

ESTRADA DE FERRO CARAJÁS

PROGRAMA DE MONITORAMENTO E MITIGAÇÃO DE ATROPELAMENTO DE FAUNA – CAMPANHAS 0 e 3 a 14

RELATÓRIO ANUAL 3

São Luís/MA Junho/2016

EQUIPE TÉCNICA

Profissional	Área profissional	Função	Conselho de Classe	CTF Ibama	
COORDENAÇÃO GERAL					
Luiz Cláudio Ribeiro Rodrigues	Engenheiro Geólogo e de Minas	Coordenação Geral	CREA MG 50059/D	2318262	
Dorotéo Émerson Storck de Oliveira	Geógrafo	Gerente Geral	CREA DF 10748/D	4351022	
	COORDENAÇÃO TE	MÁTICA			
Rubem Augusto da Paixão Dornas	Biólogo	Coordenação Técnica Redação e revisão de relatório	CRBio 70304/04-D	2922966	
Luziene Conceição de Sousa	Biólogo	Coordenação Logística Redação de relatório	CRBio 85119/05-D	5275341	
GEOPROCESSAMENTO					
João Alves da Silva Filho	Geógrafo	Análises espaciais	CREA MG 133103/D	1932888	

SUMÁRIO

1	APRE	SENTAÇÃO	8
2	JUST	IFICATIVA E OBJETIVOS	8
3	MET	ODOLOGIA	8
	3.1	COLETA DOS DADOS DE ATROPELAMENTOS	8
	3.2	ANÁLISE DOS DADOS	10
	3.2.1	Distribuição espacial dos atropelamentos	10
	3.2.2	Análise de sazonalidade	10
	3.2.3	Análise de paisagem	11
4	RESU	ILTADOS E DISCUSSÃO	12
	4.1	ESTATÍSTICA DESCRITIVA	12
	4.2	ANÁLISE DE SAZONALIDADE	34
	4.3	ANÁLISE DE PAISAGEM	35
	4.4	DISTRIBUIÇÃO ESPACIAL DOS ATROPELAMENTOS.	38
	4.4.1	Anfíbios	39
	4.4.2	Répteis	43
	4.4.3	Aves	44
	4.4.4	Mamíferos Selvagens	44
	4.4.5	Selvagens e Todos	45
	4.4.6	Animais Ameaçados de Extinção	45
	4.5	MITIGAÇÃO DE ATROPELAMENTO DE FAUNA	46
	4.5.1	Intervenções em OAC	46
	4.5.2	Passagens exclusivas para a fauna	47
	4.5.3	Outros trechos relevantes	47
	4.5.4	Medidas mitigadoras	50
	4.5.5	Monitoramento das medidas implantadas	52
5	RFFF	RÊNCIAS BIBLIOGRÁFICAS	54

LISTA DE TABELAS

Tabela 3-1: Campanhas do PMMaf e respectivas datas de início e fim	9
Tabela 3-2: Datas das campanhas do PMMaf com respectivo período sazonal.	10
Tabela 3-3: Classes de uso do solo definidas para a análise de paisagem do PMMaf e respectiva descrição	11
Tabela 4-6: Grupos faunísticos e total de ocorrências (N) por táxon ao longo das atividades do PMMaf	13
Tabela 4-1: Tabela-síntese dos números de ocorrências da fauna encontrada sobre trilhos durante a Campa	ANHA
INICIAL (0) E DOS ANOS 1 (CAMPANHAS 3 A 6), 2 (CAMPANHAS 7 A 10) E 3 (CAMPANHAS 11 A 14) DO PMMAF	21
Tabela 4-2: Relação entre táxons de vertebrados e tipo de animal durante as campanhas válidas do PMMaf.	22
Tabela 4-3: Tabela-síntese de registros de vertebrados encontrados sobre trilhos durante as campanhas vá	LIDAS DO
PMMAF, COM RESPECTIVO STATUS DE CONDIÇÃO DO ANIMAL REGISTRADO.	24
Tabela 4-4: Tabela-síntese das ocorrências de espécimes ameaçados de extinção no estado do Pará (COEMA-	PA), NO
Brasil (MMA) e Globalmente (IUCN) encontrados mortos sobre os trilhos durante o PMMaf	27
Tabela 4-5: Tabela-síntese das ocorrências de espécimes vivos encontrados sobre os trilhos durante o PMM	AF 27
Tabela 4-7: Análise de variância (ANOVA) para a sazonalidade dos registros obtidos para os anfíbios	35
Tabela 4-7: Número de atropelamentos por grupo de amostragem por 100 hectares de classe de uso do solo)
DOMINANTE NA ADA DO PROJETO EEFC.	36
Tabela 4-8: Número de atropelamentos por grupo de amostragem por 100 hectares de classe de uso do solo)
DOMINANTE NA AID DO PROJETO EEFC.	37
Tabela 4-8: Grupos de análise e respectivas Zonas Críticas de Atropelamento (ZCAs) no decorrer das campan	NHAS DO
PMMaf	38
Tabela 4-9: Listagem de táxons de anfíbios registrados nas ZCAs ocorrentes dentro da TIMM, com respectiv	′ O
NÚMERO DE OCORRÊNCIAS.	40
Tabela 4-9: Listagem de táxons de anfíbios registrados nas ZCAs ocorrentes dentro da TIMM, com respectiv	′ O
NÚMERO DE OCORRÊNCIAS.	43
Tabela 4-10: Pontos de agregação de mastofauna selvagem na região dos Microcorredores C7, C8 e C9, co	
RESPECTIVA CAMPANHA, TÁXON E NÚMERO DE REGISTROS.	45
Tabela 4-13: Espécies ameaçadas de extinção na região dos Microcorredores C7, C8 e C9, com respectivo nú	MERO DE
REGISTROS	46
Tabela 4-11: Critérios de avaliação de relevância de quilometragens propostas para adoção de medidas miti	
Tabela 4-12: <i>Status</i> de relevância de trecho e necessidade de adoção de medidas mitigadoras a partir do nún	1ERO DE
CRITÉRIOS ATENDIDOS.	
TABELA 4-13: TABELA-RESUMO DOS KM PROPOSTOS PARA ADOÇÃO DE MEDIDAS MITIGADORAS E RESPECTIVA AVALIAÇÃO P	
CRITÉRIOS	
TABELA 4-14: TIPOS DE APARATOS MITIGADORES PROPOSTOS E RESPECTIVAS DESCRIÇÕES	
TABELA 4-15: PONTOS CRÍTICOS COM RESPECTIVOS KM E TIPO DE PASSAGEM A SER INSTALADA	
Tabela 4-16: Composição específica da zona crítica de atropelamento (km 778+757) diagnosticada no Ano 2	¹ 52

LISTA DE FIGURAS

FIGURA 4-1: AGREGAÇÃO DAS CAMPANHAS VÁLIDAS DO PROGRAMA DE MONITORAMENTO E MITIGAÇÃO DE ATROP	ELAMENTO DE
Fauna	42
FIGURA 4-2: ESQUEMA DA FERROVIA COM PONTO CENTRAL DE ZONA CRÍTICA DE ATROPELAMENTO E DISPOSIÇÃO DOS	S MÓDULOS DO
DISPOSITIVO SONORO DE PROTEÇÃO ANIMAL	51
FIGURA 4-3: SILHUFTA DE RAPINANTE EM POSIÇÃO DE ATAQUE A SER TESTADA COMO MEDIDA MITIGADORA	51

LISTA DE GRÁFICOS

Gráfic	CO 4-1: TOTAL DE REGISTROS DE FAUNA ENCONTRADA SOBRE TRILHOS DURANTE AS CAMPANHAS DO PMMAF NA EFC	12
GRÁFIC	co 4-2: Representação gráfica da porcentagem ocorrências por grupo faunístico ao longo das campanhas do	
F	PMMaf	21
Gráfic	co 4-3: Representação gráfica da porcentagem de registros por grupo de vertebrados terrestres ao longo da	S
C	CAMPANHAS DO PMMAF.	22
Gráfic	co 4-4: Representação gráfica da relação entre táxons e tipo de animal durante o monitoramento da fauna	
A	ATROPELADA DURANTE A CAMPANHA INICIAL (0) E OS ANOS 1, 2 E 3.	23
Gráfic	co 4-5: Representação gráfica da relação entre táxons e condições dos animais registrados durante a	
(CAMPANHAS INICIAL E NOS ANOS 1, 2 E 3 DO PMMAF.	24
GRÁFIC	co 4-6: Representação gráfica dos 10 principais táxons encontrados mortos sobre os trilhos durante os	
Е	ESTUDOS DO PMMAF.	26
GRÁFIC	co 4-7: Representação gráfica dos espécimes de mamíferos domésticos registrados na Campanha inicial e Anos	j
1	1, 2 E 3 DO PMMAF	26
GRÁFIC	co 4-8: Representação gráfica dos indícios dos registros do não atropelamento da fauna na EFC durante as	
C	CAMPANHAS DO PMMAF.	34
GRÁFIC	CO 4-9: GRÁFICOS EXIBINDO OS GRUPOS DE ANÁLISE E RESPECTIVAS ZONAS CRÍTICAS DE ATROPELAMENTO NO DECORRER DAS	
(CAMPANHAS DO PMMAF	41

LISTA DE FOTOS

FOTO 1: REGISTRO VIVO DE CARANGUEJO (BRACHYURA)	30
Foto 2: Registro vivo de aranha-caranguejeira (<i>Nhandu tripepii</i>).	30
Foto 3: Registro vivo de sapo-folha (<i>Rhinella margaritifera</i>)	30
Foto 4: Registro vivo de jararaca (<i>Bothrops atrox</i>).	30
Foto 5: Registro vivo de socó-boi (<i>Trigosoma lineatum</i>)	30
Foto 6: Registro vivo de irara (<i>Eira barbara</i>)	30
FOTO 7: HYPSIBOAS MULTIFASCIATUS EM VISTA DORSAL, SEM LESÕES APARENTES	32
Foto 8: <i>Hypsiboas multifasciatus</i> em vista ventral, sem lesões aparentes	32
Foto 9: <i>Canis familiaris</i> com corda no pescoço.	33
Foto 10: Spilotes pullatus amarrado ao trilho.	33
FOTO 11: Amphisbaena fuliginosa apresentando injúrias incompatíveis com os rodeiros do trem	33
FOTO 12: OFERENDA DISPOSTA NA ADJACÊNCIA DA FERROVIA CONTENDO ALIMENTOS E GARRAFAS DE BEBIDAS	33

1 APRESENTAÇÃO

O presente relatório é parte integrante das condicionantes estabelecidas pelo Programa Básico Ambiental (PBA), apresentado em Outubro/2011 junto ao Ibama, visando a obtenção de licença para instalação do Projeto Expansão da Estrada de Ferro Carajás.

2 JUSTIFICATIVA E OBJETIVOS

A duplicação de ferrovias pode trazer maior ou menor impacto sobre a fauna, de acordo com as condições de conservação das áreas as quais atravessará. Em geral, nenhuma das classes de vertebrados tem escapado da mortalidade em decorrência de rodovias e ferrovias (FAHRIG et al., 1995; FORMAN; ALEXANDER, 1998). Neste sentido, para a EFC é essencial que seja executado um monitoramento que permita a tomada de decisões com relação à implantação de estruturas para diminuir o risco de atropelamento.

Assim tem-se como objetivo estabelecer um programa para quantificar e identificar a fauna atropelada na EFC, bem como descrever sua distribuição temporal e espacial, a fim de se identificar os períodos e pontos mais críticos de mortalidade. Assim sendo, o Programa de Monitoramento e Mitigação de Atropelamento de Fauna (PMMaf) dará suporte para a definição e localização de medidas mitigadoras, juntamente com as melhores zonas/locais de conectividade da paisagem a partir do diagnóstico e cruzamento de informações do cenário natural e de dados dos atropelamentos.

3 METODOLOGIA

3.1 COLETA DOS DADOS DE ATROPELAMENTOS

Para realização do monitoramento dos eventos de atropelamentos, a totalidade da ferrovia (exceto o trecho dentro da Área de Proteção Ambiental (APA) do Igarapé Gelado e a Floresta Nacional de Carajás) foram percorridos pelas equipes de campo. Para as campanhas 0 e 6 não houve amostragens dentro da Terra Indígena Mãe Maria por questões internas inerente às comunidades indígenas. A ferrovia foi dividida em 8 distritos, obedecendo as repartições já existentes na Vale para a inspeção da qualidade dos trilhos pelos profissionais denominados "rondas", exímios conhecedores da ferrovia, que garantem a segurança dos pesquisadores em relação aos riscos inerentes às andanças sobre os trilhos. O monitoramento foi delineado para amostragens trimestrais dos trechos, de acordo com o cronograma de vistoria dos rondas.

Durante o trabalho de campo dois vistoriadores percorrem o gabarito da ferrovia, a pé, lado a lado, caminhando paralelamente, durante os dias úteis da semana. Cada observador é responsável pela amostragem de um dos lados do gabarito, tendo o trilho como referência. Ambos realizam as observações na porção entre trilhos e em uma faixa lateral à ferrovia de

aproximadamente três a cinco metros para cada lado. Em trechos onde a ferrovia encontrase duplicada (formada por duas ou mais linhas férreas), a amostragem deve cobrir também a porção entre linhas, em toda a sua extensão. Da mesma forma, os pátios foram vistoriados a partir de suas margens, sendo observadas as porções entre as diferentes linhas. O horário do início e término das atividades não pode ser padronizado já que as atividades necessitam da autorização do Centro de Controle de Operações (CCO). Os rondas são os responsáveis pela mediação entre as equipes de campo e o CCO.

A partir do encontro de algum invertebrado ou vertebrado de interesse nesta faixa e/ou entre os trilhos, foram anotadas as informações em ficha de campo, modificada para a realidade encontrada na EFC, conforme Anexo 02 do Termo de Referência (Ofício 183/2011 - COTRA/CGTMO/DILIC/IBAMA). Ao fim das anotações as carcaças/ossadas foram retiradas do gabarito para evitar dupla contagem dos animais atropelados. Para otimização da coleta de dados, houve um teste piloto do uso de um celular *smartphone*, além da utilização das fichas de campo, na campanha 4. Nas campanhas 5 a 14 todo o monitoramento foi realizado utilizando *smartphones* na coleta de dados, aliado às fichas de campo, importantes para checagem dos dados.

Este relatório apresenta os dados obtidos nas campanhas 0 e 3 a 14 do PMMaf. As campanhas 1 e 2 foram descartadas por conter erros na coleta de dados em campo e, portanto, poderiam gerar resultados distorcidos quando de suas análises. A Campanha 0 ocorreu entre os meses de junho e agosto de 2011 e correspondeu à fase preliminar do programa, ainda durante o Estudo Ambiental para licenciamento da Expansão da Estrada de Ferro Carajás. As Campanhas 3, 4 e 5 foram realizadas no ano de 2013, enquanto que as Campanhas de 6 a 9 foram realizadas em 2014. As Campanhas 10 a 13 foram realizadas no ano de 2015, com a Campanha 14 acontecendo em 2016. A Tabela 3-1 faz um resumo das datas de início e fim de cada uma das campanhas válidas do PMMaf.

Tabela 3-1: Campanhas do PMMaf e respectivas datas de início e fim.

