REPÚBLICA FEDERATIVA DO BRASIL MINISTÉRIO DOS TRANSPORTES

GOVERNO DO ESTADO DE PERNAMBUCO

SECRETARIA DE DESENVOLVIMENTO ECONÔMICO

Trecho : Salgueiro - Parnamirim - Riacho Santa Rosa

Lote: 2

Extensão: 127,48 km

PROJETO EXECUTIVO DE ENGENHARIA DA FERROVIA TRANSNORDESTINA

VOLUME 3 MEMÓRIA JUSTIFICATIVA

Índice

Índice

1.	Apresentação	04
2.	Mapa de Situação	08
3.	Estudos	
	3.1 Estudos de Traçado	10
	3.2 Estudos Topográficos / Levantamento Aerofotogramétrico	14
	3.3 Estudos Hidrológicos	29
	3.4 Estudos Geotécnicos	118
	3.5 Estudos Ambientais	266
4.	Projetos	
	4.1 Projeto Geométrico	156
	4.2 Projeto de Terraplenagem	170
	4.3 Projeto de Drenagem e O.A.C.	182
	4.4 Projeto de Superestrutura da Via Permanente	212
	4.5 Projeto de Obras de Arte Especiais	234
	4.6 Projeto de Sinalização Ferroviária	240
	4.7 Projeto de Obras Complementares	252
	4.8 Componente Ambiental	264
	4.9 Projeto de Eliminação das Interferências	283
	4.10 Proieto de Desapropriação	290

1. Apresentação

A Maia Melo Engenharia Ltda., empresa de consultoria sediada à Rua General Joaquim Inácio nº 136, Ilha do Leite, Recife-PE, fone (81) 3423.3977, fax (81) 3423.8477, e-mail: maia.melo@maiamelo.com.br, inscrita no CNPJ sob o nº 08.156.424/0001-51, apresenta à Secretaria de Desenvolvimento Econômico - SDEC, **Projeto Executivo de Engenharia da Ferrovia Transnordestina**, no trecho ferroviário abaixo descrito com as seguintes características:

Lote : 02

Ferrovia : Transnordestina

Trecho : Salgueiro - Parnamirim - Riacho Santa Rosa

Extensão : 127,48 km
Edital de Concorrência Pública : 001/2005
Contrato : 015/2005
Data da Ordem de Serviço : 28/11/2005
Data da Assinatura do Contrato : 18/11/2005
Data da Proposta : 22/06/2005
Prazo de Execução : 300 dias

Os volumes constituintes deste Relatório, estão assim discriminados:

• Volume 1 : Relatório do Projeto e Documentos para Concorrência

Volume 2 : Projeto de Execução
 Volume 3 : Memória Justificativa
 Anexo 3A : Estudos Geotécnicos

• Anexo 3B : Memória de Cálculo das Obras de Artes Especiais

• Anexo 3C : Notas de Serviço e Cálculo de Volumes

• Anexo 3D : Projeto de Desapropriação

Anexo 3E : Relatório Final de Avaliação Ambiental - RFAA

• Anexo 3F : Estudo Operacional

• Volume 4 : Projeto de Obras de Arte Especiais

• Volume 5 : Orçamento e Plano de Execução da Obra

O conteúdo de cada volume é descrito a seguir:

Volume 1 - Relatório do Projeto e Documentos para Concorrência

Este volume contém uma síntese dos serviços a executar e as especificações pertinentes aos serviços a serem executados. É apresentado no formato A4.

Volume 2 - Projeto de Execução

Este volume contém as plantas, listagem de serviços, projetos-tipo, seções transversais e demais informações de interesse para o Projeto. É apresentado no formato A3, em 2 tomos.

Volume 3 - Memória Justificativa

Este volume reúne todas as metodologias que possibilitaram a definição das soluções a serem adotadas para os diversos itens de serviços. Apresenta, também, todos os estudos

realizados que, de alguma forma, orientaram as tomadas de decisões com relação às soluções adotadas. É apresentado no formato A4.

Anexo 3A - Estudos Geotécnicos

Este volume reúne todas as informações de campo e laboratório inerentes ao subleito, empréstimos, jazidas de solo, areais e pedreiras utilizados no projeto, além das sondagens a percussão executadas, visando o projeto das obras d'arte especiais. É apresentado no formato A4, em 3 tomos.

Anexo 3B – Memória de Cálculo das Obras de Arte Especiais

Este volume apresenta todos os cálculos necessários à perfeita definição das estruturas a executar. É apresentado no formato A4, em 9 tomos.

Anexo 3C - Notas de Serviço e Cálculo de Volumes

Este volume apresenta as Notas de Serviço e Cálculo de Volumes para o Projeto. É apresentado no formato A4.

Anexo 3D - Projeto de Desapropriação

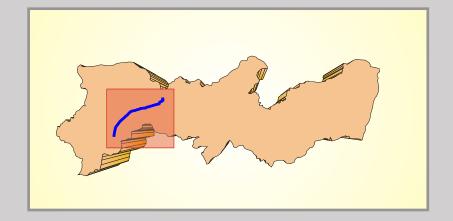
Contêm as desapropriações a serem efetuadas na faixa de domínio da ferrovia, apresentadas em formulário próprio, para cada proprietário, constando às características do imóvel e a sua avaliação. É apresentado no formato A4.

Anexo 3E - Relatório Final de Avaliação Ambiental - RFAA

Este volume tem por finalidade apresentar o componente ambiental da ferrovia com destaque para a Caracterização Ambiental da Área de Influência do Projeto, Recuperação do Passivo Ambiental, Medidas de Proteção Ambiental da Obra e a Implantação de Programas Ambientais pertinente ao conjunto da obra planejada. É apresentado no formato A4.

Anexo 3F – Estudo Operacional

Apresenta a concepção operacional dos trens nas vias e pátios, para atendimento da demanda projetada. É apresentado no formato A4.


Volume 4 – Projeto de Obras de Arte Especiais

Este volume contém as plantas dos projetos das Obras de Arte Especiais a serem implantadas e demais informações de interesse para a execução das obras. É apresentado no formato A3.


Volume 5 – Orçamento e Plano de Execução da Obra

Este volume apresenta o resumo dos preços, o demonstrativo do orçamento e as composições de preços unitários, elaboradas com base na metodologia vigente no Departamento Nacional de Infra-Estrutura de Transportes – DNIT, como também, o Plano de Execução da Obra, definindo o Plano de Ataque dos Serviços, Relação do Equipamento Mínimo e Cronograma. É apresentado no formato A4.

2. Mapa de Situação

3. Estudos

3.1 Estudo de Traçado

O Estudo do Traçado da Ferrovia Transnordestina foi desenvolvido sobre os resultados obtidos da restituição aerofotogramétrica elaborada pela TOPOCART.

A diretriz ideal, indicadora da conexão mais curta entre os Municípios de Salgueiro e o Riacho Santa Rosa no município de Petrolina foi determinada com base em pontos de passagem obrigatórios a luz da melhor localização para os pátios ferroviários previstos para serem implantados no segmento.

Os pontos obrigados de passagem decorreram de imposições técnicas surgidas com o objetivo de uma melhor transposição dos cursos d'água ou de complexidades locais que constituíram marcos de controle para o balizamento da rota em diversas tentativas e definição do eixo da Ferrovia.

A trajetória mais adaptável à forma da futura ferrovia foi inicialmente assinalada como "linha de Anteprojeto" julgada a mais vantajosa possível sob o aspecto técnico e econômico, havendo, depois, em conseqüência desses resultados um segundo estudo com vista ao projeto definitivo.

Esses estudos foram acompanhados pela CEHAB-PE, DNIT e CFN através de reuniões ocorridas durante o desenvolvimento dos trabalhos em campo e em escritório.

Os estudos de otimização de traçado foram desenvolvidos em arquivos magnéticos sobre software do tipo CAD e apresentados na escala de 1:10.000.

Os alinhamentos e raios de concordância horizontais foram aplicados em consideração as instruções contidas em Termos de Referencia para Elaboração do Projeto Executivo da Ferrovia Transnordestina lote 02.

O traçado inicia nas proximidades da BR-116 em ponto de coordenadas E-484.981,7028; N-9.119.896,4272 coincidente com a chegada do lote que se origina de Missão Velha.

Acompanha inicialmente a BR-116 e segue paralelamente as rodovias BR-232 e posteriormente a PE 555.

Intercepta as rodovias PE-507 nas proximidades do km 16,5 e BR-232 no km 16,6 em seguida deflete para a direita tomando a direção oeste.

Após a cidade de Parnamirim, o traçado deflete tomando a direção sul até atingir o seu ponto final de coordenadas E-390.447,8840, N-9.058.403,8680 nas proximidades do Riacho Santa Rosa.

A partir do início do trecho até o km 17,5 o traçado se apóia em terrenos de topografia ondulada desenvolvendo-se sobre cotas que variam de 520m (início) a 450m (final), em seguida apóia-se sobre terrenos com uma topografia ondulada até o seu ponto final.

Os parâmetros básicos que nortearam os estudos obedeceram ao que está preconizado no Termo de Referencia para Elaboração de Projeto Executivo considerando-se o seguinte:

- Raio de curva horizontal mínimo de 400,00 metros.
- Pátios de cruzamento espaçados aproximadamente de 20 Km entre si, tomandose como referencia a localização do pátio de Salgueiro. Esses pátios tiveram distância programada para implantação em curto prazo com cadenciamento de 40 km e posteriormente (futuro) com previsão para intervalos de 20 km entre si.

PÁTIO DE SALGUEIRO

EST. INICIAL	EST. FINAL	EXT. (m)
1290 + 0,00	1245 + 0,00	2.700

PÁTIO DE TRANSIÇÃO

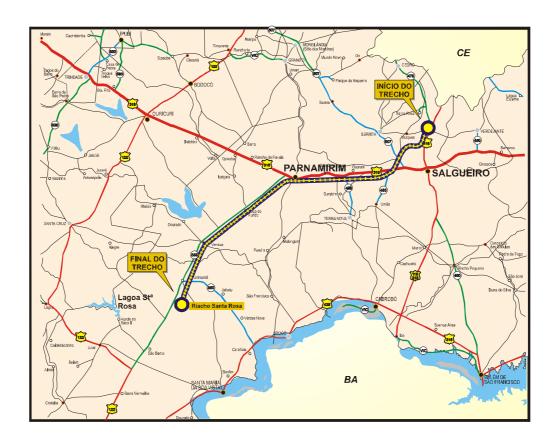
PÁTIO	EST. INICIAL	EST. FINAL	EXT. (m)
5	2197 + 0,00	2329 + 17,98	2.500
6	3582 + 0,00	3714 + 17,98	2.500
7	5028 +10,00	5161 + 7,98	2.500
8	6160 + 0,00	6292 + 17,98	2.500

₹									PI			PC - TS		sc			cs		PT - ST			
₽	Curva	Raio	AC	LC	T - TS	D - Dq	LADO	Estaca	Este	Norte	Estaca	Este	Norte	Estaca	Este	Norte	Estaca	Este	Norte	Estaca	Este	Norte
MELO	1	3437,752	13º 46' 02"	-	415,015	826,033	E				44 + 0,06	484.811,6305	9.119.032,9605							85 + 6,09	484.750,4324	9.118.211,1889
	2	458,403	59° 53' 58"	150	340,233	329,234	D				99 + 19,19	484.763,8539	9.117.918,3955	107 + 9,19	484.762,5480	9.117.768,5796	123 + 18,42	484.614,6442	9.117.482,3294	131 + 8,42	484.493,2046	9.117.394,5857
NG	3	572,987	33° 27' 08"	120	232,482	214,540	E				146 + 10,34	484.239,2065	9.117.231,3642	152 + 10,34	484.140,6270	9.117.163,0411	163 + 4,88	484.001,9693	9.117.000,9730	169 + 4,88	483.949,7251	9.116.893,0077
ENGENHARIA LTD <i>i</i>	4	528,916	38° 24' 39"	130	249,674	224,582	E				192 + 2,90	483.764,7307	9.116.474,0165	198 + 12,90	483.717,1686	9.116.353,1233	209 + 17,48	483.699,2257	9.116.130,9479	216 + 7,48	483.726,7712	9.116.003,9890
ARI	5	687,574	25° 52' 18"	100	208,058	210,470	D				299 + 13,66	484.146,4314	9.114.391,5234	304 + 13,66	484.169,2601	9.114.294,1881	315 + 4,13	484.175,3055	9.114.084,6264	320 + 4,13	484.158,1259	9.113.986,1370
<u> </u>	6	572,987	34º 32' 20"	120	238,433	225,405	D				351 + 9,49	484.035,7670	9.113.372,8648	357 + 9,49	484.008,2090	9.113.256,1321	368 + 14,90	483.901,1659	9.113.059,4155	374 + 14,90	483.818,1153	9.112.972,8790
.DA	7	528,916	35° 08' 46"	130	232,897	194,444	D				383 + 14,77	483.689,1166	9.112.847,5301	390 + 4,77	483.592,3167	9.112.760,8865	399 + 19,21	483.419,4381	9.112.674,2970	406 + 9,21	483.292,0788	9.112.648,6663
	8	3437,752	1º 02' 52"	-	31,430	62,859	E				479 + 8,32	481.851,0643	9.112.419,6112							482 + 11,17	481.789,0787	9.112.409,1765
	9	3437,752	8º 18' 26"	-	249,652	498,429	E				570 + 4,09	480.063,2138	9.112.102,3908							595 + 2,52	479.580,5075	9.111.979,9511
	10	404,482	59° 33' 33"	170	318,034	250,460	E				683 + 11,59	477.901,7546	9.111.421,9397	692 + 1,59	477.744,8884	9.111.357,2886	704 + 12,05	477.580,4944	9.111.173,6421	713 + 2,05	477.533,5395	9.111.010,6023
	11	404,482	73° 32' 16"	170	389,344	349,142	D				829 + 0,32	477.049,3965	9.108.743,4436	837 + 10,32	477.002,4416	9.108.580,4038	854 + 19,47	476.747,7320	9.108.357,6034	863 + 9,47	476.579,8942	9.108.332,7592
	12	3437,752	12° 28' 57"	-	375,965	748,954	E				1002 + 17,35	473.800,2599	9.108.118,4829							1040 + 6,30	473.065,6603	9.107.980,3510
	13	3437,752	13º 58' 40"	-	421,428	838,671	D				1051 + 16,16	472.845,7134	9.107.913,5653							1093 + 14,83	472.021,5828	9.107.769,7058
	14	3437,752	4º 36' 04"	-	138,109	276,068	E				1178 + 2,80	470.335,7988	9.107.683,9294							1191 + 18,87	470.060,9463	9.107.658,8511
	15	3437,752	2º 53' 33"	-	86,795	173,553	D				1564 + 9,61	462.674,1864	9.106.684,5352							1573 + 3,16	462.501,6241	9.106.666,1920
	16	3437,752	6º 48' 58"	-	204,725	408,967	E				1706 + 11,41	459.842,0473	9.106.451,2072							1727 + 0,38	459.437,3282	9.106.394,1154
	17	3437,752	5° 05' 04"	-	152,631	305,062	D				1794 + 8,20	458.116,2698	9.106.126,8428							1809 + 13,26	457.814,9761	9.106.079,6866
교	18	3437,752	8º 37' 05"	-	259,033	517,089	E				1819 + 10,61	457.618,8423	9.106.057,8489							1845 + 7,70	457.111,1593	9.105.962,2677
ESUMO	19	1375,111	17º 01' 08"	50	230,756	358,459	D				1868 + 1,36	456.672,8995	9.105.845,0715	1870 + 11,36		9.105.832,4479			9.105.792,2206	1890 + 19,82	456.219,3685	9.105.793,7043
≥	20	1375,111	18º 37' 48"	50	250,565	397,124	E				1899 + 14,09	,	9.105.799,9313	1902 + 4,09	455.995,2294	9.105.801,4150	1922 + 1,21	455.602,6632	9.105.751,3536	1924 + 11,21	455.554,6578	9.105.737,3748
0	21	3437,752	6º 53' 25"	-	206,962	413,425	E				1939 + 13,75	455.264,7055	9.105.651,0337							1960 + 7,17	454.876,5149	9.105.509,5326
DAS	22	429,757	45° 48' 41"	160	262,542	183,616	D				1990 + 1,97	454.330,9430	9.105.272,6198	1998 + 1,97	454.180,7461	9.105.218,1943	2007 + 5,58	453.998,5327	9.105.216,3908	2015 + 5,58	453.847,2879	9.105.267,8328
Ś	23	3437,752	9º 42' 17"	-	291,840	582,284	E				2036 + 9,98	453.454,7385	9.105.429,1379							2065 + 12,26	452.900,0257	9.105.603,8915
1 2	24	1375,111	12º 45' 04"	50	178,656	256,027	D				2106 + 1,96	452.109,9325	9.105.780,9885	2108 + 11,96	,	9.105.792,2198	,		9.105.875,4932	2123 + 17,99	451.774,1950	9.105.896,6536
CURVAS	25	1718,883	15º 46' 51"	40	258,227	433,428	E				2133 + 1,73	451.608,1977	9.105.975,4211	2135 + 1,73	451.571,9938	9.105.992,4286	2156 + 15,15	· ·	9.106.122,3779	2158 + 15,15	451.120,2949	9.106.129,2043
. ≥	26	572,987	33° 29' 00"	120	232,651	214,849	E				2331 + 14,05	447.709,8800	9.106.706,2792	2337 + 14,05	447.590,9933	9.106.722,1512	2348 + 8,90	447.379,0556	9.106.695,6117	2354 + 8,90	447.267,7535	9.106.650,9148
5	27	3437,752	10° 40' 06"	-	320,976	640,097	D				2425 + 3,17	445.974,5369	9.106.078,4016	0540 400		0.405.500.7070	0500 40.00	440 040 0000	0.405.500.0004	2457 + 3,27	445.368,5540	9.105.875,1123
HORIZONTA	28	687,574	26° 10' 49"	100	210,012	214,176	D D				2514 + 4,63	444.257,4035	9.105.614,2706	2519 + 4,63	444.159,5477	9.105.593,7879	2529 + 18,80	443.946,2369	9.105.593,3384	2534 + 18,80 2573 + 10,45	443.848,2956	9.105.613,4085
1 2	29	3437,752	10° 35' 10"	470	318,493	635,172					2541 + 15,27	443.715,3082	9.105.644,0364	0500 . 4400	440.007.4000	0.405.007.0070	0507 . 0.04	440.055.4000	0.405.000.0000		443.112,9870	9.105.842,7985
<u> 6</u>	30 31	404,482 1718,883	54° 29' 23" 16° 25' 04"	170 40	294,682 267,972	214,673 452,534	E D				2578 + 4,23 2612 + 2.48	443.027,0143 442.398,1248	9.105.880,2798 9.105.783,0409	2586 + 14,23 2614 + 2.48	442.867,1228 442.363,7352	9.105.937,0376 9.105.762,6122	2636 + 15,01	441.947,5366	9.105.923,3860 9.105.588,2967	2605 + 18,91 2638 + 15,01	442.504,1216 441.908,8529	9.105.846,5645 9.105.578,1204
=	32	2291,838	15° 25' 04' 15° 14' 21"	30	321,596	579,568	D				2645 + 16,23	442.396,1246	9.105.763,0409	2647 + 6,23	441.743,0908	9.105.762,6122	2676 + 5,79	441.169,2485	9.105.366,2967	2677 + 15,79	441.139,2502	9.105.466,1708
\ S	33	2291,838	13° 14' 21' 12° 54' 27"	30	274,252	486,306	E				2681 + 16,52	441.772,1494	9.105.342,7246	2683 + 6,52	441.028,5330	9.105.355,2663			9.105.419,0308	2709 + 2,83	440.516,2267	9.105.412,7628
0,	34	3437,752	6º 58' 50"	30	209,679	418,839	E				2746 + 14.98	439.781,0199	9.105.254,0085	2003 + 0,32	441.020,000	9.105.467,5020	2707 + 12,63	440.545,5646	9.105.419,0306	2767 + 13,82	439.378,0076	9.105.140,9150
	35	3437,752	10° 57' 21"		329,684	657,358	D				2788 + 7,44	438.987,3121	9.105.005,1240							2821 + 4,80	438.349,5950	9.104.849,8122
	36	1375,111	14º 47' 32"	50	203,512	305,020	D				2894 + 0,12	436.909,1852	9.104.642,0005	2896 + 10,12	436 850 6550	9.104.635,1609	2011 ± 15 14	436.555,2921	9.104.630,8398	2914 + 5,14	436.505,5886	9.104.636,2705
	37	2291,838	15° 28' 01"	30	326,232	588,675	E				2918 + 9.13	436.422,1475	9.104.645,8996	2919 + 19,13		9.104.649,2737	2949 + 7,81		9.104.637,4850	2950 + 17,81	435.775,7484	9.104.632,9166
	38	3437,752	12º 58' 51"	_	391,096	778,843	D				2964 + 8,74	435.508,0636	9.104.591,0747			50 1.0 10,2707			20	3003 + 7,59	434.731,5632	9.104.558,6153
	39	3437,752	4º 16' 20"	_	128,230	256,341	D				3046 + 16,29	433.865,0792	9.104.620,6748							3059 + 12,63	433.610,3126	9.104.648,4990
	40	572,987	42º 38' 13"	120	283,997	306,391	E				3105 + 5,81	432.706,8539	9.104.781,4108	3111 + 5,81	432.587,6527	9.104.794,7166	3126 + 12,20	432.292,5989	9.104.726,8723	3132 + 12,20	432.191,1814	9.104.662,8375
	41	1718,883	15º 00' 21"	40	246,388	410,175	E				3164 + 0,97	431.671,5613	9.104.308,8034	3166 + 0,97	431.638,5925	9.104.286,1530	3186 + 11,14		9.104.013,5620	3188 + 11,14	431.307,1877	9.103.983,3503
	-	-	-	-	-	-	-	3192 + 17.51	431.250,8366	9.103.917.8971		-	-		-	-		-	-		-	-
	42	3437,752	4º 27' 32"	-	133,835	267,535	D			,	3204 + 13,98	431.107,8386	9.103.729,5647							3218 + 1,52	430.937,9308	9.103.522,9973
8	43	1718,883	6º 55' 24"	40	123,977	167,697	E				3274 + 6,51	430.190,0222	9.102.682,6121	3276 + 6,51	430.163,5461	9.102.652,6288	3284 + 14,21	430.059,8677	9.102.520,9063	3286 + 14,21	430.036,9438	9.102.488,1271
Ď.	44	3437,752	4º 34' 01"	_	137,077	274,010	D				3290 + 18,28	429.989,0307	9.102.419,0468	,					,	3304 + 12,29	429.824,0644	9.102.200,3515
	45	982,230	21º 36' 42"	70	222,513	300,494	D				3324 + 19,90		9.101.884,9785	3328 + 9,90	429.520,8448	9.101.831,3521	3343 + 10,39	429.291,1567	9.101.639,4206	3347 + 0,39	429.230,3907	9.101.604,6796
	46	1718,883	16º 45' 21"	40	273,152	462,678	D				3508 + 11,36		9.100.034,4840	3510 + 11,36	426.371,5880	9.100.015,1805	3533 + 14,04		9.099.852,1368	3535 + 14,04	425.901,0357	9.099.843,4498
	47	859,456	23° 29' 31"	80	218,767	272,389	E				3559 + 1,30	425.444,5406	9.099.743,7425	3563 + 1,30	425.366,6649	9.099.725,4628			9.099.614,8456	3580 + 13,69	425.053,4083	9.099.569,0506
	48	3437,752	8º 51' 05"	-	266,069	531,078	Е				3837 + 16,30	420.883,1108	9.096.559,8922							3864 + 7,37	420.478,1101	9.096.217,1708
	49	3437,752	14º 14' 11"	-	429,304	854,185	D				3877 + 15,10	420.287,6953	9.096.028,9741							3920 + 9,28	419.612,1847	9.095.509,7715
	50	1375,111	16º 06' 57"	50	219,687	336,782	Е				3968 + 17,18		9.095.019,5745	3971 + 7,18	418.734,6388	9.094.993,9913	3988 + 3,96	418.471,6770	9.094.784,9282	3990 + 13,96	418.437,0682	9.094.748,8428

ΥW		D.::			T T0	5.5			PI			PC - TS			sc			cs			PT - ST	
Ä	Curva	Raio	AC	LC	T - TS	D - Dq	LADO	Estaca	Este	Norte	Estaca	Este	Norte	Estaca	Este	Norte	Estaca	Este	Norte	Estaca	Este	Norte
	51	687,574	21º 46' 34"	100	182,365	161,322	D				4037 + 1,76	417.798,9319	9.094.075,3589	4042 + 1,76	417.728,4293	9.094.004,4740	4050 + 3,08	417.597,6497	9.093.910,6526	4055 + 3,08	417.507,9114	9.093.866,5806
Ö	52	3437,752	5º 58' 28"	-	179,399	358,473	E				4079 + 17,80	417.058,7003	9.093.659,3238							4097 + 16,27	416.741,6140	9.093.492,4619
ig /	53	625,072	23° 38' 49"	110	186,007	147,979	E				4148 + 12,52	415.868,1738	9.092.972,9810	4154 + 2,52	415.775,3529	9.092.914,0238	4161 + 10,50	415.666,6204	9.092.814,1593	4167 + 0,50	415.599,9981	9.092.726,6770
Ĭ.	54	763,966	39° 37' 13"	90	320,352	438,287	D				4200 + 5,68	415.212,6785	9.092.185,8896	4204 + 15,68	415.158,8556	9.092.113,7744	4226 + 13,97	414.802,9228	9.091.868,4251	4231 + 3,97	414.716,3768	9.091.843,7820
AR!	55	491,141	26° 11' 37"	140	184,603	84,534	E				4248 + 2,43	414.389,0984	9.091.757,5017	4255 + 2,43	414.255,6914	9.091.715,4632	4259 + 6,96	414.181,0522	9.091.676,0009	4266 + 6,96	414.071,1935	9.091.589,4232
5	56	491,141	25° 27' 09"	140	181,247	78,179	E				4271 + 12,62	413.991,4075	9.091.520,1577	4278 + 12,62	413.890,2567	9.091.423,5495	4282 + 10,80	413.844,0105	9.091.360,6188	4289 + 10,80	413.782,0221	9.091.235,2311
DA.	57	491,141	37° 09' 50"	140	235,626	178,570	E				4295 + 13,52	413.732,9188	9.091.122,7582	4302 + 13,52	413.670,9304	9.090.997,3705	4311 + 12,09	413.551,7166	9.090.865,7436	4318 + 12,09	413.433,0615	9.090.791,6786
	58	2291,838	12º 10' 13"	30	259,329	456,816	E				4323 + 5,48	413.351,5790	9.090.746,0443	4324 + 15,48	413.325,4365	9.090.731,3281	4347 + 12,30	412.953,3956	9.090.467,5552	4349 + 2,30	412.930,8565	9.090.447,7566
	59	3437,752	4º 52' 03"	-	146,113	292,049	D				4384 + 11,07	412.399,3735	9.089.978,8385							4399 + 3,12	412.172,4373	9.089.795,1501
	60	3437,752	1º 19' 35"	-	39,792	79,581	D				4554 + 11,54	409.675,4527	9.087.943,8397							4558 + 11,12	409.610,9824	9.087.897,1869
	61	404,482	37° 49' 46"	170	224,495	97,059	E				4638 + 4,25	408.309,6092	9.086.978,2311	4646 + 14,25	408.178,2011	9.086.870,9062	4651 + 11,31	408.121,4828	9.086.792,4311	4660 + 1,31	408.060,8044	9.086.633,9859
	62	1145,930	220 21' 34"	60	256,503	387,193	E				4670 + 15,57	407.998,3644	9.086.429,0242	4673 + 15,57	407.981,3812	9.086.371,4798	4693 + 2,76	407.942,6846	9.085.988,0735	4696 + 2,76	407.947,8266	9.085.928,2961
	63	404,482	67º 36' 33"	170	357,689	307,290	D				4707 + 0,53	407.968,3828	9.085.711,4978	4715 + 10,53	407.972,5414	9.085.541,8822	4730 + 17,82	407.829,9311	9.085.277,9995	4739 + 7,82	407.685,7628	9.085.188,5442
	64	1718,883	17º 28' 37"	40	284,213	484,311	D				4745 + 16,72	407.571,7483	9.085.128,4127	4747 + 16,72	407.536,2955	9.085.109,8902	4772 + 1,03	407.080,0733	9.084.952,1869	4774 + 1,03	407.040,7501	9.084.944,8615
	65	528,916	39° 10′ 34″	130	253,655	231,647	E				4779 + 7,26	406.936,2472	9.084.925,8128	4785 + 17,26	406.809,5014	9.084.897,3025	4797 + 8,90	406.610,3253	9.084.782,6861	4803 + 18,90	406.521,9901	9.084.687,4274
	66	3437,752	1º 46' 21"	-	53,180	106,351	D				4827 + 19,75	406.209,7458	9.084.321,7531							4833 + 6,10	406.139,4453	9.084.241,9562
	67	1718,883	17º 26' 44"	40	283,731	483,369	D				4880 + 16,95	405.499,9299	9.083.538,3016	4882 + 16,95	405.472,9124	9.083.508,8052	4907 + 0,32	405.098,5600	9.083.205,5399	4909 + 0,32	405.064,0988	9.083.185,2321
ᇛ	68	763,966	27° 25' 21"	90	231,497	275,645	E				4935 + 7,52	404.608,8592	9.082.919,3353	4939 + 17,52	404.532,0624	9.082.872,4338	4953 + 13,17	404.334,8526	9.082.681,9926	4958 + 3,17	404.285,2986	9.082.606,8799
S	69	3437,752	2º 54' 58"	-	87,505	174,972	E				4986 + 18,68	403.977,8677	9.082.120,3657							4995 + 13,65	403.888,2033	9.081.970,1367
SUM	70	528,916	19º 58' 44"	130	158,363	54,432	D				5011 + 10,46	403.732,8096	9.081.694,0513	5018 + 0,46	403.664,5063	9.081.583,5434	5020 + 14,89	403.629,9997	9.081.541,4780	5027 + 4,89	403.534,9799	9.081.452,8859
0	71	3437,752	7º 30' 24"	-	225,526	450,406	D				5161 + 12,99	401.495,4613	9.079.701,8243							5184 + 3,39	401.135,5117	9.079.431,6167
D,	72	1718,883	20° 16′ 57″	40	327,465	568,482	E				5204 + 13,27	400.792,3085	9.079.207,5309	5206 + 13,27	400.758,9009	9.079.185,5329	5235 + 1,76	400.346,9418	9.078.797,5555	5237 + 1,76	400.322,9821	9.078.765,5257
AS	73	3437,752	14º 27' 25"	-	436,022	867,412	E				5253 + 1,28	400.132,5824	9.078.508,9265							5296 + 8,69	399.708,5868	9.077.754,8394
ဥ	74	1718,883	12º 23' 51"	40	206,697	331,928	D				5348 + 16,19	399.314,1683	9.076.784,4287	5350 + 16,19	399.298,9635	9.076.747,4315	5367 + 8,12	399.141,7544	9.076.455,6795	5369 + 8,12	399.119,2167	9.076.422,6335
ÜRVA	75	3437,752	11º 05' 28"	-	333,776	665,466	E				5373 + 7,52	399.074,2273	9.076.357,2140							5406 + 12,98	398.752,4005	9.075.775,9295
≨ l	76	3437,752	6º 13' 36"	-	186,988	373,607	D				5432 + 8,52	398.547,4482	9.075.302,8894							5451 + 2,12	398.380,6011	9.074.968,8134
S	77	1718,883	13º 34' 28"	40	224,581	367,238	D				5473 + 14,94			, .					9.074.245,7379	5496 + 2,17	397.891,6575	9.074.216,4861
HORIZ	78	763,966	24º 30' 35"	90	211,032	236,806	E				5507 + 0,33	397.742,2457	1	5511 + 10,33	397.681,9145	9.073.990,7619	5523 + 7,13	397.560,5375	9.073.788,5321	5527 + 17,13	397.529,9938	9.073.703,8882
Ž	79	3437,752	6º 21' 36"	-	190,996	381,601	D				5545 + 6,19	397.417,9832	9.073.373,2913							5564 + 7,79	397.275,7421	9.073.019,4029
ZO	80	3437,752	4º 08' 42"	-	124,403	248,698	D				5770 + 18,11	395.525,1600	9.069.278,4113							5783 + 6,81	395.411,7001	9.069.057,1632
ONTAI	81	3437,752	2º 03' 19"	-	61,663	123,313	E				5825 + 16,42	394.996,9235	9.068.315,6772							5831 + 19,74	394.938,6655	9.068.207,0010
₽	82	3437,752	3º 51' 10"	-	115,624	231,161	D				6007 + 18,08	393.332,2524	9.065.076,7997							6019 + 9,24	393.219,8762	9.064.874,8425
ร	83	625,072	27º 27' 55"	110	207,936	189,634	E				6065 + 14,53	392.743,0449		,		1	-		9.063.805,6403	6086 + 4,17	392.622,9987	9.063.696,1367
	84	1375,111	21º 34' 50"	50	287,090	467,940	D				6098 + 14,07	392.607,5068	1	6101 + 4,07	392.604,1049	9.063.396,8352	6124 + 12,01	392.488,7306	9.062.945,6687	6127 + 2,01	392.467,7682	9.062.900,2759
	85	3437,752	4º 24' 33"	-	132,339	264,548	E				6314 + 4,84	390.878,0001	9.059.511,8463						l	6327 + 9,39	390.774,9551	9.059.268,2636

QD.-

3.2 Estudos Topográficos / Levantamento Aerofotogramétrico


3.2.1 Restituição Aerofotogramétrica

Os serviços executados foram:

- Planejamento e verificação da existência de pontos materializados em campo que constituem a rede de apoio geodésico oficial do IBGE;
- Implantação e posicionamento de 12 (doze) vértices geodésicos monumentados por marcos de concreto, que juntamente com os vértices do IBGE compõem a rede de apoio básico;
- Medição de 256 (duzentos e cinqüenta e seis) HV's, que compõem o apoio fotogramétrico;
- Execução de 67 km de nivelamento geométrico;
- Aerotriangulação de 235 modelos para a escala de vôo 1:8.000;
- Restituição digital em escala 1:2.000 de uma área de 74,22 km²;
- Ortorretificação das imagens correspondentes a toda a área restituída;
- Confecção e edição final de 100 ortofotocartas na escala 1:2.000.

a. Localização da Área

A área coberta neste trabalho, possui aproximadamente 327 km², localiza-se ao longo de um trecho planejado para a Ferrovia Transnordestina estando enquadrada entre as coordenadas geográficas aproximadas: -7°53' a -8°36' e -39°05' a -40°00'.

b. Fase de Execução dos Trabalhos

b.1 - Apoio Básico

A execução do apoio básico é precedida da etapa de planejamento, que tem como objetivo escolher as melhores alternativas referentes à utilização de Vértices Planimétricos e Altimétricos, que compõem a Rede Geodésica de Primeira Ordem do IBGE. Após esta análise, foi necessária a implantação de pontos adicionais, nos locais onde não se encontraram pontos do IBGE ou por impossibilidade de rastrear-se o sinal GPS no local do ponto. Estes pontos implantados em conjunto aos escolhidos da rede de primeira ordem do IBGE, irão compor a Rede de Apoio Básico.

A referida rede foi definitiva e poderá servir de referência cartográfica para todo e qualquer levantamento topográfico executado posteriormente, além de servir futuramente para o transporte de coordenadas geodésicas para os pontos de apoio fotogramétrico.

b.1.1 – Sistema Geodésico Empregado

Os pontos do apoio básico possuem coordenadas planimétricas e altimetricas determinadas de acordo com o Sistema Geodésico Brasileiro. O referencial altimetrico do IBGE coincide com a superfície equipotencial que contêm o nível médio dos mares, definidos pelas observações maregráficas tomadas na baía de Imbituba-SC. Já o referencial planimétrico adotado para este projeto é o SAD-69, pois este é oficialmente adotado como Sistema de Referência para trabalhos geodésicos e cartográficos em território brasileiro desde 1979.

Desta forma, fica claro que todos os trabalhos desenvolvidos no campo e no escritório estarão referenciados ao Datun SAD-69 e conforme solicitação do cliente as coordenadas obtidas neste Datum foram transformadas para o sistema de Coordenadas Topográficas, tendo utilizado como origem para esta transformação o vértice PA-10, pertencente à rede de apoio básico.

b.1.2 - Vértices do IBGE Utilizados.

Após o reconhecimento dos pontos existentes, optou-se pela utilização do vértice planimétrico RBMC-CRATO, das referências de nível: RN 343-H, RN 343-O, RN 344-D, RN 344-H, RN 1803-A, RN 1803-H, RN 1803-R, RN 1803-V, RN 1804-S e RN 1804-T.

Um resumo dos dados desses pontos geodésicos fornecidos pelo IBGE é apresentado a seguir.

Ponto Planimétrico: RBMC – CRATO

Coordenada Geo	ográfica (SAD-69)	Coordenadas Planas UTM (SAD-69) MC-39° WGr				
Latitude (S)	Longitude (WGr)	Este	Norte			
7° 14' 15,4144"	39° 24' 54,8826"	454.158,780	9.199.959,790			

Pontos Altimétricos (RN's):

RN 343-H	Altitude:	395,4241	metros
RN 343-O	Altitude:	415,8838	metros
RN 344-D	Altitude:	370,2696	metros
RN 344-H	Altitude:	386,7574	metros
RN 1803-A	Altitude:	388,0116	metros
RN 1803-H	Altitude:	408,2603	metros
RN 1803-R	Altitude:	425,5551	metros
RN 1803-V	Altitude:	469,0779	metros
RN 1804-S	Altitude:	438,5578	metros
RN 1804-T	Altitude:	445,3322	metros

Estas RN's foram utilizadas da seguinte maneira:

```
RN 1803-V = PA-02

RN 1803-R = PA-03

RN 1803-H = PA-04

RN 344-H = PA-06

RN 344-D = PA-07

RN 343-O = PA-11

RN 343-H = PA-13

RN 1804-S e RN 1804-T, para definição da altitude ortométrica do PA-01

RN 1803-A para definição da altitude do PA-05
```

b.1.3 – Implantação da Rede de Apoio Básico

A Rede de Apoio Básico consiste em um conjunto de pontos geodésicos, implantados em locais seguros e estrategicamente distribuídos de forma a apoiar toda a área.

Para este trabalho foram implantados 6 (seis) vértices e utilizados mais 6 (seis) RN's da Rede Altimétrica do IBGE, respeitando uma eqüidistância de aproximadamente 15km em linha reta entre os vértices. Os vértices foram implantados com essa metodologia, para que os pontos do Apoio Fotogramétrico não excedam em sua maioria, a distância máxima de 8km da base, garantindo assim, uma maior precisão nas coordenadas do conjunto de pontos que formam o Apoio Fotogramétrico.

Os vértices implantados juntamente com os vértices do IBGE compõem toda a Rede de Apoio Básico. Um resumo dos dados dos vértices implantados é apresentado a seguir.

	Coordenadas Geod	désicas (MC 39° Gr)	Altitude	
Vértice	Latitude Sul	Longitude Este	Ortométrica	Imagem dos Vértices
PA-01	8° 01' 12,1763" S 9.113.479,856	39° 08' 39,4831" W 484.098,867	478,2320	
PA-02 = RN 1803-V (IBGE)	8° 03' 40,4557" S 9.108.923,407	39° 12' 22,7163" W 477.268,072	469,0779	
PA-03 = RN 1803-R (IBGE)	8° 04' 23,1996" S 9.107.604,314	39° 18' 2,6565" W 466.864,591	425,5551	
PA-04 = RN 1803-H (IBGE)	8° 05' 3,4846" S 9.106.352,953	39° 26' 32,5965" W 451.258,633	408,2603	
PA-05	8° 05' 19,3387" S 9.105.847,646	39° 34' 34,0487" W 436.524,068	389,295	
PA-06 = RN 344-H (IBGE)	8° 07' 10,7234" S 9.102.414,327	39° 39' 6,8201" W 428.181,102	386,757	

	Coordenadas Geod	désicas (MC 39°	A Itituda	
Vértice	Latitude	Longitude	Altitude Ortométrica	Imagem dos Vértices
	Sul	Este		
PA-07 = RN 344-D (IBGE)	8° 10' 49,0740" S 9.095.693,173	39° 43' 59,1911" W 419.245,494	370,2700	
PA-08	8° 13' 21,2833" S 9.091.006,858	39° 47' 20,8530" W 413.083,825	398,1151	
PA-09	8° 16' 50,5868" S 9.084.560,953	39° 51' 59,8455" W 404.561,379	384,7161	
PA-10	8° 21' 26,9910" S 9.076.058,254	39° 55' 15,4688" W 398.596,364	398,6352	
PA-11 = RN 343-O (IBGE)	8° 26' 17,7537" S 9.067.117,071	39° 57' 43,2979" W 394.096,510	415,8838	
PA-12	8° 29' 29,7302" S 9.061.213,839	39° 59' 13,3370" W 436,9802	436,9802	

Tabela 1 : Resumo das Coordenadas Geodésicas e Altitudes Ortométrica.

As coordenadas UTM dos vértices, foram transformadas para TOPOGRÁFICAS, no software Topografh versão 3.53 utilizando o sistema topográfico local – NBR.13133. Para esta transformação utilizou-se como origem o vértice PA-10 com as coordenadas de N=500.000,000 e E=50.000,000 e rotação de 0°00'00"; abaixo listagem das coordenadas Topográficas:

Vártico	Coordenadas	Topográficas
Vértice	Norte	Este
PA-01	537.281,922	135.609,041
PA-02 = RN 1803-V (IBGE)	532.722,488	128.775,691
PA-03 = RN 1803-R (IBGE)	531.401,475	118.367,624
PA-04 = RN 1803-H (IBGE)	530.185,070	102.752,182
PA-05	529.713,078	88.010,339
PA-06 = RN 344-H (IBGE)	526.297,385	79.656,204
PA-07 = RN 344-D (IBGE)	519.594,107	70.701,876
PA-08	514.920,221	64.527,181
PA-09	508.491,709	55.986,826
PA-10	500.000,000	50.000,000
PA-11 = RN 343-O (IBGE)	491.066,465	45.477,676
PA-12	485.167,854	42.724,241

Tabela 2 : Resumo das Coordenadas Topográficas.

b.1.4 - Levantamento Planimétrico - GPS

O levantamento planimétrico por GPS consiste basicamente no transporte da coordenada geodésica planimétrica (latitude e longitude), para os pontos que irão adensar a Rede de Apoio Básico.

O rastreamento e ajustamento da Rede de Apoio Básico foi dividido em duas etapas, veja abaixo os vértices de cada etapa e modo de ajustamento:

Etapa 01 - (PA-01, PA-02 = RN 1803-V, PA-03 = RN 1803-R, PA-04 = RN 1803-H, PA-05, PA-06 = RN 344-H, PA07 = RN 344-D, PA-08, PA-09, PA-10 e RBMC-CRATO)

Nesta etapa fixou-se a coordenada planimétrica do vértice RBMC – CRATO pertencente a Rede de monitoramento contínuo do IBGE e a altitude ortométrica apenas dos RN's PA-05 e PA-06.

Estes vértices foram ocupados por GPS geodésico de freqüência L1 e L1/L2 (fase da portadora), no modo estático, com tempo de rastreio mínimo para resolução das equações de ambigüidades, possibilitando o cálculo das coordenadas geodésicas dos pontos implantados. O valor encontrado para o Erro Relativo esta entre 1: 6.174.583 e 1: 1: 774.424 e o valor de PDOP ficou entre 1,0 e 2,7 tendo uma constelação mínima de 09 (nove) satélites, garantindo assim a precisão das coordenadas geodésicas dos pontos que compõem a Etapa 01 da Rede de Apoio Básico. Esta precisão classifica o levantamento como de Alta Precisão (Âmbito Nacional) conforme Resolução da Presidência do IBGE N°.22, de 21/07/1983.

• Etapa 02 – (PA-10, PA-11 = RN 343-O, PA-12, PA-13 = RN 343-H, PA-14 = RN 343-F, PA-15, PA16, PA-17 e RBMC-CRATO)

Nesta etapa fixou a coordenada planimétrica do vértice RBMC – CRATO pertencente a Rede de monitoramento contínuo do IBGE e a altitude ortométrica apenas dos RN's PA-10, PA-13 e PA-17.

Estes vértices foram ocupados por GPS geodésico de freqüência L1 e L1/L2 (fase da portadora), no modo estático, com tempo de rastreio mínimo para resolução das equações de ambigüidades, possibilitando o cálculo das coordenadas geodésicas dos pontos implantados. O valor encontrado para o Erro Relativo esta entre 1: 45.280.223 e 1: 469.003 e o valor de PDOP ficou entre 1,0 e 3,1 tendo uma constelação mínima de 07 (sete) satélites, garantindo assim a precisão das coordenadas geodésicas dos pontos que compõem a Etapa 02 da Rede de Apoio Básico. Esta precisão classifica o levantamento como de Alta Precisão (Âmbito Nacional) conforme Resolução da Presidência do IBGE N°.22, de 21/07/1983.

Embora para este projeto tenhamos implantado até o PA-12, encontra-se no relatório de ajustamento desta Etapa coordenadas dos vértices PA-13 ao PA-17, estes vértices pertencem a continuação do projeto da Transnordestina, e não são informados maiores detalhes sobre os mesmos porque, não estão dentro da área de levantamento em questão.

Importante: As altitudes encontradas no ajustamento da Rede de Apoio Básico no Software Ashtech Solutions tanto da Etapa1 quanto na Etapa2 são altitudes geométricas e não devem ser utilizadas. As altitudes obtidas por nivelamento geométrico ou fornecidas pelo IBGE, são altitudes ortométricas, estas são as altitudes consideradas oficiais para execução de qualquer fase deste projeto.

b.1.5 - Levantamento Altimétrico - Nivelamento Geométrico

A definição da altitude ortométrica dos pontos implantados foi feita através de nivelamento geométrico, tendo como origem RN's do IBGE.

Todo nivelamento foi feito em circuito fechado com Nível Digital DNA-10 da Leica com precisão de 1,5 mm/km, os dados coletados em campo eram transmitidos via porta serial ao Notebook de campo onde se fez a montagem das cadernetas e analises das precisões alcançadas, tendo como meta a especificação da Norma PR-22 do IBGE, onde o erro padrão deve ser inferior a 6mm vk, onde k = distância percorrida em guilômetro.

b.2 - Apoio fotogramétrico ou suplementar

Os pontos de apoio suplementar ou fotogramétrico são aqueles destinados a apoiar os modelos estereoscópios. A quantidade de pontos de apoio suplementar por modelo, depende do tipo de apoio fotogramétrico a ser utilizado, podendo ser para aerotriangulação, ou Par a Par. A escolha entre um e outro depende, principalmente, da extensão da cobertura aérea e da geometria do bloco recoberto.

No caso deste projeto, pela extensão da área recoberta, o apoio foi feito com vistas à aerotriangulação.

b.2.1 – Apoio para Aerotriangulação

A distribuição e densidade de pontos para o apoio destinado à aerotriangulação dependem de fatores tais como: escala do vôo, escala de restituição, eqüidistância vertical e precisão de leitura do operador no sistema fotogramétrico utilizado. A quantidade de bases (distância entre dois centros consecutivos) que os pontos planimétricos e altimétricos podem estar espaçados, segue normalização da DGS.

b.2.2 - Identificação dos pontos de apoio fotogramétricos nas fotos

O planejamento do apoio suplementar foi efetuado sobre as fotografias aéreas com o auxílio de estereoscópio.

Assim, com o auxílio de estereoscópio, escolheram-se e assinalaram-se as posições aproximadas dos pontos necessários ao apoio fotogramétrico. Na escolha destes pontos foram levados em consideração fatores como: afastamento de encostas, regiões de Von Grüber, locais acessíveis e pontos bem caracterizados (cruzamento de estradas, quinas de cerca, quinas de muro, manchas de vegetação bem definidas, etc.

b.2.3 - Identificação dos pontos de apoio fotogramétricos em campo

Com as fotografias contendo as posições dos pontos assinalados, as equipes de campo visitaram cada um deles, analisando as possibilidades de rastreio e identificação inequívoca de cada ponto nas fotos. Uma vez definida a localização, deixava-se uma estaca de madeira para materialização ou marcava-se a mesma com tinta para a etapa de levantamento por GPS.

O levantamento planialtimétrico consiste no transporte das coordenadas dos vértices pertencentes à Rede de Apoio Básico para os pontos de apoio fotogramétrico.

Para isso, os pontos de apoio fotogramétrico foram ocupados por GPS geodésico, com tempo de rastreio mínimo para resolução das equações de ambigüidades, possibilitando o cálculo das coordenadas geodésicas desses pontos. Assim, estacionou-se um receptor GPS no vértice mais próximo pertencente a Rede de Apoio Básico e os demais receptores disponíveis nos pontos de apoio fotogramétrico.

O processamento do rastreamento foi feito no software Ashtec Solutions, versão 2.60 no Datum SAD-69 e as altitudes ortométrica referidas ao Datum de Imbituba – SC.

Estas coordenadas, foram transformadas para TOPOGRÁFICAS, no software Topografh versão 3.53 utilizando o sistema topográfico local – NBR.13133. Para esta transformação utilizou-se como origem o vértice PA-10 com as coordenadas de N=500.000,000 e E=50.000,000 e rotação de 0°00'00"; abaixo listagem das coordenadas Planas UTM MC-39°WGr e Topográficas, dos HV's rastreados:

	Coordenada	s Topográfica	ıs	Coc	ordenadas Plan	as UTM MC -:	39ºWGr
PONTO	NORTE	ESTE	ALTITUDE	PONTO	NORTE	ESTE	ALTITUDE
HV1	1115962,068	623794,965	519,60	HV1	9121081,650	483625,433	519,60
HV2	1110476,504	622265,434	477,17	HV2	9115596,480	482104,305	477,17
HV2A	1100707,473	593877,679	404,69	HV2A	9105791,860	453743,194	404,69
HV3	1101831,411	588545,438	424,12	HV3	9106898,030	448411,868	424,12
HV4	1100523,040	586411,967	431,43	HV4	9105586,080	446281,848	431,43
HV5	1101610,614	585701,783	441,11	HV5	9106671,810	445569,855	441,11
HV6	1101469,115	585000,062	433,09	HV6	9106529,010	444868,707	433,09
HV7	1100602,022	584152,425	436,54	HV7	9105660,640	444023,113	436,54
HV8	1101056,913	582545,897	419,37	HV8	9106112,220	442416,381	419,37
HV9	1100003,216	582598,559	429,41	HV9	9105059,070	442471,067	429,41
HV10	1100791,541	581428,312	421,01	HV10	9105844,790	441299,781	421,01
HV11	1109023,082	623129,809	448,85	HV11	9114144,950	482970,325	448,85
HV12	1099545,410	581493,353	409,85	HV12	9104599,310	441367,215	409,85
HV13	1100876,442	579736,223	417,49	HV13	9105926,370	439608,236	417,49
HV14	1099459,844	580094,144	400,10	HV14	9104511,060	439968,759	400,10
HV15	1099420,512	579571,820	396,09	HV15	9104470,730	439446,730	396,09
HV16	1100949,558	588454,372	405,68	HV16	9106016,380	448322,552	405,68
HV17	1099600,958	588608,370	420,58	HV17	9104668,660	448479,104	420,58
HV18	1099789,294	587648,560	421,78	HV18	9104855,050	447519,338	421,78
HV19	1099717,205	587117,639	415,67	HV19	9104781,960	446988,784	415,67
HV20	1100043,726	585464,600	419,40	HV20	9105105,130	445335,815	419,40
HV21	1099281,804	585370,324	401,99	HV21	9104343,350	445243,060	401,99
HV21A	1101313,903	591325,204	412,08	HV21A	9106386,140	451191,444	412,08
HV22	1109228,726	621718,087	452,15	HV22	9114348,510	481558,965	452,15
HV23	1099987,455	583650,996	425,45	HV23	9105045,360	443523,090	425,45
HV24	1098713,091	583976,687	441,64	HV24	9103772,170	443851,120	441,64
HV25	1098550,973	582752,791	434,80	HV25	9103607,740	442628,056	434,80
HV26	1098216,787	581361,843	398,98	HV26	9103270,990	441238,344	398,98
HV27	1097928,501	579781,863	404,59	HV27	9102979,750	439659,587	404,59
HV28	1107829,745	622762,498	467,63	HV28	9112951,650	482604,863	467,63

	Coordenada	s Topográfica	ıs	Coc	ordenadas Plan	as UTM MC -	39ºWGr
PONTO	NORTE	ESTE	ALTITUDE	PONTO	NORTE	ESTE	ALTITUDE
HV29	1107736,344	621483,190	450,18	HV29	9112856,490	481326,276	450,18
HV31	1115718,926	626206,960	530,06	HV31	9120842,010	486036,656	530,06
HV32	1114668,819	625644,310	529,58	HV32	9119791,600	485475,738	529,58
HV34	1113058,332	625038,282	514,47	HV34	9118181,010	484872,248	514,47
HV35	1111298,681	624677,791	512,47	HV35	9116421,670	484514,394	512,47
HV36	1109943,038	624324,350	500,63	HV36	9115066,160	484163,022	500,63
HV37	1115214,960	624891,914	542,01	HV37	9120336,430	484722,923	542,01
HV38	1108363,114	624266,455	481,13	HV38	9113486,890	484107,376	481,13
HV39	1107310,607	624377,760	483,79	HV39	9112435,030	484220,111	483,79
HV40	1107489,610	624002,062	488,61	HV40	9112613,420	483844,334	488,61
HV41	1108750,264	623918,846	459,02	HV41	9113873,370	483759,382	459,02
HV42	1107315,473	623310,818	501,27	HV42	9112438,390	483153,654	501,27
HV43	1108403,993	622832,431	465,52	HV43	9113525,730	482673,956	465,52
HV44	1106823,509	621810,471	482,66	HV44	9111944,540	481654,692	482,66
HV45	1107988,779	620157,561	439,17	HV45	9113106,940	480000,903	439,17
HV46	1106591,789	620209,151	478,22	HV46	9111710,670	480054,436	478,22
HV47	1106412,433	619693,595	456,02	HV47	9111530,670	479539,371	456,02
HV48	1107523,170	618669,342	447,26	HV48	9112639,450	478514,025	447,26
HV49	1116235,543	625383,274	525,13	HV49	9121357,230	485212,626	525,13
HV50	1114664,209	623067,239	515,36	HV50	9119783,370	482899,862	515,36
HV51	1073977,322	541716,041	394,87	HV51	9078945,300	401669,020	394,87
HV52	1074474,254	540378,861	396,44	HV52	9079438,720	400331,057	396,44
HV53	1072547,128	540394,017	402,84	HV53	9077512,290	400351,022	402,84
HV54	1073019,198	539607,104	405,71	HV54	9077982,230	399563,197	405,71
HV55	1071339,468	540018,050	400,08	HV55	9076298,130	399984,902	400,08
HV56	1071780,105	538965,773	406,03	HV56	9076735,500	398931,687	406,03
HV57	1106967,516	617368,926	434,84	HV57	9112082,220	477214,990	434,84
HV58	1106755,464	618734,409	462,95	HV58	9111872,190	478580,143	462,95
HV59	1079273,239	546920,859	357,25	HV59	9084252,330	406858,816	357,25
HV60	1073142,598	540407,173	404,15	HV60	9078107,590	400362,685	404,15
HV61	1073612,007	539939,911	397,60	HV61	9078575,670	399894,410	397,60
HV62	1083739,856	550988,992	401,64	HV62	9088727,420	410914,393	401,64
HV63	1084066,697	550523,904	398,52	HV63	9089052,990	410448,666	398,52
HV64	1082054,247	550178,032	379,83	HV64	9087040,420	410107,906	379,83
HV65	1083131,274	549260,689	401,94	HV65	9088114,780	409188,229	401,94
HV66	1081397,395	548929,479	378,55	HV66	9086380,710	408861,437	378,55
HV67	1082216,694	548057,796	371,01	HV67	9087197,550	407988,038	371,01
HV68	1080582,426	548097,356	380,16	HV68	9085563,970	408031,638	380,16
HV69	1081263,970	547094,675	361,43	HV69	9086242,780	407027,626	361,43
HV70	1080361,562	546251,203	381,34	HV70	9085338,600	406186,695	381,34
HV71	1078168,717	545778,206	362,80	HV71	9083145,360	405719,317	362,80
HV72	1078989,054	544992,061	382,67	HV72	9083963,450	404931,410	382,67
HV73	1078525,979	544080,193	385,86	HV73	9083498,270	404021,014	385,86
HV74	1076343,120	543696,493	377,69	HV74	9081315,220	403642,883	377,69
HV75	1076911,060	542841,355	366,62	HV75	9081880,830	402786,628	366,62
HV76	1105750,902	618214,767	514,61	HV76	9110867,360	478062,156	514,61
HV77	1075322,169	542956,567	390,93	HV77	9080292,780	402905,760	390,93
HV78	1076561,532	542502,919	368,41	HV78	9081530,580	402449,180	368,41
HV79	1074196,934	541721,571	394,90	HV79	9079164,850	401674,000	394,90
HV80	1074873,927	540804,724	391,14	HV80	9079839,320	400755,778	391,14
HV81	1090515,872	561121,976	384,52	HV81	9095525,890	421026,820	384,52
HV82	1091535,671	560584,209	372,54	HV82	9096543,970	420486,752	372,54

Coordenadas Topográficas			Coordenadas Planas UTM MC -39ºWGr				
PONTO	NORTE	ESTE	ALTITUDE	PONTO	NORTE	ESTE	ALTITUDE
HV83	1090046,404	560190,274	367,82	HV83	9095054,310	420096,634	367,82
HV84	1090974,063	559154,026	366,39	HV84	9095979,060	419058,502	366,39
HV85	1089330,467	558758,036	375,74	HV85	9094335,120	418666,710	375,74
HV86	1089700,483	558005,429	398,03	HV86	9094703,140	417913,480	398,03
HV88	1105928,352	616762,162	433,52	HV88	9111042,680	476609,969	433,52
HV89	1088423,846	557287,045	368,71	HV89	9093425,220	417198,516	368,71
HV90	1088974,164	556817,119	368,30	HV90	9093974,170	416727,412	368,30
HV91	1087068,278	556380,796	387,18	HV91	9092067,930	416295,956	387,18
HV92	1088030,608	555806,873	379,38	HV92	9093028,480	415719,875	379,38
HV93	1086469,374	555557,455	372,25	HV93	9091467,220	415474,405	372,25
HV94	1087108,003	554577,903	384,69	HV94	9092103,190	414493,644	384,69
HV95	1085743,581	553683,884	392,48	HV95	9090737,070	413603,330	392,48
HV96	1086263,086	553408,229	394,08	HV96	9091255,700	413326,494	394,08
HV97	1084783,151	552795,181	402,14	HV97	9089774,800	412717,333	402,14
HV98	1085272,092	552152,513	419,52	HV98	9090261,970	412073,694	419,52
HV99	1104724,786	616131,872	445,68	HV99	9109838,780	475981,666	445,68
HV100	1084145,037	551331,228	406,20	HV100	9089133,300	411255,500	406,20
HV103	1084836,654	550833,020	406,94	HV103	9089823,430	410755,764	406,94
HV104	1083056,086	550039,827	383,28	HV104	9088041,550	409967,269	383,28
HV105	1083676,961	549979,925	382,57	HV105	9088662,050	409905,851	382,57
HV106	1100049,758	573691,765	388,73	HV106	9105088,290	433567,882	388,73
HV107	1100991,371	573130,991	406,89	HV107	9106028,430	433005,508	406,89
HV108	1099216,798	572554,847	402,86	HV108	9104253,460	432433,046	402,86
HV109	1100022,445	571793,219	408,96	HV109	9105057,300	431670,161	408,96
HV110	1097943,395	571196,014	386,57	HV110	9102977,930	431077,240	386,57
HV111	1099204,513	570739,163	389,96	HV111	9104237,650	430618,120	389,96
HV112	1103822,437	617381,035	468,88	HV112	9108938,610	477231,527	468,88
HV113	1098165,685	569371,538	387,21	HV113	9103196,580	429253,065	387,21
HV114	1096543,148	568959,048	382,95	HV114	9101573,890	428843,899	382,95
HV115	1097255,151	568102,659	385,43	HV115	9102283,940	427986,465	385,43
HV116	1095468,663	567761,779	376,31	HV116	9100497,500	427649,202	376,31
HV117	1096404,153	567029,357	402,36	HV117	9101431,190	426915,247	402,36
HV118	1094812,092	566301,418	373,70	HV118	9099838,340	426190,699	373,70
HV119	1095460,276	565702,917	397,55	HV119	9100485,100	425591,170	397,55
HV120	1093822,691	565216,030	391,25	HV120	9098847,210	425107,669	391,25
HV121	1094726,520	564763,508	401,70	HV121	9099749,800	424653,560	401,70
HV122	1103410,195	615944,036	444,83	HV122	9108524,530	475795,771	444,83
HV123	1093042,369	563960,548	389,05	HV123	9098058,380	423858,073	389,05
HV124	1093673,821	563340,263	403,19	HV124	9098688,060	423236,481	403,19
HV125	1061395,345	535098,030	414,43	HV125	9066342,780	395096,122	414,43
HV126	1061798,869	533949,325	418,76	HV126	9066742,740	393946,598	418,76
HV127	1059113,186	533975,072	427,47	HV127	9064058,030	393980,361	427,47
HV128	1060310,963	533079,197	438,00	HV128	9065252,730	393081,203	438,00
HV129	1058362,989	533639,700	435,53	HV129	9063307,080	393647,346	435,53
HV130	1059311,939	532655,766	440,41	HV130	9064252,770	392660,899	440,41
HV131	1058346,561	532147,477	441,26	HV131	9063286,190	392155,666	441,26
HV132	1055626,874	532531,210	424,70	HV132	9060568,550	392547,424	424,70
HV133	1057044,376	531675,762	457,82	HV133	9061983,020	391688,007	457,82
HV134	1054638,747	532195,149	430,90	HV134	9059579,740	392214,441	430,90
HV135	1055957,918	531209,847	437,41	HV135	9060895,520	391225,502	437,41
HV136	1055167,061	530896,264	447,84	HV136	9060103,980	390914,395	447,84
HV137	1053721,084	531629,719	444,39	HV137	9058660,680	391651,954	444,39

Coordenadas Topográficas			Coordenadas Planas UTM MC -39°WGr				
PONTO	NORTE	ESTE	ALTITUDE	PONTO	NORTE	ESTE	ALTITUDE
HV138	1053724,927	530255,532	427,30	HV138	9058660,390	390278,204	427,30
HV139	1052600,967	531044,892	452,56	HV139	9057539,170	391070,687	452,56
HV140	1052404,059	529690,452	440,59	HV140	9057338,250	389717,279	440,59
HV300	1092022,992	562954,168	373,46	HV300	9097036,930	422854,592	373,46
HV301	1092890,682	562225,745	384,04	HV301	9097902,490	422124,321	384,04
HV302	1091144,125	561894,840	386,82	HV302	9096155,800	421797,838	386,82
HV303	1092037,932	561122,373	386,81	HV303	9097047,360	421023,473	386,81
HV304	1100500,458	572370,344	415,66	HV304	9105536,240	432246,123	415,66
HV305	1100032,172	574087,696	380,33	HV305	9105071,480	433963,685	380,33
HV306	1070036,829	539511,087	379,88	HV306	9074994,440	399481,972	379,88
HV307	1070430,439	538321,648	389,27	HV307	9075384,390	398291,778	389,27
HV308	1068705,843	538417,414	410,75	HV308	9073660,670	398392,622	410,75
HV309	1069156,885	537636,022	391,24	HV309	9074109,240	397610,161	391,24
HV310	1067223,101	537923,337	402,59	HV310	9072176,970	397903,115	402,59
HV311	1067824,826	536859,644	414,98	HV311	9072775,330	396838,000	414,98
HV312	1066584,997	537783,962	414,26	HV312	9071538,670	397765,684	414,26
HV313	1067082,087	536565,471	416,79	HV313	9072031,970	396546,133	416,79
HV314	1065194,383	537282,165	403,44	HV314	9070147,040	397268,193	403,44
HV315	1065882,079	536007,686	413,37	HV315	9070830,710	395992,103	413,37
HV316	1063938,070	536618,854	401,52	HV316	9068889,180	396608,849	401,52
HV317	1064252,949	535140,789	408,74	HV317	9069199,550	395130,347	408,74
HV318	1062777,120	535782,056	405,80	HV318	9067726,130	395775,795	405,80
HV319	1063365,460	534728,499	412,48	HV319	9068311,130	394720,839	412,48
HV320	1062309,361	535547,831	409,45	HV320	9067257,830	395543,044	409,45
HV321	1062487,831	534294,158	412,00	HV321	9067432,500	394289,260	412,00
HV322	1100470,443	575713,728	385,80	HV322	9105512,730	435588,198	385,80
HV323	1102467,514	616691,703	450,10	HV323	9107583,340	476544,425	450,10
HV324	1100457,503	578425,069	402,38	HV324	9105505,060	438298,442	402,38
HV325	1100663,309	579938,628	422,35	HV325	9105713,720	439810,971	422,35
HV326	1100505,257	580590,557	422,25	HV326	9105557,000	440462,934	422,25
HV327	1099237,537	573228,490	381,12	HV327	9104275,500	433106,374	381,12
HV328	1099344,850	574592,002	382,73	HV328	9104385,420	434469,120	382,73
HV329	1099453,352	575992,793	380,16	HV329	9104496,600	435869,125	380,16
HV330	1099589,281	576943,369	391,00	HV330	9104634,320	436819,044	391,00
HV331	1099480,798	577482,774	387,03	HV331	9104526,930	437358,436	387,03
HV333	1099688,991	578611,415	402,47	HV333	9104737,230	438486,204	402,47
HV334	1099659,227	579564,112	410,65	HV334	9104709,330	439438,561	410,65
HV335	1114372,453	624383,507	512,90	HV335	9119493,600	484215,932	512,90
HV336	1077384,941	545002,613	364,24	HV336	9082359,930	404945,949	364,24
HV337	1104399,384	619067,031	502,09	HV337	9109517,670	478915,933	502,09
HV338	1099512,765	580676,198	399,56	HV338	9104565,090	440550,467	399,56
HV339	1098169,425	580643,500	408,08	HV339	9103222,250	440520,395	408,08
HV340	1098351,480	578706,306	397,84	HV340	9103400,460	438583,656	397,84
HV341	1098408,907	577388,343	395,64	HV341	9103455,300	437266,129	395,64
HV342	1098131,234	575794,003	384,90	HV342	9103174,640	435672,987	384,90
HV343	1098216,809	574637,670	385,25	HV343	9103257,930	434516,963	385,25
HV344	1098002,751	574010,784	378,53	HV344	9103042,740	433890,750	378,53
HV345	1097979,560	572439,455	386,44	HV345	9103016,500	432320,107	386,44
HV346	1103509,693	618691,443	492,01	HV346	9108627,860	478541,773	492,01
HV347	1101985,402	618248,918	551,09	HV347	9107103,650	478101,604	551,09
HV348	1102549,651	617499,647	477,18	HV348	9107666,580	477351,881	477,18
HV349	1102038,529	616017,531	436,02	HV349	9107153,600	475871,169	436,02

Coordenadas Topográficas				Coordenadas Planas UTM MC -39ºWGr			
PONTO							
HV350	1102095,037	615208,894	438,89	HV350	9107208,940	475062,824	438,89
HV351	1102114,433	613971,859	429,71	HV351	9107226,580	473826,329	429,71
HV352	1103335,601	614136,911	434,15	HV352	9108447,420	473989,581	434,15
HV353	1103449,576	613150,504	446,64	HV353	9108559,950	473003,466	446,64
HV354	1102269,181	612565,015	434,40	HV354	9107379,270	472419,912	434,40
HV355	1113381,159	624016,278	512,93	HV355	9118502,250	483850,263	512,93
HV356	1103157,960	612457,945	447,51	HV356	9108267,490	472311,636	447,51
HV357	1102903,746	610529,514	439,86	HV357	9108010,670	470384,446	439,86
HV358	1102105,304	610350,018	433,57	HV358	9107212,340	470206,160	433,57
HV359	1102709,060	609223,984	434,04	HV359	9107814,230	469079,787	434,04
HV360	1101535,592	609310,799	425,09	HV360	9106641,420	469168,220	425,09
HV361	1102761,342	607907,937	428,48	HV361	9107864,630	467764,265	428,48
HV362	1101285,276	608017,074	416,57	HV362	9106389,390	467875,438	416,57
HV363	1101470,368	606985,301	424,61	HV363	9106572,940	466843,872	424,61
HV364	1102306,107	605987,939	420,00	HV364	9107406,890	465845,783	420,00
HV365	1101616,532	605479,692	427,29	HV365	9106716,910	465338,740	427,29
HV366	1113129,537	623266,340	490,52	HV366	9118249,690	483101,023	490,52
HV367	1102907,942	604632,997	418,98	HV367	9108006,540	464490,604	418,98
HV368	1102080,359	603131,233	421,15	HV368	9107177,210	462990,687	421,15
HV369	1101090,355	603221,537	418,62	HV369	9106187,780	463082,349	418,62
HV370	1097338,504	570018,421	383,72	HV370	9102370,990	429901,299	383,72
HV371	1102048,508	601996,550	426,20	HV371	9107143,770	461856,560	426,20
HV372	1101671,230	602434,120	416,05	HV372	9106767,280	462294,466	416,05
HV373	1102189,900	600135,617	398,55	HV373	9107282,470	459996,262	398,55
HV374	1101110,735	599634,064	423,59	HV374	9106203,080	459496,458	423,59
HV375	1102285,189	598856,449	404,25	HV375	9107375,910	458717,531	404,25
HV376	1100668,003	598194,157	395,24	HV376	9105758,510	458057,819	395,24
HV377	1101862,679	597505,623	398,05	HV377	9106951,680	457367,903	398,05
HV378	1111808,991	623936,492	497,68	HV378	9116930,700	483772,720	497,68
HV379	1098183,405	593505,498	391,46	HV379	9103268,380	453374,748	391,46
HV380	1098258,724	593995,482	387,09	HV380	9103344,360	453864,410	387,09
HV381	1099178,711	593154,542	375,83	HV381	9104262,750	453022,537	375,83
HV382	1099124,112	594196,282	407,12	HV382	9104209,650	454063,897	407,12
HV383	1099551,206	594100,811	401,30	HV383	9104636,420	453967,863	401,30
HV384	1098790,295	595488,759	375,47	HV384	9103877,810	455356,276	375,47
HV385	1100611,619	595597,704	394,01	HV385	9105698,480	455462,597	394,01
HV386	1099477,833	596652,449	387,35	HV386	9104566,690	456518,479	387,35
HV387	1101067,809	596780,953	390,43	HV387	9106156,140	456644,678	390,43
HV388	1101733,475	598203,759	409,21	HV388	9106823,520	458065,911	409,21
HV389	1111840,765	622373,764	469,52	HV389	9116960,260	482210,668	469,52
HV390	1100841,489	594658,039	414,83	HV390	9105926,920	454523,022	414,83
HV391	1100602,579	592596,184	380,35	HV391	9105685,200	452462,409	380,35
HV392	1101294,019	594325,984	409,39	HV392	9106378,780	454190,473	409,39
HV393	1101942,150	595915,866	391,70	HV393	9107028,870	455778,738	391,70
HV394	1102231,485	596888,068	388,98	HV394	9107319,450	456750,101	388,98
HV395	1102368,624	597746,695	396,06	HV395	9107457,740	457608,153	396,06
HV396	1099493,789	588177,584	425,56	HV396	9104560,700	448048,710	425,56
HV397	1099208,316	590153,559	424,97	HV397	9104279,190	450024,392	424,97
HV398	1098599,608	591580,343	386,12	HV398	9103673,520	451451,746	386,12
HV399	1110564,804	623332,263	492,46	HV399	9115686,240	483170,518	492,46
HV400	1098380,684	592819,142	374,70	HV400	9103464,600	452688,413	374,70
HV401	1099701,593	592213,663	389,83	HV401	9104784,070	452081,330	389,83

Coordenadas Topográficas					Coordenadas Planas UTM MC -39ºWGr			
PONTO	NORTE	ESTE	ALTITUDE	PONTO	NORTE	ESTE	ALTITUDE	
HV402	1100216,929	590804,222	407,49	HV402	9105288,630	450672,816	407,49	
HV403	1100216,384	589488,221	390,67	HV403	9105285,530	449357,381	390,67	
HV404	1100570,850	588395,377	402,38	HV404	9105637,720	448264,318	402,38	
HV405	1101600,997	586970,730	428,06	HV405	9106664,660	446838,280	428,06	
HV406	1102293,106	587686,663	423,51	HV406	9107357,860	447552,565	423,51	
HV407	1102045,656	589678,344	420,28	HV407	9107114,380	449543,872	420,28	
NA01	1069845,717	539664,581	373,57	NA01	9074803,850	399635,979	373,57	
NA02	1080142,082	547076,777	359,89	NA02	9085121,250	407012,519	359,89	
NA03	1080894,062	546605,650	359,94	NA03	9085871,790	406539,694	359,94	
NA04	1090653,737	559333,940	363,79	NA04	9095659,300	419239,135	363,79	
NA07	1100473,472	577769,698	386,42	NA07	9105519,750	437643,313	386,42	
NA08	1100980,303	577671,662	385,11	NA08	9106026,180	437544,333	385,11	
NA50	1101240,706	597990,632	387,95	NA50	9106330,670	457853,575	387,95	
NA51	1099617,994	596631,800	385,80	NA51	9104706,760	456497,641	385,80	
NA53	1100090,928	590570,622	387,18	NA53	9105162,230	450439,561	387,18	
NA54	1100804,802	581997,412	404,43	NA54	9105859,150	441868,616	404,43	
NA55	1098985,441	581150,593	396,93	NA55	9104038,910	441025,688	396,93	
V001	1057014,481	532983,075	421,14	V001	9061957,053	392994,978	421,14	

3.2.2 Estudos Topográficos

Estes estudos foram desenvolvidos por métodos convencionais, mediante a utilização de Estações Totais, GPS e Níveis e gravação digital dos dados coletados referenciados em coordenadas da rede geodésia e rede altimétrica do IBGE. O projeto teve seu eixo materializado e implantados os marcos de amarração nos pontos notáveis da linha, de modo a permitir a relocação desse eixo por ocasião dos serviços de construção.

