70 1.32 31956 0.7	9 1.25
0 0.31 1.98 15143 0.38 1.80 31956 0.4	1 1.72
0 0.45 1.65 15143 0.60 1.42 31956 0.6	6 1.36
0 0.44 1.67 15143 0.59 1.43 31956 0.6	3 1.40
0 0.50 1.56 15143 0.63 1.39 31956 0.6	0 1.43
0 0.78 1.25 15143 1.03 1.09 31956 0.7	9 1.25
0 0.55 1.50 15143 0.70 1.32 31956 0.5	8 1.45
0 0.86 1.19 15143 1.14 1.04 31956 0.8	5 1.20
S2 6607 1.36 0.95 S6 19182 1.40 0.94 S10 40186 1.35 CC07 0.78 1.25 1.0182 0.77 1.26 40186 1.40	0.95
	0 1.19
	1.20
	2 1.09
	1 1 00
	+ 1.00
S3 8494 1.60 0.87 S7 22196 1.15 1.03 S11 45903 0.7	4 1.29
8494 0.79 1.25 22196 0.71 1.31 45903 0.5	0 1.56
8494 0.35 1.86 22196 0.45 1.65 45903 0.2	2 2.33
8494 0.51 1.54 22196 0.71 1.32 45903 0.4	7 1.61
8494 0.47 1.61 22196 0.70 1.32 45903 0.4	7 1.62
8494 0.51 1.54 22196 0.71 1.31 45903 0.4	8 1.60
8494 0.82 1.22 22196 1.05 1.08 45903 0.7	2 1.30
8494 0.53 1.52 22196 0.75 1.28 45903 0.53	0 1.56
8494 0.87 1.18 22196 1.17 1.02 45903 0.7	8 1.25
s4 11882 0.70 1.32 s8 27972 0.97 1.12 s12 53521 0 ⁻	n 132
	0 1 75
	5 2 87
	4 1.89
	5 1.88
	2 1.70
	7 1.26
	9 1.57
11882 0.72 1.30 27972 1.04 1.08 53521 0.9	1 1.16

TABELA 5-8 dos parâmetros de Shields (→) e Rouse

			-				•				Cont.
SEÇÕES	dist.	τ*	z	SEÇÕES	dist.	τ.	z	SEÇÕES	dist.	τ.	z
	(m)				(m)				(m)		
S13	56938	0.60	1.42	S17	83692	0.19	2.51	S21	130913	0.02	7.10
	56938	0.31	1.98		83692	0.10	3.55		130913	0.01	10.04
	56938	0.11	3.39		83692	0.03	6.05		130913	0.00	20.08
	56938	0.23	2.29		83692	0.07	4.19		130913	0.01	14.20
	56938	0.23	2.29		83692	0.07	4.19		130913	0.01	14.20
	56938	0.30	2.02		83692	0.09	3.73		130913	0.01	11.59
	56938	0.56	1.48		83692	0.16	2.76		130913	0.02	8.20
	56938	0.35	1.86		83692	0.10	3.55		130913	0.01	10.04
	56938	0.66	1.36		83692	0.19	2.53		130913	0.02	7.59
S14	59743	0.74	1.29	S18	92684	0.16	2.78	S22	138366	0.05	5.02
	59743	0.38	1.78		92684	0.08	3.94		138366	0.02	7.10
	59743	0.13	3.06		92684	0.02	7.10		138366	0.01	14.20
	59743	0.29	2.05		92684	0.05	4.73		138366	0.02	8.98
	59743	0.29	2.06		92684	0.05	4.73		138366	0.02	8.98
	59743	0.36	1.83		92684	0.07	4.19		138366	0.02	7.59
	59743	0.68	1.34		92684	0.13	3.06		138366	0.04	5.57
	59743	0.42	1.70		92684	0.08	3.94		138366	0.02	7.10
	59743	0.80	1.23		92684	0.15	2.81		138366	0.05	5.18
S15	67439	0.24	2.25	S19	103317	0.17	2.66	S23	147077	0.05	5.18
	67439	0.12	3.14		103317	0.08	3.79		147077	0.02	7.59
	67439	0.04	5.37		103317	0.03	6.69		147077	0.01	14.20
	67439	0.09	3.67		103317	0.06	4.49		147077	0.02	8.98
	67439	0.09	3.73		103317	0.06	4.49		147077	0.02	8.98
	67439	0.11	3.30		103317	0.08	4.02		147077	0.02	7.59
	67439	0.21	2.42		103317	0.14	2.93		147077	0.04	5.57
	67439	0.13	3.06		103317	0.08	3.79		147077	0.02	7.10
	67439	0.25	2.23		103317	0.17	2.68		147077	0.05	5.18
S16	75135	0.19	2.51	S20	118446	0.03	6.35	S24	159689	0.12	3.14
	75135	0.10	3.55		118446	0.02	8.98		159689	0.06	4.61
	75135	0.03	6.05		118446	0.01	14.20		159689	0.02	8.20
	75135	0.07	4.19		118446	0.01	11.59		159689	0.04	5.57
	75135	0.07	4.19		118446	0.01	11.59		159689	0.04	5.57
	75135	0.09	3.73		118446	0.01	10.04		159689	0.05	4.87
	75135	0.16	2.73		118446	0.02	7.10		159689	0.10	3.50
	75135	0.10	3.50		118446	0.02	8.98		159689	0.06	4.49
	75135	0.19	2.53		118446	0.03	6.35		159689	0.12	3.22

TABELA 5-8Variação dos parâmetros de Shields (*) e Rouse (z)

			Cont.
SEÇÕES	dist.	τ.	Z
	(m)		
S25	168835	0.99	1.11
	168835	0.47	1.62
	168835	0.15	2.90
	168835	0.31	1.99
	168835	0.30	2.03
	168835	0.39	1.76
	168835	0.74	1.28
	168835	0.45	1.65
	168835	0.87	1.19
S26	177142	0.54	1.51
	177142	0.25	2.20
	177142	0.08	3.94
	177142	0.17	2.68
	177142	0.17	2.71
	177142	0.22	2.35
	177142	0.43	1.69
	177142	0.26	2.18
	177142	0.51	1.55
S27	180307	0.55	1.48
	180307	0.25	2.20
	180307	0.08	4.02
	180307	0.17	2.68
	180307	0.16	2.73
	180307	0.21	2.44
	180307	0.40	1.75
	180307	0.23	2.32
	180307	0.47	1.61
S28	185340	1.10	1.06
	185340	0.48	1.60
	185340	0.15	2.90
	185340	0.34	1.89
	185340	0.33	1.91
	185340	0.42	1.71
	185340	0.86	1.19
	185340	0.47	1.61
	185340	1.05	1.08

 TABELA 5-8

 Variação dos parâmetros de Shields () e Rouse (z)

 Cont

55

As **FIGURAS 5-13 e 5-14** apresentam as variações longitudinais dos parâmetros de Shields e de Rouse, indicando novamente baixa mobilidade a partir da região das ilhas e bancos de areia.

FIGURA 5-10 - Variação da velocidade média ao longo do percurso

FIGURA 5-11 - Variação da declividade da linha de energia ao longo do percurso

FIGURA 5-12 - Variação da tensão de cisalhamento no leito ao longo do percurso

FIGURA 5-13 - Variação do parâmetro de Shields ao longo do percurso

FIGURA 5-14 – Variação do parâmetro de Rouse. Valores superiores a 3 indicam praticamente a imobilização dos sedimentos do leito.

5.4 Efeitos Hidrodinâmicos Localizados

Além destes casos típicos gerais existem efeitos secundários, que podem ser tratados especificamente, se o caso assim o requerer. Como exemplo pode-se citar o efeito de encouraçamento de leito, ou seja, a segregação de sedimentos formando uma couraça (pavimentação) de material mais grosseiro na superfície do leito. Este fenômeno ocorre quando os sedimentos do leito são bem distribuídos (valor significativo do desvio padrão da distribuição granulométrica) acarretando uma redução dos níveis de erosão. A presença significativa de seixos no leito, mesmo que localizados produziria a pavimentação do leito. O modelo HEC-RAS prevê este efeito no cálculo do potencial de erosão do leito.

A conservação dos bancos de areia, preocupação que originou este estudo, depende de forma importante da morfologia fluvial. Num rio existem áreas propícias a erosão de margens e áreas de deposição, responsáveis por processos de evolução de meandros ou outras alterações de traçado, dentro do que se entende como situação de equilíbrio morfológico. Correntes helicoidais produzem uma seção assimétrica em curvas com erosão da margem côncava e deposição da margem convexa, como se exemplifica na **FIGURA 5-15**.

FIGURA 5-15 – Traçado típico num trecho meandrado de rio.

Podem ocorrer ainda zonas de sombra de escoamento (descolamento) que produzem áreas de recirculação. Essa zona de recirculação cria condições para a deposição de sedimentos carregados em suspensão, conforme se exemplifica na **FIGURA 5-16**.

FIGURA 5-16 – Zona de sombra a jusante de ilha. A região de recirculação propícia a deposição

Tanto esse exemplo como o anterior não são frutos de desequilíbrio, mas uma condição natural do escoamento que produz a evolução de uma margem convexa ou o prolongamento de uma ilha. No caso de corte do suprimento de sedimentos ocorrerá uma estabilização do processo, pois não há corrente nestas áreas que possam produzir erosões nestas regiões. Alguns bancos, objeto deste estudo, encontram-se a jusante de ilhas ou em zonas de sombra de escoamento.

Um outro aspecto a ressaltar refere-se aos resultados apresentados na **FIGURA 5-9**, sobre a distribuição de concentrações na seção 8 e os resultados obtidos do parâmetro de Rouse ao longo do percurso (**FIGURA 5-14**). Observa-se que grande parte dos sedimentos transportados em suspensão irá ultrapassar os limites do barramento de Belo Monte uma vez que trata-se de sedimentos muito finos na faixa dos siltes. Estes sedimentos praticamente não contribuem para as transformações morfológicas do rio (carga de lavagem). Em outras palavras, o barramento, que irá funcionar a fio d'água, não irá alterar de forma significativa o regime de transporte sólido a jusante.

Apenas como observação final, lembrando que a tensão de cisalhamento é proporcional à altura de coluna d'água, dada pela equação:

$$\tau_o = \rho . v_*^2 = \gamma . h. Sf$$

Mesmo que houvesse escoamento sobre as regiões de praia, as tensões de cisalhamento seriam muito inferiores às que ocorrem no leito e estas, conforme já foi visto nos resultados de cálculos, também são bastante reduzidas na região dos bancos de areia.

6. CONSIDERAÇÕES FINAIS

Mesmo com os resultados de modelação e outras indicações de estabilidade da região dos bancos de areia quanto à possibilidade de processos erosivos, é conveniente que se faça um monitoramento de longo prazo para o acompanhamento do comportamento morfológico desta região para fazer frente a eventuais situações atípicas que possam alterar estas tendências (ex. passagem de uma cheia excepcional, efeitos de ondas produzidas por embarcações, etc.).