Ano	Campanha	Data de inicio	Data de término
Ano 0	Campanha inicial (0)	10/06/2011	05/08/2011
	Campanha 3	17/06/2013	05/07/2013
A 4	Campanha 4	26/08/2013	01/10/2013
Ano 1	Campanha 5	18/11/2013	09/12/2013
	Campanha 6	03/02/2014	19/02/2014
	Campanha 7	09/06/2014	04/07/2014
Ann 0	Campanha 8	18/08/2014	19/09/2014
Ano 2	Campanha 9	10/11/2014	17/12/2014
	Campanha 10	02/02/2015	13/03/2015
	Campanha 11	27/04/2015	01/06/2015
Ann 2	Campanha 12	10/08/2015	18/09/2015
Ano 3	Campanha 13	09/11/2015	08/12/2015
	Campanha 14	22/02/2016	07/04/2016

3.2 ANÁLISE DOS DADOS

3.2.1 DISTRIBUIÇÃO ESPACIAL DOS ATROPELAMENTOS

A distribuição espacial dos atropelamentos na EFC foi avaliada através de análises estatísticas utilizando software Siriema v1.1 (disponível O em http://www.ufrgs.br/biociencias/siriema/). A localização de zona crítica de atropelamento (ZCA) na ferrovia foi realizada através de análises HotSpot bi-dimensional. Por apresentar problemas durante a fase de investigação do tamanho dos segmentos de análise para cada grupo (2D Ripley K-Statistics), optou-se arbitrariamente por realizar a análise de HotSpot, com raio de 300 metros, de acordo com o que foi utilizado para a Campanha inicial. No ponto médio de cada trecho, é centrado um círculo de raio r definido, sendo somados todos os eventos de atropelamento dentro de sua área. A esse número é multiplicado um fator de correção que leva em conta o comprimento da ferrovia dentro do círculo nesta posição. O círculo é centrado no próximo segmento e novamente é computada a soma dos eventos e multiplicação pelo fator de correção. O procedimento é repetido para todos os segmentos em que a ferrovia foi dividida, resultando em um valor de intensidade de agregação (H) de atropelamentos para cada local da EFC. Para a avaliação da significância das intensidades de agregação de cada trecho foi utilizada a função:

$$IA(r) = H_i(r) - H_s(r)$$

onde: IA(r) = intensidade de atropelamentos; $H_i(r)$ = valor de agregação para o ponto i considerando a escala r, Hs(r) = a média dos valores de H em 10000 simulações de distribuição aleatória dos eventos. Os valores de intensidade de agregação acima do limite de confiança superior (95%) indicam as ZCAs de mortalidade significativos.

3.2.2 ANÁLISE DE SAZONALIDADE

Os dados das ocorrências das campanhas dos três primeiros anos (campanha 3 a 14), tanto de animais vivos quanto mortos, foram utilizados para se averiguar diferenças nos quatro períodos sazonais, a saber: chuva, transição chuva-seca, seca, transição seca-chuva (Tabela 3-2). Para cada um dos grupos de interesse (Anfíbios, Répteis, Aves selvagens, Mamíferos selvagens, Mamíferos de médio e grande porte selvagens, Mamíferos de pequeno porte terrestres e mamíferos de pequeno porte voadores (morcegos)). Foi aplicado teste de normalidade de Anderson-Darling A no software Past 3.11 (HAMMER; HARPER; RYAN, 2001). Para cada grupo de amostragem foi realizada a análise de variância (ANOVA) e respectivo teste de Tukey, uma vez que todos os dados obtidos obedeceram a normalidade.

Tabela 3-2: Datas das campanhas do PMMaf com respectivo período sazonal.

Ano	Campanha	Data de inicio	Data de término	Período sazonal
Ano 1	Campanha 3	17/06/2013	05/07/2013	Transição chuva-seca
	Campanha 4	26/08/2013	01/10/2013	Seca

Ano	Campanha	Data de inicio	Data de término	Período sazonal
	Campanha 5	18/11/2013	09/12/2013	Transição seca-chuva
	Campanha 6	03/02/2014	19/02/2014	Chuva
	Campanha 7	09/06/2014	04/07/2014	Transição chuva-seca
Ano 2	Campanha 8	18/08/2014	19/09/2014	Seca
AIIO Z	Campanha 9	10/11/2014	17/12/2014	Transição seca-chuva
	Campanha 10	02/02/2015	13/03/2015	Chuva
	Campanha 11	27/04/2015	01/06/2015	Transição seca-chuva
Ano 3	Campanha 12	10/08/2015	18/09/2015	Seca
Ano 3	Campanha 13	09/11/2015	08/12/2015	Transição seca-chuva
	Campanha 14	22/02/2016	07/04/2016	Chuva

3.2.3 ANÁLISE DE PAISAGEM

Para a análise de paisagem referente ao Programa de Monitoramento e Mitigação de Atropelamento de Fauna, a Estrada de Ferro Carajás foi plotada no *software* ArcGis 10.2 e dividida em quadrantes de 250 metros de comprimento pela largura da ADA no local (aproximadamente 500 m), num total de 3579 quadrantes. A partir disso, foi obtida a área de cada uma das classes de uso do solo (Tabela 3-3) dentro do respectivo quadrante. Em seguida averiguou-se se havia alguma classe dominante, com área superior a 60% de todo o quadrante. No caso de alguma classe dominante estar presente no quadrante, a mesma foi designada com o nome de sua classe e, em caso negativo, ela foi nomeada como "Variada". Posteriormente a essa operação, o número total de atropelamentos por grupo faunístico por classe dominante foi dividido pela área total da classe na ADA do projeto e multiplicado por 100 a fim de se obter um índice. As discussões foram realizadas a partir desse índice.

Tabela 3-3: Classes de uso do solo definidas para a análise de paisagem do PMMaf e respectiva descrição.

Classe	Descrição
Agrupamento Arbóreo / Cultivo	Primordialmente áreas cultivadas, pomares e jardins de residências, fazendas e sítios.
Áreas Alagadas	Áreas paludosas adjacentes a rios, lagos e ambientes afins.
Áreas Edificadas	Consistem em todos os tipos de áreas edificadas, incluindo residências rurais, áreas industriais e urbanas.
Babaçual	Florestas de babaçus.
Eucaliptal	Plantações de eucalipto.
Fragmento Florestal	Todos os tipos de fragmentos florestais nos diversos níveis de sucessão.
Manguezal	Formação vegetal de porte arbóreo ou arbustivo, adaptada a terreno pantanoso, submetida à influência direta das marés.
Massa d'Água	Rios, lagos e ambientes afins, sejam eles naturais ou artificiais.
Pastagem	Todos os tipos de pastagem.
Sistema Viário / Solo Exposto	Acessos não pavimentados e áreas de empréstimo, de deposição de material ou com processos erosivos.

4 RESULTADOS E DISCUSSÃO

4.1 ESTATÍSTICA DESCRITIVA

Os resultados obtidos são apresentados tomando-se como referência as nove campanhas do PMMaf realizado na EFC, compreendidas entre junho de 2011 e fevereiro de 2016. Verificouse um total de 22.714 registros de espécimes da fauna (vivos ou mortos). Foram considerados registros válidos aqueles com todos os dados obtidos em campo e, consequentemente, com localização geográfica condizente com o eixo da ferrovia. O Gráfico 4-1 apresenta o total de ocorrências do monitoramento por campanha.

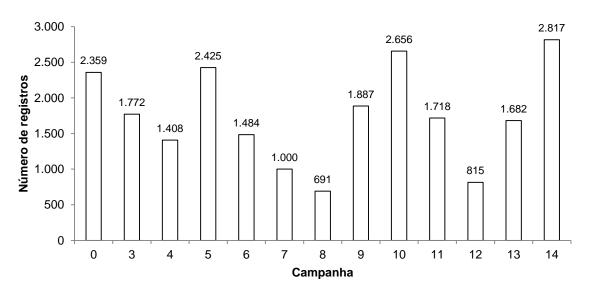


Gráfico 4-1: Total de registros de fauna encontrada sobre trilhos durante as campanhas do PMMaf na EFC.

As campanhas com as maiores ocorrências foram a campanha 14, com 2.817 indivíduos, seguida da campanha 10, com 2.656 espécimes, e a campanha 5, com 2.425 ocorrências. Por sua vez, a campanha com menor número de registros foi a de número 8, com 691 indivíduos, seguida pelas campanhas 12, 7 e 4, com 815, 1.000 e 1.408 espécimes catalogados respectivamente. Ressalta-se que esses cômputos correspondem ao total de animais avistados sobre os trilhos, sejam eles em formato de carcaça, ossadas ou vivos.

Em termos qualitativos, a Tabela 4-1 apresenta todos os táxons registrados nas treze campanhas válidas realizadas na EFC, independentemente do modo como foram inventariados (carcaça, ossada, vivo, entre outros). Considerando-se somente os animais silvestres, a maioria das ocorrências envolveu espécies comuns, abundantes e amplamente distribuídas pelos trechos monitorados. Pode-se inferir que os maiores índices de ocorrência para os anfíbios listados nas campanhas do PMMaf devem-se à peculiaridade de habitats presentes ao longo da ferrovia, tais como áreas paludosas. Além disso, para os anfíbios, a sazonalidade parece ser um fator que contribui para a vulnerabilidade do grupo a atropelamentos, principalmente na estação chuvosa.

Tabela 4-1: Grupos faunísticos e total de ocorrências (N) por táxon ao longo das atividades do PMMaf.

Táxon	Nome comum	N
Peixe		2
Pisces NI	peixe	2
Molusco		2 2
Stylommatophora	lesma	2
Crustáceo		101
Brachyura	caranguejo	54
Portunidae	siri	47
Aracnídeo		372
Avicularia sp.	aranha-caranguejeira	168
Nhandu tripepii	aranha-caranguejeira	57
Nhandu sp.	aranha-caranguejeira	30
Acanthoscurria cf. juruenicola	aranha-caranguejeira	19
Acanthoscurria sp.	aranha-caranguejeira	16
Theraphosidae	aranha-caranguejeira	13
Nhandu chromatus	aranha-caranguejeira	13
Theraphosinae	aranha-caranguejeira	12
Acanthoscurria geniculata	aranha-caranguejeira	10
Phoneutria sp.	aranha-armadeira	9
Nhandu coloratovillosus	aranha-caranguejeira	6
Nhandu cf. coloratovillosus	aranha-caranguejeira	4
Theraphosa sp.	aranha-caranguejeira	4
Sparassidae	aranha	2
Phoneutria cf. reidyi	aranha-armadeira	2
/schnocolinae	aranha-caranguejeira	1
Ancylometes sp.	aranha-pescadora	1
Theraphosa stirmi	aranha-caranguejeira	1
Scorpiones	escorpião	1
Acanthoscurria juruenicola	aranha-caranguejeira	1
Acanthoscurria cf. geniculata	aranha-caranguejeira	1
Acanthoscurria theraphosoides	aranha-caranguejeira	1
Inseto		46
Insecta	inseto	11
Caelifera	gafanhoto	10
Orthoptera	gafanhoto	6
Lepidoptera	mariposa	6
Phasmatodea	bicho-pau	5
Anisoptera	libélula	3
Coleoptera	besouro	2
Brachycera	mosca	2
Mantodea	louva-a-deus	1
Vertebrata		52
Vertebrata	vertebrado indeterminado	52
Anfíbio		13.499
Rhinella sp.	sapo-cururu	5.779
Leptodactylus macrosternum	rã-manteiga	1.278
Leptodactylus sp.	rã; gia	868
Scinax sp.	perereca	652
Rhinella schneideri	sapo-boi	643
Rhinella marina	sapo-cururu	523
Hylidae	anfíbio	518
Leptodactylus fuscus	rã-assobiadora	456
Trachycephalus typhonius	perereca-leiteira	373
Hypsiboas sp.	perereca	289

Táxon	Nome comum	N
Scinax gr. ruber	perereca-de-banheiro	223
Hypsiboas raniceps	perereca-de-bananeira	213
Anura	anuro	205
Phyllomedusa hypochondrialis	perereca-verde	183
Hypsiboas geographicus	perereca-mapa	180
Scinax ruber	perereca-de-banheiro	138
Hypsiboas multifasciatus	rã-martelo	136
Rhinella jimi	sapo-cururu	97
Hypsiboas punctatus	perereca-verde	57
Scinax x-signatus	perereca	54
Rhinella margaritifera	sapo-bicudo	47
Phyllomedusa sp.	perereca-verde	45
Dendropsophus melanargyreus	perereca	43
Leptodactylus pustulatus	rã-pintada	42
Sphaenorhynchus lacteus	perereca-verde	38
Physalaemus ephippifer	rã-cachorro	35
Dendropsophus sp.	perereca	35
Rhaebo guttatus	sapo	32
Rhinella gr. margaritifera	sapo-bicudo	26
Dendropsophus leucophyllatus	perereca-de-moldura	26
Amphibia NI	anfíbio indeterminado	21
Physalaemus cuvieri	rã-cachorro	20
Rhinella cf. schneideri	sapo-boi	18
Dendropsophus nanus	perereca	15
Leptodactylus vastus	rã	13
Phyllomedusa azurea	perereca-verde	13
Leptodactylus mystaceus	rã-de-bigode	12
Hypsiboas cf. geographicus		9
Dendropsophus minutus	perereca-mapa perereca-ampulheta	8
Leptodactylus hylaedactylus	rãzinha-assobiadeira	8
Pseudis paradoxa	perereca-d'água	8
Leptodactylus troglodytes	sapinho	7
· · · · · · · · · · · · · · · · · · ·		7
Osteocephalus taurinus	perereca-touro	
Amazophrynella minuta	sapinho	6
Scinax nebulosus	perereca	
Rhinella mirandaribeiroi	sapo-cururuzinho	5
Leptodactylus petersii	rãzinha	5
Scinax fuscomarginatus	perereca-de-banheiro	5
Osteocephalus leprieurii	perereca	5
Pseudis tocantins	perereca-d'água	5
Dendropsophus branneri	pererequinha .	4
Phyllomedusa bicolor	perereca-verde	4
Leptodactylus petersii	rãzinha	4
Phyllomedusa vaillantii	perereca-verde	4
Scinax boesemani	perereca-de-banheiro	3
Elachistocleis carvalhoi	sapinho	3
Leptodactylus cf. hylaedactylus	rãzinha-assobiadeira	3
Pipa pipa	sapo-pipa	3
Hypsiboas boans	perereca	3
Pristimantis fenestratus	rã-da-mata	3
Hypsiboas cf. multifasciatus	rã-martelo	3
Leptodactylus lineatus	sapo-listrado	3
Adenomera hylaedactyla	rãzinha	3
Hypsiboas cf. raniceps	perereca-de-bananeira	2
Eupemphix nattereri	rã-quatro-olhos	2