O nivelamento geométrico e o contra-nivelamento foram efetuados ao longo do eixo, sendo implantados os marcos de referência de nível (RN), distribuídos a cada 500 metros.

A faixa de domínio foi cadastrada com o emprego de Estações Totais, levantando-se todos os pontos de interesse do projeto, tais como benfeitorias, interseções, instalações de serviços públicos, etc, existentes, bem como indicação das propriedades, áreas de cultivo agrícola, etc. O trabalho executado forneceu subsídios para a elaboração do projeto de desapropriação.

3.3 Estudos Hidrológicos

Os Estudos hidrológicos foram desenvolvidos de acordo com a IS-203 - Instrução de Serviço para Estudos Hidrológicos e o Manual de Hidrologia Básica para Estruturas de Drenagem do DNIT, o que preconiza os Termos de Referência do Edital.

Abrangeram as seguintes etapas:

- Caracterização climática e geomorfológica da região de interesse;
- Determinação das características das bacias hidrográficas atravessadas pelo trecho;
- Coleta de dados pluviométricos para determinação do regime de chuvas intensas da região;
- Elaboração de cálculos, a partir dos dados obtidos e das determinações feitas, para conhecimento das condições em que se verificam as precipitações pluviais e o escoamento superficial.

A finalidade da orientação adotada no estudo é obter os elementos de natureza hidrológica que permitam:

- Dimensionamento hidráulico das Obras de Arte Correntes e Especiais a construir;
- Dimensionamento hidráulico das pequenas obras de drenagem a construir.

3.3.1 Coleta e Apresentação dos Dados

3.3.1.1 Características da Região de Interesse

a) Clima

Distinguem-se dois principais tipos de clima na região, segundo a classificação de Koppen:

- Clima Bsh definido como seco e semi-árido característico do polígono das secas, abrangendo as áreas do sertão de Pernambuco;
- Clima Aw quente e úmido característico da zona norte da Chapada do Araripe, envolvendo o Crato, Juazeiro do Norte e Milagres.

Temperatura

O regime térmico é muito homogêneo em toda extensão da região, mantendo-se as médias mensais elevadas durante todo ano, sendo a amplitude térmica anual muito pequena. Os meses mais quentes são setembro e outubro em Pernambuco e novembro/dezembro na parte do Ceará. O mês mais frio é julho. A média das temperaturas máximas varia entre 32 e 34°C, enquanto que a das mínimas está entre 19 e 21°C.

b) Pluviometria

O regime pluviométrico do clima AW é do tipo tropical, com estação de chuvas no verão austral (w) concentrada em cinco meses e com um único máximo. No domínio de clima Bsh, o regime de chuvas é de verão (w).

Analisando o mapa de isoietas, desta região, verifica-se a existência de três zonas distintas no tocante à precipitação pluviométrica.

O período chuvoso concentra-se nos meses de novembro e abril.

c) Recursos Hídricos

A rede hidrográfica da região é constituída por cursos pertencentes a duas grandes e importantes bacias, cujo divisor de água é a Chapada do Araripe: Bacia do Jaguaribe e Bacia do São Francisco.

A bacia do Jaguaribe, principal rio do Estado do Ceará, está representada pelos cursos d'água situados no norte desta região. Estes cursos d'água têm um aspecto torrencial e são permanentes em suas nascentes, devido às fontes permanentes do Araripe, onde os mesmos nascem.

A rede hidrográfica desta bacia situa-se em terrenos sedimentares de natureza arenosa com uma baixa densidade. Os principais cursos são os riachos Salgado e dos Porcos.

A bacia do rio São Francisco, cujo curso limita a porção sul desta região, está representada por vários afluentes de sua margem esquerda, destacam-se: Rio do Pontal, Riacho do

Recreio, Rio das Garças, Riacho Caraíbas, Rio Brígida e o Rio Terra Nova. Todos estes cursos desenvolvem-se sobre terrenos cristalinos de baixa permeabilidade que, aliado aos fatores climáticos regionais emprestam à rede hidrográfica um regime torrencial e intermitente. São fatores característicos deste regime, além da alta velocidade de escoamento, o intenso grau de evaporação.

Por fim, cabe ressaltar que o Rio Brígida constitui a maior bacia do sistema descrito. Este rio tem suas nascentes ao norte de Exu e deságua no Rio São Francisco, nas circunvizinhanças de Orocó, seguindo uma direção geral N-S. Seus afluentes, dos quais, o mais importante é o Rio São Pedro, nascem na Chapada do Araripe.

d) Geomorfologia

Morfologicamente, nesta região, observou-se uma gradativa ascensão a partir do vale principal do Rio São Francisco, que representa o nível de base regional, até o divisor de águas com a bacia do Jaguaribe, que é a Chapada do Araripe.

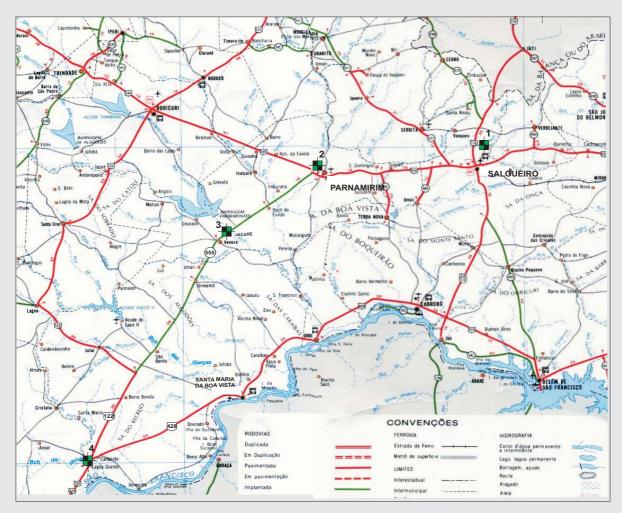
Considerando este aspecto o trecho apresenta apenas uma unidade geomorfológica:

• Superfície de Pediplanação

3.3.1.2 Postos Pluviométricos

Conseguiu-se obter, através da Agência Nacional de Águas - ANA, séries históricas de precipitações diárias para os seguintes postos pluviométricos:

Código	Nome	Latitude	Longitude	Resp.	Operadora	Período
00839009	Jacaré	-8°15′46"	-39°50'50"	ANA	CPRM	1962 a 2005
00839016	Salgueiro	-8°04′00"	-39°07'00"	DNOCS	DNOCS	1911 a 1989
00840015	Lagoa Grande	-8°59'56''	-40°16'23"	ANA	CPRM	1962 a 2004
00839012	Parnamirim	-8°04'37''	-39°34'05''	DNOCS	DNOCS	1966 a 1986

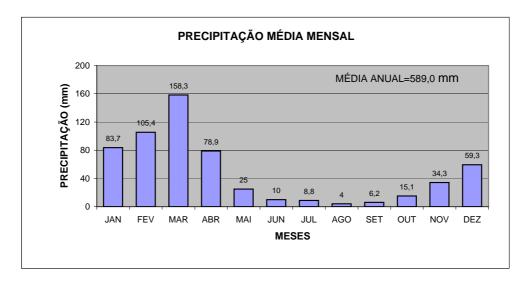

Para facilitar a visualização, estes postos foram localizados em um mapa e apresentados no quadro EH-3.3.1. Com estes elementos, foram elaborados histogramas de precipitações médias mensais e anuais, precipitações máximas mensais e números médios mensais e anuais de dias de chuva, apresentados nos quadros EH-3.3.2 a EH-3.3.5.

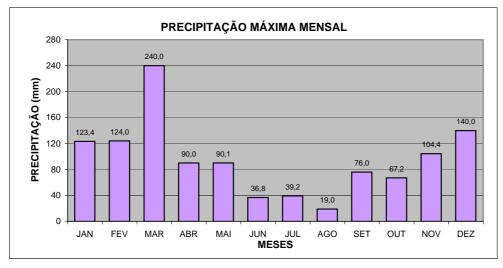
Analisando-se estes histogramas, constata-se que o semestre mais chuvoso ocorre de novembro a abril, e o mais seco, de maio a outubro, período este que julgamos mais adequado para execução das estruturas de drenagem.

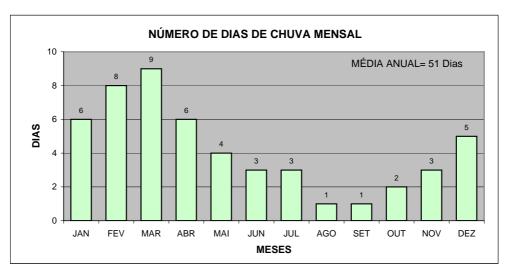
A média anual de precipitação é de 589,0mm no posto: Salgueiro no município de Salgueiro, 557,0 mm no posto: Parnamirim no município de Parnamirim, 506,0mm no posto: Jacaré no município de Parnamirim e 564,10mm no posto: Lagoa Grande município de Santa Maria da Boa Vista.

O número médio de dias de chuva anual é de 51 dias no posto: Salgueiro no município de Salgueiro, 43 dias no posto: Parnamirim no município de Parnamirim, 30 dias no posto:

CONVENÇÃO: + POSTOS PLUVIOMÉTRICOS

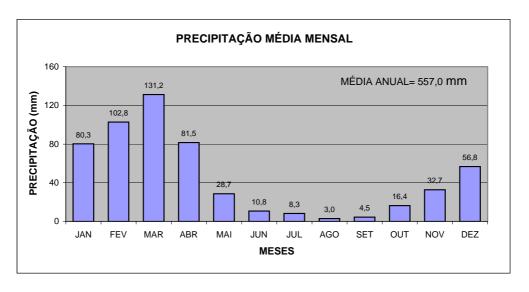

N°	Código	Nome	Latitude	Longitude	Resp.	Operadora	Período
1	00839016	Salgueiro	-8°04'00"	-39°07'00"	DNOCS	DNOCS	1911 a 1989
2	00839012	Parnamirim	-8°04'37"	-39°34'05"	DNOCS	DNOCS	1966 a 1986
3	00839009	Jacaré	-8°15'00"	-39°50'00"	ANA	CPRM	1962 a 2005
4	00840015	Lagoa Grande	-8°59'56"	-40°16'23"	ANA	CPRM	1962 a 2004

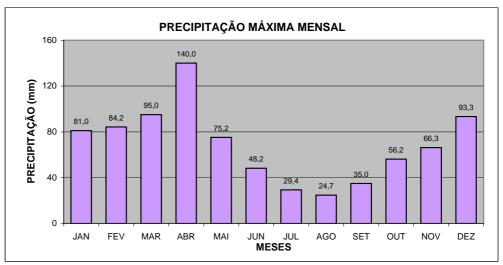

 Código
 : 00839016
 Período
 : 1911 a 1989

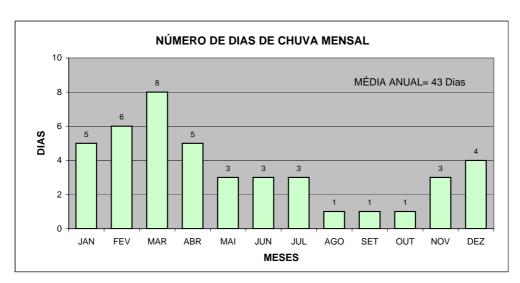

 Nome
 : SALGUEIRO / PE
 Latitude
 : -08° 04' 00"

 Responsável
 : DNOCS
 Longitude
 : -39° 07' 00"

Operadora : DNOCS

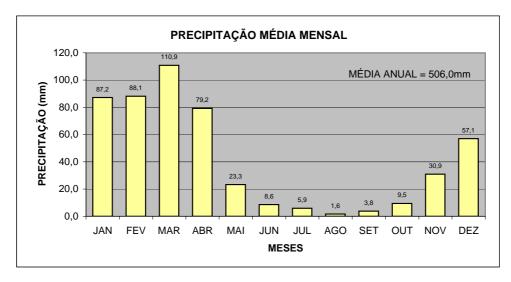


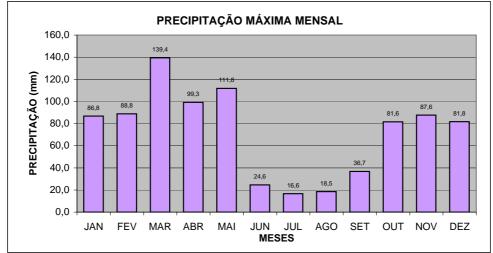

 Código
 : 00839012
 Período
 : 1966 a 1986

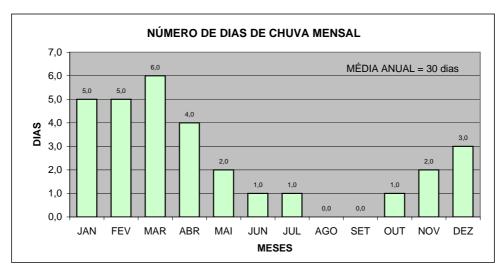

 Nome
 : PARNAMIRIM / PE
 Latitude
 : -08° 04' 37"

 Responsável
 : DNOCS
 Longitude
 : -39° 34' 05"

Operadora : DNOCS

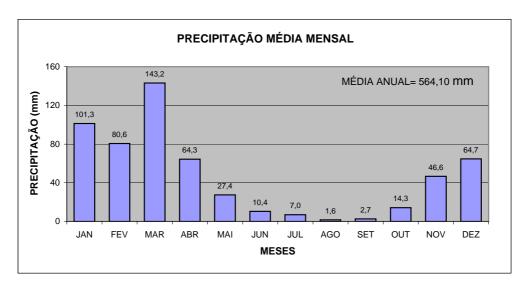


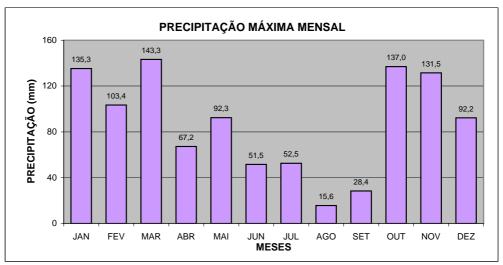

 Código
 : 00839009
 Período
 : 1962 a 2005

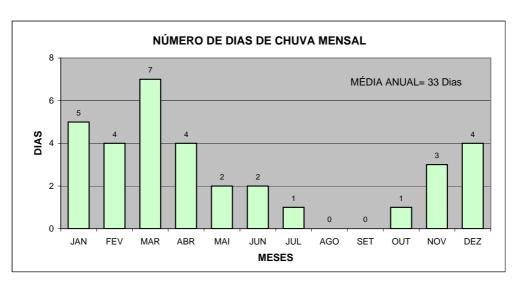

 Nome
 : JACARÉ / PE
 Latitude
 : -08° 15′

 Responsável
 : ANA
 Longitude
 : -39° 50′

 Operadora
 : CPRM




 Código
 : 00840015
 Período
 : 1962 a 2004


 Nome
 : LAGOA GRANDE / PE
 Latitude
 : -08° 59' 56"

 Responsável
 : ANA
 Longitude
 : -40° 16' 23"

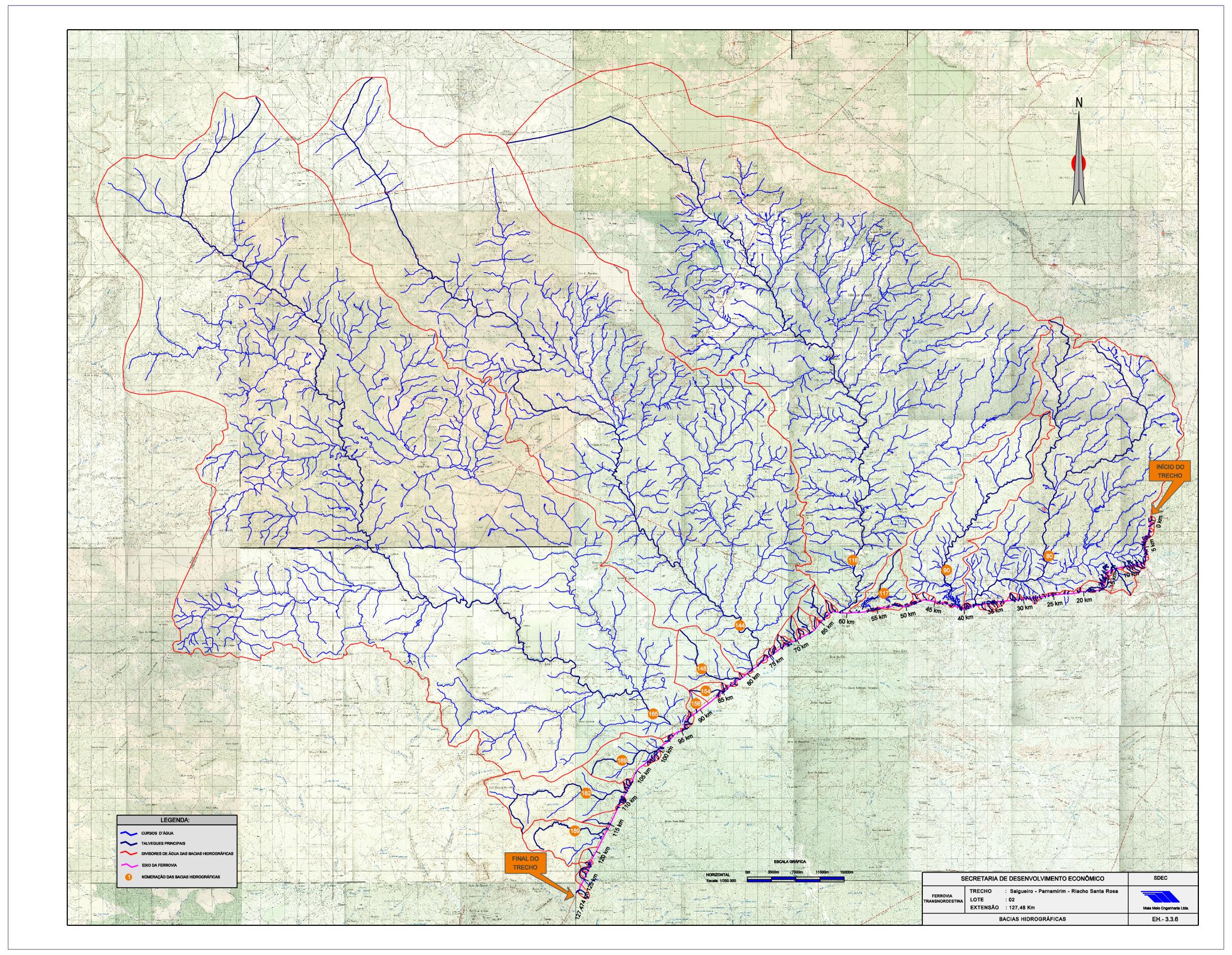
Operadora : CPRM

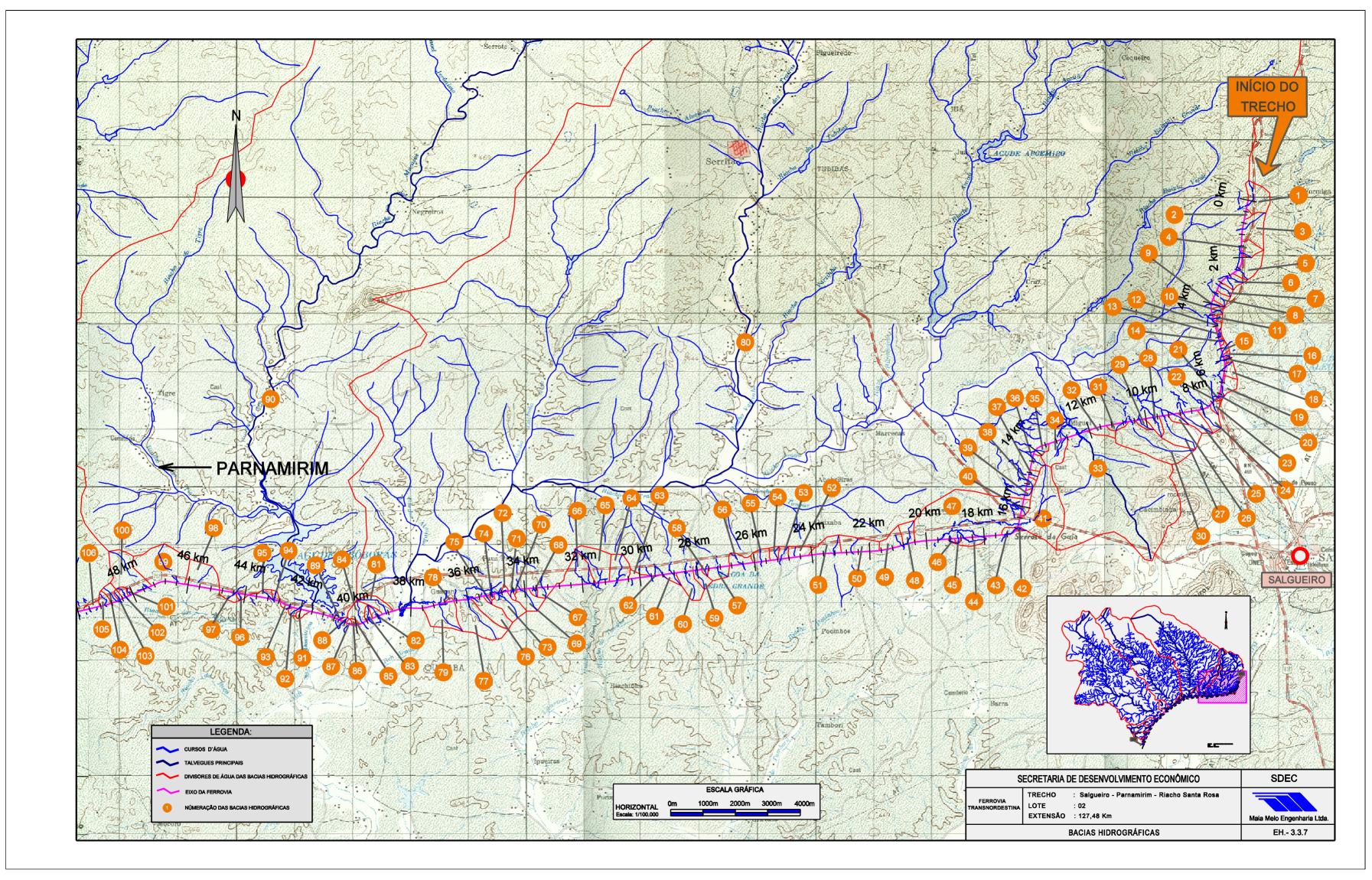
Jacaré no município de Parnamirim e 33 dias no posto: Lagoa Grande município de Santa Maria da Boa Vista.

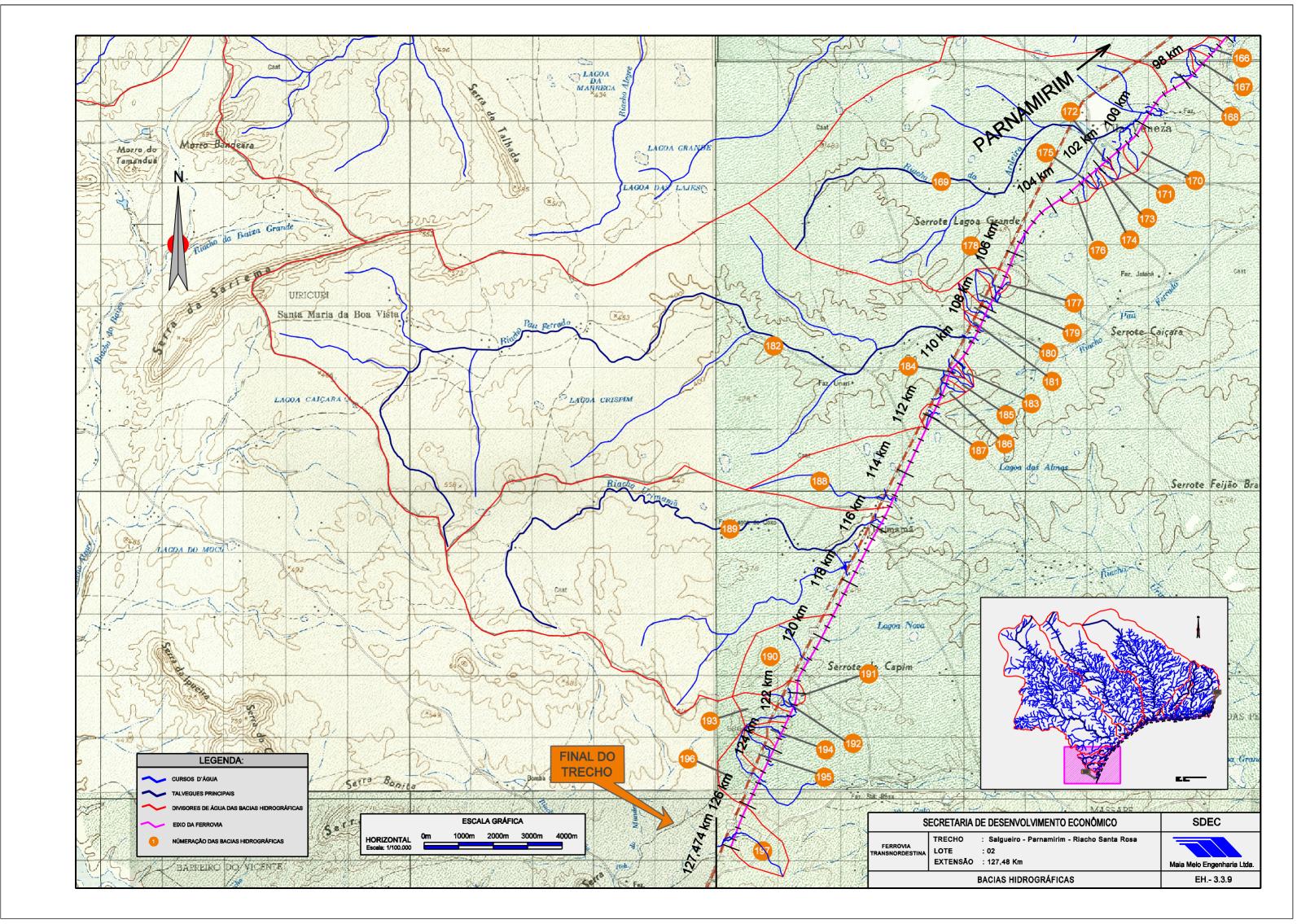
3.3.1.3 Fluviometria

Foram utilizados dados compilados e interpretados por técnicos do "United States Bureau of Reclamation", pertinentes à relação vazões máximas-área de drenagem, observadas em diversos rios do Nordeste. Esses dados, contidos em um Parecer Consultivo daquele órgão, são os seguintes:

(n	Rio ome)	Área de Drenagem (km2)	Descarga máxima observada (m3/s)
1.	Paraguaçu (I)	2.460	700
2.	Una	1.600	1.000
3.	Paraguaçu (II)	35.080	4.000
4.	Paraguaçu (III)	43.000	3.700
5.	Paraguaçu (IV)	53.600	9.500
6.	Longá	11.400	2.000
7.	Coreaú	4.020	920
8.	Acaraú (I)	2.940	578
9.	Acaraú (II)	11.160	2.300
10.	Acaratiassu	1.440	1.010
11.	Choró	1.710	341
12.	Jaguaribe (I)	6.110	3.380
13.	Jaguaribe (II)	14.780	1.260
14.	Truçu	1.930	370
15.	Aguiar	910	639
16.	Seridó	1.480	1.090
17.	Paraú	1.420	945
18.	Taperoá	480	690


Obs: Os números entre parêntesis, indicam diferentes postos no mesmo rio.


3.3.1.4 Características das Bacias Hidrográficas


As características das bacias hidrográficas cortadas pela rodovia no trecho em questão, tais como: área, declividade, cobertura vegetal, condições geológicas, etc., foram determinadas através de trabalhos de campo e do uso da seguinte documentação cartográfica:

- cartas planialtimétricas na escala de 1:100.000, fornecidas pela SUDENE, através do DRN- Divisão de cartografia; e
- restituição do traçado em planta e perfil, nas escalas (H) 1:2000/ (V)1:200, com curvas de nível a cada metro, utilizando dados de levantamento topográfico e software gráfico tipo CAD.

As bacias hidrográficas que puderam ser identificadas nas cartas disponíveis estão apresentadas no quadro EH-3.3.6 a EH-3.3.9.

3.3.1.5 Estudo da correlação "vazões máximas - área de drenagem"

O diagrama de dispersão, em papel log-log, dos pontos correspondentes aos pares de valores, vazões máximas observadas - áreas de drenagem, apresentadas no subitem 3.3.1.3, indica que a relação entre as descargas Q, e as áreas A, é do tipo:

$$Q = m An$$
 ou $log Q = log m + n \cdot log A$

Pela aplicação do método dos mínimos quadrados, determinaram-se os valores de m e n:

$$m = 12,460$$

 $n = 0.558$

O coeficiente de correlação encontrado, foi de 0,84.

No quadro EH-3.3.10, são apresentadas, em papel log-log, as relações razões máximas - áreas de drenagem, e a respectiva curva de regressão determinada.

3.3.1.6 Tempos de Recorrência

Foram adotados, neste projeto, os seguintes tempos de recorrência, de acordo com os Termos de Referência do Edital.

• Drenagem Superficial - TR = 25 anos;

Bueiro Tubular
 TR = 50 anos (como canal) e 100 anos (como orifício);

• Bueiro Celular - TR = 50 anos (como canal) e 100 anos (como orifício);

Pontilhão
 - TR = 100 anos; e
 Ponte
 - TR = 100 anos.

3.3.2 Cálculos Elaborados

3.3.2.1 Determinação do Regime de Chuvas da região

Para definição das descargas máximas prováveis, um dos fatores mais importantes é a caracterização das intensidades máximas que ocorreram na área do projeto.

Neste estudo, utilizou-se os dados do Posto pluviométrico Parnamirim, localizado no município de Parnamirim/PE. Este posto foi escolhido entre os postos pluviográficos e pluviométricos disponíveis na área de influência do projeto.

A metodologia adotada para a determinação do regime de chuvas da região foi a preconizada na publicação "Práticas Hidrológicas" do Engo Jaime Taborga Torrico.

Os procedimentos realizados foram os seguintes:

Utilizou-se os dados pluviométricos diários do posto de Parnamirim, no período de 1966 a 1986;

Compilou-se os dados das máximas chuvas diárias anuais para todo o período;

Calculou-se pelo método estatístico de Gumbel, a chuva de 1 dia, nos tempos de recorrência necessários ao projeto;

Converteu-se a chuva de 1 dia para chuva de 24 horas, multiplicando-se a primeira pelo fator 1,13;

Calculou-se as chuvas de 1 hora e 6 minutos, utilizando-se as porcentagens indicadas no Mapa de Isozonas, considerando-se, para a região do projeto, a Isozona F;

Com os valores obtidos, foram estabelecidas as relações de precipitação-duração-recorrência adotadas no estudo;

As curvas de intensidade-duração-recorrência foram obtidas a partir das retas de alturaduração-recorrência.

Os quadros EH-3.3.11 a EH-3.3.17 apresentam os dados da série histórica do posto: Parnamirim, bem como, todos os passos que possibilitaram a obtenção das Retas de Precipitação-Duração-Recorrência e das Curvas de Intensidade-Duração-Recorrência do referido posto.

3.3.2.2 Determinação das Descargas de Projeto

A metodologia utilizada para o dimensionamento hidráulico das obras a construir, está apresentada a seguir, em função da área da bacia hidrográfica:

Método Racional : A ≤ 10km²

Método do Hidrograma Sintético Triangular : 10km² ≤ A ≤ 25km²
 Método do Hidrograma Unitário Triangular : 25km² ≤ A ≤ 2.500km²

a) Método Racional

A descarga de projeto foi determinada pela Fórmula Racional que tem o seguinte aspecto:

$$Q = \frac{CIA}{3.6}$$

Onde:

Q = descarga de projeto, em m^3/s ;

C = coeficiente de escoamento superficial, adimensional;

I = intensidade de chuva, em mm/h; e

A = área da bacia hidrográfica, em km².

Quando a área da bacia hidrográfica estiver compreendida entre 1 km² e 10 km², considerase um coeficiente de distribuição, que visa à correção da precipitação pontual para a precipitação uniformemente distribuída na área, dado pela expressão:

PLUVIOMETRIA - SÉRIE HISTÓRICA DAS PRECIPITAÇÕES														
	ÁVEL: DNOCS	IANI	FEV		ARNAMIRIM		ILINI	JUL	AGO	CET	OUT	NOV	DEZ	TOTAL
ANO 1966	INFORMAÇÕES PRECIPITAÇÃO TOTAL	JAN 72,2	169,6	MAR 14,3	ABR 193,3	MAI 21,3	JUN 4,2	JUL 0,0	0,0	SET 0,0	0,0	NOV 41,8	53,6	ANUAL 570,3
	PREC. MÁXIMA DIARIA DIAS DE CHUVA	30,4 3,0	51,4 10,0	9,1 2,0	72,3 6,0	21,3 1,0	4,2 1,0	0,0	0,0	0,0 0,0	0,0 0,0	21,3 2,0	35,3 2,0	72,3 27,0
1967	PRECIPITAÇÃO TOTAL PREC. MÁXIMA DIARIA DIAS DE CHUVA	46,5 25,2 2,0	74,9 22,4 6,0	143,3 52,6 6,0	233,2 53,5 6,0	48,5 16,3 5,0	10,4 6,1 2,0	7,6 4,2 2,0	0,0 0,0 0,0	0,0 0,0 0,0	0,0 0,0 0,0	20,3 20,3 1,0	106,2 52,3 3,0	690,9 53,5 33,0
1968	PRECIPITAÇÃO TOTAL PREC. MÁXIMA DIARIA DIAS DE CHUVA	30,9 25,5 2,0	190,1 56,8 7,0	290,9 92,4 8,0	22,4 12,1 2,0	125,2 75,2 5,0	0,0 0,0 0,0	0,0 0,0 0,0	0,0 0,0 0,0	0,0 0,0 0,0	0,0 0,0 0,0	78,8 66,3 3,0	56,8 18,9 5,0	795,1 92,4 32,0
1969	PRECIPITAÇÃO TOTAL PREC. MÁXIMA DIARIA DIAS DE CHUVA	128,4 56,6 7,0	87,6 77,6 3,0	235,7 77,0 10,0	3,0 2,0 2,0	32,3 10,4 7,0	9,6 3,4 4,0	32,4 20,0 7,0	0,9 0,6 2,0	0,0 0,0 0,0	0,0 0,0 0,0	14,0 11,8 2,0	48,9 26,1 5,0	592,8 77,6 49,0
1970	PRECIPITAÇÃO TOTAL PREC. MÁXIMA DIARIA DIAS DE CHUVA	55,3 26,4 5,0	105,4 84,2 2,0	85,6 70,5 3,0	17,8 10,9 2,0	0,0 0,0 0,0	0,0 0,0 0,0	0,7 0,5 2,0	4,5 3,2 2,0	0,0 0,0 0,0	98,4 56,2 4,0	45,2 16,0 6,0	50,7 21,4 5,0	463,6 84,2 31,0
1971	PRECIPITAÇÃO TOTAL PREC. MÁXIMA DIARIA DIAS DE CHUVA	23,0 9,1 4,0	131,9 80,2 9,0	143,0 40,1 8,0	228,4 53,8 11,0	27,2 12,1 4,0	1,7 1,7 1,0	5,6 5,6 1,0	25,9 24,7 2,0	8,7 8,7 1,0	29,8 17,5 2,0	32,9 27,3 3,0	24,2 18,2 3,0	682,3 80,2 49,0
1972	PRECIPITAÇÃO TOTAL PREC. MÁXIMA DIARIA DIAS DE CHUVA	58,7 26,9 5,0	80,7 74,2 3,0	81,9 18,5 7,0	111,5 81,4 5,0	0,0 0,0 0,0	7,1 5,9 2,0	0,0 0,0 0,0	20,9 20,9 1,0	0,0 0,0 0,0	0,0 0,0 0,0	13,5 6,9 3,0	201,6 93,3 6,0	575,9 93,3 32,0
1973	PRECIPITAÇÃO TOTAL PREC. MÁXIMA DIARIA DIAS DE CHUVA	50,7 28,5 4,0	3,2 3,2 1,0	191,9 44,2 14,0	127,5 29,9 10,0	57,2 57,2 1,0	48,2 48,2 1,0	32,8 29,4 2,0	0,0 0,0 0,0	46,5 33,2 2,0	51,4 33,4 2,0	8,5 8,5 1,0	62,9 23,4 3,0	680,8 57,2 41,0
1974	PRECIPITAÇÃO TOTAL PREC. MÁXIMA DIARIA DIAS DE CHUVA	129,2 45,0 6,0	157,0 80,0 4,0	368,0 95,0 10,0	160,3 55,6 5,0	0,0 0,0 0,0	0,0 0,0 0,0	0,0 0,0 0,0	0,0 0,0 0,0	0,0 0,0 0,0	0,0 0,0 0,0	28,6 18,3 2,0	28,0 28,0 1,0	871,1 95,0 28,0
1975	PRECIPITAÇÃO TOTAL PREC. MÁXIMA DIARIA DIAS DE CHUVA	17,7 12,0 2,0	49,2 29,0 2,0	139,4 48,2 4,0	51,3 23,7 3,0	0,0 0,0 0,0	9,1 9,1 1,0	0,0 0,0 0,0	17,3 17,3 1,0	0,0 0,0 0,0	0,0 0,0 0,0	0,0 0,0 0,0	14,2 14,2 1,0	298,2 48,2 14,0
1976	PRECIPITAÇÃO TOTAL PREC. MÁXIMA DIARIA DIAS DE CHUVA	0,0 0,0 0,0	34,0 24,0 2,0	32,0 20,0 2,0	140,0 140,0 1,0	0,0 0,0 0,0	0,0 0,0 0,0	0,0 0,0 0,0	0,0 0,0 0,0	35,0 35,0 1,0	38,0 38,0 1,0	40,0 25,0 2,0	83,0 45,0 3,0	402,0 140,0 12,0
1977	PRECIPITAÇÃO TOTAL PREC. MÁXIMA DIARIA DIAS DE CHUVA	81,0 35,0 4,0	0,0 0,0 0,0	42,0 28,0 2,0	86,0 56,0 3,0	73,0 38,0 2,0	18,0 18,0 1,0	0,0 0,0 0,0	0,0 0,0 0,0	0,0 0,0 0,0	0,0 0,0 0,0	0,0 0,0 0,0	9,0 5,5 2,0	309,0 56,0 14,0
1978	PRECIPITAÇÃO TOTAL PREC. MÁXIMA DIARIA DIAS DE CHUVA	4,9 2,8 2,0	69,0 32,0 3,0	18,0 7,5 4,0	18,0 18,0 1,0	12,2 7,2 2,0	0,0 0,0 0,0	0,0 0,0 0,0	0,0 0,0 0,0	0,0 0,0 0,0	0,0 0,0 0,0	0,0 0,0 0,0	120,0 70,0 2,0	242,1 70,0 14,0
1979	PRECIPITAÇÃO TOTAL PREC. MÁXIMA DIARIA DIAS DE CHUVA	75,0 30,0 4,0	47,0 15,0	110,0 40,0 5,0	103,0 30,0 4.0	3,6 1,4	0,0 0,0 0,0	0,0	0,0	0,0	0,0	0,0	2,0	14,0
1980	PRECIPITAÇÃO TOTAL PREC. MÁXIMA DIARIA DIAS DE CHUVA	,,0	,,0	8,0	.,0	0,0	0,0					0,0 0,0 0,0		
1981	PRECIPITAÇÃO TOTAL PREC. MÁXIMA DIARIA DIAS DE CHUVA	85,0 30,0 4,0		3,6 1,4 3,0				0,0 0,0 0,0	0,0 0,0 0,0	0,0 0,0 0,0	0,0 0,0 0,0	1,9 1,2 2,0	51,0 15,0 4,0	
1982	PRECIPITAÇÃO TOTAL PREC. MÁXIMA DIARIA DIAS DE CHUVA	55,5 20,0 5,0	42,0 42,0 1,0	63,0 21,0 5,0	20,7 10,0 3,0	0,0 0,0 0,0	0,0 0,0 0,0	0,0 0,0 0,0	0,0 0,0 0,0	0,0 0,0 0,0	0,0 0,0 0,0	0,0 0,0 0,0	26,0 14,0 3,0	207,2 42,0 17,0
1983	PRECIPITAÇÃO TOTAL PREC. MÁXIMA DIARIA DIAS DE CHUVA	74,0 35,0 3,0	69,0 21,0 4,0	119,0 84,0 2,0	15,0 15,0 1,0	0,0 0,0 0,0	0,0 0,0 0,0	0,0 0,0 0,0	0,0 0,0 0,0	0,0 0,0 0,0	5,2		0,0 0,0 0,0	
1984	PRECIPITAÇÃO TOTAL PREC. MÁXIMA DIARIA DIAS DE CHUVA	2,0 2,0 1,0	7,0 7,0 1,0	21,5 7,5 6,0	24,2 6,0 7,0	5,5 4,5 2,0	0,0 0,0 0,0	9,7 9,7 1,0	0,0 0,0 0,0	0,0 0,0 0,0	15,0 15,0 1,0	19,1 14,0 2,0	18,2 8,0 3,0	122,2 15,0 24,0
1985	PRECIPITAÇÃO TOTAL PREC. MÁXIMA DIARIA DIAS DE CHUVA	203,2 81,0 7,0	84,0 35,0 5,0	297,2 90,0 10,0	376,8 105,2 13,0	100,0 48,0 5,0	41,0 21,0 3,0	16,3 9,3 2,0	0,0 0,0 0,0	0,0 0,0 0,0	28,0 23,0 2,0	15,2 15,2 1,0	92,2 16,4 11,0	1.253,9 105,2 59,0
1986	PRECIPITAÇÃO TOTAL PREC. MÁXIMA DIARIA DIAS DE CHUVA	7,5 3,2 3,0	0,0 0,0 0,0	0,0 0,0 0,0	0,0 0,0 0,0	0,0 0,0 0,0	0,0 0,0 0,0	_,,,	-,-	-,-	_,,,	.,,5	,*	,0
				PL	UVIOME	TRIA - SÉ	RIE HIST	ÓRICA D	AS PREC	CIPITAÇÕ	ES		FU	2 2 44
MAIA	PLUVIOMETRIA - SÉRIE HISTÓRICA DAS PRECIPITAÇÕES POSTO: PARNAMIRIM / PE EH - 3.3.11					POS			EП-	J.J. 1 I				

MÁXIMA ARRANJO EM ORDEM DECRESCENTE ANO PRECIPITAÇÃO		Ym	Yi	Ki	PERÍODO DE			
ANO	DIÁRIA	ANO	MÁXIMA	ORDEM	1111	''	IXI	RETORNO
1966	72,3	1976	140,0	1	2,862	2,950	2,269	18,0
1967	53,5	1985	105,2	2	2,139	1,718	1,120	9,0
1968	92,4	1974	95,0	3	1,702	1,357	0,783	6,0
1969	77,6	1972	93,3	4	1,381	1,296	0,727	4,5
1970	84,2	1968	92,4	5	1,123	1,265	0,697	3,6
1971	80,2	1970	84,2	6	0,903	0,974	0,426	3,0
1972	93,3	1971	80,2	7	0,708	0,833	0,294	2,6
1973	57,2	1969	77,6	8	0,531	0,741	0,208	2,3
1974	95	1966	72,3	9	0,367	0,553	0,033	2,0
1975	48,2	1978	70,0	10	0,210	0,472	-0,043	1,8
1976	140	1973	57,2	11	0,057	0,019	-0,466	1,6
1977	56	1977	56,0	12	-0,094	-0,024	-0,505	1,5
1978	70	1967	53,5	13	-0,248	-0,112	-0,588	1,4
1979		1975	48,2	14	-0,408	-0,300	-0,763	1,3
1980		1982	42,0	15	-0,583	-0,520	-0,968	1,2
1981	30	1981	30,0	16	-0,787	-0,944	-1,364	1,1
1982	42	1984	15,0	17	-1,061	-1,475	-1,860	1,1
1983		1979						
1984	15	1980						
1985	105,2	1983						
1986		1986						

 \overline{X} = 71,30 Sx= 30,27 \overline{Y} n= 0,52 Sn= 1,07

MAIA MELO ENGENHARIA LTDA.

ANÁLISE ESTATÍSTICA DAS MÁXIMAS PRECIPITAÇÕES DIÁRIAS ANUAIS POSTO: PARNAMIRIM/PE 1. Nº de Eventos Considerados:

2. Cálculo da Média das Precipitações Máximas Diárias:

$$P = \sum P / n =$$
 71,30 mm

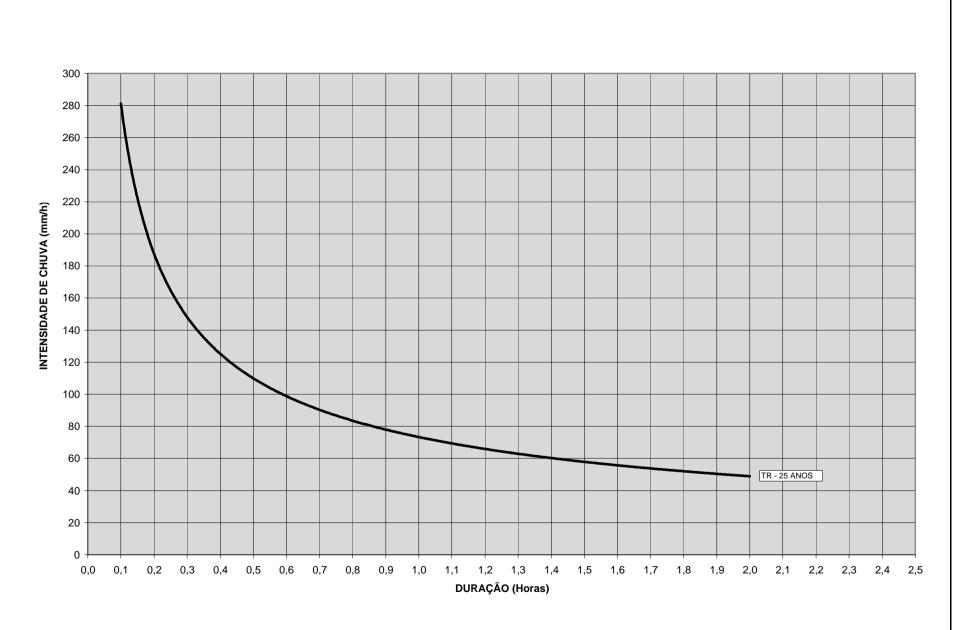
3. Cálculo do Desvio Padrão

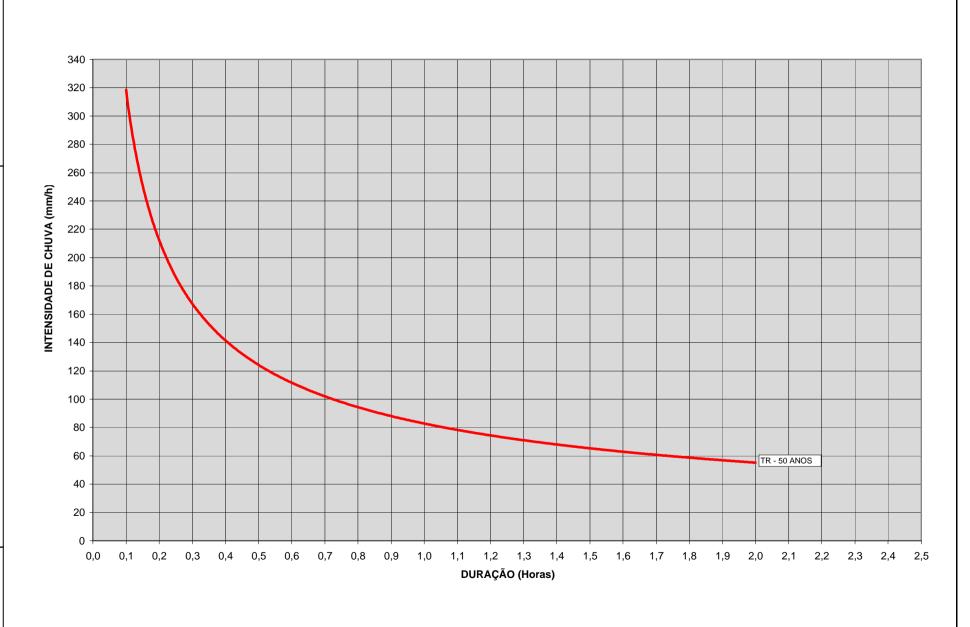
$$\sqrt[n]{\Sigma(P - \overline{P})^2/(n-1)} = 30,27 \text{ mm}$$

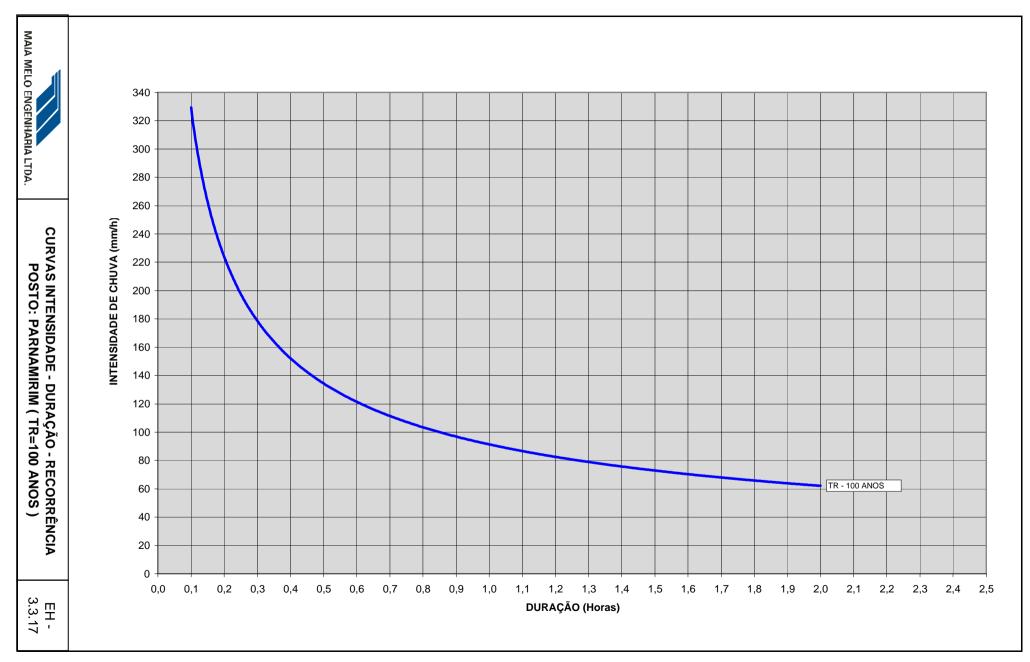
4. Precipitação Máxima Diária para os Tempos de Recorrência Adotados no Projeto

P=P+kσ (fórmula de Ven Te Chow)

Tempo de Recorrência TR (anos)	10	15	25	50	100
K	1,664	2,066	2,575	3,250	3,921
P (1 dia)	121,68	133,85	149,26	169,69	190,01


Valores a Correlacionar (%)									
70014		1	Hora/ 24 Hor	as		6 Min/ 24 Horas			
ZONA	10	15	25	50	100	5-50	100		
F	45,5	45,3	44,9	44,5	44,1	13,9	12,4		


Tempo de Recorrência		Precipitação (mm)				
(anos)	Diária	24 Horas	1 Hora	6 Min		
10	121,68	137,50	62,56	19,11		
15	133,85	151,25	68,52	21,02		
25	149,26	168,66	75,73	23,44		
50	169,69	191,75	85,33	26,65		
100	190,01	214,71	94,69	26,62		


RELAÇÃO: TEMPO DE DURAÇÃO - ALTURA DE CHUVA - TEMPO DE RECORRÊNCIA

$$n = A^{-0,10}$$

Onde:

A =área da bacia, em km^2 .

Critérios Adotados:

- Para o coeficiente de deflúvio "C", considerado como representativo da parcela do volume precipitado que se transforma em escoamento superficial, foram adotados os valores indicados no quadro EH-3.3.18.
- Para o cálculo do tempo de concentração, definido como o menor tempo de precipitação necessário para que uma dada bacia hidrográfica contribua integralmente, através de uma seção de vazão, utilizou-se a expressão proposta pelo California Highways and Public Roads, reproduzida a seguir:

$$Tc = 0.95 (L^3/H)^{0.385}$$

Onde:

Tc = Tempo de concentração, em hora;

L = Comprimento da linha de fundo, em km; e

H = Desnível máximo, em metro.

b) Método do Hidrograma Unitário Triangular

O Método do Hidrograma Unitário Triangular consiste, fundamentalmente, na obtenção do ponto culminante da curva de descarga da bacia, para um determinado período de recorrência, a partir da acumulação geométrica dos diversos hidrogramas elementares, correspondentes a altura de chuva acumuladas em diversas durações.

Cada hidrograma elementar representa o escoamento superficial de cada fração de chuva efetiva em "D" horas de duração.

Em cada um desses hidrogramas, a ordenada máxima é dada pelas expressões:

$$Qp = 0.208 \frac{RA}{T_p}$$

$$Qu = 0.20 \frac{A}{T_p}$$

$$Tp = \frac{\Delta D}{2} + 0.60 T_c$$

Sendo:

DESCRIÇÃO

COEFICIENTE DE DEFLÚVIO

Comércio:

Áreas centrais	0,70 a 0,95
Áreas da periferia do centro	0,50 a 0,70

Residencial:

Áreas de uma única família	0.30 a 0.50
	- / /
Multi-unidades, isoladas	0,40 a 0,60
Multi-unidades, ligadas	0,60 a 0,75
Residencial (suburbana)	0,25 a 0,40
Área de apartamentos	0,50 a 0,70

Industrial:

Áreas leves	0,50 a 0,80
Áreas densas	0,60 a 0,90
Parques, cemitérios	0,10 a 0,25
Playgrounds	0,20 a 0,35
Pátios e espaço de serviços	
de estrada de ferro	0,20 0,40
Terrenos baldios	0,10 a 0,30

Ruas:

Asfálto	0,70 a 0,95
Concreto	0,80 a 0,95
Tijolos	0,70 a 0,85
Trajetos de acesso a calçadas	0,75 a 0,85
Telhados	0,75 a 0,95

Gramados; solos arenosos:

Plano, < 2 %	0,05 a 0,10
Médio, 2 < a < 7 %	0,10 a 0,15
Íngreme > 7 %	0,15 a 0,20

Gramados; solos compactos:

Plano, < 2 %	0,13 a 0,17
Médio, 2 < a < 7 %	0,18 a 0,22
Íngreme > 7 %	0,15 a 0,35

```
Tr = 1,67 T_p

Tb = 2,67 T_p

\Delta D \le 1/5 T_c
```

Qp = descarga de pico, em m³/s;

Qu = descarga unitária para chuva de 1 mm, em m³/s.mm;

A =área da bacia, em km²;

R = chuva efetiva, em mm;

Tp = tempo de pico, em hora;

D = duração da chuva, em hora;

 ΔD = duração da chuva unitária, em hora;

Tc = tempo de concentração, em hora;

Tr = tempo de recessão, em hora;

Tb = tempo de base, em hora.

No quadro EH-3.3.19 estão apresentadas, esquematicamente, uma hidrógrafa unitária típica e a respectiva hidrógrafa triangular.

A substituição da hidrógrafa curvilínea, representativa de um escoamento, por uma triangular, para área de até 2.500 km², foi feita sem maiores prejuízos da precisão e com apreciável economia de tempo para os cálculos.

Adotou-se, de um modo geral, a duração total da chuva de projeto igual ou um pouco superior ao tempo de concentração determinado.

O tempo de concentração Tc foi calculado pela fórmula proposta pelo California Highways and Public Roads, apresentada anteriormente.

A influência da distribuição da chuva na área foi considerada, utilizando-se a relação chuva na área/chuva pontual, dada pela fórmula empírica abaixo, segundo a publicação "Práticas Hidrológicas", do Eng^{Ω} Jaime Taborga Torrico.

P/Po= 1 - wlog A/Ao

Onde:

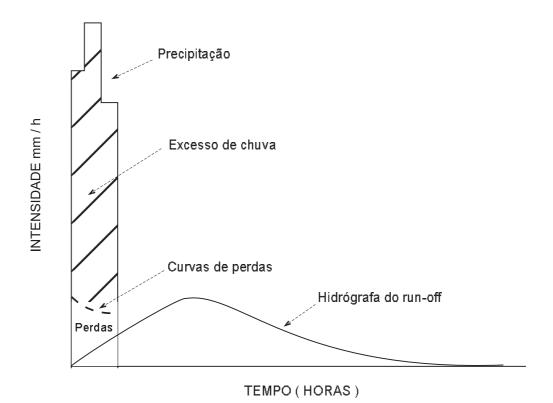
P = precipitação média sobre a bacia;

Po = precipitação pontual no centro de gravidade da bacia;

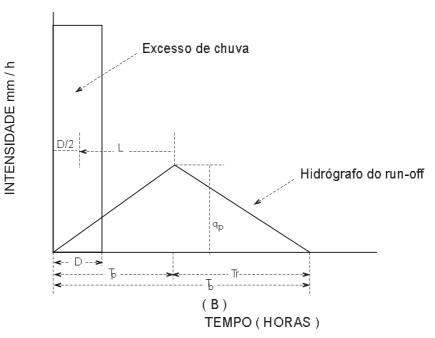
W = fator regional, tem função das relações chuva-área-tempo de duração (no Brasil: W=0,10)

A = área da bacia, em km^2 ;

Ao= área base na qual P=Po (Ao≈25 km²).


Portanto,

 $P/Po = 1 - 0.10 \cdot log A/25$


Para: $25 \text{ km} < A \le 2.500 \text{ Km}^2 \text{ e } 1 \text{ h} \le D \le 48 \text{ horas}.$

No quadro EH-3.3.20 está representada, graficamente, a relação P/Po.

HIDRÓGRAFA UNITÁRIA TÍPICA

REPRESENTAÇÃO ESQUEMÁTICA

VA-PROJFINAL APROVADO-VOL3-HUT

A distribuição da chuva ao longo do tempo foi adotada de acordo com a utilizada pelo "Soil Conservation Service - USA".

Calculou-se a chuva efetiva "R" em função da precipitação total "P", na duração total da chuva, através da expressão utilizada pelo "Soil Conservation Service - Departament of Agriculture - USA".

A expressão adotada foi a seguinte:

$$R = \frac{(P-5080/N+50,8)^2}{P+20.320/N-203,2}$$

Onde:

R = precipitação, em mm;

P = precipitação total, em mm;

N = número representativo da curva do complexo solo-vegetação.

Os quadros EH-3.3.21 e EH-3.3.22 apresenta a tabela para determinação do número de deflúvio "N" e as curvas do complexo Solo-Vegetação, respectivamente.

c) Método Comparativo

Para o cálculo das descargas de projeto dos Rios/Riachos cujas bacias apresentaram áreas superiores a 2500 Km², os trabalhos desenvolvidos consistiram das seguintes etapas:

- Cálculo da descarga de projeto pelo Método do HUT; e
- Cálculo da descarga de projeto pelo Método Comparativo, através da adoção da curva de regressão dos valores de descargas máximas observadas em rios do Nordeste, conforme explícito nos sub-itens 3.3.1.3 e 3.3.1.5, apresentados anteriormente;

Pelas considerações expostas, os valores das descargas determinadas, estão apresentados a seguir.

3.3.3 Resultados Obtidos

Os resultados das descargas de projeto, utilizando-se os diversos métodos de cálculo apresentados anteriormente, estão apresentados a seguir, na série de quadros EH- 3.3.23 a EH – 3.3.78.

As descargas de projeto, das bacias 118, 144 e 165 que apresentaram áreas superiores a 2500 Km², foram calculadas pelo Método do HUT e obtidos resultados discrepantes.