Pretende-se três tipos de monitoramento, que são: planialtimétrico e topobatimétrico; medição de velocidades; instalação de estação hidrossedimentométrica.

a) Levantamentos planialtimétricos e topobatimétricos

A região a ser monitorada deve abranger o trecho entre a seção 8 e a seção 15, com detalhamento do levantamento da calha fluvial com seções auxiliares de monitoramento situadas entre as seções 11 e 15, conforme indicação da **FIGURA 6-1**. Neste último trecho devem-se implantar marcos georreferenciados para cada seção, em locais seguros de inundações ordinárias.

Esta base de monitoramento deve ser implantada antes do fechamento da barragem. A periodicidade usual de monitoramento fluvial é da ordem de 5 anos, podendo haver antecipação no caso de alguma ocorrência que possa causar uma alteração significativa (uma passagem de onda de cheia importante ou alguma ação instabilizadora não prevista no estudo). Este monitoramento poderá ser interrompido a partir do momento que os levantamentos sistemáticos evidenciem uma situação de estabilidade.

De qualquer forma, foi preconizado um levantamento detalhado da morfologia da RIA na região, em especial dos bancos de areia que ficam expostos na estiagem, para possibilitar a comparação de levantamentos realizados em várias épocas, com maior confiabilidade.

Na região entre as seções 11 e 15 deve ser feito o levantamento da topografia com a utilização de perfilamento a laser, que garante o mapeamento planialtimétrico com a precisão necessária aos estudos.

No canal principal do rio Xingu, logo a jusante da seção 11 deve-se implantar seções de monitoramento georreferenciadas aos marcos instalados. A distância aproximada entre as seções deve ser feita conforme indicado no desenho esquemático da **FIGURA 6-1** - perfazendo um total da ordem de 20 seções transversais ao rio. Estas seções permitirão definir o relevo batimétrico do trecho e as curvas de nível junto às margens em especial na região dos bancos.

FIGURA 6-1 - Detalhamento das seções de monitoramento e bancos

b) Medição de velocidades

Através da análise da morfologia da região entre as seções 8 e 15, é possível concluir que a região do Banco do Juncal encontra-se em uma região de sombra, sujeita a velocidades baixas e pontos de estagnação.

Para comprovar esta assertiva é conveniente também, no monitoramento preliminar, fazer um levantamento mais detalhado do campo de velocidades nas seções de monitoramento, seções 12 e 13, e sobre os bancos submersos. Está previsto o levantamento em uma situação de estiagem e numa de cheia. Não há necessidade de repetir estas medições posteriormente, a menos que ocorram processos erosivos não esperados. Neste caso, estas medições servirão para identificar as causas da instabilização.

Ainda na hipótese de alguma ocorrência de erosão não prevista (por exemplo, erosão de margem, avançando em direção às praias), este processo em geral é lento, com tempo suficiente para que se tomem medidas de proteção convencionais contra o processo erosivo. Porém, num caso como este, deve-se analisar a causa da instabilização e atuar no sentido de proteger os bancos, atendendo as premissas ambientais (no caso, a proteção do meio físico para a procriação dos quelônios).

c) Instalação de estação hidrossedimentométrica

Para caracterizar as condições de transporte de sedimentos na região de maior interesse, recomenda-se a instalação de estação hidrossedimentométrica nas imediações da seção 8. Nesta estação deve-se efetuar quatro medições anuais de transporte sólido em suspensão e de fundo, sendo uma na estiagem, uma no início das chuvas e duas durante a cheia.

Prevê-se a execução das medições durante o período anterior à execução do empreendimento e ao longo de igual período, após o término de construção do mesmo.

7. EQUIPE TÉCNICA

A Equipe Técnica é formada pelos seguintes profissionais:

- Eng^o Carlos Lloret Ramos
- Eng^o David Michael Delgado
- Eng^o Pedro Diego Jensen
- Eng^o Rubens Terra Barth

8. Referências Bibliográficas

AMERICAN SOCIETY of CIVIL ENGINEERS. Sediment engineering; prepared by the ASCE Task Committee for the Preparation of the Manual on Sedimention of the Sedimentation Committee of the Hydraulics Division; edited by Vito A. Vanoni. New York: ASCE /cl975/ reimp. 1977. 745p. (Manuals and Reports on Engineering Practice, 54)

ENGELUND, Frank & HANSEN, E. A monograph on sediment transport in alluvial streams. Copenhagen: Teknisk Forlag, 1967. 62p.

GARDE, R.J. & RANGA RAJU, K.G. Mechanics of sediment transportation and alluvial stream problems. 2a.ed. New York: John Wiley, 1985. 618p.

GRAF, Walter Hans. Hydraulics of sediment transport. New York: McGraw-Hill, 1971. 513p. (McGraw-Hill Series in Water Resources and Environmental Engineering)

SIMONS, Daril B. e SENTURK, Fuat. Sediment Transport Technology. Water Resources Publications – Fort Collins, Colorado, E.U.A. – 1977, 807 p.

US ARMY CORPS OF ENGINEERS, Institute for Water Resources Hydrologic Enigeering Center, HEC-RAS User's Manual, Release V 4.1 – Davis, CA, E.U.A. - 2010

9. ANEXOS

ANEXO 1

Fotos

Foto 1 – Ilha do Cosme – Local de desova das tartarugas

Foto 2 – Coleta de amostra de fundo

Foto 3 – Material predominante nas Seções de 15 a 28

Foto 4 – Amostra embalada e etiquetada

Foto 5 – Régua de Altamira (circulo amarelo)

Foto 6 – Identificação das Amostras

Foto 7 – Amostras no Laboratório

Foto 8 – Determinação da Concentração

Foto 9 – Medição de Velocidade

ANEXO 2

Plantas e Seções Topobatimétricas

INSERIR ANEXO

ANEXO 3

Seções Topobatimétricas Discretizadas

Consultar arquivo digital

76

ANEXO 4

Análise das Amostras de Sedimentos

	GRANULOMETRIA - PENEIRAMENTO								
AMOSTRA: SEÇÃO 01 RIO: XINGU Data Coleta: 22/03/2011 Data Análise: 24/03/2011									
PENEIRAS	DIÂMETR	0	PESO	%	%				
			ACUMULADO	ACUMULADA	QUE PASSA				
N ^O	(mm)		(g)			Porcen tag em			
2"	50,8								
1 1/2"	38,1]			
1"	25,4]			
3/4"	19,1	2							
	15,9	Inge]			
1/2"	12,7	edre							
3/8"	9,52	ă							
3	6,35		0	0,00	100,00]			
4	4,76		11,86	3,03	96,97				
7	2,83		118,6	30,32	69,68	30,32			
10	2,00	ssa	213	54,45	45,55				
14	1,41	gr os	258,0	65,95	34,05				
16	1,20	eia	283,4	72,44	27,56				
25	0,71	ar	315,9	80,75	19,25	50,43			
30	0,59	ai a	325,4	83,18	16,82				
40	0,42	méa	349,2	89,26	10,74				
50	0,297	eia	377,6	96,52	3,48	1			
60	0,250	ar	387,3	99,00	1,00	18,25			
100	0,149	eia Da	391,1	99,97	0,03				
200	0,075	are fir				0,97			
Fundo	0		391,2	100,00	0,00	0,03			
Obs.:									

GRANULOMETRIA - PENEIRAMENTO AMOSTRA: SEÇÃO 02 RIO: XINGU Data Coleta: 22/03/2011 Data Análise: 24/03/2011								
PENEIRAS	DIÂMETR	0	PESO	%	%			
0	(ļ		ACUMULADA	QUE PASSA			
N~	(mm)		(g)			Porcentagem		
2"	50,8		ļ!	ļļ		4		
1 1/2"	38,1		ļ!	ļļ				
1"	25,4		ļ'	ļļ				
3/4"	19,1	ohli	ļ!	ļļ		-		
	15,9	egu		ļļ		4		
1/2"	12,7	bedr	ļ'	ļļ				
3/8"	9,52	٩	ļ!	ļļ				
3	6,35		0	0,00	100,00			
4	4,76		2,19	0,52	99,48			
7	2,83		22,9	5,40	94,60	5,40		
10	2,00	ssa	64,35	15,18	84,82			
14	1,41	gro	115,3	27,20	72,80			
16	1,20	eia	177,9	41,97	58,03			
25	0,71	ar	295,6	69,73	30,27	64,33		
30	0,59	dia	323,8	76,39	23,61			
40	0,42	méc	379,6	89,55	10,45			
50	0,297	eia	414,1	97,69	2,31			
60	0,250	ar	420,6	99,22	0,78	29,49		
100	0,149	eia Ja	423,6	99,93	0,07			
200	0,075	are fir				0,71		
Fundo	0		423,9	100,00	0,00	0,07		
Obs.:	J				- /			

LEME

GRANULOMETRIA - PENEIRAMENTO								
AMOSTRA: RIO: Data Coleta:	SEÇÃO 03 XINGU 22/03/2011		I	Data Análise:	24/03/2011			
PENEIRAS	DIÂMETR	0	PESO	%	%			
			ACUMULADO	ACUMULADA	QUE PASSA			
N ^O	(mm)		(g)			Porcentagem		
2"	50,8							
1 1/2"	38,1							
1"	25,4							
3/4"	19,1	oh						
	15,9	nɓe						
1/2"	12,7	edre						
3/8"	9,52	ā						
3	6,35							
4	4,76		0	0,00	100,00			
7	2,83		1,01	0,32	99,68	0,32		
10	2,00	ssa	6,84	2,16	97,84			
14	1,41	gro	25,01	7,88	92,12			
16	1,20	eia	59,2	18,66	81,34			
25	0,71	ar	158,2	49,87	50,13	49,56		
30	0,59	dia	191,3	60,31	39,69			
40	0,42	mé	268	84,49	15,51			
50	0,297	eia	309,4	97,54	2,46			
60	0,250	ar	314,8	99,24	0,76	49,37		
100	0,149	eia na	316,8	99,87	0,13			
200	0,075	ar fii				0,63		
Fundo	0		317,2	100,00	0,00	0,13		
Obs.:								

GRANULOMETRIA - PENEIRAMENTO								
AMOSTRA: RIO: Data Coleta:	SEÇÃO 04 XINGU 22/03/2011			Data Análise:	24/03/2011			
PENEIRAS	DIÂMETR	0	PESO	%	%			
			ACUMULADO	ACUMULADA	QUE PASSA			
N ^O	(mm)		(g)			Porcentagem		
2"	50,8							
1 1/2"	38,1							
1"	25,4							
3/4"	19,1	рq						
	15,9	Inge						
1/2"	12,7	edre						
3/8"	9,52	pe						
3	6,35							
4	4,76							
7	2,83					0,00		
10	2,00	ssa	0	0,00	100,00			
14	1,41	gros	0,59	0,13	99,87			
16	1,20	eia	2,95	0,63	99,37			
25	0,71	are	80,13	17,10	82,90	17,10		
30	0,59	dia	142	30,31	69,69			
40	0,42	mé	328,6	70,14	29,86			
50	0,297	<u></u>	449,3	95,90	4,10			
60	0,250	ar	462,9	98,80	1,20	81,70		
100	0,149	eia Ja	467,6	99,81	0,19			
200	0,075	ar fir	467,7	99,83	0,17	1,02		
Fundo	0		468,5	100,00	0,00	0,17		
Obs.:								