Táxon	Nome comum	N
Phyllomedusa gr. hypochondrialis Leptodactylus pentadactylus	perereca-verde rã-pimenta	2
Phyllomedusa cf. hypochondrialis	perereca-verde	2 2
Scinax cf. x-signatus	<u>'</u>	1
-	perereca rã	1
Leptodactylus knudseni		
Caecilia sp.	cecília; cobra-cega	1
Rhinella cf. margaritifera	sapo-folha	1
Pristimantis cf. fenestratus	rã	1
Pseudopaludicola mystacalis	rãzinha	1
Hypsiboas cinerascens	perereca-verde	1
Leptodactylus cf. troglodytes	rã	1
Allophryne ruthveni	perereca	1
Leptodactylus cf. andreae	rãzinha	1
Hypsiboas cf. cinerascens	perereca-verde	1
Rhaebo cf. guttatus	sapo	1
Phyllomedusa cf. tomopterna	perereca-verde	1
Leptodactylus andreae	rãzinha	1
Bufonidae	bufonídeo	1
Dermatonotus muelleri	sapinho	1
Réptil		2.948
Colubridae	colubrídeo	557
Dipsadidae	dipsadídeo	308
Serpentes	serpente	271
Caiman crocodilus	jacaretinga	156
Boa constrictor	jiboia	149
Alligatoridae	aligotorídeo	125
Chironius sp.	papa-pinto	122
Iguana iguana	iguana	121
Tropidurus hispidus	calango	82
Tropidurus oreadicus	calango	70
Tupinambis teguixin	teiú	61
Leptodeira annulata	dormideira	54
Cnemidophorus cryptus	lagartinho	49
Teiidae	teídeo	48
Chelonoidis denticulatus	jabuti-tinga	42
Chelonoidis carbonarius	, s	
	jabuti-piranga	40
Chironius carinatus	cobra-cipó	38
Bothrops atrox	jararaca	38
Boidae	boídeo	36
Pseudoboa nigra	cobra-preta	36
Mesoclemmys gibba	cágado-preto	31
Lacertilia	lacertílio	29
Phrynops geoffroanus	cágado-de-barbicha	28
Reptilia NI	réptil indeterminado	27
Leptophis ahaetulla	boiubu	24
Testudines	quelônio	23
Spilotes pullatus	caninana	21
Philodryas olfersii	cobra-verde	21
Chelonoidis sp.	jabuti-tinga	21
Amphisbaena alba	cobra-de-duas-cabeças	19
Kentropyx calcarata	calango	16
Chironius scurrulus	papa-pinto papa-pinto	13
Eunectes murinus	sucuri	13
Ameiva ameiva	calango-verde	12
Mastigodryas boddaerti	biru-listrada	12

Táxon	Nome comum	N
Tupinambis sp.	teiú	11
Rhinoclemmys punctularia	capininga	11
Lacertidae	lacertílio	11
Chironius exoletus	cobra-cipó	10
Phrynops cf. geoffroanus	cágado-de-barbicha	10
Chelidae	quelídeo	9
Helicops angulatus	cobra-d'água	8
Polychrus marmoratus	camaleão	8
Corallus hortulanus	cobra-de-veado	8
Paleosuchus palpebrosus	jacaré-coroa	7
Tropidurus sp.	calango	7
Kinosternon scorpioides	jurará	7
Sibynomorphus mikanii	dormideira	6
Imantodes cenchoa	dormideira	6
Copeoglossum nigropunctatum	briba	5
Dipsas catesbyi	dormideira; papa-lesma	5
Thecadactylus rapicauda	lagartixa	4
Testudinidae	testudinídeo	4
Erythrolamprus reginae	cobra-d'água	4
Erythrolamprus poecilogyrus	cobra-d'água	4
Oxyrhopus melanogenys	falsa-coral	3
Dracaena guianensis	lagarto-jacaré	3
Norops ortonii	papa-vento	3
Epicrates cenchria	salamanta	3
Drymarchon corais	papa-pinto	3
Caiman cf. crocodilus	jacaretinga	3
Cnemidophorus sp.	lagartinho	3
Oxyrhopus trigeminus	falsa-coral	3
Paleosuchus trigonatus	jacaré-coroa	3
Thamnodynastes pallidus	<u> </u>	3
Bothrops sp.	corre-campo	3 2
Hemidactylus mabouia	jararaca lagartixa-de-parede	2
Podocnemis unifilis	tracajá	2 2 2
	-	2
Mesoclemmys cf. gibba Hydrodynastes cf. gigas	cágado-preto	2
	jararacucu-do-brejo	2
Amphisbaena fuliginosa	cobra-de-duas-cabeças	2
Erythrolamprus sp.	cobra-d'água	
Oxybelis aeneus	cobra-cipó	2
Salvator merianae	teiú	2
Tupinambis cf. teguixin	teiú	2 2
Erythrolamprus taeniogaster	cobra-d'água	2
Xenodon rabdocephalus	boipeva	2
Phylodrias olfersii	cobra-cipó	2
Viperidae	viperídeo	2
Anolis sp.	lagarto	1
Tropiduridae	tropidurídeo	1
Philodryas argentea	cobra-cipó	1
Micrurus surinamenis	coral-verdadeira	1
Crotalus durissus	cascavel	1
Micrurus surinamensis	coral-verdadeira	1
Ameiva sp.	calango-verde	1
Pseudoboa cf. nigra	cobra-preta	1
Hemidactylus sp.	lagartixa	1
Hydrops triangularis	cobra-d'água	1
Erythrolamprus viridis	cobra-cipó	1

Táxon	Nome comum	N	
Pseudoboa sp.	serpente	1	
Micrablepharus maximiliani	lagartinho-de-cauda-azul	1	
Pseustes sp.	caninana	1	
Stenocercus dumerilii	calango-de-chifre	1	
Drymoluber dichrous	cobra-verde	1	
Mastigodryas cf. boddaerti	serpente	1	
Rhinoclemmys cf. punctularia	cágado	1	
Thamnodynastes cf. pallidus	cobra-espada	1	
Ophidia	cobra	1	
Philodryas sp.	cobra-verde	1	
Anilius scytale	falsa-coral	1	
Amphisbaena amazonica	cobra-de-duas-cabeças	1	
Erythrolamprus cf. poecilogyrus	cobra-d'água	1	
Ameiva cf. ameiva	calango-verde	1	
Bothrops cf. atrox	jararaca	1	
Gonatodes humeralis	lagartinho	1	
Siphlophis cervinus	coral-falsa	1	
Siphlophis compressus	coral-falsa	1	
Dipsas indica	cobra-dormideira	1	
Helicops sp.	cobra-dofffideria	 	
Dipsas pavonina	dormideira; papa-lesma	1	
Ave	domindena, papa-iesma	1.215	
	urubu-de-cabeça-preta	590	
Coragyps atratus Cathartidae	cartídeo		
		165	
Caracara plancus	carcará	56	
Gallus gallus	galo-doméstico	37	
Hydropsalis albicollis	bacurau	31	
Crotophaga ani	anu-preto	25	
Volatinia jacarina	tiziu	24	
Aves NI	ave-indeterminada	23	
Accipitridae	acciptrídeo	15	
Cathartes sp.	urubu	14	
Rupornis magnirostris	gavião-carijó	12	
Caprimulgidae	caprimulgídeo	10	
Megascops choliba	corujinha-do-mato	10	
Pitangus sulphuratus	bem-te-vi	8	
Ramphocelus carbo	pipira-vermelha	8	
Passeriformes	passeriforme	7	
Cairina moschata	pato-do-mato	7	
Megascops sp.	corujinha-do-mato	7	
Numida meleagris	galinha-d'angola	6	
Falconiformes	falconiforme	6	
Guira guira	anu-branco	6	
Myiozetetes cayanensis	bentevizinho-de-asa-ferrugínea	5	
Columbina talpacoti	rolinha-roxa	5	
Tyrannidae	tiranídeo	5	
Tyto furcata	suindara	4	
Sporophila sp.	papa-capim	4	
Columbina passerina	rolinha-cinzenta	4	
Crypturellus parvirostris	inhambu-chororó	4	
Ortalis motmot	aracuã-pequeno	4	
Galliformes	galiforme	4 4	
Manacus manacus	rendeira	4	
			
Crypturellus tataupa	inhambu-chintã	3	

Táxon	Nome comum	N
Tigrisoma lineatum	socó-boi	3
Elaenia sp.	guaracava	3
Cathartes aura	urubu-de-cabeça-vermelha	3
Crotophaga major	anu-coroca	3
Athene cunicularia	coruja-buraqueira	3
Crotophaga sp.	anu	3
Tyrannus melancholicus	suiriri	3
Penelope pileata	jacupiranga	3
Poecilotriccus fumifrons	ferreirinho-de-testa-parda	3
Taraba major	choró-boi	2
Dendroplex picus	arapaçu-de-bico-branco	2
Tinamidae	tinamídeo	2
Jacana jacana	jaçanã	2
Tangara palmarum	sanhaçu-do-coqueiro	2 2
Columbina squammata	fogo-apagou	2
Phasianidae	fasianídeo	2
Cathartes melambrotus	urubu-da-mata	2
Leptotila sp.	pomba-juriti	2
Strigidae	strigídeo	2
Passer domesticus	pardal	2
Tachyphonus rufus	pipira-preta	2
Laterallus exilis	sanã-do-capim	2
Synallaxis albescens	ui-pí	1
Harpia harpyja	gavião-real	1
Tolmomyias flaviventris	bico-chato-amarelo	1
Ardeidae	ardeídeo	1
Chlorestes notata	beija-flor-de-garganta-azul	1
Daptrius ater	gavião-de-anta	1
Thamnophilus doliatus	choca-barrada	1
Mesembrinibis cayennensis	coró-coró	1
Leptotila verreauxi	juriti-pupu	1
Momotidae	momotídeo	1
Sporophila castaneiventris	caboclinho-de-sobre-ferrugem	1
Myiarchus sp.	maria-cavaleira	1
Hydropsalis maculicauda		1
	bacurau-de-rabo-maculado rolinha	1
Columbina sp.		
Chloroceryle aenea	martinho	1
Neocrex erythrops	turu-turu	1
Caprimulgus sp.	bacurau	1
Amazilia fimbriata	beija-flor-de-garganta-azul	1
Turdus sp.	sabiá	1
Nystalus chacuru	joão-bobo	1
Megarynchus pitangua	neinei	1
Anhima cornuta	anhuma	1
Saltator maximus	tempera-viola	1
Pachyramphus marginatus	caneleiro-bordado	1
Sporophila cf. nigricollis	baiano	1
Formicivora grisea	papa-formiga-pardo	1
Stelgidopteryx ruficollis	andorinha-serradora	1
Forpus xanthopterygius	tuim	1
Strix huhula	coruja-preta	1
Galbula ruficauda	ariramba-de-cauda-ruiva	1
Hydropsalis sp.	bacurau	11
Anser anser	ganso-doméstico	1
Crypturellus cinereus	inhambu-preto	1

Táxon	Nome comum	N
Piaya cayana	alma-de-gato	1
Thraupidae	traupídeo	1
Pipra fasciicauda	uirapuru-laranja	1
Leptotila rufaxilla	juriti-pupu	1
Cracidae	cracídeo	1
Troglodytes musculus	corruíra	1
Geotrygon montana	juriti-gemedeira	1
Crypturellus soui	tururim	1
Poecilotriccus sylvia	ferreirinho-da-capoeira	1
Crypturellus sp.	inhambu	1
Porzana albicollis	sanã-carijó	1
Ardea alba	garça-branca-grande	1
Laterallus viridis	sanã-castanha	1
Mamífero	ourie outering	4.477
Canis familiaris	cachorro-doméstico	791
Cerdocyon thous	cachorro-do-mato	684
Tamandua tetradactyla	tamandua-tetradactyla	514
Canidae	canídeo	502
Mammalia NI	mamífero indeterminado	307
Bos taurus	boi	295
Equus caballus	cavalo	161
Didelphis sp.	gambá; mucura	128
Hydrochoerus hydrochaeris	capivara	123
Euphractus sexcinctus	tatu-peba	88
Felis catus	gato-doméstico	84
Procyon cancrivorus	mão-pelada	73
Rodentia	roedor	72
Sus scrofa	porco-doméstico	69
Dasypus novemcinctus	tatu-galinha	68
Bradypus variegatus	preguiça-comum	53
Equus asinus	jumento	45
Chiroptera	morcego	44
Carnivora	carnívoro	40
Nasua nasua	quati	39
Didelphis marsupialis	gambá: mucura	37
Capra hircus	cabra	30
Felidae	felídeo	22
Dasypus septemcinctus	tatu-galinha-pequeno	19
Cuniculus paca	paca	18
Dasypodidae	dasipodídeo	16
Didelphidae Didelphidae	didelfídeo	15
Dasypus sp.	tatu	14
Dasyprocta prymnolopha	cutia	12
Phyllostomidae	filostomídeo	12
Pecari tajacu	caitutu	10
Cabassous unicinctus	tatu-de-rabo-mole	6
Marmosa sp.	cuíca	6
Sylvilagus brasiliensis		5
	tapeti	5
Philander sp.	cuíca	4
Eira barbara Pilosa	irara	
	pilosa	4
Oryctolagus cuniculus	coelho-doméstico	3
Galictis cuja	furão	3 3
Ovis aries	carneiro	3
Coendou prehensilis	ouriço-cacheiro	3

Táxon	Nome comum	N
Tapirus terrestris	anta	3
Primates	primata	3
Leopardus pardalis	jaguatirica	3
Molossidae	morcego	2
Tayassu pecari	queixada	2
Puma yagouaroundi	gato-mourisco	2
Monodelphis sp.	catita	2
Leopardus tigrinus	gato-do-mato-pequeno	2
Myrmecophaga tridactyla	tamanduá-bandeira	2
Pteronotus sp.	morcego	2
Coendou sp.	ouriço-cacheiro	2
Choloepus didactylus	preguiça-real	2
Conepatus amazonicus	jaritataca	2
Phyllostominae	morcego	2
Thyroptera tricolor	morcego	2
Dasyprocta leporina	cutia	1
Felis sp.	gato	1
Suidae	suíno	1
Tayassuidae	taiassuídeo	1
Mesophylla macconnelli	morcego	1
Philander opossum	cuíca-de-quatro-olhos	1
Stenodermatinae	stenodermatíneo	1
Bradypodidae	bradipodídeo	1
Carolliinae	carollíneo	1
Lagomorpha	lagomorfo	1
Mazama sp.	veado	1
Lontra longicaudis	lontra	1
Artibeus sp.	morcego	1
Saimiri collinsi	mico-de-cheiro	1
Sapajus apella	macaco-prego	1
Priodontes maximus	tatu-canastra	1
Lonchorhina sp.	morcego	1
Total	<u> </u>	22.714

O total de registros da fauna durante as campanhas de monitoramento é apresentado na Tabela 4-2. Percebe-se que na campanha inicial, o maior número de registros foi de mamíferos. As campanhas 3, 4 e 8 apresentaram números aproximados de registros para anfíbios e mamíferos enquanto que as campanhas 5, 6, 9, 10, 11, 13 e 14 catalogaram o maior número de ocorrências para os anfíbios, quando comparado com as demais campanhas.

Tabela 4-2: Tabela-síntese dos números de ocorrências da fauna encontrada sobre trilhos durante a Campanha Inicial (0) e dos anos 1 (campanhas 3 a 6), 2 (campanhas 7 a 10) e 3 (campanhas 11 a 14) do PMMaf.