Obteve-se através do Método Comparativo, na curva de regressão dos valores de descargas máximas observadas, para as bacias 118, 144 e 165, descargas condizentes com a realidade, pois na rodovia BR-232 paralela ao traçado da Ferrovia em questão existem

VAL	ORES DO NÚMERO DO	DEFLÚVIO - Condição II				
USO DO SOLO E TIPO	TIPO DE ARRANJO	CONDIÇÕES PARA	GRUP	O HIDROI	.ÓGICO D	O SOLO
DE VEGETAÇÃO	DA VEGETAÇÃO	INFILTRAÇÃO	A	В	С	D
RALA OU SOLO DESCOBERTO	S R	-	77	86	91	94
CULTIVO EM FILEIRAS (CANA DE	S R S R	MÁ BOA	72 67	81 78	88 85	91 89
AÇÚCAR, ALGODÃO, MANDIOCA, ETC)	C C CeT CeT	MÁ BOA MÁ BOA	70 65 66 62	79 75 74 71	84 82 80 78	88 86 82 81
VEGETAÇÃO RASTEIRA (CAPIM PANGOLA)	SR SR C C C	MÁ BOA MÁ BOA MÁ BOA	65 63 63 61 61 59	76 75 74 73 72 70	84 83 82 81 79 78	88 87 85 84 82 81
PASTOS DE ROTAÇÃO, LEGUMES, CAPIM, TRIGO	SR SR C C CeT	MÁ BOA MÁ BOA MÁ BOA	66 58 64 55 63 51	77 72 75 69 73 67	85 81 83 78 80 76	89 85 85 83 83
PRADARIAS E PASTAGEM	- - - C C C	MÁ REGULAR BOA MÁ REGULAR BOA	68 49 39 47 25 6	79 69 61 67 59 35	86 79 74 81 75 70	89 84 80 88 83 79
PRADARIAS PERMANENTES	-	-	30	58	71	78
FLORESTAS	- - -	MÁ REGULAR BOA	45 36 25	66 60 55	77 73 70	83 79 77

SR - EM FILEIRAS RETAS
C - EM CURVA DE NÍVEL
C e T - TERRAÇOS EM NÍVEL

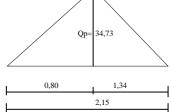
LAVOURA MECANIZADA : BOAS CONDIÇÕES DE INFILTRAÇÃO LAVOURA MANUAL : MÁS CONDIÇOES DE INFILTRAÇÃO

DETERMINAÇÃO DAS CURVAS DE RUN-OFF

				LINHA DE	DIF.DE		TEMPO	COEF.	COEF.	PRECIP	ITAÇÃO	INTEN	SIDADE	VAZ	ZÃO
BACIA	ESTACA	LADO	ÁREA	FUNDO	NÍVEL	DECLIV.	CONC.	ESCOAM	DISTRIB	P50	P100	150	I100	Q50	Q100
4	0 . 4.00	_	(km2)	(km)	(m)	%	(h)	C	n 1.00	(mm)	(mm)	(mm/h)	(mm/h)	(m3/s)	(m3/s)
2	9 + 4,60	E	0,71	1,09	21,0	1,92	0,33	0,25	1,00	56,79	61,58	174,05 262,21	188,73 267,29	8,57 0,95	9,29
3	23 + 5,60 51 + 1,00	E	0,05	0,35	10,0 6,0	2,86 0,58	0,12	0,25 0,25	1,00	30,53 67,30	73,77	136,54			7,57
4		E	0,73	1,03		,	0,49						149,67	6,90	
5	92 + 7,00 123 + 19,00	E	0,29	0,39	5,0 18,0	1,29	0,17	0,25	1,00	40,44	42,62 66,03	235,41 159,83	248,08	4,82	5,08
6	146 + 3,00	E	0,56	1,18 0,62	25,0	1,52 4,04	0,38	0,25 0,25	1,00	60,63 38,32	40,15	242,44	174,07 254,06	6,17 4,28	6,72 4,48
7	166 + 8,00	E	0,25	0,62	26,0	4,42	0,15	0,25	1,00	36,47	38,01	248,11	258,59	2,67	2,78
8	182 + 4,00	E	0,13	0,59	25,0	3,72	0,13	0,25	1,00	40,76	42,98	234,34	247,14	2,88	3,04
9	201 + 9,00	E	0,07	0,45	25,0	5,52	0,17	0,25	1,00	29,13	29,50	264,32	267,65	1,29	1,31
10	217 + 0,00	E	0,11	0,36	15,0	4,21	0,10	0,25	1,00	27,09	27,14	266,29	266,70	1,95	1,95
11	227 + 4,00	E	0,07	0,31	10,0	3,23	0,10	0,25	1,00	26,96	26,98	266,37	266,57	1,22	1,22
12	233 + 7,50	E	0,07	0,25	5,0	2,00	0,10	0,25	1,00	27,43	27,53	266,06	266,99	1,22	1,22
13	262 + 12,00	E	0,05	0,31	10,0	3,22	0,10	0,25	1,00	27,00	27,02	266,35	266.61	0,88	0,88
14	265 + 18,00	E	0,03	0,35	10,0	2,86	0,10	0,25	1,00	30,53	31,12	262,21	267,29	0,56	0,57
15	288 + 0,00	E	0,03	0,33	15,0	3,75	0,12	0,25	1,00	30,49	31,07	262,29	267,31	1,43	1,46
16	294 + 10,00	E	0,04	0,35	10,0	2,86	0,12	0,25	1,00	30,53	31,12	262,21	267,29	0,74	0,76
17	301 + 8,00	E	0,04	0,33	10,0	2,50	0,12	0,25	1,00	34,46	35,68	253,66	262,64	0,74	0,76
18	313 + 7,00	E	0,19	0,31	8,0	2,62	0,11	0,25	1,00	28,71	29,01	264,84	267,60	3,45	3,49
19	345 + 12,40	E	0,28	0,39	16,0	4,07	0,11	0,25	1,00	29,32	29,71	264,07	267,65	5,14	5,21
20	365 + 9,00	E	0,03	0,25	5,0	2,00	0,10	0,25	1,00	27,43	27,53	266,06	266,99	0,55	0,56
21	366 + 11,00	E	0,04	0,30	5,0	1,67	0,13	0,25	1,00	32,80	33,75	257,71	265,20	0,72	0,74
22	373 + 16,00	E	0,03	0,28	5,0	1,79	0,12	0,25	1,00	30,77	31,39	261,81	267,15	0,55	0,56
23	377 + 3,30	E	0,11	0,51	25,0	4,91	0,13	0,25	1,00	32,56	33,47	258,25	265,50	2,04	2,10
24	387 + 16,00	E	0,38	0,99	118,0	11,96	0,15	0,25	1,00	36,81	38,41	247,10	257,81	6,51	6,80
25	436 + 0,00	E	0,46	1,28	60,0	4,68	0,26	0,25	1,00	51,14	55,03	195,64	210,51	6,24	6,72
26	452 + 9,00	E	0,14	0,65	72,0	11,06	0,11	0,25	1,00	29,43	29,85	263,91	267.64	2,56	2,60
27	469 + 13,50	E	1,02	1,81	44,0	2,43	0,44	0,25	1,00	64,38	70,38	146,49	160.15	10,38	11,35
28	487 + 8,00	E	0,23	0,83	29,0	3,49	0,21	0,25	1,00	45,58	48,57	216,89	231,16	3,52	3,75
29	510 + 12,00	Е	0,12	0,47	20,0	4,23	0,13	0,25	1,00	32,62	33,54	258,11	265,43	2,18	2,24
30	525 + 16,00	Е	1,93	2,92	43,0	1,47	0,77	0,25	0,94	78,69	86,99	102,11	112,87	12,84	14,19
31	534 + 18,00	E	0,12	0,50	40,0	8,00	0,10	0,25	1,00	27,43	27,53	266,06	266,99	2,28	2,28
32	596 + 15,40	E	0,23	0,84	65,0	7,71	0,16	0,25	1,00	38,04	39,83	243,33	254,79	3,83	4,01
34	642 + 16,70	Е	0,56	0,66	50,0	7,59	0,13	0,25	1,00	33,35	34,39	256,43	264,44	9,95	10,26
35	701 + 6,00	Е	0,13	0,50	40,0	8,00	0,10	0,25	1,00	27,43	27,53	266,06	266,99	2,36	2,37
36	713 + 13,00	Е	0,20	0,56	55,0	9,87	0,10	0,25	1,00	27,51	27,61	266,01	267,04	3,77	3,79
37	743 + 10,00	Е	0,09	0,55	50,0	9,09	0,11	0,25	1,00	28,05	28,24	265,54	267,37	1,63	1,64
38	754 + 0,00	Е	0,10	0,65	55,0	8,46	0,12	0,25	1,00	32,03	32,86	259,38	266,10	1,81	1,85
39	779 + 16,00	Е	0,08	0,66	60,0	9,09	0,12	0,25	1,00	31,62	32,39	260,20	266,50	1,45	1,49
40	804 + 18,00	Е	0,13	0,45	20,0	4,44	0,12	0,25	1,00	31,13	31,82	261,15	266,91	2,40	2,45
41	831 + 8,50	Е	2,55	3,00	67,0	2,24	0,67	0,25	0,91	75,06	82,77	112,31	123,85	18,12	19,99
42	838 + 3,50	Е	0,03	0,35	0,1	0,04	0,61	0,25	1,00	72,55	79,86	119,80	131,88	0,25	0,27
43	863 + 16,70	D	0,13	0,69	25,0	3,64	0,18	0,25	1,00	41,39	43,72	232,13	245,18	2,12	2,24
44	934 + 15,40	Е	0,24	0,94	14,0	1,48	0,32	0,25	1,00	56,46	61,19	175,31	190,02	2,87	3,11
45	944 + 12,00	Е	0,03	0,25	5,0	2,00	0,10	0,25	1,00	27,43	27,53	266,06	266,99	0,55	0,55
						_ ,						1	EH - 3.3.23		
MAIA N	MELO ENGENHARIA I	TDA.		MÉTODO RACIONAL								EH - 3.3.23			

				LINHA DE	DIF.DE		ТЕМРО	COEF.	COEF.	PRECIP	ITAÇÃO	INTEN	SIDADE	VAZ	ZÃO
BACIA	ESTACA	LADO	ÁREA	FUNDO	NÍVEL	DECLIV.	CONC.	ESCOAM	DISTRIB	P50	P100	150	I100	Q50	Q100
40	050 . 0.00	_	(km2)	(km)	(m)	%	(h)	C	n 1.00	(mm)	(mm)	(mm/h)	(mm/h)	(m3/s)	(m3/s)
46	958 + 0,00	E D	0,03	0,33	8,0	2,39	0,12	0,25	1,00	31,42	32,15	260,60	266,68	0,56	0,57
49	1038 + 7,00	D	0,34	0,92	26,0 16,0	2,82 3,24	0,25	0,25	1,00	49,63 36,05	53,28 37,53	201,44	259,51	4,69	5,04 7,05
50	1043 + 4,00	D	0,39	0,49	10,0		0,14	0,25	1,00	44,27	47,06	221,76	235,73	6,77	10,38
51	1161 + 9,00	D			9,0	1,79					53,84	199,57	214,40	9,76	-
52	1229 + 12,00	D	0,46	0,66	10,0	1,37 2,63	0,25	0,25	1,00	50,12 33,00	33,98	257,25	264,94	6,38 4,82	6,85 4,96
53	1254 + 0,00	D	0,27	0,55	12,0	2,03	0,13	0,25	1,00	41,78	44,17	230,75	243,95	2,19	2,32
54	1261 + 18,00	D	0,14	0,53	12,0	2,20	0,18	0,25	1,00	40,90	43,15	233,83	246,69	2,19	2,32
55	1287 + 18,50	D	0,14	0,45	13,0	2,88	0,17	0,25	1,00	35,40	36,77	251,15	260,87	4,31	4,48
56	1322 + 16,00	D	0,25	0,43	10,0	1,41	0,14	0,25	1,00	51,41	55,34	194,59	209,47	3,35	3,61
57	1364 + 15,00	E	0,29	0,56	14,0	2,50	0,18	0,25	1,00	41,07	43,35	233,24	246,17	4,69	4,95
58	1385 + 3,20	E	0,04	0,28	4,0	1,41	0,13	0,25	1,00	33,27	34,29	256,63	264,56	0,69	0,71
59	1402 + 7,00	E	0,24	0,79	8,0	1,02	0,32	0,25	1,00	56,61	61,37	174,74	189.44	2,92	3,17
60	1402 + 7,00	E	0,57	1,18	15,0	1,02	0,32	0,25	1,00	62,37	68,06	153,55	167,54	6,11	6,67
61	1443 + 11,90	E	0,13	0,54	7,0	1,29	0,22	0,25	1,00	46,98	50,21	211,57	226,09	1,92	2,05
62	1473 + 8,00	E	0,02	0,20	2,0	1,00	0,11	0,25	1,00	29,85	30,33	263,30	267,56	0,37	0,37
63	1514 + 5,00	D	0,11	0,30	5,0	1,66	0,13	0,25	1,00	33,00	33,99	257,24	264,93	1,92	1,98
64	1539 + 9,00	D	0,56	1,08	13,0	1,20	0,39	0,25	1,00	61,11	66,59	158,09	172,27	6,18	6,74
65	1572 + 9,00	D	0,93	1,62	24,0	1,48	0,49	0,25	1,00	67,09	73,53	137,24	150,42	8,82	9,67
66	1583 + 3,75	D	0,81	1,58	20,0	1,27	0,51	0,25	1,00	68,02	74,61	134,16	147,15	7,57	8,30
67	1669 + 6,50	Е	0,16	0,45	20,0	4,49	0,12	0,25	1,00	30,81	31,45	261,73	267,13	2,98	3,04
68	1685 + 0,00	Е	0,06	0,34	12,0	3,49	0,11	0,25	1,00	28,21	28,43	265,38	267,45	1,17	1,18
69	1707 + 14,00	Е	0,51	1,00	20,0	1,99	0,30	0,25	1,00	54,71	59,17	181,92	196,74	6,39	6,91
70	1719 + 10,00	Е	0,02	0,35	14,0	4,00	0,10	0,25	1,00	27,23	27,30	266,20	266,82	0,28	0,28
71	1720 + 17,00	Е	0,06	0,31	10,0	3,23	0,10	0,25	1,00	26,96	26,98	266,37	266,57	1,06	1,06
72	1739 + 10,00	D	0,04	0,36	15,0	4,17	0,10	0,25	1,00	27,38	27,47	266,10	266,95	0,71	0,71
73	1748 + 11,65	Е	0,65	1,19	35,0	2,94	0,30	0,25	1,00	54,27	58,65	183,63	198,48	8,27	8,94
74	1757 + 15,00	Е	0,03	0,40	20,0	5,00	0,10	0,25	1,00	27,66	27,79	265,88	267,15	0,52	0,52
75	1767 + 15,00	Е	0,05	0,36	15,0	4,14	0,10	0,25	1,00	27,59	27,71	265,95	267,10	0,88	0,88
76	1790 + 0,25	Е	0,64	0,36	15,0	4,17	0,10	0,25	1,00	27,38	27,47	266,10	266,95	11,83	11,86
77	1799 + 18,70	Е	1,38	1,79	40,0	2,24	0,45	0,25	0,97	64,94	71,04	144,53	158,10	13,44	14,70
78	1831 + 0,00	D	0,03	0,30	8,0	2,67	0,11	0,25	1,00	28,19	28,40	265,41	267,44	0,48	0,49
79	1851 + 19,00	Е	0,88	1,33	36,0	2,70	0,33	0,25	1,00	57,34	62,22	171,97	186,60	10,45	11,34
81	1943 + 11,60	D	0,36	1,27	25,0	1,97	0,36	0,25	1,00	59,47	64,69	164,05	178,45	4,09	4,44
82	1957 + 10,00	D	0,11	0,55	27,0	4,87	0,14	0,25	1,00	34,30	35,50	254,08	262,92	1,98	2,04
83	1975 + 6,00	D	0,09	0,54	15,0	2,77	0,16	0,25	1,00	39,40	41,41	238,92	251,11	1,53	1,61
84	1987 + 17,40	D	0,36	0,86	22,0	2,56	0,24	0,25	1,00	49,28	52,87	202,79	217,57	5,01	5,38
85	2000 + 15,00	D	0,01	0,32	11,0	3,44	0,10	0,25	1,00	26,96	26,98	266,37	266,57	0,24	0,24
86	2003 + 15,00	D	0,03	0,41	17,0	4,15	0,11	0,25	1,00	29,98	30,49	263,10	267,52	0,50	0,51
87	2010 + 4,50	D	0,02	0,56	16,0	2,86	0,17	0,25	1,00	39,76	41,82	237,74	250,10	0,39	0,41
88	2022 + 12,50	D	0,03	0,31	10,0	3,23	0,10	0,25	1,00	26,96	26,98	266,37	266,57	0,65	0,65
89	2031 + 6,00	D	0,02	0,31	10,0	3,23	0,10	0,25	1,00	26,96	26,98	266,37	266,57	0,28	0,28
91	2088 + 17,00	Е	0,08	0,36	15,0	4,14	0,10	0,25	1,00	27,58	27,70	265,95	267,10	1,54	1,54
92	2103 + 15,00	Е	0,08	0,39	20,0	5,14	0,10	0,25	1,00	26,86	26,86	266,43	266,47	1,55	1,55
MAIA N	IELO ENGENHARIA L	TDA.	MÉTODO RACIONAL							EH - 3.3.24					

				LINHA DE	DIF.DE		TEMPO	COEF.	COEF.	PRECIP	ITAÇÃO	INTEN	SIDADE	VAZ	ZÃO
BACIA	ESTACA	LADO	ÁREA	FUNDO	NÍVEL	DECLIV.	CONC.	ESCOAM	DISTRIB	P50	P100	150	I100	Q50	Q100
02	2427 . 42.00	_	(km2)	(km)	(m)	%	(h)	C 0.05	n 1.00	(mm)	(mm)	(mm/h)	(mm/h)	(m3/s)	(m3/s)
93	2127 + 12,00 2149 + 8,00	E D	0,05	0,32	10,0	3,13	0,10	0,25	1,00	27,90	28,06	265,68 266,10	267,30 266,95	0,91	0,91
95	2149 + 8,00	D	0,07	0,36	15,0 17,0	4,17	0,10	0,25 0,25	1,00	27,38 35,65	37,06	250,45	,	1,35	1,36 2,75
96	2212 + 14,00	E	0,15	0,36	15,0	3,42 4,17	0,14	0,25	1,00	27,38	27,47	266,10	260,35 266,95	2,65	1,13
97	2212 + 14,00	E	0,06	0,36	10,0		0,10	0,25	1,00	34,29	35,49	254,10	262,94	1,13 2,96	3,06
98	2283 + 19,00	D	0,17	0,40	15,0	2,51 1,67	0,13	0,25	1,00	54,36	58,76	183,27	198,11	10,99	11,88
99	2312 + 8,00	D	1,97	1,76	25,0	1,42	0,53	0,25	0,93	69,02	75,77	130,90	143,69	16,76	18,40
100	2371 + 11,00	D	1,27	1,76	27,0	1,42	0,53	0,25	0,93	71,61	78,77	122,68	134,94	10,76	11,60
101	2404 + 15,40	D	0,04	0,32	10,0	3,13	0,10	0,25	1,00	27,90	28,06	265,68	267,30	0,71	0,71
102	2413 + 5,00	D	0,13	0,52	16,0	3,22	0,15	0,25	1,00	36,23	37,73	248,81	259,13	2,31	2,41
103	2424 + 18,00	D	0,06	0,32	10,0	3,14	0,10	0,25	1,00	27,73	27,88	265,82	267,20	1,06	1,07
104	2430 + 2,50	D	0,20	0,67	13,0	1,94	0,22	0,25	1,00	47,08	50,32	211,21	225,73	3,00	3,21
104	2452 + 0,00	D	0,20	0,67	15,0	2,79	0,22	0,25	1,00	39,22	41,20	239,53	251,62	2,36	2,48
105	2480 + 7,00	D	0,09	0,34	10,0	2,79	0,10	0,25	1,00	30,53	31,12	262,21	267,29	1,63	1,66
107	2555 + 0,00	D	0,09	0,59	5,0	0,84	0,12	0,25	1,00	52,90	57,07	188,86	203,75	1,96	2,11
108	2566 + 3,00	D	0,14	0,47	5,0	1,06	0,21	0,25	1,00	46,07	49,15	215,03	229,39	2,09	2,23
109	2587 + 0,00	D	0,14	0,47	14,0	3,24	0,21	0,25	1,00	33,39	34,44	256,32	264,37	1,47	1,52
110	2603 + 16,00	E	1,75	1,69	27,0	1,60	0,49	0,25	0,95	67,17	73,63	136,97	150,12	15,71	17,22
111	2643 + 17,00	E	0,29	0,25	5,0	2,00	0,10	0,25	1,00	27,43	27,53	266,06	266,99	5,40	5,42
112	2746 + 4,00	D	0,16	0,35	11,0	3,15	0,11	0,25	1,00	29,56	30,00	263,73	267,62	2,93	2,97
113	2766 + 5,00	D	0,05	0,33	12,0	3,60	0,10	0,25	1,00	27,32	27,40	266,14	266,90	1,01	1,01
114	2779 + 5,00	E	0,55	1,36	24,0	1,77	0,40	0,25	1,00	61,87	67,48	155,34	169,41	5,97	6,51
115	2787 + 1,40	E	0,03	0,25	5,0	1,97	0,10	0,25	1,00	27,82	27,98	265,75	267,25	0,59	0,59
116	2825 + 5,00	D	0,12	0,39	18,0	4,65	0,10	0,25	1,00	27,71	27,85	265,85	267,18	2,14	2,15
119	3094 + 14,00	D	0,89	1,73	47,0	2,72	0,41	0,25	1,00	62,37	68,05	153,56	167,55	9,52	10,39
120	3130 + 10,00	D	1,55	2,42	42,0	1,73	0,63	0,25	0,96	73,39	80,84	117,24	129,14	12,08	13,30
121	3188 + 0,00	E	0,37	0,48	28,0	5,85	0,11	0,25	1,00	29,63	30,07	263,64	267,61	6,77	6,88
123	3240 + 5,00	D	0,03	0,25	5,0	2,00	0,10	0,25	1,00	27,43	27,53	266,06	266,99	0,55	0,56
124	3256 + 12,20	D	0,19	0,37	14,0	3,77	0,11	0,25	1,00	28,97	29,31	264.53	267,64	3,49	3,53
125	3286 + 5,30	D	0,40	0,57	24,0	4,21	0,15	0,25	1,00	36,27	37,78	248,69	259,03	6,91	7,20
126	3317 + 7,70	D	1,84	2,09	36,0	1,72	0,56	0,25	0,94	70,55	77,54	126.00	138.49	15,18	16,68
128	3427 + 4,30	D	1,15	1,69	31,0	1,84	0,46	0,25	0,99	65,73	71,95	141,85	155,27	11,15	12,21
129	3442 + 7,50	D	0,26	0,40	20,0	5,00	0,10	0,25	1,00	27,66	27,79	265,88	267,15	4,79	4,81
130	3471 + 13,90	D	0,78	1,85	36,0	1,95	0,49	0,25	1,00	66,92	73,33	137,81	151,02	7,45	8,16
131	3480 + 17,80	D	0,06	0,32	10,0	3,13	0,10	0,25	1,00	27,90	28,06	265,68	267,30	1,11	1,12
133	3558 + 0,00	D	0,10	0,36	15,0	4,17	0,10	0,25	1,00	27,38	27,47	266,10	266,95	1,92	1,93
134	3561 + 12,90	D	1,19	1,93	33,0	1,71	0,53	0,25	0,98	69,12	75,88	130,58	143,35	10,58	11,61
135	3593 + 7,00	D	0,17	0,59	9,0	1,52	0,22	0,25	1,00	47,14	50,38	211,00	225,53	2,46	2,63
136	3625 + 16,70	D	0,10	0,36	11,0	3,02	0,12	0,25	1,00	30,75	31,38	261,83	267,16	1,90	1,94
138	3717 + 15,80	D	0,31	1,16	24,0	2,07	0,33	0,25	1,00	57,14	61,99	172,72	187,37	3,70	4,02
139	3728 + 1,80	D	0,70	1,54	30,0	1,95	0,42	0,25	1,00	63,28	69,11	150,32	164,17	7,31	7,99
140	3759 + 15,40	D	1,22	1,77	35,0	1,98	0,47	0,25	0,98	65,96	72,22	141,05	154,43	11,74	12,86
141	3784 + 2,00	D	0,23	0,86	19,0	2,20	0,26	0,25	1,00	50,80	54,64	196,93	211,78	3,14	3,37
142	3815 + 9,00	E	0,40	0,40	20,0	5,00	0,10	0,25	1,00	27,66	27,79	265,88	267,15	7,32	7,35
		<u> </u>		, -				<u> </u>			,	I			
MAIA N	IELO ENGENHARIA I	TDA.	MÉTODO RACIONAL								EH - 3.3.25				


				LINHA DE	DIF.DE		TEMPO	COEF.	COEF.	PRECIP	ITAÇÃO	INTEN	SIDADE	VAZ	ZÃO
BACIA	ESTACA	LADO	ÁREA	FUNDO	NÍVEL	DECLIV.	CONC.	ESCOAM	DISTRIB	P50	P100	150	I100	Q50	Q100
440	2000 . 4.45	_	(km2)	(km)	(m)	% 4.52	(h)	C	n	(mm)	(mm)	(mm/h)	(mm/h)	(m3/s)	(m3/s)
143	3889 + 4,45 3948 + 10,00	D E	1,72	2,55	39,0	1,53	0,68	0,25	0,95	75,67	83,48	110,55	121,96	12,53	13,83
145	3948 + 10,00 4026 + 16,40	D	0,36	0,90	54,0 25,0	6,00	0,18	0,25	1,00	41,81 28,94	44,20 29,28	230,67 264,56	243,88	5,72	6,05
147	4056 + 5,70	D	0,07	0,45	24,0	5,56	0,11	0,25		56,13	60,82	176,53	267,64	1,24	1,25 6,88
147	4120 + 18,20	E	0,52	1,12	59,0	2,15 5,92	0,32	0,25	1,00	43,94	46,67	222,99	191,26 236,87	6,35 8,21	8,72
150	4163 + 7,30	E	0,33	0,64	19,0	2,99	0,20	0,25	1,00	41,77	44,16	230,78	243,98	2,83	2,99
151	4211 + 11,30	D	0,18	0,84	33,0	4,06	0,18	0,25	1,00	43,65	46,33	224,05	237,85	4,19	4,45
151	4239 + 16,15	D	0,27	1,50	72,0	4,79	0,19	0,25	1,00	54,06	58,41	184,42	199,28	9,66	10,44
153	4250 + 1,90	D	0,02	0,26	5,0	1,92	0,23	0,25	1,00	28,58	28,86	264,98	267,57	0,43	0,43
155	4307 + 8,30	E	0,02	0,25	5,0	2,00	0,10	0,25	1,00	27,43	27,53	266,06	266,99	3,14	3,15
156	4532 + 10,50	D	7,65	3,89	32,0	0,82	1,20	0,25	0,82	91,50	101,64	76,10	84,54	32,98	36,64
157	4608 + 10,00	D	0,53	1,45	24,0	1,66	0,43	0,25	1,00	63,70	69,59	148,87	162,65	5,45	5,95
158	4623 + 15,40	D	0,11	0,37	15,0	4,05	0,11	0,25	1,00	28,19	28,41	265,40	267,44	2,02	2,04
159	4660 + 18,00	E	2,07	2,90	13,0	0,45	1,21	0,25	0,93	91,71	101,89	75,79	84,20	10,12	11,25
160	4683 + 14,70	E	0,51	1,50	21,0	1,40	0,47	0,25	1,00	66,15	72,44	140,40	153,75	5,00	5,47
161	4706 + 5,10	E	0,27	0,86	22,0	2,57	0,24	0,25	1,00	49,11	52,67	203,46	218,22	3,83	4,11
162	4724 + 0,00	E	0,07	0,55	21,0	3,80	0,15	0,25	1,00	36,71	38,29	247,38	258,03	1,24	1,30
163	4733 + 7,00	D	0,13	0,84	18,0	2,15	0,25	0,25	1,00	50,37	54,14	198,59	213,43	1,75	1,88
164	4740 + 2,30	D	0,18	0,45	10,0	2,22	0,16	0,25	1,00	37,93	39,70	243,68	255,07	3,10	3,25
166	4832 + 7,70	D	0,03	0,95	19,0	2,00	0,29	0,25	1,00	53,56	57,84	186,32	201,19	0,43	0,46
167	4861 + 12,50	D	0,23	0,74	20,0	2,71	0,21	0,25	1,00	45,72	48,74	216,36	230,65	3,48	3,71
168	4884 + 7,20	D	1,04	0,96	16,0	1,67	0,31	0,25	1,00	55,54	60,13	178,77	193,55	12,87	13,94
170	5034 + 1,80	Е	0,74	1,16	21,0	1,82	0,35	0,25	1,00	58,41	63,46	167,97	182,50	8,58	9,33
171	5061 + 13,90	Е	0,47	0,98	17,0	1,73	0,31	0,25	1,00	55,68	60,29	178,26	193,03	5,78	6,26
172	5086 + 8,00	Е	0,06	0,44	8,0	1,80	0,17	0,25	1,00	39,67	41,73	238,01	250,33	1,01	1,07
173	5103 + 2,30	Е	0,23	0,78	15,0	1,93	0,25	0,25	1,00	50,03	53,74	199,90	214,73	3,16	3,39
174	5106 + 6,80	Е	0,18	0,69	16,0	2,33	0,21	0,25	1,00	45,74	48,76	216,29	230,59	2,73	2,91
175	5130 + 12,10	Е	0,10	0,53	24,0	4,53	0,13	0,25	1,00	34,13	35,30	254,52	263,21	1,71	1,77
176	5133 + 19,45	Е	0,47	0,70	24,0	3,43	0,19	0,25	1,00	42,33	44,81	228,80	242,20	7,46	7,90
177	5366 + 1,00	Е	0,11	0,49	11,0	2,24	0,17	0,25	1,00	39,61	41,65	238,23	250,52	1,85	1,95
178	5373 + 12,10	D	0,58	1,24	25,0	2,02	0,35	0,25	1,00	58,74	63,84	166,77	181,26	6,72	7,30
179	5391 + 14,90	D	0,73	1,48	35,0	2,37	0,38	0,25	1,00	60,59	65,99	159,97	174,22	8,08	8,80
180	5410 + 13,00	D	0,48	1,57	28,0	1,78	0,44	0,25	1,00	64,63	70,68	145,60	159,22	4,85	5,30
181	5435 + 6,20	D	0,17	0,79	20,0	2,53	0,23	0,25	1,00	47,77	51,12	208,59	223,21	2,48	2,65
183	5499 + 0,40	Е	0,22	1,02	34,0	3,35	0,25	0,25	1,00	49,90	53,59	200,39	215,21	3,09	3,32
184	5514 + 11,10	E	0,10	0,55	25,0	4,55	0,14	0,25	1,00	34,80	36,07	252,78	262,03	1,81	1,87
185	5527 + 2,70	Е	0,23	0,93	32,0	3,45	0,23	0,25	1,00	47,82	51,18	208,38	223,01	3,35	3,58
186	5541 + 2,10	E	0,36	0,75	23,0	3,08	0,20	0,25	1,00	44,68	47,54	220,23	234,30	5,44	5,79
187	5592 + 1,20	D	0,23	0,57	14,0	2,45	0,18	0,25	1,00	41,63	43,99	231,30	244,45	3,72	3,93
188	5743 + 18,80	D	8,46	2,60	40,0	1,54	0,69	0,25	0,81	75,92	83,77	109,84	121,20	52,10	57,49
190	6043 + 13,00	D	4,74	1,59	9,0	0,56	0,70	0,25	0,86	76,20	84,10	109,02	120,32	30,70	33,89
191	6115 + 18,30	E	0,14	0,64	35,0	5,48	0,14	0,25	1,00	35,93	37,38	249,67	259,77	2,51	2,61
192	6123 + 12,20	D	0,66	1,22	25,0	2,04	0,35	0,25	1,00	58,39	63,44	168,05	182,58	7,69	8,36
193	6140 + 9,90	D	1,27	1,53	137,0	8,96	0,23	0,25	0,98	48,25	51,67	206,76	221,44	17,75	19,01
MAIA N	IELO ENGENHARIA L	TDA.	MÉTODO RACIONAL							EH - 3.3.26					

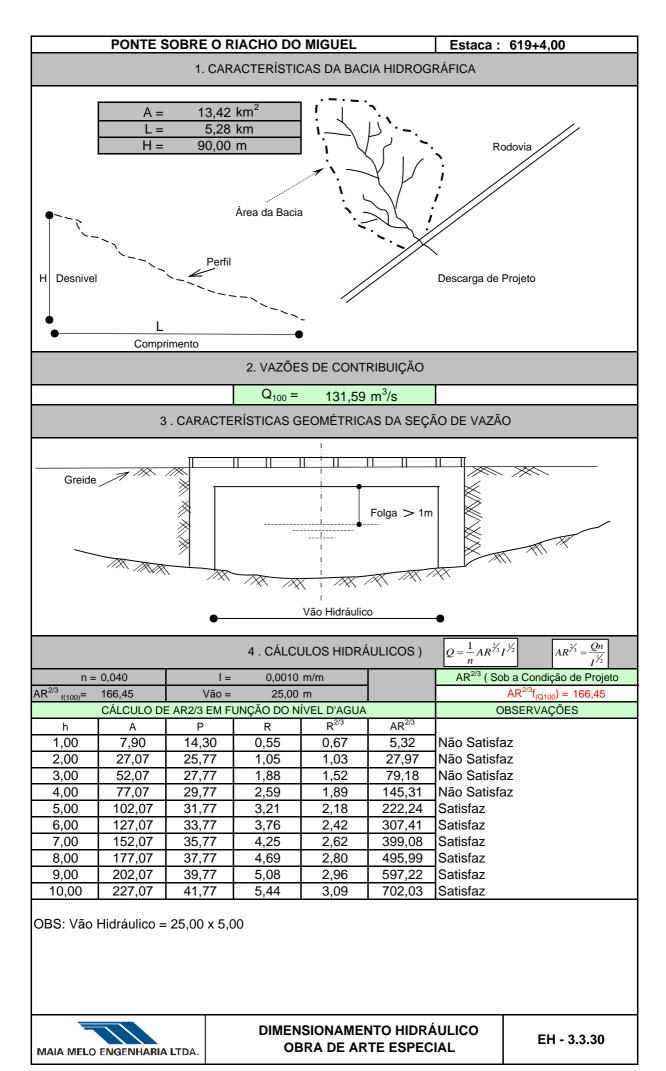
													INTEN	SIDADE	VAZ	ZÃO	
BACIA	ES.	TAC	A	LADO	ÁREA						DISTRIB			150	I100	Q50	Q100
					(km2)	(km)	(m)	%	(h)	С	n	(mm)	(mm)		(mm/h)		(m3/s)
194	6173			D	0,51	1,27	135,0	10,60	0,19	0,25	1,00	43,02	45,61		239,93		8,53
195	6224			D	0,92	1,54	131,0	8,51	0,24	0,25	1,00	48,89	52,42		219,02		13,97
196	6252			D	1,95	2,12	130,0	6,14	0,35	0,25	0,94	58,32	63,36		182,85	21,29	23,12
197	6349	+	15,65	D	2,35	2,26	22,0	0,98	0,74	0,25	0,92	77,64	85,77	104,98	115,96	15,76	17,41
								-									
								<u> </u>									
					MÉTODO RACIONAL						EH - 3.3.27						
MAIA N	IELO ENG	ENI	HARIA L	TDA.		MÉTODO RACIONAL									EH - 3.3.27		

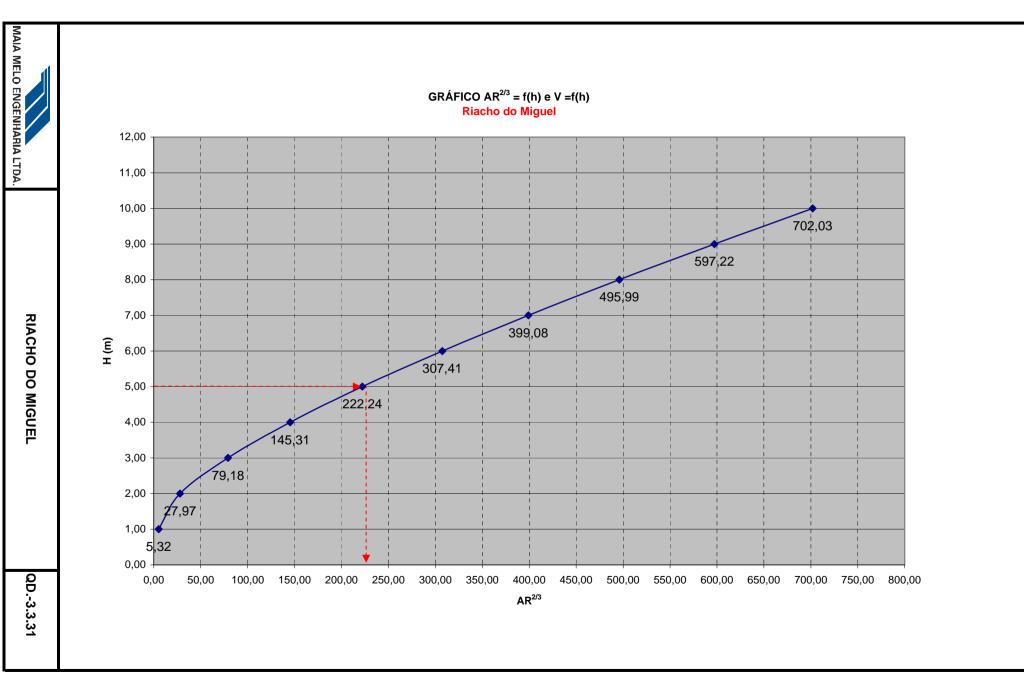
MA					LINHA DE	DIFERENÇA	TEMPO DE	CURVA	PRECIPI	ITAÇÃO	PRECIP EFE	ITAÇAO TIVA	DESC	ARGA	
MAIA MELO ENGENHARIA LTDA.	BACIA	ESTACA	LADO	ÁREA	FUNDO	DE NÍVEL	CONCENT.	CN	P50	P100	R50	R100	Q50	Q100	OBSERVAÇÕES
5 9				(km)	(km)	(m)	(h)		(mm)	(mm)	(mm/h)	(mm/h)	(m3/s)	(m3/s)	
JGENH	33	619 + 4,00	Е	13,42	5,28	90,00	1,15	75	77,32	84,69	25,14	30,12	55,53	66,54	
IARIA	122	3215 + 14,00	D	17,19	7,19	100,00	1,58	75	86,43	94,83	31,33	37,33	64,59	76,95	
LTDA.	154	4259 + 17,90	D	11,17	5,58	37,00	1,72	75	89,03	97,72	33,16	39,45	40,60	48,30	
MÉTODO DO HIDROGRAMA SINTÉTICO TRIANGULAR Q															
QD - 3.3.28															

Ferrovia:	Transnordestina
Rio / Riacho:	Riacho do Miguel
Estaca:	619+4,00
Área da bacia (km²):	13,42
Linha de Fundo (km):	5,28
Diferença de Nível (m):	90
Declividade (m/km):	17,05
Tempo de Concentração (h):	1,15
Duração Total (h) :	1,15
Coeficiente de Redução:	1,00
Nº Curva Complexo Solo-vegetação :	80
Nome do Posto :	Parnamirim
Tempo de Recorrência (anos):	100

Hidrograma	Unitário	
Dt < Tc/5 =	0,23	h
Tp=Dt/2+0,60Tc =	0,80	h
Tr=1,67Tp =	1,34	h
Tb=2,67Tp =	2,15	h
Qp=2,08 A/Tp	34,73	m3/s/cm
	\land	

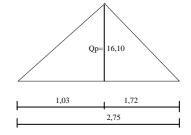
i	Ti	Se Ti <tp< th=""><th>Se Ti>Tp</th><th>i</th><th>Ti</th><th>Po</th><th>P=PoK</th><th>$Ri = [P-5080/N)+50.8]^2$</th><th>qi=(Ri-(Ri-1)/10</th></tp<>	Se Ti>Tp	i	Ti	Po	P=PoK	$Ri = [P-5080/N)+50.8]^2$	qi=(Ri-(Ri-1)/10
	(h)	$\mu i = \mu(Tp)Ti/Tp$	$\mu i = \mu(Tp)(Tb-Ti)/Tr$		(h)	(mm)	(mm)	P+(20320/N-203,2	(cm)
1	0,23	9,92	0,00	1	0,23	51,19	51,19	14,53	1,45
2	0,46	19,85	0,00	2	0,46	71,68	71,68	28,40	1,39
3	0,69	29,77	0,00	3	0,69	83,67	83,67	37,46	0,91
4	0,92	0,00	31,76	4	0,92	92,17	92,17	44,18	0,67
5	1,15	0,00	25,82	5	1,15	99,90	99,90	50,46	0,63
6	1,38	0,00	19,87	6	1,38	106,79	106,79	56,17	0,57
7	1,61	0,00	13,93	7	1,61	112,61	112,61	61,08	0,49
8	1,84	0,00	7,99	8	1,84	117,65	117,65	65,39	0,43
9	2,07	0,00	2,05	9	2,07	122,10	122,10	69,22	0,38
10	2,30	0,00	0,00	10	2,30	126,08	126,08	72,68	0,35


CÁLCULO DOS VALORES


Q-=miq1=mi-1q2+mi-2q3+...

i	μi	q1=	q2=	q3=	q4=	q5=	q6=	q7=	q8=	q9=	q10=	Q
		1,45	1,39	0,91	0,67	0,63	0,57	0,49	0,43	0,38	0,35	(m3/s)
1	9,92	14,42										14,42
2	19,85	28,83	13,77									42,60
3	29,77	43,25	27,54	8,98								79,77
4	31,76	46,14	41,30	17,96	6,67							112,07
5	25,82	37,51	44,07	26,94	13,34	6,23						128,09
6	19,87	28,88	35,82	28,74	20,00	12,47	5,67					131,59
7	13,93	20,24	27,58	23,37	21,34	18,70	11,34	4,87				127,45
8	7,99	11,61	19,33	17,99	17,35	19,95	17,02	9,74	4,27			117,27
9	2,05	2,98	11,09	12,61	13,36	16,22	18,15	14,62	8,54	3,80		101,37
10	0,00	0,00	2,84	7,23	9,36	12,49	14,76	15,59	12,81	7,61		82,70
11			0,00	1,86	5,37	8,75	11,36	12,68	13,67	11,41		65,09
12				0,00	1,38	5,02	7,96	9,76	11,11	12,17		47,40
13					0,00	1,29	4,57	6,84	8,55	9,89		31,15
14						0,00	1,17	3,92	6,00	7,62		18,71
15							0,00	1,01	3,44	5,34		9,79
16								0,00	0,88	3,06		3,94
17									0,00	0,79		0,79
										0,00		0,00
	=											

MAIA MELO ENGENHARIA LTDA.

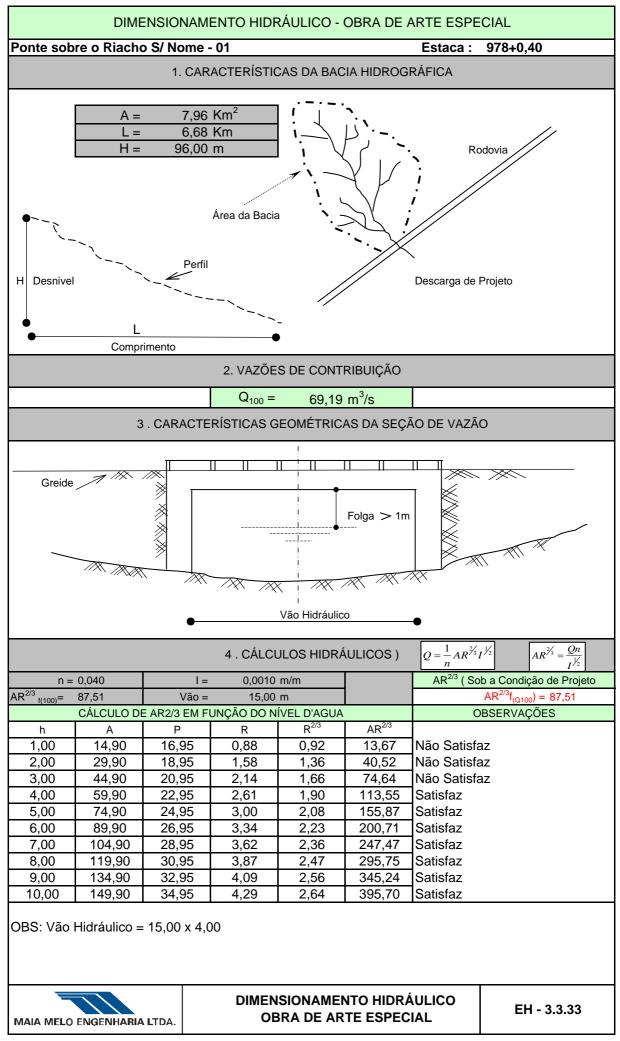

CÁLCULO DA DESCARGA DE PROJETO - HUT

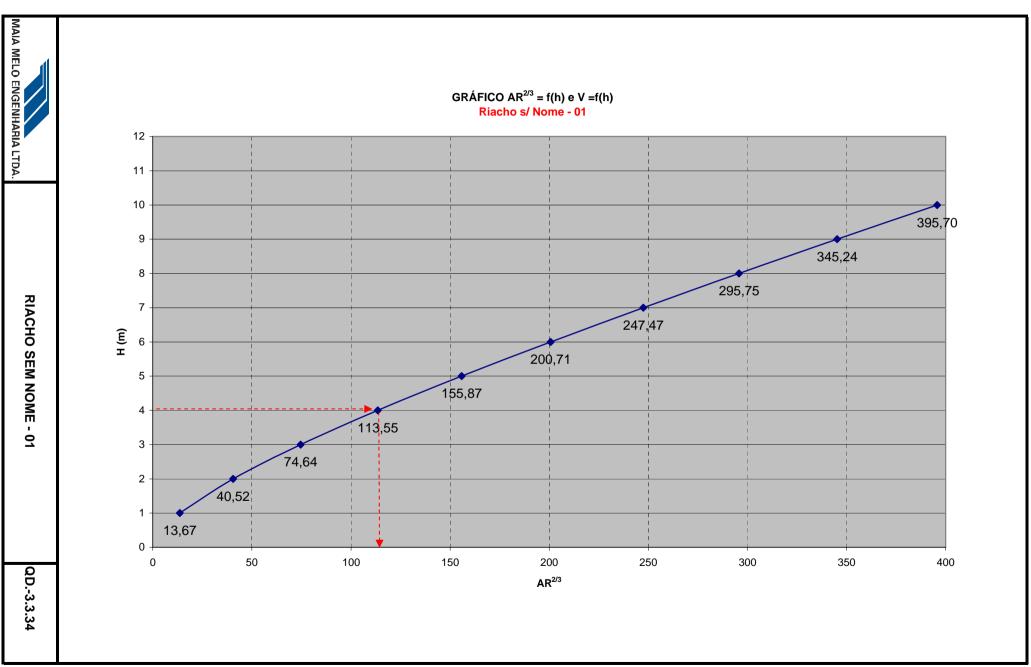
Ferrovia: Transnordestina Rio / Riacho: Riacho S/ Nome -01 Estaca: 978+0,40 Área da bacia (km²): 7,96 Linha de Fundo (km): 6,68 Diferença de Nível (m): 96 Declividade (m/km): 14,37 Tempo de Concentração (h): 1,47 Duração Total (h): 1,47 Coeficiente de Redução: 1,00 Nº Curva Complexo Solo-vegetação : 80 Nome do Posto: Parnamirim Tempo de Recorrência (anos): 100

Hidrograma U	nitário	
Dt < Tc/5 =	0,29	h
Tp=Dt/2+0,60Tc =	1,03	h
Tr=1,67Tp =	1,72	h
Tb=2,67Tp=	2,75	h
Qp=2,08 A/Tp	16,10	m3/s/cm

i	Ti	Se Ti <tp< th=""><th>Se Ti>Tp</th><th>i</th><th>Ti</th><th>Po</th><th>P=PoK</th><th>$Ri = [P-5080/N)+50,8]^2$</th><th>qi=(Ri-(Ri-1)/10</th></tp<>	Se Ti>Tp	i	Ti	Po	P=PoK	$Ri = [P-5080/N)+50,8]^2$	qi=(Ri-(Ri-1)/10
	(h)	μi=μ(Tp)Ti/Tp	$\mu i {=} \mu (Tp)(Tb{-}Ti)/Tr$		(h)	(mm)	(mm)	P+(20320/N-203,2	(cm)
1	0,29	4,60	0,00	1	0,29	58,49	58,49	19,19	1,92
2	0,59	9,20	0,00	2	0,59	78,98	78,98	33,85	1,47
3	0,88	13,80	0,00	3	0,88	90,97	90,97	43,21	0,94
4	1,18	0,00	14,72	4	1,18	100,80	100,80	51,20	0,80
5	1,47	0,00	11,97	5	1,47	109,23	109,23	58,22	0,70
6	1,76	0,00	9,21	6	1,76	116,11	116,11	64,07	0,58
7	2,06	0,00	6,46	7	2,06	121,93	121,93	69,08	0,50
8	2,35	0,00	3,70	8	2,35	126,98	126,98	73,46	0,44
9	2,65	0,00	0,95	9	2,65	131,42	131,42	77,35	0,39
10	2,94	0,00	0,00	10	2,94	135,40	135,40	80,86	0,35

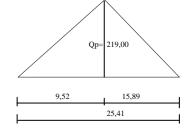
CÁLCULO DOS VALORES


Q-=miq1=mi-1q2+mi-2q3+...


i	μί	q1=	q2=	q3=	q4=	q5=	q6=	q7=	q8=	q9=	q10=	Q
		1,92	1,47	0,94	0,80	0,70	0,58	0,50	0,44	0,39	0,35	(m3/s)
1	4,60	8,83										8,83
2	9,20	17,65	6,75									24,40
3	13,80	26,48	13,49	4,31								44,28
4	14,72	28,25	20,24	8,61	3,67							60,77
5	11,97	22,96	21,59	12,92	7,35	3,23						68,05
6	9,21	17,68	17,55	13,78	11,02	6,46	2,69					69,19
7	6,46	12,39	13,51	11,20	11,76	9,70	5,38	2,30				66,25
8	3,70	7,11	9,47	8,62	9,56	10,35	8,07	4,61	2,02			59,80
9	0,95	1,82	5,43	6,05	7,36	8,41	8,61	6,91	4,03	1,79		50,41
10	0,00	0,00	1,39	3,47	5,16	6,47	7,00	7,37	6,05	3,58		40,49
11			0,00	0,89	2,96	4,54	5,39	5,99	6,45	5,37		31,59
12				0,00	0,76	2,60	3,78	4,61	5,24	5,73		22,73
13					0,00	0,67	2,17	3,23	4,04	4,66		14,77
14						0,00	0,56	1,86	2,83	3,59		8,83
15							0,00	0,48	1,62	2,52		4,61
16								0,00	0,42	1,44		1,86
17									0,00	0,37		0,37
										0,00		0,00

CÁLCULO DA DESCARGA DE PROJETO - HUT

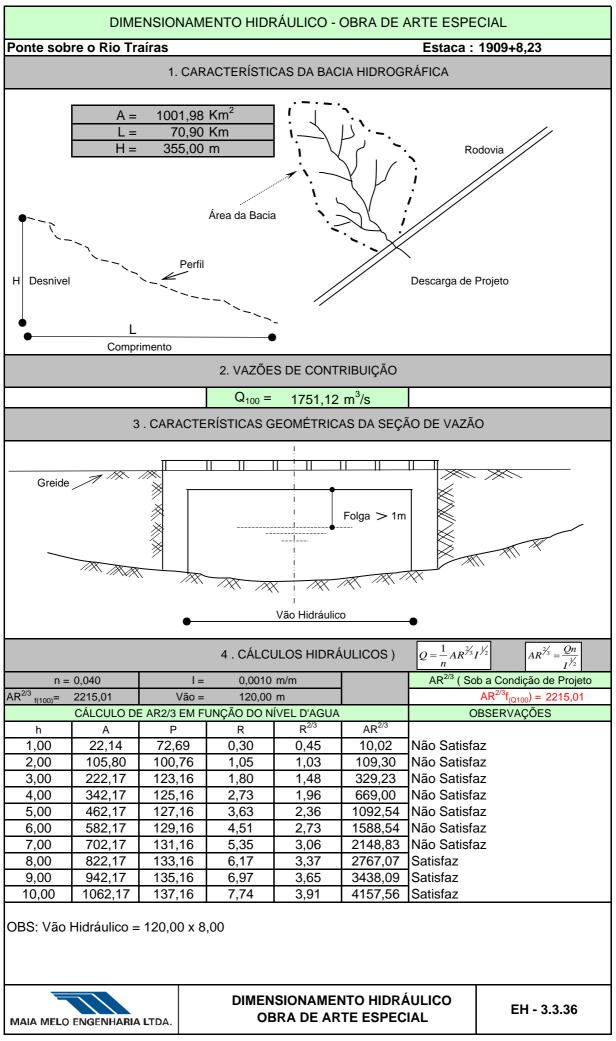
758-TRANSNORDESTINA-PROJFINAL-APROVADO-V3-CALC-DESC.xls

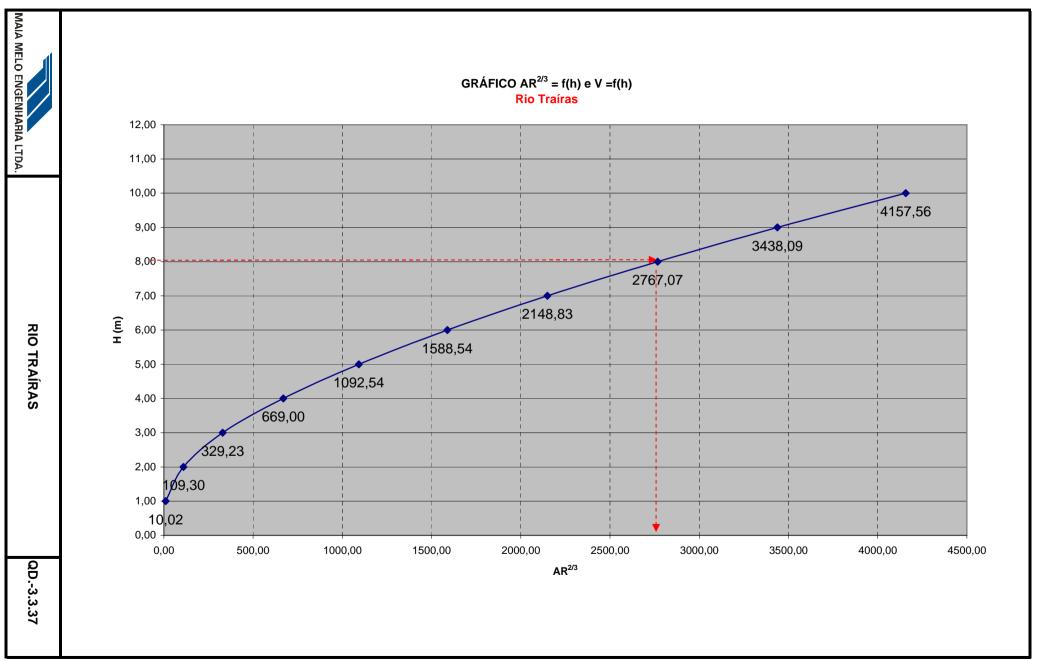

MAIA MELO ENGENHARIA LTDA.

Ferrovia: Transnordestina Rio Traíras Rio / Riacho: Estaca: 1909+8,23 Área da bacia (km²): 1001,98 Linha de Fundo (km): 70,90 Diferença de Nível (m): 355 Declividade (m/km): 5,01 Tempo de Concentração (h): 13,60 Duração Total (h): 13,60 Coeficiente de Redução: 0,84 Nº Curva Complexo Solo-vegetação : 80 Nome do Posto: Parnamirim Tempo de Recorrência (anos): 100

Hidrograma Unitário											
	Dt < Tc/5 =	2,72	h								
	Tp=Dt/2+0,60Tc =	9,52	h								
	Tr=1,67Tp =	15,89	h								
	Tb=2,67Tp =	25,41	h								
	Qp=2,08 A/Tp	219,00	m3/s/cm								

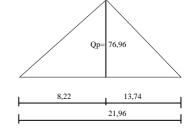
i	Ti	Se Ti <tp< th=""><th>Se Ti>Tp</th><th>i</th><th>Ti</th><th>Po</th><th>P=PoK</th><th>$Ri = [P-5080/N)+50,8]^2$</th><th>qi=(Ri-(Ri-1)/10</th></tp<>	Se Ti>Tp	i	Ti	Po	P=PoK	$Ri = [P-5080/N)+50,8]^2$	qi=(Ri-(Ri-1)/10
	(h)	$\mu i = \mu(Tp)Ti/Tp$	$\mu i = \mu(Tp)(Tb-Ti)/Tr$		(h)	(mm)	(mm)	P+(20320/N-203,2	(cm)
1	2,72	62,57	0,00	1	2,72	132,46	111,23	59,92	5,99
2	5,44	125,14	0,00	2	5,44	158,64	133,21	78,92	1,90
3	8,16	187,71	0,00	3	8,16	173,95	146,07	90,35	1,14
4	10,88	0,00	200,26	4	10,88	184,82	155,19	98,57	0,82
5	13,60	0,00	162,80	5	13,60	193,24	162,27	104,99	0,64
6	16,31	0,00	125,33	6	16,31	200,13	168,05	110,28	0,53
7	19,03	0,00	87,86	7	19,03	205,95	172,94	114,76	0,45
8	21,75	0,00	50,39	8	21,75	210,99	177,17	118,66	0,39
9	24,47	0,00	12,93	9	24,47	215,44	180,91	122,11	0,35
10	27,19	0,00	0,00	10	27,19	219,42	184,25	125,21	0,31


CÁLCULO DOS VALORES


Q-=miq1=mi-1q2+mi-2q3+...

i	μί	q1=	q2=	q3=	q4=	q5=	q6=	q7=	q8=	q9=	q10=	Q
		5,99	1,90	1,14	0,82	0,64	0,53	0,45	0,39	0,35	0,31	(m3/s)
1	62,57	374,90										374,90
2	125,14	749,80	118,94									868,73
3	187,71	1124,69	237,88	71,50								1434,07
4	200,26	1199,90	356,82	143,00	51,41							1751,12
5	162,80	975,41	380,68	214,50	102,82	40,21						1713,61
6	125,33	750,92	309,45	228,84	154,22	80,42	33,05					1556,91
7	87,86	526,43	238,23	186,03	164,54	120,63	66,10	28,07				1330,03
8	50,39	301,94	167,01	143,21	133,75	128,70	99,15	56,14	24,40			1054,30
9	12,93	77,45	95,79	100,40	102,97	104,62	105,78	84,21	48,80	21,59		741,61
10	0,00	0,00	24,57	57,59	72,19	80,54	85,99	89,84	73,21	43,17		527,09
11			0,00	14,77	41,40	56,46	66,20	73,03	78,10	64,76		394,73
12				0,00	10,62	32,38	46,41	56,22	63,49	69,09		278,22
13					0,00	8,31	26,62	39,41	48,88	56,17		179,38
14						0,00	6,83	22,61	34,26	43,24		106,94
15							0,00	5,80	19,65	30,31		55,76
16								0,00	5,04	17,39		22,43
17									0,00	4,46		4,46
										0,00		0,00

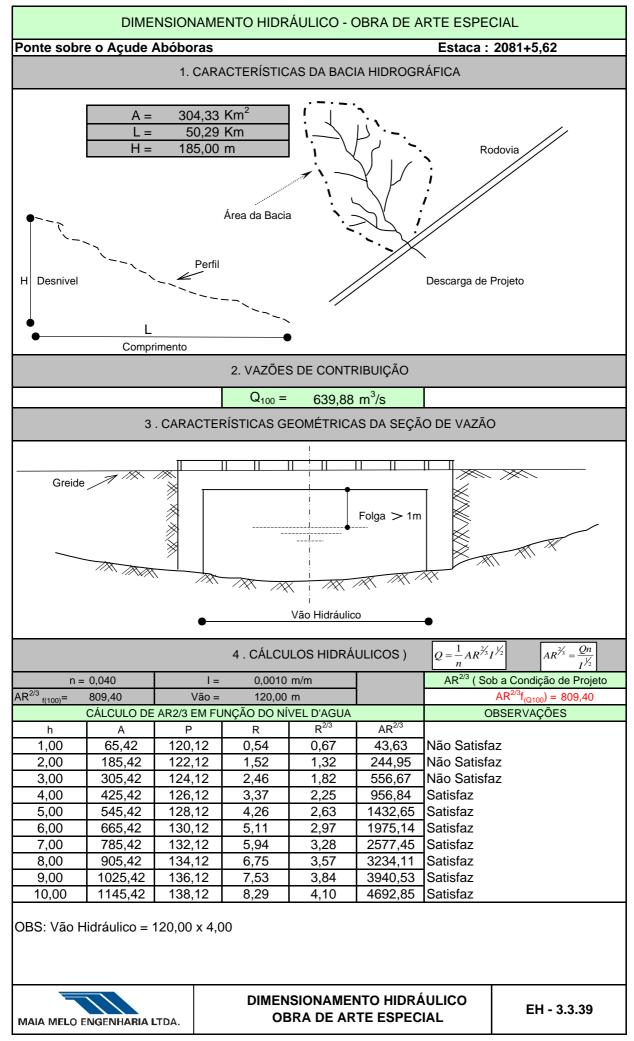
MAIA MELO ENGENHARIA LTDA.

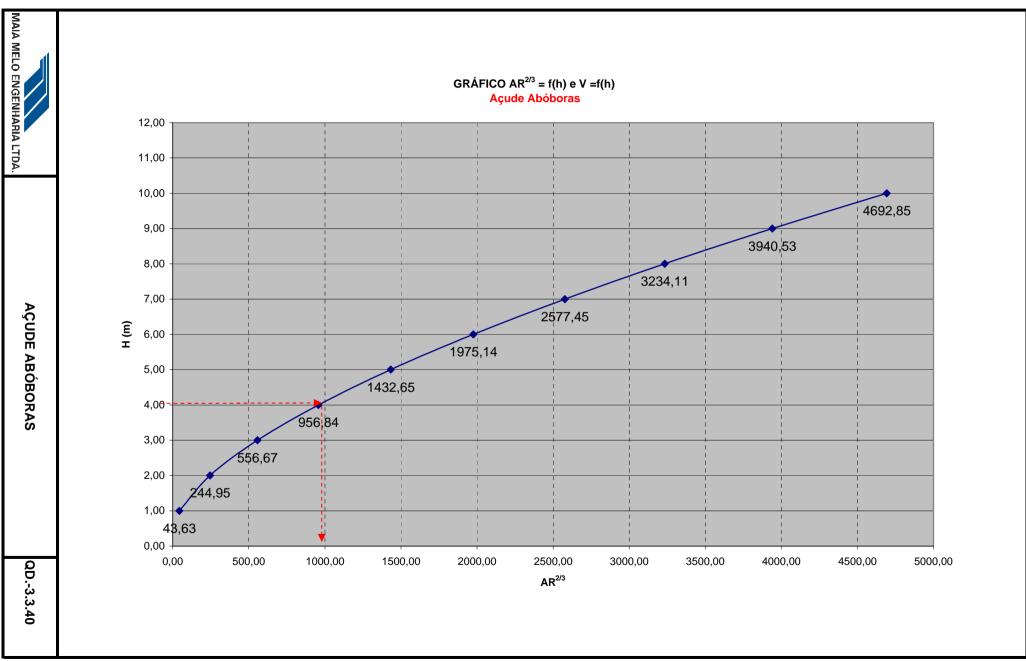

CÁLCULO DA DESCARGA DE PROJETO - HUT

Ferrovia: Transnordestina Rio / Riacho: Açude Abóboras Estaca: 2081+5,62 Área da bacia (km²): 304,33 Linha de Fundo (km): 50,29 Diferença de Nível (m): 185 Declividade (m/km): 3,68 Tempo de Concentração (h): 11,75 Duração Total (h): 11,75 Coeficiente de Redução: 0,89 Nº Curva Complexo Solo-vegetação : 80 Nome do Posto: Parnamirim Tempo de Recorrência (anos): 100

Hidrograma U	Unitário	
Dt < Tc/5 =	2,35	h
Tp=Dt/2+0,60Tc =	8,22	h
Tr=1,67Tp =	13,74	h
Tb=2,67Tp=	21,96	h
Qp=2,08 A/Tp	76,96	m3/s/cm

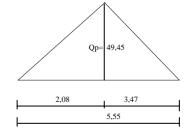
i	Ti	Se Ti <tp< th=""><th>Se Ti>Tp</th><th>i</th><th>Ti</th><th>Po</th><th>P=PoK</th><th>$Ri = [P-5080/N)+50,8]^2$</th><th>qi=(Ri-(Ri-1)/10</th></tp<>	Se Ti>Tp	i	Ti	Po	P=PoK	$Ri = [P-5080/N)+50,8]^2$	qi=(Ri-(Ri-1)/10
	(h)	$\mu i = \mu(Tp)Ti/Tp$	μi=μ(Tp)(Tb-Ti)/Tr		(h)	(mm)	(mm)	P+(20320/N-203,2	(cm)
1	2,35	21,99	0,00	1	2,35	126,95	113,17	61,56	6,16
2	4,70	43,98	0,00	2	4,70	153,13	136,51	81,84	2,03
3	7,05	65,97	0,00	3	7,05	168,44	150,16	94,03	1,22
4	9,40	0,00	70,38	4	9,40	179,31	159,85	102,79	0,88
5	11,75	0,00	57,21	5	11,75	187,74	167,36	109,64	0,69
6	14,10	0,00	44,04	6	14,10	194,62	173,50	115,27	0,56
7	16,45	0,00	30,88	7	16,45	200,44	178,69	120,06	0,48
8	18,80	0,00	17,71	8	18,80	205,49	183,18	124,22	0,42
9	21,15	0,00	4,54	9	21,15	209,93	187,15	127,89	0,37
10	23,50	0,00	0,00	10	23,50	213,91	190,69	131,19	0,33


CÁLCULO DOS VALORES


Q-=miq1=mi-1q2+mi-2q3+...

i	μi	q1=	q2=	q3=	q4=	q5=	q6=	q7=	q8=	q9=	q10=	Q
		6,16	2,03	1,22	0,88	0,69	0,56	0,48	0,42	0,37	0,33	(m3/s)
1	21,99	135,38										135,38
2	43,98	270,75	44,58									315,33
3	65,97	406,13	89,15	26,80								522,08
4	70,38	433,28	133,73	53,60	19,27							639,88
5	57,21	352,22	142,67	80,40	38,54	15,07						628,90
6	44,04	271,16	115,98	85,78	57,81	30,14	12,39					573,25
7	30,88	190,09	89,29	69,73	61,67	45,21	24,77	10,52				491,28
8	17,71	109,03	62,59	53,68	50,13	48,23	37,16	21,04	9,14			391,01
9	4,54	27,97	35,90	37,63	38,59	39,21	39,64	31,55	18,29	8,09		276,87
10	0,00	0,00	9,21	21,59	27,06	30,18	32,22	33,66	27,43	16,18		197,53
11			0,00	5,54	15,52	21,16	24,81	27,37	29,26	24,26		147,92
12				0,00	3,98	12,14	17,39	21,07	23,79	25,89		104,25
13					0,00	3,11	9,97	14,77	18,31	21,04		67,21
14						0,00	2,56	8,47	12,84	16,20		40,07
15							0,00	2,17	7,36	11,36		20,89
16								0,00	1,89	6,51		8,40
17									0,00	1,67		1,67
										0,00		0,00
I												

MAIA MELO ENGENHARIA LTDA.

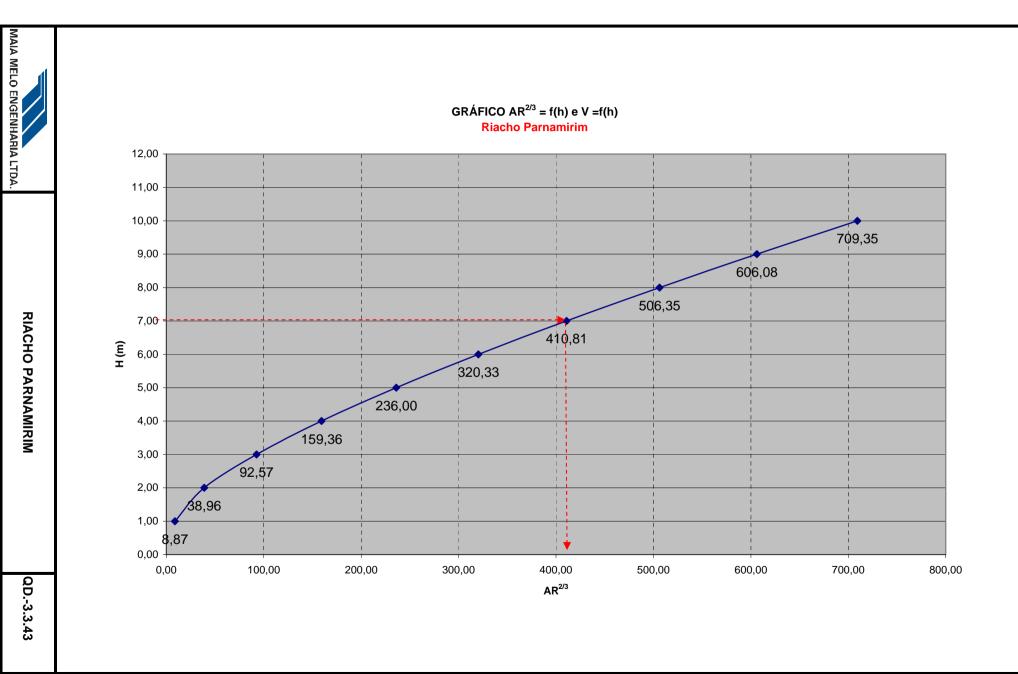

CÁLCULO DA DESCARGA DE PROJETO - HUT

Ferrovia: Transnordestina Rio / Riacho: Riacho Parnamirim Estaca: 2960+1,67 Área da bacia (km²): 49,45 Linha de Fundo (km): 12,86 Diferença de Nível (m): 110 Declividade (m/km): 8,55 Tempo de Concentração (h): 2,97 Duração Total (h): 2,97 Coeficiente de Redução: 0,97 Nº Curva Complexo Solo-vegetação: 80 Nome do Posto: Parnamirim Tempo de Recorrência (anos): 100

Hidrograma U	Initário	
Dt < Tc/5 =	0,59	h
Tp=Dt/2+0,60Tc =	2,08	h
Tr=1,67Tp =	3,47	h
Tb=2,67Tp =	5,55	h
Qp=2,08 A/Tp	49,45	m3/s/cm

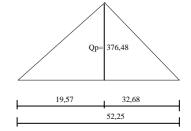
EH - 3.3.41

i	Ti	Se Ti <tp< th=""><th>Se Ti>Tp</th><th>i</th><th>Ti</th><th>Po</th><th>P=PoK</th><th>$Ri = [P-5080/N)+50,8]^2$</th><th>qi=(Ri-(Ri-1)/10</th></tp<>	Se Ti>Tp	i	Ti	Po	P=PoK	$Ri = [P-5080/N)+50,8]^2$	qi=(Ri-(Ri-1)/10
	(h)	$\mu i = \mu(Tp)Ti/Tp$	$\mu i = \mu(Tp)(Tb-Ti)/Tr$		(h)	(mm)	(mm)	P+(20320/N-203,2	(cm)
1	0,59	14,13	0,00	1	0,59	79,31	76,96	32,32	3,23
2	1,19	28,25	0,00	2	1,19	101,22	98,22	49,08	1,68
3	1,78	42,38	0,00	3	1,78	116,53	113,08	61,48	1,24
4	2,38	0,00	45,22	4	2,38	127,39	123,62	70,54	0,91
5	2,97	0,00	36,76	5	2,97	135,82	131,80	77,68	0,71
6	3,57	0,00	28,30	6	3,57	142,71	138,48	83,58	0,59
7	4,16	0,00	19,84	7	4,16	148,53	144,13	88,61	0,50
8	4,75	0,00	11,38	8	4,75	153,57	149,02	93,00	0,44
9	5,35	0,00	2,92	9	5,35	158,02	153,34	96,89	0,39
10	5,94	0,00	0,00	10	5,94	162,00	157,20	100,38	0,35


CÁLCULO DOS VALORES

Q-=miq1=mi-1q2+mi-2q3+...

i	μί	q1=	q2=	q3=	q4=	q5=	q6=	q7=	q8=	q9=	q10=	Q
		3,23	1,68	1,24	0,91	0,71	0,59	0,50	0,44	0,39	0,35	(m3/s)
1	14,13	45,66										45,66
2	28,25	91,32	23,67									114,99
3	42,38	136,98	47,34	17,53								201,85
4	45,22	146,14	71,02	35,05	12,79							265,00
5	36,76	118,80	75,76	52,58	25,59	10,09						282,82
6	28,30	91,46	61,59	56,09	38,38	20,18	8,34					276,04
7	19,84	64,11	47,41	45,60	40,95	30,27	16,68	7,11				252,13
8	11,38	36,77	33,24	35,10	33,28	32,29	25,01	14,22	6,20			216,13
9	2,92	9,43	19,07	24,61	25,62	26,25	26,69	21,33	12,40	5,50		170,89
10	0,00	0,00	4,89	14,12	17,96	20,21	21,69	22,75	18,59	10,99		131,21
11			0,00	3,62	10,30	14,17	16,70	18,50	19,84	16,49		99,61
12				0,00	2,64	8,13	11,71	14,24	16,12	17,59		70,43
13					0,00	2,08	6,72	9,98	12,41	14,30		45,49
14						0,00	1,72	5,73	8,70	11,01		27,16
15							0,00	1,47	4,99	7,72		14,18
16								0,00	1,28	4,43		5,71
17									0,00	1,14		1,14
										0,00		0,00
I												

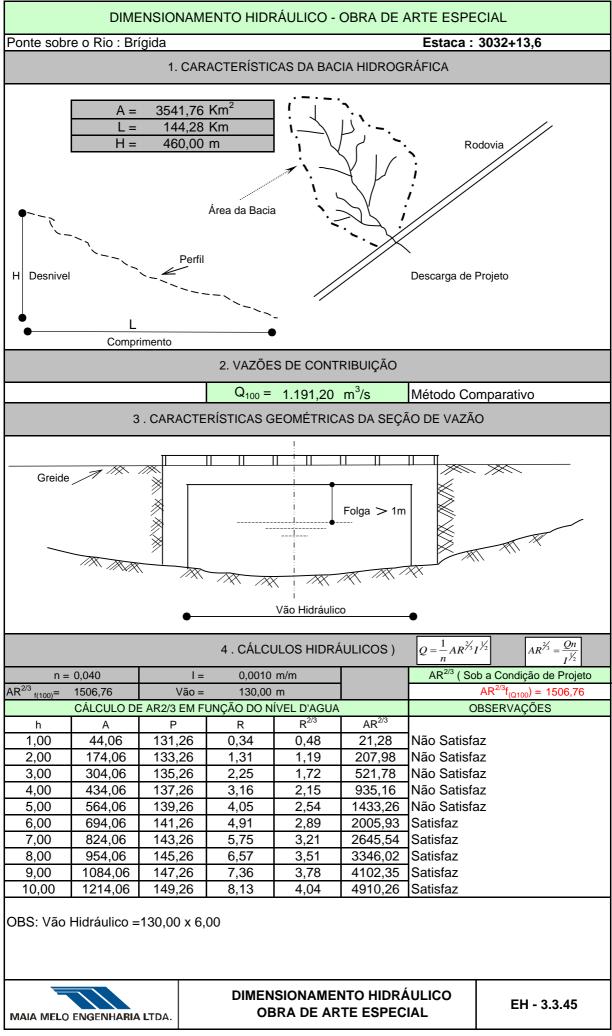

CÁLCULO DA DESCARGA DE PROJETO - HUT

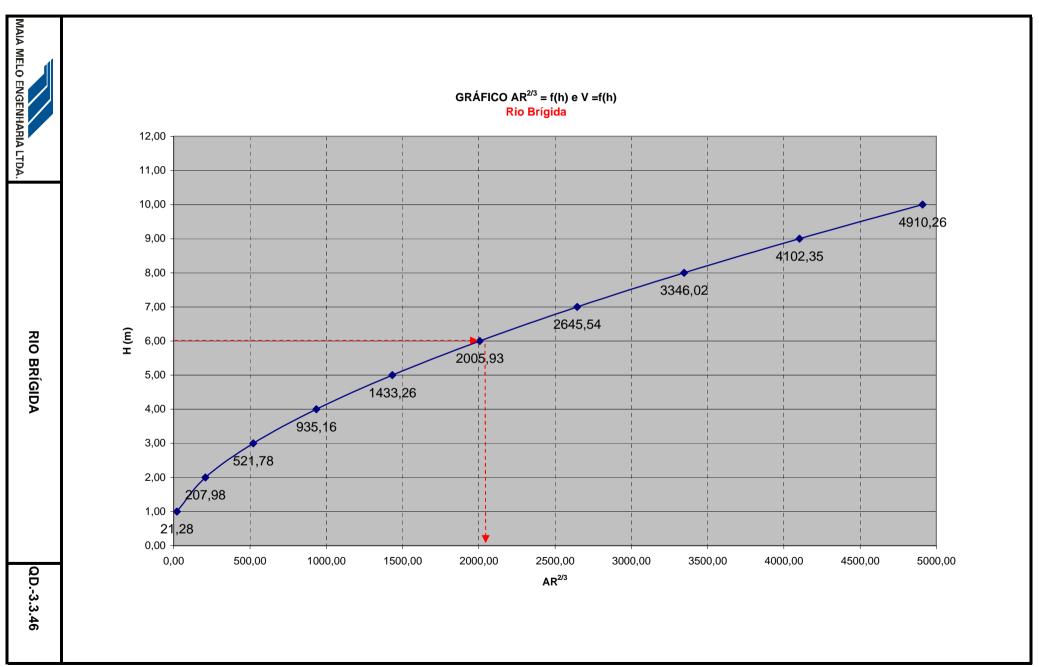
DIMENSIONAMENTO HIDRÁULICO - OBRA DE ARTE ESPECIAL Ponte sobre o Riacho Parnamirim Estaca: 2960+1,67 1. CARACTERÍSTICAS DA BACIA HIDROGRÁFICA 49,45 Km² L= 12,86 Km² H = 110,00 m Rodovia Área da Bacia Perfil Desnivel Descarga de Projeto Comprimento 2. VAZÕES DE CONTRIBUIÇÃO $Q_{100} =$ 282,82 m³/s 3. CARACTERÍSTICAS GEOMÉTRICAS DA SEÇÃO DE VAZÃO Greide Folga > 1m TX XX Vão Hidráulico $Q = \frac{1}{n} A R^{\frac{2}{3}} I^{\frac{1}{2}}$ 4. CÁLCULOS HIDRÁULICOS) AR^{2/3} (Sob a Condição de Projeto n = 0,0401= 0,0010 m/m $AR^{2/3}_{f(100)} =$ Vão = 25,00 m 357,74 CÁLCULO DE AR2/3 EM FUNÇÃO DO NÍVEL D'AGUA **OBSERVAÇÕES** $AR^{2/3}$ R^{2/3} h R 10,76 14,38 0,75 0,82 8,87 Não Satisfaz 1,00 Não Satisfaz 2,00 34,39 28,52 1,21 1,13 38,96 3.00 59.39 30.52 1.95 1,56 92,57 Não Satisfaz 4,00 84,39 32,52 2,60 1,89 159,36 Não Satisfaz 5,00 109,39 34,52 3,17 2,16 Não Satisfaz 236,00 Não Satisfaz 6,00 134,39 36,52 3,68 2,38 320,33 2,58 410,81 Satisfaz 7,00 159,39 38,52 4,14 8,00 184,39 40,52 4,55 2,75 506,35 Satisfaz 9,00 209,39 42,52 4,92 2,89 606,08 Satisfaz 234,39 44,52 5,26 3,03 709,35 Satisfaz 10,00 OBS: Vão Hidráulico = 25,00 x 7,00 DIMENSIONAMENTO HIDRÁULICO EH - 3.3.42 **OBRA DE ARTE ESPECIAL** MAIA MELO ENGENHARIA LTDA.