GRANULOMETRIA - PENEIRAMENTO									
AMOSTRA: SEÇÃO 05 RIO: XINGU Data Coleta: 22/03/2011 Data Análise: 24/03/2011									
PENEIRAS	DIÂMETR	0	PESO	%	%				
			ACUMULADO	ACUMULADA	QUE PASSA				
N ^O	(mm)	-	(g)			Porcentagem			
2"	50,8								
1 1/2"	38,1								
1"	25,4								
3/4"	19,1	ę							
	15,9	Ingé							
1/2"	12,7	edre							
3/8"	9,52	ă	0	0,00	100,00				
3	6,35		5,49	1,21	98,79				
4	4,76		6,55	1,44	98,56				
7	2,83		11,8	2,60	97,40	2,60			
10	2,00	ssa	22,19	4,89	95,11				
14	1,41	gro	36,5	8,04	91,96				
16	1,20	eia	62,2	13,70	86,30				
25	0,71	ar	184,7	40,68	59,32	38,08			
30	0,59	dia	241,1	53,11	46,89				
40	0,42	mé	379,1	83,50	16,50				
50	0,297	eia	443,1	97,60	2,40]			
60	0,250	ar	449,9	99,10	0,90	58,41			
100	0,149	eia Ja	453,5	99,89	0,11]			
200	0,075	ar fir				0,79			
Fundo	0		454,0	100,00	0,00	0,11			
Obs.:									

GRANULOMETRIA - PENEIRAMENTO									
AMOSTRA: SEÇÃO 06 RIO: XINGU Data Coleta: 22/03/2011 Data Análise: 24/03/2011									
PENEIRAS	DIÂMETR	0	PESO ACUMULADO	% ACUMULADA	% QUE PASSA				
N ^O	(mm)		(g)			Porcentagem			
2"	50,8								
1 1/2"	38,1								
1"	25,4								
3/4"	19,1	р							
	15,9	Inge							
1/2"	12,7	edre							
3/8"	9,52	ă							
3	6,35								
4	4,76		0	0,00	100,00				
7	2,83		2,87	0,63	99,37	0,63			
10	2,00	ssa	11,16	2,45	97,55				
14	1,41	gro	20,0	4,40	95,60				
16	1,20	eia	33,6	7,37	92,63				
25	0,71	ar	69,6	15,28	84,72	14,65			
30	0,59	dia	83,6	18,35	81,65				
40	0,42	mé	134,0	29,42	70,58				
50	0,297	eia	297,1	65,23	34,77				
60	0,250	ar	385,0	84,52	15,48	69,24			
100	0,149	eia na	448,2	98,40	1,60	1			
200	0,075	ar fii	451,1	99,03	0,97	14,51			
Fundo	0		455,5	100,00	0,00	0,97			
Obs.:	Obs.:								

GRANULOMETRIA - PENEIRAMENTO								
AMOSTRA: SEÇÃO 07 RIO: XINGU Data Coleta: 22/03/2011 Data Análise: 24/03/2011								
PENEIRAS	DIÂMETR	0	PESO	%	%			
N ^O	(mm)		ACUMULADO (g)	ACUMULADA	QUE PASSA	Porcentagem		
2"	50,8							
1 1/2"	38,1							
1"	25,4							
3/4"	19,1	ę						
	15,9	lluge						
1/2"	12,7	edre						
3/8"	9,52	ğ						
3	6,35							
4	4,76							
7	2,83					0,00		
10	2,00	ssa	0	0,00	100,00			
14	1,41	gro	1,3	0,30	99,70			
16	1,20	eia	5,9	1,41	98,59			
25	0,71	ar	84,4	20,16	79,84	20,16		
30	0,59	dia	137,2	32,79	67,21			
40	0,42	mé	292,7	69,96	30,04]		
50	0,297	eia	388,4	92,83	7,17			
60	0,250	ar	406,0	97,04	2,96	76,88		
100	0,149	eia na	417,2	99,71	0,29			
200	0,075	ar fii	417,4	99,76	0,24	2,72		
Fundo	0		418,4	100,00	0,00	0,24		
Obs.:								

GRANULOMETRIA - PENEIRAMENTO								
AMOSTRA: SEÇÃO 08 - VERTICAL 05 RIO: XINGU Data Coleta: 04/02/2011 Data Análise: 07/03/2011								
PENEIRAS	DIÂMETR	0	PESO	%	%			
0			ACUMULADO	ACUMULADA	QUE PASSA			
N ^O	(mm)		(g)			Porcentagem		
2"	50,8							
1 1/2"	38,1							
1"	25,4							
3/4"	19,1	<u></u>						
	15,9	Inge						
1/2"	12,7	edre						
3/8"	9,52	<u>م</u>						
3	6,35							
4	4,76							
7	2,83					0,00		
10	2,00	ssa						
14	1,41	gros	0,0	0,00	100,00			
16	1,20	eia.	0,6	0,20	99,80			
25	0,71	an	1,4	0,46	99,54	0,46		
30	0,59	dia	2,5	0,82	99,18			
40	0,42	méc	18,1	5,96	94,04			
50	0,297	ei.	156,8	51,65	48,35			
60	0,250	ar	246,5	81,19	18,81	80,73		
100	0,149	eia la	301,4	99,28	0,72			
200	0,075	are	302,9	99,77	0,23	18,58		
Fundo	0		303,6	100,00	0,00	0,23		
Obs.:								

GRANULOMETRIA - PENEIRAMENTO								
AMOSTRA: SEÇÃO 08 - VERTICAL 04 RIO: XINGU Data Coleta: 04/02/2011 Data Análise: 07/03/2011								
PENEIRAS	DIÂMETR	0	PESO	%	%			
			ACUMULADO	ACUMULADA	QUE PASSA			
N ^o	(mm)	-	(g)			Porcentagem		
2"	50,8							
1 1/2"	38,1							
1"	25,4							
3/4"	19,1	oh						
	15,9	luge						
1/2"	12,7	edre						
3/8"	9,52	ă						
3	6,35							
4	4,76							
7	2,83					0,00		
10	2,00	ssa	0	0,00	100,00			
14	1,41	gro	0,5	0,13	99,87			
16	1,20	eia.	2,9	0,78	99,22			
25	0,71	are	28,4	7,67	92,33	7,67		
30	0,59	dia	51,2	13,82	86,18			
40	0,42	Ш, e	189,3	51,11	48,89			
50	0,297	<u>a</u> .	354,6	95,73	4,27			
60	0,250	are	368,1	99,38	0,62	91,71		
100	0,149	eia Ja	370,2	99,95	0,05			
200	0,075	ar fir	370,3	99,97	0,03	0,59		
Fundo	0		370,4	100,00	0,00	0,03		
Obs.:								

AMOSTRA: SEÇÃO 08 - VERTICAL 03 RIO: XINGU Data Coleta: 04/02/2011 Data Análise: 07/03/2011								
PENEIRAS	DIÂMET	RO	PESO	%	%			
. 0	()			ACUMULADA	QUE PASSA			
N ^v	(mm)		(g)			porcentagem		
2"	50,8							
1 1/2"	38,1							
1"	25,4							
3/4"	19,1	ho						
	15,9	nɓe						
1/2"	12,7	edre						
3/8"	9,52	đ						
3	6,35							
4	4,76							
7	2,83					0,00		
10	2,00	ssa	0	0,00	100,00			
14	1,41	gros	3,6	1,08	98,92			
16	1,20	aia	17,2	5,17	94,83			
25	0,71	are	117,4	35,29	64,71	35,29		
30	0,59	dia	162,4	48,81	51,19			
40	0,42	néc	274,5	82,51	17,49			
50	0,297	eia I	322,3	96,87	3,13			
60	0,250	are	328,2	98,65	1,35	63,36		
100	0,149	a a	332,4	99,91	0,09			
200	0,075	are fin				1,26		
Fundo	0		332,7	100,00	0,00	0,09		
Obs.:								

	GRANULOMETRIA - PENEIRAMENTO								
AMOSTRA: RIO: Data Coleta:	SEÇÃO 08 - XINGU 04/02/2011	VERTI	CAL 02	Data Análise:	07/03/2011				
PENEIRAS	DIÂMET	RO	PESO	%	%				
	(ACUMULADA	QUE PASSA				
N [©]	(mm)		(g)			porcentagem			
2"	50,8								
1 1/2"	38,1								
1"	25,4								
3/4"	19,1	oylu							
	15,9	regu							
1/2"	12,7	bed							
3/8"	9,52	<u>a</u>							
3	6,35		0,0	0,00	100,00				
4	4,76		2,1	0,56	99,44				
1	2,83		3,8	1,02	98,98	1,02			
10	2,00	SSS	6,4	1,72	98,28				
14	1,41	gro	15,6	4,19	95,81				
16	1,20	eia	30,8	8,28	91,72				
25	0,71	al	109,0	29,29	70,71	28,27			
30	0,59	dia	145,1	38,99	61,01				
40	0,42	mé	259,8	69,82	30,18				
50	0,297	eia	347,0	93,25	6,75				
60	0,250	al	363,9	97,80	2,20	68,50			
100	0,149	eia na	371,5	99,84	0,16				
200	0,075	ar fi	371,7	99,89	0,11	2,10			
Fundo	0		372,1	100,00	0,00	0,11			
Obs.:									

	GRANULOMETRIA - PENEIRAMENTO								
AMOSTRA: SEÇÃO 08 - VERTICAL 01 RIO: XINGU Data Coleta: 04/02/2011 Data Análise: 07/03/2011									
PENEIRAS	DIÂMET	RO	PESO	%	%				
			ACUMULADO	ACUMULADA	QUE PASSA				
N ^O	(mm)		(g)			Porcentagem			
2"	50,8								
1 1/2"	38,1								
1"	25,4								
3/4"	19,1	역							
	15,9	nɓe							
1/2"	12,7	edre							
3/8"	9,52	đ							
3	6,35								
4	4,76		0	0,00	100,00				
7	2,83		0,9	0,24	99,76	0,24			
10	2,00	ssa	5,7	1,50	98,50				
14	1,41	gro	13,6	3,57	96,43				
16	1,20	e <u>a</u> .	22,8	5,98	94,02				
25	0,71	ar	48,5	12,73	87,27	12,49			
30	0,59	dia	58,2	15,27	84,73				
40	0,42	mé	85,6	22,46	77,54				
50	0,297	eia	120,3	31,57	68,43				
60	0,250	ar	171,8	45,08	54,92	32,35			
100	0,149	eia na	369,4	96,93	3,07				
200	0,075	ar fi	372,3	97,69	2,31	52,61			
Fundo	0		381,1	100,00	0,00	2,31			
Obs.:									

GRANULOMETRIA - PENEIRAMENTO								
AMOSTRA: SEÇÃO 09 RIO: XINGU Data Coleta: 22/03/2011 Data Análise: 24/03/2011								
PENEIRAS	DIÂMETRO		PESO	%	%			
N ^o	(mm)		ACUMULADO (g)	ACUMULADA	QUE PASSA	Porcentagem		
2"	50,8							
1 1/2"	38,1							
1"	25,4							
3/4"	19,1	و						
	15,9	anı						
1/2"	12,7	edre						
3/8"	9,52	đ						
3	6,35							
4	4,76		0	0,00	100,00			
7	2,83		6,16	1,24	98,76	1,24		
10	2,00	ssa	20,15	4,07	95,93			
14	1,41	gros	38,6	7,80	92,20			
16	1,20	eia	70,6	14,25	85,75			
25	0,71	ar	186,8	37,71	62,29	36,47		
30	0,59	dia	234,8	47,41	52,59			
40	0,42	méc	373,4	75,39	24,61			
50	0,297	eia	468,0	94,49	5,51			
60	0,250	ar	481,7	97,25	2,75	59,54		
100	0,149	eia na	494,0	99,74	0,26			
200	0,075	ar fii	494,4	99,82	0,18	2,56		
Fundo	0		495,3	100,00	0,00	0,18		
Obs.:								