Táxon	Campanha							Tota						
raxon	0	3	4	5	6	7	8	9	10	11	12	13	14	- 1
Anfíbio	692	643	594	183 2	102 6	454	24 0	137 5	201 9	111 5	29 5	117 5	203 9	1349 9
Aracnídeo		14	10	6	11	8	23	22	92	48	23	21	94	372
Ave	176	140	134	92	64	53	55	86	63	87	77	77	111	1215
Crustáceo	4	17	5	6	4	1	6	3	12	1	19	9	14	101
Indeterminad o	41	6	5											52
Inseto		19			3			2	4	1			17	46
Mamífero	975	587	423	278	187	272	25 3	229	258	225	20 7	248	335	4477
Molusco													2	2
Peixe	2													2
Réptil	469	346	237	211	189	212	11 4	170	208	241	19 4	152	205	2948
Total Geral	235 9	177 2	140 8	242 5	148 4	100 0	69 1	188 7	265 6	171 8	81 5	168 2	281 7	2271 4

A variação do número de ocorrências dos grupos faunísticos durante os anos pode ser observada no Gráfico 4-2. Como destaques percebe-se o grande aumento de ocorrências de aracnídeos no Ano 2 e Ano 3, bem como certa homogeneidade entre os registros de anfíbios, mamíferos e répteis quando comparados os Anos 1, 2 e 3. Com o aumento da eficácia de identificação dos registros, não houve animais intederminados em termos de classe faunística nos Anos 2 e 3.

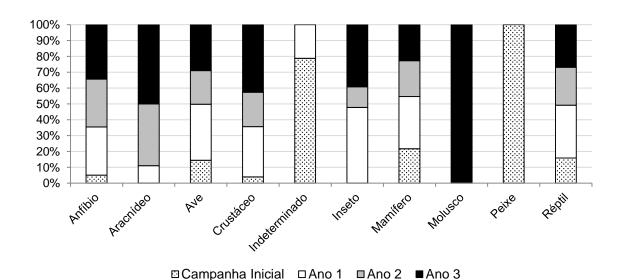


Gráfico 4-2: Representação gráfica da porcentagem ocorrências por grupo faunístico ao longo das campanhas do PMMaf.

Com base no Gráfico 4-3, dentre o total de vertebrados terrestres identificados pelo menos em nível de classe (n = 19.827) registrados nas campanhas dos Anos 1, 2 e 3 (campanhas 3 a 14), é notório que o grupo dos anfíbios foi o de maior ocorrência, com 12.807 indivíduos

(65%), seguido de mamíferos com 3.502 (18%) registros, répteis com 2.479 (13%) ocorrências e aves com 1.039 (5%) espécimes registrados.

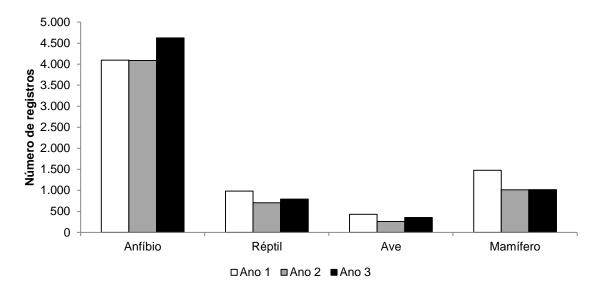


Gráfico 4-3: Representação gráfica da porcentagem de registros por grupo de vertebrados terrestres ao longo das campanhas do PMMaf.

Em relação ao tipo de animal encontrado sobre os trilhos para os táxons Anfíbio e Réptil, todos os indivíduos foram considerados selvagens (nativos). Os registros para o grupo peixe e os invertebrados (insetos, aracnídeos, moluscos e crustáceos) foram excluídos das análises por sua pouca representatividade em relação ao cômputo geral e também pela dificuldade de se estabelecer medidas mitigadoras para esses animais. No que tange à proporção entre animais selvagens e domésticos, houve prevalência dos primeiros sobre os últimos, sendo 19.639 (92,8%) para os selvagens e 1.525 (7,2%) domésticos. Um sumário, contendo a correlação entre os táxons e os respectivos tipos de animais, encontra-se na Tabela 4-3.

Tabela 4-3: Relação entre táxons de vertebrados e tipo de animal durante as campanhas válidas do PMMaf.

Ano / Táxon	Doméstico	Selvagem	Indeterminado	Total
Campanha inicial				
Anfíbio		692		692
Réptil		469		469
Ave	4	160	12	176
Mamífero	253	279	443	975
Indeterminado			41	41
Ano 1				
Anfíbio		4.095		4.095
Réptil		983		983
Ave	12	413	5	430
Mamífero	530	665	280	1.475
Indeterminado			11	11
Ano 2				
Anfíbio		4.088		4.088
Réptil		704		704

Ano / Táxon	Doméstico	Doméstico Selvagem Indeterminado		Total
Ave	12	242	3	257
Mamífero	362	544	106	1.012
Ano 3				
Anfíbio		4.624		4.624
Réptil		792		792
Ave	16	327	9	352
Mamífero	336	562	117	1.015
Total Geral	1.525	19.639	1.027	22.191

Os dados da Tabela 4-3 são apontados no Gráfico 4-4, das quais 1.027 ocorrências de atropelamentos foram elencadas como indeterminados, ou seja, não foi possível atingir um nível seguro para determinar se tal animal é selvagem ou doméstico. Tal dúvida ocorreu principalmente no grupo dos mamíferos, o que pode estar relacionado ao avançado estado de decomposição da carcaça encontrada ou ainda, à similaridade entre espécies selvagens e domésticas. Dos 1.027 registros indeterminados, apenas 52 não tiveram sua identificação em pelo menos nível de Classe, sendo classificado então como Vertebrado Indeterminado.

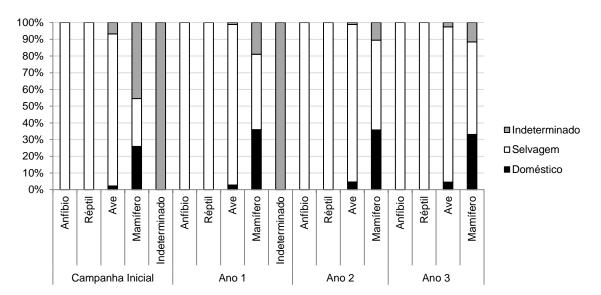


Gráfico 4-4: Representação gráfica da relação entre táxons e tipo de animal durante o monitoramento da fauna atropelada durante a campanha inicial (0) e os anos 1, 2 e 3.

Em relação ao tipo de registro dos vertebrados terrestres, 17.547 ocorrências (79,7%) foram de carcaça e 4.469 (20,3%) de ossada. A taxa carcaça/ossada foi de 3,92, indicando que houve mais de três carcaças para cada registro de ossada, sugerindo que os animais registrados em campo ainda não tinham atingido total estágio de decomposição. Contudo, ao se analisar apenas a Campanha inicial (0), a taxa carcaça/ossada foi de 0,96, indicando que esta campanha realmente serviu para "limpar" os trilhos, haja vista que essa foi a primeira inspeção deste tipo na ferrovia durante seus quase 30 anos de operação. Os animais feridos totalizaram 95 ocorrências e 309 indivíduos foram avistados vivos percorrendo a linha férrea, em repouso no trilho ou durante travessia. A Tabela 4-4 elenca os tipos de registros em números absolutos por campanha.

Tabela 4-4: Tabela-síntese de registros de vertebrados encontrados sobre trilhos durante as campanhas válidas do PMMaf, com respectivo *status* de condição do animal registrado.

Ano / Táxon	Carcaça	Ossada	Carapaça	Ferido	Vivo
Campanha inicial					
Anfíbio	639	47		1	5
Réptil	170	254	44		
Ave	93	81			2
Mamífero	214	755	4	1	1
Indeterminado	10	31			
Ano 1					
Anfíbio	3782	239	4	36	34
Réptil	388	535	42	3	15
Ave	299	122	1	2	6
Mamífero	723	733	11	1	7
Indeterminado	1	9	1		
Ano 2					
Anfíbio	3975	52	4	19	38
Réptil	323	327	19	4	31
Ave	214	40		1	2
Mamífero	686	318	3		5
Ano 3					
Anfíbio	4364	204	1	23	32
Réptil	387	338	38		29
Ave	276	68		1	7
Mamífero	692	314	2		7

O Gráfico 4-5 representa visualmente os dados da Tabela 4-4. Na campanha 0, a maior parte dos registros se tratava de ossadas (n = 1.170). A partir da campanha 3 percebe-se maior quantidade de carcaças (n = 982), fato que já era esperado, uma vez que ossadas antigas foram removidas em decorrência dos monitoramentos que ocorreram a partir de 2011, que possivelmente retiraram ossadas antigas dos trilhos.

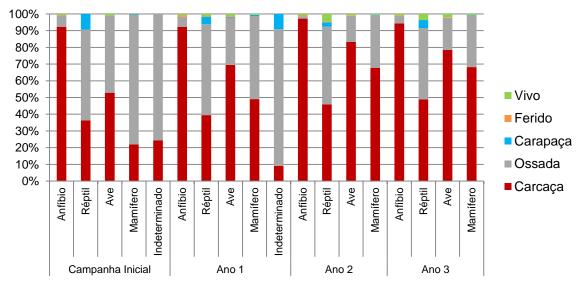


Gráfico 4-5: Representação gráfica da relação entre táxons e condições dos animais registrados durante a Campanhas Inicial e nos Anos 1, 2 e 3 do PMMaf.

Uma grande eficiência na identificação dos animais é observada nas amostras a partir do conhecimento da fauna da região. Os Anos 2 e 3 não possuem nenhum animal que não tenha sido enquadrado em alguma das quatro classes de vertebrados. Ressalta-se que a identificação dos animais é feita por especialistas em cada um dos grupos faunísticos de vertebrados terrestres. É provável que o sucesso nas identificações esteja intimamente relacionado à maior proporção de carcaças em relação às ossadas, o que pode resultar na manutenção de caracteres morfológicos sinapomórficos evidentes que possibilitam maior acurácia na determinação do táxon.

Ainda em relação à identificação dos espécimes de vertebrados terrestres registrados, 84,0% pode ser identificado pelo menos em nível de gênero, totalizando 18.650 registros. No que tange aos espécimes de vertebrados terrestres identificados no menor nível taxonômico (espécie) o cômputo atingiu 10.606 indivíduos (47,8%). Essas duas informações corroboram o acima descrito acerca da eficácia da identificação de espécimes no PMMaf da EFC. Mesmo animais diminutos e com caracteres sinapomórficos de difícil visualização por foto vêm sendo identificados pelo menos em nível de gênero, como é o caso dos anfíbios (94,5%). Entretanto, há que se levar em conta a grande abundância de um único gênero de anfíbios, o que pode facilitar a identificação.

Dos 10.323 táxons de vertebrados mortos encontrados sobre os trilhos, identificados ao menor nível taxonômico (espécie), 4.925 são de anfíbios (47,7%), 3.246 espécimes são de mamíferos (31,4%), 1.239 representam os répteis (12,0%) e 913 indivíduos da avifauna (8,8%). O Gráfico 4-6 ilustra os táxons mais registrados nas treze campanhas realizadas até o momento. O principal animal morto encontrado sobre os trilhos, com 5.758 (30,9%) ocorrências foi *Rhinella* sp., sendo que houve ainda o registro de outros 8 táxons com o gênero *Rhinella*, totalizando 7.078 animais (56,3%). O segundo táxon mais atropelado foi *Leptodactylus macrosternum*, com 1.251 registros (6,7%). Ao se somarem todos os registros do gênero *Leptodactylus*, chega-se a um total de 2.705 indivíduos (21,2%). Os canídeos também contribuem com grande parte dos registros de atropelamento. O cão-doméstico (*Canis familiaris*) possui 785 ocorrências de morte sobre os trilhos (17,6%), enquanto que o cachorro-do-mato (*Cerdocyon thous*) tem 683 registros (15,3%), além de animais não identificados da família Canidae (n = 502; 11,3%), somando 1.970 indivíduos. Apenas esses três grupos contribuem com 44,2% do total geral de indivídos atropelados. O Gráfico 4-6 apresenta os 10 principais táxons atropelados durante os estudos do PMMaf.

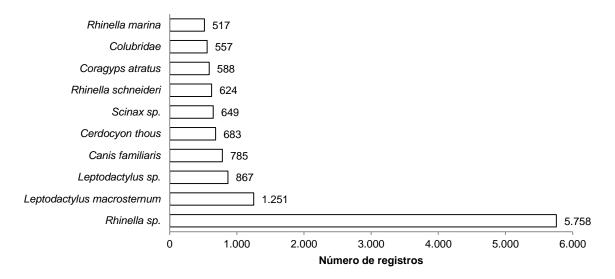


Gráfico 4-6: Representação gráfica dos 10 principais táxons encontrados mortos sobre os trilhos durante os estudos do PMMaf.

O Gráfico 4-7 apresenta as ocorrências das doze espécies de animais domésticos (n = 1517; 6,8% do total de atropelamentos) registradas até o momento pelo PMMaf. O táxon mais comum é o cão-doméstico (*Canis familiaris*; n = 785; 50,0%), o boi (*Bos taurus*; n = 295; 19,4%), o cavalo (*Equus caballus*; n = 161; 10,6%), o gato-doméstico (*Felis catus*, n = 84; 5,5%) e o porco-doméstico *Sus scrofa* (n = 67, 4,4%).

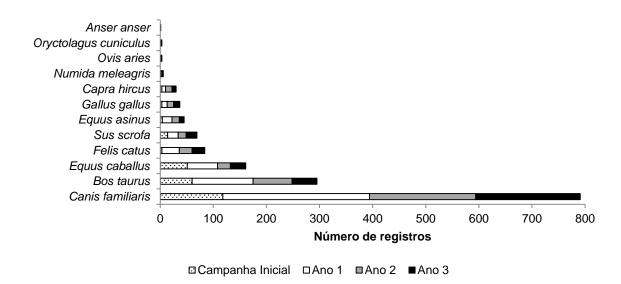


Gráfico 4-7: Representação gráfica dos espécimes de mamíferos domésticos registrados na Campanha inicial e Anos 1, 2 e 3 do PMMaf.

Em relação às espécies ameaçadas de extinção, a Tabela 4-5 apresenta uma síntese da ocorrência de animais desse tipo encontrados mortos sobre os trilhos. Destaca-se o número de jabuti-tingas (*Chelonoidis denticulatus*) registrados na Campanha inicial do PMMaf (n = 31), que provavelmente corresponde ao longo período de operação da ferrovia anteriormente às amostragens do PMMaf. Após a retirada das carapaças antigas, o número de animais dessa espécie reduziu sensivelmente (n = 9).

Tabela 4-5: Tabela-síntese das ocorrências de espécimes ameaçados de extinção no estado do Pará (COEMA-PA), no Brasil (MMA) e Globalmente (IUCN) encontrados mortos sobre os trilhos durante o PMMaf.

		Status o	le amea	ça		Tota			
Espécie	Nome comum	COEMA- PA	MM A	IUC N	0	1	2	3	I
Chelonoidis denticulatus	jabuti-tinga			VU	31	5	1	4	41
Leopardus tigrinus	gato-do-mato- pequeno		EN	VU		2			2
Myrmecophaga tridactyla	tamanduá-bandeira	VU	VU	VU				2	2
Penelope pileata	jacupiranga		VU	VU		1	2		3
Podocnemis unifilis	tracajá			VU	2				2
Priodontes maximus	tatu-canastra	VU	VU	VU				1	1
Pseudoboa nigra	cobra-preta	VU				8	13	14	35
Puma yagouaroundi	gato-mourisco		VU			1		1	2
Salvator merianae	teiú	VU				1			1
Strix huhula	coruja-preta		VU*		1				1
Tapirus terrestris	anta		VU	VU				3	3
Tayassu pecari	queixada		VU	VU	1			1	2
Total Geral					35	18	16	26	95

Legenda: VU: Vulnerável; VU*: Subespécie vulnerável não corresponde à espécie registrada; EN: Em perigo.