Ferrovia: Transnordestina Rio / Riacho: Rio Brígida Estaca: 3032+13,6 Área da bacia (km²): 3541,76 Linha de Fundo (km): 144,28 Diferença de Nível (m): 460 Declividade (m/km): 3,19 Tempo de Concentração (h): 27,95 Duração Total (h): 27,95 Coeficiente de Redução: 0,78 Nº Curva Complexo Solo-vegetação: 80 Nome do Posto: Parnamirim Tempo de Recorrência (anos): 100

Hidrograma U	Jnitário	
Dt < Tc/5 =	5,59	h
Tp=Dt/2+0,60Tc =	19,57	h
Tr=1,67Tp =	32,68	h
Tb=2,67Tp =	52,25	h
Qp=2,08 A/Tp	376,48	m3/s/cm

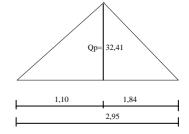
i	Ti	Se Ti <tp< th=""><th>Se Ti>Tp</th><th>i</th><th>Ti</th><th>Po</th><th>P=PoK</th><th>$Ri = [P-5080/N)+50,8]^2$</th><th>qi=(Ri-(Ri-1)/10</th></tp<>	Se Ti>Tp	i	Ti	Po	P=PoK	$Ri = [P-5080/N)+50,8]^2$	qi=(Ri-(Ri-1)/10
	(h)	$\mu i {=} \mu (Tp) Ti / Tp$	$\mu i = \mu(Tp)(Tb-Ti)/Tr$		(h)	(mm)	(mm)	P+(20320/N-203,2	(cm)
1	5,59	107,57	0,00	1	5,59	159,69	125,33	72,03	7,20
2	11,18	215,13	0,00	2	11,18	185,86	145,88	90,18	1,82
3	16,77	322,70	0,00	3	16,77	201,18	157,90	101,02	1,08
4	22,36	0,00	344,28	4	22,36	212,04	166,42	108,79	0,78
5	27,95	0,00	279,87	5	27,95	220,47	173,04	114,85	0,61
6	33,54	0,00	215,46	6	33,54	227,35	178,44	119,83	0,50
7	39,14	0,00	151,04	7	39,14	233,17	183,01	124,06	0,42
8	44,73	0,00	86,63	8	44,73	238,22	186,97	127,73	0,37
9	50,32	0,00	22,22	9	50,32	242,67	190,46	130,97	0,32
10	55,91	0,00	0,00	10	55,91	246,64	193,58	133,88	0,29


CÁLCULO DOS VALORES


Q-=miq1=mi-1q2+mi-2q3+...

i	μί	q1=	q2=	q3=	q4=	q5=	q6=	q7=	q8=	q9=	q10=	Q
		7,20	1,82	1,08	0,78	0,61	0,50	0,42	0,37	0,32	0,29	(m3/s)
1	107,57	774,76										774,76
2	215,13	1549,52	195,28									1744,80
3	322,70	2324,28	390,56	116,58								2831,42
4	344,28	2479,69	585,84	233,16	83,57							3382,26
5	279,87	2015,77	625,02	349,74	167,13	65,25						3222,90
6	215,46	1551,84	508,08	373,13	250,70	130,50	53,56					2867,81
7	151,04	1087,91	391,15	303,32	267,46	195,74	107,13	45,45				2398,16
8	86,63	623,98	274,21	233,51	217,42	208,83	160,69	90,91	39,49			1849,05
9	22,22	160,06	157,28	163,70	167,38	169,76	171,44	136,36	78,98	34,91		1239,86
10	0,00	0,00	40,34	93,89	117,34	130,69	139,36	145,48	118,46	69,83		855,40
11			0,00	24,08	67,30	91,62	107,29	118,26	126,38	104,74		639,68
12				0,00	17,26	52,55	75,21	91,04	102,74	111,75		450,56
13					0,00	13,48	43,14	63,82	79,09	90,84		290,38
14						0,00	11,07	36,61	55,45	69,93		173,05
15							0,00	9,39	31,80	49,03		90,22
16								0,00	8,16	28,12		36,28
17									0,00	7,21		7,21
										0,00		0,00

MAIA MELO ENGENHARIA LTDA.

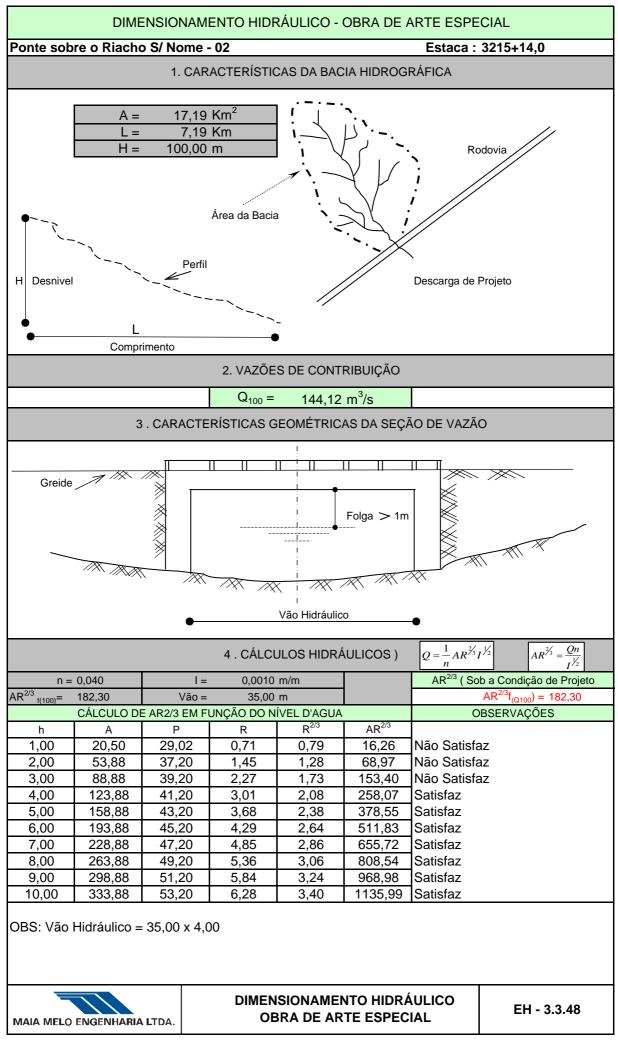

CÁLCULO DA DESCARGA DE PROJETO - HUT

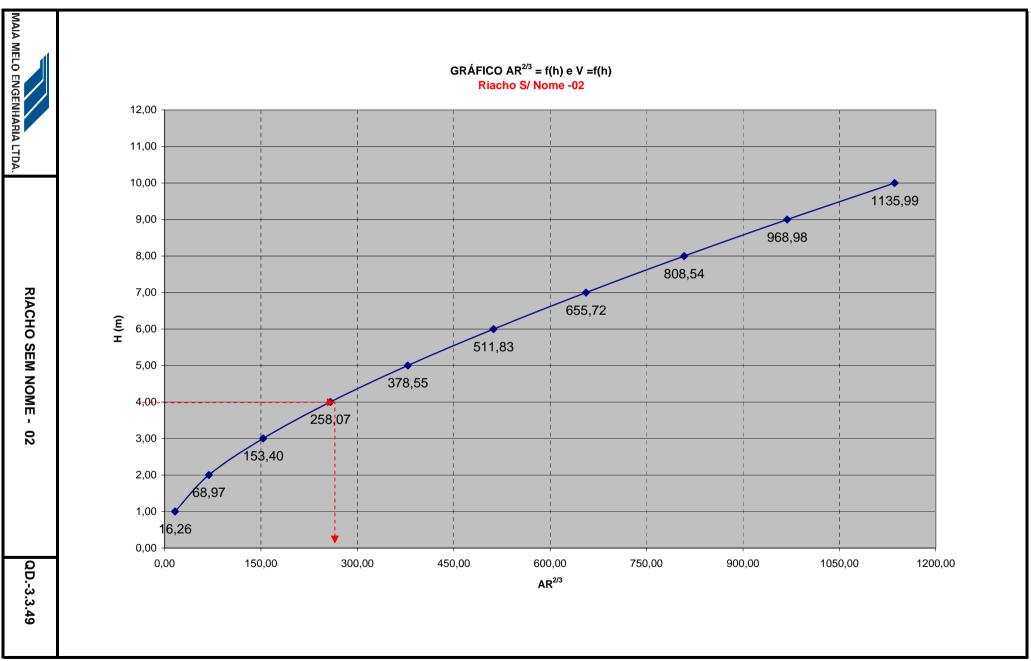
Ferrovia: Transnordestina Rio / Riacho: Riacho S/ Nome-02 Estaca: 3215+14,0 Área da bacia (km²): 17,19 Linha de Fundo (km): 7,19 Diferença de Nível (m): 100 Declividade (m/km): 13,90 Tempo de Concentração (h): 1,58 Duração Total (h): 1,58 Coeficiente de Redução: 1,00 Nº Curva Complexo Solo-vegetação: 80 Nome do Posto: Parnamirim Tempo de Recorrência (anos): 100

Hidrograma Unitário									
Dt < Tc/5 =	0,32	h							
Tp=Dt/2+0,60Tc =	1,10	h							
Tr=1,67Tp =	1,84	h							
Tb=2,67Tp =	2,95	h							
Qp=2,08 A/Tp	32,41	m3/s/cm							

EH - 3.3.47

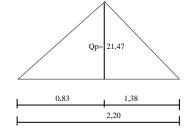
i	Ti	Se Ti <tp< th=""><th>Se Ti>Tp</th><th>i</th><th>Ti</th><th>Po</th><th>P=PoK</th><th>$Ri = [P-5080/N)+50,8]^2$</th><th>qi=(Ri-(Ri-1)/10</th></tp<>	Se Ti>Tp	i	Ti	Po	P=PoK	$Ri = [P-5080/N)+50,8]^2$	qi=(Ri-(Ri-1)/10
	(h)	$\mu i = \mu(Tp)Ti/Tp$	$\mu i {=} \mu (Tp)(Tb{-}Ti)/Tr$		(h)	(mm)	(mm)	P+(20320/N-203,2	(cm)
1	0,32	9,26	0,00	1	0,32	60,56	60,56	20,57	2,06
2	0,63	18,52	0,00	2	0,63	81,05	81,05	35,43	1,49
3	0,95	27,78	0,00	3	0,95	93,03	93,03	44,87	0,94
4	1,26	0,00	29,64	4	1,26	103,44	103,44	53,38	0,85
5	1,58	0,00	24,09	5	1,58	111,86	111,86	60,45	0,71
6	1,89	0,00	18,55	6	1,89	118,75	118,75	66,33	0,59
7	2,21	0,00	13,00	7	2,21	124,57	124,57	71,36	0,50
8	2,52	0,00	7,46	8	2,52	129,61	129,61	75,76	0,44
9	2,84	0,00	1,91	9	2,84	134,06	134,06	79,68	0,39
10	3,15	0,00	0,00	10	3,15	138,04	138,04	83,19	0,35


CÁLCULO DOS VALORES


Q-=miq1=mi-1q2+mi-2q3+...

i	μί	q1=	q2=	q3=	q4=	q5=	q6=	q7=	q8=	q9=	q10=	Q
		2,06	1,49	0,94	0,85	0,71	0,59	0,50	0,44	0,39	0,35	(m3/s)
1	9,26	19,05										19,05
2	18,52	38,09	13,76									51,86
3	27,78	57,14	27,52	8,74								93,40
4	29,64	60,96	41,29	17,48	7,88							127,61
5	24,09	49,56	44,05	26,22	15,77	6,55						142,14
6	18,55	38,15	35,81	27,97	23,65	13,10	5,44					144,12
7	13,00	26,74	27,57	22,74	25,23	19,65	10,89	4,66				137,48
8	7,46	15,34	19,33	17,50	20,51	20,96	16,33	9,32	4,07			123,37
9	1,91	3,93	11,08	12,27	15,79	17,04	17,42	13,98	8,15	3,62		103,30
10	0,00	0,00	2,84	7,04	11,07	13,12	14,16	14,91	12,22	7,24		82,62
11			0,00	1,81	6,35	9,20	10,90	12,12	13,04	10,86		64,29
12				0,00	1,63	5,28	7,64	9,33	10,60	11,59		46,07
13					0,00	1,35	4,38	6,54	8,16	9,42		29,86
14						0,00	1,12	3,75	5,72	7,25		17,85
15							0,00	0,96	3,28	5,08		9,33
16								0,00	0,84	2,92		3,76
17									0,00	0,75		0,75
										0,00		0,00
									ĺ			

CÁLCULO DA DESCARGA DE PROJETO - HUT


758-TRANSNORDESTINA-PROJFINAL-APROVADO-V3-CALC-DESC.xls

Ferrovia: Transnordestina Rio / Riacho: Riacho do Veado Estaca: 3384+15,4 Área da bacia (km²): 8,52 Linha de Fundo (km): 5,32 Diferença de Nível (m): 86 Declividade (m/km): 16,15 Tempo de Concentração (h): 1,18 Duração Total (h): 1,18 Coeficiente de Redução: 1,00 Nº Curva Complexo Solo-vegetação: 80 Nome do Posto: Parnamirim Tempo de Recorrência (anos): 100

Hidrograma Unitário										
Dt < Tc/5 =	0,24	h								
Tp=Dt/2+0,60Tc =	0,83	h								
Tr=1,67Tp =	1,38	h								
Tb=2,67Tp=	2,20	h								
Qp=2,08 A/Tp	21,47	m3/s/cm								

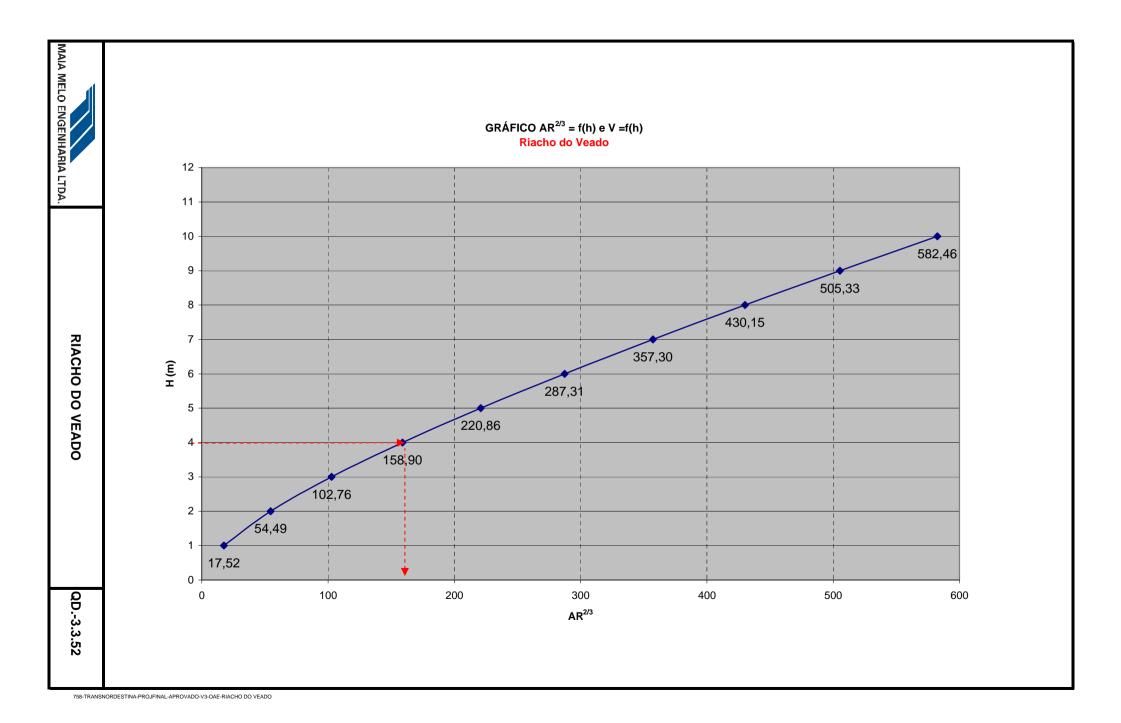
EH - 3.3.50

i	Ti	Se Ti <tp< th=""><th>Se Ti>Tp</th><th>i</th><th>Ti</th><th>Po</th><th>P=PoK</th><th>$Ri = [P-5080/N)+50,8]^2$</th><th>qi=(Ri-(Ri-1)/10</th></tp<>	Se Ti>Tp	i	Ti	Po	P=PoK	$Ri = [P-5080/N)+50,8]^2$	qi=(Ri-(Ri-1)/10
	(h)	μi=μ(Tp)Ti/Tp	$\mu i = \mu(Tp)(Tb-Ti)/Tr$		(h)	(mm)	(mm)	P+(20320/N-203,2	(cm)
1	0,24	6,13	0,00	1	0,24	52,00	52,00	15,02	1,50
2	0,47	12,27	0,00	2	0,47	72,49	72,49	28,99	1,40
3	0,71	18,40	0,00	3	0,71	84,47	84,47	38,08	0,91
4	0,94	0,00	19,64	4	0,94	92,98	92,98	44,82	0,67
5	1,18	0,00	15,96	5	1,18	100,93	100,93	51,30	0,65
6	1,42	0,00	12,29	6	1,42	107,81	107,81	57,04	0,57
7	1,65	0,00	8,61	7	1,65	113,64	113,64	61,96	0,49
8	1,89	0,00	4,94	8	1,89	118,68	118,68	66,27	0,43
9	2,12	0,00	1,27	9	2,12	123,13	123,13	70,11	0,38
10	2,36	0,00	0,00	10	2,36	127,11	127,11	73,57	0,35

CÁLCULO DOS VALORES

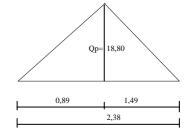
Q-=miq1=mi-1q2+mi-2q3+...

i	μί	q1=	q2=	q3=	q4=	q5=	q6=	q7=	q8=	q9=	q10=	Q
		1,50	1,40	0,91	0,67	0,65	0,57	0,49	0,43	0,38	0,35	(m3/s)
1	6,13	9,22										9,22
2	12,27	18,43	8,57									27,00
3	18,40	27,65	17,14	5,57								50,36
4	19,64	29,50	25,71	11,15	4,14							70,49
5	15,96	23,98	27,43	16,72	8,27	3,98						80,38
6	12,29	18,46	22,30	17,84	12,41	7,95	3,52					82,48
7	8,61	12,94	17,17	14,50	13,24	11,93	7,03	3,02				79,83
8	4,94	7,42	12,03	11,17	10,76	12,73	10,55	6,04	2,65			73,35
9	1,27	1,90	6,90	7,83	8,28	10,35	11,25	9,06	5,29	2,36		63,23
10	0,00	0,00	1,77	4,49	5,81	7,97	9,15	9,66	7,94	4,71		51,49
11			0,00	1,15	3,33	5,58	7,04	7,86	8,47	7,07		40,50
12				0,00	0,85	3,20	4,94	6,05	6,88	7,54		29,47
13					0,00	0,82	2,83	4,24	5,30	6,13		19,32
14						0,00	0,73	2,43	3,72	4,72		11,59
15							0,00	0,62	2,13	3,31		6,06
16								0,00	0,55	1,90		2,44
17									0,00	0,49		0,49
										0,00		0,00
,												


CÁLCULO DA DESCARGA DE PROJETO - HUT

DIMENSIONAMENTO HIDRÁULICO - OBRA DE ARTE ESPECIAL Ponte sobre o Rio: Riacho do Veado Estaca: 3384+15,4 1. CARACTERÍSTICAS DA BACIA HIDROGRÁFICA 8,52 Km² A = 5,32 Km H = 86,00 m Rodovia Área da Bacia Perfil H Desnivel Descarga de Projeto Comprimento 2. VAZÕES DE CONTRIBUIÇÃO $Q_{100} =$ 82,48 m³/s 3 . CARACTERÍSTICAS GEOMÉTRICAS DA SEÇÃO DE VAZÃO Greide Folga > 1m Vão Hidráulico $Q = \frac{1}{n} A R^{\frac{2}{3}} I^{\frac{1}{2}}$ 4. CÁLCULOS HIDRÁULICOS) AR^{2/3} (Sob a Condição de Projeto n = 0.0400,0010 m/m $AR^{2/3}_{f(100)} =$ $AR^{2/3}f_{(Q100)} = 104,33$ 104,33 Vão = 20,00 m CÁLCULO DE AR2/3 EM FUNÇÃO DO NÍVEL D'AGUA **OBSERVAÇÕES** R^{2/3} AR^{2/3} 0,88 0,92 17,52 Não Satisfaz 1,00 19,12 21,80 2,00 39,12 23,80 1,64 1,39 54,49 Não Satisfaz 3,00 59,12 25,80 2,29 1,74 102,76 Não Satisfaz Satisfaz 4,00 79,12 27,80 2,85 2,01 158,90 99,12 Satisfaz 5,00 29,80 3,33 2,23 220,86 6,00 119,12 31,80 3,75 2,41 287,31 Satisfaz 7,00 139,12 33,80 4,12 2,57 357,30 Satisfaz Satisfaz 4,44 8,00 159,12 35,80 2,70 430,15 9,00 179,12 37,80 4,74 2,82 505,33 Satisfaz 10,00 199,12 39,80 5,00 2,93 582,46 Satisfaz OBS: Vão Hidráulico = 20,00 x 4,00

DIMENSIONAMENTO HIDRÁULICO


OBRA DE ARTE ESPECIAL

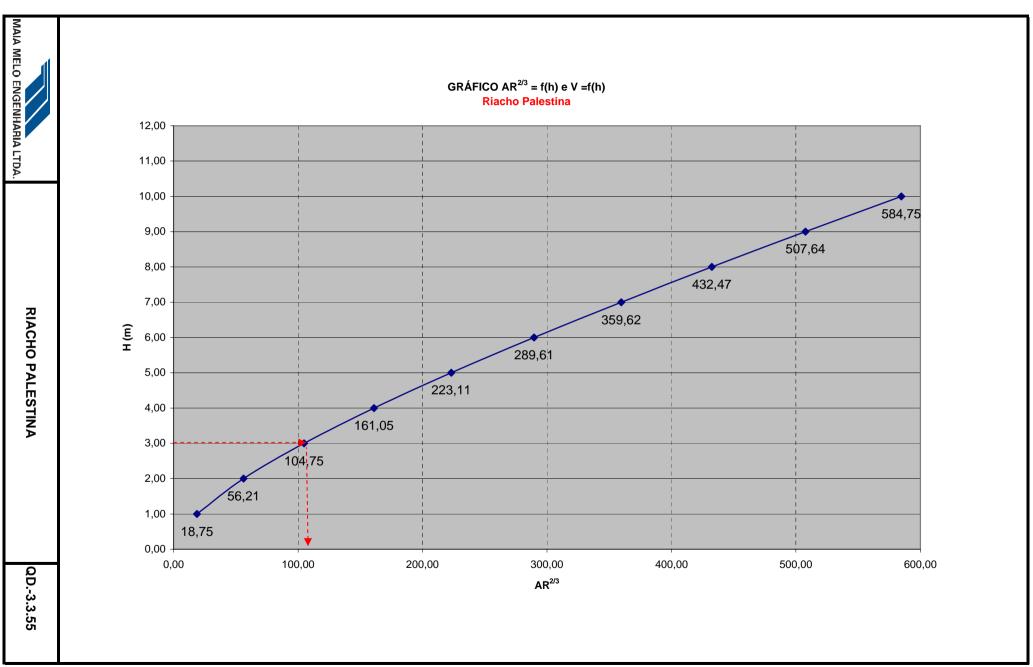
EH - 3.3.51

Ferrovia: Transnordestina Rio / Riacho: Riacho Palestina Estaca: 3512+5,40 Área da bacia (km²): 8,05 Linha de Fundo (km): 4,65 Diferença de Nível (m): 47 Declividade (m/km): 10,12 Tempo de Concentração (h): 1,27 Duração Total (h): 1,27 Coeficiente de Redução: 1,00 Nº Curva Complexo Solo-vegetação : 80 Nome do Posto: Parnamirim Tempo de Recorrência (anos): 100

Hidrograma U	Hidrograma Unitário										
Dt < Tc/5 =	0,25	h									
Tp=Dt/2+0,60Tc =	0,89	h									
Tr=1,67Tp =	1,49	h									
Tb=2,67Tp =	2,38	h									
Qp=2,08 A/Tp	18,80	m3/s/cm									

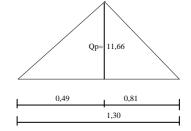
i	Ti	Se Ti <tp< th=""><th>Se Ti>Tp</th><th>i</th><th>Ti</th><th>Po</th><th>P=PoK</th><th>$Ri = [P-5080/N)+50,8]^2$</th><th>qi=(Ri-(Ri-1)/10</th></tp<>	Se Ti>Tp	i	Ti	Po	P=PoK	$Ri = [P-5080/N)+50,8]^2$	qi=(Ri-(Ri-1)/10
	(h)	$\mu i = \mu(Tp)Ti/Tp$	$\mu i {=} \mu (Tp)(Tb{-}Ti)/Tr$		(h)	(mm)	(mm)	P+(20320/N-203,2	(cm)
1	0,25	5,37	0,00	1	0,25	54,22	54,22	16,41	1,64
2	0,51	10,74	0,00	2	0,51	74,70	74,70	30,63	1,42
3	0,76	16,11	0,00	3	0,76	86,69	86,69	39,82	0,92
4	1,02	0,00	17,19	4	1,02	95,33	95,33	46,73	0,69
5	1,27	0,00	13,98	5	1,27	103,76	103,76	53,65	0,69
6	1,53	0,00	10,76	6	1,53	110,65	110,65	59,42	0,58
7	1,78	0,00	7,54	7	1,78	116,47	116,47	64,37	0,50
8	2,03	0,00	4,33	8	2,03	121,51	121,51	68,71	0,43
9	2,29	0,00	1,11	9	2,29	125,96	125,96	72,57	0,39
10	2,54	0,00	0,00	10	2,54	129,94	129,94	76,05	0,35

CÁLCULO DOS VALORES


Q-=miq1=mi-1q2+mi-2q3+...

i	μί	q1=	q2=	q3=	q4=	q5=	q6=	q7=	q8=	q9=	q10=	Q
		1,64	1,42	0,92	0,69	0,69	0,58	0,50	0,43	0,39	0,35	(m3/s)
1	5,37	8,82										8,82
2	10,74	17,63	7,64									25,27
3	16,11	26,45	15,28	4,93								46,66
4	17,19	28,22	22,92	9,87	3,71							64,71
5	13,98	22,94	24,45	14,80	7,42	3,72						73,33
6	10,76	17,66	19,87	15,79	11,13	7,44	3,10					75,00
7	7,54	12,38	15,30	12,84	11,88	11,16	6,20	2,66				72,41
8	4,33	7,10	10,73	9,88	9,66	11,90	9,30	5,32	2,33			66,22
9	1,11	1,82	6,15	6,93	7,43	9,68	9,93	7,98	4,66	2,07		56,65
10	0,00	0,00	1,58	3,97	5,21	7,45	8,07	8,51	6,99	4,15		45,93
11			0,00	1,02	2,99	5,22	6,21	6,92	7,46	6,22		36,04
12				0,00	0,77	2,99	4,35	5,33	6,06	6,64		26,14
13					0,00	0,77	2,50	3,74	4,67	5,39		17,06
14						0,00	0,64	2,14	3,27	4,15		10,21
15							0,00	0,55	1,88	2,91		5,34
16								0,00	0,48	1,67		2,15
17									0,00	0,43		0,43
										0,00		0,00

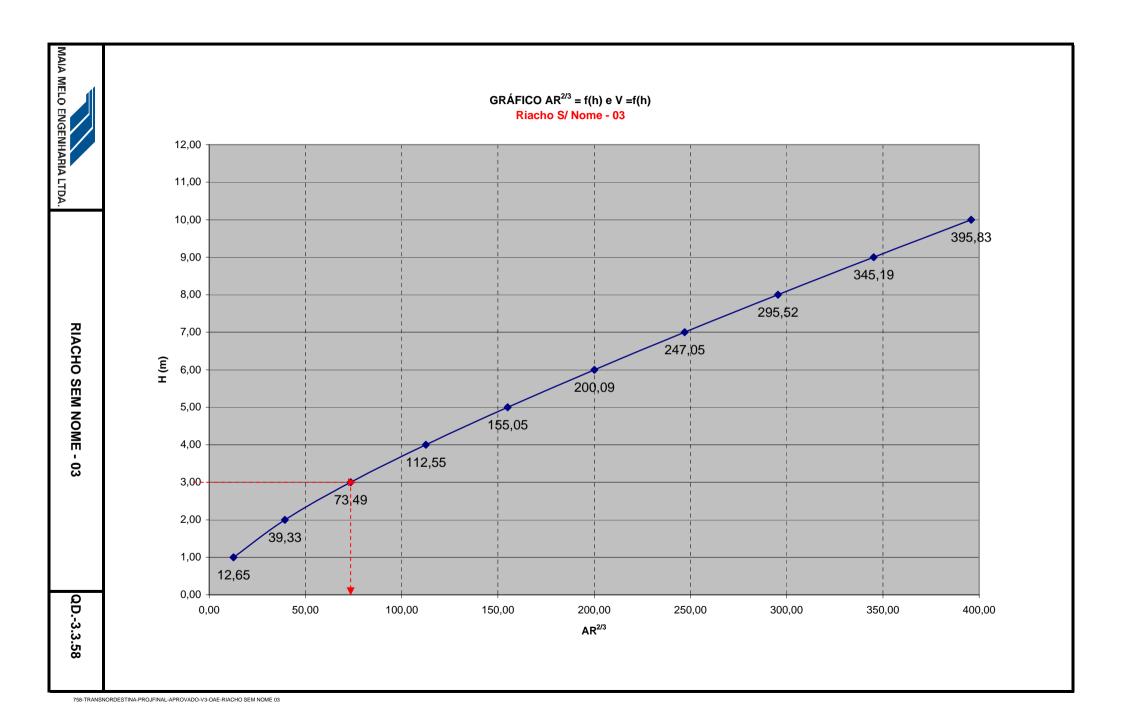
MAIA MELO ENGENHARIA LTDA.


CÁLCULO DA DESCARGA DE PROJETO - HUT

DIMENSIONAMENTO HIDRÁULICO - OBRA DE ARTE ESPECIAL Ponte sobre: Riacho Palestina Estaca: 3512+5,40 1. CARACTERÍSTICAS DA BACIA HIDROGRÁFICA 8,05 Km² 4,65 Km H= 47,00 m Rodovia Área da Bacia Perfil H Desnivel Descarga de Projeto Comprimento 2. VAZÕES DE CONTRIBUIÇÃO $Q_{100} =$ $75,00 \text{ m}^3/\text{s}$ 3. CARACTERÍSTICAS GEOMÉTRICAS DA SEÇÃO DE VAZÃO Greide Folga > 1m ----Vão Hidráulico $Q = \frac{1}{n} A R^{\frac{2}{3}} I^{\frac{1}{2}}$ 4. CÁLCULOS HIDRÁULICOS) AR^{2/3} (Sob a Condição de Projeto n = 0.0400,0015 m/m 1= $AR^{2/3}_{f(100)} =$ 20,00 m $AR^{2/3}f_{(Q100)} = 77,46$ 77,46 Vão = CÁLCULO DE AR2/3 EM FUNÇÃO DO NÍVEL D'AGUA **OBSERVAÇÕES** R^{2/3} AR^{2/3} 22,00 0,91 0,94 18,75 Não Satisfaz 1,00 19,99 2,00 39,99 24,00 1,67 1,41 56,21 Não Satisfaz 3,00 59,99 26,00 2,31 1,75 104,75 Satisfaz 28,00 Satisfaz 4,00 79,99 2,86 2,01 161,05 99,99 30,00 3,33 Satisfaz 5,00 2,23 223,11 2,41 119,99 32,00 3,75 289,61 Satisfaz 6,00 7,00 139,99 34,00 4,12 2,57 359,62 Satisfaz 2,70 Satisfaz 36,00 4,44 432,47 8,00 159,99 9,00 179,99 38,00 4,74 2,82 507,64 Satisfaz 10,00 199,99 40,00 5,00 2,92 584,75 Satisfaz OBS: Vão Hidráulico = 20,00 x 3,00 **DIMENSIONAMENTO HIDRÁULICO** EH - 3.3.54 **OBRA DE ARTE ESPECIAL** MAIA MELO ENGENHARIA LTDA.

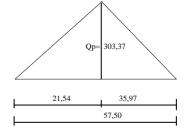
Ferrovia: Transnordestina Rio / Riacho: Riacho S/ Nome-03 Estaca: 3759+15,4 Área da bacia (km²): 2,72 Linha de Fundo (km): 2,60 Diferença de Nível (m): 40,00 Declividade (m/km): 15,36 Tempo de Concentração (h): 0,69 Duração Total (h): 0,69 Coeficiente de Redução: 1,00 Nº Curva Complexo Solo-vegetação : 80 Nome do Posto: Parnamirim Tempo de Recorrência (anos): 100

Hidrograma Unitário										
Dt < Tc/5 =	0,14	h								
Tp=Dt/2+0,60Tc =	0,49	h								
Tr=1,67Tp =	0,81	h								
Tb=2,67Tp=	1,30	h								
Op=2.08 A/Tp	11.66	m3/s/cm								


i	Ti	Se Ti <tp< th=""><th>Se Ti>Tp</th><th>i</th><th>Ti</th><th>Po</th><th>P=PoK</th><th>$Ri = [P-5080/N)+50,8]^2$</th><th>qi=(Ri-(Ri-1)/10</th></tp<>	Se Ti>Tp	i	Ti	Po	P=PoK	$Ri = [P-5080/N)+50,8]^2$	qi=(Ri-(Ri-1)/10
	(h)	μi=μ(Tp)Ti/Tp	$\mu i = \mu(Tp)(Tb-Ti)/Tr$		(h)	(mm)	(mm)	P+(20320/N-203,2	(cm)
1	0,14	3,33	0,00	1	0,14	36,28	36,28	6,39	0,64
2	0,28	6,66	0,00	2	0,28	56,77	56,77	18,06	1,17
3	0,42	10,00	0,00	3	0,42	68,76	68,76	26,28	0,82
4	0,55	0,00	10,66	4	0,55	77,26	77,26	32,55	0,63
5	0,69	0,00	8,67	5	0,69	83,86	83,86	37,60	0,51
6	0,83	0,00	6,67	6	0,83	89,25	89,25	41,84	0,42
7	0,97	0,00	4,68	7	0,97	93,80	93,80	45,49	0,36
8	1,11	0,00	2,68	8	1,11	98,60	98,60	49,39	0,39
9	1,25	0,00	0,69	9	1,25	103,05	103,05	53,06	0,37
10	1,39	0,00	0,00	10	1,39	107,03	107,03	56,38	0,33

CÁLCULO DOS VALORES

Q-=miq1=mi-1q2+mi-2q3+...

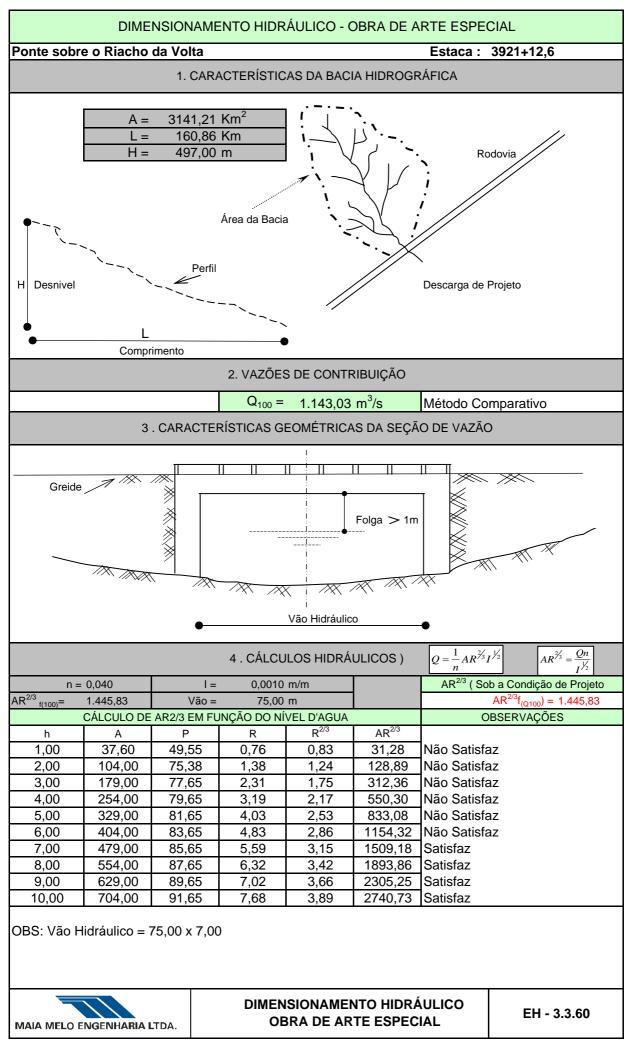

i	μί	q1=	q2=	q3=	q4=	q5=	q6=	q7=	q8=	q9=	q10=	Q
		0,64	1,17	0,82	0,63	0,51	0,42	0,36	0,39	0,37	0,33	(m3/s)
1	3,33	2,13										2,13
2	6,66	4,26	3,89									8,14
3	10,00	6,38	7,78	2,74								16,90
4	10,66	6,81	11,67	5,48	2,09							26,05
5	8,67	5,54	12,45	8,22	4,17	1,68						32,07
6	6,67	4,26	10,12	8,77	6,26	3,37	1,41					34,20
7	4,68	2,99	7,79	7,13	6,68	5,05	2,82	1,22				33,68
8	2,68	1,71	5,46	5,49	5,43	5,39	4,24	2,43	1,30			31,45
9	0,69	0,44	3,13	3,85	4,18	4,38	4,52	3,65	2,60	1,22		27,97
10	0,00	0,00	0,80	2,21	2,93	3,37	3,67	3,89	3,90	2,44		23,23
11			0,00	0,57	1,68	2,36	2,83	3,16	4,16	3,67		18,43
12				0,00	0,43	1,36	1,98	2,44	3,38	3,91		13,50
13					0,00	0,35	1,14	1,71	2,60	3,18		8,98
14						0,00	0,29	0,98	1,83	2,45		5,54
15							0,00	0,25	1,05	1,72		3,01
16								0,00	0,27	0,98		1,25
17									0,00	0,25		0,25
										0,00		0,00
				CÁ	LCULO	DA DESC	CARGA	DE PRO	JETO - H	lUT	EH -	3.3.56

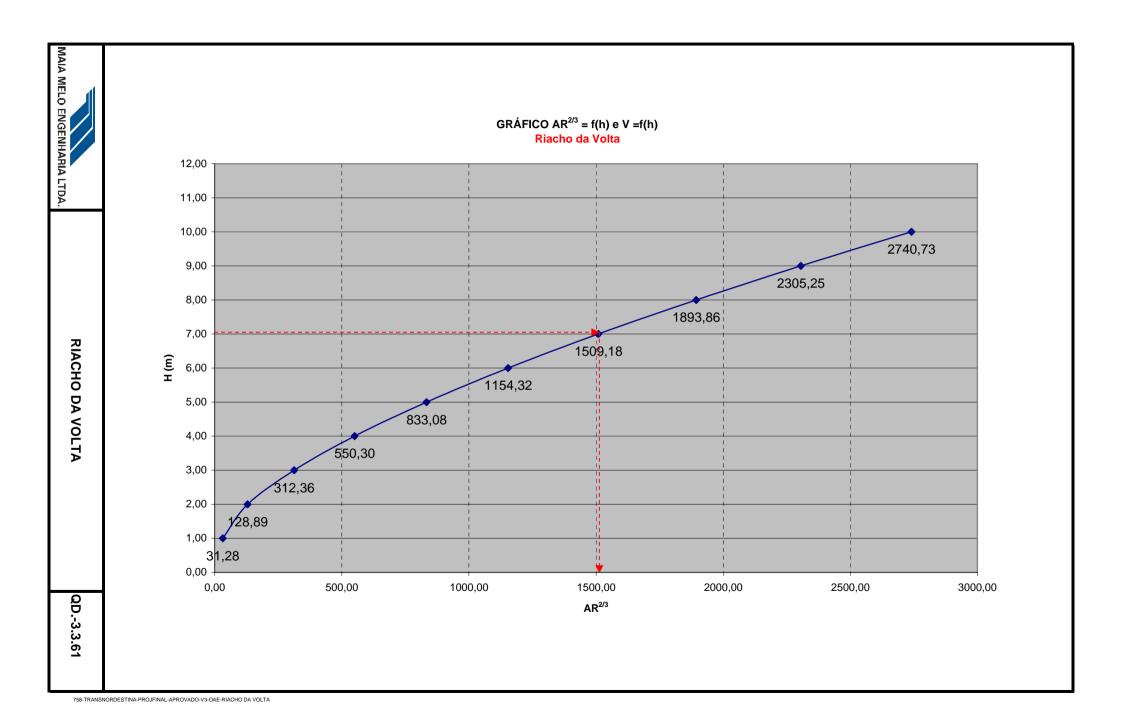
DIMENSIONAMENTO HIDRÁULICO - OBRA DE ARTE ESPECIAL Ponte sobre o Riacho s/ Nome - 03 Estaca: 3759+15,4 1. CARACTERÍSTICAS DA BACIA HIDROGRÁFICA 2,72 Km² 2,60 Km H= 40,00 m Rodovia Área da Bacia Perfil H Desnivel Descarga de Projeto Comprimento 2. VAZÕES DE CONTRIBUIÇÃO $Q_{100} =$ $33,68 \text{ m}^3/\text{s}$ 3. CARACTERÍSTICAS GEOMÉTRICAS DA SEÇÃO DE VAZÃO Greide Folga > 1m ----Vão Hidráulico $Q = \frac{1}{n} A R^{\frac{2}{3}} I^{\frac{1}{2}}$ 4. CÁLCULOS HIDRÁULICOS) AR^{2/3} (Sob a Condição de Projeto n = 0.0400,0010 m/m 1= AR^{2/3} _{f(100)}= 15,00 m $AR^{2/3}f_{(Q100)} = 42,60$ 42,60 Vão = CÁLCULO DE AR2/3 EM FUNÇÃO DO NÍVEL D'AGUA **OBSERVAÇÕES** R^{2/3} AR^{2/3} 16,44 0,90 12,65 Não Satisfaz 1,00 14,05 0,85 2,00 29,05 18,44 1,58 1,35 39,33 Não Satisfaz 3,00 44,05 20,44 2,16 1,67 73,49 Satisfaz 22,44 Satisfaz 4,00 59,05 2,63 1,91 112,55 74,05 24,44 Satisfaz 5,00 3,03 2,09 155,05 89,05 26,44 3,37 2,25 200,09 Satisfaz 6,00 7,00 104,05 28,44 3,66 2,37 247,05 Satisfaz 295,52 Satisfaz 119,05 30,44 2,48 8,00 3,91 9,00 134,05 32,44 4,13 2,58 345,19 Satisfaz 10,00 149,05 34,44 4,33 2,66 395,83 Satisfaz OBS: Vão Hidráulico = 15,00 x 3,00 **DIMENSIONAMENTO HIDRÁULICO** EH - 3.3.57 **OBRA DE ARTE ESPECIAL** MAIA MELO ENGENHARIA LTDA.

Ferrovia: Transnordestina Rio / Riacho: Riacho da Volta Estaca: 3921+12,6 Área da bacia (km²): 3141,21 Linha de Fundo (km): 160,86 Diferença de Nível (m): 497,00 Declividade (m/km): 3,09 Tempo de Concentração (h): 30,77 Duração Total (h): 30,77 0,79 Coeficiente de Redução: Nº Curva Complexo Solo-vegetação : 80 Nome do Posto: Parnamirim Tempo de Recorrência (anos): 100

Hidrograma U	Jnitário	
Dt < Tc/5 =	6,15	h
Tp=Dt/2+0,60Tc =	21,54	h
Tr=1,67Tp =	35,97	h
Tb=2,67Tp =	57,50	h
Qp=2,08 A/Tp	303,37	m3/s/cm

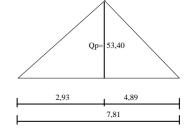
i	Ti	Se Ti <tp< th=""><th>Se Ti>Tp</th><th>i</th><th>Ti</th><th>Po</th><th>P=PoK</th><th>$Ri = [P-5080/N)+50,8]^2$</th><th>qi=(Ri-(Ri-1)/10</th></tp<>	Se Ti>Tp	i	Ti	Po	P=PoK	$Ri = [P-5080/N)+50,8]^2$	qi=(Ri-(Ri-1)/10
	(h)	$\mu i = \mu(Tp)Ti/Tp$	$\mu i {=} \mu (Tp)(Tb{-}Ti)/Tr$		(h)	(mm)	(mm)	P+(20320/N-203,2	(cm)
1	6,15	86,68	0,00	1	6,15	163,31	129,03	75,25	7,52
2	12,31	173,36	0,00	2	12,31	189,48	149,71	93,62	1,84
3	18,46	260,03	0,00	3	18,46	204,80	161,81	104,57	1,10
4	24,61	0,00	277,42	4	24,61	215,66	170,39	112,42	0,78
5	30,77	0,00	225,52	5	30,77	224,09	177,05	118,55	0,61
6	36,92	0,00	173,62	6	36,92	230,97	182,49	123,57	0,50
7	43,07	0,00	121,71	7	43,07	236,80	187,09	127,84	0,43
8	49,23	0,00	69,81	8	49,23	241,84	191,07	131,54	0,37
9	55,38	0,00	17,91	9	55,38	246,29	194,59	134,82	0,33
10	61,53	0,00	0,00	10	61,53	250,27	197,73	137,76	0,29


CÁLCULO DOS VALORES


Q-=miq1=mi-1q2+mi-2q3+...

i	μί	q1=	q2=	q3=	q4=	q5=	q6=	q7=	q8=	q9=	q10=	Q
		7,52	1,84	1,10	0,78	0,61	0,50	0,43	0,37	0,33	0,29	(m3/s)
1	86,68	652,25										652,25
2	173,36	1304,49	159,22									1463,72
3	260,03	1956,74	318,45	94,95								2370,13
4	277,42	2087,58	477,67	189,89	68,02							2823,17
5	225,52	1697,01	509,61	284,84	136,05	53,09						2680,61
6	173,62	1306,45	414,26	303,89	204,07	106,19	43,58					2378,44
7	121,71	915,88	318,92	247,03	217,72	159,28	87,15	36,97				1982,96
8	69,81	525,31	223,58	190,18	176,99	169,94	130,73	73,94	32,12			1522,78
9	17,91	134,75	128,24	133,32	136,25	138,14	139,47	110,92	64,23	28,39		1013,71
10	0,00	0,00	32,89	76,47	95,52	106,35	113,38	118,33	96,35	56,79		696,07
11			0,00	19,61	54,79	74,56	87,28	96,19	102,79	85,18		520,40
12				0,00	14,05	42,76	61,19	74,05	83,56	90,87		366,49
13					0,00	10,97	35,10	51,92	64,33	73,87		236,18
14						0,00	9,00	29,78	45,10	56,87		140,75
15							0,00	7,64	25,87	39,87		73,37
16								0,00	6,63	22,87		29,50
17									0,00	5,87		5,87
										0,00		0,00
	251 211 2 24											

MAIA MELO ENGENHARIA LTDA.

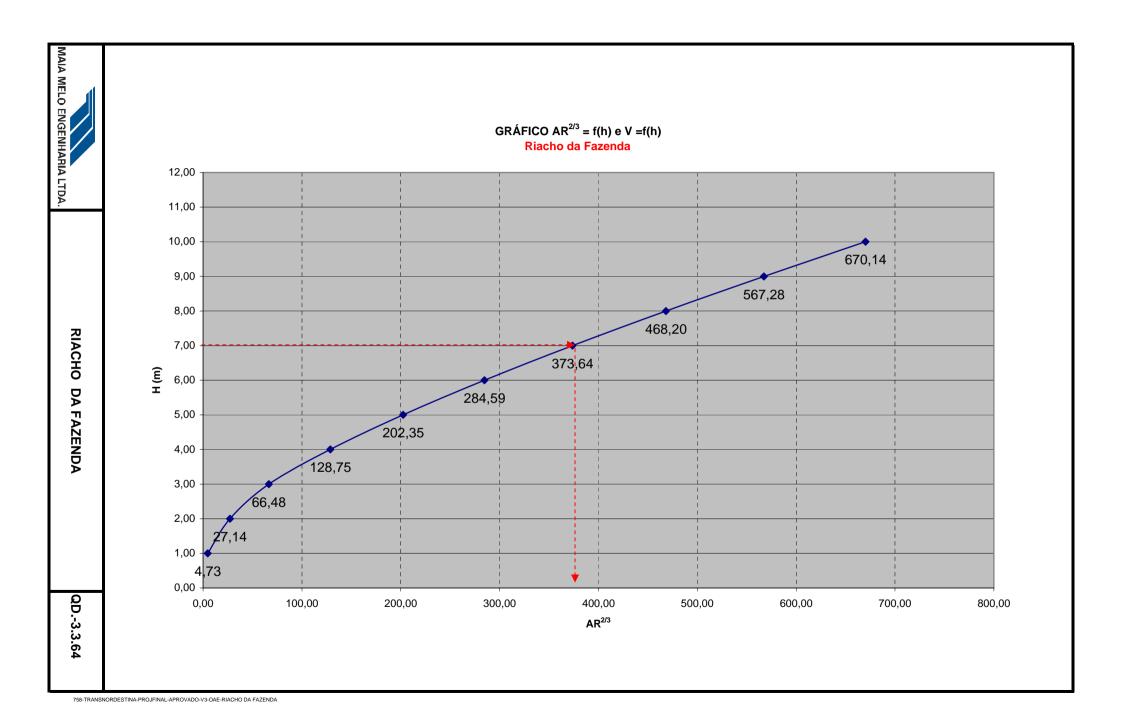

CÁLCULO DA DESCARGA DE PROJETO - HUT

Ferrovia:	Transnordestina
Rio / Riacho:	Riacho da Fazenda
Estaca:	4079+15,4
Área da bacia (km²):	75,14
Linha de Fundo (km) :	15,21
Diferença de Nível (m):	75
Declividade (m/km):	4,93
Tempo de Concentração (h):	4,18
Duração Total (h):	4,18
Coeficiente de Redução:	0,95
Nº Curva Complexo Solo-vegetação :	80
Nome do Posto:	Parnamirim
Tempo de Recorrência (anos):	100

Hidrograma Unitário									
Dt < Tc/5 =	0,84	h							
Tp = Dt/2 + 0,60Tc =	2,93	h							
Tr=1,67Tp =	4,89	h							
Tb=2,67Tp =	7,81	h							
Qp=2,08 A/Tp	53,40	m3/s/cm							

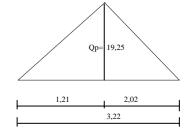
i	Ti	Se Ti <tp< th=""><th>Se Ti>Tp</th><th>i</th><th>Ti</th><th>Po</th><th>P=PoK</th><th>$Ri = [P-5080/N)+50,8]^2$</th><th>qi=(Ri-(Ri-1)/10</th></tp<>	Se Ti>Tp	i	Ti	Po	P=PoK	$Ri = [P-5080/N)+50,8]^2$	qi=(Ri-(Ri-1)/10
	(h)	$\mu i = \mu(Tp)Ti/Tp$	$\mu i = \mu(Tp)(Tb-Ti)/Tr$		(h)	(mm)	(mm)	P+(20320/N-203,2	(cm)
1	0,84	15,26	0,00	1	0,84	89,40	85,13	38,59	3,86
2	1,67	30,52	0,00	2	1,67	114,11	108,65	57,74	1,92
3	2,51	45,77	0,00	3	2,51	129,42	123,24	70,20	1,25
4	3,34	0,00	48,83	4	3,34	140,29	133,58	79,25	0,90
5	4,18	0,00	39,70	5	4,18	148,71	141,61	86,36	0,71
6	5,02	0,00	30,56	6	5,02	155,60	148,16	92,23	0,59
7	5,85	0,00	21,43	7	5,85	161,42	153,70	97,22	0,50
8	6,69	0,00	12,29	8	6,69	166,46	158,51	101,57	0,43
9	7,53	0,00	3,15	9	7,53	170,91	162,74	105,43	0,39
10	8,36	0,00	0,00	10	8,36	174,89	166,53	108,88	0,35

CÁLCULO DOS VALORES


Q-=miq1=mi-1q2+mi-2q3+...

i	μί	q1=	q2=	q3=	q4=	q5=	q6=	q7=	q8=	q9=	q10=	Q
		3,86	1,92	1,25	0,90	0,71	0,59	0,50	0,43	0,39	0,35	(m3/s)
1	15,26	58,88										58,88
2	30,52	117,76	29,22									146,98
3	45,77	176,65	58,44	19,01								254,10
4	48,83	188,46	87,66	38,03	13,80							327,95
5	39,70	153,20	93,52	57,04	27,60	10,85						342,22
6	30,56	117,94	76,03	60,86	41,40	21,70	8,95					326,88
7	21,43	82,68	58,53	49,47	44,17	32,56	17,90	7,62				292,93
8	12,29	47,42	41,03	38,09	35,91	34,73	26,85	15,24	6,64			245,91
9	3,15	12,16	23,53	26,70	27,64	28,23	28,65	22,86	13,27	5,88		188,94
10	0,00	0,00	6,04	15,31	19,38	21,74	23,29	24,39	19,91	11,76		141,81
11			0,00	3,93	11,12	15,24	17,93	19,83	21,24	17,64		106,91
12				0,00	2,85	8,74	12,57	15,26	17,27	18,82		75,51
13					0,00	2,24	7,21	10,70	13,29	15,30		48,74
14						0,00	1,85	6,14	9,32	11,78		29,08
15							0,00	1,57	5,35	8,26		15,18
16								0,00	1,37	4,74		6,11
17									0,00	1,21		1,21
										0,00		0,00
	=			,								
				CÁ	LCULO	DA DES	CARGA	DE PRO	JETO - F	IUT	EH -	3.3.62

DIMENSIONAMENTO HIDRÁULICO - OBRA DE ARTE ESPECIAL Ponte sobre o Racho da Fazenda Estaca: 4079+15,4 1. CARACTERÍSTICAS DA BACIA HIDROGRÁFICA 75,14 Km² A =15,21 Km H= 75,00 m Rodovia Área da Bacia Perfil Desnivel Descarga de Projeto Comprimento 2. VAZÕES DE CONTRIBUIÇÃO $Q_{100} =$ $342,22 \text{ m}^3/\text{s}$ 3. CARACTERÍSTICAS GEOMÉTRICAS DA SEÇÃO DE VAZÃO Greide Folga > 1m Vão Hidráulico $Q = \frac{1}{4} A R^{\frac{2}{3}} I^{\frac{1}{2}}$ $AR^{\frac{2}{3}} = \frac{Qn}{n}$ 4. CÁLCULOS HIDRÁULICOS) AR^{2/3} (Sob a Condição de Projeto n = 0.0400,0015 m/m $AR^{2/3}_{f(100)} =$ $AR^{2/3}f_{(Q100)} = 353,45$ 353,45 Vão = 25,00 m CÁLCULO DE AR2/3 EM FUNÇÃO DO NÍVEL D'AGUA **OBSERVAÇÕES** AR^{2/3} R^{2/3} 1,00 7,43 14,65 0,51 0,64 4,73 Não Satisfaz 2,00 23,03 18,00 1,28 1,18 27,14 Não Satisfaz 47,38 3,00 28,51 1,66 1,40 66,48 Não Satisfaz 72,38 Não Satisfaz 4,00 30,51 2,37 1,78 128,75 97,38 32,51 Não Satisfaz 5,00 3,00 2,08 202,35 6,00 122,38 34,51 3,55 2,33 284,59 Não Satisfaz 147,38 4,04 2,54 373,64 Satisfaz 7,00 36,51 Satisfaz 4,48 468,20 8,00 172,38 38,51 2,72 9,00 197,38 40,51 4,87 2,87 567,28 Satisfaz 10,00 222,38 42,51 5,23 3,01 670,14 Satisfaz OBS: Vão Hidráulico = 25,00 x 7,00 **DIMENSIONAMENTO HIDRÁULICO**


OBRA DE ARTE ESPECIAL

EH - 3.3.63

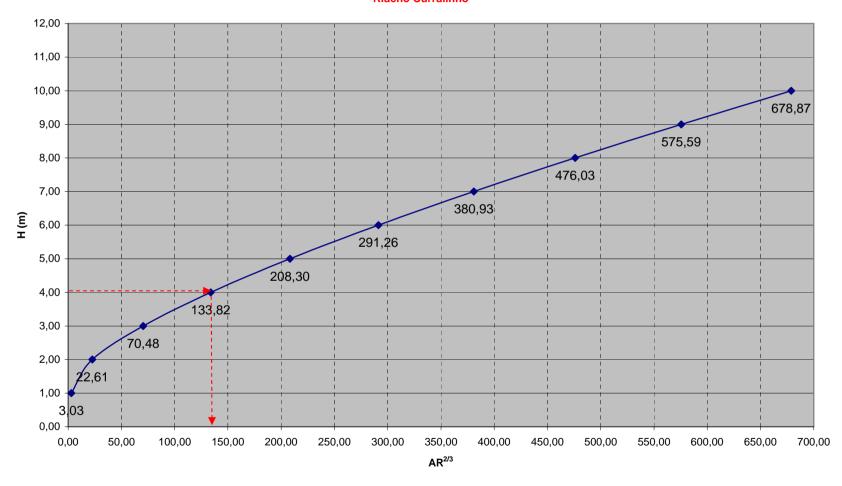
Ferrovia: Transnordestina Rio / Riacho: Riacho Curralinho Estaca: 4259+17,9 Área da bacia (km²): 11,17 Linha de Fundo (km): 5,58 Diferença de Nível (m): 37 Declividade (m/km): 6,63 Tempo de Concentração (h): 1,72 Duração Total (h): 1,72 Coeficiente de Redução: 1,00 Nº Curva Complexo Solo-vegetação : 80 Nome do Posto: Parnamirim Tempo de Recorrência (anos): 100

Hidrograma Unitário									
Dt < Tc/5 =	0,34	h							
Tp=Dt/2+0,60Tc =	1,21	h							
Tr=1,67Tp =	2,02	h							
Tb=2,67Tp =	3,22	h							
Qp=2,08 A/Tp	19,25	m3/s/cm							

EH - 3.3.65

i	Ti	Se Ti <tp< th=""><th>Se Ti>Tp</th><th>i</th><th>Ti</th><th>Po</th><th>P=PoK</th><th>$Ri = [P-5080/N)+50,8]^2$</th><th>qi=(Ri-(Ri-1)/10</th></tp<>	Se Ti>Tp	i	Ti	Po	P=PoK	$Ri = [P-5080/N)+50,8]^2$	qi=(Ri-(Ri-1)/10
	(h)	$\mu i = \mu(Tp)Ti/Tp$	$\mu i = \mu(Tp)(Tb-Ti)/Tr$		(h)	(mm)	(mm)	P+(20320/N-203,2	(cm)
1	0,34	5,50	0,00	1	0,34	63,23	63,23	22,39	2,24
2	0,69	11,00	0,00	2	0,69	83,71	83,71	37,49	1,51
3	1,03	16,50	0,00	3	1,03	95,98	95,98	47,25	0,98
4	1,38	0,00	17,60	4	1,38	106,85	106,85	56,22	0,90
5	1,72	0,00	14,31	5	1,72	115,27	115,27	63,35	0,71
6	2,07	0,00	11,02	6	2,07	122,16	122,16	69,27	0,59
7	2,41	0,00	7,72	7	2,41	127,98	127,98	74,33	0,51
8	2,76	0,00	4,43	8	2,76	133,02	133,02	78,76	0,44
9	3,10	0,00	1,14	9	3,10	137,47	137,47	82,69	0,39
10	3,45	0,00	0,00	10	3,45	141,45	141,45	86,22	0,35

CÁLCULO DOS VALORES


Q-=miq1=mi-1q2+mi-2q3+...

i	μί	q1=	q2=	q3=	q4=	q5=	q6=	q7=	q8=	q9=	q10=	Q
		2,24	1,51	0,98	0,90	0,71	0,59	0,51	0,44	0,39	0,35	(m3/s)
1	5,50	12,31										12,31
2	11,00	24,63	8,31									32,93
3	16,50	36,94	16,61	5,37								58,92
4	17,60	39,41	24,92	10,74	4,93							80,00
5	14,31	32,04	26,58	16,11	9,87	3,92						88,51
6	11,02	24,66	21,61	17,18	14,80	7,84	3,26					89,35
7	7,72	17,29	16,64	13,97	15,79	11,76	6,51	2,78				84,74
8	4,43	9,92	11,66	10,75	12,84	12,55	9,77	5,57	2,43			75,49
9	1,14	2,54	6,69	7,54	9,88	10,20	10,42	8,35	4,87	2,16		62,65
10	0,00	0,00	1,72	4,32	6,93	7,85	8,47	8,91	7,30	4,32		49,82
11			0,00	1,11	3,97	5,51	6,52	7,24	7,79	6,48		38,62
12				0,00	1,02	3,16	4,57	5,58	6,33	6,92		27,57
13					0,00	0,81	2,62	3,91	4,87	5,62		17,84
14						0,00	0,67	2,24	3,42	4,33		10,66
15							0,00	0,58	1,96	3,03		5,57
16								0,00	0,50	1,74		2,24
17									0,00	0,45		0,45
										0,00		0,00

CÁLCULO DA DESCARGA DE PROJETO - HUT

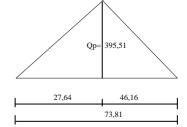
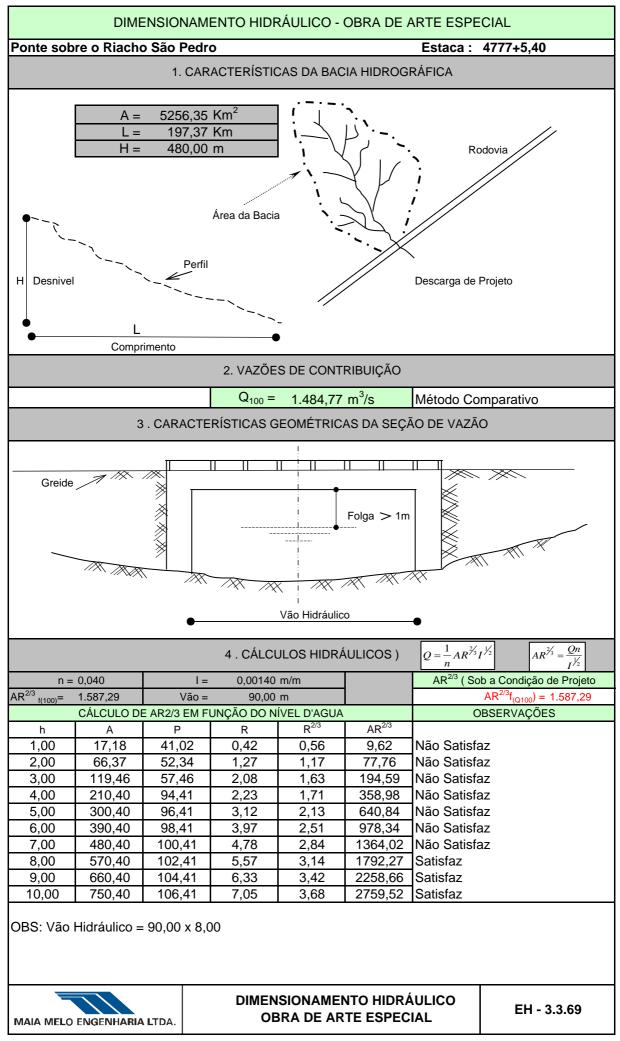

DIMENSIONAMENTO HIDRÁULICO - OBRA DE ARTE ESPECIAL Ponte sobre o Riacho Curralinho Estaca: 4259+17,9 1. CARACTERÍSTICAS DA BACIA HIDROGRÁFICA 11,17 Km² A = 5,58 Km H = 37,00 m Rodovia Área da Bacia Perfil H Desnivel Descarga de Projeto Comprimento 2. VAZÕES DE CONTRIBUIÇÃO $Q_{100} =$ 89,35 m³/s 3 . CARACTERÍSTICAS GEOMÉTRICAS DA SEÇÃO DE VAZÃO Greide Folga > 1m Vão Hidráulico $Q = \frac{1}{n} A R^{\frac{2}{3}} I^{\frac{1}{2}}$ 4. CÁLCULOS HIDRÁULICOS) AR^{2/3} (Sob a Condição de Projeto n = 0.0400,0010 m/m $AR^{2/3}_{f(100)} =$ 113,02 $AR^{2/3}f_{(Q100)} = 113,02$ Vão = 25,00 m CÁLCULO DE AR2/3 EM FUNÇÃO DO NÍVEL D'AGUA **OBSERVAÇÕES** R^{2/3} AR^{2/3} 5,92 0,37 Não Satisfaz 1,00 16,19 0,51 3,03 2,00 24,05 26,38 0,91 0,94 22,61 Não Satisfaz 3,00 49,05 28,48 1,72 1,44 70,48 Não Satisfaz Satisfaz 4,00 74,05 30,48 2,43 1,81 133,82 2,10 Satisfaz 5,00 99,05 32,48 3,05 208,30 6,00 124,05 34,48 3,60 2,35 291,26 Satisfaz 7,00 149,05 36,48 4,09 2,56 380,93 Satisfaz 174,05 38,48 2,74 476,03 Satisfaz 4,52 8,00 9,00 199,05 40,48 4,92 2,89 575,59 Satisfaz 10,00 224,05 42,48 5,27 3,03 678,87 Satisfaz OBS: Vão Hidráulico = 25,00 x 4,00 **DIMENSIONAMENTO HIDRÁULICO** EH - 3.3.66 **OBRA DE ARTE ESPECIAL** MAIA MELO ENGENHARIA LTDA.

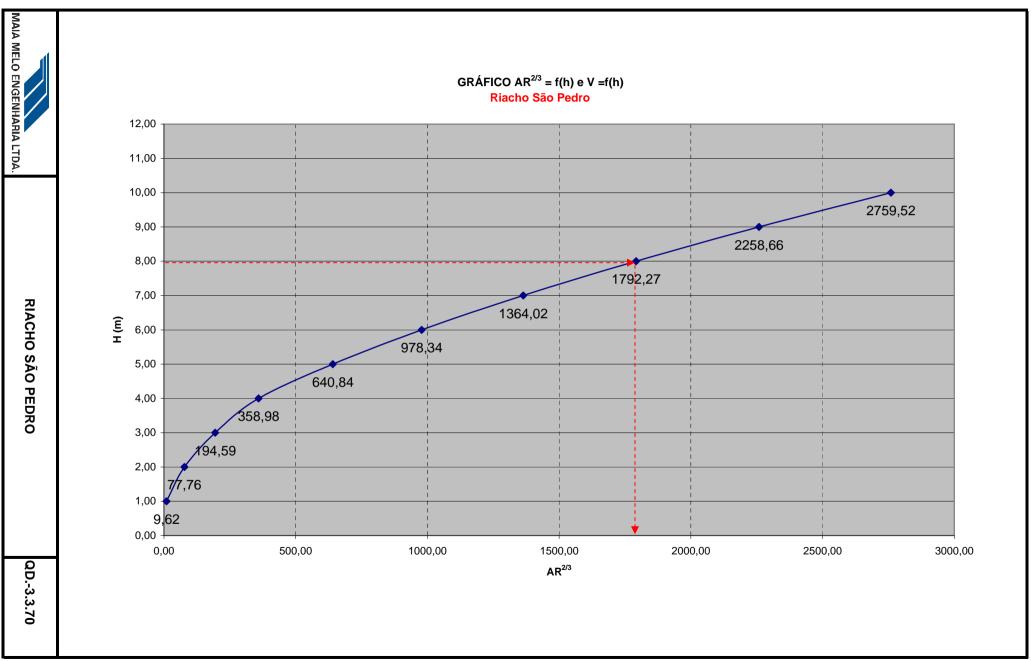
GRÁFICO AR^{2/3} = f(h) e V =f(h) Riacho Curralinho

Ferrovia: Transnordestina Rio / Riacho: Riacho São Pedro Estaca: 4777+5,40 Área da bacia (km²): 5256,35 Linha de Fundo (km): 197,37 Diferença de Nível (m): 480 Declividade (m/km): 2,43 Tempo de Concentração (h): 39,49 Duração Total (h): 39,49 Coeficiente de Redução: 0,77 Nº Curva Complexo Solo-vegetação: 80 Nome do Posto: Parnamirim Tempo de Recorrência (anos): 100

Hidrograma Unitário									
Dt < Tc/5 =	7,90	h							
Tp=Dt/2+0,60Tc =	27,64	h							
Tr=1,67Tp =	46,16	h							
Tb=2,67Tp =	73,81	h							
Qp=2,08 A/Tp	395,51	m3/s/cm							

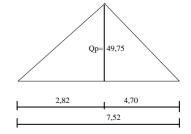
EH - 3.3.68


i	Ti	Se Ti <tp< th=""><th>Se Ti>Tp</th><th>i</th><th>Ti</th><th>Po</th><th>P=PoK</th><th>$Ri = [P-5080/N)+50,8]^2$</th><th>qi=(Ri-(Ri-1)/10</th></tp<>	Se Ti>Tp	i	Ti	Po	P=PoK	$Ri = [P-5080/N)+50,8]^2$	qi=(Ri-(Ri-1)/10
	(h)	$\mu i {=} \mu (Tp) Ti/Tp$	$\mu i = \mu(Tp)(Tb-Ti)/Tr$		(h)	(mm)	(mm)	P+(20320/N-203,2	(cm)
1	7,90	113,00	0,00	1	7,90	172,73	132,61	78,40	7,84
2	15,80	226,01	0,00	2	15,80	198,91	152,71	96,32	1,79
3	23,69	339,01	0,00	3	23,69	214,22	164,47	107,00	1,07
4	31,59	0,00	361,68	4	31,59	225,09	172,81	114,64	0,76
5	39,49	0,00	294,01	5	39,49	233,52	179,28	120,60	0,60
6	47,39	0,00	226,35	6	47,39	240,40	184,56	125,49	0,49
7	55,29	0,00	158,68	7	55,29	246,22	189,03	129,64	0,42
8	63,18	0,00	91,01	8	63,18	251,27	192,90	133,25	0,36
9	71,08	0,00	23,35	9	71,08	255,71	196,32	136,44	0,32
10	78,98	0,00	0,00	10	78,98	259,69	199,37	139,29	0,29


CÁLCULO DOS VALORES

Q-=miq1=mi-1q2+mi-2q3+...

i	μί	q1=	q2=	q3=	q4=	q5=	q6=	q7=	q8=	q9=	q10=	Q
		7,84	1,79	1,07	0,76	0,60	0,49	0,42	0,36	0,32	0,29	(m3/s)
1	113,00	885,91										885,91
2	226,01	1771,82	202,57									1974,39
3	339,01	2657,73	405,14	120,62								3183,49
4	361,68	2835,45	607,71	241,24	86,36							3770,76
5	294,01	2304,96	648,35	361,86	172,72	67,38						3555,27
6	226,35	1774,47	527,05	386,05	259,08	134,76	55,29					3136,71
7	158,68	1243,99	405,75	313,83	276,41	202,14	110,58	46,90				2599,59
8	91,01	713,50	284,45	241,60	224,69	215,66	165,86	93,80	40,73			1980,30
9	23,35	183,02	163,15	169,37	172,98	175,31	176,95	140,69	81,46	36,01		1298,95
10	0,00	0,00	41,85	97,15	121,27	134,96	143,85	150,10	122,20	72,01		883,38
11			0,00	24,92	69,55	94,62	110,74	122,02	130,37	108,02		660,24
12				0,00	17,84	54,27	77,63	93,94	105,98	115,24		464,90
13					0,00	13,92	44,53	65,85	81,59	93,68		299,57
14						0,00	11,42	37,77	57,20	72,12		178,51
15							0,00	9,69	32,81	50,56		93,05
16								0,00	8,41	29,00		37,41
17									0,00	7,44		7,44
										0,00		0,00


CÁLCULO DA DESCARGA DE PROJETO - HUT

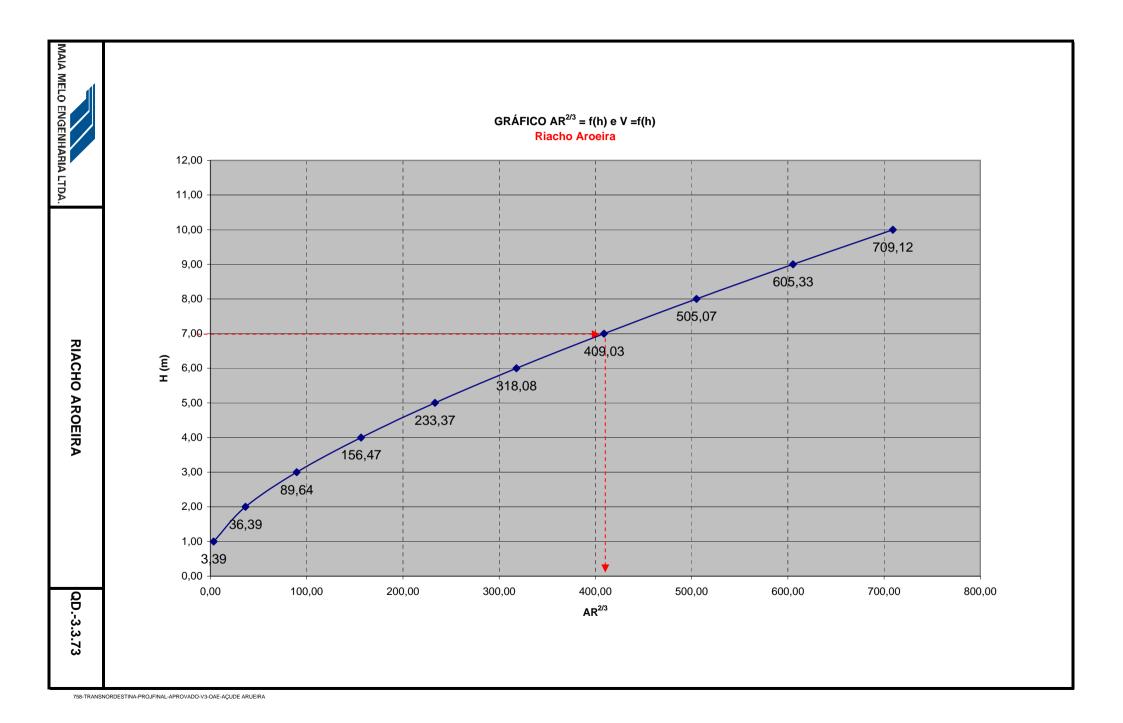
Transnordestina
Riacho Aroeira
4977+0,40
67,34
14,24
68
4,78
4,02
4,02
0,96
80
Parnamirim
100

Hidrograma Unitário									
Dt < Tc/5 =	0,80	h							
Tp=Dt/2+0,60Tc =	2,82	h							
Tr=1,67Tp =	4,70	h							
Tb=2,67Tp =	7,52	h							
Qp=2,08 A/Tp	49,75	m3/s/cm							

i	Ti	Se Ti <tp< th=""><th>Se Ti>Tp</th><th>i</th><th>Ti</th><th>Po</th><th>P=PoK</th><th>$Ri = [P-5080/N)+50,8]^2$</th><th>qi=(Ri-(Ri-1)/10</th></tp<>	Se Ti>Tp	i	Ti	Po	P=PoK	$Ri = [P-5080/N)+50,8]^2$	qi=(Ri-(Ri-1)/10
	(h)	μi=μ(Tp)Ti/Tp	$\mu i = \mu(Tp)(Tb-Ti)/Tr$		(h)	(mm)	(mm)	P+(20320/N-203,2	(cm)
1	0,80	14,21	0,00	1	0,80	88,25	84,46	38,07	3,81
2	1,61	28,43	0,00	2	1,61	112,65	107,80	57,02	1,90
3	2,41	42,64	0,00	3	2,41	127,96	122,45	69,53	1,25
4	3,22	0,00	45,49	4	3,22	138,82	132,85	78,61	0,91
5	4,02	0,00	36,98	5	4,02	147,25	140,91	85,75	0,71
6	4,83	0,00	28,47	6	4,83	154,14	147,50	91,64	0,59
7	5,63	0,00	19,96	7	5,63	159,96	153,07	96,65	0,50
8	6,44	0,00	11,45	8	6,44	165,00	157,90	101,02	0,44
9	7,24	0,00	2,94	9	7,24	169,45	162,16	104,89	0,39
10	8,04	0,00	0,00	10	8,04	173,43	165,96	108,37	0,35

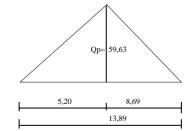
CÁLCULO DOS VALORES

Q-=miq1=mi-1q2+mi-2q3+...


i	μί	q1=	q2=	q3=	q4=	q5=	q6=	q7=	q8=	q9=	q10=	Q
		3,81	1,90	1,25	0,91	0,71	0,59	0,50	0,44	0,39	0,35	(m3/s)
1	14,21	54,11										54,11
2	28,43	108,22	26,94									135,16
3	42,64	162,33	53,88	17,77								233,99
4	45,49	173,18	80,82	35,54	12,91							302,46
5	36,98	140,78	86,23	53,32	25,81	10,15						316,29
6	28,47	108,38	70,10	56,88	38,72	20,30	8,37					302,75
7	19,96	75,98	53,96	46,24	41,30	30,45	16,74	7,13				271,81
8	11,45	43,58	37,83	35,60	33,58	32,49	25,12	14,26	6,21			228,66
9	2,94	11,18	21,70	24,96	25,85	26,41	26,80	21,39	12,42	5,50		176,19
10	0,00	0,00	5,57	14,31	18,12	20,33	21,78	22,82	18,63	11,00		132,56
11			0,00	3,67	10,39	14,25	16,77	18,55	19,87	16,50		100,01
12				0,00	2,67	8,17	11,76	14,28	16,16	17,61		70,64
13					0,00	2,10	6,74	10,01	12,44	14,31		45,60
14						0,00	1,73	5,74	8,72	11,02		27,21
15							0,00	1,47	5,00	7,73		14,20
16								0,00	1,28	4,43		5,71
17									0,00	1,14		1,14
										0,00		0,00

MAIA MELO ENGENHARIA LTDA.