GRANULOMETRIA - PENEIRAMENTO								
AMOSTRA: SEÇÃO 10 RIO: XINGU Data Coleta: 22/03/2011 Data Análise: 24/03/2011								
PENEIRAS	DIÂMETRO		PESO	%	%			
N ^O	(mm)		(g)	ACUMULADA	QUE PASSA	Porcentagem		
2"	50,8					i ereenigeni		
1 1/2"	38,1							
1"	25,4							
3/4"	19,1	p						
	15,9	llug						
1/2"	12,7	edre						
3/8"	9,52	ď						
3	6,35							
4	4,76							
7	2,83		0	0,00	100,00	0,00		
10	2,00	ssa	1,66	0,40	99,60			
14	1,41	gro	4,6	1,12	98,88			
16	1,20	eia	11,4	2,77	97,23			
25	0,71	ar	47,7	11,58	88,42	11,58		
30	0,59	dia	68,4	16,61	83,39			
40	0,42	mé	154,3	37,49	62,51			
50	0,297	reia	336,4	81,73	18,27			
60	0,250	ิต	386,5	93,90	6,10	82,33		
100	0,149	eia na	410,2	99,66	0,34			
200	0,075	ar fi	410,5	99,73	0,27	5,83		
Fundo	0		411,6	100,00	0,00	0,27		
Obs.:								

GRANULOMETRIA - PENEIRAMENTO							
AMOSTRA: SEÇÃO 11 RIO: XINGU Data Coleta: 22/03/2011 Data Análise: 24/03/2011							
PENEIRAS N ⁰	DIÂMETRO (mm)		PESO ACUMULADO (g)	% ACUMULADA	% QUE PASSA	Porcentagem	
2"	50,8						
1 1/2"	38,1					1	
1"	25,4					1	
3/4"	19,1	p]	
	15,9	lug					
1/2"	12,7	edre					
3/8"	9,52	pe					
3	6,35						
4	4,76						
7	2,83					0,00	
10	2,00	ssa					
14	1,41	gro	0,0	0,00	100,00		
16	1,20	eia	1,3	0,29	99,71		
25	0,71	ar	63,6	13,82	86,18	13,82	
30	0,59	dia	139,3	30,26	69,74		
40	0,42	mé	367,8	79,90	20,10		
50	0,297	eia	454,5	98,74	1,26		
60	0,250	ar	458,8	99,67	0,33	85,85	
100	0,149	eia na	459,9	99,91	0,09		
200	0,075	ar fi				0,24	
Fundo	0		460,3	100,00	0,00	0,09	
Obs.:							

GRANULOMETRIA - PENEIRAMENTO							
AMOSTRA: RIO: Data Coleta:	SEÇÃO 12 XINGU fevereiro de	2011		Data Análise:	07/03/2011		
PENEIRAS	DIÂMETRO		PESO	%	%		
			ACUMULADO	ACUMULADA	QUE PASSA		
N ^o	(mm)		(g)			Porcentagem	
2"	50,8						
1 1/2"	38,1						
1"	25,4						
3/4"	19,1	oq					
	15,9	Inge					
1/2"	12,7	edre					
3/8"	9,52	Ъ					
3	6,35						
4	4,76		0	0,00	100,00		
7	2,83		2,7	0,68	99,32	0,68	
10	2,00	ssa	8,1	2,04	97,96		
14	1,41		17,8	4,48	95,52		
16	1,20	eia ç	34,9	8,78	91,22		
25	0,71	are	97,1	24,42	75,58	23,74	
30	0,59	dia	122,9	30,91	69,09		
40	0,42	mé	204,6	51,46	48,54		
50	0,297	<u>a</u> .	308,9	77,69	22,31		
60	0,250	an	348,4	87,63	12,37	63,20	
100	0,149	eia Ja	389,8	98,04	1,96		
200	0,075	are fir	390,9	98,31	1,69	10,69	
Fundo	0		397,6	100,00	0,00	1,69	
Obs.:							

GRANULOMETRIA - PENEIRAMENTO							
AMOSTRA: RIO: Data Coleta:	SEÇÃO 13 XINGU fevereiro de	2011		⊃ata Análise:	07/03/2011		
PENEIRAS	DIÂMET	RO	PESO	%	%		
			ACUMULADO	ACUMULADA	QUE PASSA		
N ^O	(mm)		(g)			Porcentagem	
2"	50,8						
1 1/2"	38,1						
1"	25,4						
3/4"	19,1	<u>م</u>					
	15,9	nɓe					
1/2"	12,7	edre					
3/8"	9,52	ă	0	0,00	100,00		
3	6,35		0,7	0,15	99,85		
4	4,76		0,9	0,20	99,80		
7	2,83		4,8	1,06	98,94	1,06	
10	2,00	ssa	19,4	4,27	95,73		
14	1,41	gros	41,2	9,06	90,94		
16	1,20	eia	72	15,84	84,16		
25	0,71	are	151,8	33,39	66,61	32,34	
30	0,59	dia	177,7	39,09	60,91		
40	0,42	mé	249,2	54,82	45,18		
50	0,297	eia	322,8	71,01	28,99		
60	0,250	ar	354,9	78,07	21,93	44,68	
100	0,149	eia Ja	399,8	87,95	12,05		
200	0,075	ar fii	417,3	91,79	8,21	13,73	
Fundo	0		454,6	100,00	0,00	8,21	
Obs.:							

	GRANULOMETRIA - PENEIRAMENTO							
AMOSTRA: RIO: Data Coleta:	SEÇÃO 14 XINGU fevereiro de	2011		Data Análise:	07/03/2011			
PENEIRAS	DIÂMET	RO	PESO	%	%			
			ACUMULADO	ACUMULADA	QUE PASSA			
N ^O	(mm)		(g)			Porcentagem		
2"	50,8							
1 1/2"	38,1							
1"	25,4							
3/4"	19,1	ho						
	15,9	nɓe						
1/2"	12,7	sqre						
3/8"	9,52	ď						
3	6,35							
4	4,76							
7	2,83					0,00		
10	2,00	ssa						
14	1,41	gro	0,0	0,00	100,00			
16	1,20	eia.	1,7	1,00	99,00			
25	0,71	are	35,3	21,07	78,93	21,07		
30	0,59	dia	42,7	25,47	74,53			
40	0,42	mé	58,6	34,94	65,06			
50	0,297	eia.	71,6	42,71	57,29			
60	0,250	an	82,2	49,07	50,93	28,00		
100	0,149	eia Ja	101,6	60,62	39,38			
200	0,075	ar fir	108,0	64,44	35,56	15,37		
Fundo	0		167,6	100,00	0,00	35,56		
Obs.:								

GRANULOMETRIA - PENEIRAMENTO							
AMOSTRA: SEÇÃO 15 RIO: XINGU Data Coleta: fevereiro de 2011 Data Análise: 07/03/2011							
PENEIRAS	DIÂMET	RO	PESO	%	%		
			ACUMULADO	ACUMULADA	QUE PASSA		
N ^O	(mm)		(g)			Porcentagem	
2"	50,8						
1 1/2"	38,1						
1"	25,4						
3/4"	19,1	oy					
	15,9	Inbe					
1/2"	12,7	edre					
3/8"	9,52	ă					
3	6,35						
4	4,76		0	0,00	100,00		
7	2,83		1,4	0,71	99,29	0,71	
10	2,00	ssa	4,1	2,09	97,91		
14	1,41	groc	6,5	3,31	96,69		
16	1,20	ai ai	9,7	4,94	95,06		
25	0,71	ar (23,6	12,02	87,98	11,31	
30	0,59	dia	27,8	14,16	85,84		
40	0,42	mé	37,5	19,10	80,90		
50	0,297	eia	49,7	25,32	74,68		
60	0,250	ar	64,8	33,01	66,99	20,99	
100	0,149	eia Ja	126,1	64,24	35,76		
200	0,075	are fir	165,3	84,21	15,79	51,20	
Fundo	0		196,3	100,00	0,00	15,79	
Obs.:							

GRANULOMETRIA - PENEIRAMENTO							
AMOSTRA: SEÇÃO 16 RIO: XINGU Data Coleta: fevereiro de 2011 Data Análise: 07/03/2011							
PENEIRAS	DIÂMET	RO	PESO	%	%		
			ACUMULADO	ACUMULADA	QUE PASSA		
N ^O	(mm)		(g)			Porcentagem	
2"	50,8						
1 1/2"	38,1						
1"	25,4						
3/4"	19,1	2					
	15,9	Inge					
1/2"	12,7	adre					
3/8"	9,52	ă					
3	6,35						
4	4,76		0	0,00	100,00		
7	2,83		2,62	0,88	99,12	0,88	
10	2,00	ssa	10,26	3,44	96,56		
14	1,41	gro	19,85	6,65	93,35		
16	1,20	eia	31,34	10,50	89,50		
25	0,71	are	91,63	30,71	69,29	29,83	
30	0,59	dia	108,1	36,23	63,77		
40	0,42	тé	131,9	44,20	55,80		
50	0,297	<u>e</u> i	154,9	51,91	48,09		
60	0,250	ar	173,5	58,14	41,86	27,44	
100	0,149	eia Ja	202,5	67,86	32,14		
200	0,075	are fir	234,1	78,45	21,55	20,31	
Fundo	0		298,4	100,00	0,00	21,55	
Obs.:							

	GRANULOMETRIA - PENEIRAMENTO							
AMOSTRA: RIO: Data Coleta:	SEÇÃO 17 XINGU fevereiro de	2011		Data Análise:	07/03/2011			
PENEIRAS	DIÂMET	RO	PESO	%	%			
			ACUMULADO	ACUMULADA	QUE PASSA			
N ^O	(mm)		(g)			Porcentagem		
2"	50,8							
1 1/2"	38,1							
1"	25,4							
3/4"	19,1	оч						
	15,9	Inge						
1/2"	12,7	edre						
3/8"	9,52	a A						
3	6,35							
4	4,76							
7	2,83					0,00		
10	2,00	ssa						
14	1,41	gros						
16	1,20	aia	0	0,00	100,00			
25	0,71	are	3,49	1,61	98,39	1,61		
30	0,59	dia	6,83	3,14	96,86			
40	0,42	méć	12,19	5,61	94,39			
50	0,297	a.	18,76	8,63	91,37			
60	0,250	are	35,51	16,34	83,66	14,74		
100	0,149	eia Ja	129,8	59,73	40,27			
200	0,075	ar fir	134,8	62,03	37,97	45,69		
Fundo	0		217,3	100,00	0,00	37,97		
Obs.:								