Além do impacto causado pelos atropelamentos na estrada em estudo, foram feitos registros ocasionais de espécimes vivos, descritos na Tabela 4-6. Essas ocorrências evidenciam que a ferrovia nem sempre constitui uma barreira física para dispersão da fauna (**Erro! Fonte de eferência não encontrada.** a Foto 6: Registro vivo de irara (*Eira barbara*).).

Tabela 4-6: Tabela-síntese das ocorrências de espécimes vivos encontrados sobre os trilhos durante o PMMaf.

Táxon	Campanha inicial	Ano 1	Ano 2	Ano 3	Total
Anfíbio	5	34	38	32	109
Amazophrynella minuta			6		6
Dendropsophus leucophyllatus			1		1
Dendropsophus branneri				1	1
Dendropsophus melanargyreus				1	1
Dendropsophus nanus				1	1
Hylidae	1				1
Hypsiboas cf. geographicus		1			1
Hypsiboas geographicus				1	1
Hypsiboas multifasciatus	1	1	1		3
Hypsiboas raniceps		3	2	2	7
Hypsiboas sp.				1	1
Leptodactylus fuscus	1	1		2	4
Leptodactylus macrosternum		7	6	7	20
Leptodactylus vastus			1		1
Osteocephalus taurinus			7		7
Phyllomedusa hypochondrialis	1	4	6	3	14
Physalaemus cuvieri			1		1
Pristimantis fenestratus			1		1

Táxon	Campanha inicial	Ano 1	Ano 2	Ano 3	Total
Rhaebo guttatus	iniciai			1	1
Rhinella jimi				4	4
Rhinella gr. margaritifera				1	1
Rhinella margaritifera		1		1	2
Rhinella marina		3			3
Rhinella schneideri		4	1		5
Rhinella sp.		7	2	4	13
Scinax gr. ruber	1				1
Scinax ruber				2	2
Scinax x-signatus		2	1		3
Trachycephalus typhonius			2		2
Aracnídeo		11	18	38	67
Acanthoscurria geniculata				1	1
Acanthoscurria cf. juruenicola		1	1		2
Acanthoscurria sp.				2	2
Ancylometes sp.		1			1
Avicularia cf. avicularia					0
Avicularia sp.		1	7	11	19
Nhandu cf. coloratovillosus			4		4
Nhandu coloratovillosus			1	1	2
Nhandu tripepii		7	3	11	21
Nhandu sp.				9	9
Phoneutria sp.		1			1
Scorpiones			1		1
Sparassidae				2	2
Theraphosidae			1	1	2
Ave	2	6	2	7	17
Caracara plancus		1		4	5
Cathartes aura		1			1
Cathartes melambrotus				1	1
Cathartes sp.				1	1
Columbina minuta			1		1
Coragyps atratus	1				1
Crypturellus tataupa	1				1
Harpia harpyja		1			1
Pitangus sulphuratus		1		1	2
Rupornis magnirostris			1		1
Tigrisoma lineatum		1			11
Tyrannus melancholicus		1			11
Crustáceo		2			2
Brachyura		2			2
Inseto		6	3		9
Caelifera			1		1
Insecta		1			1
Lepidoptera		2			2
Mantodea		1			1
Orthoptera	ļ	2			2
Phasmatodea			2		2
Molusco				1	1

Táxon	Campanha inicial	Ano 1	Ano 2	Ano 3	Total
Stylommatophora				1	1
Mamífero	1	7	5	7	20
Bradypus variegatus		1	1	1	3
Canis familiaris	1	3	1		5
Didelphis sp.				1	1
Eira barbara		1			1
Euphractus sexcinctus			1		1
Nasua nasua		1	1	3	5
Pecari tajacu			1		1
Sus scrofa		1		1	2
Tamandua tetradactyla				1	1
Réptil	1	15	31	29	76
Amphisbaena alba		2	6	6	14
Amphisbaena amazonica			1		1
Bothrops atrox				1	1
Chelonoidis denticulatus		1			1
Cnemidophorus cryptus			2	1	3
Erythrolamprus viridis		1			1
Eunectes murinus		1			1
Gonatodes humeralis			1		1
Iguana iguana		2	3	2	7
Kentropyx calcarata			1		1
Kinosternon scorpioides			1		1
Leptophis ahaetulla		1		3	4
Lacertilia	1				1
Mastigodryas boddaerti			1		1
Norops ortonii				1	1
Philodryas olfersii		1	5		6
Phylodrias olfersii		1		3	4
Polychrus marmoratus		1			1
Phrynops geoffroanus				1	1
Rhinoclemmys punctularia		1	2	4	7
Salvator merianae				1	1
Sibynomorphus mikanii			2		2
Spilotes pullatus			1	1	2
Stenocercus dumerilii			1		1
Tropidurus hispidus		1	1	5	7
Tropidurus oreadicus			2		2
Tupinambis teguixin		1			1
Xenodon rabdocephalus		1	1		2
Total Geral	9	81	97	122	309

Foto 1: Registro vivo de caranguejo (Brachyura).

Fonte: Amplo.

Foto 2: Registro vivo de aranha-caranguejeira (*Nhandu tripepii*).

Fonte: Amplo.

Foto 3: Registro vivo de sapo-folha (*Rhinella margaritifera*).

Foto 4: Registro vivo de jararaca (*Bothrops atrox*).

Fonte: Amplo

Foto 5: Registro vivo de socó-boi (*Trigosoma lineatum*).

Foto 6: Registro vivo de irara (*Eira barbara*).

Fonte: Amplo.

Fonte: Amplo.

Em relação aos vertebrados terrestres mais comumente associados a áreas paludosas, os anfíbios e répteis são especialmente vulneráveis aos atropelamentos. Segundo Ashley e Robinson (1996), tal fato se deve ao comportamento de locomoção lenta desses grupos, além

de não reconhecerem o perigo representado pela passagem dos veículos nas estradas. Ainda segundo estes autores, espécies que geram grande quantidade de jovens têm de longe os maiores valores anuais de registros de atropelamento. Essa afirmativa condiz com os achados durante as campanhas do PMMaf, notadamente no que tange aos gêneros *Rhinella* e *Leptodactylus*, animais de reprodução explosiva.

Várias espécies de répteis registradas, especialmente as serpentes, utilizam estradas para termorregulação, atraídos pelas condições favoráveis da via (ASHLEY; ROBINSON, 1996; VIJAYAKUMAR; VASUDEVAN; ISHWAR, 2001). Este comportamento, associado às tentativas de travessia da ferrovia de uma margem à outra, principalmente para exploração do ambiente em busca de alimento e parceiros sexuais, expõe o grupo a atropelamentos. Ao longo da ferrovia, algumas espécies são abundantes tanto em áreas consideradas de elevado grau de conservação como antropizadas, a exemplo da espécie *Boa constrictor* (jiboia).

O atropelamento de mamíferos, notadamente os silvestres, pode representar uma redução na diversidade local. As mortes de espécimes de mamíferos também são influenciadas por espécies de hábitos carniceiros e/ou oportunistas, tais como o cachorro-do-mato (*Cerdocyon thous*), espécie selvagem mais registrada dentre os mamíferos, seguida do tamanduá-mirim (*Tamandua tetradactyla*) (Gráfico 4-6, Tabela 4-1). Para o caso de acidentes envolvendo mamíferos domésticos de grande porte (p. ex. gado bovino e suíno, cavalos, jegues), estes podem causar perdas econômicas e problemas com as comunidades locais, além do risco de descarrilamento pelas composições.

As ocorrências de atropelamentos de espécies carniceiras ou que se alimentem oportunisticamente de carcaças, tais como os urubus e o carcará, corresponderam à maior parte dos atropelamentos desse grupo. Por permanecerem insistentemente sobre os trilhos, a presença desses animais pode gerar ciclos de atropelamentos. Aves granívoras e insetívoras também podem eventualmente ser atropeladas ou ficar gravemente feridas apenas pelo deslocamento de ar causado pelas composições (Coelho, I.P., comunicação pessoal).

O deslocamento de ar também pode ser o responsável pelas mortes dos anfíbios. A composição, ao passar por cima dos anfíbios, poderia gerar uma turbulência interna dentro desses animais, ocasionando uma espécie de "estouro interno" (*blowout* em inglês – (HUMMEL, 2011). Desta forma, os animais morrem, mas não apresentam nenhum tipo de ferimento externo, assim como pode ser observado na Foto 7 e na Foto 8. Outra possibilidade é que estes animais podem estar sendo vitimados por dessecação devido às altas temperaturas atingidas nos estados do Pará e Maranhão. Pörtner (2002) indica que a temperatura máxima suportada por animais ectotérmicos seria de 45°C, valor em que as funções centrais e de coordenação já sofreriam danos. Entretanto, valores próximos de 42°C já seriam suficientes para causar disfunções comportamentais (PÖRTNER, 2002). Por sua vez, Navas e colaboradores (2007) citam que indivíduos juvenis do gênero *Bufo* (atualmente *Rhinella* para os animais brasileiros) possuem comportamento diurno e estabelecem que a temperatura crítica máxima para jovens da espécie *Rhinella granulosa* é de 45°C. Os autores comentam que a tolerância térmica dessa espécie seria comparada apenas àqueles anuros com maior especialização termofílica. Posto isso, é plausível a hipótese de que os animais

estejam morrendo não por atropelamentos, mas sim por causa da alta temperatura.

Foto 7: *Hypsiboas multifasciatus* em vista dorsal, sem lesões aparentes.

Foto 8: *Hypsiboas multifasciatus* em vista ventral, sem lesões aparentes.

Fonte: Amplo.

Fonte: Amplo.

Todos os morcegos se utilizam da ecolocalização para navegar (SIGRIST, 2012), sendo assim improvável sua mortalidade por abalroamento. Contudo, uma vez que a ecolocalização só é eficaz para curtas distâncias (SIGRIST, 2012) sua visão é provavelmente importante para o forrageamento. Desta forma, uma suposição para o atropelamento de morcegos é que os fachos de luz emitidos pela locomotiva facilitem a perseguição de insetos que são atraídos ou repelidos pelos faróis (LAURANCE; GOOSEM; LAURANCE, 2009). Ao se deslocarem para forragear, a movimentação de ar gerada pelas composições pode ser determinante fator de mortalidade dos quirópteros por ocasionar fraturas durante o voo. No decorrer das campanhas do PMMaf, houve a ocorrência de 52 morcegos atropelados.

De um modo geral, a presença de vários povoados ao longo da EFC transforma o ambiente através do acúmulo de lixo nas margens ou na própria linha férrea e disponibiliza alimento, atraindo espécies que se adaptam a variações de hábitat e distúrbios dessa natureza. Contudo, vale a pena ressaltar que restos de animais foram encontrados sobre os trilhos, mas próximos a sacos de lixo, indicando que alguns espécimes podem não ter sido atropelados e apenas representar restos de alimento da população. Ainda como indício de que o animal pode não ter sido efetivamente atropelado, ocorre frequentemente a amarração de animais aos trilhos pela população (Foto 9 e Foto 10). Também foi observado que animais serpentiformes, por causarem medo à comunidade, provavelmente são mortos e jogados na ferrovia (Foto 11), uma vez que não há compatibilidade das injúrias com o rodeiro dos trens. Ademais, a disposição de oferendas contendo alimentos (Foto 12) são exemplos de impactos externos à ferrovia que podem ocasionar na atração de animais para as adjacências do gabarito.

Alguns outros registros interessantes foram encontrados, tais como a adição de aranhas, além do "atropelamento" de crustáceos e peixes. Além de alguns deles poderem ser advindos de lixo da população, conforme acima comentado, também pode ocorrer o desprendimento desses animais das garras de aves em sobrevoo na ferrovia (Oliveira, U.S.C., comunicação pessoal).

Foto 9: *Canis familiaris* com corda no pescoço.

Fonte: Amplo.

Foto 10: Spilotes pullatus amarrado ao trilho.

Fonte: Amplo.

Foto 11: Amphisbaena fuliginosa apresentando injúrias incompatíveis com os rodeiros do trem.

Fonte: Amplo.

Foto 12: Oferenda disposta na adjacência da ferrovia contendo alimentos e garrafas de bebidas.

Fonte: Amplo.

O Gráfico 4-8 evidencia as variáveis de indícios da ocorrência do não atropelamento na EFC. Esse parâmetro, que passou a ser avaliado a partir da Campanha 3, revelou que dos registros em que os técnicos consideraram a possibilidade de não ter havido atropelamento (n = 986), 90,0% são caracterizados por carcaças intactas. Dos animais considerados não atropelados por terem suas carcaças intactas, 73,8% são anfíbios, o que corrobora a hipótese das mortes por *blowout* ou dessecação. Chama a atenção também o número de aracnídeos que foram encontrados sobre os trilhos sem nenhuma lesão aparente (n = 151; 15,3%). As ferrovias brasileiras, por suas características peculiares envolvendo principalmente a atuação da comunidade que vive nos arredores da ferrovia, dispõem também de fatores que superestimam a quantidade de animais que são vitimados em decorrência de sua operação. Desta forma, as análises referentes a ecologia de estradas que normalmente são eficazes para as rodovias em geral, possuindo um viés apenas de subestimação, devem ser cautelosamente utilizadas para as ferrovias, que claramente têm parâmetros de sub e superestimação.

Conjuntamente, podem ainda existir registros de espécimes que não foram contabilizados, já que algumas vezes os animais não morrem imediatamente no momento da colisão, adentrando a vegetação adjacente, vindo a morrer depois do impacto. Ademais, a questão

relativa ao fator do tempo de permanência das carcaças na ferrovia vem sendo analisada através de testes de remoção de carcaça. Todavia, para atingir valores de remoção para cada um dos táxons que possibilite estimar a quantidade real de fauna morta sobre os trilhos, serão necessários alguns anos de monitoramento para que o acúmulo de dados permita as análises estatísticas pertinentes. Por fim, a constante manutenção da linha férrea como troca de trilhos, dormentes e lastro, podem acabar removendo carcaças e ossadas.

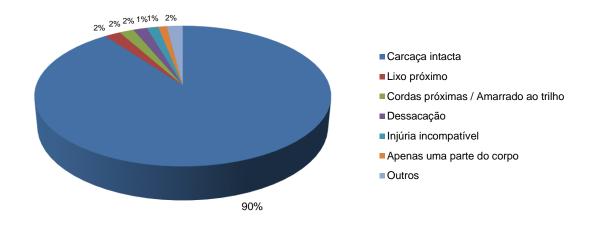


Gráfico 4-8: Representação gráfica dos indícios dos registros do não atropelamento da fauna na EFC durante as campanhas do PMMaf.

4.2 ANÁLISE DE SAZONALIDADE

Dentre os grupos amostrados, apenas a classe dos anfíbios apresentou significância entre os períodos sazonais (Tabela 4-7). A grande abundância de registro desses animais torna as análises mais acuradas e talvez por isso esse tenha sido o único grupo com resultados significativos. A reconhecida sazonalidade dos anfíbios, principalmente em relação ao boom reprodutivo logo no início da estação chuvosa pode corroborar com os resultados obtidos. Em relação ao resultado em si, as fases de transição seca-chuva e chuva foram significativamente diferentes dos períodos de transição chuva-seca e seca. Tal fato já foi citado pela literatura brasileira, inclusive com a abordagem para o gênero *Rhinella* (ex-*Bufo*) (RODRIGUES et al., 2002), disparadamente o mais registrado na EFC. Uma vez que houve apenas três períodos de cada uma das fases, o incremento da amostra com o acúmulo de informações das subsequentes campanhas deverá fornecer resultados com maior exatidão.