CÁLCULO DA DESCARGA DE PROJETO - HUT

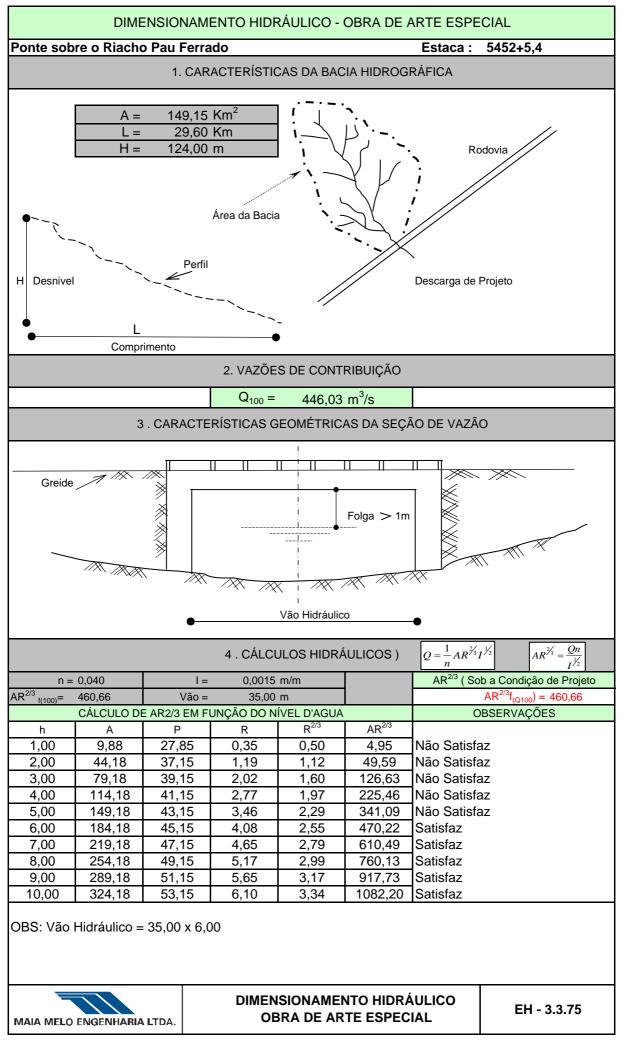

DIMENSIONAMENTO HIDRÁULICO - OBRA DE ARTE ESPECIAL Ponte sobre o Riacho Aroeira Estaca: 4977+0,40 1. CARACTERÍSTICAS DA BACIA HIDROGRÁFICA 67,34 Km² A = 14,24 Km H = 68,00 m Rodovia Área da Bacia Perfil H Desnivel Descarga de Projeto Comprimento 2. VAZÕES DE CONTRIBUIÇÃO $Q_{100} =$ $316,29 \text{ m}^3/\text{s}$ 3. CARACTERÍSTICAS GEOMÉTRICAS DA SEÇÃO DE VAZÃO Greide Folga > 1m Vão Hidráulico $Q = \frac{1}{n} A R^{\frac{2}{3}} I^{\frac{1}{2}}$ 4. CÁLCULOS HIDRÁULICOS) AR^{2/3} (Sob a Condição de Projeto n = 0.0400,0015 m/m $AR^{2/3}_{f(100)} =$ $AR^{2/3}f_{(Q100)} = 326,66$ 326,66 Vão = 25,00 m CÁLCULO DE AR2/3 EM FUNÇÃO DO NÍVEL D'AGUA **OBSERVAÇÕES** R^{2/3} AR^{2/3} 25,71 0,30 0,44 3,39 Não Satisfaz 1,00 7,63 2,00 32,63 27,71 1,18 1,12 36,39 Não Satisfaz 3,00 57,63 29,71 1,94 1,56 89,64 Não Satisfaz Não Satisfaz 4,00 82,63 31,71 2,61 1,89 156,47 107,63 33,71 Não Satisfaz 5,00 3,19 2,17 233,37 6,00 132,63 35,71 3,71 2,40 318,08 Não Satisfaz 7,00 157,63 37,71 4,18 2,59 409,03 Satisfaz Satisfaz 4,60 505,07 8,00 182,63 39,71 2,77 9,00 207,63 41,71 4,98 2,92 605,33 Satisfaz 10,00 232,63 43,71 5,32 3,05 709,12 Satisfaz OBS: Vão Hidráulico = 25,00 x 7,00 **DIMENSIONAMENTO HIDRÁULICO** EH - 3.3.72 **OBRA DE ARTE ESPECIAL**

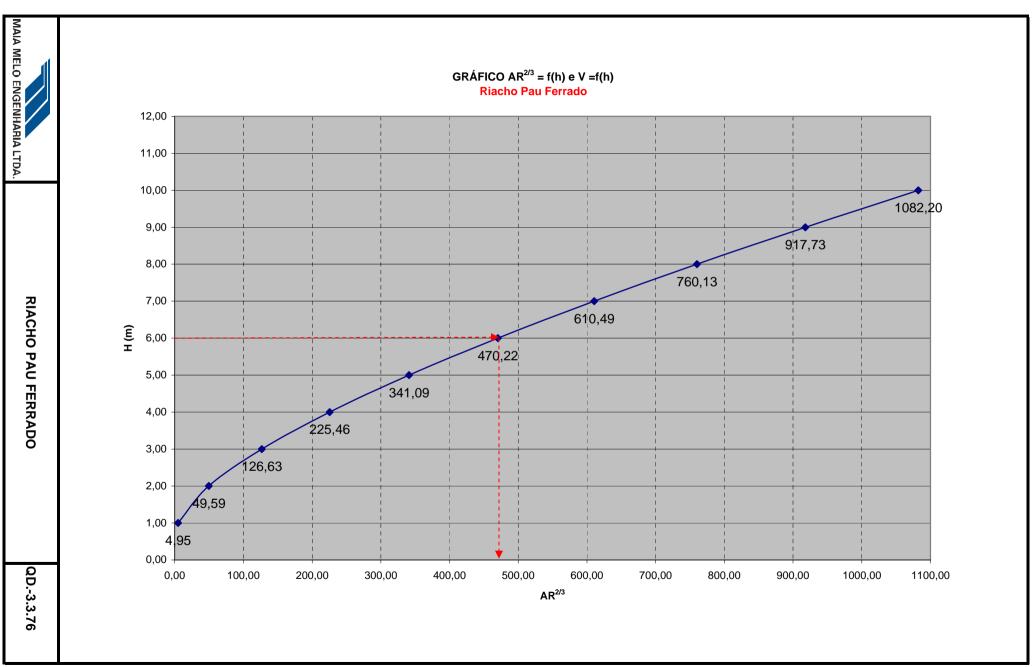
MAIA MELO ENGENHARIA LTDA.

Ferrovia:	Transnordestina
Rio / Riacho:	Riacho Pau Ferrado
Estaca:	5452+5,4
Área da bacia (km²):	149,15
Linha de Fundo (km):	29,60
Diferença de Nível (m):	124
Declividade (m/km):	4,19
Tempo de Concentração (h):	7,43
Duração Total (h):	7,43
Coeficiente de Redução:	0,92
Nº Curva Complexo Solo-vegetação :	80
Nome do Posto :	Parnamirim

Hidrograma Unitário							
Dt < Tc/5 =	1,49	h					
Tp=Dt/2+0,60Tc =	5,20	h					
Tr=1,67Tp =	8,69	h					
Tb=2,67Tp=	13,89	h					
Qp=2,08 A/Tp	59,63	m3/s/cm					

i	Ti	Se Ti <tp< th=""><th>Se Ti>Tp</th><th>i</th><th>Ti</th><th>Po</th><th>P=PoK</th><th>$Ri = [P-5080/N)+50,8]^2$</th><th>qi=(Ri-(Ri-1)/10</th></tp<>	Se Ti>Tp	i	Ti	Po	P=PoK	$Ri = [P-5080/N)+50,8]^2$	qi=(Ri-(Ri-1)/10
	(h)	μi=μ(Tp)Ti/Tp	$\mu i {=} \mu (Tp)(Tb{-}Ti)/Tr$		(h)	(mm)	(mm)	P+(20320/N-203,2	(cm)
1	1,49	17,04	0,00	1	1,49	109,66	101,15	51,49	5,15
2	2,97	34,07	0,00	2	2,97	135,84	125,30	72,00	2,05
3	4,46	51,11	0,00	3	4,46	151,15	139,42	84,42	1,24
4	5,95	0,00	54,52	4	5,95	162,01	149,45	93,38	0,90
5	7,43	0,00	44,32	5	7,43	170,44	157,22	100,40	0,70
6	8,92	0,00	34,12	6	8,92	177,33	163,57	106,18	0,58
7	10,41	0,00	23,92	7	10,41	183,15	168,94	111,09	0,49
8	11,89	0,00	13,72	8	11,89	188,19	173,59	115,36	0,43
9	13,38	0,00	3,52	9	13,38	192,64	177,70	119,14	0,38
10	14,87	0,00	0,00	10	14,87	196,62	181,37	122,53	0,34


100


CÁLCULO DOS VALORES

Tempo de Recorrência (anos):

Q-=miq1=mi-1q2+mi-2q3+...

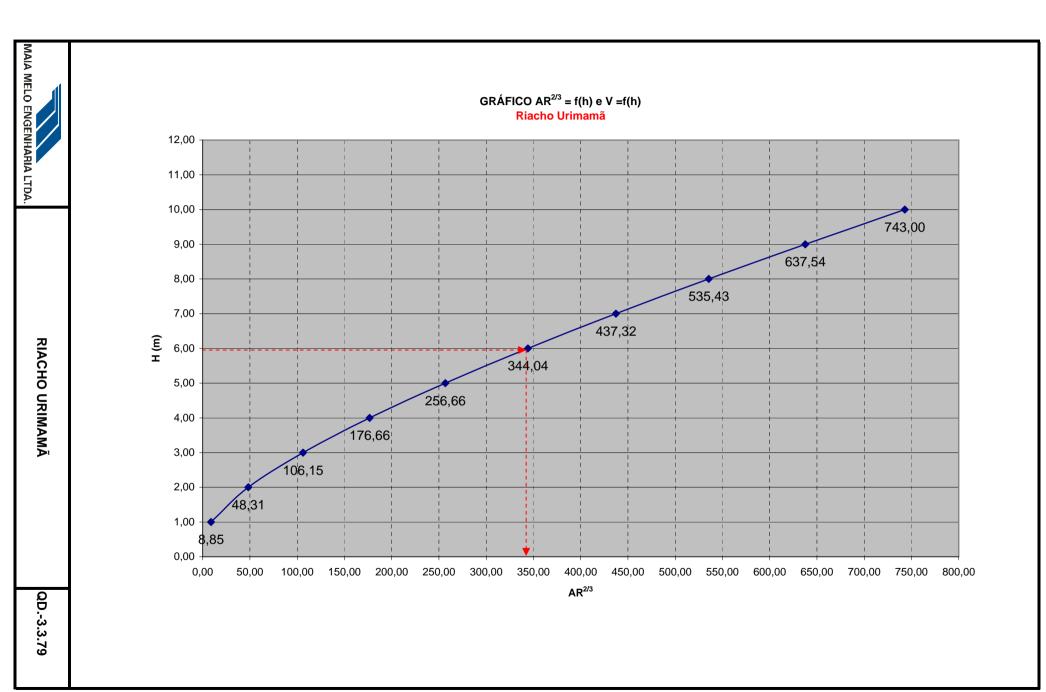
i	μί	q1=	q2=	q3=	q4=	q5=	q6=	q7=	q8=	q9=	q10=	Q
		5,15	2,05	1,24	0,90	0,70	0,58	0,49	0,43	0,38	0,34	(m3/s)
1	17,04	87,72										87,72
2	34,07	175,43	34,94									210,37
3	51,11	263,15	69,87	21,17								354,19
4	54,52	280,74	104,81	42,33	15,27							443,15
5	44,32	228,22	111,82	63,50	30,53	11,96						446,03
6	34,12	175,69	90,90	67,75	45,80	23,92	9,84					413,90
7	23,92	123,17	69,98	55,07	48,86	35,88	19,68	8,37				361,01
8	13,72	70,64	49,06	42,40	39,72	38,28	29,53	16,73	7,28			293,63
9	3,52	18,12	28,14	29,72	30,58	31,12	31,50	25,10	14,55	6,44		215,27
10	0,00	0,00	7,22	17,05	21,44	23,96	25,61	26,77	21,83	12,88		156,75
11			0,00	4,37	12,29	16,80	19,71	21,76	23,29	19,32		117,55
12				0,00	3,15	9,63	13,82	16,76	18,93	20,61		82,91
13					0,00	2,47	7,93	11,75	14,58	16,76		53,48
14						0,00	2,03	6,74	10,22	12,90		31,89
15							0,00	1,73	5,86	9,04		16,63
16								0,00	1,50	5,19		6,69
17									0,00	1,33		1,33
										0,00		0,00
24010				CÁ	LCULO	DA DES	CARGA	DE PRO	JETO - F	lUT	EH -	3.3.74

Ferrovia:	Transnordestina	Hidrograma	Unitário	
Rio / Riacho:	Riacho Urimamã	Dt < Tc/5 =	0,95	h
Estaca:	5789+15,4	Tp=Dt/2+0,60Tc =	3,32	h
Área da bacia (km²):	67,81	Tr=1,67Tp =	5,55 l	h
Linha de Fundo (km) :	18,70	Tb=2,67Tp =	8,88 l	h
Diferença de Nível (m):	100	Qp=2,08 A/Tp	42,42 ı	m3/s/cm
Declividade (m/km):	5,35		_	
Tempo de Concentração (h):	4,75			
Duração Total (h) :	4,75			
Coeficiente de Redução :	0,96	Qp=	42,42	
Nº Curva Complexo Solo-vegetação :	80			
Nome do Posto:	Parnamirim			
Tempo de Recorrência (anos):	100	3,32	5,55	1

i	Ti	Se Ti < Tp	Se Ti > Tp	i	Ti	Po	P=PoK	$Ri = [P-5080/N)+50,8]^2$	qi=(Ri-(Ri-1)/10
	(h)	$\mu i {=} \mu (Tp) Ti / Tp$	$\mu i {=} \mu (Tp)(Tb{-}Ti)/Tr$		(h)	(mm)	(mm)	P+(20320/N-203,2	(cm)
1	0,95	12,12	0,00	1	0,95	93,17	89,13	41,75	4,17
2	1,90	24,24	0,00	2	1,90	118,93	113,77	62,07	2,03
3	2,85	36,36	0,00	3	2,85	134,24	128,42	74,72	1,26
4	3,80	0,00	38,79	4	3,80	145,10	138,82	83,88	0,92
5	4,75	0,00	31,53	5	4,75	153,53	146,88	91,08	0,72
6	5,70	0,00	24,28	6	5,70	160,42	153,46	97,00	0,59
7	6,65	0,00	17,02	7	6,65	166,24	159,03	102,05	0,50
8	7,60	0,00	9,76	8	7,60	171,28	163,86	106,44	0,44
9	8,55	0,00	2,50	9	8,55	175,73	168,11	110,33	0,39
10	9,50	0,00	0,00	10	9,50	179,71	171,92	113,82	0,35

CÁLCULO DOS VALORES

Q-=miq1=mi-1q2+mi-2q3+...


i	μί	q1=	q2=	q3=	q4=	q5=	q6=	q7=	q8=	q9=	q10=	Q
		4,17	2,03	1,26	0,92	0,72	0,59	0,50	0,44	0,39	0,35	(m3/s)
1	12,12	50,60										50,60
2	24,24	101,20	24,64									125,83
3	36,36	151,80	49,27	15,33								216,40
4	38,79	161,95	73,91	30,66	11,10							277,61
5	31,53	131,65	78,85	45,98	22,21	8,72						287,41
6	24,28	101,35	64,10	49,06	33,31	17,44	7,19					272,44
7	17,02	71,05	49,34	39,88	35,54	26,16	14,37	6,12				242,46
8	9,76	40,75	34,59	30,70	28,89	27,91	21,56	12,23	5,32			201,96
9	2,50	10,45	19,84	21,52	22,24	22,69	23,00	18,35	10,65	4,72		153,45
10	0,00	0,00	5,09	12,34	15,59	17,47	18,70	19,57	15,97	9,43		114,16
11			0,00	3,17	8,94	12,24	14,39	15,91	17,04	14,15		85,84
12				0,00	2,29	7,02	10,09	12,25	13,85	15,09		60,60
13					0,00	1,80	5,79	8,59	10,66	12,27		39,11
14						0,00	1,48	4,93	7,48	9,44		23,33
15							0,00	1,26	4,29	6,62		12,17
16								0,00	1,10	3,80		4,90
17									0,00	0,97		0,97
18										0,00		0,00
				CÁ		V DESC	ADCAI	DE DDA	IETO L	шт	EU.	2 2 77

MAIA MELO ENGENHARIA LTDA.

CÁLCULO DA DESCARGA DE PROJETO - HUT

EH - 3.3.77

DIMENSIONAMENTO HIDRÁULICO - OBRA DE ARTE ESPECIAL Ponte sobre o Riacho Urimamã Estaca: 5789+15,4 1. CARACTERÍSTICAS DA BACIA HIDROGRÁFICA 67,81 Km² 18,70 Km H =100,00 m Rodovia Área da Bacia Perfil H Desnivel Descarga de Projeto Comprimento 2. VAZÕES DE CONTRIBUIÇÃO $Q_{100} =$ 287,41 m³/s 3. CARACTERÍSTICAS GEOMÉTRICAS DA SEÇÃO DE VAZÃO Greide Folga > 1m ----Vão Hidráulico $Q = \frac{1}{n} A R^{\frac{2}{3}} I^{\frac{1}{2}}$ 4. CÁLCULOS HIDRÁULICOS) AR^{2/3} (Sob a Condição de Projeto n = 0.0400,0015 m/m 1= AR^{2/3} _{f(100)}= 25,00 m $AR^{2/3}f_{(Q100)} = 296,83$ 296,83 Vão = CÁLCULO DE AR2/3 EM FUNÇÃO DO NÍVEL D'AGUA **OBSERVAÇÕES** R^{2/3} AR^{2/3} 8,85 1,00 13,49 25,37 0,53 0,66 Não Satisfaz 2,00 38,49 27,37 1,41 1,26 48,31 Não Satisfaz 3,00 63,49 29,37 2,16 1,67 106,15 Não Satisfaz Não Satisfaz 4,00 88,49 31,37 2,82 2,00 176,66 113,49 33,37 3,40 Não Satisfaz 5,00 2,26 256,66 138,49 35,37 3,92 2,48 344,04 Satisfaz 6,00 163,49 37,37 4,37 2,67 437,32 Satisfaz 7,00 39,37 535,43 Satisfaz 188,49 4,79 2,84 8,00 9,00 213,49 41,37 5,16 2,99 637,54 Satisfaz 10,00 238,49 43,37 5,50 3,12 743,00 Satisfaz OBS: Vão Hidráulico = 25,00 x 6,00 **DIMENSIONAMENTO HIDRÁULICO** EH - 3.3.78 **OBRA DE ARTE ESPECIAL** MAIA MELO ENGENHARIA LTDA.

pontes com capacidade hidráulica suficiente, cujos vão são semelhante aos indicados no presente projeto.

Abaixo está apresentado um quadro comparativo dos resultados obtidos pelo método HUT e pelo método comparativo, para as bacias 118, 144 e 165.

Bacia	Rio/	V	/azões (m³/s)
Dacia	Riacho	Método HUT	Método Comparativo
118	Brígida	3.382,26	1.191,20
144	Volta	2.823,17	1.143,03
165	São Pedro	3.770,76	1.484,77

3.4 Estudos Geotécnicos

Os estudos geotécnicos têm como objetivo a caracterização do solo da região, bem como dos empréstimos e ocorrências de materiais a serem utilizados para a execução das obras. Foram realizadas as seguintes atividades:

a. Estudo do Subleito

Ao longo da locação foram executadas sondagens e coleta com retirada de amostras para caracterização do material até 1,0 m abaixo do greide do projeto geométrico, definido o perfil geotécnico do terreno. As sondagens foram realizadas com espaçamento de 100m a 100m.

Com o material coletado nas sondagens foram realizados os ensaios de:

- Caracterização;
- Compactação;
- ISC;
- Densidade "in situ";

Os ensaios de caracterização foram feitos em todos os furos de sondagem e os demais em furos alternados.

Os boletins de sondagens e resultados dos ensaios, estão apresentados no Anexo 3A - Estudos Geotécnicos.

b. Estudo de empréstimos para o corpo de aterro:

As áreas de empréstimos foram estudadas com furos de sondagens de malha de 100 m, sendo coletadas amostras, as quais foram submetidas aos seguintes ensaios:

- Caracterização (granulometria, LL e LP);
- Compactação;
- Índices de Suporte Califórnia (ISC/CBR);
- Densidade "In situ".

Nos empréstimos laterais os ensaios de compactação e ISC foram feitos com espaçamento de 200 m.

Em decorrência das pesquisas realizadas, foram identificados os seguintes empréstimos:

OCORRÊNCIA	ESTACA	LADO	VOLUME (m³)	UTILIZAÇÃO
E-01	10	LD	126.720,00	Corpo de aterro ou material selecionado
E-02	30	LD	121.500,00	Corpo de aterro ou material selecionado
E-03	45	LE	181.440,00	Corpo de aterro ou material selecionado
E-04	75	LE/LD	241.200,00	Corpo de aterro ou material selecionado
E-05	115	LE/LD	241.200,00	Corpo de aterro ou material selecionado
E-06	175	LE/LD	241.200,00	Corpo de aterro ou material selecionado
E-07	315	LE/LD	158.400,00	Corpo de aterro ou material selecionado
E-08	365	LE/LD	135.360,00	Corpo de aterro ou material selecionado
E-09	410	LE/LD	180.000,00	Corpo de aterro ou material selecionado
E-10	520	LE/LD	180.000,00	Corpo de aterro ou material selecionado
E-11	585	LE/LD	115.200,00	Corpo de aterro ou material selecionado
E-12	785	LE/LD	144.000,00	Corpo de aterro ou material selecionado
E-13	865	LE/LD	108.000,00	Corpo de aterro ou material selecionado
E-14	1010	LE/LD	122.400,00	Corpo de aterro ou material selecionado
E-15	1170	LE/LD	144.000,00	Corpo de aterro ou material selecionado
E-16	1200	LE/LD	144.000,00	Corpo de aterro ou material selecionado
E-17	1240	LE/LD	148.320,00	Corpo de aterro ou material selecionado
E-18	1345	LD	144.000,00	Corpo de aterro ou material selecionado
E-19	1460	LD	158.400,00	Corpo de aterro ou material selecionado
E-20	1540	LD	63.000,000	Corpo de aterro ou material selecionado
E-21	1600	LD	72.000,00	Corpo de aterro ou material selecionado
E-22	1620	LD	85.050,00	Corpo de aterro ou material selecionado
E-23	1640	LD	121.500,00	Corpo de aterro ou material selecionado
E-24	1720	LD	117.000,00	Corpo de aterro ou material selecionado
E-25	1740	LD	180.000,00	Corpo de aterro ou material selecionado
E-26	1790	LD	189.000,00	Corpo de aterro ou material selecionado
E-27	1854	LD	27.360,00	Corpo de aterro ou material selecionado
E-28	1924	LD	32.400,00	Corpo de aterro ou material selecionado
E-29	1950	LD	42.840,00	Corpo de aterro ou material selecionado
E-30	2004	LD/LE	50.400,00	Corpo de aterro ou material selecionado
E-31	2045	LE	72.000,00	Corpo de aterro ou material selecionado
E-32	2110	LD	16.425,00	Corpo de aterro ou material selecionado
E-33	2168	LD/LE	13.500,00	Corpo de aterro ou material selecionado
E-34	2190	LE	2.520,00	Corpo de aterro ou material selecionado
E-35	2308	LD/LE	13.500,00	Corpo de aterro ou material selecionado
E-36	2362	LD	15.300,00	Corpo de aterro ou material selecionado

OCORRÊNCIA	ESTACA	LADO	VOLUME (m³)	UTILIZAÇÃO
E-37	2390	LD	12.375,00	Corpo de aterro ou material selecionado
E-38	2452	LD	11.700,00	Corpo de aterro ou material selecionado
E-39	2475	LD/LE	23.400,00	Corpo de aterro ou material selecionado
E-40	2545	LE	10.800,00	Corpo de aterro ou material selecionado
E-41	2567	LD	20.160,00	Corpo de aterro ou material selecionado
E-42	2600	LD	16.560,00	Corpo de aterro ou material selecionado
E-43	2656	LD	16.920,00	Corpo de aterro ou material selecionado
E-44	2700	LE	17.820,00	Corpo de aterro ou material selecionado
E-45	2740	LE	9.900,00	Corpo de aterro ou material selecionado
E-46	2760	LD	17.820,00	Corpo de aterro ou material selecionado
E-47	2790	LE	15.120,00	Corpo de aterro ou material selecionado
E-48	2839	LD	84.816,00	Corpo de aterro ou material selecionado
E-49	2875	LD	84.816,00	Corpo de aterro ou material selecionado
E-50	3000	LD	84.816,00	Corpo de aterro ou material selecionado
E-51	3080	LD	83.260,80	Corpo de aterro ou material selecionado
E-52	3092	LD	81.745,00	Corpo de aterro ou material selecionado
E-53	3152	LD	93.312,00	Corpo de aterro ou material selecionado
E-54	3165	LD	82.944,00	Corpo de aterro ou material selecionado
E-55	3196	LD	90.316,80	Corpo de aterro ou material selecionado
E-56	3242	LD	87.480,00	Corpo de aterro ou material selecionado
E-57	3290	LD	86.490,00	Corpo de aterro ou material selecionado
E-58	3390	LD	63.720,00	Corpo de aterro ou material selecionado
E-59	3544	LD	23.040,00	Corpo de aterro ou material selecionado
E-60	3575	LE	24.611,40	Corpo de aterro ou material selecionado
E-61	3674	LE	30.888,00	Corpo de aterro ou material selecionado
E-62	3770	LE	74.520,00	Corpo de aterro ou material selecionado
E-63	3896	LD	84.240,00	Corpo de aterro ou material selecionado
E-64	3970	LE	90.720,00	Corpo de aterro ou material selecionado
E-65	4050	LD	89.100,00	Corpo de aterro ou material selecionado
E-66	4090	LD	89.910,00	Corpo de aterro ou material selecionado
E-67	4180	LE	98.820,00	Corpo de aterro ou material selecionado
E-68	4336	LE	102.060,00	Corpo de aterro ou material selecionado
E-69	4441	LE	105.840,00	Corpo de aterro ou material selecionado
E-70	4596	LD	102.870,00	Corpo de aterro ou material selecionado
E-71	4794	LE	103.680,00	Corpo de aterro ou material selecionado
E-72	4940	LD	22.500,00	Corpo de aterro ou material selecionado
E-73	5094	LD	21.240,00	Corpo de aterro ou material selecionado
E-74	5317	LD	18.900,00	Corpo de aterro ou material selecionado
E-75	5420	LD	16.200,00	Corpo de aterro ou material selecionado
E-76	5568	LD	19.080,00	Corpo de aterro ou material selecionado
E-77	5721	LD	10.530,00	Corpo de aterro ou material selecionado
E-78	5838	LD	14.310,00	Corpo de aterro ou material selecionado
E-79	5882	LD	15.120,00	Corpo de aterro ou material selecionado
E-80	5973	LD	13.770,00	Corpo de aterro ou material selecionado
E-81	6063	LE	10.080,00	Corpo de aterro ou material selecionado
E-82	6187	LD	14.580,00	Corpo de aterro ou material selecionado
L-02	0107		17.500,00	Corpo de aterro ou material selecionado
L	<u> </u>	1	1	

c. Estudo de ocorrências de materiais para infra e superestrutura:

Foram estudadas ocorrências de areais, saibreiras e materiais pétreos, que estejam de acordo com as soluções previstas, avaliando-se a suficiência, a qualidade e acessibilidade das fontes de fornecimento dos materiais.

Em relação ao material pétreo, foram avaliados o volume útil e expurgo, como também coletadas amostras para serem submetidas ao ensaio de abrasão "Los Angeles", adesividade, durabilidade. Para os areais, foram avaliados a área e volumes úteis a explorar e coleta de amostras para ensaios de granulometria e determinação do teor de matéria orgânica.

Nas ocorrências de saibreiras, foi feito um reticulado com malha de 30m de lado, dentro dos limites da ocorrência selecionada, em cujos vértices numerados, foram feitos os furos de sondagens. Em cada furo da malha de 30m, para cada camada de material, foram feitos ensaios de granulometria por peneiramento simples, de limite de liquidez, de limite de plasticidade, de equivalente de areia, ensaios de compactação, ISC e densidade "in situ".

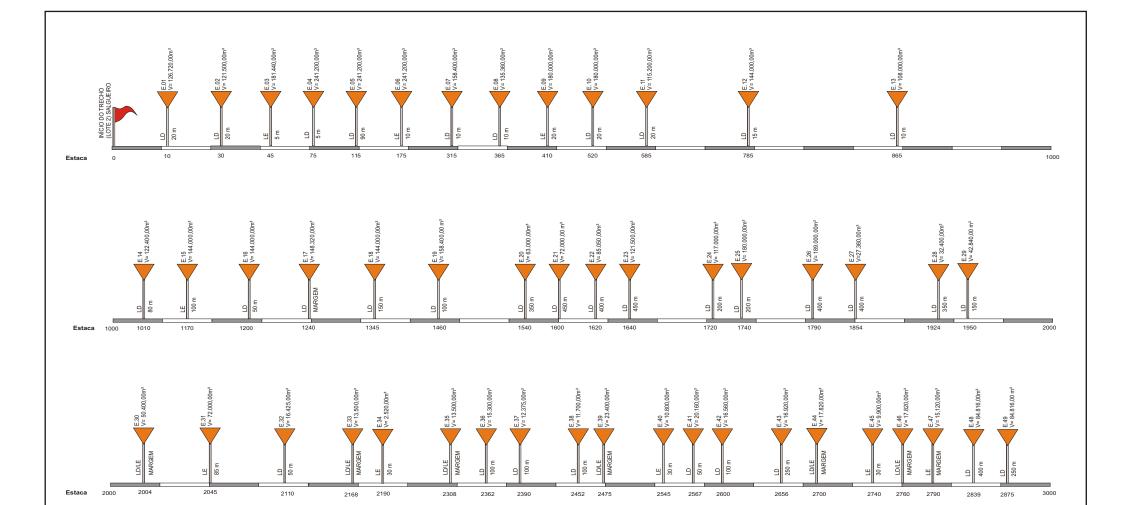
Para o estudo de ocorrências de solos, foram executados no mínimo 09 (nove) furos de sondagem em cada ocorrência.

Os resultados obtidos estão apresentados no Anexo 3A – Estudos Geotécnicos e são relacionados a seguir:

OCORRÊNCIA	ESTACA	LADO	VOLUME (m³)	UTILIZAÇÃO
S1	658+0,00	LD	57.380	SUB-BASE, BASE, SUB-LASTRO
S2	1079+10,00	LD	43.659	SUB-BASE, BASE, SUB-LASTRO
S3	1525+0,00	LD/LE	41.990	SUB-LASTRO
S4	1964+0,00	LD	42.071	SUB-LASTRO
S5	2000+0,00	LD	28.179	SUB-BASE, BASE, SUB-LASTRO
S6	2817+10,00	LE	40.240	SUB-LASTRO
S7	3447+5,00	LD	26.730	SUB-LASTRO
S8	4008+10,00	LE	28.512	SUB-LASTRO
S9	568+10,00	LD	46.510	SUB-LASTRO
S10	5085+0,00	LE	47.368	SUB-LASTRO
S11	5645+0,00	LE	32.400	SUB-LASTRO
S12	5766+0,00	LD	26.535	SUB-LASTRO
S13	6060+5,00	LE	24.948	
S14	6370+0,00	LE	20.169	SUB-LASTRO
A1	619+0,00	Margem	30.000	REPOSIÇÃO SOLO MOLE
A2	3910+0,00	Margem	32.000	REPOSIÇÃO SOLO MOLE
P1	2246+10,00	LE	_	TSD, BASE, LASTRO
P2	3487+10,00	LD		BASE, LASTRO, TSD

d. Estudo dos locais das fundações das obras de arte especiais:

Foram realizadas sondagens mistas para as obras de arte especiais, cuja localização apresentamos a seguir:

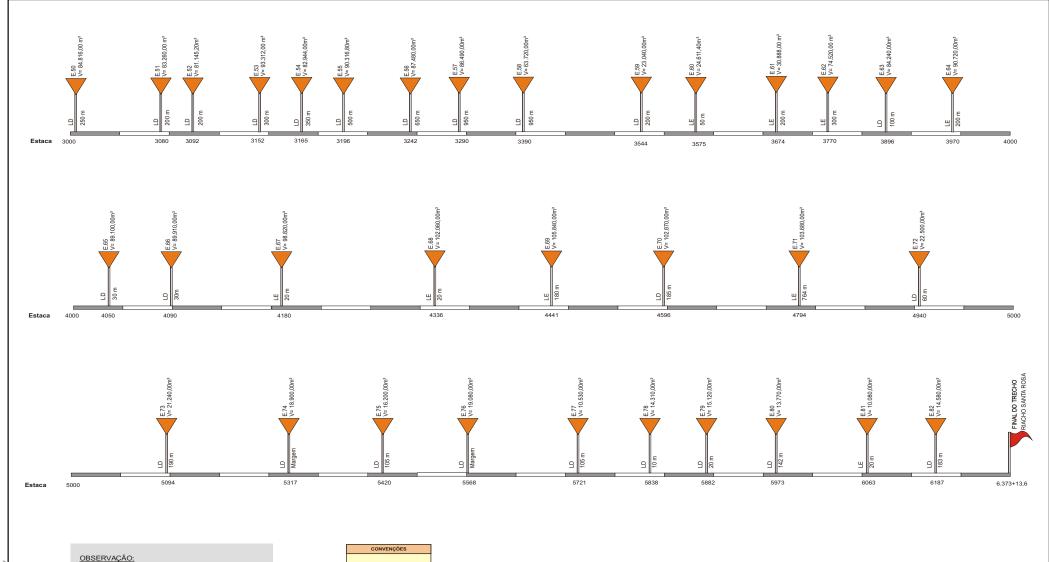

LOCALIZAÇÃO	DENOMINAÇÃO
Est. 619 + 4,00	Ponte s/ o Riacho do Miguel
Est. 978 + 0,40	Ponte s/ o Riacho S/ Nome - 01
Est.1909 + 8,23	Ponte s/ o Rio Traíras
Est. 2081 + 5,62	Ponte s/ o Açude Abóboras
Est. 2960 + 1,67	Ponte s/ o Riacho Parnamirim
Est. 3032 + 13,60	Ponte s/ o Rio Brígida
Est. 3215 + 14,00	Ponte s/ o Riacho S/ Nome - 02
Est. 3384 + 15,40	Ponte s/ o Riacho do Veado
Est. 3512 + 5,40	Ponte s/ o Riacho Palestina
Est. 3759 + 15,40	Ponte s/ o Riacho S/ Nome - 03
Est. 3921 + 12,60	Ponte s/ o Riacho da Volta
Est. 4079 + 15,40	Ponte s/ o Riacho da Fazenda
Est. 4259 + 17,90	Ponte s/ o Riacho Curralinho
Est. 4777 + 5,40	Ponte s/ o Riacho São Pedro
Est. 4977 + 0,40	Ponte s/ o Riacho Arueira
Est. 5452 + 5,40	Ponte s/ o Riacho Pau Ferrado
Est. 5789 + 15,40	Ponte s/ o Riacho Urimamã
Est. 815 + 6,00	Viaduto PE -507 – Acesso a Serrita
Est. 821 + 11,50	Viaduto BR-232
Est. 1180 + 0,00	Viaduto PE- 483 – Acesso a Umãs
Est. 2137 + 0,00	Viaduto PE- 499 – Acesso a Terra Nova

e. Resultados Obtidos:

O Anexo 3A - Estudos Geotécnicos, apresenta o estudo completo realizado no subleito e nas ocorrências de matérias para terraplenagem, drenagem, sublastro e lastro, incluindo os boletins de sondagens, os resultados dos ensaios, os croquis das ocorrências de materiais e o resumo das análises estatísticas realizadas.

f. Esquema de Localização das Ocorrências:

A seguir estão apresentados os quadros QD. 3.4.1.1, QD. 3.4.1.2 e QD. 3.4.2, contendo todas as ocorrências dos materiais estudados.



OBSERVAÇÃO:

O ESTAQUEAMENTO ENTRE PARÊNTESES REFERE-SE AO EIXO DE PROJETO

SECRETA	SECRETARIA DE DESENVOLVIMENTO ECONÔMICO		SDEC
FERROVIA TRANSNORDESTINA	Trecho Lote Extensão	: Salgueiro - Parnamirim - Riacho Santa Rosa : 02 : 127,48 km	Maia Melo Engenharia Ltda.
	LOCALI	ZAÇÃO DE EMPRÉSTIMOS	DES 3.4.1.1

O ESTAQUEAMENTO ENTRE PARÊNTESES REFERE-SE AO EIXO DE PROJETO CONVENÇÕES

EMPRÉSTIMO

	SECRETARIA DE DESENVOLVIMENTO ECONÔMICO			SDEC
FERROVIA Trecho Lote TRANSNORDESTINA Extensão		Lote	: Salgueiro - Parnamirim - Riacho Santa Rosa : 02 : 127,48 km	Maia Melo Engenharia Ltda.
	LOCALIZAÇÃO DE EMPRÉSTIMOS		DES 3.4.1.2	

3.5 Estudos Ambientais

3.5.1 Introdução

Este capítulo refere-se ao Componente Ambiental relacionado com o Projeto de Implantação da Ferrovia Transnordestina, trecho: Salgueiro – Parnamirim - Riacho Santa Rosa.

O Relatório, na sua totalidade foi subdividido em dois grandes blocos: os Estudos Ambientais e Projeto Ambiental, que foi realizado conforme metodologia comentada a seguir.

Os Estudos Ambientais seguem as orientações da IS-246 do DNIT, onde se inclui o levantamento do Passivo Ambiental, conforme sistemática indicada no "Manual Rodoviário de Conservação, Monitoramento e Controle Ambientais" do DNER; o cadastramento das áreas degradadas ocorrentes no interior da faixa de domínio e adjacências e um diagnóstico ambiental para determinação das prioridades nas intervenções e uma análise dos riscos de possibilidade de confrontos entre as intervenções previstas e a legislação ambiental.

O Projeto Ambiental, em síntese, consiste na explicitação e quantificação das medidas corretivas para solução dos problemas identificados nos Estudos Ambientais, apresentandose os quantitativos pertinentes, as referências às Especificações, os croquis com as soluções-tipo, a escolha das espécies vegetais a serem introduzidas, dentre outros aspectos, além dos programas elencados no EIA/RIMA.

Esta metodologia adotada se torna vantajosa uma vez que permite a incorporação, tanto dos Estudos Ambientais como do Projeto Ambiental, no elenco de estudos e projetos constantes do Projeto de Engenharia e, desta forma, as medidas recomendadas estarão,

necessariamente, incorporadas ao Orçamento Geral da obra constante do Projeto de Engenharia.

Os Estudos Ambientais enfocam o Diagnóstico Ambiental e, com base nas informações, as conclusões acerca da viabilidade ambiental do Projeto e análise da interferência com a legislação ambiental, tendo sido acrescentado um Mapa de Risco de Erosão além de um confronto entre as intervenções do projeto e legislação ambiental básica de forma ilustrada.

3.5.2 Levantamento do Passivo Ambiental

Conceitualmente define-se Passivo Ambiental de redes viárias (DNER ISA-246) como: "toda ocorrência decorrente da falha de construção, restauração ou manutenção da rodovia capaz de atuar como fator de dano ou degradação ambiental à área de influência direta, ao corpo estradal ou ao usuário, ou a causada por terceiros ou por condições climáticas adversas, capaz de atuar como fator de dano ou degradação ambiental ao corpo estradal ou ao usuário."

a) Metodologia

No levantamento do Passivo Ambiental do projeto em apreço, leva-se em conta a identificação dos problemas nos seguintes agrupamentos:

- Grupo I: Faixa de Domínio e Áreas Adjacentes;
- Grupo II: Áreas Exploradas (pedreiras, areais, jazidas, empréstimos e bota-foras);
- Grupo III Problemas decorrentes da Ação de Terceiros;
- Grupo IV: Interferência com Aglomerações/Equipamentos Urbanos.

b) Levantamento

O Passivo Ambiental no entorno da diretriz de traçado da Ferrovia é praticamente inexistente, haja vista as seguintes razões:

- O relevo plano a suavemente ondulado concorre para a inexistência de problemas graves em taludes de cortes, tais como deslizamentos, queda de blocos, erosões, etc., existindo, apenas, erosões laminares de pequena monta do próprio desnudamento dos solos pelas atividades agrícolas e desmatamentos;
- O segmento Riacho Santa Rosa Parnamirim está praticamente intocado e é caracterizado por uma vegetação típica de caatinga, com arbustos e alguns indivíduos arbóreos. Segundo o EIA/RIMA é uma das Unidades de Paisagem mais preservadas de todo o entorno da diretriz de traçado da Transnordestina. O relevo é caracterizado como suave ondulado. Onde há morros e serrotes a vegetação também se apresenta bastante preservada. Não há presença de aglomerados urbanos a não ser pelos povoados de Urimamã e Veneza. Os solos identificados nessa unidade são os latossolos e, na maior parte, presença de cascalho.

- No segmento Parnamirim Final do Trecho, o relevo se apresenta como plano com alguns batólitos de granitóides, inexistindo erosões. A vegetação apresenta sinais de alterações ao longo das margens da rodovia BR-232. Há poucas edificações ou vilarejos às margens do trecho porém, foram identificadas várias áreas completamente sem vegetação intercaladas por áreas com remanescentes de caatinga criação de caprinos e, em menor escala, gado vacum de corte.
- Por sua vez na passagem pelas aglomerações urbanas a diretriz de traçado não provocará problemas de funcionalidade ou impactos do tipo intrusão visual, segregação urbana e conflitos de tráfego, uma vez que a diretriz de traçado contornará os núcleos urbanos de Vila Veneza, Parnamirim e Salgueiro.

Deste modo, os Passivos, de uma forma geral, decorrem da atividade pecuária, do superpastoreio de ovinos, caprinos, bovinos e outros rebanhos, atividades estas que têm modificado a composição florística do estrato herbáceo da Caatinga pela pressão de pastejo. Já a exploração agrícola, com práticas itinerantes, atreladas a ações desordenadas de desmatamento e queimadas, também têm modificado o estrato herbáceo e também arbustivo-arbóreo da Caatinga, mais no segmento Parnamirim-Salgueiro e menos, no segmento Riacho Sta. Rosa-Parnamirim.

Levando-se em conta os riscos de desertificação que ocorrem nas áreas antropizadas fazse mister que o projeto contemple a recuperação ambiental de todas as áreas a serem utilizadas como jazidas e empréstimos com a revegetação utilizando-se espécies nativas da Caatinga, além de sistemas de drenagem para re-encaminhamento adequado da drenagem, de sorte que o projeto não venha a contribuir com o desmatamento na região e, consequentemente, com o agravamento do quadro de tendência à desertificação.

Vale ressaltar que, dentre o elenco de Programas constantes do Estudo de Impacto Ambiental (EIA) elaborado para a Transnordestina, um deles – o Programa de Recuperação de Áreas Degradadas e do Passivo Ambiental – PRAD – tem relação estreita com o tema ora abordado, devendo-se adotar as orientações, metodologia e abrangência ali discorridas.

Complementarmente e conforme o citado Manual Rodoviário de Conservação, Monitoramento e Controle Ambientais do DNER, o levantamento do Passivo Ambiental terá como referência o Quadro-Legenda da Classificação dos Problemas do Passivo Ambiental e Fichas de Registro da Relação do Passivo Ambiental apresentados a seguir.

3.5.3 Diagnóstico Ambiental

Este item atende a dois objetivos, quais sejam:

- Prover um mínimo de subsídios para a avaliação dos impactos ambientais do projeto;
- Fornecer suporte para determinação dos índices Técnico (IT), de Risco (IR) e de Prioridade (IP), os quais, por sua vez, determinarão um Nível de Intervenção para correção dos eventuais problemas ambientais gerados pelo empreendimento, compatível com a importância da ferrovia e sistema geoambiental onde está inserida, evitando-se, assim, a proposição de soluções descabidas quanto à complexidade e custos (conforme

metodologia do Manual Rodoviário de Conservação, Monitoramento e Controle Ambientais – DNER, 1996).

Especificamente, este capítulo tem como objetivo prover um conhecimento regional e localizado dos aspectos geoambientais e sócio-econômicos do entorno da ferrovia e sua área de influência, com os seguintes objetivos específicos:

- Dados climáticos: permitirá identificar as possibilidades de ocorrência de eventuais problemas relacionados com: fontes de abastecimento d'água para o projeto; períodos de impedimentos à execução das obras; resistência à erosão dos solos (em função da intensidade pluviométrica), dentre outros;
- Vegetação: sendo um bem ambiental dos mais importantes, sujeito à proteção legal em vários dispositivos da legislação federal, estadual e municipal, sua caracterização permitirá identificar possíveis restrições no que se refere aos desmatamentos necessários à implantação das obras (exploração de jazidas e empréstimos laterais, abertura de caminhos de serviço, etc) de modo a se evitar interferências em áreas de proteção ambientais legalmente instituídas, tais como: matas ciliares, Mata Atlântica (latu sensu), vegetação protetora de encostas e topos de relevo, etc.;
- Geologia/Geomorfologia/Relevo: facultará o conhecimento dos eventuais obstáculos de transposição topográfica que poderão envolver grande movimentação de terras; as áreas sujeitas a alagamentos; os pontos e/ou subtrechos cuja descaracterização topográfica poderá desencadear processos erosivos; os pontos notáveis de valorização da paisagem, etc.;
- Hidrografia: permitirá identificar os recursos superficiais e subterrâneos passíveis de preservação em função do uso atual e potencial de abastecimento humano; as faixas de preservação ambiental dos cursos d'água em conformidade com a legislação pertinente; os dados preliminares para os estudos hidrológicos a serem desenvolvidos no projeto, dentre outros aspectos;
- Solos: a caracterização pedológica fornecerá conhecimentos acerca da susceptibilidade erosiva dos solos; da estabilidade dos taludes em função da conjunção dos parâmetros textura, estrutura e permeabilidade; da fertilidade, o que norteará a reabilitação de áreas degradadas (Passivo Ambiental) e áreas a serem degradadas (exploração de jazidas, etc.);

Este diagnóstico apoiou-se em informações constantes do EIA – Estudo de Impacto Ambiental da Ferrovia Transnordestina elaborado pela STE Ambiental para o DNIT, Mapas-Síntese dos Riscos de Erosão Hídrica do Nordeste da SUDENE, Projeto RADAMBRASIL, folhas SC.24/25, documento Política Estadual de Controle da Desertificação do Governo do Estado de Pernambuco, além de visitas ao campo.

a) Solos

Os solos do entorno da ferrovia caracterizam-se como solos jovens ou pouco intemperizados (excetuando-se os Latossolos), se mostrando rasos, típicos da região de clima Semi-Árido, onde as condições de baixa umidade e escassas chuvas não permitiram

intensa intemperização da rocha-mãe do embasamento cristalino, tendo-se as seguintes tipologias, a nível exploratório:

- Bruno não Cálcicos na grande maioria da extensão do traçado, ocupando as áreas dos vales dos cursos d'água;
- Latossolo Vermelho-Amarelo, nas partes mais altas do relevo associados a Podzólicos e;
- Regossolo eutrófico, aproximadamente quando o traçado cruza a BR-232 e direciona-se para o final do trecho acompanhando a BR-116, associados a solos litólicos eutróficos e solonetz solodizado.

Estes solos têm as seguintes legendas, conforme Mapa de Solos no nível exploratório:

- Bruno não Cálcico, horizonte A franco e moderado, textura média/argilosa, fase pedregulho, relevo suave ondulado:
- Latossolo Vermelho-Amarelo eutrófico, horizonte A franco e moderado, textura média, relevo plano e suave ondulado + Latossolo Vermelho-Amarelo distrófico + Podzólico Vermelho-Amarelo eutrófico:
- Regossolo eutrófico, argila de atividade baixa c/fragipan, horizonte A franco, textura arenosa, relevo plano e suave ondulado + Solos Litólicos eutróficos + Solonetz Solodizado.

Os Bruno não Cálcicos são solos rasos, geralmente com textura média/argilosa, de estrutura em blocos angulares e subangulares, desenvolvidos em rochas metamórficas. A seqüência de horizontes dos perfis é A–B-C, com horizonte A fraco ou moderado, de textura média ou arenosa e estrutura do tipo maciça. O horizonte B tem textura argilosa e apresenta estrutura prismática ou em blocos bem desenvolvidos. A fertilidade aparente destes solos varia de média a alta, como também sua saturação em bases. São bem drenados e podem conter na sua composição mineralógica elevados teores de minerais primários facilmente decompostos. Estes solos são comuns no Nordeste e em alguns locais são denominados "Vermelho-do-Sertão". São desenvolvidos sobre rochas básicas, metamórficas, sendo ricos em minerais fornecedores principalmente de cálcio e magnésio. São bastante susceptíveis à erosão, daí necessitarem de constante controle.

Os Latossolo Vermelho-Amarelo eutrófico são solos muito profundos, bem drenados, ácidos, não-hidromórficos, de baixa fertilidade natural, com coloração amarelada e seqüência de horizontes A,B,C. Sua textura varia de média a argilosa e neles há um aumento de argila de maneira gradual com a profundidade. São porosos, friáveis e com transições graduais e/ou difusas, principalmente, entre os horizontes subsuperficiais. Em relevo plano a suave ondulado o risco de erosão nestes solos são baixos, face à sua boa permeabilidade, não favorecendo o escoamento superficial e, conseqüentemente, o arraste de partículas.

Os Regossolos são solos pouco desenvolvidos, arenosos, medianamente profundos, excessivamente drenados, com fertilidade aparente média e que apresentam minerais primários de fácil intemperização. Podem apresentar um fragipan situado logo acima da rocha. Neles há seqüência de horizonte A/C e, onde o A é normalmente fraco, de

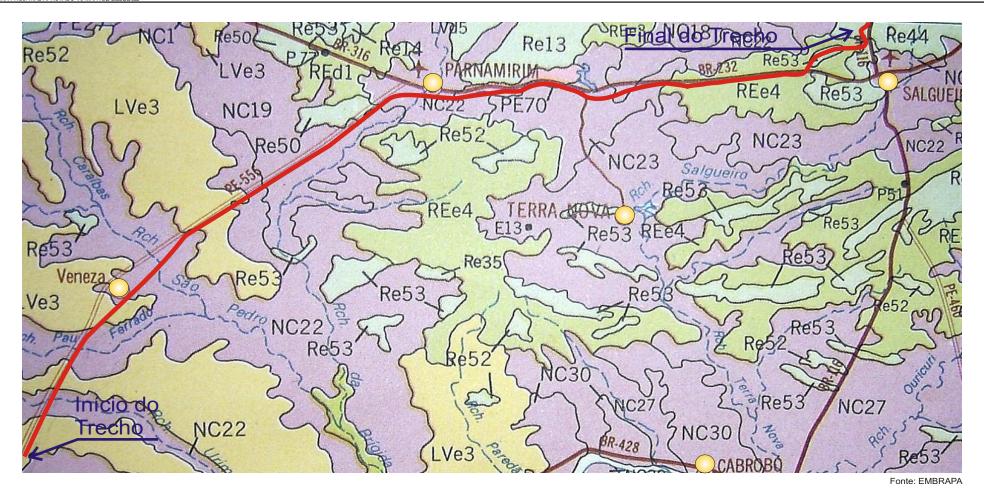
profundidade variável e estrutura pouco ou não desenvolvida. Exigem cuidado especial quando à erosão, uma vez que, em função da sua textura, são facilmente erodíveis.

No Mapa de Solos apresentado a seguir, observa-se o posicionamento das manchas de solos em relação ao eixo da ferrovia.

b) Riscos de Erosão

Recorrendo-se aos mapas-síntese de relevo e declividades, erodibilidade dos solos e erosividade das chuvas da SUDENE/DRN os quais fornecem, através de parâmetros integrados, um risco de erosão hídrica para o entorno da diretriz de traçado da ferrovia, temse os seguintes os resultados:

- Erodibilidade do solo: moderada (classe 2) (K maior que 0,10 e menor que 0,30);
- Erosividade das chuvas: moderada (classe 2)-(R menor que 730 e maior que 340);
- Relevo e declividades: suave ondulado, declividade baixa (menor que 12%);
- Risco de erosão hídrica: fraca a média (classe 5).


Dentre os fatores que influem no risco de erosão - erosividade de chuva; relevo e; erodibilidade do solo - este último é o que se apresenta mais determinante, ou seja, a tipologia dos solos - especialmente os Bruno não Cálcicos e Regossolos - quando desprovido de vegetação se mostram muito vulneráveis ao desencadeamento de processos erosivos, quando das enxurradas.

De acordo com Wischmeier & Smith (1965), citados por Bertoni & Lombardi Neto (1990), o fator K (que mede a propensão à erodibilidade de um solo) significa vulnerabilidade ou suscetibilidade do solo à erosão, que é a recíproca da sua resistência à erosão.

Já o fator R (fator chuva), é um índice numérico que expressa a capacidade da chuva de causar erosão em uma área sem proteção, sendo estimado através do mapa de isoerodentes. O mapa contém linhas que ligam pontos de iguais potenciais de erosão. Essas linhas representam os valores médios anuais de erosividade da chuva, e também, o fator chuva na equação de perdas de solo. Os valores entre as linhas são interpolados linearmente.

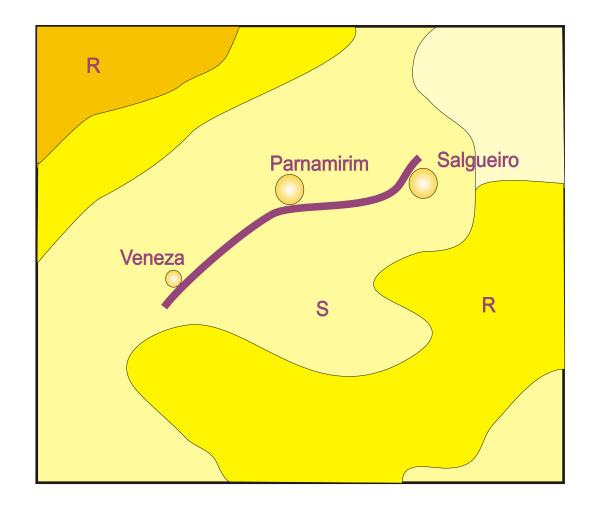
Conforme descrição dos solos no ítem anterior, observa-se que em todos eles a textura se apresenta como arenosa a média, o que explica em parte a propensão à erosão solos encontrados na área do Projeto.

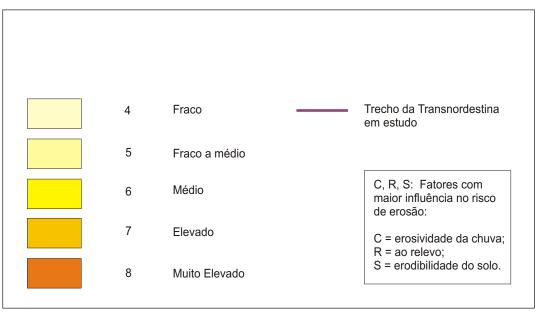
Conforme Resende (1983), a influência da textura dos solos nos processos erosivos levam ao seguinte comportamento, conforme tabela a seguir.

NC

Bruno não Cálcico, textura média/argilosa, relevo suave ondulado

Latossolo Vermelho-Amarelo eutrófico + Podzólico, textura média, relevo plano a suave ondulado




Regossolo eutrófico, textura arenosa + Solos Litólicos, relevo plano a suave ondulado

Solos Litólicos eutróficos

Traçado da Ferrovia

Fonte: SUDENE - DRN

PARÂMETROS PARA DETERMINAÇÃO DOS EFEITOS DA TEXTURA NA EROSÃO DOS SOLOS

Textura	Facilidade	Composição	Efeitos Principais
Argilosa	Transporte	Grão simples	São retirados do sistema junto com os nutrientes
Siltosa	Deslocamento e transporte	Grãos simples e agregados	São retirados do sistema junto com os nutrientes
Areia fina	Deslocamento e transporte	Grãos simples e agregados de areia e silte	São retirados do sistema junto com os nutrientes ou apenas retrabalhados
Areia grossa	Decomposição	Grão simples e agregados de argila, silte e areia fina	Tendem a permanecer na superfície, dando alguma proteção ao solo
Cascalho,seix e matacão	o Permanecem como resíduo	Pedaços de rochas ou de cristais	Permanecem na superfície, reduzindo a erosão

Fonte: Resende (1983)

Segundo o mesmo autor, em condições desfavoráveis de relevo, tem-se o seguinte comportamento dos solos, relativamente à textura:

- em materiais argilosos, com o empacotamento da argila, o entalhamento em profundidade é difícil, mas o transporte é facilitado devido à menor massa; embora, em função da agregação, a erosão se torna difícil;
- os arenosos, por serem mais pesados, têm um transporte mais difícil, porém, devido à falta de agregação, a erosão profunda é mais fácil;
- o silte é de fácil transporte e fácil desagregação tendo, quando em declive, um entalhamento profundo em todos os lados.

Tal constatação leva a concluir, que se deve tomar cuidados especiais nas áreas das jazidas a serem exploradas devendo-se, sempre, promover a revegetação e o reencaminhamento adequado da drenagem, o que é objeto do Projeto Ambiental.

Na figura apresentada a seguir, visualiza-se o traçado da ferrovia em relação às manchas do Mapa-Síntese de Risco de Erosão Hídrica da SUDENE/DRN, observando-se que todo o traçado circunscreve-se numa mancha de risco classificada como "fraco a médio", dentre as cinco classes existentes, tendo como fator de maior risco, a erodibilidade dos solos.

c) Geomorfologia / Relevo

A ferrovia insere-se no Domínio Morfoestrutural denominada Depressão Interplanáltica do Escudo Exposto. A Unidade Geomorfológica corresponde ao Pediplano Sertanejo.

O trabalho erosivo do Ciclo Velhas originou no Nordeste importantes áreas arrasadas, formadas por pediplanação, constituindo, em seu todo, a chamada Superfície Sertaneja,

caracterizada por uma topografia suavemente ondulada a ondulada, com divisores de água pouco expressivos. A uniformidade da topografia só é interrompida pelos relevos residuais, testemunhos da antiga superfície.

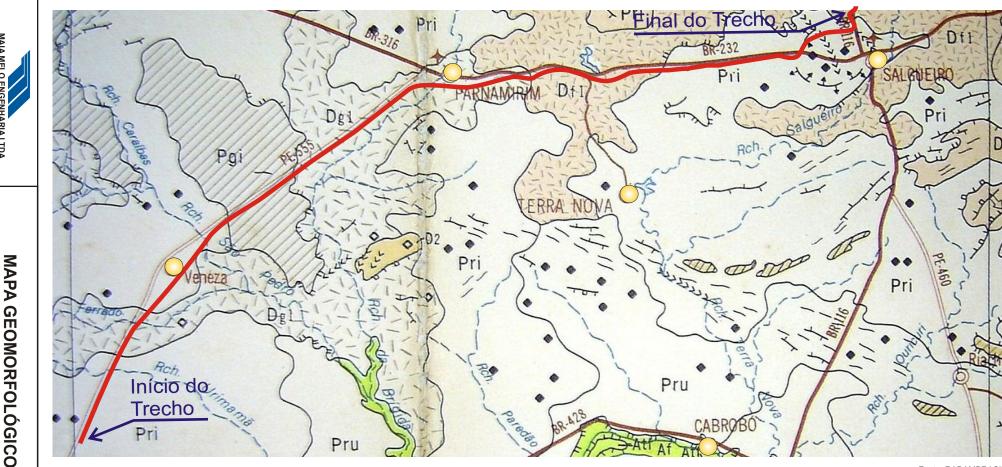
Dentre as três sub-unidades que a compõe – Sanfranciscana, do Meio Norte e Cearense – é na primeira que se insere o trecho da ferrovia em estudo.

O relevo foi esculpido através dos seguintes processos:

- de Aplanamento (Pri), no segmento inicial (primeiros 10 km), no entorno da Vila Veneza e no segmento final (região de Salgueiro) correspondendo a uma Superfície de Aplanamento Retocada Inumada, que são planos inclinados, uniformizados por coberturas de origem diversas resultantes de retoques e remanejamentos sucessivos, indicando predominância de processos de erosão areolar;
- aproximadamente entre os km 10 e 17 e km 42 até Parnamirim: relevo de Dissecação Fluvial (Dg1), isto é, que não obedece a controle estrutural com densidade grosseira da drenagem mas baixo aprofundamento dos vales;
- entre os km 32 e 42: Superfície de Aplanamento Degradada Inumada (Pgi), que são feições planas inumadas por coberturas de origens diversas, mas não separado por escarpas ou ressaltos na vizinhança com os outros modelados;
- entre os km 72 e 90: relevo de Dissecação Fluvial (Df1), com fina densidade da drenagem e baixo aprofundamento dos vales.

O traçado apóia-se em terrenos de topografia ondulada e suave ondulada e desenvolve-se sobre cotas que variam de 430,00m (início) a 520,00m (final), aproximadamente. Cruza com as rodovias BR-232 e PE-085 nos km 109,50 e 109,90 respectivamente.

Vale destacar a ausência de "acidentes" geográficos se interpondo ao traçado, tais como pontões, *"inserbergs"*, escarpas adaptadas à falhas e/ou erosivas, cristas, ressaltos topográficos, dentre outros.


Conclui-se, assim, que, sob o ponto de vista geomorfológico não existem obstáculos topográficos ou formas de relevo que venham a ser degradadas com a implantação do empreendimento.

Apresenta-se, a seguir, o Mapa Geomorfológico da área do Projeto.

d) Geologia

O trecho ferroviário em estudo desenvolve-se em quase toda sua totalidade no embasamento cristalino, de idade pré-cambriana, o que indica bom suporte para a obra.

Conforme Mapa Geológico apresentado no final deste item, observa-se que o traçado ferroviário em estudo atravessa, basicamente, quatro unidades geológicas distintas, quais sejam:

Pediplano Sertanejo, superfície de aplanamento degradada inumada

Pediplano Sertanejo, superfície de dissecação fluvial com drenagem grosseira e baixo aprofundamento dos vales

Pediplano Sertanejo, superfície de aplanamento retocada inumada

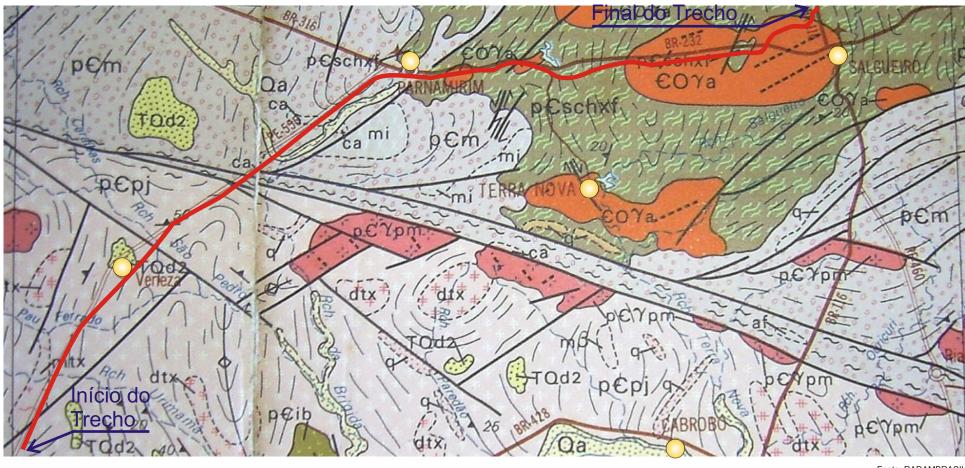
Pediplano Sertanejo, superfície de dissecação fluvial com drenagem fina e baixo aprofundamento dos vales

- do início do trecho até aproximadamente o km 40: Complexo Presidente Juscelino, cujas litologias compreendem: biotita-quartzo-feldspato-gnaisses, gnaisses diversos e anfibolitos;
- do km 40 até aproximadamente a cidade de Parnamirim: Complexo Monteiro compreendendo gnaisses diversos com intercalações anfibolíticas; litologias francamente migmatizadas e granitizadas;
- Após a cidade de Parnamirim até o km 90: Grupo Salgueiro-Cachoeirinha: micaxistos e filitos com calcários cristalinos e quartzitos subordinados;
- do km 90 até o final do trecho: Suíte Intrusiva Serra de Aldeia: hornblenda e/ou biotita branito, aegirina riebeckita granito, granodioritos e hastingsita granito.

Segundo avaliação geotécnica efetuada pela consultora, pode-se dividir o trecho em dois segmentos, com as seguintes características geotécnicas:

- Riacho Santa Rosa Parnamirim, cujos solos são classificados segundo a H.R.B., como pertencentes ao subgrupo A-2-4, os quais apresentam índice de plasticidade menor que 6 e índice de suporte califórnia maior que 6 com expansão muito próxima de zero; em menores proporções ocorrem os solos do subgrupo A-2-6, semelhantes aos do subgrupo A-2-4 exceto pela porção de finos que contem argila plástica, apresentando índice de plasticidade entre 10 e 15 e CBR menor que 2%, além de expansão menor que 0,5%;
- Parnamirim Final do Trecho, com solos originados do complexo gnáissico do tipo A-2-4 nos primeiros 40 cm da camada de solo e o solo A-4 nos próximos 20 cm, considerando uma camada total de 60 cm antes de atingir-se a rocha. O solo A-2-4 é semelhante ao do segmento anterior apresentando melhores característicsa, como o CBR acima de 6% e expansão menor que 0,5% e índice de plasticidade menor que 3. O solo A-4 é um silte arenoso podendo possuir mica, com CBR em torno de 5%, expansão em torno de 0,5% e índice de plasticidade menor que 10.

Desta forma não se vislumbra, de maneira geral, riscos geológicos e geotécnicos para a implantação do empreendimento.