		GRANU	LOMETRIA -	PENEIRAMENT	о	
AMOSTRA: RIO: Data Coleta:	SEÇÃO 18 XINGU fevereiro de	2011		Data Análise:	07/03/2011	
PENEIRAS	DIÂMET	RO	PESO	%	%	
			ACUMULADO	ACUMULADA	QUE PASSA	
<u> </u>	(mm)		(g)			Porcentagem
2"	50,8					
1 1/2"	38,1					
1"	25,4					
3/4"	19,1	<u>6</u>				
	15,9	Inge				
1/2"	12,7	edre				
3/8"	9,52	ð				
3	6,35					
4	4,76					
7	2,83					0,00
10	2,00	ssa				
14	1,41	dro	0	0,00	100,00	
16	1,20	<u>a</u> .	2,87	0,91	99,09	
25	0,71	ar	25,28	8,03	91,97	8,03
30	0,59	dia	31,53	10,02	89,98	
40	0,42	mé	43,68	13,88	86,12	
50	0,297	eia	60,46	19,21	80,79	
60	0,250	ar	73,21	23,26	76,74	15,23
100	0,149	eia Da	150,2	47,73	52,27	
200	0,075	ar fii	161,4	51,29	48,71	28,02
Fundo	0		314,7	100,00	0,00	48,71
Obs.:						

AMOSTRA: RIO: Data Coleta:	SEÇÃO 19 XINGU fevereiro de	<u>GRAN</u> 2011	<u>JLOMETRIA -</u>	PENEIRAMENT Data Análise:	0 07/03/2011	
PENEIRAS	DIÂMET	RO	PESO	%	%	
			ACUMULADO	ACUMULADA	QUE PASSA	
N ^O	(mm)		(g)			Porcentagem
2"	50,8					
1 1/2"	38,1					
1"	25,4					
3/4"	19,1	оч				
	15,9	Ing				
1/2"	12,7	edre				
3/8"	9,52	8				
3	6,35					
4	4,76					
7	2,83					0,00
10	2,00	ssa				
14	1,41	gr <u>o</u>				
16	1,20	eia.	0	0,00	100,00	
25	0,71	ar (44,6	20,08	79,92	20,08
30	0,59	dia	58,4	26,29	73,71	
40	0,42	mé	85,8	38,63	61,37	
50	0,297	eia	109,2	49,17	50,83	
60	0,250	ar	121,8	54,84	45,16	34,76
100	0,149	eia Ja	145,9	65,69	34,31	
200	0,075	are fir	164,9	74,25	25,75	19,41
Fundo	0		222,1	100,00	0,00	25,75
Obs.:						

	GRANULOMETRIA - PENEIRAMENTO							
AMOSTRA: RIO: Data Coleta:	SEÇÃO 20 XINGU fevereiro de	2011		Data Análise:	07/03/2011			
PENEIRAS	DIÂMET	RO	PESO	%	%			
			ACUMULADO	ACUMULADA	QUE PASSA			
N ^O	(mm)		(g)			Porcentagem		
2"	50,8							
1 1/2"	38,1							
1"	25,4							
3/4"	19,1	입						
	15,9	nbe						
1/2"	12,7	eque						
3/8"	9,52	ă						
3	6,35		0	0,00	100,00			
4	4,76		2,3	0,88	99,12			
7	2,83		17,8	6,81	93,19	6,81		
10	2,00	ssa	34,1	13,05	86,95			
14	1,41	ğ	45,6	17,45	82,55			
16	1,20	ei a	68,1	26,06	73,94			
25	0,71	an	120,1	45,96	54,04	39,15		
30	0,59	dia	132,5	50,71	49,29			
40	0,42	mé	155,6	59,55	40,45			
50	0,297	eia	175,1	67,01	32,99			
60	0,250	ar	185,3	70,91	29,09	24,95		
100	0,149	eia na	201,7	77,19	22,81			
200	0,075	ar fii	211,2	80,83	19,17	9,91		
Fundo	0		261,3	100,00	0,00	19,17		
Obs.:	-							

	GRANULOMETRIA - PENEIRAMENTO							
AMOSTRA: RIO: Data Coleta:	SEÇÃO 21 XINGU fevereiro de	2011		Data Análise:	07/03/2011			
PENEIRAS	DIÂMET	RO	PESO	%	%			
			ACUMULADO	ACUMULADA	QUE PASSA			
N ^O	(mm)		(g)			Porcentagem		
2"	50,8							
1 1/2"	38,1							
1"	25,4							
3/4"	19,1	р						
	15,9	Inge						
1/2"	12,7	edre						
3/8"	9,52	<u>a</u>						
3	6,35							
4	4,76							
7	2,83					0,00		
10	2,00	ssa						
14	1,41	groe						
16	1,20	aia.	0	0,00	100,00			
25	0,71	ar (12,6	7,97	92,03	7,97		
30	0,59	dia	17,1	10,82	89,18			
40	0,42	mé	26,9	17,01	82,99			
50	0,297	eia.	37,7	23,85	76,15			
60	0,250	ar	44,4	28,08	71,92	20,11		
100	0,149	eia Ja	57,6	36,43	63,57			
200	0,075	ar fir	76,8	48,58	51,42	20,49		
Fundo	0		158,1	100,00	0,00	51,42		
Obs.:								

	G	RANUL	OMETRIA - P	ENEIRAMENT	0	
AMOSTRA: RIO: Data Coleta:	SEÇÃO 21 A XINGU fevereiro de	2011		Data Análise:	07/03/2011	
PENEIRAS	DIÂMET	RO	PESO	%	%	
			ACUMULADO	ACUMULADA	QUE PASSA	
N ^o	(mm)		(g)			Porcentagem
2"	50,8					
1 1/2"	38,1					
1"	25,4					
3/4"	19,1	e L				
	15,9	lug				
1/2"	12,7	edre				
3/8"	9,52	8				
3	6,35					
4	4,76					
7	2,83					0,00
10	2,00	ssa				
14	1,41	gr og	0	0,00	100,00	
16	1,20	ai.	0,65	0,12	99,88	
25	0,71	ar (1,52	0,29	99,71	0,29
30	0,59	dia	1,99	0,38	99,62	
40	0,42	mé	3,82	0,73	99,27	
50	0,297	eia.	16,95	3,22	96,78	
60	0,250	ar	64,55	12,28	87,72	11,99
100	0,149	eia Ja	308,2	58,64	41,36	
200	0,075	are fir	382,1	72,70	27,30	60,42
Fundo	0		525,6	100,00	0,00	27,30
Obs.:						

	GRANULOMETRIA - PENEIRAMENTO								
AMOSTRA: SEÇÃO 22 RIO: XINGU Data Coleta: fevereiro de 2011 Data Análise: 07/03/2011									
PENEIRAS	DIÂMET	RO	PESO	%	%				
			ACUMULADO	ACUMULADA	QUE PASSA				
N ^o	(mm)		(g)			Porcentagem			
2"	50,8								
1 1/2"	38,1								
1"	25,4								
3/4"	19,1	оч							
	15,9	lug							
1/2"	12,7	edre							
3/8"	9,52	8							
3	6,35								
4	4,76								
7	2,83					0,00			
10	2,00	ssa							
14	1,41	groe							
16	1,20	ai ai	0	0,00	100,00				
25	0,71	ar (32,4	20,69	79,31	20,69			
30	0,59	dia	42,6	27,20	72,80				
40	0,42	mé	62,9	40,17	59,83				
50	0,297	a.	80,5	51,40	48,60				
60	0,250	ar	89,8	57,34	42,66	36,65			
100	0,149	eia Ja	106,4	67,94	32,06				
200	0,075	ar fir	115,9	74,01	25,99	16,67			
Fundo	0		156,6	100,00	0,00	25,99			
Obs:									

	GRANULOMETRIA - PENEIRAMENTO							
AMOSTRA: RIO: Data Coleta:	SEÇÃO 23 XINGU fevereiro de	2011		Data Análise:	07/03/2011			
PENEIRAS	DIÂMET	RO	PESO	%	%			
			ACUMULADO	ACUMULADA	QUE PASSA			
N ^O	(mm)		(g)			Porcentagem		
2"	50,8							
1 1/2"	38,1							
1"	25,4							
3/4"	19,1	٩						
	15,9	Inge						
1/2"	12,7	edre						
3/8"	9,52	þ						
3	6,35							
4	4,76							
7	2,83					0,00		
10	2,00	ssa						
14	1,41	groe						
16	1,20	eia (0	0,00	100,00			
25	0,71	are	6,45	2,19	97,81	2,19		
30	0,59	dia	7,98	2,71	97,29			
40	0,42	mé	12,8	4,34	95,66			
50	0,297	e <u>a</u> .	19,67	6,67	93,33			
60	0,250	ar	27,86	9,44	90,56	7,26		
100	0,149	eia Ja	53,05	17,98	82,02			
200	0,075	ar fir	86,65	29,37	70,63	19,93		
Fundo	0		295	100,00	0,00	70,63		
Obs.:								

GRANULOMETRIA - PENEIRAMENTO							
AMOSTRA: RIO: Data Coleta:	SEÇÃO 24 XINGU fevereiro de	2011		Data Análise:	07/03/2011		
PENEIRAS	DIÂMET	RO	PESO	%	%		
			ACUMULADO	ACUMULADA	QUE PASSA		
N ^O	(mm)		(g)			Porcentagem	
2"	50,8						
1 1/2"	38,1						
1"	25,4						
3/4"	19,1	oq					
	15,9	lnge					
1/2"	12,7	edre					
3/8"	9,52	ă.					
3	6,35						
4	4,76						
7	2,83		0	0,00	100,00	0,00	
10	2,00	ssa	1,7	0,46	99,54		
14	1,41	gr o	3,4	0,92	99,08		
16	1,20	<u>a</u> .	7,3	1,97	98,03		
25	0,71	ar	28,7	7,73	92,27	7,73	
30	0,59	dia	40,6	10,93	89,07		
40	0,42	mé	80,3	21,62	78,38		
50	0,297	eia.	140,5	37,82	62,18		
60	0,250	ar	172,2	46,35	53,65	38,63	
100	0,149	eia na	206,7	55,64	44,36		
200	0,075	ar fii	261,4	70,36	29,64	24,01	
Fundo	0		371,5	100,00	0,00	29,64	
Obs.:							

GRANULOMETRIA - PENEIRAMENTO								
AMOSTRA: SEÇÃO 24 A RIO: XINGU Data Coleta: fevereiro de 2011 Data Análise: 07/03/2011								
PENEIRAS	DIÂMET	RO	PESO	%	%			
			ACUMULADO	ACUMULADA	QUE PASSA			
N ^o	(mm)		(g)			Porcentagem		
2"	50,8							
1 1/2"	38,1							
1"	25,4							
3/4"	19,1	온						
	15,9	Inge						
1/2"	12,7	edre						
3/8"	9,52	ă						
3	6,35							
4	4,76							
7	2,83					0,00		
10	2,00	ssa						
14	1,41	gro						
16	1,20	ei	0	0,00	100,00			
25	0,71	ଙ୍କ	5,41	1,93	98,07	1,93		
30	0,59	dia	8,85	3,16	96,84			
40	0,42	mé	18,61	6,64	93,36			
50	0,297	eia	56,06	19,99	80,01			
60	0,250	ar	84,43	30,11	69,89	28,18		
100	0,149	eia na	154,1	54,96	45,04			
200	0,075	ar fi	183,2	65,34	34,66	35,22		
Fundo	0		280,4	100,00	0,00	34,66		
Obs.:								