Tabela 4-7: Análise de variância (ANOVA) para a sazonalidade dos registros obtidos para os anfíbios.

Período	Transição chuva-seca	Seca	Transição seca chuva	Chuva	
Transição chuva-seca	-	0,680	0,180	0,064	
Seca	-	-	0,037	0,014	
Transição seca-chuva	-	-	-	0,879	
Chuva	-	-	-		

4.3 ANÁLISE DE PAISAGEM

No que tange à análise de paisagem, todos os registros válidos de animais mortos sobre os trilhos obtidos até então nas campanhas do PMMaf foram segregados em grupos de amostragem, a fim de se proceder com a estatística por classe de uso do solo. Os resultados estão dispostos na Tabela 4-8 e Tabela 4-10.

Alguns resultados chamam bastante atenção como, por exemplo, a grande afinidade de atropelamentos de anfíbios com áreas edificadas. Como grande parte dos anfíbios encontrados sobre os trilhos consiste em animais de pouca exigência ambiental, infere-se que eles tenham se adaptado bem à antropização do habitat. Estas espécies não são especialistas, ou seja, se alimentam de uma diversa gama de presas e não requerem ambientes bem conservados para reprodução e manutenção de uma população viável. As áreas edificadas acabam por fornecer abrigo e alimento para as espécies de invertebrados que são atraídas pela luz. Assim, com abundância de recursos alimentares, os anfíbios acabaram por colonizar áreas próximas a edificações.

Tanto os mamíferos selvagens de médio e grande porte quanto os mamíferos de pequeno porte apresentaram-se como espécies mais exigentes no quesito ambiental, comprovado por sua baixa interação com ambientes antrópicos. Por sua vez, os quirópteros (mamíferos voadores de pequeno porte) apresentaram maior afinidade com massas d'água. Tal fato pode ser explicado pelas grandes pontes que a EFC atravessa ao longo de rios. Nesses locais os morcegos costumam fazer abrigos e é provável que eles estejam sendo atingidos durante a movimentação de ida e volta para realização de suas atividades. Entretanto, os resultados devem ser interpretados com cautela, uma vez que o baixo cômputo geral de morcegos atropelados e o alto valor encontrado em áreas com predominância de massa d'água diz respeito à correlação do baixo número de registros com a pouca quantidade em área de massa d'água na ADA da EFC.

Assim como os anfíbios, os répteis também foram comumente encontrados em áreas edificadas e provavelmente a justificativa é a mesma acima descrita. Todavia, diferentemente dos anfíbios, percebe-se uma uniformidade dos valores obtidos em relação às outras classes de análise. Desta forma, os répteis, até o momento, podem ser considerados os animais com menor fidelidade de ambientes por ter permeado e sido encontrado sobre os trilhos em vários tipos de classes dominantes.

Tabela 4-8: Número de atropelamentos por grupo de amostragem por 100 hectares de classe de uso do solo dominante na ADA do Projeto EEFC.

	Classe							
Grupo de amostragem	Áreas alagadas	Áreas edificadas	Fragmento florestal	Manguezal	Massa d'água	Pastagem	Sistema viário /solo exposto	Variada
Anfíbios	52,30	271,06	185,10	0,00	21,54	170,98	130,77	181,08
Aves domésticas	1,69	0,00	0,71	0,00	0,00	0,50	0,00	0,58
Aves indeterminadas	0,00	2,10	0,47	0,00	0,00	0,20	0,00	0,25
Aves selvagens	28,68	4,20	13,17	65,20	7,18	12,51	10,90	15,12
Mamíferos domésticos	28,68	75,65	9,64	0,00	50,27	16,51	13,08	14,87
Mamíferos indeterminados	7,59	23,11	14,35	0,00	35,91	5,91	0,00	7,10
Mamíferos selvagens	24,46	10,51	37,16	130,40	35,91	21,66	6,54	29,49
Mamíferos de médio e grande porte selvagens	21,93	6,30	29,40	130,40	7,18	19,15	6,54	25,03
Mamíferos de pequeno porte selvagens	2,53	4,20	6,59	0,00	0,00	1,72	0,00	3,14
Mamíferos voadores	0,00	0,00	1,18	0,00	28,73	0,79	0,00	1,32
Répteis	39,65	58,84	33,63	0,00	7,18	33,07	13,08	33,29
Aracnídeos	0,00	0,00	7,06	0,00	0,00	5,13	6,54	4,30

Tabela 4-9: Número de atropelamentos por grupo de amostragem por 100 hectares de classe de uso do solo dominante na AID do Projeto EEFC.

				Cla	sse			
Grupo de amostragem	Áreas alagadas	Áreas edificadas	Fragmento florestal	Manguezal	Massa d'água	Pastagem	Sistema viário /solo exposto	Variada
Anfíbios	5,088	10,688	31,850	5,293	4,725	13,985	21,037	13,849
Aves domésticas	0,000	0,000	0,048	0,000	0,000	0,046	0,000	0,044
Aves indeterminadas	0,000	0,000	0,072	0,000	0,000	0,014	0,000	0,022
Aves selvagens	2,035	0,563	1,496	2,353	1,012	1,083	0,755	1,207
Mamíferos domésticos	2,035	0,281	0,893	1,764	3,375	1,406	0,943	1,424
Mamíferos indeterminados	0,000	0,281	1,617	0,588	3,375	0,484	1,321	0,545
Mamíferos selvagens	1,018	1,744	4,874	1,176	3,037	1,875	2,547	1,943
Mamíferos de médio e grande porte selvagens	1,018	1,631	3,812	1,176	1,687	1,677	1,792	1,685
Mamíferos de pequeno porte selvagens	0,000	0,113	0,700	0,000	0,000	0,139	0,566	0,202
Mamíferos voadores	0,000	0,000	0,362	0,000	1,350	0,060	0,189	0,055
Répteis	2,035	2,250	4,054	1,764	1,012	2,882	2,830	2,583
Aracnídeos	0,509	0,225	1,255	0,000	0,337	0,449	0,566	0,327

Em relação às aves selvagens nota-se pela Tabela 4-8 que a classe com maior atropelamento por hectare foi o Manguezal. Contudo, esse resultado deve ser analisado com prudência, haja vista que a maior parte das aves atropeladas consiste em urubus-de-cabeça-preta (*Coragyps atratus*). No caso específico dos Manguezais e Áreas Alagadas, grande quantidade desses animais é vista empoleirada sobre as enormes linhas de transmissão existentes nos locais onde há predominâncias dessas classes de uso do solo. Esses tipos de ambientes alagados possuem grande quantidade de matéria orgânica associada, além de abrigarem outros elementos alimentares de *C. atratus*. Posto isso, supõe-se que a alta abundância desses animais nesses habitats seja o principal fator para o elevado valor de atropelamento por hectare das aves nessas áreas.

Outros números que devem ser levados em consideração são aqueles dos animais em que não foi possível completa identificação e terminaram por serem enquadrados no *status* "indeterminado". Ao se analisar os números, percebe-se que tanto para os mamíferos quanto para as aves indeterminadas, há altos valores nas classes de uso do solo correspondentes a Áreas Edificadas. Esse fato indica que a maioria dos registros obtidos elencados como "indeterminados" devem ser tratar de animais domésticos.

4.4 DISTRIBUIÇÃO ESPACIAL DOS ATROPELAMENTOS

Para as análises de agregação de atropelamento foram considerados todos os registros válidos de vertebrados terrestres obtidos nas campanhas realizadas pelo PMMaf. Para o grupo dos mamíferos não foram levados em conta os animais domésticos, haja vista que não são relevantes em termos conservacionistas e a grande quantidade de animais desse tipo poderia gerar um viés nos cálculos estatísticos. O grupo "Selvagens" e o grupo "Todos" também fizeram parte das análises. O primeiro consiste em todos os animais selvagens somados, independentemente do grupo faunístico, enquanto que o grupo Todos agrega os animais domésticos e os Selvagens. A Tabela 4-10 e o Gráfico 4-9 apresentam os dados referentes às três principais ZCAs diagnosticadas até o momento. O panorama geral de agregação de atropelamento de fauna durante os anos de amostragem do PMMaf pode ser observado na Figura 4-1.

Percebe-se que houve diversas ZCAs na região de Marabá, entre os km 700 e 800. Apesar de a região apresentar-se intensamente fragmentada em vários locais da ferrovia, nessa área há vários locais em que a paisagem ainda reserva grandes fragmentos de floresta ombrófila densa, além de a EFC interceptar vários cursos d'água das importantes bacias do Tocantins e Itacaiúnas.

Tabela 4-10: Grupos de análise e respectivas Zonas Críticas de Atropelamento (ZCAs) no decorrer das campanhas do PMMaf.

Ano	Campanha	Anfíbios	Répteis	Aves	Mamíferos selvagens	Selvagens	Todos
0	0	728,920	802,910	62,460	791,870	728,910	728,910
0	0	712,390	80,130	46,610	799,750	712,410	791,910
0	0	733,870	143,660	37,900	409,070	733,870	733,870
1	3	733,400	109,730	215,710	742,840	737,230	215,710

Ano	Campanha	Anfíbios	Répteis	Aves	Mamíferos selvagens	Selvagens	Todos
1	3	787,390	105,460	722,360	819,760	782,000	694,330
1	3	294,820	699,870	173,730	694,200	223,220	223,220
1	4	278,290	140,800	746,440	788,740	278,260	278,260
1	4	550,990	731,920	347,930	701,960	550,990	550,990
1	4	527,530	37,560	278,820	763,390	763,020	729,260
1	5	707,370	143,580	668,140	365,230	707,420	707,420
1	5	278,320	174,120	411,740	773,650	278,320	278,320
1	5	312,160	731,770	62,000	708,450	731,520	729,280
1	6	550,270	132,850	137,350	330,820	550,270	550,270
1	6	312,690	155,980	408,180	388,460	312,690	312,690
1	6	652,720	801,150	573,980	457,070	652,720	652,720
2	7	719,320	109,080	140,200	622,660	719,270	719,410
2	7	712,970	730,290	336,610	719,230	712,970	712,970
2	7	759,350	116,560	746,840	757,720	759,360	759,360
2	8	603,250	467,740	170,630	763,290	603,250	603,250
2	8	312,350	156,600	32,080	217,220	312,330	312,330
2	8	315,490	631,160	690,050	760,920	763,290	763,290
2	9	278,460	851,210	202,060	137,940	278,460	278,460
2	9	235,460	59,220	267,280	760,360	235,460	235,460
2	9	265,650	207,740	142,930	822,140	265,690	265,650
2	10	800,510	697,010	778,050	839,010	800,510	800,510
2	10	695,910	227,520	51,280	695,820	695,900	695,900
2	10	750,590	254,700	378,340	786,700	750,590	750,590
3	11	312,630	312,420	223,650	442,130	312,360	312,360
3	11	205,780	664,980	371,620	447,550	293,610	293,700
3	11	517,920	201,810	540,040	412,370	205,780	205,780
3	12	169,270	119,070	194,820	609,820	194,800	194,810
3	12	278,710	171,610	672,960	816,190	672,960	36,130
3	12	677,510	796,080	841,680	644,320	704,800	324,670
3	13	550,690	143,940	168,790	521,800	550,690	550,690
3	13	655,120	614,620	56,480	806,130	655,120	655,120
3	13	615,260	762,070	722,830	491,770	615,220	615,220
3	14	169,650	863,690	137,190	390,780	169,690	169,690
3	14	790,210	144,070	152,930	185,520	790,210	790,210
3	14	157,740	134,990	390,750	318,440	157,740	157,740

4.4.1 ANFÍBIOS

Foram consideradas reincidências de locais de agregação de fauna aqueles pontos em que houve um intervalo máximo de 2 km entre um ponto e outro. Em assim sendo, os anfíbios, que apesar de terem a maioria de suas agregações de atropelamentos entre os km 700 e 750, possuíram reincidência do diagnóstico de ZCA em apenas uma área dessa quilometragem. As demais áreas de recorrência foram os km 169,270 e 169,650 (Campanhas 12 e 14, respectivamente), km 278,290, 278,320, 278,460 e 278,710 (Campanhas 4, 5, 9 e 12, respectivamente), km 312,160, 312,690, 312,350 e 312,630 (Campanhas 5, 6, 8 e 11, respectivamente), km 550,990, 550,270 e 550,690 (Campanhas 4, 6 e 13, respectivamente)

e km 712,390 e 712,970 (Campanhas 0 e 7, respectivamente), este último nas adjacências da Terra Indígena Mãe Maria (TIMM), além dos km 733,870 e 733,400 (Campanhas 0 e 3, respectivamente). Em relação à distribuição específica nos km de recorrência, verifica-se que os registros consistem em espécies bastante comuns, sem destaques para grupos de interesse conservacionista.

Nas Campanhas 5 e 10 foram diagnosticadas ZCAs nos km 707,370 e 695,910 dentro da TIMM. Ao analisar a listagem de táxons (Tabela 4-12) encontrados numa zona tampão de 2 km de distância do ponto central de cada uma das ZCAs, verifica-se que os animais registrados são primordialmente de grupos comuns, sem nenhum destaque para táxons de conservação, mesmo estando dentro de um dos fragmentos considerados dos mais importantes ao longo da EFC.

Tabela 4-11: Listagem de táxons de anfíbios registrados nas ZCAs ocorrentes dentro da TIMM, com respectivo número de ocorrências.

Campanha	Táxon	N
	Scinax sp.	8
	Scinax gr. ruber	7
	Dendropsophus melanargyreus	4
	Hypsiboas sp.	4
	Rhinella sp.	3
	Hylidae	3
	Hypsiboas raniceps	3
Campanha 5	Trachycephalus typhonius	2
(km 707,370)	Hypsiboas geographicus	2
	Leptodactylus sp.	2
	Dendropsophus leucophyllatus	2
	Leptodactylus mystaceus	2
	Physalaemus ephippifer	1
	Phyllomedusa hypochondrialis	1
	Rhinella marina	1
	Leptodactylus macrosternum	1
	Hylidae	52
	Scinax sp.	24
	Scinax gr. ruber	9
	Dendropsophus melanargyreus	9
	Leptodactylus sp.	9
	Physalaemus ephippifer	8
	Rhinella marina	8
	Osteocephalus taurinus	7
Campanha 10 (km 695,910)	Hypsiboas sp.	5
(KIII 033,310)	Anura	3
	Phyllomedusa sp.	2
	Scinax ruber	1
	Amphibia	1
	Dendropsophus leucophyllatus	1
	Phyllomedusa hypochondrialis	1
	Hypsiboas multifasciatus	1

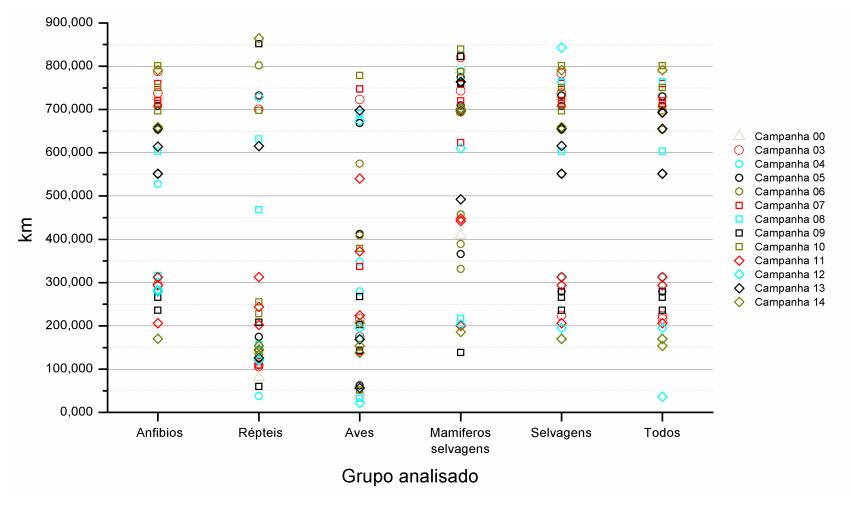


Gráfico 4-9: Gráficos exibindo os grupos de análise e respectivas zonas críticas de atropelamento no decorrer das campanhas do PMMaf.