Apresenta-se, a seguir, o Mapa Geológico da área do Projeto.

e) Cobertura Vegetal

A vegetação nativa do entorno do traçado ferroviário em estudo consiste em:

- Caatinga Arbórea Aberta sem palmeiras que se espalha pela maior parte da região e;
- Caatinga Arbórea Densa sem palmeiras aproximadamente entre os km 40 e Parnamirim.

A Caatinga, também denominada de Estepe, é uma vegetação do tipo lenhosa raquítica decidual, em geral espinhosa, com plantas suculentas e com sinúsia graminosa anual. Tem como formas biológicas dominantes as caméfitas espinhosas e uma poucas fanerófitas raquíticas, deciduais no período seco. Muitas plantas herbáceas geófitas e terófitas

Fonte: RADAMBRASIL

Grupo Salgueiro-Cachoeirinha: Micaxistos e filitos com calcários cristalinos e quartzitos subordinados

Suíte Intrusiva Serra de Aldeia: Hornblenda e/ou biotita granito, aegirina riebeckita granito, granodioritos e hastingsita granito.

Complexo Monteiro:

Gnaisses diversos com intercalações anfibolíticas; litologias francamente migmatizadas e granitizadas

Complexo Presidente Juscelino: Biotita-quartzo-feldspato-gnaisses, gnaisses diversos e anfibolitos

Traçado da Ferrovia

completam ainda as mais importantes formas de vida que integram este "tipo xerófito de vegetação".

Relativamente à vegetação, a ausência de áreas protegidas no entorno da ferrovia, leva a um baixo risco ecológico, no sentido estritamente legal. Por sua vez, a presença da vegetação de Caatinga ainda preservada levará a um risco médio, principalmente na exploração das jazidas e empréstimos, devendo-se revegetar todas as áreas exploradas com a vegetação nativa (ver escolha das espécies vegetais no Projeto Ambiental), levando-se em conta, entretanto, que a vegetação de Caatinga não é de preservação permanente nos termos legais, ao contrário da Mata Atlântica e ecossistemas associados.

Vale destacar, entretanto, a importância que tem sido dada, recentemente, nos meios de comunicação, ao problema da desertificação no Semi-Árido Nordestino, objeto da Conferência das Nações Unidas Sobre Desertificação, realizada em Recife, onde já se vislumbra iniciativas do Ministério do Meio Ambiente no sentido de viabilizar recursos para promover o reflorestamento das áreas onde a vegetação foi devastada.

Fato de suma importância que poderá resultar da citada Conferência é a possibilidade da Caatinga se tornar patrimônio nacional, com o mesmo *status* do Pantanal, da Amazônia, da Serra do Mar, da restinga do litoral e da Mata Atlântica. Confirmada tal intenção, vislumbrase a possibilidade de modificação do artigo 225 da Constituição Federal, que trata do meio ambiente, passando a flora do ecossistema a ser considerada de preservação permanente.

Nenhuma espécie constante da Lista Oficial de Flora Brasileira Ameaçada de Extinção (Portaria n. 37-N de 03/04/92 do IBAMA), foi citado nas enquetes realizadas no campo, bem como na bibliografia co-relacionada.

As matas ciliares que são também protegidas pela legislação (Código Florestal federal e estadual) surgem nas margens dos cursos d'água, onde serão construídas pontes, devendo-se prever, no Projeto Ambiental o reforço da vegetação ciliar próxima como forma compensatória pela erradicação decorrende da construção das pontes.

Apresenta-se, a seguir, a relação das espécies vegetais mais comuns da Caatinga, na área em estudo.

Listagem das Espécies Vegetais da Caatinga encontradas na Área do Projeto

Arbóreas	Arbustivas	Rasteiras
. Catinga de porco	. Marmeleiro	. Malva branca
. Calumbi	. Cassutinga	. Malva de lambu
. Joamerim	. Mofumbo	. Malva preta (*)
. Joá de boi	. Velame	Feijão brabo
. Monzê	. Jurema Preta	. Amargoso
. São João	. Caiçara	. Vassourinha
. Cajueiro	. Cansanção	. Malícia
. Licuri (palmeira)	. Incó	. Cabeçudo
. Imbuzeiro	. Facheiro	. Bamburrá

. Umburana de cheiro . Angico (*)

. Pereiro . Sucupira . Jacarandá

. Juazeiro (*) . Maniçoba

. Sabiá

. Sete-cascas . Favela (*)

. Espinheiro. Catingueira-verdadeira

. Aroeira (*)

. Bom-nome (*)
. Canafístula (*)

. Craibeira (*)

. Cumarú (*)

. Mandacarú (*)

. Mulungu (*)

. Oiticica (*)

. Quixaba (*)

. Xique-xique . Macambira

. Pinhão . Alecrim-do-campo *

. Jurema-vermelha . Batata-de-purga (*)

. Carqueja . Capitãozinho (*)
. Moleque-duro (*) . Cardo-santo (*)
. Mororó (*) . Cordão-de-frade (*)

. Quebra-faca . Coroa-de-frade (*)

. Camaratuba . Beldruega . Alfavaca-de-caboclo (*) . Gogóia (*) . Jurubeba (*) . Macela (*)

. Relógio (*) . Mão-fechada (*) . Turco (*) . Carrapichinho

. Umburana-de-espinho (*)

. Urtiga

(*) Plantas com propriedades medicinais

O segmento Riacho Santa Rosa – Parnamirim está praticamente intocado e é caracterizado por uma vegetação típica de caatinga, com arbustos e alguns indivíduos arbóreos . Segundo o EIA/RIMA é uma das Unidades de Paisagem mais preservadas de todo o entorno da diretriz de traçado da Transnordestina. O relevo é caracterizado como suave ondulado.

Onde há morros e serrotes a vegetação também se apresenta bastante preservada. Não há presença de aglomerados urbanos a não ser pelos povoados de Urimamã e Veneza. Os solos identificados nessa unidade são os latossolos e, na maior parte, presença de cascalho.

No segmento Salgueiro/Parnamirim a vegetação apresenta sinais de alterações ao longo das margens da rodovia. Há poucas edificações ou vilarejos às margens do trecho porém, foram identificadas várias áreas completamente sem vegetação intercaladas por áreas com remanescentes de caatinga criação de caprinos e, em menor escala, gado vacum de corte.

No Mapa de Vegetação apresentado a seguir, visualiza-se a diferenciação entre as manchas de tipologia vegetacional na área do traçado ferroviário em estudo.

f) Clima

A caracterização do clima se reveste de importância em termos ambientais, haja vista que se constitui um dos parâmetros para determinação do Índice Geoambiental (IG), na metodologia utilizada neste Estudo Ambiental (Manual Rodoviário de Conservação, Monitoramento e Controle Ambientais).

Fonte: RADAMBRASIL

Caatinga Arbórea Aberta sem Palmeiras

Culturas Cíclicas

Caatinga Arbórea Densa sem Palmeiras

Traçado da Ferrovia

O clima da região é em função de vários fatores, dentre eles, pluviometria, temperatura, ventos, insolação, rede hidrográfica. A tipologia climática da área do Projeto tem as seguintes características:

• Tipologia Climática : Clima Tropical da Zona Equatorial, Quente, Semi-

Árido, com 6 meses de duração do período seco;

Temperatura média anual : 24 a 26°C
 Temperatura máxima absoluta : 36 a 38°C
 Temperatura mínima absoluta : 12 a 16°C

Precipitação média anual
586,8 mm (Urimamã) a 589,3 mm (Salgueiro)
Precipitação máxima anual
1.219,8 mm (Urimamã); 1.145,3 mm (Salgueiro)

Período mais chuvoso : Fevereiro a AbrilPeríodo menos chuvoso : Agosto a Novembro

O longo período seco é intercalado por um período pluvial curto não muito bem definido no tempo, o que resulta numa certa irregularidade climática. Em certos anos a estação chuvosa chega a ocorrer muito debilmente.

O regime hídrico da região é ditado principalmente, pelo "Ritmo Tropical do Nordeste Oriental". Seus maiores volumes pluviométricos se dão no outono (mais freqüentemente) ou inverno, e os menores, na primavera ou verão. Nesta área as chuvas são vinculadas, sobretudo, às modulações do sistema de Chuvas de Este (EW).

São os seguintes os sistemas de circulação atmosférica perturbada determinantes do clima da região:

- o de Norte (CIT);
- o de Este (W E);
- o de W (IT).

O Sistema de Sul (FP) não chega a atingir a região do Projeto. O Sistema Normal atua na direção dos ventos Sudeste-Noroeste.

O Sistema de Norte representado pelo deslocamento para o sul da *convergência intertropical* (CIT), faz com que ao longo desta "depressão equatorial", o ar em ascendência provoque chuvas e trovoadas, geralmente intensas. Na área do Projeto ela se faz sentir principalmente a partir de janeiro, porém sua maior freqüência se dá no outono (marçoabril), quando alcança posicionamento mais meridional.

O Sistema de Este representado por correntes de perturbação que caminham de E para W são típicas das zonas tropicais atingidas pelos alísios. Ocorre desde o Rio Grande do Norte até o norte do Estado do Rio de Janeiro, estando relacionado a um reforço do ar polar dos alísios de E e SE com anticiclone polar de posição marítima. As precipitações causadas por esse fenômeno decrescem bruscamente para oeste. São mais freqüentes no inverno, e secundariamente no outono, enquanto que no semestre primavera-verão são menos freqüentes.

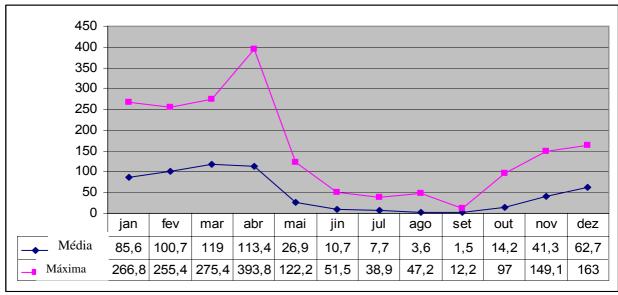
O Sistema de Oeste representado por linhas de Instabilidades Tropicais (IT) é formado por alongadas depressões barométricas induzidas em dorsais de altas tropicais. No seio de uma

linha de IT, o ar em convergência acarreta, geralmente, chuvas e trovoadas e ventos moderados a fortes, com rajadas que atingem 60 a 90 km/hora. Tem pouca atuação na área do Projeto.

Destaque-se, na área, a ausência de "sombras de chuvas" normalmente provocadas por "barreiras orográficas". A sua não ocorrência decorre da ausência de acidentes geográficos que possam barrar as correntes de ar na área de influência direta do empreendimento.

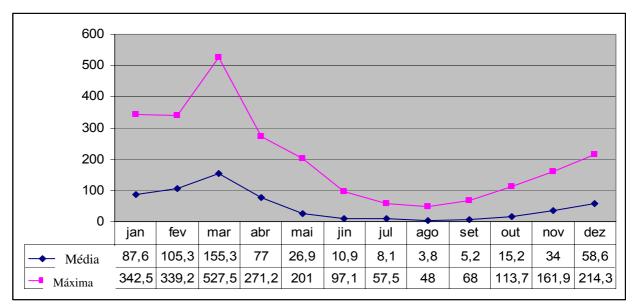
Segundo o IBGE, o Balanço Hídrico representativo do Semi-Árido Equatorial Nordestino com 6 meses de duração do período seco, tem as seguintes características:

reposição de água no solo : mês de fevereiro


excedente hídrico : início de março até final de maio
 retirada de água do solo : início de junho até final de outubro
 deficiência hídrica : início de junho até final de dezembro

Apresenta-se a seguir os histogramas da marcha das precipitações médias de série histórica de 23 anos nos postos localizados nas proximidades do início do trecho – Urimamã – e do final – Salgueiro.

Nos histogramas não se apresenta a série histórica das pluviosidades mínimas, uma vez que, em quase todos os meses, a mínima se apresentou como zero.


Histograma das Precipitações Médias (mm)

Posto: Urimamã, Município de Sta.Maria da Boa Vista
Lat. 08-26; Long. 39-57; Altitude 350 m

Fonte: SUDENE - Dados Pluviométricos do Nordeste - Série Pluviométrica

Histograma das Precipitações Médias (mm) Posto: Salgueiro, Município de Salgueiro Lat. 97-94; Long. 39-07; Altitude 415 m

Fonte: SUDENE - Dados Pluviométricos do Nordeste - Série Pluviométrica

g) Recursos Hídricos

Recursos Hídricos Superficiais

O potencial da disponibilidade de água é representado pela capacidade de geração de água em superfície e pelos estoques das águas subterrâneas exploráveis. Para a avaliação do potencial das águas superficiais se considera a água da chuva que ao atingir o solo, pode evaporar-se, infiltrar-se no subsolo ou escoar superficialmente através da rede de drenagem. No caso específico desse segmento, a classe de excedente hídrico é a super concentrada, ou seja, muito fraca, apresentando um número de meses inferior a três, com excesso hídrico.

Ao longo de todo o trecho a ferrovia irá interceptar, através de pontes de concreto a serem implantadas, os seguintes cursos d'água, todos temporários e componentes da Bacia do Rio São Francisco:

<u>Km</u>	Curso d'água	Comprimento (m)
12,38	Riacho do Miguel	45,00
19,57	Riacho s/ Nome 01	90,00
38,27	Rio Traíras	150,00
41,40	Açude Aboboras	150,00
59,10	Riacho Parnamirim	45,00
60,65	Rio Brígida	165,00
64,31	Riacho s/ Nome 02	60,00
67,70	Riacho do Veado	45,00

70,25	Riacho Palestina	60,00
75,20	Riacho s/ Nome 03	45,00
78,43	Riacho da Volta	120,00
81,60	Riacho da Fazenda	60,00
85,21	Riacho Curralinho	45,00
95,55	Riacho São Pedro	135,00
99,54	Riacho Aroeira	45,00
109,05	Riacho Pau Ferrado	60,00
115,80	Riacho Urimamã	45,00

Nestes cursos d'água, com a implantação das referidas pontes haverá uma perda de vegetação ciliar a qual é protegida pela legislação ambiental (vegetação de preservação permanente). Para compensar a perda será proposto, no Projeto Ambiental, o reforço da vegetação ciliar nas proximidades, onde geralmente existem "clareiras" ou se apresenta como rarefeita.

Com relação às obras de arte correntes, através de cadastro realizado em campo, foi identificada a necessidade de implantação de cerca de 90 bueiros ao longo do trecho. Os bueiros serão do tipo BTTC, BSTC, BSCC e BTCC, com diâmetros variando entre 1,00 a 2,00 metros.

Quanto a infraestrutura de acumulação de água para consumo humano e animal, vale destacar a presença da Barragem Entremontes localizada próximo a localidade de Veneza, no Riacho São Pedro. Levando-se em conta que o reservatório situa-se a montante o eixo do traçado da ferrovia, distanciando cerca de 9 km, não se vislumbra a possibilidade de riscos de contaminações do manancial, tanto na fase de obras, quanto na de operação (derrame de cargas perigosas).

Recursos Hídricos Subterrâneos

Quanto às águas subterrâneas (volume e qualidade) estas refletem o comportamento integrado dos fatores ambientais interferentes na trajetória da água, através de seu caminho pelo ciclo hidrológico. Na região este potencial hídrico é considerado baixo.

h) Uso e Ocupação do Solo na Área do Projeto

Esta caracterização apoiou-se em informações constantes do EIA – Estudo de Impacto Ambiental da Ferrovia Transnordestina elaborado pela STE Ambiental para o DNIT.

Segmento Riacho Santa Rosa - Parnamirim

No segmento Riacho Santa Rosa (município de Santa. Maria da Boa Vista) até a cidade de Parnamirim (sede municipal de Parnamirim), o traçado da Ferrovia se apresenta quase que paralelo à rodovia PE-555, passando pelos povoados de Urimamã em Santa Maria da Boa Vista e Veneza, Sítio Poço do Fundo, Assentamento Dezinho Ângelo e Jacaré, no município de Parnamirim. Todos estes aglomerados possuem menos de 5.000 habitantes.

O uso do solo, neste segmento, difere apenas no Assentamento Dezinho Ângelo que foi implantado em agosto de 2003, atualmente com 42 famílias de agricultores assentadas (cerca de 200 pessoas) oriundas de Parnamirim. Tais famílias dedicam-se ao plantio irrigado de tomate, cebola e pimentão, destinados à comercialização na CEASA de Parnamirim.

No restante do trecho, a utilização do solo de uma forma geral é rural e está ligada à caprinocultura, bovinocultura e o cultivo do milho, inexistindo práticas de conservação do solo. A caprinocultura extensiva se mostra tão importante nos municípios de Santa Maria da Boa Vista e Parnamirim que respondeu por 30,56% e 39,94% respectivamente do total de rebanhos nos dois municípios.

A exploração de madeira da Caatinga é executada de forma predatória desnudando o solo e expondo-o a um processo gradativo de desertificação, estando o município de Santa Maria da Boa Vista incluído no nível de ocorrência "muito grave" no que se refere à susceptibilidade a processos de desertificação, conforme documento Política Estadual de Controle da Desertificação do Governo do Estado de Pernambuco (setembro de 2001).

A produção de lenha com madeira originária da vegetação nativa da Caatinga em Santa Maria da Boa Vista e Parnamirim é o principal produto de extração vegetal nos dois municípios, tendo atingido, segundo o IBGE, 16.000 e 17.500 metros cúbicos, respectivamente, no ano de 2002.

A adutora do Oeste garante o abastecimento de água para consumo humano nas comunidades referidas e a represa Entremontes localizada a cerca de 8 km da PE-555 (a montante do traçado da ferrovia), a água para irrigação localizada.

Nas áreas irrigadas, a principal lavoura temporária corresponde ao tomate em Santa Maria da Boa Vista (42,2% do valor total da produção agrícola no município) e a cebola, em Parnamirim (38,3 do valor total da produção agrícola).

Segmento Parnamirim - Salgueiro

Neste segmento, a diretriz de traçado da Ferrovia adentra-se nos municípios de Parnamirim (19,3 mil habitantes), Terra Nova (7,5 mil habitantes) e Salgueiro (51,6 mil habitantes).

À exceção dos dois extremos deste segmento, onde se localizam os núcleos urbanos das sedes municipais de Parnamirim, de um lado e Salgueiro, de outro, a diretriz de traçado percorre áreas bastante ruralizadas, aproximando-se de pequenas aglomerações urbanas (S. Domingos, Surubim e Guarani) todas com menos de 5.000 habitantes.

A utilização do solo se repete tendo a caprinocultura, a bovinocultura e o cultivo do milho como destaque neste particular, bem como a exploração predatória da madeira da Caatinga, repetindo-se a pressão ambiental sobre o ecossistema da Caatinga, expondo os solos a riscos de desertificação, embora com menor intensidade que no município de Santa Maria da Boa Vista.

Os solos (Luvissolos Crômico de caráter órtico), originalmente recoberto por vegetação de Caatinga, com predomínio do clima tropical muito seco, propiciam o desenvolvimento da caprinocultura extensiva.

Nas áreas dos Neossolos Litólicos de caráter eutrófico que surgem também neste segmento, além da bovinocultura e da caprinocultura, tornou-se possível a implantação de culturas mais diversificadas face ao caráter eutrófico dos solos (saturação de bases maior que 50% - férteis) tais como côco-da-baía, horticultura, feijão e cebolinha a despeito do rigor climático característico do Semi-Árido.

De acordo com Mapa de Capacidade de Uso dos Recursos Naturais Renovável (Radam), onde se hierarquiza os graus de restrição dos condicionantes ambientais – clima, relevo e solo - o clima se apresenta como o fator mais restritivo em todas as unidades de mapeamento de solos que se interpõem ao traçado da Ferrovia. As características intrínsecas dos solos vêm em segundo plano e, dentre elas, a baixa soma de bases trocáveis, a pequena profundidade efetiva e o baixo teor de matéria orgânica se alternam entre as unidades de mapeamento. O relevo, finalmente, se mostra como o fator menos restritivo.

Estas considerações corroboram o baixo nível de antropização agrícola encontrado na área de influência direta da diretriz de traçado da Ferrovia, no trecho objeto deste estudo, fazendo com que a alternativa de utilização do solo se concentra mais na caprinocultura e bovinocultura extensiva.

i) Risco de Desertificação

O fenômeno da desertificação tem sido entendido, pela comunidade internacional, como um problema de dimensões globais que afeta as regiões de clima árido, semi-árido e sub-úmido seco da Terra.

Foi somente em 1992, quando da realização da Conferência sobre Meio Ambiente e Desenvolvimento, a Rio 92, que a questão da desertificação passou a ter nova posição no contexto internacional. Pressionados pelos países em desenvolvimento, as Nações Unidas incluíram um capítulo especial sobre o tema na Agenda 21 (capítulo 12) e aprovaram a negociação de uma Convenção Internacional, instrumento juridicamente vinculante para os países que a ratificam.

A Convenção da Desertificação já está em vigor e o Brasil é um de seus signatários, o que significa a adoção do compromisso para sua implementação. Este compromisso está consubstanciado no documento "Diretrizes para a Política Nacional de Controle da Desertificação", já aprovado pelo CONAMA e marco jurídico a partir do qual as ações dos Governos estaduais vêm se pautando.

A principal relação entre obras rodoviárias e desertificação refere-se ao fato de que as obras, muitas vezes, requerem materiais de construção explorados em jazidas que se localizam em áreas com vegetação nativa, exigindo desmatamento, o que, em áreas de risco de desertificação viriam a contribuir no agravamento deste fenômeno, no caso de não se proceder à devida reposição da camada fértil e a subsequente revegetação das áreas com espécies nativas.

Neste sentido, vale a pena observar se a ferrovia objeto desta proposta localiza-se em áreas de risco de desertificação, o que se verifica no Mapa de Risco de Desertificação do Estado de Pernambuco apresentado a seguir, onde se constata que há risco elevado de

desertificação no início do trecho, ainda no município de Santa Maria da Boa Vista. Nos outros municípios atravessados, o entorno da ferrovia assenta-se em área de baixa susceptibilidade de desertificação. Estas conclusões reforçam a necessidade de se promover a recomposição florestal nas jazidas a serem exploradas em áreas com vegetação nativa.

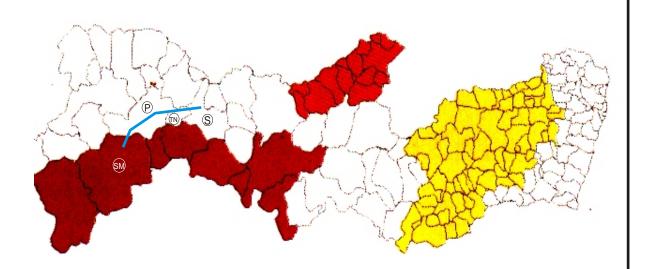
Apresenta-se, a seguir, o Mapa de Risco de Desertificação.

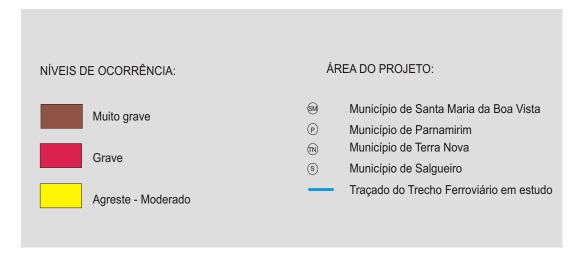
j) Risco de Danos Ambientais

Este ítem tem como objetivo a identificação de bens ambientais (biofísicos e antrópicos) que possam ser prejudicados com os elementos do empreendimento.

São considerados bens ambientais as áreas protegidas por lei (parques, reservas, APAs, etc.) além de corpos hídricos que abasteçam centros urbanos e industriais (rios, lagos, reservatórios, represas), onde acidentes possam por em risco a qualidade/quantidade das águas destinadas ao uso.

São ainda bens ambientais as formas de vegetação de preservação permanente definidas na legislação federal (Código Florestal e Resoluções CONAMA 302 e 303/02) e estadual que exercem a função de preservar o relevo, os cursos d'água e demais fontes de abastecimento, além do Código Florestal do Estado de Pernambuco que, de uma forma ou de outra já incorpora os ditames da legislação federal.


Na área de influência direta do empreendimento, dominada pelas culturas antrópicas em meio à vegetação remanescente da Caatinga, não se registrou a presença de unidades de conservação legalmente instituídas que possam vir a dificultar a implantação do empreendimento.


I) Conclusões a cerca dos Riscos Ambientais

Pelo exposto neste diagnóstico, concluiu-se acerca dos riscos ambientais da implantação do trecho ferroviário em estudo:

- A vegetação dominante no entorno do traçado corresponde à vegetação arbustiva rala, pertencente ao Bioma Caatinga em áreas de relevo plano a suavemente ondulado, não se esperando riscos ambientais importantes, decorrentes da desestruturação do relevo;
- Em face dos riscos de desertificação existente na área, torna-se ainda mais relevante proceder-se ao replantio compensatório nas áreas das jazidas de materiais a serem utilizadas no projeto, o que é objeto do Projeto Ambiental;
- O Passivo Ambiental é praticamente inexistente, como decorrência das poucas agressões antrópicas, da ruralidade marcante no entorno do traçado ferroviário e da natureza dos solos que são pouco susceptíveis a processos erosivos;
- Tendo em vista que o traçado cortará vários cursos d'água onde serão implantadas pontes/pontilhões – torna-se imperioso o reflorestamento compensatório das margens dos cursos d'água, o que poderá ser efetuado através do reforço das matas ciliares nas

ESTADO DE PERNAMBUCO

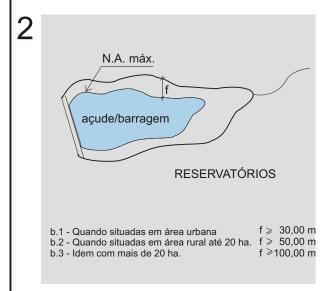
Fonte: Política Estadual de Controle da Desertificação Governo do Estado de Pernambuco Secretaria da Ciência, Tecnologia e Meio Ambiental, 2001 proximidades de cada ponte a ser implantada, o que é, também, objeto do Projeto Ambiental:

- Relativamente ao Meio Antrópico, os riscos são muito baixos, uma vez que o traçado ferroviário percorrerá terrenos muito pouco antropizados e, por outro lado, contorna ou desvia-se dos núcleos urbanos;
- Não existem Unidades de Conservação legalmente instituídas nas proximidades do traçado ferroviário, implicando que o projeto não ferirá os dispositivos legais pertinentes a este tema:

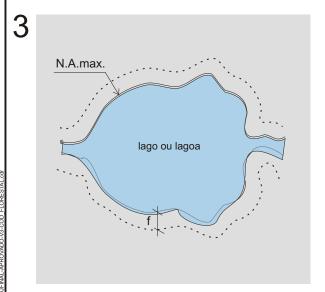
Os maiores riscos estão associados a erodibilidade dos solos, conforme análise dos riscos de erosão, corroborando a necessidade de se revegetar todas as áreas que forem degradadas para exploração de materiais.

Concluiu-se, assim, que o traçado proposto para a Transnordestina no trecho em estudo, se mostra viável em termos ambientais, o que é corroborado pelas próprias conclusões do EIA/RIMA.

m) Confronto com a Legislação Ambiental


O Código Florestal e as Resoluções CONAMA 302/02 e 303/02, são uma boa referência genérica para análise das implicações legais de um projeto que tem nos seus componentes a exploração de jazidas de material e implantação de vias em terrenos ainda não antropizados. Leve-se em conta que as legislações ambientais do Estado de Pernambuco já incorporam o cerne dos dispositivos da legislação federal citada.

Em função disto apresenta-se um breve confronto dos componentes do projeto com os ditames do referido Código e Resoluções citadas, na versão gráfica apresentada a seguir.


Rio planta N.A. max. corte Largura do Recurso Hídrico Faixa de Proteção f = 30,00 ma.2 - 10,00 ≤ L < 50,00 m f = 50,00 m $a.3 - 50,00 \le L < 200,00 m$ f = 100,00 m $a.4\ 200,00 \le L \le 600,00\ m$ f = 200,00 mL > 600,00 mf = 500,00 m

As interferências nas margens de rios e riachos se darão através da implantação de pontes/pontilhões em 20 locais (ver diagnóstico ambiental, item Recursos Hídricos).

Para compensar a perda de mata ciliar propõe-se, no Projeto Ambiental, o replantio compensatório nas margens dos cursos d'água reforçando-se a vegetação existente através do seu adensamente e preencimento das "clareiras" existentes.

O traçado ferroviário que, em quase sua totalidade, se desenvolve próximo e paralelo às rodovias BR-232 e PE-555 não terá proximidade com açudes/barragens, destacando-se, apenas um açude localizado após a cidade de Parnamirim, onde o traçado se desenvolverá a jusante e adequadamente distanciado.

Nenhuma interferência do projeto ocorrerá nas margens de lagoas ou lagoas.

Ferrovia: TRANSNORDESTINA

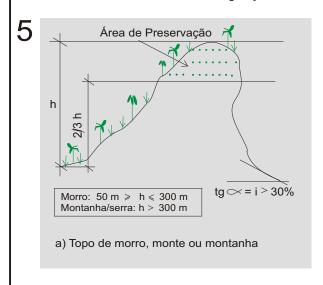
Trecho: Salgueiro - Parnamirim - Riacho Santa Rosa

Extensão: 127,48 km

Confronto com as Restrições da Legislação Ambiental: Código Florestal e Resoluções CONAMA 302 e 303/02

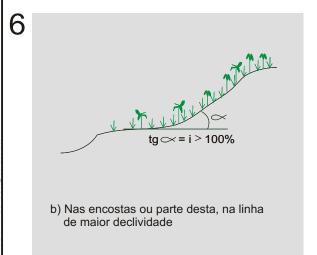
Limite da
Bacia Contribuinte

Nascentes
R ≥ 50,00 m


C) Nas nascentes permanentes ou temporárias, inclusive os olhos d'água e veredas

Não haverá interferências nas proximidades de nascentes.

Os areais serão explorados nos médios cursos dos rios/riachos.


ÁREAS DE PRESERVAÇÃO PERMANENTE

São também consideradas áreas de Preservação Permanente as florestas e demais formas de vegetação situadas:

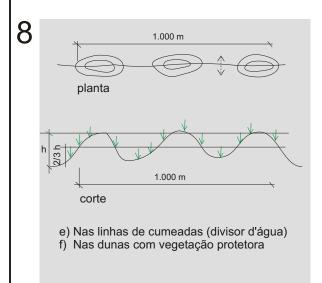
O relevo geral regional varia de plano a suavemente ondulado (ver diagnóstico da Geomorfologia). O traçado desenvolve-se por superfícies de aplanamento e de dissecação fluvial, ambas com baixo aprofundamento dos vales.

Na área das pedreiras a serem utilizadas a vegetação na superfície é inexistente (rochas aflorantes).

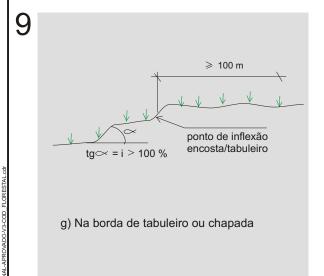
Mesmas considerações da situação anterior.

Ferrovia: TRANSNORDESTINA

Trecho: Salgueiro - Parnamirim - Riacho Santa Rosa


Extensão: 127,48 km

Confronto com as Restrições da Legislação Ambiental: Código Florestal e Resoluções CONAMA 302 e 303/02


WADO-V3-COD FLORESTAL cdr

a significant of the state of

Não existem restingas na área do projeto cujo ecossistema nativo pertence ao domínio da Caatinga.

O traçado ferroviário não atravessa divisores d'água. Todo o traçado desenvolve-se no interior da Bacia do Rio São Francisco.

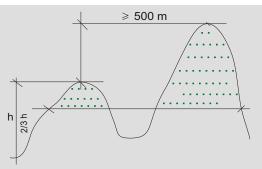
Esta situação é inexistente na área do Projeto, mesmo nas áreas das jazidas a serem exploradas. Inexiste transição geomorfológica para tabuleiro ou chapada (ver diagnóstico da Geomorfologia).

Ferrovia: TRANSNORDESTINA

Trecho: Salgueiro - Parnamirim - Riacho Santa Rosa

Extensão: 127,48 km

Confronto com as Restrições da Legislação Ambiental: Código Florestal e Resoluções CONAMA 302 e 303/02


nível médio do mar (cota 0,00).

h) Em altitude superior a 1.800 m, qualquer que seja sua vegetação

Todas as cotas do relevo regional são inferiores a 1.800 m.

O traçado desenvolve-se na Depressão Sanfranciscana.

11

j) Nas montanhas ou serras, quando ocorrerem dois ou mais morros cujos cumes estejam separados entre si por distâncias inferiores a 500 m, a área de proteção abrangerá o conjunto de morros e será delimitada a partir de 2/3 de altura em relação ao morro mais baixo do conjunto Situação inexistente na área do projeto.

Fonte da Ilustração: Rogério Gutemberg de O. Régis

Ferrovia: TRANSNORDESTINA Trecho: Salgueiro - Parnamirim - Riacho Santa Rosa

Extensão: 127,48 km

Confronto com as Restrições da Legislação Ambiental: Código Florestal e Resoluções CONAMA 302 e 303/02

4. Projetos

4.1 Projeto Geométrico

4.1.1 Elementos Básicos

O Projeto Geométrico foi desenvolvido a partir dos Estudos originados de campo e da restituição aerofotogramétrica e constitui-se do seguinte:

- Projeto Planialtimétrico nas escalas de 1:2000 (h) e 1:200(V);
- Determinação das seções transversais na escala 1:200;
- Detalhamento dos elementos especiais do projeto.

O Projeto Geométrico foi elaborado por processo eletrônico-digital sobre os elementos resultantes da restituição aerofotogramétrica de uma faixa de projeto escolhida durante os Estudos de Traçado.

Para o desenvolvimento do Projeto Geométrico foi necessário o conhecimento dos problemas de campo e atendimento as Normas de Procedimento para o Projeto de Engenharia do DNIT – IS – 208 – Projeto Geométrico onde coube e Normas Técnicas para Estradas de Ferro.

4.1.2 Características Técnicas

O Projeto foi elaborado para atender as condições de uma ferrovia de linha singela com bitola de 1,60m com previsão para operar temporariamente com bitola de 1,00m. O traçado desenvolve-se sobre uma região ondulada.

Para o desenvolvimento do Projeto Geométrico foram consideradas as características técnicas referenciais contidas em Termos de Referencia da Ferrovia Transnordestina cujos parâmetros básicos serão a seguir descritos:

- Bitola:1,60m;
- Rampa máxima compensada no sentido exportação (Petrolina Salgueiro) de 0,006m/m sendo que no trecho Parnamirim/Riacho do Pontal/Petrolina o valor da rampa teve o limite de 0,010m/m;
- Rampa máxima compensada no sentido importação (Salqueiro-Petrolina) de 0,010 m/m;
- Raio mínimo de curva horizontal: 400,00 metros;
- Velocidade diretriz: 80 Km/h;
- Distância entre os pátios de cruzamento: 40 km prevendo-se expansão futura para 20 km;

No quadro QD- 4.1.8 estão apresentadas as características técnicas do trecho projetado indicando-se os seguintes elementos: Desenvolvimento total do trecho, desenvolvimento em tangente, desenvolvimento em curva, porcentagem do trecho em curva, porcentagem em curvas, índice médio de curvas por km, raio mínimo utilizado, freqüência do raio mínimo utilizado, número de curvas adotadas no projeto, declividade máxima por sentido de tráfego, extensão total em nível, extensão total em rampa e extensão total em rampa máxima nos dois sentidos.

4.1.3 Critérios e Parâmetros Adotados

Em planta as concordâncias dos alinhamentos retos do traçado foram realizadas por curvas circulares de transição espiral (clotóides) para raios inferiores a 3.437,752m.

A tangente mínima entre curvas foi de 40,00 metros.

O raio mínimo adotado foi de 404,482m com Lc de 170,00m e as curvas de transição conforme a seguinte tabela:

RAIO	COMPRIMENTO DE TRANSIÇÃO
3437,752	0
2291,838	30
1718,883	40
1375,111	50
1145,930	60
982,230	70
859,456	80
763,966	90
687,574	100
625,072	110
572,987	120
528,916	130
491,141	140
458,403	150
429,757	160
404,482	170

Pátios

Foram projetados 4 pátios de cruzamento e 1 pátio de entroncamento com a linha Salgueiro-Suape.

Os pátios de cruzamento terão extensão útil total igual a 2.500 metros, e serão formados pela linha principal e por um desvio.

O pátio de Salgueiro terá extensão de 2.700 metros e conterá 12 linhas, além da linha principal.

As larguras das seções transversais dos pátios foram definidas em função do número de vias de conformidade com cada caso e do valor da entrevia estabelecido em 4,50 metros.

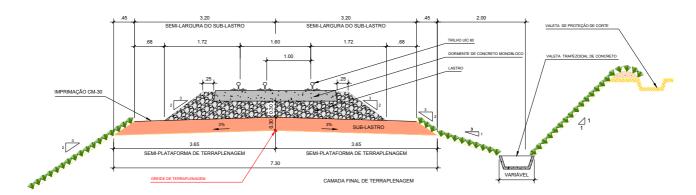
A seguir apresenta-se a localização desses pátios:

LOCALIZAÇÃO DOS PÁTIOS							
PÁTIOS ESTACA INICIAL ESTACA FINAL EXTENSÃO (m)							
Pátio de Salgueiro	1290 + 0,00	1425 + 0,00	2.700				
Pátio de Transição 5	2197 + 0,00	2329 + 17,98	2.500				
Pátio de Transição 6	3582 + 0,00	3714 + 17,98	2.500				
Pátio de Transição 7	5028 + 10,00	5161 + 7,98	2.500				
Pátio de Transição 8	6160 + 0,00	6292 + 17,98	2.500				

O projeto do Pátio de interconexão com a linha Salgueiro – Suape (estacas 1290 a 1425) foi projetado de acordo com o layout e detalhes fornecidos pela CFN e esclarecidos através de reuniões técnicas ocorridas durante o desenvolvimento e acompanhamento dos estudos. A localização e extensões dos demais pátios de transição também seguiram as recomendações emanadas da CFN.

A seguir é apresentado um lay-out contendo os dados do referido Pátio:

O projeto altimétrico do pátio de interconexão com a linha Salgueiro - Suape apresenta greide em nível.


Os Pátios de cruzamento também foram projetados objetivando a rampa em nível, entretanto somente no de Transição 8 é que isso foi possível. Os demais pátios de transição 5 – 6 e 7 apresentaram rampas cujos valores variaram até o limite de 0,0020m/m.

A seguir apresenta-se demonstrativo das rampas aplicadas para cada pátio:

Pátio de Salgueiro: Em Nível
Pátio de Transição 5: 0,00127m/m
Pátio de Transição 6: 0,00161m/m
Pátio de Transição 7: 0,00200m/m
Pátio de Transição 8: Em Nível

No desenvolvimento do Projeto Geométrico do ramal principal foram ainda considerados os elementos referenciais integrantes dos Termos de Referencia para a seção tipo da via, dos seus elementos mínimos da plataforma a seguir citados:

LARGURA DA PLATAFORMA (m)						
ATERRO CORTE						
Valores 6,40 11,30						

Esses elementos serão mais bem detalhados no capítulo referente ao Projeto de Terraplenagem e Projeto de Superestrutura da via.

Para o desenvolvimento do greide buscaram-se as melhores condições técnicas condicionadas aos pontos de passagem obrigatórios tais como rodovias, pátios de cruzamento e obras de arte especiais.

Todas as curvas situadas em rampa máxima foram compensadas.

A compensação introduzida foi à razão de 0,06% para cada grau de curvatura.

Nas curvas situadas em rampas outras que as máximas, não houve necessidade de compensar o greide.

Também não houve necessidade de acabar e iniciar a compensação justamente nos PCs e PTs. Na determinação da compensação foi suficiente abranger o número inteiro de estacas mais próximo do desenvolvimento da curva.

Utilizou-se em greide a compensação, conforme tabela a seguir apresentada.

TABELA ADOTADA PARA A COMPENSAÇÃO DAS CURVAS

			·
RAIO	LC	%	RAMPA COMPENSADA (%).
3437,752	0	0,02	0,58
2291,838	30	0,03	0,57
1718,883	40	0,04	0,56
1375,111	50	0,05	0,55
1145,930	60	0,06	0,54

RAIO	LC	%	RAMPA COMPENSADA (%).
982,230	70	0,07	0,53
859,456	80	0,08	0,52
763,966	90	0,09	0,51
687,574	100	0,10	0,50
625,072	110	0,11	0,49
572,987	120	0,12	0,48
528,916	130	0,13	0,47
491,141	140	0,14	0,46
458,403	150	0,15	0,45
429,757	160	0,16	0,44
404,482	170	0,17	0,43

As curvas de concordância verticais adotadas tiveram o maior comprimento possível, sem, contudo acarretarem maiores custo supérfluos. No projeto foi adotada a parábola do segundo grau.

O comprimento da curva vertical foi calculado pela seguinte expressão:

$$y = \frac{20i_1 - i_2}{taxadevariação}$$
 i em porcentagem

Taxa de variação de 0,033% $y = 606,06 (i_1 - i_2) p/côncava$

Taxa de variação de 0,066% $y = 303,03 (i_1 - i_2) p/convexa$

Para o cálculo do fator k da parábola (em metros) foi adotada a seguinte expressão:

$$k = \frac{y}{i_1 - i_2}$$

Para o cálculo da flexa máxima foi adotada a seguinte expressão:

$$e_{max} = y (i_1 - i_2)$$
, i em m/m

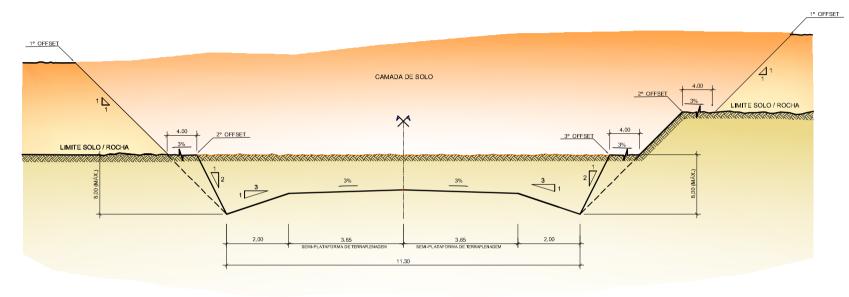
Para o cálculo de uma flexa qualquer foi adotada a seguinte expressão:

eqq =
$$\frac{4 e_{\text{max.}} x d^2}{y^2}$$
 Ou eqq = $\frac{d^2}{200k}$

Onde: d = distância em metros do início (PCV), ou do final (PTV) da curva vertical, ao ponto de interesse.

4.1.4 Apresentação do Projeto

A apresentação do Projeto Geométrico consta das plantas em escala de 1:2.000(H) e 1:200(V) onde estão indicados o eixo estaqueado de 20 em 20m, quadro de coordenadas


com elementos básicos para relocação do eixo, localização das obras de drenagem, início e fim de pátios, linha de "off-sets".

Estão apresentados também os quadros de curvas numeradas, localização das RNN com indicação da localização e cotas, cruzamento dos eixos coordenados, seta norte, pontos notáveis, faixa de domínio, limites dos lagos e barragens. Representação dos cursos d'água e respectivas denominações, representação das interferências com as rodovias federais, estaduais e municipais, sentido de estaqueamento, terrenos alagadiços, brejos, borda da plataforma, inclusive no caso de alargamento de cortes, amarração de pontos notáveis, azimutes e amarração das folhas.

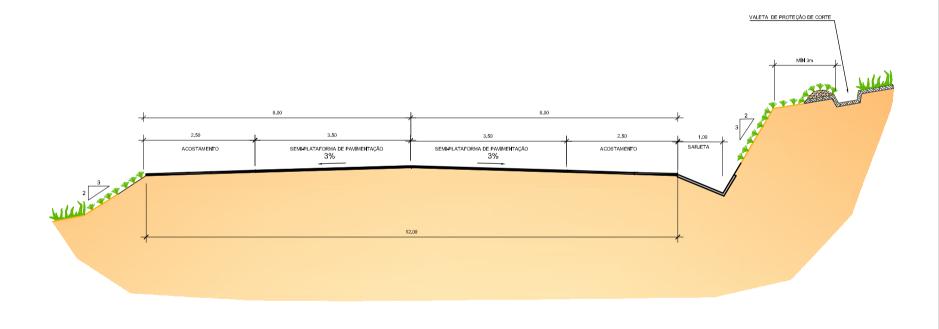
Juntamente com a planta é apresentado simultaneamente o perfil longitudinal, em escala apropriada, contendo o rodapé, elementos das curvas verticais, PCV-PIV-PTV e máxima Y e cotas. Terreno, greide de terraplenagem, comprimento e percentagens das rampas, sentido das rampas positivas quando ascendentes e negativas quando descendentes, localização das obras de arte correntes e especiais, localização das sondagens efetuadas e perfil geotécnico com a classificação dos solos além de outras indicações necessárias.

Também estão apresentadas a seguir as seções transversais tipo com as indicações de largura e declividade da plataforma, inclinações dos taludes e tabela com locais de suas aplicações.

EM CORTE - 1ª E/OU 2ª E 3ª CATEGORIAS

PROCEDIMENTO PARA EXECUÇÃO:

- 1- MARCAÇÃO DOS 1º OFFSETS CONSIDERANDO-SE TALUDES DE 1(V):1(H), DE ACORDO COM A NOTA DE SERVIÇO.
- $2\text{-}\,\textsc{ESCAVAÇÃO}$ DO CORTE ATÉ O CONTATO SOLO-ROCHA, RETIRANDO-SE TODO SOLO.
- 3- MARCAÇÃO DOS 2º OFFSETS CONSIDERANDO-SE O TALUDE DE 2(V):1(H).
- 4- DESMONTE E RETIRADA DE ROCHA, MANTENDO-SE OS TALUDES DE 2(V):1(H), ATÉ A PLATAFORMA DE PROJETO.


OBS

DIMENSÕES EM METRO

SEÇÃO TRANSVERSAL TIPO - 2º ACESSO DENTRO DO PÁTIO DE SALGUEIRO MAIA MELO ENGENHARIA LTDA. SEÇÃO EM CORTE SEMI-PLATAFORMA DE PAVIMENTAÇÃO SEÇÃO TRANSVERSAL TIPO - GEOMÉTRICO SEÇÃO EM ATERRO <u>Q</u>

416

SEÇÃO TIPO - ELEVAÇÃO DO GREIDE DA RODOVIA BR-232

OBS: DIMENSÕES EM METRO

ARGURA DA FAIXA	CURVAS										
	RAIOS UTILIZ	ADOS		TOTAL		Nº DE CURVAS POR		TANGE	ENTES		TOTAL (m)
DE DOMÍNIO (m)	VALOR (m)	FREQUÊNCIA	QUANTIDADE EXTENSÃO (m) %			(km)	MÍNIMA (m)	MÁXIMA (m)	TOTAL (m)	%	TOTAL (III)
00.00		10,0	85,0	5.232,76	4.40	0,07	0.00	7.450.74	00 400 40	60.40	
80,00	< 500		85,0		4,10	0,07	0,00	7.450,74	88.123,12	69,13	
	500>1000	18,0		7.993,49	6,27						
	1000>1500	7,0		3.228,54	2,53						
	1500>2000	10,0		4.961,84	3,89						
	2000>2500	4,0		2.351,36	1,84						
	2500>3000	0,0		0,00	0,00						
	3000>3500	36,0		15.582,49	12,22						
	> 3500	0,0		0,00							
TOTAL				39.350,49	30,87				88.123,12	69,13	127.473,59

CONDIÇÕES	CONDIÇÕES DO TRAÇADO EM PERFIL														
SENTIDO	CURVAS (m)			DECLIVES i % (m)			6	ACLIVES i % (m)				EM RAMPAS			
	CÔNCAVAS	CONVEXAS	TOTAL	%	0,0< i% <u><</u> -0,2	-0,2< i%<-0,4	-0,4< i%<-0,6	-0,6< i% <u><</u> -1,0	NÍVEL (m)	0,0< i% <u><</u> 0,2	0,2< i%<0,4	0,4< i%<0,6	0,6< i% <u><</u> 1,0	TOTAL (m)	%
SALGUEIRO RIACHO SANTA ROSA	18.280,00	10.990,00	29.270,00	22,96	4.858,59	4.090,00	33.130,00	9.415,00	14.580,00	10.790,00	4.180,00	1.020,00	16.140,00	98.203,59	77,04

4.2 Projeto de Terraplenagem

4.2.1 Objetivo

O Projeto de Terraplenagem teve por objetivo a determinação dos volumes de terra a serem movimentados, bem como das distâncias de transporte envolvidas, de modo a se obter a quantificação dos itens de serviço para licitação.

4.2.2 Metodologia

O Projeto de Terraplenagem foi desenvolvido conforme metodologia preconizada na Instrução de Serviço IS-209: Projeto de Terraplenagem, fornecido pelo DNIT.

As cotas do greide do projeto são relativas à superfície da terraplenagem e, para o cálculo dos volumes que serão movimentados para execução da terraplenagem, foram adotadas as diversas condições de implantação tais como: largura da plataforma e inclinação dos taludes de corte e aterro.

4.2.3 Resultados Obtidos

a. Seção Transversal

A seção transversal prevista para a plataforma foi assim definida:

Em aterros

Semi-Plataforma	Semi-Plataforma		
Ferroviária	Terraplenagem		
3,20m	3,65m		

Em cortes

Semi-Plataforma Ferroviária	Semi-Plataforma Terraplenagem
3,20m	5,65m

b. Taludes de Cortes e de Aterros

Foram adotados taludes de 1,5(H) : 1(V) em aterro, 1(H) : 1(V) em corte e 1(H) : 2(V) para corte em rocha.

c. Cortes e Empréstimos

- Empréstimos concentrados;
- Alargamentos de cortes.

Neste último, além do alargamento de cortes em 2m, foi previsto também um rebaixamento do fundo da cava com declividade de 33% no sentido de afastar a água da plataforma ferroviária. Desse modo, o rebaixamento cumpre também a função de interceptar o fluxo lateral de água subterrânea, eliminando a necessidade de drenagem profunda nos cortes assim executados.

d. Cálculo e Distribuição de Volumes

A distribuição dos materiais foi feita analisando-se as informações obtidas nos estudos geológicos, procurando-se a simplificação executiva da terraplenagem, com a utilização máxima dos volumes de cortes previstos.

Os materiais dos cortes foram classificados em 1ª, 2ª e 3ª categoria, com base nas informações geotécnicas obtidas.

Nos cortes em materiais de 3ª categoria (Rocha sã) previu-se a execução de rebaixo em rocha, na espessura de 40cm abaixo do greide de terraplenagem.

Nos cortes em que vierem a ocorrer solos de qualidade inferior, ao nível do subleito com expansão ≥ 2% e ISC < 10%, deverá ser feita a substituição destes materiais por outros de melhor qualidade, numa espessura de 60cm abaixo do greide de terraplenagem, através das seguintes operações:

- Executar "Remoção de material do Subleito";
- Executar "Acabamento de Terraplenagem", com materiais que apresentem expansão < 2% e ISC > 10%.

Os aterros deverão ser executados:

- No corpo de aterro, com materiais de 1ª ou 2ª categoria que apresentem ISC > 4% e expansão < 2%, compactados a 95% do Proctor Normal;
- Nas camadas finais, de aterro (60cm superiores), com materiais de 1ª categoria com expansão < 2% e ISC ≥ 10%, compactados a 100% do Proctor Normal.

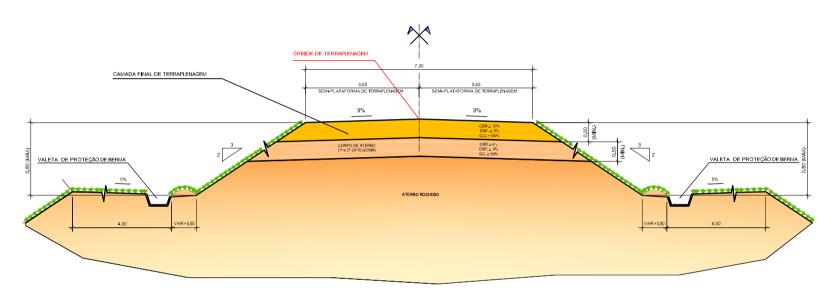
Materiais com ISC ≤ 4% e Expansão ≥ 4% são inadequados para execução de aterros, devendo ser destinados a bota-fora.

Os materiais classificados como de 3ª categoria só deverão ser empregados no fundo dos aterros, seguindo a especificação complementar para execução de aterros rochosos.

Consideramos os seguintes coeficientes de volume no aterro compactado / volume no corte, a saber:

- C1=1,25 para materiais de 1ª e 2ª categorias;
- C2=0,90 para material de 3ª categoria.

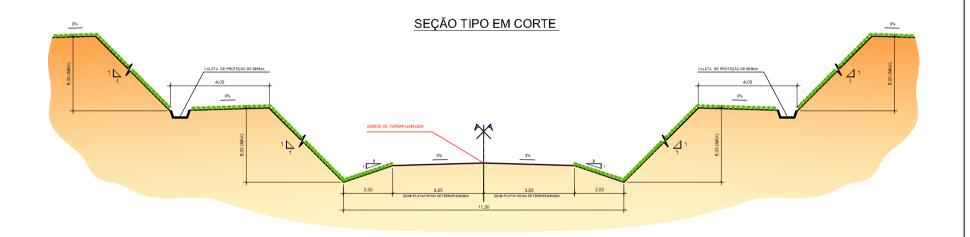
Para complementação dos volumes necessários à execução dos aterros, foram indicados alargamento de cortes com 2m para cada lado totalizando 4m, em materiais de 1ª, 2ª e 3ª categorias.


4.2.4 Apresentação do Projeto

A apresentação do Projeto de Terraplenagem consta do seguinte:

- Elaboração de seções tipo;
- Indicação dos "off-sets" sobre as plantas do projeto Geométrico;
- Cálculo dos volumes de terraplenagem;
- Orientação e distribuição da terraplenagem;
- Quadro com localização das áreas de ocorrências de materiais de construção;
- Quadro com o Resumo do Movimento de Terras.

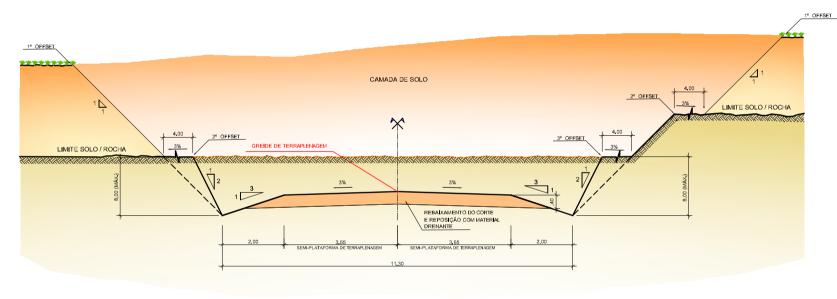
O Projeto de Terraplenagem é apresentado no Volume 2 – Projeto de Execução. As seções transversais e o resumo do movimento de terra estão apresentados a seguir:


SEÇÃO TIPO EM ATERRO

NOTA:

- 1- COMPLEMENTAM O PROJETO DE TERRAPLENAGEM OS QUADROS DE ORIENTAÇÃO DE TERRAPLENAGEM E AS PLANTAS APRESENTADAS NOS DESENHOS DO PROJETO GEOMÉTRICO.
- 2- AS ESPESSURAS E CARACTERÍSTICAS DAS CAMADAS DE TERRAPLENAGEM SÃO AS INDICADAS NA SEÇÃO E NAS ESPECIFICAÇÕES.
- 3- É PREVISTA A UTILIZAÇÃO DE MATERIAL DE 3º CATEGORIA NAS CAMADAS INFERIORES DOS ATERROS (VER SEÇÃO ESPECÍFICA).

OBS: DIMENSÕES EM METRO


NOTA:

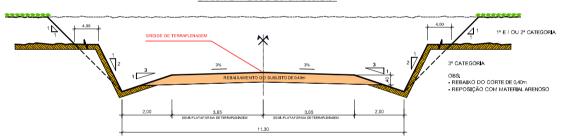
NAS REGIÕES DE CORTE, A PLATAFORMA FINAL DE TERRAPLENAGEM DEVERÁ SER ENSAIADA E DEFINIDO O CBR LOCAL. CASO SE VERIFIQUE VALOR MENOR QUE 8% DEVERÁ SER REMOVIDA E SUBSTITUÍDA POR SOLO ADEQUADO COM ESPESSURA DE ACORDO COM O CBR ENCONTRADO. ESSAS ESPESSURAS SÃO AS SEGUINTES:

VALOR CBR (%)	ESPESSURA DA CFT (m)
CBR ≤ 2	0,60
2 < CBR ≤ 4	0,40
4 < CBR ≤ 8	0,20

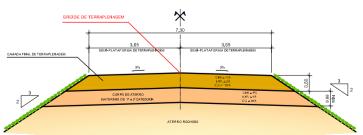
OBS: DIMENSÕES EM METRO

EM CORTE - 1º E/OU 2º E 3º CATEGORIAS

PROCEDIMENTO PARA EXECUÇÃO:


- 1- MARCAÇÃO DOS 1º OFFSETS CONSIDERANDO-SE TALUDES DE 1(V):1(H), DE ACORDO COM A NOTA DE SERVIÇO.
- $2\text{-}\,\textsc{ESCAVAÇÃO}$ DO CORTE ATÉ O CONTATO SOLO-ROCHA, RETIRANDO-SE TODO SOLO.
- 3- MARCAÇÃO DOS 2º OFFSETS CONSIDERANDO-SE O TALUDE DE 2(V):1(H).
- 4- DESMONTE E RETIRADA DE ROCHA, MANTENDO-SE OS TALUDES DE 2(V):1(H), ATÉ A PLATAFORMA DE PROJETO.

OBS:


DIMENSÕES EM METRO

EM CORTE - 1ª E/OU 2ª CATEGORIAS GREIDE DE TERRAPLENAGEM REBAIXAMENTO DE ESPESSURA VARIÁVEL (VER TABELA 1

EM CORTE - 1ª E/OU 2ª E 3ª CATEGORIAS

EM ATERRO - 1ª E/OU 2ª CATEGORIAS

1- REBAIXAMENTO E REPOSIÇÃO DO SUBLEITO, QUANDO O CBR FOR INFERIOR A 8% E, COM ESPESSURA DE ACORDO COM O QUADRO ABAIXO:

VALOR CBR (%)	ESPESSURA DA CFT (m)
CBR≤2	0,60
2 < CBR ≤ 4	0,40
4 < CBR ≤ 8	0.20

- REBAIXO DO CORTE DE 0,40m EM 3ª CATEGORIA
- REPOSIÇÃO COM MATERIAL DE JAZIDA OU SOLOS SELECIONADOS COMO ESPECIFICADO PARA CAMADAS FINAIS DE ATERRO.

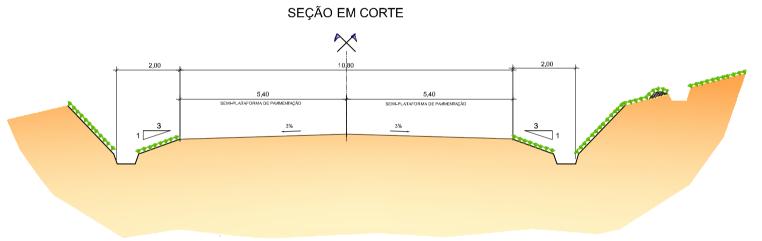
2- TALUDES DE CORTE

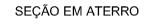
- EM MATERIAL DE 1º E/OU 2º CATEGORIAS H=1 E V=1 EM MATERIAL DE 3º CATEGORIA H=1 E V=2
- 3- TALUDES DE ATERRO

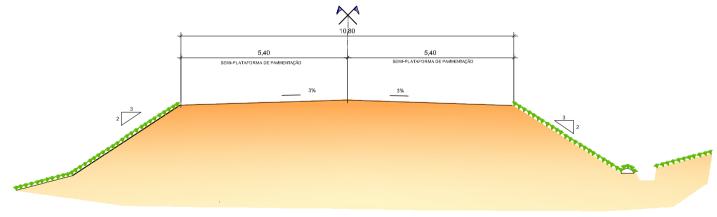
H=3 E V=2

NOTAS:

1- COMPLEMENTAM O PROJETO DE TERRAPLENAGEM OS QUADROS DE ORIENTAÇÃO DE TERRAPLENAGEM E AS PLANTAS APRESENTADAS NOS DESENHOS DO PROJETO GEOMÉTRICO.


2- AS ESPESSURAS E CARACTERÍSTICAS DAS CAMADAS DE TERRAPLENAGEM SÃO AS INDICADAS NA SEÇÃO ESQUEMÁTICA E NAS ESPECIFICAÇÕES.


3- É PREVISTA A UTILIZAÇÃO DE MATERIAL DE 3ª CATEGORIA NAS CAMADAS INFERIORES DOS ATERROS.


DIMENSÕES EM METRO

DIMENSÕES EM METRO

SEÇÃO TRANSVERSAL TIPO - 1º E 2º ACESSOS AO PÁTIO DE SALGUEIRO

		RESUM	10 DE TERRAPLE	NAGEM		
1 - PROCEDÊNCIA DO MATERIAL ESCAVADO (m³):			CORTE+ALARG.	REB. DE CORTE	EMPRÉSTIMO	ТОТА
			7.181.864,15	290.717,11	4.165.842,66	11.638.423,9
2 - DESTINO DO MATERIAL ESCAVADO (m³):						
	A	TERRO	ATERRO	MAT. SELECIONADO	BOTA-FORA	TOTA
	R	OCHOSO				
		4.306.546,75	7.251.516,66	815.785,52	933.309,93	13.307.158,8
3 - DISTRIBUIÇÃO DO MATERIAL ESCAVADO (m³):						
ESCAVAÇÃO, CARGA E TRANSPORTE COM DMT:			1ª CATEGORIA	2ª CATEGORIA	3ª CATEGORIA	TOTA
	ATÉ	50 m	87.718,46	314,20	4.425,38	92.458,0
	51	200 m	357.497,24	30.841,19	705.853,76	1.094.192,1
	201	400 m	498.967,84	32.100,05	458.693,20	989.761,0
	401	600 m	523.783,34	15.691,90	236.379,20	775.854,4
	601	800 m	868.324,38	41.036,26	350.243,50	1.259.604,1
	801	1000 m	348.189,33	17.040,52	321.304,02	686.533,8
	1001	1200 m	453.657,61	10.842,04	260.945,45	725.445,0
	1201	1400 m	460.928,74	34.982,60	244.128,53	740.039,8
	1401	1600 m	316.646,19	6.098,42	93.105,12	415.849,7
	1601	1800 m	260.985,99	22.413,39	150.692,83	434.092,2
	1801	2000 m	229.477,89	51.949,56	367.474,55	648.902,0
	2001	3000 m	727.253,21	36.414,12	413.982,34	1.177.649,6
	3001	4000 m	396.098,42	9.980,45	196.516,19	602.595,0
	4000	6000 m	404.559,17	44.547,85	580.250,81	1.029.357,8
	6000	8000 m	174.919,97	27.207,23	419.628,93	621.756,1
	8000	10000 m	151.516,49	1.961,56	190.854,49	344.332,5
	TOTA	\L	6.260.524,28	383.421,34	4.994.478,30	11.638.423,9
4 - COMPACTAÇÃO DE ATERROS (m³):						
95% DO PROCTOR NORMAL				5.801.213,33	m³	
100% DO PROCTOR NORMAL				652.628,41	m³	
BOTA - FORA				196.302,71	m³	
ESPALHAMENTO DE MATERIAL ROCHOSO				763.604,02	m³	
5 - COMPACTAÇÃO DE ATERROS ROCHOSOS				4.780.266,89	m³	
6 - REMOÇÃO DE SOLO SATURADO COM TRANSPOR	TE ATÉ 1,0 km			14.987,16	m³	
7 - ESC. CARGA E TRANSPORTE DE AREIA COM DMT.		14.96	Km			

COMPAN	COMPANHIA ESTADUAL DE HABITAÇÃO E OBRAS		
FERROVIA TRANSNORDESTINA	Trecho : Salgueiro - Parmamirim - Riacho Santa Rosa Lote : 02 Extensão : 127,48 km	MAIA MELO ENGENHARIA LTDA.	
RESUMO D	O MATERIAL DE TERRAPLENAGEM	DES 4.2.9	

4.3 Projeto de Drenagem e OAC

4.3.1 Considerações Gerais

O Projeto de Drenagem e de Obras de Arte Correntes tem por objetivo a implantação de dispositivos capazes de captar e conduzir adequadamente as águas superficiais e profundas de modo a preservar a estrutura da via, bem como, possibilitar sua operação durante a incidência de precipitações mais intensas.

Desta forma, os trabalhos desenvolvidos abordaram, basicamente, os seguintes itens de serviço:

- Obras de drenagem superficial, para garantir o escoamento das águas precipitadas sobre o corpo estradal;
- Obras de drenagem de grota, para dar vazão às águas superficiais e das precipitações sobre o terreno natural, nos locais de travessia de talvegues;
- Obras de drenagem profunda ou subterrânea, para a proteção do corpo estradal contra as águas do lençol freático.

4.3.2 Drenagem Superficial

O cadastro realizado no campo não detectou a presença de quaisquer dispositivos de drenagem superficial ou subterrânea ao longo do trecho. Sendo assim, todo o sistema foi projetado, utilizando a metodologia do Manual de Drenagem de Rodovias, elaborado pelo DNIT no ano de 1990 e compreendeu os seguintes passos:

 Determinação da vazão de contribuição através do emprego do método racional, expresso pela seguinte fórmula:

Q =
$$\frac{\text{CIA}}{3.6 \times 10^6}$$

Onde:

Q = vazão de contribuição, em m³/s;

C = coeficiente de deflúvio, adimensional;

I = intensidade de chuva, em mm/h;

A = área da bacia de contribuição, em m².

Critérios Adotados:

- Para o coeficiente de deflúvio "C", considerado como representativo da parcela do volume precipitado que se transforma em escoamento superficial, foram adotados os valores indicados na tabela apresentada no Estudo Hidrológico;
- Quando a área a ser drenada apresentou superfícies de diversas naturezas, adotouse para o coeficiente de escoamento superficial a média ponderada dos valores de C, considerando como pesos a áreas correspondentes.

Então:

Onde:

C = coeficiente de escoamento médio:

C1,C2,...,Cn = coeficientes de escoamento das áreas A1,A2,...An, respectivamente.

A intensidade de chuva "I" foi obtida para uma duração de 6 minutos e um período de recorrência de 25 anos;

As áreas de contribuição "A" foram definidas a partir das seções transversais tipo.

 Dimensionamento hidráulico utilizando a fórmula de Manning e a equação da continuidade, mostradas a seguir:

Q =
$$1/n \times R^{2/3} \times I^{1/2}$$
 - Fórmula de Manning

$$Q_a = A.V$$
 - Equação da continuidade

Onde:

V = velocidade de escoamento, em m/s;

I = declividade longitudinal de instalação do dispositivo de drenagem;

n = coeficiente de rugosidade de Manning, adimensional, função do tipo de revestimento adotado (ver tabela apresentada no QD-4.3.1 e QD-4.3.2);

 Q_a = vazão admissível, em m³/s;

A = área molhada, em m^2 .

 Verificação da capacidade hidráulica através da comparação entre a vazão de contribuição e a vazão admissível, levando em consideração a velocidade máxima admissível para o tipo de revestimento adotado (ver tabela apresentada no quadro QD-4.3.3).

O objetivo do dimensionamento foi a definição do comprimento crítico de cada estrutura de drenagem, ou seja, o espaçamento máximo suportável por cada seção adotada, em função da sua declividade longitudinal.

Considerando-se que a forma, dimensões e revestimento dos dispositivos a adotar foram pré-estabelecidos, o dimensionamento consistiu em se determinar seus comprimentos críticos. A seguir são apresentados os resultados obtidos para valetas e sarjetas. É importante salientar que os demais dispositivos envolvidos no sistema, tais como: entradas, descidas e saídas d'água, não foram objeto de dimensionamento, uma vez que as vazões solicitantes não possuem magnitude que os justifiquem.

a) Valetas de Plataforma de Corte

Para o cálculo das vazões solicitantes foi utilizado o método racional, exposto com detalhes anteriormente.

A seção de contribuição considerada para a sarjeta, em função da altura do corte, foi a seguinte:

	Semi-Pista	Valeta	Talude de Corte	Distância da crista à valeta
Largura -L(m)	3,65	2,00	1 h	3,00
Coef. escoam.(C)	0.80	0.95	0,60	0,20

CURSOS D'ÁGUA ARROIOS MENORES - LARGURA À SUPERFÍCIE NO ESTÁGIO DE INUNDAÇÃO MENOR QUE 30 m Cursos d'água em região plana 0,025 0,030 Limpo, regular, cheio e de fundo regular Idem, mas com pedras e vegetação 0,030 0.035 Limpo, sinuoso, algumas piscinas e bancos de areia 0,033 0,035 Idem, alguma vegetação e pedras 0,035 0,045 Alguma vegetação, plantas livres nas margens 0,040 0,048 Alguma vegetação, plantas pesadas nas margens 0.050 0.070 0,050 0,070 Correntes muito lentas, cheias de plantas e piscinas profundas Alguma vegetação, densos salgueiros nas margens 0,060 0,080 Para árvores dentro do canal com ramos submersos no estágio alto, todos os valores acima 0.010 0.020 devem ser acrescidos de Seção irregular, com charcos, meandros suaves, aumente os valores acima de 0.010 0,020 Correntes montanhosas, sem vegetação no canal, margens ingremes, árvores e plantas ao longo das margens submersas no alto do estágio: Fundo de cascalho, seixo rolado e poucos matacões 0,040 0,050 0,050 0,070 Fundo de seixos com grandes matações Várzeas (adjacente ao curso d'água natural): Pastos sem arbustos: Capim baixo 0,025 0,030 Capim alto 0,030 0,050 Áreas cultivadas: Semeadura 0,030 0,040 Vegetação rasteira alinhada 0,035 0,045 Vegetação rasteira não alinhada 0.040 0.050 Mato cerrado, arbustos dispersos 0,050 0,080 Arbustos pequenos e árvores 0,050 0,070 Vegetação de média a densa 0,070 0,110 Árvores de grande porte : 0,115 0,200 Salgueiros densos em verão Terra limpa com topos de árvores (250 a 400 por ha sem renovos) 0,040 0,050 Idem, mas com grande crescimento de renovos 0,060 0,080 Arvoredo denso, algumas árvores baixas, pouca vegetação rasteira, 0,100 0,120 estágio caudaloso sob os ramos Idem, mas com o estágio caudaloso atingindo os ramos 0.120 0,160 ARROIOS MAIORES - LARGURA À SUPERFÍCIE NO ESTAGIO DE INUNDAÇÃO MAIOR QUE 30 m O valor de n é menor que aqueles para arroios menores de características equivalentes, uma vez que as margens oferecem menor resistência 0.025 0.060 Seção regular sem matacões ou arbustos 0,035 Seção irregular e não trabalhada 0,100 Canais abertos revestidos Concreto, com superfície de: Acabamento a colher 0,011 0,012 0,015 Acabamento a desempenadeira 0,013 Acabamento com cascalhos no fundo 0.015 0.017 Sem acabamento 0,014 0,017 Sobre escavação em rocha boa 0,017 0,020 Sobre escavação em rocha irregular 0,022 0,027 **VALORES DOS COEFICIENTES DE** Ferrovia: Transnordestina Trecho: Salgueiro - Parnamirim - Riacho Santa Rosa **RUGOSIDADE DE MANNING - "n"** Extensão: 127,48 Km Lote: 02 QD. - 4.3.1 MAIA MELO ENGENHARIA LTDA.