GRANULOMETRIA - PENEIRAMENTO								
AMOSTRA: SEÇÃO 25 RIO: XINGU Data Coleta: fevereiro de 2011 Data Análise: 07/03/2011								
PENEIRAS	DIÂMET	RO	PESO	%	%			
			ACUMULADO	ACUMULADA	QUE PASSA			
<u> </u>	(mm)		(g)			Porcentagem		
2"	50,8							
1 1/2"	38,1							
1"	25,4							
3/4"	19,1	ę						
	15,9	bgul						
1/2"	12,7	edre						
3/8"	9,52	ğ						
3	6,35							
4	4,76							
7	2,83		0	0,00	100,00	0,00		
10	2,00	ssa	0,52	0,13	99,87			
14	1,41	gro	1,33	0,33	99,67			
16	1,20	<u>a</u> .	2,57	0,64	99,36			
25	0,71	are	11,37	2,85	97,15	2,85		
30	0,59	dia	15,14	3,80	96,20			
40	0,42	mé	29,38	7,37	92,63			
50	0,297	eia	58,39	14,64	85,36			
60	0,250	ar	108,1	27,10	72,90	24,25		
100	0,149	eia na	327,3	82,05	17,95			
200	0,075	ar fir	332,5	83,35	16,65	56,25		
Fundo	0		398,9	100,00	0,00	16,65		
Obs.:								

GRANULOMETRIA - PENEIRAMENTO							
AMOSTRA: RIO: Data Coleta:	SEÇÃO 26 XINGU fevereiro de	2011		Data Análise:	07/03/2011		
PENEIRAS	DIÂMET	RO	PESO	%	%		
			ACUMULADO	ACUMULADA	QUE PASSA		
N ^o	(mm))	(g)			Porcentagem	
2"	50,8						
1 1/2"	38,1						
1"	25,4						
3/4"	19,1	<u>2</u>					
	15,9	Inge					
1/2"	12,7	adre	0	0,00	100,00		
3/8"	9,52	ď	2,8	0,49	99,51		
3	6,35		5,3	0,93	99,07		
4	4,76		11,4	2,00	98,00		
7	2,83		40,8	7,14	92,86	7,14	
10	2,00	ssa	85,9	15,04	84,96		
14	1,41	gro	126,2	22,10	77,90		
16	1,20	eia.	170,9	29,92	70,08		
25	0,71	are	280,5	49,12	50,88	41,97	
30	0,59	dia	315,3	55,21	44,79		
40	0,42	mé	381,4	66,78	33,22		
50	0,297	<u>a</u> .	421,2	73,75	26,25		
60	0,250	an	440,3	77,10	22,90	27,98	
100	0,149	eia Ja	474,3	83,05	16,95		
200	0,075	ar fir	492,8	86,29	13,71	9,19	
Fundo	0		571,1	100,00	0,00	13,71	
Obs.:							

GRANULOMETRIA - PENEIRAMENTO							
AMOSTRA: SEÇÃO 27 RIO: XINGU Data Coleta: fevereiro de 2011 Data Análise: 07/03/2011							
PENEIRAS	DIÂMET	RO	PESO	%	%		
			ACUMULADO	ACUMULADA	QUE PASSA		
N ^O	(mm)		(g)			Porcentagem	
2"	50,8						
1 1/2"	38,1						
1"	25,4						
3/4"	19,1	<u>و</u>					
	15,9	Inge					
1/2"	12,7	edre					
3/8"	9,52	þ					
3	6,35						
4	4,76		0	0,00	100,00		
7	2,83		1,6	0,30	99,70	0,30	
10	2,00	ssa	10,5	2,00	98,00		
14	1,41	gros	27,1	5,15	94,85		
16	1,20	eia	50,2	9,54	90,46		
25	0,71	are	114,5	21,76	78,24	21,46	
30	0,59	dia	136,2	25,89	74,11		
40	0,42	mé	194	36,88	63,12		
50	0,297	eïa	286,6	54,48	45,52		
60	0,250	ar	374,3	71,15	28,85	49,38	
100	0,149	eia 1a	505	95,99	4,01		
200	0,075	ar fir	516,8	98,23	1,77	27,09	
Fundo	0		526,1	100,00	0,00	1,77	
Obs.:							

		GRANU	PENEIRAMEN	го			
AMOSTRA: SEÇÃO 28 RIO: XINGU Data Coleta: fevereiro de 2011 Data Análise: 07/03/2011							
PENEIRAS	DIÂMET	RO	PESO	%	%		
			ACUMULADO	ACUMULADA	QUE PASSA		
<u> </u>	(mm)) <u> </u>	(g)			Porcentagem	
2"	50,8						
1 1/2"	38,1						
1"	25,4						
3/4"	19,1	ho					
	15,9	Inge					
1/2"	12,7	edre					
3/8"	9,52	þ					
3	6,35						
4	4,76		0	0,00	100,00		
7	2,83		1,02	0,32	99,68	0,32	
10	2,00	ssa	4,92	1,52	98,48		
14	1,41	gro	14,73	4,55	95,45		
16	1,20	e <u>a</u>	33,21	10,26	89,74		
25	0,71	ar	109,5	33,82	66,18	33,50	
30	0,59	dia	134,9	41,66	58,34		
40	0,42	mé	198,1	61,18	38,82		
50	0,297	e <u>a</u>	264	81,53	18,47		
60	0,250	ar	294,3	90,89	9,11	57,07	
100	0,149	eia 1a	321	99,14	0,86		
200	0,075	ar fir				8,25	
Fundo	0		323,8	100,00	0,00	0,86	
Obs.:							

GRANULOMETRIA - PENEIRAMENTO							
AMOSTRA: RIO: Data Coleta:	ILHA DO CC XINGU fevereiro de	SME 02	2	Data Análise:	07 <i>/</i> 03/2011		
PENEIRAS	DIÂMET	RO	PESO	%	%		
			ACUMULADO	ACUMULADA	QUE PASSA		
<u> </u>	(mm)		(g)			Porcentagem	
2"	50,8						
1 1/2"	38,1						
1"	25,4						
3/4"	19,1	2					
 	15,9	Ingé					
1/2"	12,7	edre					
3/8"	9,52	ď					
3	6,35						
4	4,76						
7	2,83					0,00	
10	2,00	ssa					
14	1,41	gro					
16	1,20	eia	0	0,00	100,00		
25	0,71	ar	25,3	14,91	85,09	14,91	
30	0,59	dia	34,4	20,27	79,73		
40	0,42	mé	50,7	29,88	70,12		
50	0,297	eia	64,8	38,19	61,81		
60	0,250	ar	72,2	42,55	57,45	27,64	
100	0,149	eia Ja	84,8	49,97	50,03		
200	0,075	ar fir	88,3	52,03	47,97	9,49	
Fundo	0		169,7	100,00	0,00	47,97	
Obs.:							

		GRANU	LOMETRIA - F	PENEIRAMENT	0		
AMOSTRA: ILHA DO COSME 03 RIO: XINGU Data Coleta: fevereiro de 2011 Data Análise: 07/03/2011							
PENEIRAS	DIÂMET	RO	PESO	%	%		
			ACUMULADO	ACUMULADA	QUE PASSA		
N ^O	(mm))	(g)			Porcentagem	
2"	50,8						
1 1/2"	38,1						
1"	25,4						
3/4"	19,1	оч					
I	15,9	Inge					
1/2"	12,7	edre					
3/8"	9,52	ğ					
3	6,35						
4	4,76						
7	2,83					0,00	
10	2,00	ssa					
14	1,41	gro:					
16	1,20	ei.	0,0	0,00	100,00		
25	0,71	ar	1,2	0,38	99,62	0,38	
30	0,59	dia	1,7	0,54	99,46		
40	0,42	mé	3,8	1,22	98,78		
50	0,297	ei a	7,2	2,30	97,70		
60	0,250	ਯ	13,0	4,16	95,84	3,78	
100	0,149	eia Ja	91,6	29,32	70,68		
200	0,075	ar fii	193,2	61,84	38,16	57,68	
Fundo	0		312,4	100,00	0,00	38,16	
Obs.:							

	GRANULOMETRIA - PENEIRAMENTO							
AMOSTRA: ILHA DO COSME 04 RIO: XINGU Data Coleta: fevereiro de 2011 Data Análise: 07/03/2011								
PENEIRAS	DIÂMET	RO	PESO	%	%			
			ACUMULADO	ACUMULADA	QUE PASSA			
N ^O	(mm)		(g)			Porcentagem		
2"	50,8							
1 1/2"	38,1							
1"	25,4							
3/4"	19,1	<u>د</u>						
	15,9	nbe						
1/2"	12,7	adre						
3/8"	9,52	ă						
3	6,35							
4	4,76							
7	2,83					0,00		
10	2,00	ssa						
14	1,41	grõ						
16	1,20	eia	0	0,00	100,00			
25	0,71	are	6,4	2,26	97,74	2,26		
30	0,59	dia	9,8	3,46	96,54			
40	0,42	mé	19,7	6,95	93,05			
50	0,297	e <u>a</u>	33,4	11,79	88,21			
60	0,250	an	43,2	15,24	84,76	12,99		
100	0,149	eia	69,6	24,56	75,44			
200	0,075	ar fir	144,4	50,95	49,05	35,71		
Fundo	0		283,4	100,00	0,00	49,05		
Obs.:								

GRANULOMETRIA - PENEIRAMENTO								
AMOSTRA: RIO: Data Coleta:	AMOSTRA: ILHA DO COSME 05 RIO: XINGU Data Calata: favoraire do 2011							
		2011			01/00/2011			
PENEIRAS	DIÂMET	RO	PESO	%	%			
			ACUMULADO	ACUMULADA	QUE PASSA			
<u> </u>	(mm))	(g)			Porcentagem		
2"	50,8							
1 1/2"	38,1							
1"	25,4							
3/4"	19,1	o L						
	15,9	Inge						
1/2"	12,7	edre						
3/8"	9,52	ă						
3	6,35							
4	4,76		0	0,00	100,00			
7	2,83		7,5	1,82	98,18	1,82		
10	2,00	ssa	16,9	4,11	95,89			
14	1,41	gro	27,2	6,61	93,39			
16	1,20	<u>e</u> .	37,4	9,09	90,91			
25	0,71	ar	71,7	17,42	82,58	15,60		
30	0,59	dia	86,2	20,94	79,06			
40	0,42	mé	139,6	33,92	66,08			
50	0,297	eia	253,7	61,64	38,36			
60	0,250	ar	329,8	80,13	19,87	62,71		
100	0,149	eia	402,3	97,74	2,26			
200	0,075	ar fir	408,7	99,30	0,70	19,17		
Fundo	0		41 1,6	100,00	0,00	0,70		
Obs.:								