Figura 4 1: Agregação de das ca

Figura 4-1: Agregação das campanhas válidas do Programa de Monitoramento e Mitigação de Atropelamento de Fauna

Nas Campanhas 5 e 10 foram diagnosticadas ZCAs nos km 707,370 e 695,910 dentro da TIMM. Ao analisar a listagem de táxons (Tabela 4-12) encontrados numa zona tampão de 2 km de distância do ponto central de cada uma das ZCAs, verifica-se que os animais registrados são primordialmente de grupos comuns, sem nenhum destaque para táxons de conservação, mesmo estando dentro de um dos fragmentos considerados dos mais importantes ao longo da EFC.

Tabela 4-12: Listagem de táxons de anfíbios registrados nas ZCAs ocorrentes dentro da TIMM, com respectivo número de ocorrências.

Campanha	Táxon	N
	Scinax sp.	8
	Scinax gr. ruber	7
	Dendropsophus melanargyreus	4
	Hypsiboas sp.	4
	Rhinella sp.	3
	Hylidae	3
	Hypsiboas raniceps	3
Campanha 5	Trachycephalus typhonius	2
(km 707,370)	Hypsiboas geographicus	2
	Leptodactylus sp.	2
	Dendropsophus leucophyllatus	2
	Leptodactylus mystaceus	2
	Physalaemus ephippifer	1
	Phyllomedusa hypochondrialis	1
	Rhinella marina	1
	Leptodactylus macrosternum	1
	Hylidae	52
	Scinax sp.	24
	Scinax gr. ruber	9
	Dendropsophus melanargyreus	9
	Leptodactylus sp.	9
	Physalaemus ephippifer	8
	Rhinella marina	8
	Osteocephalus taurinus	7
Campanha 10 (km 695,910)	Hypsiboas sp.	5
(KIII 033,310)	Anura	3
	Phyllomedusa sp.	2
	Scinax ruber	1
	Amphibia	1
	Dendropsophus leucophyllatus	1
	Phyllomedusa hypochondrialis	1
	Hypsiboas multifasciatus	1

4.4.2 RÉPTEIS

No que tange aos répteis, a maior concentração de agregações encontra-se entre os km 100 e 200, região da Baixada Maranhense. Os locais de recorrência de ZCAs aconteceram nas Campanhas 3 e 7 (km 109,730 e 109,080, respectivamente), Campanhas 0, 5, 13 e 14 (km

143,660, 143,580, 143,940 e 144,070 respectivamente), Campanhas 6 e 8 (km 155,980 e 156,600, respectivamente, além das Campanhas 4 e 5 (km 731,920 e 731,770, respectivamente).

Da listagem de espécies de répteis, aquela que merece maior destaque é o jacaré-coroa (*Paleosuchus palpebrosus* - km 143,480, 144,100, 144,200), que apesar de ser uma espécie que ocorre no Amazonas, regiões da Colômbia, Equador, Peru, nordeste da Bolívia, Venezuela, Brasil, Guiana e Suriname (RUEDA-ALMONACID et al., 2007), é uma das espécies de jacarés menos conhecida pelos pesquisadores (THORBJARNARSON et al., 1992) e a carência de informações sobre sua história natural é mais um dos fatores que eventualmente afeta a conservação da espécie (MAGNUSSON, 1985).

4.4.3 AVES

O grupo Aves, por sua vez, não apresentou padrão de agregações. As zonas críticas de atropelamento apresentam-se difusas ao longo de toda a ferrovia. Contudo, ainda assim houve alguns pontos de reincidência de agregação: km 62,460 e 62,000 (Campanhas 0 e 5, respectivamente), km 137,350 e 137,190 (Campanhas 6 e 14, respectivamente), km 722,360 e 722,830 (Campanhas 3 e 13, respectivamente) e km 746,940 e 747,340 (Campanhas 4 e 7, respectivamente). Vale a pena ressaltar o baixo número de registros necessários para formar uma ZCA para esse grupo. Na Campanha 5, por exemplo, apenas 4 urubus-de-cabeça-preta (*Coragyps atratus*) foram suficientes para configurar uma agregação relevante de ocorrências de fauna atropelada. Este fato indica que para o grupo Aves as formações das ZCA são frágeis e seria de pouco valor adotar medidas mitigadoras consagradas pela literatura, principalmente para um grupo dotado de habilidade de deslocamento aéreo.

4.4.4 Mamíferos Selvagens

As análises das ZCA revelam uma grande concentração de pontos entre os km 700 e 800, assim como ocorreu com os anfíbios. Para este grupo, houve recorrência de ZCA num intervalo tampão de 2 km nos marcos 760,360 e 760,920 (Campanhas 9 e 8 respectivamente) e nas posições 763,290 e 763,390 (Campanhas 8 e 4, respectivamente).

Conforme consta do Plano Básico Ambiental (PBA) referente à Expansão da Estrada de Ferro Carajás (AMPLO, 2011), o local onde se sugeriu ser estudo piloto para algumas das medidas mitigadoras mais frequentemente utilizadas em rodovias de países temperados apresentou uma ZCA para os mamíferos selvagens (km 791,870 – Campanha 0). A área onde esses pontos estão próximos ou inclusos consiste em um grande remanescente de Floresta Ombrófila Densa em estágio médio, que é margeado pelo lado direito da ferrovia desde seu início, do km 790,790 até o km 791,700. A partir desse ponto até o km 793,690 a ferrovia configura um corredor ecológico, denominado no PBA como Microcorredor C9). Posteriormente o fragmento passa a ser flanqueado apenas pelo lado esquerdo da ferrovia até o km 802,830, e formando outros dois corredores ecológicos (Microcorredores C7 e C8). Ainda com influência desse remanescente, dois outros pontos foram diagnosticados como

ZCA: o km 788,740 (Campanha 4), que está na área de preservação permanente (APP) do Rio das Onças e o km 799,750 (Campanha 0), que já está na parte final do fragmento. A Tabela 4-13 apresenta as ZCAs referentes a esta área, contendo a composição específica e o respectivo número de registros.

Tabela 4-13: Pontos de agregação de mastofauna selvagem na região dos Microcorredores C7, C8 e C9, com respectiva campanha, táxon e número de registros.

		- /	
km	Campanha	Táxon	N
		Cerdocyon thous	3
790,870 - 792,870	Campanha 0	Procyon cancrivorus	3
		Primates	1
707 740 700 740	Composho 1	Cerdocyon thous	4
787,740 - 789,740	Campanha 4	Procyon cancrivorus	1
700 750 900 750	Campanha	Cerdocyon thous	5
798,750 - 800,750	Campanha 0	Tamandua tetradactyla	1

Percebe-se pelas tabelas acima, a grande quantidade de registros de *C. thous* (cachorro-domato). Esse animal é frequentemente registrado como sendo dos mais vitimados por atropelamento, inclusive na região Amazônica (GUMIER-COSTA; SPERBER, 2009; TURCI; BERNARDE, 2009). Segundo Fischer (1997), o caso de atropelamento de animais oportunistas/generalistas tal como *C. thous*, que pode ser necrófago (BISBAL; OJASTI, 1980 apud NOVAES et al., 2010), é um daqueles em que a própria estrada se torna local de alimentação para os animais. O cachorro-do-mato é um daqueles "limpadores" da estrada e apresentam maiores concentrações em áreas de grande incidência de atropelamentos.

4.4.5 SELVAGENS E TODOS

Os grupos Selvagens e Todos apresentam ZCAs com grande influência dos resultados dos demais grupos, notadamente os anfíbios. Tal fato era esperado graças aos altos valores de intensidade de agregação encontrados para o grupo Anfíbios em decorrência da morte dos animais em explosão reprodutiva logo após as primeiras chuvas do ano. De toda sorte, não é recomendável fazer a análise de recorrência dos ZCAs ao longo das campanhas para esses grupos, haja vista que eles são altamente influenciados pelos resultados das agregações dos demais grupos.

4.4.6 ANIMAIS AMEAÇADOS DE EXTINÇÃO

A fim de estabelecer medidas mitigadoras, optou-se por realizar uma análise específica para animais ameaçados de extinção, entendendo que esse conjunto poderá fornecer melhores resultados em termos conservacionistas. Como o número de ocorrências desse grupo é baixo, optou-se por fazer uma análise dos animais ameaçados que englobasse todas as campanhas em conjunto, e, desta forma, também foi ignorada a questão da recorrência entre as campanhas. No total das treze campanhas válidas realizadas até o momento, foram registradas doze espécies ameaçadas de extinção (ver Tabela 4-5), totalizando 95 indivíduos.

Cabe ressaltar que a coruja-preta (*Strix huhula*), espécie identificada como ameaçada, tem apenas a subespécie do sudeste do Brasil como ameaçada, reduzindo para 11 o número efetivo de espécies mortas nos trilhos. Vinte e sete por cento (27%) dos registros de animais ameaçados de extinção se localizaram entre os km 790 e 810 da EFC, na região que abrange os fragmentos dos Microcorredores C7, C8 e C9. Ademais, em termos de riqueza, essa região possui duas espécies de animais ameaçados. Além do jabuti-tinga (*Chelonoidis denticulatus*) nessa região também ocorreu o atropelamento de jacupirangas (*Penelope pileata*), tatucanastra (*Priodontes maximus*) e queixada (*Tayassu pecari*) (Tabela 4-14).

Tabela 4-14: Espécies ameaçadas de extinção na região dos Microcorredores C7, C8 e C9, com respectivo número de registros.

Espécie	N
Chelonoidis denticulatus	22
Penelope pileata	2
Priodontes maximus	1
Tayassu pecari	1

Ao se juntar todos os dados obtidos acerca de espécies ameaçadas encontradas sobre os trilhos durante as atividades do PMMaf, as quatro principais de ZCA também se encontram na região dos Microcorredores C7, C8 e C9 (802,910, 794,920, 799,810 e 791,920, em ordem de intensidade de agregação). Essa região vem sistematicamente se mostrando como a principal área a serem implantadas medidas mitigadoras de atropelamentos de fauna ao longo da Estrada de Ferro Carajás.

4.5 MITIGAÇÃO DE ATROPELAMENTO DE FAUNA

As Notas Técnicas 168/2012, 000124/2013 e o Parecer Técnico 7325, todas emitidas pela COTRA/CGTMO/DILIC/IBAMA, versaram sobre a necessidade de intervenções em obras de arte corrente (OAC) e passagens exclusivas de fauna com o objetivo de mitigação de atropelamentos animais.

A partir dos documentos supracitados e com os resultados obtidos durante as quatro primeiras campanhas válidas do PMMaf, foi possível realizar análises para avaliação das demandas solicitadas bem como a viabilidade de cada uma delas.

4.5.1 INTERVENÇÕES EM OAC

Em relação às alterações solicitadas em OAC, com a adoção de uma banqueta interna para passagem seca de fauna, esclareceu-se no Relatório Anual 1 que a instalação desses aparatos nas atuais OAC poderão diminuir a sua capacidade de vazão prevista em projeto e, consequentemente, aumentar o risco de alagamento ao lado da plataforma ferroviária – aumentando os riscos de colapso da infraestrutura ferroviária – além do possível aumento do nível de água (NA) da região do entorno da ferrovia. Posto isso, não é possível atender a

demanda do órgão ambiental em relação à implantação, dentro das atuais OAC, dos aparatos de travessia seca do tipo banqueta.

4.5.2 PASSAGENS EXCLUSIVAS PARA A FAUNA

No que tange às passagens exclusivas para a fauna, os dados obtidos pelo PMMaf foram cruzados com cada um dos km listados nos documentos supracitados, incluindo aquelas quilometragens onde havia indicação pelo órgão ambiental para a implantação de banqueta em OAC. Para facilitar e sistematizar as análises, cada um dos km foi avaliado por quatro critérios, de acordo com as descrições da Tabela 4-15.

Tabela 4-15: Critérios de avaliação de relevância de quilometragens propostas para adoção de medidas mitigadoras.

Critério	Descrição					
Α	Presença de ZCA no trecho					
В	Recorrência de ZCA no trecho ao longo das campanhas (no caso das análises em que houve a soma de registros para todas as campanhas, esse item recebeu N/A)					
С	Presença no trecho de registro de animais ameaçados de extinção sobre os trilhos					
D	Interesse conservacionista do trecho, baseado na composição específica dos animais encontrados sobre os trilhos					

A partir desses parâmetros, estabeleceu-se um padrão de relevância para cada um dos trechos, dependendo do número de critérios, e a respectiva necessidade de implantação de medidas mitigadoras no local, conforme a Tabela 4-16.

Tabela 4-16: Status de relevância de trecho e necessidade de adoção de medidas mitigadoras a partir do número de critérios atendidos.

Número de critérios atendidos	Relevância do trecho	Necessidade de implantação de medida mitigadora
0 ou 1	Pequena	A ser reavaliada no decorrer das próximas campanhas
2	Média	A ser reavaliada no decorrer das próximas campanhas
3 ou 4	Crítica	Imediata

A sumarização das informações obtidas por intermédio das análises de relevância de adoção de medidas mitigadoras referentes aos km solicitados para adequação de OAC e passagens exclusivas de fauna encontram-se na Tabela 4-17.

4.5.3 OUTROS TRECHOS RELEVANTES

Também foram elencados na Tabela 4-17 os trechos diagnosticados como críticos e que não foram contemplados pelas Notas Técnicas referidas no item 4.5.

Tabela 4-17: Tabela-resumo dos km propostos para adoção de medidas mitigadoras e respectiva avaliação por critérios.