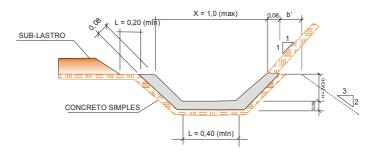
Fundo em concreto acabado com desempenadeira e pa	aredes com:			
Pedra aparelhada em argamassa		0,015	0,017	
Pedra irregular em argamassa Alvenaria de pedra rebocada		0,017 0,016	0,020 0,020	
Alvenaria de pedra rejuntada		0,020	0,025	
Fundo em cascalho, paredes em:				
Concreto conformado		0,017	0,020	
Pedra irregular em argamassa Pedra seca (rip-rap)		0,020 0,023	0,023 0,033	
Tijolo:				
Envernizado		0,011	0,013	
Em argamassa de cimento Alvenaria revestida		0,012 0,013	0,015 0,015	
Asfalto:		0,010	0,010	
Liso		0,013	0,013	
Aspero		0,015	0,015	
Cobertura Vegetal:				
Madeira aplainada		0,030	-	
Sem tratamento		0,010	0,012	
Canais abertos não revestidos				
Terra em segmento reto e uniforme:				
Limpa, recentemente completada		0,016	0,018	
Limpa, após intempérie Saibro, seção uniforme, limpa		0,018 0,022	0,022 0,025	
Com grama curta, pouca vegetação		0,022	0,027	
Com grama curta, pouca vegetação		0,022	0,027	
Em solo pedregulhoso, limpo		0,022	0,025	
Terra, em segmento sinuoso:				
Sem vegetação		0,023	0,025	
Grama, alguma vegetação Vegetação densa ou plantas aquáticas em canais profundos		0,026 0,030	0,030 0,035	
Fundo em terra, paredes em pedra		0,030	0,033	
Fundo em pedra e margens cobertas de vegetação		0,025	0,035	
Fundo em seixos e paredes limpas		0,030	0,040	
Escavado com drag-line ou dragado:		0.025	0.020	
Sem vegetação Arbusto nas margens		0,025 0,035	0,028 0,050	
Cortes em rocha:				
Baseado na seção do projeto		-	0,035	
Lisa e uniforme Aspera e irregular		0,025 0,035	0,035 0,040	
Canais não conservados, vegetação e arbustos sem con	rtar:	3,322	2,2.2	
Vegetação densa, altura igual a profundidade do fluxo		0,080	0,120	
Fundo limpo, e arbustos nas paredes		0,050	0,080	
Idem, maior altura do fluxo Arbustos em quantidade, altura elevada		0,070 0,100	0,110 0,140	
	NITEC DE			
Ferrovia: Transnordestina Trecho : Salgueiro - Parnamirim - Riacho Santa Rosa	VALORES DOS COEFICIENTES DE RUGOSIDADE DE MANNING - "n"			
Extensão: 127,48 Km				
Lote: 02	MAIA MELO ENGENHARIA LTDA.	QD 4.3.	2	
		1		

COBERTURA SUPERFICIAL		DADES MÁXIMAS SSÍVEIS - m / s
Grama comum firmemente implantada	1,50	1,80
Tufos de grama com solo exposto	0,60	1,20
Argila	0,80	1,30
Argila coloidal	1,30	1,80
Lodo	0,35	0,85
Areia fina	0,30	0,40
Areia média	0,35	0,45
Cascalho fino	0,50	0,80
Silte	0,70	1,20
Alvenaria de tijolos		2,50
Concreto de cimento Portland		4,50
Aglomerados consistentes		2,00
Revestimento betuminoso	3,00	4,00

Ferrovia: Transnordestina

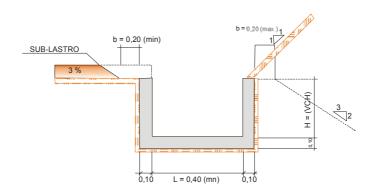
Trecho : Salgueiro - Parnamirim - Riacho Santa Rosa

Extensão: 127,48 Km


Lote: 02

VELOCIDADE MÁXIMAS ADMISSÍVEIS PARA ÁGUA

MAIA MELO ENGENHARIA LTDA.


Foram adotadas valetas de seção trapezoidal do tipo VPLC-1, VPLC-2 e VPLC-3, apresentadas a seguir.

SEÇÃO TRAPEZOIDAL

Tipo	b (m)	H (m)	B (m)	A (m ²)	P (m)	R _h (m)
VPLC-01	0,40	0,20	0,80	0,09	0,85	0,11
VPLC-02	0,40	0,30	1,00	0,15	1,08	0,14
VPLC-03	0,50	0,20	0,90	0,11	0,95	0,11

SEÇÃO RETANGULAR

Tipo	b (m)	H (m)	A (m ²)	P (m)	R _h (m)
VPLC-05	0,40	0,40	0,16	1,60	0,10
VPLC-06	0,50	0,50	0,25	2,00	0,125
VPLC-07	0,60	0,60	0,36	2,40	0,15
VPLC-08	0,80	0,80	0,64	3,20	0,20

A capacidade máxima de escoamento da valeta foi calculada pela Fórmula de Manning associada à Equação da Continuidade, ou seja:

$$Q' = \frac{A R^{2/3} S^{\frac{1}{2}}}{n}$$

Onde:

Q' = capacidade máxima da canaleta, em m³/s;

n = coeficiente de rugosidade, adimensional;

A = área molhada, em m^2 ;

R= raio hidráulico, em m;

S = declividade longitudinal do greide, em m/m.

V = velocidade de escoamento da água, em m/s.

Combinando-se as duas equações, chega-se à seguinte expressão, para o cálculo do comprimento crítico das sarjetas:

$$d = \frac{3.6 \times 10^{6} \text{ A R}^{2/3} \text{ i}^{1/2}}{\text{n. I (L}_{1}.\text{C}_{1}+\text{L}_{2}.\text{C}_{2})}$$

Onde:

d = comprimento máximo das valetas, em m;

n = coef. de rugosidade do material da sarjeta, adimensional (n=0,014);

i = declividade longitudinal do greide, em m/m;

A = área molhada da valeta, em m²;

R = raio hidráulico, em m;

I = intensidade de chuva para tc = 6 minutos e T_R = 25 anos (I=234,44 mm/h);

 C_1 = coeficiente de escoamento superficial médio da plataforma da ferrovia, adimensional (C_1 =0,6)

 C_2 = coeficiente de escoamento superficial médio do talude de corte, considerando uma altura média de 3,0 m, adimensional (C_2 =0,6)

L₁= largura da plataforma que contribui para a valeta;

 L_2 = largura da projeção horizontal equivalente do talude de corte, considerando um afastamento da valeta de crista de corte de 2,0m (L_2 =8,00 m).

A velocidade máxima é dada pela seguinte fórmula:

$$V = \frac{1}{n} x R_H^{\frac{2}{3}} x S^{\frac{1}{2}}$$

O estudo consistiu na comparação da vazão de contribuição Q à capacidade máxima de escoamento Q', obtendo-se as extensões máximas em função de cada declividade de instalação. Essas valetas terminaram em pontos de saída convenientes, podendo ser pontos de passagem de corte para aterro ou caixas coletoras de bueiros de greide. A seguir, estão apresentadas as tabelas com as extensões máximas para cada valeta adotada.

Apresentam-se a seguir nos quadros QD-4.3.4 e QD. 4.3.5, tabelas contendo as extensões máximas e velocidades em função da declividade longitudinal do greide.

b) Valetas de Proteção de Corte

As valetas de proteção de corte têm como objetivo interceptar as águas que escorrem pelo terreno natural a montante, impedindo-as de atingir o talude de corte, evitando-se, com isso, problemas de erosão nos taludes e também a sobrecarga e assoreamento das valetas de plataforma de corte ou de berma.

O alinhamento dessas valetas deverá acompanhar a linha dos "off-sets" dos cortes, a uma distância entre 2,0 e 3,0 metros, sofrendo, no final, um afastamento gradativo para evitar

TIPO - 1 EXTENSÕES PARA VALETA DE :

TIPO - 2 EXTENSÕES PARA VALETA DE :

b=0,40 H=0,20 B=0,80 b=0,40 H=0,30 B=1,00

DECLIV	SEMI-PLA	Velocidades	
S(%)	ESQUERDA	DIREITA	(m/seg.)
0,25	109,40	109,40	0,80
0,35	129,45	129,45	0,94
0,45	146,78	146,78	1,07
0,55	162,27	162,27	1,18
0,65	176,41	176,41	1,28
0,75	189,49	189,49	1,38
0,85	201,73	201,73	1,47
0,95	213,26	213,26	1,55
1,05	224,21	224,21	1,63
1,15	234,64	234,64	1,71
1,25	244,63	244,63	1,78
1,35	254,23	254,23	1,85
1,45	263,48	263,48	1,92
1,55	272,41	272,41	1,98
1,65	281,06	281,06	2,04
1,75	289,45	289,45	2,10
1,85	297,61	297,61	2,16
1,95	305,54	305,54	2,22
2,00	309,44	309,44	2,25

DECLIV	DECLIV SEMI-PLATAFORMA Velocidades					
S(%)	ESQUERDA	DIREITA	(m/seg.)			
0,25	229,62	229,62	0,97			
0,35	271,69	271,69	1,15			
0,45	308,07	308,07	1,31			
0,55	340,58	340,58	1,44			
0,65	370,25	370,25	1,57			
0,75	397,71	397,71	1,69			
0,85	423,40	423,40	1,80			
0,95	447,61	447,61	1,90			
1,05	470,58	470,58	2,00			
1,15	492,48	492,48	2,09			
1,25	513,45	513,45	2,18			
1,35	533,59	533,59	2,26			
1,45	553,00	553,00	2,35			
1,55	571,75	571,75	2,42			
1,65	589,91	589,91	2,50			
1,75	607,52	607,52	2,58			
1,85	624,63	624,63	2,65			
1,95	641,29	641,29	2,72			
2,00	649,46	649,46	2,75			

TIPO - 3 **EXTENSÕES PARA VALETA DE:** b=0,50 H=0,20 B=0,90

DECLIV	SEMI-PLA	Velocidades	
S(%)	ESQUERDA	DIREITA	(m/seg.)
0,25	133,61	133,61	0,82
0,35	158,09	158,09	0,98
0,45	179,26	179,26	1,11
0,55	198,18	198,18	1,22
0,65	215,44	215,44	1,33
0,75	231,42	231,42	1,43
0,85	246,37	246,37	1,52
0,95	260,45	260,45	1,61
1,05	273,82	273,82	1,69
1,15	286,56	286,56	1,77
1,25	298,76	298,76	1,84
1,35	310,48	310,48	1,92
1,45	321,78	321,78	1,98
1,55	332,69	332,69	2,05
1,65	343,25	343,25	2,12
1,75	353,50	353,50	2,18
1,85	363,46	363,46	2,24
1,95	373,15	373,15	2,30
2,00	377,91	377,91	2,33

TIPO - 5 EXTENSÕES PARA VALETA DE 0,4 X 0,40

TIPO - 6
EXTENSÕES PARA VALETA DE 0,5 X 0,50

DECLIV.	DECLIV. SEMI-PLATAFORMA VELOCIDADES					
S(%)	ESQUERDA	DIREITA	(m/seg.)			
0,25	173,64	173,64	0,77			
0,35	205,46	205,46	0,91			
0,45	232,96	232,96	1,04			
0,55	257,55	257,55	1,15			
0,65	279,99	279,99	1,25			
0,75	300,76	300,76	1,34			
0,85	320,18	320,18	1,43			
0,95	338,49	338,49	1,51			
1,05	355,86	355,86	1,58			
1,15	372,42	372,42	1,66			
1,25	388,27	388,27	1,73			
1,35	403,51	403,51	1,80			
1,45	418,18	418,18	1,86			
1,55	432,36	432,36	1,93			
1,65	446,09	446,09	1,99			
1,75	459,41	459,41	2,05			
1,85	472,36	472,36	2,10			
1,95	484,95	484,95	2,16			
2,00	491,13	491,13	2,19			

DECLIV.	DECLIV. SEMI-PLATAFORMA VELOCIDADES					
S(%)	ESQUERDA	DIREITA	(m/seg.)			
0,25	314,83	314,83	0,90			
0,35	372,51	372,51	1,06			
0,45	422,39	422,39	1,20			
0,55	466,97	466,97	1,33			
0,65	507,65	507,65	1,45			
0,75	545,31	545,31	1,55			
0,85	580,52	580,52	1,65			
0,95	613,72	613,72	1,75			
1,05	645,21	645,21	1,84			
1,15	675,24	675,24	1,92			
1,25	703,99	703,99	2,01			
1,35	731,60	731,60	2,08			
1,45	758,22	758,22	2,16			
1,55	783,93	783,93	2,23			
1,65	808,82	808,82	2,31			
1,75	832,97	832,97	2,37			
1,85	856,44	856,44	2,44			
1,95	879,28	879,28	2,51			
2,00	890,48	890,48	2,54			

TIPO - 7 EXTENSÕES PARA VALETA DE 0,6 X 0,60

TIPO - 8
EXTENSÕES PARA VALETA DE 0,8 X 0,80

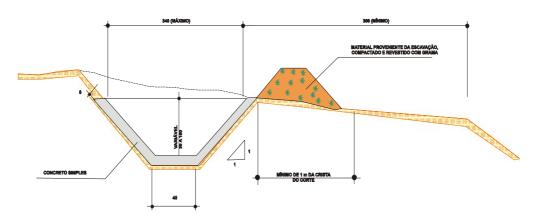
DECLIV.	SEMI-PLATAFORMA VEL		LOCIDADES
S(%)	ESQUERDA	DIREITA	(m/seg.)
0,25	511,95	511,95	1,01
0,35	605,75	605,75	1,20
0,45	686,86	686,86	1,36
0,55	759,35	759,35	1,50
0,65	825,50	825,50	1,63
0,75	886,73	886,73	1,75
0,85	943,99	943,99	1,87
0,95	997,98	997,98	1,98
1,05	1049,19	1049,19	2,08
1,15	1098,02	1098,02	2,17
1,25	1144,76	1144,76	2,27
1,35	1189,67	1189,67	2,35
1,45	1232,94	1232,94	2,44
1,55	1274,75	1274,75	2,52
1,65	1315,23	1315,23	2,60
1,75	1354,50	1354,50	2,68
1,85	1392,66	1392,66	2,76
1,95	1429,81	1429,81	2,83
2,00	1448,02	1448,02	2,87

DECLIV.	SEMI-PLATAFORMA VELOCIDADES					
S(%)	ESQUERDA	DIREITA	(m/seg.)			
0,25	1102,55	1102,55	1,23			
0,35	1304,56	1304,56	1,45			
0,45	1479,23	1479,23	1,65			
0,55	1635,35	1635,35	1,82			
0,65	1777,81	1777,81	1,98			
0,75	1909,68	1909,68	2,13			
0,85	2033,01	2033,01	2,26			
0,95	2149,27	2149,27	2,39			
1,05	2259,56	2259,56	2,52			
1,15	2364,71	2364,71	2,63			
1,25	2465,38	2465,38	2,74			
1,35	2562,10	2562,10	2,85			
1,45	2655,30	2655,30	2,96			
1,55	2745,34	2745,34	3,06			
1,65	2832,51	2832,51	3,15			
1,75	2917,08	2917,08	3,25			
1,85	2999,27	2999,27	3,34			
1,95	3079,26	3079,26	3,43			
2,00	3118,49	3118,49	3,47			

MAIA MELO ENGENHARIA LTDA.

VALETA RETANGULAR DE PLATAFORMA DE CORTE

QD-4.3.5


declividade exagerada. A forma prevista para a seção dessas valetas foi a de seção trapezoidal com talude 1:1, com revestimento em concreto simples.

O material escavado deverá ser depositado entre a valeta e a crista de corte, e apiloado manualmente, de modo a formar uma "berma", conforme dimensões indicadas neste projeto.

O deságüe dessas valetas será feito um pouco antes do ponto de passagem do corte para aterro, procurando-se sempre apoiar a saída na encosta final do corte, de modo a evitar fortes declividades na aproximação do deságüe. Nos locais de deságüe, as valetas serão dotadas de dissipadores de energia.

Para o cálculo do comprimento crítico, foi utilizada a mesma metodologia adotada para o cálculo dos comprimentos máximos das valetas, exposta na letra a.

Foram adotadas valetas de proteção de corte do tipo VPC-01, VPC-02, VPC-03, VPC-04, VPC-05 e VPC-06, apresentadas a seguir.

Tipo	b (m)	H (m)	B (m)	A (m ²)	P(m)	R _h (m)
VPC-01	0,40	0,30	1,00	0,15	1,08	0,14
VPC-02	0,40	0,40	1,20	0,23	1,31	0,18
VPC-03	0,40	0,50	1,40	0,32	1,53	0,21
VPC-04	0,40	0,60	1,60	0,42	1,76	0,24
VPC-05	0,40	0,70	1,80	0,54	1,98	0,27
VPC-06	0,40	0,80	2,00	0,67	2,21	0,30

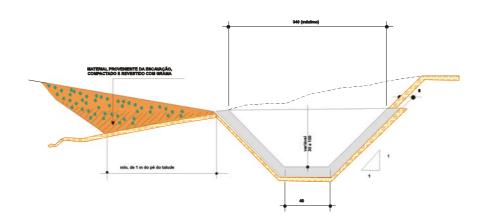
Intensidade de chuva para TC=6 min e TR=25 anos: 234,44 mm/h

Coeficiente de rugosidade: 0,014

Largura média de contribuição: 100,0 m

As extensões máximas em função da declividade estão apresentadas a seguir nos quadros QD-4.3.6 e QD-4.3.7.

c) Valetas de Proteção de Aterro


As valetas de proteção de aterro têm como objetivo interceptar as águas que escoam pelo terreno a montante, impedido-as de atingir o pé do talude de aterro, bem como receber as águas das valetas de plataforma e de proteção de corte, conduzindo-as, com segurança, ao dispositivo de transposição de talvegues.

A forma e aplicação dessas valetas são as mesmas apresentadas para as valetas de proteção de corte, de modo a não ter descontinuidade na passagem de uma para a outra, quando isso for necessário.

O alinhamento dessas valetas deverá acompanhar a linha dos "off-sets" dos aterros, a uma distância entre 2,0 e 3,0 metros, e o material resultante da escavação deverá ser depositado entre a valeta e o pé do talude de aterro, apiloado manualmente, com o objetivo de suavizar a interseção das superfícies do talude e do terreno natural.

Para o cálculo do comprimento crítico, foi utilizada a mesma metodologia adotada para o cálculo dos comprimentos máximos das valetas, exposta na letra a.

Foram adotadas valetas de proteção de aterro do tipo VPA-01, VPA-02, VPA-03, VPA-04, VPA-05 e VPA-06, apresentadas a seguir.

b (m)	H (m)	B (m)	A (m ²)	P(m)	R _h (m)
0,40	0,30	1,00	0,15	1,08	0,14
0,40	0,40	1,20	0,23	1,31	0,18
0,40	0,50	1,40	0,32	1,53	0,21
0,40	0,60	1,60	0,42	1,76	0,24
0,40	0,70	1,80	0,54	1,98	0,27
0,40	0,80	2,00	0,67	2,21	0,30

Intensidade de chuva para TC=6 min e TR=25 anos: 234,44 mm/h

Coeficiente de rugosidade: 0,014

Largura média de contribuição: 100,0 m

As extensões máximas em função da declividade estão apresentadas a seguir nos quadros QD-4.3.6 e QD-4.3.7.

TIPO - 1 EXTENSÕES PARA VALETA DE :

b = 0,40 H = 0,30 B = 1,00

DECLIVIDADE	h max=8,0 m	Velocidades
S(%)	11 11102-0,0 111	(m/seg.)
0,25	38,28	0,97
0,50	54,14	1,38
1,00	76,56	1,95
1,50	93,77	2,39
2,00	108,27	2,75
2,50	121,05	3,08
3,00	132,61	3,37
3,50	143,23	3,64
4,00	153,12	3,90
4,50	162,41	4,13
5,00	171,20	4,35
5,50	179,55	4,57
6,00	187,54	4,77

EXTENSÕES PARA VALETA DE : EXTENSÕES PARA VALETA DE :

b = 0.40 H = 0.40 B = 1.20

D = 0,40 H = 0,40 B = 1,20					
DECLIVIDADE	h max=8,0 m	Velocidades			
S(%)	11 max=0,0 m	(m/seg.)			
0,25	66,27	1,12			
0,50	93,72	1,59			
1,00	132,55	2,25			
1,50	162,34	2,75			
2,00	187,45	3,18			
2,50	209,57	3,55			
3,00	229,58	3,89			
3,50	247,97	4,21			
4,00	265,09	4,50			
4,50	281,17	4,77			
5,00	296,38	5,03			
5,50	310,85	5,27			
6,00	324,67	5,51			

TIPO - 3
EXTENSÕES PARA VALETA DE:
b = 0,40 H = 0,50 B = 1,40

DECLIVIDADE	h max=8,0 m	Velocidades
S(%)	II IIIax=0,0 III	(m/seg.)
0,25	103,00	1,26
0,50	145,66	1,78
1,00	205,99	2,52
1,50	252,29	3,08
2,00	291,32	3,56
2,50	325,70	3,98
3,00	356,79	4,36
3,50	385,38	4,71
4,00	411,99	5,03
4,50	436,98	5,34
5,00	460,62	5,62
5,50	483,10	5,90
6,00	504,58	6,16

TIPO - 4 EXTENSÕES PARA VALETA DE : $b = 0,40 \quad H = 0,60 \quad B = 1,60$

DECLIVIDADE	h max=8,0 m	Velocidades
S(%)	II IIIax=0,0 III	(m/seg.)
0,25	149,24	1,38
0,50	211,05	1,95
1,00	298,48	2,76
1,50	365,56	3,38
2,00	422,11	3,90
2,50	471,93	4,37
3,00	516,98	4,78
3,50	558,40	5,17
4,00	596,95	5,52
4,50	633,16	5,86
5,00	667,41	6,17
5,50	699,99	6,48
6,00	731,12	6,76

MAIA MELO ENGENHARIA LTDA.

VALETA DE PROTEÇÃO DE CORTE / ATERRO

TIPO - 5 EXTENSÕES PARA VALETA DE :

b = 0,40 H = 0,70 B = 1,80

DECLIVIDADE	h max=8,0 m	Velocidades
S(%)	11 111ax=0,0 111	(m/seg.)
0,25	205,77	1,50
0,50	291,00	2,12
1,00	411,54	2,99
1,50	504,03	3,66
2,00	582,00	4,23
2,50	650,69	4,73
3,00	712,80	5,18
3,50	769,91	5,60
4,00	823,07	5,98
4,50	873,00	6,35
5,00	920,22	6,69
5,50	965,14	7,01
6,00	1008,05	7,33

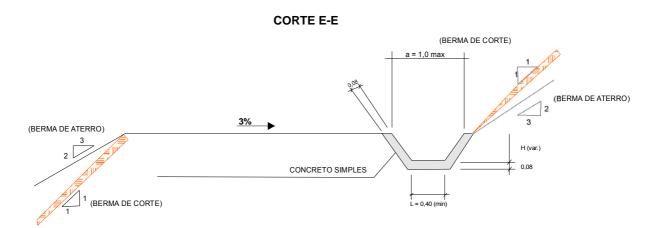
TIPO - 6 EXTENSÕES PARA VALETA DE :

b = 0,40 H = 0,80 B = 2,00

DECLIVIDADE	h max=8,0 m	Velocidades
S(%)	11 max=0,0 m	(m/seg.)
0,25	273,34	1,60
0,50	386,56	2,27
1,00	546,67	3,21
1,50	669,53	3,93
2,00	773,11	4,54
2,50	864,36	5,07
3,00	946,86	5,56
3,50	1022,73	6,00
4,00	1093,34	6,42
4,50	1159,67	6,81
5,00	1222,39	7,18
5,50	1282,06	7,53
6,00	1339,07	7,86

MAIA MELO ENGENHARIA LTDA.

VALETA DE PROTEÇÃO DE CORTE / ATERRO


d) Valetas de Berma de Corte e Aterro

Nos locais onde a terraplenagem definiu o terraceamento (bermas) foram previstas sarjetas que captarão e conduzirão as águas pluviais até um local seguro, longe da ferrovia, para não comprometer a estabilidade do terrapleno.

As valetas de berma terão seção trapezoidal, revestidas em concreto, o que contribuirá para a condução da água coletada por uma extensão maior, diminuindo o número de descidas d'água em degraus nos cortes e aterros. As saídas serão apoiadas em terreno natural com dissipadores de energia.

Para o cálculo do comprimento crítico, foi utilizada a mesma metodologia adotada para o cálculo dos comprimentos máximos das valetas, exposta na letra a.

Foram adotadas valetas de berma de seção trapezoidal do tipo VBC-1, VBC-2,VBC-3, VBC-4, VBA-1, VBA-2, VBA-3 e VBA-4, apresentadas a seguir.

Tipo	b (m)	H (m)	B (m)	A (m ²)	P(m)	R _h (m)
VBA-01 / VBC-01	0,40	0,20	0,80	0,09	0,85	0,11
VBA-02 / VBC-02	0,40	0,30	1,00	0,15	1,08	0,14
VBA-03 / VBC-03	0,50	0,20	0,90	0,11	0,95	0,11
VBA-04 / VBC-04	0,50	0,25	1,00	0,14	1,07	0,13

• Coeficiente médio de escoamento : 0,155

Intensidade média de chuva : 234,44 mm/h

• Coeficiente de rugosidade : 0,014

As extensões máximas em função da declividade estão apresentadas a seguir no quadro QD-4.3.8.

4.3.3 Drenagem Subterrânea

As obras de drenagem subterrânea têm a finalidade de interceptar, em locais adequados, o lençol freático, rebaixando o seu nível, de forma a evitar o afloramento d'água prejudicial à estabilidade da obra.

TIPO - 1 VBC/VBA EXTENSÕES PARA VALETA DE :

b = 0,40 H = 0,20 B = 0,80

D = 0,7	0 11 = 0,20 B =	0,00	
DECLIVIDADE	h max=8,0 m	Velocidades	
S(%)	11 111ax=0,0 111	(m/seg.)	
0,25	151,99	0,80	
0,35	179,84	0,94	
0,45	203,92	1,07	
0,55	225,44	1,18	
0,65	245,08	1,28	
0,75	263,25	1,38	
0,85	280,26	1,47	
0,95	296,28	1,55	
1,05	311,49	1,63	
1,15	325,98	1,71	
1,25	339,86	1,78	
1,35	353,19	1,85	
1,45	366,04	1,92	
1,55	378,45	1,98	
1,65	390,47	2,04	
1,75	402,13	2,10	
1,85	413,46	2,16	

TIPO - 2 VBC/VBA EXTENSÕES PARA VALETA DE :

b = 0,40 H = 0,30 B = 1,00

DECLIVIDADE	h max=8,0 m	Velocidades
S(%)	11 111ax=0,0 111	(m/seg.)
0,25	319,01	0,97
0,35	377,45	1,15
0,45	427,99	1,31
0,55	473,16	1,44
0,65	514,38	1,57
0,75	552,53	1,69
0,85	588,22	1,80
0,95	621,86	1,90
1,05	653,77	2,00
1,15	684,19	2,09
1,25	713,32	2,18
1,35	741,30	2,26
1,45	768,27	2,35
1,55	794,32	2,42
1,65	819,54	2,50
1,75	844,01	2,58
1,85	867,79	2,65
1,95	890,93	2,72
2,00	902,28	2,75

TIPO - 3 VBC/VBA EXTENSÕES PARA VALETA DE: b = 0.50 H = 0.20 B = 0.90

424,48

429,89

2,22

2,25

1,95

2,00

DECLIVIDADE	h max=8,0 m	Velocidades	
S(%)	11 111ax=0,0 111	(m/seg.)	
0,25	185,62	0,82	
0,35	219,63	0,98	
0,45	249,04	1,11	
0,55	275,32	1,22	
0,65	299,31	1,33	
0,75	321,51	1,43	
0,85	342,27	1,52	
0,95	361,84	1,61	
1,05	380,41	1,69	
1,15	398,11	1,77	
1,25	415,06	1,84	
1,35	431,35	1,92	
1,45	447,04	1,98	
1,55	462,19	2,05	
1,65	476,87	2,12	
1,75	491,11	2,18	
1,85	504,95	2,24	
1,95	518,41	2,30	
2,00	525,02	2,33	

TIPO - 4 VBC/VBA EXTENSÕES PARA VALETA DE: b = 0,50 H = 0,25 B = 1,00

DECLIVIDADE	h max=8,0 m	Velocidades	
S (%)	11 111ax=0,0 111	(m/seg.)	
0,25	275,58	0,92	
0,35	326,07	1,09	
0,45	369,72	1,24	
0,55	408,74	1,37	
0,65	444,35	1,49	
0,75	477,31	1,60	
0,85	508,14	1,70	
0,95	537,20	1,80	
1,05	564,76	1,89	
1,15	591,04	1,98	
1,25	616,21	2,06	
1,35	640,38	2,14	
1,45	663,67	2,22	
1,55	686,18	2,30	
1,65	707,97	2,37	
1,75	729,10	2,44	
1,85	749,65	2,51	
1,95	769,64	2,58	
2,00	779,45	2,61	

MAIA MELO ENGENHARIA LTDA.

VALETA DE BERMA DE CORTE / ATERRO

Foi desenvolvido com o seguinte objetivo:

- Impedir que as águas capilares "por ascensão" atinjam o greide;
- Interceptar as águas de infiltração lateral, através de descontinuidades físicas;
- Apressar o escoamento das águas fluviais de infiltração, conduzindo-as para fora do corpo estradal.

A necessidade de implantação foi definida pela estimativa da posição do lençol freático nos cortes, pela ocorrência de materiais com excesso de umidade, bem como pela verificação de desvio elevado entre a umidade natural dos materiais do subleito e sua umidade ótima de compactação em laboratório.

Também para os cortes em rocha foram previstos dispositivos de drenagem profunda. Os principais tipos de dispositivos e serem projetados estão descritos a seguir.

- Drenos Profundos Longitudinais; e
- Drenos Rasos

4.3.4 Obras de Arte Correntes

O projeto de obras de arte correntes teve como objetivo dar um destino adequado às águas interceptadas pela ferrovia oriundas dos talvegues naturais. Essas obras compreendem os bueiros e as obras complementares a eles ligadas. O projeto desenvolvido teve como meta, permitir que as águas em regime intermitente nas grotas secas, ou em regime permanente nos pequenos córregos, sejam conduzidas ao outro lado do corpo estradal sem causar danos ao terrapleno.

Compreendeu a definição, verificação, localização e detalhamento dos bueiros, tomando-se como base os resultados obtidos dos estudos hidrológicos e projeto geométrico.

Com base nesses elementos, foram definidos os bueiros atendendo aos seguintes critérios:

a) Dimensionamento das Obras como Canal

Hidraulicamente falando, as obras foram dimensionadas como canal, para um tempo de recorrência de 50 anos (p/ bueiros tubulares) e de 100 anos (p/ bueiros celulares), evitando que elas trabalhem com carga a montante, o que pode ocasionar danos ao corpo estradal ou possibilidade de ocorrência de inundações, devido às fregüentes chuvas na região.

Desta forma, a metodologia adotada baseou-se na teoria do escoamento crítico, na qual a energia específica mínima é tomada como sendo igual à altura do bueiro.

Entre os regimes de fluxos possíveis de ocorrer (crítico, rápido e subcrítico), optou-se pela adoção do fluxo crítico.

As fórmulas utilizadas para o dimensionamento dos bueiros tubulares e celulares de concreto como canal, estão apresentadas no quadro QD-4.3.9.

b) Verificação como Orifício

Um bueiro trabalha como orifício quando o nível d'água a montante "H", atende à condição: $H \ge 1,2.D$ ou $H \ge 1,2.H$, sendo D o diâmetro e H a altura do bueiro.

Neste caso, a vazão depende de sua carga a montante, ou seja, da diferença de cotas dos níveis d'água a montante e jusante, sendo independente da rugosidade das paredes, do comprimento e da declividade do bueiro.

A vazão através do orifício pode ser calculada através da seguinte fórmula:

Q = C.A. $\sqrt{2}$.g.h, sendo usual adotar para C o valor de 0,63.

As fórmulas utilizadas para o dimensionamento dos bueiros tubulares e celulares de concreto como orifício, estão apresentadas no quadro QD-4.3.10.

4.3.5 Canais e Corta-Rios

4.3.5.1 Canais

Os canais têm como objetivo desviar/interceptar as águas dos talvegues (vazões elevadas) e pelo terreno natural a montante, impedindo-as de atingir o talude de corte, evitando-se, com isso, problemas de erosão nos taludes. Conduzindo-as para transposições convenientes.

Os alinhamentos em planta e perfil e as seções transversais estão apresentadas no Volume 2 – Projeto de Execução.

O material escavado foi utilizados na terraplenagem.

As vazões de projeto foram determinadas pelos cálculos das bacias apresentados no estudo hidrológico.

Para o dimensionamento hidráulico foi utilizada a seguinte metodologia.

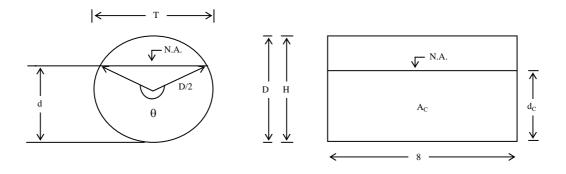
Q = $1/n \times R^{2/3} \times I^{1/2}$ - Fórmula de Manning

Q_a = A.V - Equação da continuidade

Onde:

V = velocidade de escoamento, em m/s;

I = declividade longitudinal de instalação do dispositivo de drenagem;


n = coeficiente de rugosidade de Manning, adimensional, função do tipo de revestimento adotado (ver tabela apresentada no QD-4.3.1 e QD-4.3.2);

 Q_a = vazão admissível, em m³/s;

	(m³/s)	(%)	(m²)			
	BUI	RES DE CONCRETO				
SIMPLES	$Q_C = 1,533D^{2.5}$	$V_C = 2,56\sqrt{D}$	$I_C = \frac{0,739}{\sqrt[3]{D}}$	$A_{C} = \left(\frac{o - \sin \theta}{8} \right) x D^{2}$		
DUPLO	$Q_C = 2 \times 1,533D^{2,5}$	$V_C = 2,56\sqrt{D}$	$I_C = \frac{0,739}{\sqrt[3]{D}}$	$A_{C} = 2 x \qquad \left(\frac{o - \sin \theta}{8} \right) x D^{2}$		
TRIPLO	25			$A_{C} = 3 x \left(\frac{o - \sin \theta}{8} \right) x D^{2}$		
BUEIROS CELULARES DE CONCRETO						

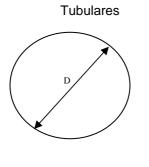
SIMPLES	$Q_C = 1,705 \times B \times H^{1.5}$	$V_{\rm C} = 2,56\sqrt{\rm H}$	$I_{C} = \frac{0,0585}{\sqrt[3]{D}} \left(\begin{array}{c} 4/3 \\ 3+4H \\ 8 \end{array}\right)$	$A_C = 8 \times 2/3 \text{ H}$
	$Q_C = 2 \times 1,705 \times B \times H^{1.5}$			
TRIPLO	$Q_C = 3 \times 1,705 \times B \times H^{1.5}$	$V_{\rm C} = 2,56\sqrt{\rm H}$	$I_{C} = \frac{0.0585}{\sqrt[3]{H}} \left(\frac{3+4H}{8} \right)$	$A_C = 3 \times 8 \times 2/3 \text{ H}$

Observações:

Ferrovia: Transnordestina

Trecho : Salgueiro - Parnamirim - Riacho Santa Rosa

Extensão : 127,48 km


Lote: 02

FÓRMULAS PARA DIMENSIONAMENTO DE BUEIROS COMO CANAL

MAIA MELO ENGENHARIA LTDA.

	(m^3/s)	(m³/s)				
BUEIROS TUBULARES DE CONCRETO						
SIMPLES	$Q_1 = 2.1920^2 \sqrt{h}$	$V = 2,79\sqrt{h}$				
DUPLO	$Q_2 = 2 \times Q_1$	$V = 2,79\sqrt{h}$				
TRIPLO	$Q_3 = 3 \times Q_2$	$V = 2,79\sqrt{h}$				
	BUEIROS CELULARES DE CON	CRETO				
SIMPLES	$Q_1 = 2,791.B.H\sqrt{h}$	$V = 2,79\sqrt{h}$				
DUPLO	$Q_2 = 2 \times Q_1$	$V = 2,79\sqrt{h}$				
TRIPLO	$Q_3 = 3 \times Q_1$	$V = 2,79\sqrt{h}$				

Observações:

Ferrovia: Transnordestina

Trecho : Salgueiro - Parnamirim - Riacho Santa Rosa

Extensão : 127,48 km

Lote: 02

FÓRMULAS PARA DIMENSIONAMENTO DE BUEIROS COMO CANAL

MAIA MELO ENGENHARIA LTDA.

A = área molhada, em m^2 .

Para canais de forma geometricamente semelhantes, a área pode ser expressa como A = F1 x b, e o raio hidráulico como R = f2 x b, onde F1 e F2 são funções da forma do canal, expressas em termos de um ou mais parâmetros adimensionais, e b a largura do fundo do canal. Desta maneira a formula de Manning pode ser expressa como:

Qn /
$$b^{8/3} \times I^{1/2} = F1 \times F2^{2/3}$$

Onde:

Os valores de F1 x $F2^{2/3}$ estão apresentados no quadro QD-4.3.11 e QD-4.3.12 apresentado a seguir.

No quadro QD – 4.3.13 está apresentado o dimensionamento dos referidos canais.

4.3.5.2 Corta-rios

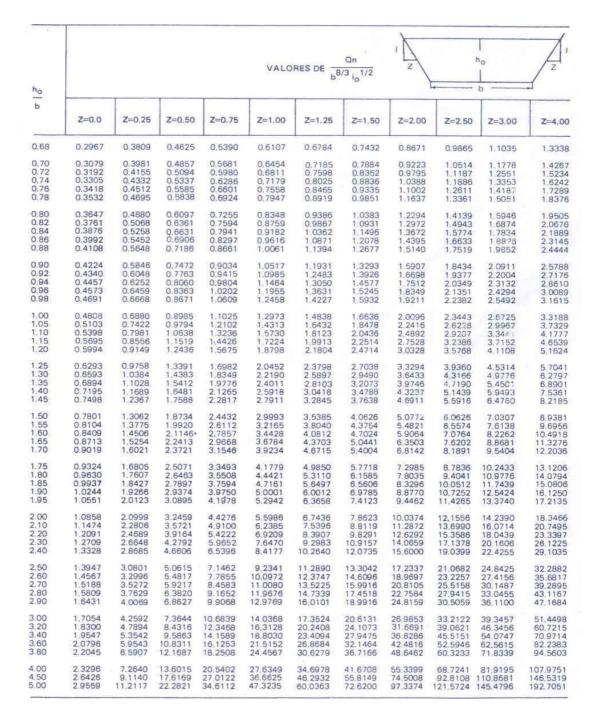
Os corta-rios têm por objetivo:

- Evitar que um curso d'água existente interfira seguidamente com a diretriz da ferrovia, obrigando a construção de sucessivas obras de transposição de talvegues.
- Afastar as águas que ao serpentear em torno da ferrovia, coloque em risco a estabilidade dos aterros.
- Melhorar as soluções técnicas para a diretriz da ferrovia.

A localização dos corta-rios estão apresentadas no Volume 2 – Projeto de Execução.

4.3.6 Obras de Arte Especiais

Ao longo do trecho, foram projetadas 17 (dezessete) pontes em concreto, discriminadas a seguir:


LOCALIZAÇÃO – (EIXO)	NOME DO RIO / RIACHO	VÃO (m)
E. 619 + 4,00	RIACHO DO MIGUEL	60,00
E. 978 + 0,40	RIACHO S/ NOME - 01	1000,00
E. 1909 + 8,23	RIO TRAÍRAS	160,00
E. 2081 + 5,62	AÇUDE ABOBORAS	160,00
E. 2960 + 1,67	RIACHO PARNAMIRIM	60,00
E. 3032 + 13,60	RIO BRÍGIDA	180,00
E. 3215 + 14,00	RIACHO S/ NOME - 02	60,00
E. 3384 + 15,40	RIACHO DO VEADO	60,00
E. 3512 + 5,40	RIACHO PALESTINA	60,00
E. 3759 + 15,40	RIACHO S/ NOME - 03	60,00
E. 3921 + 12,60	RIACHO DA VOLTA	120,00
E. 4079 + 15,40	RIACHO DA FAZENDA	60,00
E. 4259 + 17,90	RIACHO CURRALINHO	60,00
E. 4777 + 5,40	RIACHO SÃO PEDRO	140,00
E. 4977 + 0,40	RAICHO ARUEIRA	60,00
E. 5452 + 5,40	RIACHO PAU FERRADO	60,00
E. 5789 + 15,40	RIACHO URIMAMÃ	60,00

ho			VALOR	ES DE 68/3	n 3 i _o 1/2	I Z) o	Z		
ь	Z=0.0	Z=0.25	Z=0.50	Z=0.75	Z=1.00	Z=1,25	Z=1.50	Z=2.00	Z=2.50	Z=3.00	Z=4.00
0.02	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0015	0.0016
0.03	0.0028	0.0029	0.0029	0.0029	0.0029	0.0029	0.0030	0.0030	0.0030	0.0030	0.0031
0.04	0.0045	0.0046	0.0045	0.0047	0.0047	0.0047	0.0048	0.0048	0.0049	0.0049	0.0050
0.05	0,0064	0.0065	0.0066	0.0067	0.0068	0.0068	0.0069	0.0070	0.0071	0.0072	0.0074
0.06	0,0086	0.0088	0.0089	0.0091	0.0092	0.0093	0.0094	0.0095	0.0097	0.0098	0.0101
0.07	0,0109	0.0112	0.0115	0.0117	0.0118	0.0120	0.0121	0.0124	0.0126	0.0128	0.0133
0.08	0,0135	0.0139	0.0143	0.0145	0.0148	0.0150	0.0152	0.0156	0.0159	0.0162	0.0169
0.09	0,0162	0.0168	0.0173	0.0177	0.0180	0.0183	0.0186	0.0191	0.0195	0.0200	0.0209
0.10	0.0191	0.0199	0.0205	0,0210	0.0214	0.0218	0.0222	0.0229	0.0235	0.0241	0.0253
0.11	0.0222	0.0231	0.0239	0.0246	0.0251	0.0256	0.0261	0.0270	0.0278	0.0286	0.0302
0.12	0.0253	0.0265	0.0275	0.0283	0.0291	0.0297	0.0303	0.0314	0.0325	0.0335	0.0355
0.13	0.0286	0.0301	0.0313	0,0323	0.0332	0.0340	0.0348	0.0362	0.0375	0.0388	0.0413
0.14	0.0321	0.0338	0.0353	0.0365	0.0376	0.0386	0.0395	0.0412	0.0428	0.0444	0.0475
0.15	0.0356	0.0377	0.0394	0.0410	0.0423	0.0435	0.0446	0.0466	0.0486	0.0505	0.0542
0.16	0.0392	0.0417	0.0438	0.0456	0.0471	0.0486	0.0499	0.0523	0.0546	0.0569	0.0614
0.17	0.0430	0.0458	0.0483	0.0504	0.0522	0.0539	0.0554	0.0583	0.0611	0.0638	0.0691
0.18	0.0468	0.0501	0.0529	0.0554	0.0575	0.0595	0.0613	0.0647	0.0679	0.0711	0.0773
0.19	0.0507	0.0545	0.0577	0.0606	0.0630	0.0653	0.0674	0.0713	0.0751	0.0787	0.0860
0.20	0.0547	0.0590	0.0627	0.0659	0.0688	0.0714	0.0738	0.0783	0.0826	0.0869	0.0952
0.21	0.0588	0.0636	0.0678	0.0715	0.0748	0.0777	0.0805	0.0856	0.0906	0.0954	0.1049
0.22	0.0629	0.0684	0.0731	0.0773	0.0809	0.0843	0.0874	0.0933	0.0989	0.1044	0.1152
0.23	0.0671	0.0732	0.0785	0.0832	0.0873	0.0911	0.0947	0.1013	0.1076	0.1138	0.1261
0.24	0.0714	0.0782	0.0841	0.0893	0.0940	0.0982	0.1022	0.1096	0.1167	0.1237	0.1375
0.25	0,0758	0.0832	0.0898	0.0956	0.1008	0.1055	0.1100	0.1183	0.1263	0.1340	0.1494
0.26	0,0802	0.0884	0.0957	0.1021	0.1079	0.1131	0.1180	0.1273	0.1362	0.1449	0.1620
0.27	0,0846	0.0937	0.1017	0.1088	0.1151	0.1209	0.1264	0.1367	0.1465	0.1561	0.1751
0.28	0,0891	0.0991	0.1079	0.1156	0.1226	0.1290	0.1351	0.1464	0.1573	0.1679	0.1889
0.29	0,0937	0.1045	0.1142	0.1227	0.1303	0.1374	0.1440	0.1565	0.1684	0.1801	0.2032
0.30	0.0983	0.1101	0.1206	0.1299	0.1383	0.1460	0.1532	0.1669	0.1800	0.1929	0,2182
0.31	0.1030	0.1157	0.1271	0.1373	0.1464	0.1548	0.1628	0.1777	0.1921	0.2061	0,2338
0.32	0.1077	0.1215	0.1338	0.1449	0.1548	0.1640	0.1726	0.1889	0.2045	0.2198	0,2500
0.33	0.1125	0.1273	0.1407	0.1526	0.1634	0.1733	0.1827	0.2004	0.2174	0.2341	0,2669
0.34	0.1172	0.1332	0.1476	0.1605	0.1722	0.1830	0.1931	0.2124	0.2308	0.2488	0,2844
0.35	0,1221	0.1392	0.1547	0.1686	0.1812	0.1929	0.2039	0.2247	0.2446	0.2641	0.3026
0.36	0,1270	0.1453	0.1620	0.1769	0.1905	0.2030	0.2149	0.2373	0.2589	0.2799	0.3215
0.37	0,1319	0.1515	0.1693	0.1854	0.2000	0.2135	0.2262	0.2504	0.2736	0.2963	0.3410
0.38	0,1368	0.1578	0.1769	0.1940	0.2097	0.2242	0.2379	0.2639	0.2888	0.3132	0.3613
0.39	0,1418	0.4641	0.1845	0.2029	0.2196	0.2352	0.2499	0.2777	0.3045	0.3306	0.3822
0.40	0.1468	0.1705	0.1922	0.2119	0.2298	0.2464	0.2621	0.2920	0.3206	0.3486	0.4039
0.41	0.1518	0.1770	0.2001	0.2211	0.2402	0.2579	0.2747	0.3066	0.3372	0.3672	0.4262
0.42	0.1569	0.1836	0.2082	0.2304	0.2508	0.2697	0.2876	0.3217	0.3543	0.3863	0.4493
0.43	0.1620	0.1903	0.2163	0.2400	0.2616	0.2818	0.3009	0.3371	0.3720	0.4060	0.4732
0.44	0.1672	0.1970	0.2245	0.2497	0.2727	0.2941	0.3144	0.3530	0.3901	0.4263	0.4978
0.45	0.1723	0.2038	0.2330	0.2596	0.2840	0.3067	0.3283	0.3693	0.4087	0.4472	0.5231
0.46	0.1775	0.2107	0.2416	0.2697	0.2956	0.3197	0.3425	0.3860	0.4278	0.4687	0.5492
0.47	0.1827	0.2177	0.2503	0.2800	0.3073	0.3328	0.3571	0.4032	0.4474	0.4907	0.5761
0.48	0.1879	0.2247	0.2591	0.2905	0.3193	0.3463	0.3720	0.4207	0.4676	0.5134	0.6038
0.49	0.1932	0.2319	0.2680	0.3011	0.3316	0.3601	0.3872	0.4387	0.4882	0.5367	0.6322
0.50	0.1985	0.2391	0.2771	0.3119	0.3441	0.3741	0,4027	0.4571	0.5094	0.5606	0.6614
0.52	0.2091	0.2537	0.2956	0.3342	0.3698	0.4031	0,4349	0.4953	0.5534	0.6103	0.7224
0.54	0.2198	0.2686	0.3148	0.3571	0.3964	0.4333	0,4684	0.5352	0.5996	0.6626	0.7866
0.56	0.2306	0.2838	0.3342	0.3808	0.4240	0.4646	0,5033	0.5770	0.6479	0.7174	0.8541
0.58	0.2415	0.2993	0.3543	0.4053	0.4526	0.4971	0,5396	0.6206	0.6985	0.7749	0.9251
0.60	0.2524	0.3151	0.3749	0.4305	0.4822	0.5309	0.5774	0.6660	0.7514	0.8350	0.9996
0.62	0.2634	0.3311	0.3960	0.4565	0.5128	0.5659	0.6166	0.7134	0.8066	0.8979	1.0777
0.64	0.2744	0.3474	0.4176	0.4832	0.5444	0.6021	0.6573	0.7627	0.8642	0.9636	1.1593
0.66	0.2855	0.3640	0.4398	0.5107	0.5770	0.6396	0.6995	0.8139	0.9241	1.0321	1.2447

Elementos para cálculo das profundidades normais nos canais trapezóidais pela formula de Manning $\underline{h}_o = 0.02$ a 0.66.

b

Elementos para cálculo das profundidades normais nos canais trapezóidais pela formula de Manning $\underline{h}_o = 0,68$ a 5,00.

b

Canal	Q	n	b ^{8/3}	lo ^{1/2}	Q.n / b ^{8/3} .lo ^{1/2}	h _o /b	b	h _o	Folga	h _o + Folga
1	7,25	0,04	81,16	0,13	0,027	0,250	5,20	1,30	0,30	1,60
2	7,25	0,04	89,75	0,11	0,028	0,259	5,40	1,40	0,30	1,70
3	2,43	0,04	8,19	0,10	0,119	0,318	2,20	0,70	0,30	1,00
4	4,83	0,04	30,44	0,10	0,063	0,208	3,60	0,75	0,30	1,05
5	2,43	0,04	8,19	0,10	0,119	0,318	2,20	0,70	0,30	1,00
6	16,85	0,04	103,67	0,10	0,065	0,211	5,70	1,20	0,30	1,50
7	7,25	0,04	141,19	0,09	0,022	0,219	6,40	1,40	0,30	1,70
8	9,40	0,04	58,53	0,07	0,090	0,261	4,60	1,20	0,30	1,50
9	47,48	0,04	382,49	0,09	0,057	0,194	9,30	1,80	0,30	2,10
10	1,53	0,04	10,33	0,09	0,063	0,208	2,40	0,50	0,30	0,80
11	2,42	0,04	7,23	0,10	0,134	0,333	2,10	0,70	0,30	1,00
12	3,07	0,04	124,23	0,04	0,025	0,115	6,10	0,70	0,30	1,00
13	2,42	0,04	55,20	0,02	0,101	0,278	4,50	1,25	0,30	1,55
14	1,53	0,04	2,01	0,08	0,371	0,231	1,30	0,30	0,30	0,60
15	14,10	0,04	15,57	0,09	0,421	0,161	2,80	0,45	0,30	0,75

4.3.7 Apresentação dos Resultados

Os resultados obtidos para o sistema de drenagem projetado estão apresentados no Volume 2 – Projeto de Execução, onde constam os projetos-tipo adotados e as notas de serviço dos dispositivos de drenagem superficial e subterrânea e dos bueiros a construir.

Os quadros QD-4.3.14 a QD-4.3.18 apresentam um Resumo do Sistema de Drenagem Projetado

SISTEMA DE DRENAGEM SUPERFICIAL E SUBTERRÂNEA PROJETADO

Valeta de Plataforma de Corte Trapezoidal Tipo-01 - (0,80x0,40x0,20)	11.250,00 m
Valeta de Plataforma de Corte Trapezoidal Tipo-02 - (0,90x0,50x0,20)	1.560,00 m
Valeta de Plataforma de Corte Trapezoidal Tipo-03 - (1,00x0,50x0,25)	6.091,00 m
Valeta de Proteção de Aterro Trapezoidal Tipo-01 - (1,00x0,40x0,30)	9.495,00 m
Valeta de Proteção de Aterro Trapezoidal Tipo-02 - (1,20x0,40x0,40)	4.325,00 m
Valeta de Proteção de Aterro Trapezoidal Tipo-03 - (1,40x0,40x0,50)	635,00 m
Valeta de Proteção de Aterro Trapezoidal Tipo-04 - (1,60x0,40x0,60)	322,00 m
Valeta de Proteção de Aterro Trapezoidal Tipo-05 - (1,80x0,40x0,70)	545,00 m
Valeta de Proteção de Aterro Trapezoidal Tipo-06 - (2,00x0,40x0,80)	705,00 m
Valeta de Proteção de Corte Trapezoidal Tipo-01 - (1,00x0,40x0,30)	3.444,00 m
Valeta de Proteção de Corte Trapezoidal Tipo-02 - (1,20x0,40x0,40)	1.831,00 m
Valeta de Proteção de Corte Trapezoidal Tipo-03 - (1,40x0,40x0,50)	695,00 m
Valeta de Proteção de Corte Trapezoidal Tipo-04 - (1,60x0,40x0,60)	1.705,00 m
Valeta de Proteção de Corte Trapezoidal Tipo-05 - (1,80x0,40x0,70)	500,00 m
Valeta de Proteção de Corte Trapezoidal Tipo-06 - (2,00x0,40x0,80)	585,00 m
Valeta de Berma de Aterro Trapezoidal Tipo-01 - (0,80x0,40x0,20)	14.086,00 m
Valeta de Berma de Aterro Trapezoidal Tipo-02 - (0,90x0,50x0,20)	2.320,00 m
Valeta de Berma de Aterro Trapezoidal Tipo-03 - (1,00x0,50x0,25)	4.526,00 m
Valeta de Berma de Aterro Trapezoidal Tipo-04 - (1,00x0,40x0,30)	23.156,00 m
Valeta de Berma de Corte Trapezoidal Tipo-01 - (0,80x0,40x0,20)	5.430,00 m
Valeta de Berma de Corte Trapezoidal Tipo-02 - (0,90x0,50x0,20)	1.300,00 m
Valeta de Berma de Corte Trapezoidal Tipo-03 - (1,00x0,50x0,25)	3.700,00 m
Valeta de Berma de Corte Trapezoidal Tipo-04 - (1,00x0,40x0,30)	13.695,00 m
Descidas d'água em Aterro h<3m	57,00 m
Descidas d'água em Aterro h<8m	139,00 m
Descidas d'água em Aterro h>8m	206,00 m
Descidas d'água em Corte h<8m	46,00 m
Descidas d'água em Corte h>8m	332,00 m
Dreno Subterrâneo Profundo Tipo-4	70.170,00 m
Dreno Subterrâneo Profundo Tipo-3	430,00 m
Dissipador de energia	451,00 m
Caixa Coletora CCT-01	39,00 ud
Caixa de Inspeção de Dreno Tipo-01	665,00 ud
Caixa de Inspeção de Dreno Tipo-03	4,00 ud
Entrada d'água	102,00 ud
Boca de Saída de Dreno	106,00 ud

SISTEMA DE DRENAGEM SUPERFICIAL E SUBTERRÂNEA DO PÁTIO DE SALGUEIRO

Valeta de Proteção de Aterro Trapezoidal Tipo-05 - (1,80x0,40x0,70)	135,00 m
Valeta de Proteção de Aterro Trapezoidal Tipo-06 - (2,00x0,40x0,80)	240,00 m
Valeta de Proteção de Aterro Trapezoidal Tipo-07 - (2,20x0,40x0,90)	285,00 m
Valeta de Proteção de Corte Trapezoidal Tipo-06 - (2,00x0,40x0,80)	379,00 m
Valeta de Proteção de Corte Trapezoidal Tipo-09 - (2,60x0,40x1,10)	500,00 m
Valeta de Plataforma de Corte Retangular Tipo-03- (0,60x0,60)	2.061,00 m
Valeta de Plataforma de Corte Retangular Tipo-04- (0,80x0,80)	485,00 m
Valeta de Plataforma Retangular Tipo-01- (0,40x0,40)	1.065,00 m
Valeta de Plataforma Retangular Tipo-02- (0,50x0,50)	2.349,00 m

MAIA MELO ENGENHARIA LTDA.

RESUMO DO SISTEMA DE DRENAGEM PROJETADO

1.958,00 m	Valeta de Plataforma Retangular Tipo-02- (0,60x0,60)
840,00 m	Valeta de Plataforma Retangular Tipo-04- (0,80x0,80)

SISTEMA DE DRENAGEM SUPERFICIAL E SUBTERRÂNEA DO PÁTIO DE SALGUEIRO

Dreno raso	4.720,00 m
Caixa de Inspeção de Dreno Raso	48,00 ud
Boca de Saída de Dreno	2,00 ud
Dissipador de energia	11,00 ud
Caixa de Ligação e Passagem H=2,00m	14,00 ud
Poço de Visita PVI - 04	5,00 ud
Poço de Visita PVI -05	4,00 ud

SISTEMA DE DRENAGEM SUPERFICIAL E SUBTERRÂNEA DOS VIADUTOS E INTERFERÊNCIAS

Valeta de Proteção de Aterro Trapezoidal Tipo-01 - (1,00x0,40x0,30)	2.935,00 m
Caixa de Passagem	6,00 ud
Descidas d'água em Aterro h<3m	16,00 m
Descidas d'água em Aterro h<8m	90,00 m
Descidas d'água em Aterro h>8m	78,00 m
Entrada d'água	34,00 ud
Meio - Fio Tipo MFC-05	3.620,00 m

OBRAS DE ARTE CORRENTE

Remoção/demolição de bueiros	22,00 m
Corpo BSTC d = 1,00 m CA-3	1.730,00 m
Corpo BSTC d = 1,00 m F-4	674,00 m
Corpo BSTC d = 1,00 m F-5	652,00 m
Corpo BDTC d = 1,00 m CA-3	440,00 m
Corpo BDTC d = 1,00 m F-4	198,00 m
Corpo BDTC d = 1,00 m F-5	164,00 m
Corpo BTTC d = 1,00 m CA-3	35,00 m
Corpo BSTC d = 1,20 m CA-3	364,00 m
Corpo BSTC d = 1,20 m F-4	85,00 m
Corpo BDTC d = 1,20 m CA-3	615,00 m
Corpo BDTC d = 1,20 m F-4	638,00 m
Corpo BDTC d = 1,20 m F-5	201,00 m
Corpo BTTC d = 1,20 m CA-3	165,00 m
Corpo BTTC d = 1,20 m F-4	410,00 m
Corpo BTTC d = 1,20 m F-5	350,00 m
Corpo BSCC 2,00 m x 2,00 m 0,00 < h < 2,0	0 55,00 m
Corpo BSCC 2,00 m x 2,00 m 2,00 < h < 6,0	0 163,00 m
Corpo BSCC 2,00 m x 2,00 m 6,00 < h < 10,	00 97,00 m
Corpo BSCC 2,00 m x 2,00 m 10,00 < h < 15	5,00 178,00 m
Corpo BSCC 2,00 m x 2,00 m 15,00 < h < 20	0,00 84,00 m
Corpo BDCC 2,00 m x 2,00 m 0,00 < h < 2,0	0 81,00 m
Corpo BDCC 2,00 m x 2,00 m 2,00 < h < 6,0	0 162,00 m
Corpo BDCC 2,00 m x 2,00 m 6,00 < h < 10,	00 150,00 m
Corpo BDCC 2,00 m x 2,00 m 10,00 < h < 15	5,00 437,00 m

ΜΛΙΔΙΔ	MELO ENGENHARIA LTDA	

RESUMO DO SISTEMA DE DRENAGEM PROJETADO

OBRAS DE ARTE CORRE	NTE			
Corpo BSCC 2,50 m x 2,50 m	2.00 < h < 6.00	26,00 n	n	
Corpo BSCC 2,50 m x 2,50 m	·	28,00 n		
Corpo BSCC 2,50 m x 2,50 m		65,00 n		
Corpo BTCC 2,50 m x 2,50 m		17,00 n		
Corpo BTCC 2,50 m x 2,50 m	2,00 < h < 6,00	30,00 n		
Corpo BTCC 2,50 m x 2,50 m		105,00 n		
Corpo BTCC 3,00 m x 3,00 m	6,00 < h < 10,00	38,00 n	n	
Corpo BSC 1,00 m x 1,00 m (),00 < h < 2,00	302,00 n	n	
Corpo BDC 1,00 m x 1,00 m	0,00 < h < 2,00	15,00 n	n	
Corpo BTC 1,00 m x 1,00 m (0,00 < h < 2,00	23,00 n	n	
Boca BSTC d = 1,00 m normal		7,00 u	ıd	
Boca BSTC d = 1,00 m esc = 5	90	16,00 u	ıd	
Boca BSTC d = 1,00 m esc = 1	0°	25,00 u	ıd	
Boca BSTC d = 1,00 m esc= 1	5°	7,00 u	ıd	
Boca BSTC d = 1,00 m esc= 2	00	11,00 u	ıd	
Boca BSTC d = 1,00 m esc= 2	5°	10,00 u	ıd	
Boca BSTC d = 1,00 m esc= 3	00	10,00 u	ıd	
Boca BSTC $d = 1,00 \text{ m esc} = 3$	35°	13,00 u	ıd	
Boca BSTC d = 1,00 m esc= 4	00	14,00 u	ıd	
Boca BSTC d = 1,00 m esc= 4	5°	1,00 u	ıd	
Boca BSTC d = 1,00 m esc= 5	00	13,00 u	ıd	
Boca BSTC d = 1,00 m esc= 5		4,00 u	ıd	
Boca BSTC d = 1,00 m esc = 6		3,00 u	ıd	
Boca BDTC d = 1,00 m esc = 1		6,00 u	ıd	
Boca BDTC d = 1,00 m esc= 2		4,00 u	ıd	
Boca BDTC d = 1,00 m esc= 2		1,00 u		
Boca BDTC d = 1,00 m esc= 3		1,00 u		
Boca BDTC d = 1,00 m esc= 4		4,00 u		
Boca BDTC d = 1,00 m esc= 5		5,00 u		
Boca BDTC d = 1,00 m esc= 5		2,00 U		
Boca BDTC d = 1,00 m esc = 6		2,00 u		
Boca BSTC d = 1,20 m normal		1,00 u		
Boca BSTC d = 1,20 m esc = 5		1,00 u		
Boca BSTC d = 1,20 m esc= 1		2,00 u		
Boca BSTC d = 1,20 m esc= 2		3,00 u		
Boca BSTC d = 1,20 m esc= 2		6,00 u		
Boca BSTC d = 1,20 m esc= 4 Boca BSTC d = 1,20 m esc= 4		2,00 u		
Boca BSTC d = 1,20 m esc = 6		2,00 u		
Boca BDTC d = 1,20 m normal		4,00 u		
Boca BDTC d = 1,20 m esc = 5		1,00 u		
Boca BDTC d = 1,20 m esc = 1		5,00 u		
Boca BDTC d = 1,20 m esc= 1		3,00 u 4,00 u		
Boca BDTC d = 1,20 m esc= 2		5,00 u		
Boca BDTC d = 1,20 m esc= 2		5,00 u		
Boca BDTC d = 1,20 m esc= 3		11,00 u		
Boca BDTC d = 1,20 m esc = 3		5,00 u		
Boca BDTC d = 1,20 m esc= 4		2,00 u		
.,_5 330= 1		2,00 0	· 	
MAIA MELO ENGENHARIA LTDA.	RESUMO DO SIS	TEMA DE DRENAGEM PRO	JETADO	QD - 4.3.16

OBRAS DE ARTE CORRENTE

Boca BDTC d = 1,20 m esc= 45°	2,00 ud
Boca BDTC d = 1,20 m esc= 50°	2,00 ud
Boca BTTC d = 1,20 m normal	1,00 ud
Boca BTTC $d = 1,20 \text{ m esc} = 5^{\circ}$	6,00 ud
Boca BTTC d = 1,20 m esc = 10°	2,00 ud
Boca BTTC d = 1,20 m esc= 15°	3,00 ud
Boca BTTC d = 1,20 m esc= 20°	2,00 ud
Boca BTTC d = 1,20 m esc= 25°	2,00 ud
Boca BTTC d = 1,20 m esc= 30°	5,00 ud
Boca BTTC $d = 1,20 \text{ m esc} = 35^{\circ}$	4,00 ud
Boca BTTC d = 1,20 m esc= 40°	4,00 ud
Boca BTTC d = 1,20 m esc= 55°	2,00 ud
Boca BTTC $d = 1,20 \text{ m esc} = 60^{\circ}$	4,00 ud
Boca BSC 1,00 m x1,00 m normal	2,00 ud
Boca BSC 1,00 m x 1,00 m esc= 5°	1,00 ud
Boca BSC 1,00 m x 1,00 m esc= 10°	2,00 ud
Boca BSC 1,00 m x 1,00 m esc= 25°	1,00 ud
Boca BSC 1,00 m x 1,00 m esc= 30°	5,00 ud
Boca BDC 1,00 m x 1,00 m esc= 30°	1,00 ud
Boca BTC 1,00 m x 1,00 m normal	1,00 ud
Boca BTC 1,00 m x 1,00 m esc= 10°	2,00 ud
Boca BSCC 2,00 m x2,00 m normal	4,00 ud
Boca BSCC 2,00 m x 2,00 m esc= 20°	9,00 ud
Boca BSCC 2,00 m x 2,00 m esc= 30°	10,00 ud
Boca BDCC 2,00 m x 2,00 m normal	4,00 ud
Boca BDCC 2,00 m x 2,00 m esc= 20°	3,00 ud
Boca BDCC 2,00 m x 2,00 m esc= 30°	27,00 ud
Boca BSCC 2,50 m x 2,50 m normal	4,00 ud
Boca BSCC 2,50 m x 2,50 m esc= 20°	1,00 ud
Boca BTCC 2,50 m x 2,50 m normal	2,00 ud
Boca BTCC 2,50 m x 2,50 m esc= 10°	2,00 ud
Boca BTCC 2,50 m x 2,50 m esc= 20°	2,00 ud
Boca BTCC 2,50 m x 2,50 m esc= 30°	2,00 ud
Boca BTCC 3,00 m x 3,00 m esc= 30°	2,00 ud
Caixa Coletora CCT-01	5,00 ud
Caixa Coletora CCT-02	3,00 ud
Caixa Coletora CCT-04	1,00 ud
Caixa Coletora CCT-05	2,00 ud
Caixa Coletora CCT-07	2,00 ud
Caixa Coletora CCT-09	2,00 ud
Caixa Coletora CCT-10	2,00 ud
Escavação Manual em mat. 1ª categoria:	1.086,00 m ³
Escavação Mecanizada em mat. 1ª categoria:	7.817,00 m ³
Escavação em mat. 3ª categoria:	1.954,00 m ³
Reaterro:	42.893,00 m ³

PASSAGENS INFERIORES

MAIA MELO ENGENHARIA LTDA.

RESUMO DO SISTEMA DE DRENAGEM PROJETADO

PASSAGENS INFERIORES

 Corpo de MP-152
 708,81 m

 Berço de brita
 2.923,84 m³

 Escavação em mat. 1ª categoria:
 8.865,70 m³

 Escavação em mat. 3ª categoria:
 2.216,42 m³

 Reaterro:
 4.875,90 m³

 Concreto Simples Fck 15 Mpa
 354,40 m³

CANAIS

Revestimento pedra argamassada e=0,40m: 3.910,00 m²

RESUMO DO SISTEMA DE DRENAGEM PROJETADO

4.4 Projeto de Superestrutura da Via Permanente

4.4.1 Introdução

Os serviços de superestrutura compreenderão o fornecimento e execução da camada de lastro de pedra britada e da grade da via, abrangendo esta última os dormentes, os trilhos, as fixações, etc.

Eles englobarão todas as operações de levante e socaria do lastro, os alinhamentos e nivelamentos da linha, bem como, os serviços de acabamento.

Estarão englobando também os aparelhos de mudança de via e os aparelhos tipo "pára choques" do pátio de Salgueiro.

A superestrutura da via férrea obedecerá às recomendações das Normas Técnicas para as Estradas de Ferro Brasileiras N –1/ DNEF, da ABNT e às da RFFSA.

A execução do sublastro é considerada no âmbito dos serviços de infraestrutura.

4.4.2 Características Técnicas da Superestrutura da Via Permanente

Trem característico : 2 locomotivas e 110 vagões

• Linha : Singela

• Bitola : Larga - 160cm

• Raio mínimo : 400 m

Rampa Máxima Compensada,

sentido importação :1,00%

• Velocidade Diretriz : 80 km/h

Trilhos : UIC 60, em barras longas soldadas

Fixações : Elástica tipo Pandrol

Dormentes : Concreto tipo monobloco na linha corrida

: Madeira tratada no AMV

Espaçamento entre os dormentes : 60 cm (1.667 unidades/ km)

Aparelhos de mudança de via : 1:14 na linha principal

: 1:10 nas linhas secundárias

• Trem Tipo : TB 360

• Sublastro : Altura de 30 cm

Lastro : Altura de 30 cm

4.4.3 Armamento da Superestrutura da Via Permanente

Por se tratar de uma construção de linha nova, deverá ser implantada uma superestrutura com características de via moderna.

Assim, utilizaremos dormentes de concreto com fixação elástica e auto-retensora, que possibilitará o emprego de trilhos contínuos, eliminando-se as juntas tradicionais. A grade assim constituída, assentada em lastro de granulometria adequada e uniforme, permitirá tráfego de trens na velocidade de projeto de 80 km/h com conforto, segurança e economia de manutenção.

4.4.4 Trilhos

4.4.4.1 Critérios de Projeto

Será empregado o trilho UIC 60, que atende plenamente aos esforços a que será submetido face às condições operacionais da Ferrovia Transnordestina.

Os trilhos, para a linha principal, serão contínuos com juntas somente nas entradas e saídas dos aparelhos de mudança de via.

Os trilhos em barras de 24 metros, vindo da siderúrgica, serão soldados em estaleiro, por processo elétrico, formando as barras contínuas.

Para as linhas secundárias dos pátios os trilhos UIC 60 serão utilizados com comprimentos individuais de 72 metros, obtidos por soldagem elétrica em estaleiro de três barras de 24 metros.

O transporte das barras da usina de soldagens até a frente da construção da via, será efetuado por veículos apropriados e a descarga e o posicionamento das barras para a montagem da grade da via, poderá se dar conforme processo escolhido pela empresa construtora, porém respeitando as normas estabelecidas pela CFN.

Nas soldagens para a formação das barras contínuas, cuidados especiais deverão ser observados, principalmente sobre a normatização de tensões nas barras nas proximidades da solda e verificação da temperatura dos trilhos no momento de sua fixação (se está de acordo com as normas em vigor).

Considerando serem os trilhos de 24 metros, serão necessários 9 soldagens elétricas para a formação de barras de 240 metros, portanto, por quilometro de via principal deverão ser executados 112,59 soldagens elétricas e 12,51 soldagens por processo aluminotérmico na própria via.

Para as vias secundárias a produção de barras de 72 metros de extensão requererá a execução de 55,6 soldagens elétricas por quilômetro de via.

4.4.5 Dimensionamento da Superestrutura

- Carga máxima por eixo: 32,5t;
- Dormentes de concreto monobloco;
- Trilhos UIC 60;
- Bitola: 1,60 m;
- Velocidade Diretriz:80 km/h na bitola larga (1,60 m) e 60 km/h na bitola estreita (1,00 m);

• Fórmula de Eukelon:
$$\mathbf{O}$$
adm = $\frac{0,006.\,\text{Ed}}{1+0,7.\,\text{LogN}}$, onde :

- **O**adm: Máxima Tensão admissível do subleito:
- Ed: Módulo de elasticidade dinâmico do solo (Ed=100.CBR);
- N: Número de passagens da carga, (N=1,0x10⁶), valor adotado para a Transnordestina.