	GRANULOMETRIA - PENEIRAMENTO							
AMOSTRA: ILHA DO COSME 06 RIO: XINGU Data Coleta: fevereiro de 2011 Data Análise: 07/03/2011								
PENEIRAS	DIÂMET	RO	PESO	%	%			
<u> </u>			ACUMULADO	ACUMULADA	QUE PASSA			
<u> </u>	(mm)		(g)			Porcentagem		
2"	50,8					1		
1 1/2"	38,1					1		
1"	25,4					1		
3/4"	19,1	<u>م</u>				1		
	15,9	nɓə				1		
1/2"	12,7	equ				1		
3/8"	9,52	d				1		
3	6,35					1		
4	4,76		0	0,00	100,00	1		
7	2,83		1,52	0,47	99,53	0,47		
10	2,00	ssa	5,73	1,76	98,24	1		
14	1,41	go	10,98	3,37	96,63	1		
16	1,20	eia.	19,26	5,92	94,08	1		
25	0,71	ar	52,62	16,17	83,83	15,70		
30	0,59	dia	67,76	20,82	79,18			
40	0,42	mé	113,5	34,87	65,13			
50	0,297	eia	222,5	68,36	31,64	1		
60	0,250	ar	277,2	85,16	14,84	69,00		
100	0,149	eia Ja	323,6	99,42	0,58			
200	0,075	ar fii				14,25		
Fundo	0		325,5	100,00	0,00	0,58		
Obs.:								

	GRANULOMETRIA - PENEIRAMENTO							
AMOSTRA: JUNCAL 01 RIO: XINGU Data Coleta: fevereiro de 2011 Data Análise: 07/03/2011								
PENEIRAS	DIÂMET	RO	PESO	%	%			
			ACUMULADO	ACUMULADA	QUE PASSA			
N ^o	(mm))	(g)			Porcentagem		
2"	50,8							
1 1/2"	38,1							
1"	25,4							
3/4"	19,1	온						
	15,9	luge						
1/2"	12,7	edre						
3/8"	9,52	ă						
3	6,35							
4	4,76							
7	2,83					0,00		
10	2,00	ssa						
14	1,41	gro						
16	1,20	<u>a</u> .	0	0,00	100,00			
25	0,71	ar	1,2	0,46	99,54	0,46		
30	0,59	dia	1,4	0,54	99,46			
40	0,42	mé	2,7	1,04	98,96			
50	0,297	eia	4,5	1,74	98,26			
60	0,250	ar	6,2	2,39	97,61	1,93		
100	0,149	eia Ja	47,1	18,19	81,81			
200	0,075	ar fir	125,5	48,47	51,53	46,08		
Fundo	0		258,9	100,00	0,00	51,53		
Obs.:								

	GRANULOMETRIA - PENEIRAMENTO							
AMOSTRA: RIO: Data Coleta:	JUNCAL 01 XINGU fevereiro de	A 2011		Data Análise:	07 <i>1</i> 03/2011			
PENEIRAS	DIÂMET	RO	PESO	%	%			
			ACUMULADO	ACUMULADA	QUE PASSA			
N ^O	(mm)		(g)			Porcentagem		
2"	50,8							
1 1/2"	38,1							
1"	25,4							
3/4"	19,1	oq						
	15,9	llug						
1/2"	12,7	edre						
3/8"	9,52	8						
3	6,35							
4	4,76							
7	2,83					0,00		
10	2,00	ssa						
14	1,41	gr g						
16	1,20	ei	0,0	0,00	100,00			
25	0,71	ar	22,1	10,51	89,49	10,51		
30	0,59	dia	29,3	13,93	86,07			
40	0,42	mé	43,7	20,78	79,22			
50	0,297	eia	57,3	27,25	72,75			
60	0,250	ar	65,3	31,05	68,95	20,54		
100	0,149	eia na	87,0	41,37	58,63			
200	0,075	ar fii	131,2	62,39	37,61	31,34		
Fundo	0		210,3	100,00	0,00	37,61		
Obs.:								

	GRANULOMETRIA - PENEIRAMENTO							
AMOSTRA: RIO: Data Coleta:	JUNCAL 02 XINGU fevereiro de	2011		Data Análise:	07/03/2011			
PENEIRAS	DIÂMET	RO	PESO	%	%			
			ACUMULADO	ACUMULADA	QUE PASSA			
N ^o	(mm)		(g)			Porcentagem		
2"	50,8							
1 1/2"	38,1							
1"	25,4							
3/4"	19,1	oq						
	15,9	Ingé						
1/2"	12,7	edre						
3/8"	9,52	ă						
3	6,35							
4	4,76							
7	2,83					0,00		
10	2,00	ssa						
14	1,41	dio						
16	1,20	ea.	0	0,00	100,00			
25	0,71	an	9,98	3,66	96,34	3,66		
30	0,59	dia	13,56	4,98	95,02			
40	0,42	mé	20,28	7,44	92,56			
50	0,297	eä	35,11	12,88	87,12			
60	0,250	ar	51,95	19,06	80,94	15,40		
100	0,149	eia Ja	157,1	57,65	42,35			
200	0,075	ar fir	202,1	74,17	25,83	55,10		
Fundo	0		272,5	100,00	0,00	25,83		
Obs.:								

	GRANULOMETRIA - PENEIRAMENTO								
AMOSTRA: RIO: Data Coleta:	JUNCAL 02 XINGU fevereiro de	A 2011		Data Análise:	07/03/2011				
PENEIRAS	DIÂMET	RO	PESO	%	%				
			ACUMULADO	ACUMULADA	QUE PASSA				
N	(mm)		(g)			Porcentagem			
2"	50,8								
1 1/2"	38,1								
1"	25,4								
3/4"	19,1	q							
	15,9	egu							
1/2"	12,7	edr							
3/8"	9,52	<u>а</u>							
3	6,35								
4	4,76								
7	2,83		0	0,00	100,00	0,00			
10	2,00	s sa	3,05	1,08	98,92				
14	1,41	0 D	7,79	2,76	97,24				
16	1,20	eia	15,41	5,45	94,55				
25	0,71	ar	41,73	14,76	85,24	14,76			
30	0,59	dia	56,62	20,03	79,97				
40	0,42	mé	102,5	36,26	63,74				
50	0,297	eia	175,2	61,97	38,03				
60	0,250	ิต	217,8	77,04	22,96	62,28			
100	0,149	eia na	278	98,34	1,66				
200	0,075	ar fi	281,3	99,50	0,50	22,46			
Fundo	0		282,7	100,00	0,00	0,50			
Obs.:									

LEME

	GRANULOMETRIA - PENEIRAMENTO								
AMOSTRA: RIO: Data Colet <i>a</i> :	JUNCAL 03 XINGU fevereiro de	2011		Data Análise:	07/03/2011				
PENEIRAS	DIÂMET	RO	PESO	%	%				
			ACUMULADO	ACUMULADA	QUE PASSA				
<u> </u>	(mm))	(g)			Porcentagem			
2"	50,8								
1 1/2"	38,1								
1"	25,4								
3/4"	19,1	oq							
	15,9	nbe							
1/2"	12,7	edre							
3/8"	9,52	ď							
3	6,35								
4	4,76		0	0,00	100,00				
7	2,83		4,54	0,92	99,08	0,92			
10	2,00	ssa	16,15	3,28	96,72				
14	1,41	gro	29,44	5,98	94,02				
16	1,20	<u>a</u> .	46,75	9,50	90,50				
25	0,71	ar	110,2	22,39	77,61	21,47			
30	0,59	dia	137,7	27,98	72,02				
40	0,42	цé	237,6	48,28	51,72				
50	0,297	<u>e</u>	388,8	79,01	20,99				
60	0,250	ar	448,5	91,14	8,86	68,75			
100	0,149	eia	480,7	97,68	2,32				
200	0,075	ar fir	481,6	97,87	2,13	6,73			
Fundo	0		492,1	100,00	0,00	2,13			
Obs.:									

	GRANULOMETRIA - PENEIRAMENTO							
AMOSTRA: JUNCAL 03 A RIO: XINGU Data Coleta: fevereiro de 2011 Data Análise: 07/03/2011								
PENEIRAS	DIÂMET	RO	PESO	%	%			
			ACUMULADO	ACUMULADA	QUE PASSA			
N ^O	(mm))	(g)			Porcentagem		
2"	50,8							
1 1/2"	38,1							
1"	25,4							
3/4"	19,1	рц						
	15,9	lug						
1/2"	12,7	edre						
3/8"	9,52	<u>я</u>						
3	6,35							
4	4,76		0,0	0,00	100,00			
7	2,83		0,3	0,10	99,90	0,10		
10	2,00	ssa	1,9	0,63	99,37			
14	1,41	groc	5,3	1,76	98,24			
16	1,20	ai ai	12,4	4,11	95,89			
25	0,71	ar (42,0	13,93	86,07	13,83		
30	0,59	dia	57,4	19,04	80,96			
40	0,42	mé	112,9	37,45	62,55			
50	0,297	eia.	203,8	67,60	32,40			
60	0,250	ar	244,9	81,23	18,77	67,30		
100	0,149	eia na	291,8	96,78	3,22			
200	0,075	are fir	298,1	98,87	1,13	17,65		
Fundo	0		301,5	100,00	0,00	1,13		
Obs.:								

GRANULOMETRIA - PENEIRAMENTO								
AMOSTRA: RIO: Data Coleta:	JUNCAL 04 XINGU fevereiro de	2011		Data Análise:	07/03/2011			
PENEIRAS	DIÂMET	RO	PESO	%	%			
0			ACUMULADO	ACUMULADA	QUE PASSA			
N ⁰	(mm))	(g)			Porcentagem		
2"	50,8							
1 1/2"	38,1							
1"	25,4							
3/4"	19,1	ohl						
	15,9	egu						
1/2"	12,7	edr						
3/8"	9,52	<u>а</u>						
3	6,35							
4	4,76							
1	2,83					0,00		
10	2,00	ess	0	0,00	100,00			
14	1,41	gro	0,6	0,16	99,84			
16	1,20	eia	1,9	0,51	99,49			
25	0,71	ធ	10,2	2,73	97,27	2,73		
30	0,59	dia	15,4	4,12	95,88			
40	0,42	mé	38,2	10,22	89,78			
50	0,297	eia.	90,8	24,28	75,72			
60	0,250	ភ	145	38,78	61,22	36,05		
100	0,149	reia ina	297,4	79,54	20,46			
200	0,075	ai fi	354,7	94,86	5,14	56,08		
Fundo	0		373,9	100,00	0,00	5,14		
Obs.:								

GRANULOMETRIA - PENEIRAMENTO								
AMOSTRA: RIO: Data Coleta:	JUNCAL 04 XINGU fevereiro de	A 2011		Data Análise:	07/03/2011			
PENEIRAS	DIÂMET	RO	PESO	%	%			
			ACUMULADO	ACUMULADA	QUE PASSA	1		
<u> </u>	(mm))	(g)			Porcentagem		
2"	50,8							
1 1/2"	38,1					1		
1"	25,4				[]	1		
3/4"	19,1	o q				1		
	15,9	luga				1		
1/2"	12,7	edre				1		
3/8"	9,52	ď				1		
3	6,35			!		1		
4	4,76				L	1		
7	2,83				L!	0,00		
10	2,00	ssa		!	[]	Γ		
14	1,41	gros	0	0,00	100,00	1		
16	1,20	<u>a</u> .	1,16	0,57	99,43	1		
25	0,71	are	36,39	17,94	82,06	17,94		
30	0,59	dia	44,03	21,71	78,29			
40	0,42	mé	59,64	29,41	70,59	1		
50	0,297	eia	77,01	37,97	62,03	1		
60	0,250	ar	93,98	46,34	53,66	28,40		
100	0,149	eia na	116,9	57,64	42,36			
200	0,075	ar fi	132,1	65,14	34,86	18,80		
Fundo	0		202,8	100,00	0,00	34,86		
Obs.:								