Adequação de OAC							
Critéri	Critéri	Critéri	Critéri	• •	Tota		
o A	o B	o C	o D	km	I		
NÃO	NÃO	NÃO	NÃO	54,140; 54,640; 55,100; 61,100; 66,800; 69,460; 69,960; 94,140; 94,933; 99,257; 100,741; 117,531; 117,982; 121,315; 122,738; 123,532; 130,273; 198,900; 274,375; 304,027; 306,940; 340,600; 381,362; 525,900; 565,638; 579,922; 583,033; 584,700; 592,500; 593,100; 611,427; 628,500; 638,410; 676,317; 680,532; 716,980; 781,053; 837,500	38		
NÃO	NÃO	SIM	NÃO	587,170	1		
SIM	NÃO	NÃO	NÃO	55,700; 63,350; 116,582; 134,100; 201,100; 409,474; 622,343; 631,432; 677,266; 699,429; 704,068; 705,107; 709,816; 711,439	14		
SIM	SIM	NÃO	NÃO	551,034	1		
NÃO	NÃO	SIM	SIM	777,007	1		
SIM	SIM	NÃO	SIM	144,860	1		
SIM	NÃO	SIM	SIM	708,329; 778,757; 791,955	3		
SIM	N/A	SIM	SIM	795,408	1		
				Passagens exclusivas para a fauna (kms simplificados)			
Critéri o A	Critéri o B	Critéri o C	Critéri o D	km	Tota		
NÃO	NÃO	NÃO	NÃO	24,900; 121,500; 130,000; 214,000; 396,000; 420,000; 430,000; 462,000; 483,000; 516,000; 532,800; 555,000; 568,700; 578,850; 633,000; 649,000; 736,000; 755,000	19		
SIM	NÃO	NÃO	NÃO	132,300; 137,100; 349,000; 705,000	4		
SIM	SIM	NÃO	NÃO	365,000; 441,000; 775,000	3		
SIM	NÃO	NÃO	SIM	62,000	1		
SIM	NÃO	SIM	SIM	695,000	1		
				Trechos diagnosticados não contemplados pelas Notas Técnicas			
Critéri o A	Critéri o B	Critéri o C	Critéri o D	km	Tota I		
SIM	N/A	SIM	SIM	799,810; 802,910	2		

As intervenções solicitadas da locação 56 até o final da ferrovia não puderam ser analisadas em razão da não realização de amostragem dentro da Flona de Carajás até o presente momento.

4.5.4 MEDIDAS MITIGADORAS

A partir dos resultados obtidos na Tabela 4-17, procedeu-se com a análise de viabilidade de implantação de medidas mitigadoras no que diz respeito às características do terreno e outras questões de engenharia. Além disso, foi analisada a composição específica de cada um dos trechos designados como críticos para tomada de decisão em relação à melhor escolha do leiaute da medida mitigadora a ser adotada. Chegou-se à conclusão de que para a fauna diagnosticada nos locais críticos, três tipos de aparatos mitigadores de fauna podem ser adotados, conforme descrição da Tabela 4-18.

Tabela 4-18: Tipos de aparatos mitigadores propostos e respectivas descrições.

Código	Tipo	Descrição
А	Passagem inferior	Passagem inferior tipo túnel circular de concreto de aproximadamente 90 cm de diâmetro, contendo internamente substrato arenoso com brita, visando principalmente a travessia de répteis e anfíbios. Na metade do túnel, no local entre as duas linhas, deve ser instalada caixa tipo boca de lobo para entrada de luz natural. Em conjunto com o túnel, deverá haver a adoção de cercas-guia elaboradas com arame liso, com 500 m de comprimento para cada lado travessia subterrânea, com 45 graus de ângulo para direcionamento dos animais. A cada 150 m deve haver uma porta de uma via para os animais conseguirem sair da ferrovia no infortúnio de ficarem presos do lado de dentro das cercas A cerca deverá ter 2,4 m de altura a partir do solo, estilo alambrado, com mourões de concreto ou madeira a cada 5,0 m, sendo os 40 cm iniciais compostos por uma base, também em concreto ou madeira, para evitar a fuga para dentro dos limites da ferrovia.
В	Passagem inferior	Passagem inferior tipo box retangular em concreto com 2,5 m de altura por 3,0 m de largura, ornamentado internamente por cipós e galhos, visando principalmente a travessia de mamíferos de pequeno e médio porte. Na metade do túnel, no local entre as duas linhas, deve ser instalada caixa tipo boca de lobo para entrada de luz natural. Em conjunto com a passagem, deverá haver a adoção de cercas-guia com 500 m de comprimento para cada lado da travessia subterrânea, com 45 graus de ângulo para direcionamento dos animais. A cada 150 m deve haver uma porta de uma via para os animais conseguirem sair da ferrovia no infortúnio de ficarem presos do lado de dentro das cercas. A cerca deverá ter 2,4 m de altura a partir do solo, estilo alambrado, com mourões de concreto ou madeira a cada 5,0 m, sendo os 40 cm iniciais compostos por uma base, também em concreto ou madeira, para evitar a fuga para dentro dos limites da ferrovia.
С	Dispositivo sonoro	Dispositivo sonoro de proteção animal do tipo UOZ-1 (BABIŃSKA-WERKA et al., 2015). O sistema funciona por intermédio de módulos cilíndricos (110 cm de altura x 30 cm de diâmetro) montados em uma base de concreto e dispostos a cada 70 metros em lados alternados adjacentemente à ferrovia. Através de controles automatizados, num intervalo pré-determinado de 30 segundos a 3 minutos antes de o trem alcançar o local dos módulos, o dispositivo emite diversos sons de animais em situações de alarme ou perigo. Sugere-se que para fins de testes em ambientes tropicais e com vocalizações de animais ocorrentes em território nacional, os módulos sejam instalados em 10 unidades a partir do centro da ZCA, em dois trechos de 350 m, com 5 unidades cada, num total de abrangência de 700 m (Figura 4-2).

Além das três medidas supracitadas, é sugerida também a aplicação de outra possível solução, ainda não testada em termos mundiais. A prevenção seria aplicar um decalque à frente das locomotivas com a silhueta de uma ave de rapina em posição de ataque (Figura

4-3). Uma vez que os animais não reconhecem o trem como um inimigo natural, é possível que o decalque, aliado à movimentação do trem, surta efeito em parte da comunidade faunística que utiliza a ferrovia como território, deixando o seu leito momentos antes da passagem da composição.

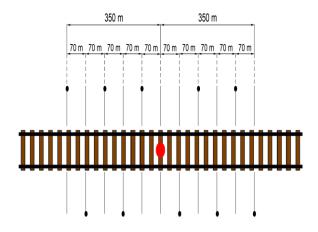


Figura 4-2: Esquema da ferrovia com ponto central de zona crítica de atropelamento e disposição dos módulos do dispositivo sonoro de proteção animal.

Legenda: Ponto vermelho: ponto central da zona crítica de atropelamento; ponto negro: módulos do dispositivo sonoro de proteção.

Figura 4-3: Silhueta de rapinante em posição de ataque a ser testada como medida mitigadora.

Fonte: http://multigfx.com/

A Tabela 4-19 faz um resumo dos trechos críticos diagnosticados durante as análises executadas no PMMaf, contendo igualmente os km sugeridos para a implantação das medidas mitigadoras, de acordo com a viabilidade de engenharia, bem como o tipo de passagem de fauna a ser instalada.

Tabela 4-19: Pontos críticos com respectivos km e tipo de passagem a ser instalada.

km crítico	km sugerido para implantação	Ano de sugestão	Tipo de medida a ser adotada
144+860	144+100	1, 2, 3	А
708+329*	708+330	1, 2, 3	В
778+757	778+760	2, 3	С
791+955	792+370	1, 2, 3	А
795+408	795+330	1, 2, 3	А
799+810	800+000	1, 2, 3	В
803+330	803+330	1, 2, 3	А
805+824	805+820	1	-

^{*} Ponto no interior da TI Mãe Maria, que deverá ter aprovação pela comunidade indígena antes da sua implantação.

Para o ano 2 foi revisado o ponto do km 805+824, que apesar de ter havido registro de atropelamento de espécie ameaçada de extinção e de interesse conservacionista, não contribui significativamente com os demais fatores. Por sua vez, o km 778+757, que era ponto de atenção no Ano 1, passou a ser ponto crítico no Ano 2. Nesse ponto houve 83 ocorrências de fauna (Tabela 4-20) sobre os trilhos somando-se todas as campanhas válidas, uma ZCA de aves (de baixa intensidade e composta por urubus) e o registro de atropelamento de uma

espécie ameaçada de extinção (jabuti-tinga - *Chelonoidis denticulatus*). Em razão da riqueza e diversidade de espécies nesse local, decidiu-se nesse ponto por testar o método de mitigação do tipo sonoro.

Tabela 4-20: Composição específica da zona crítica de atropelamento (km 778+757) diagnosticada no Ano 2

Táxon	N
Anfíbio	55
Rhinella sp.	15
Hylidae	7
Leptodactylus sp.	6
Leptodactylus macrosternum	5
Leptodactylus fuscus	4
Hypsiboas raniceps	3
Scinax gr. ruber	3
Hypsiboas multifasciatus	2
Hypsiboas sp.	2
Dendropsophus leucophyllatus	2
Dendropsophus sp.	2
Trachycephalus typhonius	1
Scinax sp.	1
Leptodactylus pustulatus	1

Táxon	N
Rhinella marina	1
Réptil	9
Colubridae	4
Tupinambis teguixin	1
Serpentes	1
Caiman crocodilus	1
Boa constrictor	1
Chelonoidis denticulatus	1
Ave	10
Coragyps atratus	8
Cathartidae	2
Mamífero	9
Cerdocyon thous	4
Tamandua tetradactyla	4
Dasypus novemcinctus	1

4.5.5 MONITORAMENTO DAS MEDIDAS IMPLANTADAS

Após sua implantação as medidas mitigadoras do tipo passagem de fauna disporão de uma armadilha fotográfica em cada entrada das passagens de fauna de modo a atestar a eficácia, até mesmo para a continuidade de adoção dessas medidas em outros pontos da ferrovia. Ressalta-se que há parcos estudos avaliando a eficiência de passagens de fauna em climas tropicais, sendo utilizadas metodologias consagradas em países de clima temperado. A partir da instalação das câmeras deverá haver uma equipe designada para realizar a checagem mensal do funcionamento das armadilhas fotográficas, retirada e substituição de pilhas, bem como troca de cartões de memória.

As medidas mitigadoras que estão sendo inicialmente propostas neste relatório poderão fornecer resultados sobre a redução das taxas de atropelamento pós-mitigação comparando as frequências de atropelamento antes e após a implantação dos aparatos de mitigação. Com a adoção das armadilhas fotográficas em cada extremidade das passagens de fauna será possível avaliar a manutenção da conectividade do habitat, através do fluxo de uma mesma espécie atravessando por ambos os lados da ferrovia, assim como verificar a conservação do fluxo gênico, por exemplo, pela análise da travessia de machos de determinada espécie durante estações reprodutivas.

No que tange ao monitoramento do dispositivo sonoro de proteção animal e da adoção da silhueta à frente das composições, estes deverão ser feitos em conjunto. Basicamente, três composições serão escolhidas para a aplicação do decalque e outras três serão controle, sem o decalque. Essas 6 locomotivas disporão de câmeras do tipo GoPro (ou outro tipo de equipamento de vídeo), instaladas no interior da cabine, que deverão filmar viagens, idas e voltas para posteriormente se proceder com análise minuciosa que determinará o tempo de fuga dos trilhos, tanto dos locais onde existem os aparatos sonoros quanto a presença ou ausência da silhueta à frente do trem. Durante os trabalhos corriqueiros do PMMaf, no caso de a equipe detectar animais vivos próximo ao local de instalação dos módulos sonoros, os técnicos serão orientados a parar e aguardar a passagem do composição seguinte, de modo a registrar o comportamento dos indivíduos em relação à aproximação da locomotiva.

5 REFERÊNCIAS BIBLIOGRÁFICAS

AMPLO. Estudo Ambiental e Plano Básico Ambiental – EA/PBA - Expansão da Estrada de Ferro Carajás – EFC. Belo Horizonte, MG: Amplo Engenharia e Gestão de Projetos, 2011.

ASHLEY, E. P.; ROBINSON, J. T. Road mortality of amphibians, reptiles and other wildlife on the long point causeway, Lake Erie, Ontario. **Canadian Field-Naturalist**, v. 110, n. 3, p. 403–412, 1996.

BABIŃSKA-WERKA, J. et al. Effectiveness of an acoustic wildlife warning device using natural calls to reduce the risk of train collisions with animals. **Transportation Research Part D: Transport and Environment**, v. 38, p. 6–14, 2015.

BISBAL, F.; OJASTI, O. Nicho trofico del zorro *Cerdocyon thous* (Mammalia, Carnivora). **Acta Biologica Venezuelana**, v. 10, n. 4, p. 469–496, 1980.

FAHRIG, L. et al. Effect of road traffic on amphibian density. **Biological Conservation**, v. 73, n. 3, p. 177–182, 1995.

FISCHER, W. A. **Efeitos da rodovia BR-262 na mortalidade de vertebrados silvestres: síntese naturalística para a conservação da região do pantanal, MS**. Campo Grande, MS: Dissertação de Mestrado, 1997.

FORMAN, R. T. T.; ALEXANDER, L. E. Roads and their major ecological effects. **Annual Review of Ecology and Systematics**, v. 29, p. 207–231, 1998.

GUMIER-COSTA, F.; SPERBER, C. F. Atropelamentos de vertebrados na Floresta Nacional de Carajás, Pará, Brasil. **Acta Amazonica**, v. 39, n. 2, p. 459–466, 2009.

HAMMER, Ø.; HARPER, D. A. T.; RYAN, P. D. PAST: Paleontological statistics software package for education and data analysis. **Palaeontologia Electronica**, v. 4, n. 1, p. 9, 2001.

HUMMEL, D. Amphibienschutz durch Geschwindigkeitsbegrenzung - Eine aerodynamische Studie. **Natur und Landschaft**, v. 76, n. 12, p. 530–533, 2001.

LAURANCE, W. F.; GOOSEM, M.; LAURANCE, S. G. W. Impacts of roads and linear clearings on tropical forests. **Trends in Ecology and Evolution**, v. 24, n. 12, p. 659–669, 2009.

MAGNUSSON, W. E. *Paleosuchus palpebrosus*. **Catalogue of American Amphibians and Reptiles**, v. 2, p. 554–555, 1985.

NAVAS, C. A. et al. Physiological basis for diurnal activity in dispersing juvenile *Bufo granulosus* in the Caatinga, a Brazilian semi-arid environment. **Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology**, v. 147, n. 3, p. 647–657, 2007.

NOVAES, R. L. M. et al. **Predação oportunista de morcegos por Cerdocyon thous** (Carnivora, Canidae) no Sudeste do Brasil. In: V Encontro Brasileiro para o Estudo de

Quirópteros. Búzios, RJ: 2010

PÖRTNER, H. . Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. **Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology**, v. 132, n. 4, p. 739–761, 2002.

RODRIGUES, F. H. G. et al. **Impacto de rodovias sobre a fauna da Estação Ecológica de Águas Emendadas, DF.** In: III Congresso Brasileiro de Unidades de Conservação. Fortaleza, CE: 2002

RUEDA-ALMONACID, J. V. et al. Las tortugas y los cocodrilianos de los países andinos del trópico. Bogotá, Colômbia: Conservación Internacional. Serie Guías Tropicales de Campo, 2007.

SIGRIST, T. Mamíferos do Brasil – Uma Visão Artística. Vinhedo, SP: Avis Brasilis, 2012.

THORBJARNARSON, J. et al. **Crocodiles: an action plan for their conservation**. Gland, Suíça: IUCN/SSC Crocodile Specialist Group, 1992.

TURCI, L. C. B.; BERNARDE, P. S. Vertebrados atropelados na Rodovia Estadual 383 em Rondônia, Brasil. **Biotemas**, v. 22, n. 1, p. 121–127, 2009.

VIJAYAKUMAR, S. P.; VASUDEVAN, K.; ISHWAR, N. M. Herpetofaunal mortality on roads in the Anamalai Hills, Southern Western Ghats. **Hamadryad**, v. 26, n. 2, p. 265–272, 2001.