		GRANI	JLOMETRIA - F	PENEIRAMENTO		
AMOSTRA: RIO: Data Coleta:	JUNCAL 05 XINGU fevereiro de	2011		Data Análise:	07/03/2011	
PENEIRAS	DIÂMET	RO	PESO	%	%	
			ACUMULADO	ACUMULADA	QUE PASSA	
N ^o	(mm)		(g)			Porcentagem
2"	50,8					
1 1/2"	38,1					
1"	25,4					
3/4"	19,1	рq				
	15,9	Inge				
1/2"	12,7	adre				
3/8"	9,52	ď				
3	6,35					
4	4,76					
7	2,83		0	0,00	100,00	0,00
10	2,00	ssa	1,63	0,50	99,50	
14	1,41	gro	5,27	1,61	98,39	
16	1,20	eia.	14,61	4,47	95,53	
25	0,71	ar	70,18	21,49	78,51	21,49
30	0,59	dia	92,97	28,47	71,53	
40	0,42	mé	154,9	47,43	52,57	
50	0,297	eia	237,4	72,69	27,31	
60	0,250	ar	270,7	82,88	17,12	61,40
100	0,149	eia na	318,8	97,61	2,39	
200	0,075	ar fii	319,0	97,67	2,33	14,79
Fundo	0		326,6	100,00	0,00	2,33
Obs.:		_				

GRANULOMETRIA - PENEIRAMENTO AMOSTRA: JUNCAL 06 RIO: XINGU Data Coleta: fevereiro de 2011								
PENEIRAS	DIÂMET	RO	PESO	%	%			
<u> </u>			ACUMULADO	ACUMULADA	QUE PASSA			
N ^O	(mm)		(g)			Porcentagem		
2"	50,8							
1 1/2"	38,1							
1"	25,4							
3/4"	19,1	ро						
	15,9	nbe						
1/2"	12,7	edro						
3/8"	9,52	ă						
3	6,35							
4	4,76		0	0,00	100,00			
7	2,83		3,4	0,66	99,34	0,66		
10	2,00	ssa	14,2	2,77	97,23			
14	1,41	gro	32,2	6,27	93,73			
16	1,20	eia.	59,8	11,65	88,35			
25	0,71	ar	149,6	29,13	70,87	28,47		
30	0,59	dia	186,9	36,40	63,60			
40	0,42	mé	285,1	55,52	44,48			
50	0,297	<u>ei</u>	387,4	75,44	24,56			
60	0,250	ar	419,5	81,69	18,31	52,56		
100	0,149	eia 1a	496,1	96,61	3,39			
200	0,075	ar fii	507,6	98,85	1,15	17,16		
Fundo	0		513,5	100,00	0,00	1,15		
Obs.:								

GRANULOMETRIA - PENEIRAMENTO							
AMOSTRA: JUNCAL 07 RIO: XINGU Data Coleta: fevereiro de 2011 Data Análise: 07/03/2011							
PENEIRAS	DIÂMET	RO	PESO	%	%		
			ACUMULADO	ACUMULADA	QUE PASSA		
N ^O	(mm)	-	(g)			Porcentagem	
2"	50,8						
1 1/2"	38,1						
1"	25,4						
3/4"	19,1	о Ч					
	15,9	lng					
1/2"	12,7	edre					
3/8"	9,52	8					
3	6,35						
4	4,76		0	0,00	100,00		
7	2,83		2,4	0,58	99,42	0,58	
10	2,00	ssa	7,9	1,91	98,09		
14	1,41	gr 0	14,9	3,60	96,40		
16	1,20	aia.	24,4	5,90	94,10		
25	0,71	are	54,3	13,13	86,87	12,55	
30	0,59	dia	66,7	16,13	83,87		
40	0,42	mé	103,6	25,05	74,95		
50	0,297	<u>a</u> .	146,2	35,35	64,65		
60	0,250	ar	171,4	41,44	58,56	28,31	
100	0,149	eia Ja	297,7	71,98	28,02		
200	0,075	an fir	371,8	89,89	10,11	48,45	
Fundo	0		413,6	100,00	0,00	10,11	
Obs.:							

LEME

GRANULOMETRIA - PENEIRAMENTO							
AMOSTRA: RIO: Data Coleta:	JUNCAL 08 XINGU fevereiro de	2011		Data Análise:	07/03/2011		
PENEIRAS	DIÂMET	RO	PESO	%	%		
			ACUMULADO	ACUMULADA	QUE PASSA		
<u> </u>	(mm)		(g)			Porcentagem	
2"	50,8						
1 1/2"	38,1						
1"	25,4						
3/4"	19,1	oq					
	15,9	Ingé					
1/2"	12,7	edre					
3/8"	9,52	ă					
3	6,35						
4	4,76						
7	2,83		0	0,00	100,00	0,00	
10	2,00	ssa	1,98	0,62	99,38		
14	1,41	gro:	6,95	2,16	97,84		
16	1,20	eia	16,91	5,27	94,73		
25	0,71	ar	66,26	20,64	79,36	20,64	
30	0,59	dia	86,22	26,85	73,15		
40	0,42	mé	150,1	46,75	53,25		
50	0,297	eia	232,1	72,28	27,72		
60	0,250	ส	263,7	82,12	17,88	61,49	
100	0,149	eia na	316,7	98,63	1,37		
200	0,075	ar fi				16,51	
Fundo	0		321,1	100,00	0,00	1,37	
Obs.:							

GRANULOMETRIA - PENEIRAMENTO								
AMOSTRA: JUNCAL 09 RIO: XINGU Data Coleta: fevereiro de 2011 Data Análise: 07/03/2011								
PENEIRAS	DIÂMET	RO	PESO	%	%			
			ACUMULADO	ACUMULADA	QUE PASSA			
N ^O	(mm)	(g)			Porcentagem		
2"	50,8							
1 1/2"	38,1							
1"	25,4							
3/4"	19,1	e E						
	15,9	gul						
1/2"	12,7	edre						
3/8"	9,52	be						
3	6,35							
4	4,76		0	0,00	100,00			
7	2,83		2	0,69	99,31	0,69		
10	2,00	ssa	9,8	3,38	96,62			
14	1,41	los	22,4	7,72	92,28			
16	1,20	<u>ia</u> .	41,9	14,44	85,56			
25	0,71	are	97,3	33,53	66,47	32,84		
30	0,59	lia	117	40,32	59,68			
40	0,42	néc	168,9	58,20	41,80			
50	0,297	a.	218,8	75,40	24,60			
60	0,250	are	239,8	82,63	17,37	49,10		
100	0,149	eia a	277,6	95,66	4,34			
200	0,075	are fin	288,6	99,45	0,55	16,82		
Fundo	0		290,2	100,00	0,00	0,55		
Obs.:								

GRANULOMETRIA - PENEIRAMENTO							
AMOSTRA: JUNCAL 10 RIO: XINGU Data Coleta: fevereiro de 2011 Data Análise: 07/03/2011							
PENEIRAS	DIÂMETRO		PESO	%	%		
			ACUMULADO	ACUMULADA	QUE PASSA		
<u> </u>	(mm)		(g)			Porcentagem	
2"	50,8						
1 1/2"	38,1						
1"	25,4						
3/4"	19,1	ho					
	15,9	Inge					
1/2"	12,7	edre					
3/8"	9,52	ă.					
3	6,35						
4	4,76		0,0	0,00	100,00		
7	2,83		1,3	0,41	99,59	0,41	
10	2,00	ssa	4,9	1,56	98,44		
14	1,41	gro	11,0	3,51	96,49		
16	1,20	eia.	23,2	7,40	92,60		
25	0,71	ar	71,1	22,69	77,31	22,27	
30	0,59	dia	91,5	29,20	70,80		
40	0,42	mé	160,8	51,31	48,69		
50	0,297	eia	241,6	77,09	22,91		
60	0,250	ar	272,7	87,01	12,99	64,33	
100	0,149	eia na	310,8	99,17	0,83		
200	0,075	ar fii	312,7	99,78	0,22	12,76	
Fundo	0		313,4	100,00	0,00	0,22	
Obs.:		_					

GRANULOMETRIA - PENEIRAMENTO							
AMOSTRA: RIO: Data Coleta:	JUNCAL 11 XINGU fevereiro de	2011	D <i>a</i> ta Análise: 07/03/2011				
PENEIRAS	DIÂMETRO		PESO	%	%		
			ACUMULADO	ACUMULADA	QUE PASSA		
N ^o	(mm)		(g)			Porcentagem	
2"	50,8						
1 1/2"	38,1						
1"	25,4						
3/4"	19,1	oq					
	15,9	Inge					
1/2"	12,7	adre					
3/8"	9,52	ă					
3	6,35						
4	4,76		0,0	0,00	100,00		
7	2,83		1,3	0,41	99,59	0,41	
10	2,00	ssa	4,9	1,56	98,44		
14	1,41	gro	11,0	3,51	96,49		
16	1,20	eia	23,2	7,40	92,60		
25	0,71	are	71,1	22,69	77,31	22,27	
30	0,59	dia	91,5	29,20	70,80		
40	0,42	mé	160,8	51,31	48,69		
50	0,297	eia.	241,6	77,09	22,91		
60	0,250	ar	272,7	87,01	12,99	64,33	
100	0,149	eia Ja	310,8	99,17	0,83		
200	0,075	ar fir	312,7	99,78	0,22	12,76	
Fundo	0		313,4	100,00	0,00	0,22	
Obs.:							

185

LEME

GRANULOMETRIA - PENEIRAMENTO						
AMOSTRA: RIO: Data Coleta:	JUNCAL 12 XINGU fevereiro de	2011		Data Análise:	07/03/2011	
PENEIRAS	DIÂMETRO		PESO	%	%	
			ACUMULADO	ACUMULADA	QUE PASSA	
N ^o	(mm)		(g)			Porcentagem
2"	50,8					
1 1/2"	38,1					
1"	25,4					
3/4"	19,1	2				
	15,9	Ingé				
1/2"	12,7	edre				
3/8"	9,52	ă				
3	6,35					
4	4,76		0	0,00	100,00	
7	2,83		9,2	2,58	97,42	2,58
10	2,00	ssa	30,2	8,49	91,51	
14	1,41	gro:	56,7	15,93	84,07	
16	1,20	a.	87,5	24,59	75,41	
25	0,71	are	155,4	43,66	56,34	41,08
30	0,59	dia	176,8	49,68	50,32	
40	0,42	mé	232,6	65,36	34,64	
50	0,297	eia	287,8	80,87	19,13	
60	0,250	an	308,9	86,79	13,21	43,13
100	0,149	eia Ja	344,2	96,71	3,29	
200	0,075	ar fir	352,4	99,02	0,98	12,22
Fundo	0		355,9	100,00	0,00	0,98
Obs.:						