• Fórmula de Arthur N. Talbot:
$$Ph = \frac{53,87.Pm}{h^{1,25}}$$
, onde:

- Ph: Pressão à profundidade h, em Kg/cm²;
- Pm: Pressão na superfície do lastro.
- Coeficiente de distribuição (CD) de Gerhard Schramm, das pressões para os diferentes materiais. No caso do lastro de boa qualidade, a distribuição se processa sob um ângulo α=40°. Para o sublastro α=36°, e finalmente para o material selecionado α=30°. Estas hipóteses consideradas, se reflete na correção das espessuras das camadas de sublastro (CD = 0,866) e material selecionado (CD=0,688).
- Coeficiente de impacto, k=2;
- Momento Fletor no Trilho: $M = \frac{Pd.L}{4}$, onde:
 - Pd: Carga Dinâmica da roda em kgf;
 - L : Comprimento do apoio elástico em cm.
- Verificação da resistência do trilho: σ máx < σ adm

$$\mathbf{O}$$
 máx = $\frac{\text{Mmáx}}{\text{Wp}}$, onde Wp = Módulo de resistência do Patim, em cm³.

A tensão admissível, **O**adm, no patim é determinada levando-se em consideração os seguintes fatores de influência, que contribuem com a diminuição do limite de escoamento do trilho, a saber:

- Flexão lateral = 20%;
- Condições de via = 25%;
- Desgastes e corrosão = 15%;
- Superelevação não compensada = 15%;
- Esforço devido à temperatura = 1.406 kgf/cm²;

Considerando o trilho com limite de escoamento de 5.800 kgf/cm² (aço carbono), temos:

$$O$$
adm = $\frac{5.800 - 1.406}{1.2 \times 1.25 \times 1.15 \times 1.15}$ = 2.215 kfg/cm²

Trilho UIC 60

- Altura do trilho = 172 mm;
- Largura do Patim = 150 mm;
- Largura do boleto = 72 mm;
- Peso = 60,34 kg/m;
- Momento de inércia - Jx = 3.055 cm⁴;
- Momento Resistente - Wx = 335,5 cm³;

- Módulo de elasticidade do aço - E = 2.150.000 kg/cm².

- Dormente
 - Concreto monobloco;
 - Taxa de 1.667 dorm/km;
 - Espaçamento de 60cm;
 - Comprimento = 2,80 m;
 - Base = 28,5 cm.

Memória de cálculo e verificação

Cálculo do trilho

Carga dinâmica da roda
 Pd = coeficiente de impacto x carga na roda

Pd =
$$2x \frac{32.500}{2} = 32.500 \text{ kgf}$$

Distância de uma carga sob uma roda até o ponto de momento nulo. O módulo μ representa a capacidade de suporte do conjunto dormente, lastro e plataforma. Para uma linha bem construída e bem montada tem um módulo μ=140 kgf/cm².

$$X_1 = \frac{\pi}{4}.4\sqrt[4.E.j]{\frac{4.E.j}{\mu}} = 92 \text{ cm}$$

Comprimento de apoio do dormente, segundo Schramm

$$L=\ell-S = 280 - (160+7,2) = 112,8 \text{ cm}$$
;

Área de um suporte do dormente no lastro

$$A_b = L.b = 112.8x28.5 = 3.214.8 \text{ cm}^2$$

Coeficiente do lastro de Winkler

$$c = \frac{2x 60 \times 140}{28.5 \times 280} = 2,105 \text{ kgf/cm}^3$$

Comprimento L da elástica segundo Eisenmann

$$L = \sqrt[4]{\frac{4x2.150.000x3.055}{53,58x2,105}} = 123,54cm$$

Momento Fletor máximo

$$M = \frac{Q.L}{4}.e$$

$$Y = \frac{Q}{2.b.c.L.}.\eta \text{ (Recalque máximo)}$$

Р	Х	<u>X</u>	η	е
		L		
P1	0	0	1	1
P2	170	1,376	0,2970	-0,1984
P3	340	2,752	-0,0345	-0,0834
	TOTAL		1,2625	0,7182

$$M = \frac{32.500x123,54}{4} \times 0,7182 = 720.902 \text{ kgf/cm}$$

Tensão máxima do trilho

$$O = \frac{M}{W} = \frac{720.902}{335.5} = 2.148.7 \text{ kgf/cm}^2$$

• Verificação da resistência do trilho

$$\mathbf{O}$$
máx < \mathbf{O} adm :: 2.148,7 kgf/cm² < 2.215 kgf/cm²

O trilho UIC 60 atende aos esforços solicitados.

• Recalque Máximo

$$Y = \frac{32.500x1,2625}{2x53,58x2,105x123,54} \therefore Y = 1,472 \ cm$$

Reação no Apoio (Dormente)

Pressão no Lastro

$$Pm = \frac{12.364,8}{3.214.8}$$
 :: $Pm = 3,85 \text{ kgf/ cm}^2$

A pressão Pm deve atender Pm \leq 5kgf/cm², que é a pressão admissível para lastro de pedra britada.

Dimensionamento das camadas

Temos: Subleito com CBR=4%

Pm =
$$3.85 \text{ kg/cm}^2$$

N = 1.0×10^6

Tensão admissível no Subleito:

$$Oadm = \frac{0,006x100x4}{1+0,7.log1,0x10^6} = 0,462 \text{ kgf/cm}^2$$

Altura total do lastro + sublastro + MS, segundo Talbot:

$$h > \left(\frac{53,87x3,85}{0,462}\right)^{0,8}$$

Fazendo:

 $h\ell$ =30cm MS com CBR = 10%

$$\sigma_{adm} = \frac{0,006.100.10}{1+0.7 \cdot log 1,0x 10^6} : \sigma_{adm} = 1,154 \text{ kgf/cm}^2$$

$$hs > \left(\frac{53,87x3,85}{1,154}\right)^{0,8} \ \ \therefore \ hs > 64 \ cm$$

$$hsl = 64 - 30 = 34 cm$$

 $hms = 133 cm - 64 cm = 69 cm$

• Dimensões efetivas

- Altura de lastro = 30 cm
- Altura de sublastro= 34x0,866 = 30 cm
- Altura de MS>69x0,688>48 cm; Adotaremos 60 cm.

4.4.6 Dormentes

Serão colocados dormentes de concreto monobloco, para bitola mista (1,60m x 1,00 m) para possibilitar o lançamento futuro do 3° trilho interno colocado à esquerda no sentido da quilometragem, a uma taxa de 1.667 dormentes/km, com espaçamento entre eixos de 60cm.

Comprimento	2,80m
Base inferior	285mm
Base superior	210mm
Momento de inércia	28.293,8 cm ₄
Momento resistente	2.244,46cm ³
Altura	240mm
Peso	410 kgf

Os dormentes de concreto monobloco deverão ser fabricados em estaleiro, e deverão ser protendidos no sentido longitudinal com no mínimo 16 fios ou cordoalhas de protensão, para poderem suportar as cargas do material rodante.

O fck do concreto deverá ser maior ou igual a 40Mpa (400kgf/cm²).

Fica ao encargo do fabricante o atendimento das características técnicas do dormente de concreto, quanto às dimensões e a resistência aos esforços provenientes do material rodante.

Os desenhos das seções tipo do Projeto de Superestrutura estão apresentados no volume 2 — Projeto de Execução.

4.4.7 Fixações

As fixações serão elásticas com palmilhas de neoprene colocadas entre o patim do trilho e o dormente e grampos tipo PANDROL, sendo 4 grampos e 2 palmilhas.

4.4.8 Placa de apoio Fundida para Dormentes de Madeira

Será utilizado ferro fundido nodular FE 50.007, segundo a Norma NBR-6916. As características são as seguintes:

Limite de Resistência à Tração 50 kgf/mm² (mín)

Limite de escoamento: 35 kgf/mm² mínimo

Alongamento: 7 % mínimo

• Dureza: 170 - 240 HB

4.4.9 Almofada de Polietileno

A matéria prima para fabricação das almofadas será polietileno de alta densidade com as seguintes características:

Densidade: 0,95 a 0,97 g/cm³

Índice de Fluidez: 22 a 26 g/10 min

- Resistência à Ruptura: Mínimo 230 kgf/cm²
- Alongamento Ponto Escoamento: Mínimo de 10 %
- Dureza: Mínima de 60 Shore D
- Resistência à Radiação Ultravioleta: O material deve ser aditivado parar resistir radiações ultravioletas.

4.4.10 Aparelhos de Mudança de Via (AMV)

O trilho padrão dos AMV's das vias principais e de cruzamento deverá ser o trilho UIC 60.

Serão com abertura 1:14 nas linhas principais e na abertura 1:10, nas linhas secundárias, para a bitola 1,60m.

Os dormentes serão de madeira de lei, seção transversal 17cmx24cm. A quantidade de dormentes de madeira por abertura é a seguinte, conforme a NBR 7511:

Comprimento dos dormentes (m)	Abertura do AMV 1:10- quantidade	Abertura do AMV 1:14- quantidade	Travessão 1:10 quantidade
2,60	-	-	31
2,80	7	7	6
3,00	22	22	44
3,20	14	14	30
3,40	9	9	28
3,60	7	7	24
3,80	7	7	15
4,00	6	6	12
4,20	8	8	16
4,40	6	6	30
4,60	3	3	-
4,80	5	5	-
5,00	4	4	-
5,20	6	6	-
5,40	8	8	-
TOTAL	112	114	236
Volume total	17,50m³	17,90m³	33.10 m³

Os valores dimensionais do AMV são os seguintes, para a bitola mista de 1,00m e 1,60m:

DISCRIMINAÇÃO	Abertura 1:10	Abertura 1:14
Comprimento da agulha	4.2.029mm	6.706mm
Ângulo da agulha	1°46'22"	1°19'46"
Distância do ponto vértice teórico à ponta da agulha	104,8	139,7
Ângulo do jacaré	5°43'29"	4°05'27"
Comprimento do jacaré	4.2.029mm	7.188mm
Comprimento da ponta de ½" para frente	1.956mm	2.629mm
Comprimento da ponta de ½" para trás	3.073mm	4.559mm
Distância do vértice teórico à ponta de ½"	127,0mm	177,8mm
Comprimento do contratrilho	2.870mm	2.870mm
Comprimento total do AMV	29.258mm	40.637mm
Distância da ponta da agulha à ponta do diamante (ponta de ½")	26.185mm	36.078mm
Distância entre os vértices teóricos da agulha e do jacaré	26.162,8mm	36.039,9mm
Flecha	165mm	161mm
Trilho reto de ligação	19.194mm	26.737mm
Trilho curvo de ligação	19.250mm	26.778
Raio	279.185mm	554.2.740mm
Abertura do couce	158,7mm	158,7mm

4.4.11 Soldagem de Trilhos

a) Soldagem Elétrica

A soldagem elétrica dos trilhos para formarem as barras de 240 m, deverá ser executada em Estaleiro de Solda de reconhecida capacidade técnica e deve priorizar, além da qualidade da solda em si, a verificação do alinhamento das barras soldadas, evitando torções e empenamento, por mínimo que seja. Caso venha ser verificado esses defeitos após a soldagem, o trilho deve ser cortado à 2 m para cada lado da solda e a mesma deve ser refeita.

Igual cuidado deve se ter durante o esmerilhamento das rebarbas da solda, especialmente no boleto do trilho (linha da bitola), onde deve ser refeita com precisão a superfície de rolamento.

b) Soldagem Aluminotérmica

A soldagem aluminotérmica deverá ser feita no trecho onde a linha já foi lançada, e consiste em soldar as pontas dos trilhos longos soldados, que vieram do estaleiro, formando um trilho contínuo soldado (TCS).

4.4.12 Trilhos Longos Soldados (TLS)

Chama-se trilho longo soldado (TLS) à barra formada por trilhos soldados, cujo comprimento é suficiente para que, pelo menos, um de seus pontos permaneça fixo, quaisquer que sejam suas variações de temperatura.

O TLS pode estar em estado de dilatação ou de contração de acordo com a variação da temperatura. Este estado pode ser total ou parcialmente contido pelo atrito do trilho com o dormente e destes com o lastro. Quando existirem dois ou mais TLS ligados por talas formando juntas, será necessário acrescentar aos atritos considerados o decorrente das talas nas extremidades.

Como a força longitudinal, que provoca essas deformações,independe do comprimento do TLS, nada impedirá que seu comprimento seja infinito, a não ser a presença de obras-dearte ou aparelhos de mudança de via.

4.4.13 Superelevação

A superelevação teórica ou de equilíbrio é aquela que permite contrabalançar toda a aceleração decorrente do movimento do um trem a uma velocidade numa determinada curva. Segundo a dedução que se encontra em livros especializados, a superelevação teórica é dada pela seguinte fórmula:

- ht = $a \times V^2 / (g \times R)$, onde
- V → velocidade (m/s);
- a \rightarrow bitola da linha + largura do boleto do trilho;
- g → aceleração da gravidade = 9,81 m/s²
- R → raio da curva em metros.

A superelevação real ou prática está relacionada com a segurança do tráfego e é menor que a superelevação teórica.

Para trens de carga, foi utilizado o critério da segurança à circulação, conforme Garcia Lomas y Cossio, com a seguinte fórmula:

- hp = $a \times V^2 / (127 \times R) (a/(n \times H)) \times (a/2 d)$, onde
- hp →superelevação efetiva;
- a = bitola + largura do boleto;
- n → coeficiente de segurança = 5;
- H → altura do centro de gravidade do material rodante; bitola

- métrica = 1,90m, bitola larga = 2,10m
- d → deslocamento do centro de gravidade = 0,11m

A largura do boleto para o trilho UIC 60 é de 74,3mm

- Para a bitola métrica: a = 1000 + 74,3 = 1074,3mm
- Para a bitola larga: a = 1600 + 74,3 = 1673,4mm

Com os valores assim colocados a fórmula fica:

Para a bitola métrica: hp = 1074,3 x V2 / 127 / R –
 (1074,3/5/1900) x (1074,3/2-110)

$$hp = 8,459 \times V2 / R - 48,3mm$$

Para a bitola larga: hp = 1674,3 x V2 / 127 / R -

(1673,4/5/2100) x (1674,3/2-110)

 $hp = 13,183 \times V^2 / R - 116mm$

A velocidade diretriz para a bitola métrica é de 60Km/h e para a bitola larga é de 80Km/h. O raio da curva para a bitola larga é de 400m e para a bitola métrica é de 399,7m, pois a linha é mista, e a diferença é entre os eixos das bitolas métrica e larga.

- Para a bitola métrica (60km/h):
 hp = 8,459 x 602 / 399,7 48,3 = 27,9mm ~ 28mm
- Para a bitola larga (80km/h):
 hp = 13,183 x 802 / 400 –116=94,9mm ~ 95mm

A superelevação limite é igual a 1/10 da bitola, portanto, para a bitola larga, a superelevação máxima não pode ultrapassar a 160mm, e para a bitola métrica, não pode ultrapassar a 100mm.

Levando em consideração os limites acima impostos, a velocidade máxima é dada para a o hp máximo:

· Bitola métrica:

```
Vm\acute{a}x = (hp + 48,3) / 8,459)0,5 \times R0,5 = (100 + 48,3) / 8,459)0,5 \times 399,70,5 = 83,7Km/h
```

Bitola larga:

```
Vmáx = (hp + 116) / 13,183)0,5 \times R0,5 = (160 + 116) / 13,183)0,5 \times 4000,5 = 91,5 Km/h
```

A torção não pode ser maior que 1mm/m para a bitola larga e 1,5mm/m para a bitola métrica.

Em curva a superelevação é dada no trilho externo.

Em curvas reversas, com extensas curvas de transição, mas sem tangente intermediária, o trilho externo da primeira curva deverá ir reduzindo a superelevação, atendendo o limite máximo de torção até nivelarse com o outro trilho; daí em diante se manterá nesse nível numa extensão de 20metros. A seguir começa a elevar-se novamente, atendendo a condição de torção até atingir novamente sua superelevação normal. A razão de ter esses 20 metros intermediários sem superelevação permite que o vagão ou locomotiva passe de uma curva para outra sem experimentar esforço anormal de torção em sua estrutura. Não há necessidade de se modificar o projeto geométrico. Esses 20 metros estão nas pontas de duas curvas de transição de raio muito grande.

Em duas curvas do mesmo sentido, com tangente intermediária menor de 20 metros, podese reduzir a superelevação da primeira da primeira até 28mm, que é o máximo tolerável; daí em diante deve manter esses mesmos 28mm na extensão de 20 metros e, a seguir, tornar a aumentar até atingir seu valor hp já estabelecido para esta segunda curva. O valor 28mm pode ser arredondado para 30mm.

Nas linhas de pátios não deve ser colocada qualquer superelevação exceto na adjacente à linha de movimento, se for na parte interna da curva, caso em que se dará a superelevação mínima necessária para atender a exigência de gabarito devido à superelevação na linha em movimento.

4.4.14 Ocorrências Especiais

a) Obras de Artes Especiais (Pontes)

Os dormentes das pontes deverá ser todos de concreto, sem contra-trilhos.

b) Passagem de Nível

Nos cruzamentos das estradas vicinais existentes com a linha férrea, prevê-se a execução, lajes de concreto ou pavimento CBUQ (adotar asfalto).

4.4.15 Metodologia Construtiva

Introdução

Após a infra-estrutura concluída, inclusive com o sublastro colocado, segue a vez da construção da linha nova sobre ela.

O método construtivo será mecanizado, com a utilização de máquinas e equipamentos.

Formação do Trem de Serviço

O vagão plataforma, referência PET possui um comprimento de engate a engate de 19,00m e uma capacidade líquida de 97.000kg, com 33.000kg de tara, com um peso bruto máximo de 130.000kg. O comprimento útil da plataforma é de 18,20m e largura de 3,00m.

Como as barras de trilho UIC 60 vem num comprimento de 240m, o número de vagões necessários para poder transportar esta barra é de 240 / 19 = 12,6 . 13 vagões.+ 2 vagões "madrinhas" (um em cada ponta) = 15 vagões.

A largura do patim do trilho UIC 60 é de 150mm e pesa 60,34kgf/m. O número de trilhos lado a lado que a largura do vagão plataforma permite carregar é de 3,00 / 0,15 = 20 trilhos, com um peso de 20 x 60,34 x 19 = 22.929kgf. Como a carga útil que o vagão plataforma pode carregar é de 97.000 kgf, o número máximo de camadas de trilho a serem transportadas é de 4,23 \cong 4 camadas.

As camadas devem ser com o trilho de pé, isto é, sempre com o boleto virado para cima. Entre uma camada e outra deve ser colocado "de chato", sarrafos de madeira de 3,00 cm x 5,00 cm a cada 3,00 m, afim de evitar que, na viagem, os trilhos fiquem roçando um contra o outro, podendo desalinharem. A quantidade de trilhos que pode ser levada é de 60 trilhos de 240m, podendo ser lançada 4.800,00 m de linha bitola mista de cada vez.

O dormente de concreto monobloco, com comprimento de 2,80m pesa 410kgf. A largura de sua base inferior é de 28,5cm. Como o comprimento útil do vagão plataforma é de 18,20m, é possível transportar,por camada, 18,20 / 0,285 = 63,8. 63 dormentes que pesam 63 x 410 = 24.2.830kgf. A capacidade útil do vagão plataforma é de 97.000kgf.Portanto, cada vagão pode transportar até o máximo de 97.000 / 24.2.830 = 3,7 camadas, ou seja, 3 camadas inteiras mais 47 dormentes. O número total de dormentes por vagão é de 3 x 63 + 47 = 236 dormentes.

A taxa de dormentação é de 1.667/km. Para formar 1 km de linha, são necessários 1.667/ $236 = 7,06 \cong 8 \text{ vagões}$.

A composição principal do trem de serviço, para o lançamento da via férrea seria formada de 23 vagões plataforma, sendo 15 vagões para o carregamento dos trilhos e 8 vagões para o carregamento dos dormentes de concreto monobloco. Mas este tipo de formação possui 21 vagões carregados x 130t =2.730 toneladas, o que fica com carga muito alta para o tipo de locomotiva a ser utilizada como trem de serviço, normalmente locomotivas pequenas, mais leves e por conseguinte, com menos potência, dada a natureza do serviço. O peso pode ser aliviado, com a diminuição do número de trilhos a serem transportados, para que seja possível o lançamento de 1,00 km de linha mista, juntamente com os dormentes.Portanto 13 barras de 240m formam 1,00 km de linha e pesam 181 toneladas. A carga para bruta para 1,00 km de linha, computando somente trilhos e dormentes de concreto é de: 8 x 130 + 181 = 1.978 toneladas, que fica mais compatível, com a potência da locomotiva. Além desses vagões, são necessários outros vagões, para levar as fixações

e palmilhas dos dormentes, para guardar equipamentos, ferramentas, máquinas e guinchos, cabos de aço, combustível para as máquinas. Também são necessários vagões para a logística do pessoal, como alojamentos e cozinha.

A composição ferroviária é formada com os vagões de trilhos na cabeceira, seguido dos vagões de dormentes, o vagão com as fixações, e a locomotiva "empurrando" a composição. Com sistema de rádios, o maquinista se comunica com o pessoal da frente de serviço, recebendo as instruções de avançar, recuar, etc.

Lançamento da Linha de Serviço

Será lançada uma linha de serviço com trilho menos nobres, podendo ser do tipo TR-32 ou TR-37, com barras curtas de 12,0 m (doze metros) ou 18,0 m (dezoito metros), de fácil manuseio e ligados por meio de talas e parafusos. Estes trilhos serão apoiados diretamente na plataforma e servirão de guia, tendo a bitola de 4,50 m, por onde correrá o Guincho de Lançamento da Linha.

Guincho de Lançamento da linha

O guincho de lançamento de linha é formado por dois pórticos metálicos, em formato de "U" invertido, que é apoiado em roletes metálicos sobre os trilhos lançados na plataforma da via. As dimensões deste pórtico são: 5,00m de altura e largura de 4,50m. A distância entre os pórticos é de 5m, ligados entre si, na parte superior, por uma treliça em formato quadrangular, semelhante a uma grua, e que avança 5,00m para a frente do pórtico formando uma lança. Na parte superior do pórtico, há um sistema de roldanas, talhas e guinchos, cabos e correntes que são manobrados para poder retirar os trilhos e dormentes e coloca-los na via.

Os trilhos da Linha de Serviço, servirão de guia e bitola para o pórtico, lançamento é feito com o pórtico, através da lança do pórtico

Lançamento de Trilhos e Dormentes

Após a construção a linha de serviço do pórtico, na bitola de 4,50m, procede-se o lançamento do trilho longo soldado da maneira descrita a seguir:

O pórtico percorre os vagões plataforma que estão carregados com os trilhos. Com guinchos e cabos que possuem tenazes para segurar o boleto do trilho, ergue-o na altura que possibilite colocar roletes a cada 5m, para que possa rolar sobre os outros trilhos e diminuir o atrito entre eles. Óleo queimado e graxa são colocados para facilitar o deslizamento.

Após, o pórtico desloca-se para o final da linha de serviço de rolamento do pórtico, e, depois de travado e calçado, através de cabo de aço e máquinas, traciona o trilho retirando-o dos

vagões plataforma. Quando o trilho atingir a plataforma, são colocados roletes ou pequenas toras roliças de madeira, para que possa ir por sobre eles, diminuindo o atrito, até sair completamente dos vagões e ficar estendido na plataforma da via. O trilho é colocado a uma distância de 1,50m do eixo da via, para que não atrapalhe a colocação dos dormentes.

O pórtico retorna para puxar o outro trilho, da mesma forma anterior e o estende do outro lado a uma distância de 1,50m do eixo da linha. Retorna novamente e puxa o terceiro trilho, que forma a bitola mista.

Após o lançamento dos trilhos, o pórtico retorna e vai buscar os dormentes de concreto que são colocados perpendiculares ao eixo da linha no espaçamento determinado. Paralelamente, as fixações elásticas Pandrol e palmilhas são posicionadas próximo aos dormentes, na quantidade para cada dormente, isto é, 4 grampos Pandrol, e 2 palmilhas por dormente. As palmilhas já podem ser colocadas no encaixe existente no dormente.

Quando a quantidade de dormentes colocada for suficiente para formar a grade do comprimento dos trilhos lançados, o pórtico começa a colocar o trilho sobre o dormente. Primeiro o trilho que vai ficar no interior do dormente. Como o trilho é longo, ele é flexível e é possível ser colocado diretamente sobre os dormentes, sem torcê-lo. Paralelamente as fixações já estão posicionadas próximas aos dormentes e devem ser colocadas nos dormentes.

Assim, para cada fila de trilho o procedimento é o mesmo, até que a grade da linha fique pronta e possibilite a entrada da composição ferroviária sobre ela. A partir de então, o procedimento se repete sucessivamente e a construção da linha segue avançando.

Lastramento

O "trem de lastro" como é chamado, entra na grade da linha e a pedra britada é distribuída, por pessoal experiente, com o trem em movimento lento e com os vagões apropriados para este fim, referência HNT.

Nivelamento, alinhamento e puxamento de linha

Com Máquina Socadora Alinhadora e Puxadora (tipo Plasser & Theurer ou similar), procedese o nivelamento, alinhamento e puxamento de linha, os quais devem ser feitos 3 (três) levantes, cada um com 10 cm (dez centímetros) de altura.

O 1º levante, servirá para tirar a grade que está apoiada no sublastro.

Descarrega-se mais lastro de pedra britada com o "trem lastro" para o 2º levante. Máquinas Reguladoras de Lastro (tipo Plasser & Theurer ou similar) devem ser utilizadas, para recuperar a quantidade de lastro que, por ventura, tenha ficado fora do alcance da Niveladora e também para dar a forma do perfil do lastro.

O 3º levante, é final, após a descarga de mais pedra britada.

Após o 3º levante deve-se passar a Máquina Reguladora de Lastro e Varredura, para dar o perfil final do lastro e da linha

4.4.16 Quantitativos de Materiais por quilômetro de via

Apresenta-se abaixo quadro com quantitativos de materiais por quilômetro de via.

DISCRIMINAÇÃO	QUANT.
Trilho UIC 60	120,6 t
Dormentes de concreto monobloco comprimento 2,80m	1.667 pç
Pedra britada para lastro	2.338 m³
Fixações elásticas do tipo PANDROLL	6.668 pç
Palmilhas de neoprene	3.334 pç
Soldas aluminotérmicas para o trilho UIC 60 em barras de 240 m	12,51

4.4.17 Lastro e Sublastro

4.4.17.1 Lastro

O Lastro terá altura de 30 cm, medida abaixo do dormente, conforme dimensionamento apresentado. Dentre os elementos que compõem a superestrutura de uma via permanente, cabe ao lastro um papel de importância, pois ele tem como funções:

- a) Receber e distribuir as pressões transmitidas pelos dormentes quando solicitados pela passagem dos trens;
- b) Opor aos dormentes uma resistência quanto aos deslocamentos longitudinais e transversais, que é a responsável pela rigidez da grade da via, mantendo a bitola e as demais medidas geométricas da linha;
- c) Manter drenada a superestrutura, permitindo o rápido escoamento das águas pluviais.

O lastro deverá ter as seguintes características:

- Boa resistência mecânica e elevado atrito interno;
- Fácil trabalhabilidade e boa permeabilidade;
- Durabilidade.

4.4.17.2 Sublastro

Entre a camada de pedra do lastro e a plataforma, haverá uma camada de material de jazida ($CBR \ge 20 \%$), denominada sublastro, que terá a espessura de 30 cm.

A camada de sublastro tem como funções principais:

- a) Evitar o socamento do lastro na plataforma, isto é, evitar que as pedras penetrem na plataforma trocando de lugar com o material componente da mesma;
- b) Evitar o bombeamento do material fino da plataforma para o lastro, funcionando como um filtro e como um elemento distribuidor de pressões sobre a plataforma.

O sublastro compõe com o lastro a camada necessária para propiciar uma distribuição de pressões na plataforma coerente com a capacidade de suporte da mesma. No nosso caso, tal altura deverá ser de 60 cm.

4.4.18 Pátios

A superestrutura dos pátios será similar à da linha principal. Foram preparadas seções transversais –tipo do projeto, que integram o Volume 2 – Projeto de Execução.

A declividade dos diversos planos da plataforma será igual a 2 %. Os trilhos da linha principal e dos ramais estarão em mesma cota, transversalmente. Deste modo, a espessura da camada do lastro variará transversalmente, sendo mínimo (30 cm) nas proximidades das arestas convexas e terá valores maiores nas posições mais afastadas.

Os pátios de cruzamento terão extensão útil total igual a 2.500 metros, e serão formados pela linha principal e por um desvio.

O pátio de Salgueiro terá extensão de 2.700 metros e conterá 12 linhas, além da linha principal.

As larguras das seções transversais dos pátios foram definidas em função do número de vias de cada caso e do valor da entrevia estabelecido em 4,50 metros.

Os detalhamentos dos projetos das edificações e equipamentos dos pátios serão de responsabilidade as CFN.

A seguir apresenta-se a localização dos pátios:

LOCALIZAÇÃO DOS PÁTIOS						
PÁTIOS ESTACA INICIAL ESTACA FINAL EXTENSÃO (m)						
Pátio de Salgueiro	1290 + 0,00	1425 + 0,00	2.700			
Pátio de Transição 5	2197 + 0,00	2329 + 17,98	2.500			
Pátio de Transição 6	3582 + 0,00	3714 + 17,98	2.500			
Pátio de Transição 7	5028 + 10,00	5161 + 7,98	2.500			
Pátio de Transição 8	6160 + 0,00	6292 + 17,98	2.500			

OBS.: Atualmente a superestrutura foi calculada apenas para o pátio de Salgueiro, pátio de transição 6 e pátio de transição 8.

As seções transversais de superestrutura da via estão apresentadas a seguir:

4.4.19 Especificações e Normas Técnicas Adotadas

As especificações para os trabalhos de execução da superestrutura foram preparadas considerando, principalmente, os seguintes tópicos: materiais a utilizar, procedimentos construtivos a adotar, e critérios de aceitação de medição e pagamento dos trabalhos executados, conforme as especificações técnicas ferroviárias, oficialmente adotadas pelo DNIT.

Foram adotadas, no que foi considerado aplicável, as recomendações das Normas Técnicas Brasileiras, da ABNT, discriminadas a seguir:

NBR 7641/84 - Via Permanente Ferroviária

NBR 8498/84 - Equipamentos para Via Permanente Ferroviária

NBR 8361/84 - Dormentes de Concreto - Det. de Resistência de Ancoragem da Fixação

NBR 8499/84 - Dormentes de Concreto

NBR 7511/82 - Dormentes de Madeira

NBR 7516/82 - Madeira de Lei para Dormentes

NBR 7521/82 - Tratamento de Dormentes de Madeira

NBR 7522/82 - Dormentes de Madeira

NBR 7649/82 - Fixação Ferroviária

NBR 5563/77 - Material Ferroviário - Elementos de Fixação - Escolha

NBR 7914/84 - Lastro Projeto

NBR 8697/84 - Lastro Padrão - Determinação do Teor de Fragmentação Macios e Friáveis

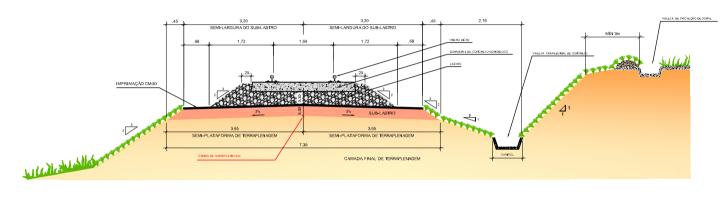
NBR 5564/77 - Lastro Padrão

NBR 6954/81 - Determinação da Forma do Material do Lastro Padrão

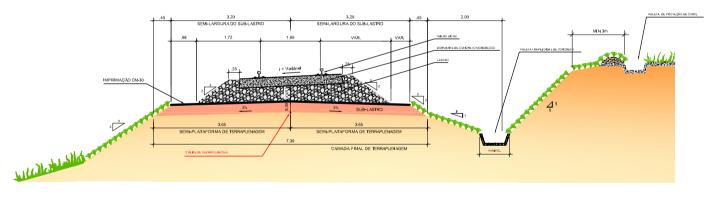
NBR 8938/85 - Lastro Padrão - Resistência ao choque

NBR 7591/82 - Tala de Junção

NBR 7650/82 - Trilho


NBR 7599/82 - Trilhos com defeito

NBR 7640/82 - Defeitos nos trilhos

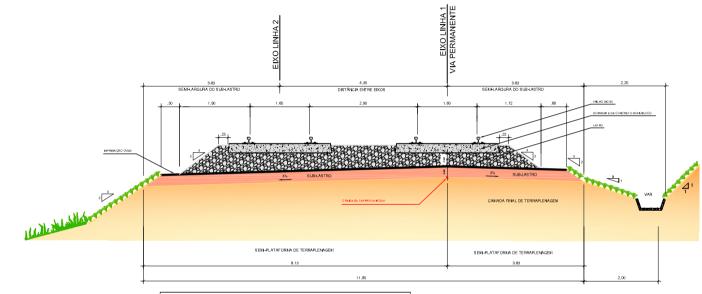

4.4.20 Apresentação

O Projeto da Superestrutura da Via Permanente é apresentado no Volume 2 – Projeto de Execução. Complementando o projeto, foram preparadas as especificações técnicas e elaborada a quantificação dos serviços de superestrutura.

EXTENSÕES EM TANGENTE

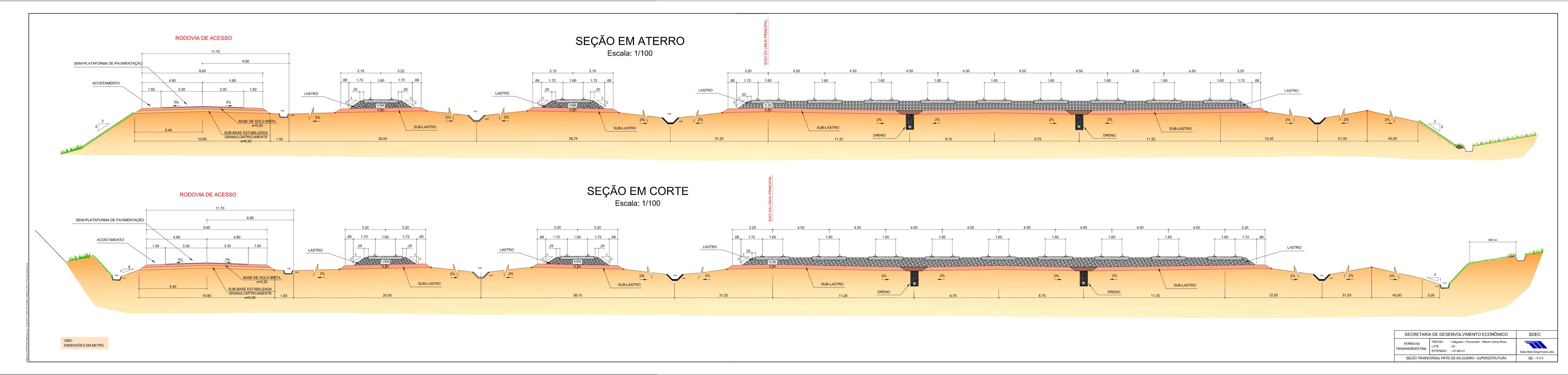
EXTENSÕES EM CURVA

OBS; DIMENSÕES EM METRO


SEÇÃO TRANSVERSAL TIPO SUPERESTRUTURA

MAIA MELO ENGENHARIA LTDA.

QD - 441


QD. -4.4.2

SEÇÃO TIPO DOS PÁTIOS DE CRUZAMENTO

ESTA SEÇÃO SERÁ UTILIZADA NOS EGUINTES SEGMENTOS:				
LOCALIZAÇÃO DOS PÁTIOS				
LOCALIZAÇÃO	INÍCIO	FINAL	EXTENSÃO (m)	OBSERVAÇÃO
PÁTIO DE TRANSIÇÃO 9	2197 + 0,00	2329 + 17,98	2500	INFRAESTRUTURA
PÁTIO DE TRANSIÇÃO 8	3582 + 0,00	3714 + 17,98	2500	SUPERESTRUTURA
PÁTIO DE TRANSIÇÃO 7	5028+10,00	5161 + 7,98	2500	INFRAESTRUTURA
PÁTIO DE TRANSIÇÃO 6	6160 + 0,00	6292 + 17,98	2500	SUPERESTRUTURA

OBS: DIMENSÕES EM METRO

4.5 Projeto de Obras de Arte Especiais

4.5.1 Objetivo

Trata-se do projeto estrutural para dezessete pontes ferroviárias, com tabuleiros em concreto armado e em concreto protendido, com vãos padronizados de 20,0m de extensão e tabuleiro com 5,60m de largura total incluindo superestrutura ferroviária com largura de 4,0m para comportar bitola métrica e bitola de 1,60m, bem como passeios de 0,80m cada um, para transposição de diversos rios ao longo do traçado da ferrovia Transnordestina.

O projeto estrutural também contempla quatro viadutos rodoviários em concreto armado na BR-232, nas rodovias de acesso a Terra Nova e Umãs, e na PE-85, com soluções específicas para cada uma das obras. A largura adotada para o viaduto na BR-232 foi de 12,80m, enquanto que para as demais obras foi de 8,80m. Foi adotado vão único para todos os viadutos, sendo vão de 10,0m para o viaduto na PE-85 e 15,0m para os demais.

A seguir apresenta-se a relação das pontes e sua localização ao longo do trecho:

PONTES FERROVIÁRIAS			
LOCALIZAÇÃO	DENOMINAÇÃO	EXTENSÃO (m)	
Est. 619 + 4,00	Ponte s/ o Riacho do Miguel	60	
Est. 978 + 0,40	Ponte s/ o Riacho S/ Nome - 01	100	
Est.1909 + 8,23	Ponte s/ o Rio Traíras	160	
Est. 2081+ 5,62	Ponte s/ o Açude Abóboras	160	
Est. 2960 + 1,67	Ponte s/ o Riacho Parnamirim	60	
Est. 3032 + 13,60	Ponte s/ o Rio Brígida	180	
Est. 3215 + 14,00	Ponte s/ o Riacho S/ Nome - 02	60	

PONTES FERROVIÁRIAS			
LOCALIZAÇÃO	DENOMINAÇÃO	EXTENSÃO (m)	
Est. 3384 + 15,40	Ponte s/ o Riacho do Veado	60	
Est. 3512 + 5,40	Ponte s/ o Riacho Palestina	60	
Est. 3759 + 15,40	Ponte s/ o Riacho S/ Nome - 03	60	
Est. 3921 + 12,60	Ponte s/ o Riacho da Volta	120	
Est. 4079 + 15,40	Ponte s/ o Riacho da Fazenda	60	
Est. 4259 + 17,90	Ponte s/ o Riacho Curralinho	60	
Est. 4777 + 5,40	Ponte s/ o Riacho São Pedro	140	
Est. 4977 + 0,40	Ponte s/ o Riacho Aroeira	60	
Est. 5452 + 5,40	Ponte s/ o Riacho Pau Ferrado	60	
Est. 5789 + 15,40	Ponte s/ o Riacho Urimamã	60	

VIADUTOS RODOVIÁRIOS				
LOCALIZAÇÃO	DENOMINAÇÃO	EXTENSÃO (m)		
Est. 815 + 6,00	Viaduto na PE-507 – Acesso a Serrita	10		
Est. 821 + 11,50	Viaduto na BR-232	15		
Est. 1180 + 0,00	Viaduto na PE-483 – Acesso a Umãs	15		
Est. 2137 + 0,00	Viaduto na PE-499 – Acesso a Terra Nova	15		

4.5.2 Descrição das Pontes Ferroviárias

Levou-se em consideração a NBR-7189/1985 – Cargas Móveis para Projeto Estrutural de Obras Ferroviárias, adotando-se trem-tipo TB-360 para via de bitola 1,60m e TB-270 para via de bitola métrica.

O projeto proposto considera tabuleiro reto com extensão padrão de 20,0m para cada vão. Assim sendo, a extensão total de cada obra atenderá o vão hidráulico necessário com vãos padronizados de 20,0m. Cada uma das pontes terá largura total de 5,60m, sendo superestrutura ferroviária de 4,0m para comportar linha de bitola 1,6m e terceiro trilho formando linha de bitola métrica, além de dois passeios de serviço com 0,8m cada um. As pontes são retas com greide projetado atendendo ao projeto geométrico da via ferroviária.

A ligação entre o tabuleiro e os apoios será feita através de aparelhos de apoio do tipo elastoméricos fretados – neoprenes, assentes sobre pilares elásticos que, por sua vez, se apoiarão em fundações diretamente assentes sobre o terreno resistente.

Os apoios extremos das obras estão projetados dentro dos aterros de acesso, que por sua vez formarão talude natural evitando-se dessa forma a necessidade de utilização de obras de contenção desses aterros. Far-se-á uso de lajes de aproximação, uma em cada extremidade, para ligação entre o terreno e a estrutura da ponte.

Quando as fundações forem em tubulões, estes só deverão ser executados após a conclusão dos aterros de acesso, evitando-se assim que os tubulões sofram empuxo de terra.

Essa solução adotada permite redução de custos em face da eliminação de obras de contenção de aterros de grande altura, bem como evitar a alternativa de adoção de maior número de vão, o que deixaria a obra bem mais onerosa.

a. Soluções Estruturais adotadas

Superestrutura com duas vigas longitudinais por vão de concreto protendido, pré-moldadas, com 19,88m de comprimento, tendo 2,0m de altura, com distancia entre eixos de 1,8m, para cada um dos vãos de 20,0m.

Laje superior, com espessura final de 0,20m, concretada no local, complementando a mesa superior das vigas longitudinais pré-moldadas, para todos os vãos longitudinais.

Transversinas, em número de 4 por viga, sendo duas nas extremidades e duas distrbuidas no vão da viga, em concreto armado moldado no local com forma e escoramento se apoiando diretamente sobre as vigas pré-moldadas longitudinais.

Infra-estrutura projetada em fundação direta ou tubulões assente sobre o terreno resistente de fundação.

b. Vantagens da Solução Proposta

O emprego de vão de 20,0m de comprimento para as pontes ferroviárias, com tabuleiro em vigas de concreto protendido pré-moldadas, transversinas e laje superior concretada no local, apoiando-se nas vigas pré-moldadas, permite obtenção de vantagens tais como, reaproveitamento de materiais e redução no tempo de execução, pois várias das etapas de serviço podem ser executadas simultaneamente.

A adoção do vão levou em conta as seguintes considerações:

- Viabilizar solução padrão de obra d'arte especial para transposição dos diversos rios ao longo do traçado da ferrovia Transnordestina;
- Tornar mais econômica a solução da superestrutura;
- Simplificar as operações construtivas do tabuleiro pré-moldado;
- Compatibilidade com as soluções para a infra-estrutura.

A tecnologia do pré-moldado envolve desde a fabricação das vigas com o maior índice possível de reutilização de formas, até técnicas especiais de transporte e posicionamento de maneira a eliminar a necessidade de escoramento, o que tornaria a obra mais onerosa.

Em função do acima exposto, temos a referir ainda as seguintes vantagens da utilização de vigas pré-moldadas:

- Otimização das formas;
- Pré-montagem das armaduras;
- Possibilidade de melhor adensamento do concreto, característica imprescindível para uma maior durabilidade da obra.

Estas vigas podem ser executadas no canteiro de obras enquanto as fundações, os pilares e as travessas estejam sendo executados. Após o posicionamento definitivo das vigas, são moldadas as transversinas, e complementada a laje superior. Uma vez concretado todo o tabuleiro, poder-se-á dar inicio à execução dos serviços complementares previstos.

Do acima exposto, pode-se observar que a proposta de projeto adotou como premissa básica a escolha de soluções que estejam de acordo com a realidade local, compatível com a destinação final da obra, busquem o emprego de tecnologias já utilizadas e consagradas no país, apresentem menores custos e possibilitem menores prazos de execução.

c. Especificação dos Materiais

- Concreto Estrutural
 - Superestrutura fck=35MPa
 - Meso/Infra-estrutura fck=30MPa
- Aço CA 50 (A)
- Aço CA 60 (A)
- Aço CP 190 RB 12,7m
- Superestrutura ferroviária com lastro de brita, dormentes e trilhos.

4.5.3 Descrição dos Viadutos Rodoviários

Levou-se em consideração a NBR-7188/1984 – Carga Móvel em Ponte Rodoviária e Passarela de Pedestre, adotando-se o veículo para viaduto classe 45.

Os projetos propostos consideram tabuleiro reto com extensão total que permita a transposição da ferrovia, respeitando-se os gabaritos horizontal e vertical exigidos. Por outro lado, as larguras projetadas levam em consideração a largura das respectivas rodovias onde as obras estarão inseridas, prescindindo-se de passeios e incorporando-se os acostamentos e barreiras laterais.

Para os viadutos na BR – 232, Acesso a Terra Nova e Acesso a Umãs, a solução de tabuleiro, para vão de 15,0m, será em vigas pré-moldadas de concreto armado com laje superior moldada no local sobre pré-lajes apoiadas nas referidas vigas. Para o viaduto na PE – 85, onde o vão é de 10,0m, a solução de tabuleiro será em laje maciça de concreto armado moldada no local.

Para os quatro viadutos, a ligação entre o tabuleiro e os apoios será feita através de aparelhos de apoio do tipo elastoméricos fretados – neoprenes, assentes sobre muros de contenção em alvenaria de pedra, que por sua vez se apoiarão em fundações diretamente assentes sobre o terreno resistente. Esses muros de contenção representam os encontros de apoio extremo.

a. Soluções Estruturais Adotadas

Para os viadutos nos Acessos a Terra Nova e Umãs, adotou-se superestruturas com quatro vigas longitudinais pré-moldadas de concreto armado no vão único, com 15,54m de comprimento, tendo 0,97m de altura, com distancia entre eixos de 2,20m, para cada um dos viadutos rodoviários.

Para o viaduto na BR-232, adotou-se superestrutura com seis vigas longitudinais prémoldadas de concreto armado no vão único, com 15,54m de comprimento, tendo 0,97m de altura, com distancia entre eixos de 2,10m, para cada uma das pontes ferroviárias.

Em todos os três viadutos, laje superior, com espessura final de 0,18m, concretada no local sobre pré-lajes com 0,06m de espessura. Transversinas, em número de três por viga, sendo duas nas extremidades e uma no centro da viga, em concreto armado, moldadas no local com forma e escoramento se apoiando diretamente sobre as vigas pré-moldadas longitudinais.

Para o viaduto na PE-85, adotou-se superestrutura em laje maciça de concreto armado com espessura de 0,55m na largura central de 6,80m e espessura variável de 0,55m para 0,20m na largura de 1,00m em cada uma das laterais.

Meso e Infra-estruturas projetadas em cada uma das extremidades através de muros de contenção em alvenaria de pedra assentes sobre o terreno resistente de fundação.

b. Vantagens da Solução Proposta

O emprego de vão de 15,0m de comprimento para os viadutos rodoviários na BR-232 e nos Acessos a Terra Nova e Umãs, com tabuleiro em vigas de concreto armado pré-moldadas, transversinas e laje superior concretada no local, apoiando-se nas vigas pré-moldadas, permite obtenção de vantagens tais como, reaproveitamento de materiais e redução no tempo de execução, pois várias das etapas de serviço podem ser executadas simultaneamente.

A adoção do vão levou em conta as seguintes considerações:

- Viabilizar solução padrão de obra d'arte especial para transposição dos diversos rios ao longo do traçado da ferrovia Transnordestina;
- Tornar mais econômica a solução da superestrutura;
- Simplificar as operações construtivas do tabuleiro pré-moldado;
- Compatibilidade com as soluções para a infra-estrutura.

A tecnologia do pré-moldado envolve desde a fabricação das vigas com o maior índice possível de reutilização de formas, até técnicas especiais de transporte e posicionamento de maneira a eliminar a necessidade de escoramento, o que tornaria a obra mais onerosa.

Em função do acima exposto, temos a referir ainda as seguintes vantagens da utilização de vigas pré-moldadas:

- Otimização das formas;
- Pré-montagem das armaduras;
- Possibilidade de melhor adensamento do concreto, característica imprescindível para uma maior durabilidade da obra.

Estas vigas podem ser executadas no canteiro de obras enquanto as fundações, os pilares e as travessas estejam sendo executados. Após o posicionamento definitivo das vigas, são

moldadas as transversinas, e complementada a laje superior. Uma vez concretado todo o tabuleiro, poder-se-á dar inicio à execução dos serviços complementares previstos.

Para o viaduto rodoviário na PE-85, a adoção de laje maciça em concreto armado está compatível com o vão de 10,0m, bem como as condições locais de execução de escoramento para a concretagem da laje.

Do acima exposto, pode-se observar que a proposta de projeto adotou como premissa básica a escolha de soluções que estejam de acordo com a realidade local, compatível com a destinação final da obra, busquem o emprego de tecnologias já utilizadas e consagradas no país, apresentem menores custos e possibilitem menores prazos de execução.

c. Especificação dos Materiais

- Concreto Estrutural fck = 30 MPa
- Aço CA 50 (A)
- Aço CA 60 (A)

4.6 Projeto de Sinalização

Condições Gerais

O projeto de sinalização ferroviária do trecho Salgueiro - Parnamirim – Riacho Santa Rosa, foi executado de acordo com as normas da RFFSA e DNIT, regendo as questões referentes a classificação, forma, cor, dimensões, símbolos, palavras, letras, localização e posição dos sinais, marcas e acessórios.

O projeto é composto pela sinalização ferroviária, sinalização dos acessos (sinalização vertical e horizontal) e dispositivos auxiliares.

Os caminhos de acessos aos PIs (Passagens Inferior) e PNs (Passagens em Nível) são caminhos carroçáveis, não necessitam de projeto, são caminhos definidos em campo pela FISCALIZAÇÃO.

4.6.1 Sinalização Ferroviária

A sinalização ferroviária compreenderá placas permanentes e marcos quilométricos e placas móveis ou temporárias.

4.6.1.1 Placas Permanentes ou Fixas

As placas permanentes estão dispostas ao longo da ferrovia e nos cruzamentos em nível ou referentes à sinalização rodoviária.

Ao longo da ferrovia serão utilizadas placas de regulamentação, advertência e placas de indicação.

4.6.1.2 Placas de regulamentação

São as que informam sobre dispositivos de natureza regulamentar. (limite de velocidade, apite, parada obrigatória, etc).

Na ferrovia transnordestina estão previstas o emprego de dois tipos de placas.

• R-1: Velocidade máxima autorizada (VMA)

As placas de regulamentação terão as dimensões em função do VMA.

Neste projeto a velocidade máxima autorizada é de 80 km/h, utilizaremos o lado igual a 80cm (de acordo com as normas vigentes).

• R-5: Apite

Este sinal será empregado quando houver necessidade de aviso acústico da aproximação do veiculo ferroviário, por exemplo: na chegada das passagens de nível. A dimensão utilizada é de lado igual a 80 cm.

As placas de regulamentação serão quadradas e com um dos lados na horizontal. Seus algarismos, letras e símbolos, serão pintados em tinta amarela refletiva, com fundo e o verso preto fosco.

4.6.1.3 Placas de Advertência

São as que chamam atenção de situações que exijam cautela, por exemplo: as indicativas de passagem de nível, trabalho na via permanente, etc.

Neste projeto foram utilizadas as seguintes placas:

A-1: Passagem de Nível a 200m

Este sinal será empregado para advertir o maquinista da existência de passagem de nível na distância indicada. Os lados são iguais a 80 cm.

• A-4: Ponte

Este sinal será empregado para alertar ao maquinista da existência de uma ponte a distância indicada.

A-5: AMV

Este sinal será empregado para alertar ao maquinista da existência de um AMV a distância indicada.

As placas de advertência serão quadradas e com uma diagonal na horizontal, os símbolos, algarismos e letras serão pintadas em tinta amarela refletiva, com o fundo e o verso em preto fosco.

4.6.1.4 Placas de Indicação

São as placas que contém outras informações julgadas de utilidade para a condução dos trens, tais como: placa de indicação de estação, placas de estação, limite urbanos, etc. Nesse projeto foram utilizadas as seguintes placas:

• I-2: Pátio a 1 km de distância

Este sinal (auto-esplicativo), tem o formato de triangulo com o vértice para cima e os lados com 80 cm de largura

I-1: Desvio

Adverte ao maquinista da aproximação de desvio, tem o formato de triângulo equilátero com o vértice para baixo e os lados com 80 cm de largura.

Essas duas placas, os números, letras e algarismo serão em tinta preta, com o fundo branco.

• I-3 e I-4: Placa Indicativa de Pátio

Essas placas indicam ao maquinista a chegada ou saída de determinado pátio.

No desenho do Vol-2-Projeto Executivo é mostrado os detalhes de todas as placas aqui mencionadas.

4.6.1.5 Placas temporárias ou móveis

São placas que servem para indicar a existência de anormalidade transitória na ferrovia, tais como: intervenções para manutenção da via, queda de barreira, etc. Esses sinais se sobrepõem aos de caráter permanente.

No Vol-2 – Projeto executivo, são mostrados esses tipos de placas (também chamadas de "bandeiras")

Anulação Temporária da Placa

Quando se deseja anular uma placa temporariamente, deve-se cobrí-la com uma placa de cor preta fosca, facilmente aplicável.

No Volume 2 – Projeto Executivo, há o detalhe desse tipo de placa.

4.6.1.6 Marcos quilométricos

Serão instalados ao longo de toda a ferrovia, alternadamente do lado direito e esquerdo a plataforma, obedecendo ao afastamento e altura de fixação indicados no Vol-2-Projeto Executivo.

As dimensões, o tipo de material e sua fixação ao longo da ferrovia, também estão no volume acima mencionado.

4.6.1.7 Materiais

As especificações para confecção das placas, suporte, fixação, proteção, etc. estão caracterizados nos desenhos no Volume 2- Projeto Executivo.

As placas, suportes e as braçadeiras deverão ser protegidas com a aplicação de tinta antioxidante à base de cromato de zinco, ou de tinta a base de resina poliuretamica, ou serem galvanizadas.

Os parafusos, porcas e arruelas deverão ser de ferro galvanizados, cromados ou outro processo equivalente.

Os suportes e a braçadeiras deverão ser sempre pintados de tinta preta sobre a camada anti-oxidante.

4.6.1.8 Localização

As placas ferroviárias serão localizadas a margem direita da linha, em relação ao sentido de circulação.

- Linha singela: só será permitida a colocação de placa à esquerda da linha, quando houver restrição de gabarito à direita.
- Linha dupla de entrevia menor que 5,00 m: a placa deverá ficar no lado externo. Se houver restrição de gabarito, a placa ficará na entrevia, utilizando-se de uma placa, indicando a que linha se refere.
- Linha dupla de entrevia maior que 5,00 m: a altura do centro da placa ficará entre 2,0 e 2,5 m acima do nível do boleto do trilho a que se refere. Quando a linha estiver sobre estrutura (pontes, passagem superior, etc) a altura da placa, será delimitada pelo gabarito.

A colocação das placas no sentido longitudinal faz-se junto ou antecipadamente ao objeto a que se destina. A distância varia de acordo com a VMA, ou seja:

- VMA ≤ 60 km/h → Placa à 150 m
- VMA > 60 km/h e VMA ≤ 80 km → Placa à 200m
- VMA > 80 e VMA ≤ 120m km → Placa à 300 m
- VMA > 120 km → Placa à 400 m

No projeto da transnordestina as placas de regulamentação e advertência ficarão a 200m do objeto, com exceção das placas de "Apite" que serão colocadas entre essa distancia e o objeto.

As placas indicativas serão colocadas junto ao objeto.

4.6.2 Passagem de nível

Para as entradas de baixa densidade de tráfego que cortam a ferrovia, optou-se por cruzamento em nível, com equipamento composto por placas de aviso de cruzamento com a linha férrea, sem sinal luminoso, sem campainha e sem cansela.

O equipamento é composto de placa de cruzamento (Cruz de Santo André) com fundo branco refletivo e letras pretas; placa indicativa de número de linhas com fundo preto e letras amarelas refletivas; placas de advertência de fundo preto, com letras amarelas refletivas.

O equipamento terá poste pintado em listras horizontais brancas ou alumínio e pretas.

As placas deverão ser colocadas nos dois lados da ferrovia, a uma distância de no mínimo 3,60 m do eixo da linha.

4.6.3 Projeto de Sinalização dos Acessos

4.6.3.1 Sinalização Vertical

A sinalização vertical é realizada através dos sinais de trânsito, cuja finalidade essencial é transmitir na via pública, normas específicas, mediante símbolos e legendas padronizadas, com o objetivo de advertir (sinais de advertência), regulamentar (sinais de regulamentação) e indicar (sinais de indicação) a forma correta e segura para a movimentação de veículos e pedestres.

No que concerne à sinalização vertical projetada, além da sinalização de regulamentação e advertência, foi dada ênfase à sinalização indicativa nas interseções e à sinalização turística.

As placas de sinalização vertical deverão ser confeccionadas em chapa de aço zincado na espessura de 1,25 mm, com o mínimo de 270 g/cm² de zinco, totalmente refletiva de microesferas encapsuladas, fixadas em suportes de madeira.

A série de desenhos "Projeto da Sinalização Vertical", no Volume 2- Projeto de Execução, apresenta os detalhes para confecção de cada uma das placas específicas para este projeto.

4.6.3.2 Sinalização Horizontal

A sinalização horizontal é realizada através de marcações no pavimento, cuja função é regulamentar, advertir ou indicar aos usuários da via, quer sejam condutores de veículos ou pedestres, de forma a tornar mais eficiente e segura a operação da mesma. Entende-se por marcações no pavimento, o conjunto de sinais constituídos de linhas, marcações, símbolos ou legendas, em tipos e cores diversos, apostos ao pavimento da via.

A sinalização horizontal deverá ser executada com material termoplástico aspergido retrorefletorizante com 1,5 mm de espessura, devendo ser precedida de uma pintura de ligação, quando aplicada sobre revestimento de concreto.

Com relação à sinalização horizontal projetada, foram adotados os seguintes padrões:

- Linhas de Divisão de Fluxos de Mesmo Sentido: tracejadas, na cor branca, com largura de 0,15 m, em segmentos de 4,00m de comprimento, espaçados de 4,00 m;
- Linhas de Bordo: contínuas, com largura de 0,10 m, afastada dos bordos da pista e dos meios-fios de canteiros, ilhas e rótulas das interseções, de 0,10m, na cor branca no bordo direito e na cor amarela no bordo esquerdo;
- Linhas de Continuidade: tracejadas, pintadas na cor branca, com largura de 0,10 m, em segmentos de 1,00 m de comprimento e espaçados de 1,00 m;
- Promotor de aderência, pintado na cor preta com largura de 20 cm, sob as linhas de bordo e eixo de pista;
- Linhas de Zebrado: tracejadas, com largura de 0,30m, espaçadas de 1,20m, na cor branca, quando contornáveis em ambos os lados e na cor amarela, quando contornáveis apenas pelo lado direito;
- Marcações de setas no pavimento, na cor branca, com comprimento de 5,00 m.
- Linhas de Proibição de Ultrapassagem: contínuas, na cor amarela, com largura de 0,10
 m.

4.6.3.3 Dispositivos Auxiliares

Como dispositivos auxiliares de sinalização, foram utilizados tachas de conformidade com as instruções contidas no Manual de Sinalização Rodoviária do DNIT.

Também serão utilizados os "delineadores" fixados nas defensas, nas aproximações das obras-de-arte, espaçados de 4 metros

4.6.3.4 Apresentação do Projeto

O Projeto de Sinalização é apresentado no Volume 2 - Projeto de Execução, em forma de diagrama linear esquemático, onde constam as localizações das placas de sinalização vertical, complementado de plantas onde são apresentados o Projeto de Sinalização das interseções e dos retornos, contendo a sinalização vertical e horizontal de cada uma delas.

A apresentação do Projeto de Sinalização consta ainda, de desenhos contendo instruções recomendadas para execução dos diversos serviços utilizados, tais como:

 desenhos contendo os sinais-tipo, que são uma reprodução dos sinais de regulamentação e advertência contidos no Manual de Sinalização Rodoviária do DNIT.

- desenhos contendo os sinais de indicação, específicos para estas rodovias;
- desenhos contendo os detalhes das letras, números e símbolos utilizados nos sinais verticais;
- desenho contendo os detalhes para colocação dos sinais verticais;
- desenho contendo os detalhes para execução de marco quilométrico;
- desenhos contendo os detalhes para execução das marcações no pavimento;
- desenhos contendo os detalhes para a execução de tachas e tachões;
- desenhos contendo os detalhes para a execução da sinalização de obras.

Finalizando, são apresentados quadros contendo:

- a listagem da sinalização vertical;
- o resumo de quantidades dos diversos serviços de sinalização utilizados no projeto;

4.6.3.5 Defensa

Nas obras de artes especiais (viadutos sobre a ferrovia) foi recomendada a utilização de defensas singelas metálicas, semi-maleáveis de perfil W-ABNT.

LADO DIREITO		LADO DIREITO LADO ESQUERDO			
ESTACA	STACA ESTACA ESTACA ESTACA				
STACA	LSTACA	LSTACA	LSTACA		

SINALIZAÇÃO VERTICAL

LADO DIREITO			LADO ESQUERDO			
ESTACA	CÓDIGO	LADO	ESTA	CA	CÓDIGO	LADO
371 + 0,00 376 + 0,00 381 + 0,00	R-3 R-1 A-1 R-3	D D D	376 +	0,00	R-1	Е
386 + 0,00 391 + 0,00 391 + 0,00	A-41 R-2	D D	391 + 391 + 396 + 401 +	0,00 0,00 0,00 0,00	A-41 R-2 R-3 A-1	E E E E
409 + 0,00	R-1	D	401 + 409 + 414 +	0,00	R-1 R-3	Ē
608 + 0,00 617 + 0,00	A-4 I-5	D D		,		
703 + 0.00	R-3	D	619 + 630 +	10,00 10,00	I-5 A-4	E E
-,			708 +	0,00	R-1	Е
708 + 0,00 713 + 0,00 718 + 0,00	R-1 A-1 R-3	D D D				
723 + 0,00 723 + 0,00	A-41 R-2	D D	723 + 723 + 728 + 733 +	0,00 0,00 0,00 0.00	A-41 R-2 R-3 A-1	
738 + 0,00	R-1	D	738 + 743 +	0,00	R-1 R-3	Ē
814 + 0,00 821 + 0,00 966 + 0,00	I-6 I-7 A-4	D D D	816 + 822 +	0,00	I-6 I-7	E E
975 + 0,00	I-8	D	981 + 990 +	0,00 10,00	I-8 A-4	E E
1179 + 0,00 1230 + 0,00	I-9 R-3	D D	1181 +	0,00	I-9	Е
1235 + 0,00 1242 + 0,00 1247 + 0,00	I-2 R-1 A-1	D D D	1242 +	0,00	R-1	Е
1252 + 0,00 1257 + 0,00 1257 + 0,00	R-3 A-41 R-2	D D D	1257 + 1257 +	0,00 0,00	A-41 R-2	E E
1265 + 0,00	A-5	D	1262 +	0,00	R-3	E
1275 + 0,00	A-1	D	1267 +	0,00	A-1	E

		LADO	DIREITO			L	ADO E	SQUERDO)
0	ESTA	CA	CÓDIGO	LADO	ES	TA	CA	CÓDIGO	LADO
	1280 + 1283 +	0,00	R-3 I-1	DD	1278	+	0,00	R-3	Е
	1285 + 1285 +	0,00 0,00 0,00	A-41 R-2	םם	1285 1285	+	0,00	A-41 R-2	E E
	1292 +	0,0	I-3	D	1295	+ +	0,00 0,00 0,00	R-3 I-4 A-1	
	1430 +	0,00	I-4	D	1300 1430	+	0,00 0,00	R-1 I-3	E E
	4540	0.00	0	,	1435 1449 1480		0,00 0,00 0,00	I-1 A-5 I-2	E E E
	1510 + 1515 + 1520 + 1525 +	0,00 0,00 0,00 0,00	R-3 R-1 A-1 R-3	ם ם ם	1515	+	0,00	R-1	E
	1530 + 1530 +		A-41 R-2	0	1530 1530 1535 1540	+ +	0,00 0,00 0,00 0,00	A-41 R-2 R-3 A-1	
	1545 +	0,00	R-1	D		+	0,00	R-1 R-3	E
	1810 + 1815 + 1820 + 1825 +	0,00 0,00 0,00	R-3 R-1 A-1 R-3	ם ם ם ם	1815	+	0,00	R-1	Е
	1830 + 1830 +	0,00	A-41 R-2	D	1830 1830 1835 1840	+ +	0,00 0,00 0,00 0,00	A-41 R-2 R-3 A-1	
	1845 +	0,00	R-1	D	1845 1855	+	0,00	R-1 R-3	Ē
	1895 +	0,00	A-4	D	1900	+	0,00	R-1	Е
	1902 + 1905 +	0,00 0,00	R-1 I-10	D D	1914	_	0.00	I-10	E
	1917 + 1923 + 1928 +	0,00 0,00 0,00	A-1 R-3 A-41	D D D	1928			A-41	E

Ferrovia: Transnordestina

Trecho: Salgueiro - Parnamirim - Riacho Santa Rosa

Lote: 02

Extensão: 127,48 Km

SINALIZAÇÃO VERTICAL FERROVIÁRIA - LISTAGEM

LADO	DIREITO	LADO ES	SQUERDO			L
ESTACA	ESTACA	ESTACA	ESTACA	-	ESTA	AC/
					1928 +	
					1943 +	0
					2024 + 2029 + 2034 + 2039 + 2044 + 2044 +	0 0 0
					2067 + 2073 + 2077 +	0
					2088 + 2093 +	
					2098 + 2098 +	
					2113 +	0
					2136 + 2172 + 2177 + 2182 + 2187 + 2192 + 2192 +	0 0 0 0
					2207 +	0
I	1	l	l			_

SINALIZAÇÃO VERTICAL

ESTACA CÓDIGO LADO ESTACA CÓDIGO LA 1928 + 0,00 R-2 D 1928 + 0,00 R-2 R-2 1933 + 0,00 R-3 1938 + 0,00 R-3 R-3 R-3 R-3 R-1 R-1	E E E E E E
1928 + 0,00	E E E E E E E
1943 + 0,00 R-1 D 1938 .+ 0,00 A-1 R-1 2024 + 0,00 R-3 D 2029 + 0,00 R-1 D 2034 + 0,00 R-3 D 2039 + 0,00 R-3 D 2044 + 0,00 R-3 D 2044 + 0,00 R-2 D 2044 + 0,00 R-2 D 2044 + 0,00 R-2	E E E E E E E
1943 + 0,00	
2024 + 0,00	E E E E E
2024 + 0,00	E E E E E
2029 + 0,00	E E E
2034 + 0,00	E E E
2044 + 0,00	E E E
2044 + 0,00 R-2 D 2044 + 0,00 R-2	E E E
	E
	E
2049 + 0,00 R-3 2054 + 0,00 A-1	
2065 + 0.00 R-3	
2067 + 0,00 A-4 D 2000 + 0,00 110	_
2073 + 0,00 R-3 D	
2077 + 0,00 I-11 D	_
2086 + 0,00 I-11	E
2088 + 0,00 A-1 D D C C C C C C C C	
2093 + 0,00 K-3 B 2096 + 0.00 A-4	E
2098 + 0,00 A-41 D 2098 + 0,00 A-41	E
2098 + 0,00 R-2 D 2098 + 0,00 R-2	E E E
2103 + 0,00 R-3	E
2113 + 0,00 R-1 D 2108 + 0,00 R-1	E E
2113 + 0,00 R-1 D 2113 + 0,00 R-1 2118 + 0.00 R-3	=
2136 + 0,00 I-12 D 2138 + 0,00 I-12	E E
2172 + 0,00 R-3 D	
2177 + 0,00 R-1 D 2177 + 0,00 R-1	E
2182 + 0,00 A-1 D	
2187 + 0,00 R-3 D	_
2192 + 0,00 A-41 D 2192 + 0,00 A-41 D 2192 + 0,00 R-2 D 2192 + 0,00 R-2	E E
2192 + 0,00 R-2 B 2192 + 0,00 R-2 2197 + 0,00 R-3	Ē
2202 + 0,00 A-1	E
2207 + 0,00 R-1 D 2207 + 0,00 R-1	E
2212 + 0,00 R-3	E
2427 + 0,00 R-3 D	E
2432 + 0,00 R-1 D 2432 + 0,00 R-1 D P R-1	
2442 + 0,00 R-3 D	

		LADO	DIREITO		LADO ESQUERDO			
	ESTA	CA	CÓDIGO	LADO	ESTACA	CÓDIGO	LADO	
	2447 +		A-41	D	2447 + 0,00	A-41	Е	
	2447 +	0,00	R-2	D	2447 + 0,00	R-2	E	
					2452 + 0,00	R-3	E E E	
	0.400		5.4	_	2457 + 0,00	A-1	늘	
	2462 +	0,00	R-1	D	2462 + 0,00	R-1	E	
	2741 +	0.00	R-3	D	2467 + 0,00	R-3	E	
	2741 + 2746 +	0,00	R-3	D	2746 + 0,00	R-1	Е	
	2751 +	0,00	A-1	D	2746 + 0,00	K-1		
	2756 +	0,00	R-3	D				
	2761	0,00	A-41	D	2761	A-41	Е	
	2761		R-2	Ď	2761	R-2	Ē	
	2701				2766	R-3	Ē	
					2771	A-1		
	2776 +	0,00	R-1	D	2776	R-1	E	
					2781	R-3	E	
	2835 +	0,00	R-3	D				
	2840 +	0,00	R-1	D	2840 + 0,00	R-1	Е	
	2845 +		A-1	D				
	2850 +		R-3	D				
	2855 +		A-41	D	2855 + 0,00	A-41	E E	
	2855 +		R-2	D	2855 + 0,00	R-2	늗	
	2870 +	0,00	R-1	D	2870 + 0,00	R-1	E	
	2949 +	0.00	A-4	Ь	2875 + 0,00	R-3		
	2949 +	0,00	I-13	D D				
	2330 T	0,00	1-13	D	2962 + 0.00	I-13	F	
					2972 + 0,00	A-4	E E	
	3018 +	0,00	A-4	D	20.2 . 0,00	, , ,	_	
	3028 +	0,00	I-14	Ď				
		•			3037 + 10,00	I-14	E	
					3047 + 10,00	A-4	E	
	3160 +	0,00	I-26	D				
	3165 +	0,00	A-5	D				
	3204 +	0,00	A-4	D				
	3214 +	0,00	I-15	D			_	
					3217 + 10,00	I-15	E E	
	2020 .	0.00	D 0	_	3227 + 10,00	A-4	E	
	3232 + 3237 +	0,00	R-3 R-1	D D	3237 + 0,00	R-1	Е	
	3242 +	0,00	A-1	D	3231 + 0,00	K-1		
	3242 +	0,00	R-3	D				
ı	J241 +	0,00	17-0	ט	l .	1		

Ferrovia: Transnordestina

Trecho: Salgueiro - Parnamirim - Riacho Santa Rosa

Lote: 02

Extensão: 127,48 Km

SINALIZAÇÃO VERTICAL FERROVIÁRIA - LISTAGEM

		T				
LADO	DIREITO	LADO ESQUERDO				
ESTACA	ESTACA	ESTACA	ESTACA			

SINALIZAÇÃO VERTICAL

LADO DIREITO

LAD	O DIREITO		LADO ESQUERDO				
ESTACA	CÓDIGO	LADO	ESTA	CA	CÓDIGO	LADO	
3252 + 0,00 3252 + 0,00	A-41 R-2	D D	3252 + 3252 + 3258 + 3263 +	0,00 0,00 0,00 0,00	A-41 R-2 R-3 A-1	шшшш	
3265 + 0,00 3270 + 0,00 3275 + 0,00 3275 + 0,00	A-1 R-3 A-41 R-2	D D D	3275 + 3275 + 3280 +	0,00 0,00 0,00	A-41 R-2 R-3	E	
3290 + 0,00	R-1	D	3285 + 3290 + 3295 + 3300 + 3305 +	0,00 0,00 0,00 0,00 0,00	A-1 R-1 R-3 A-5 I-27		
3373 + 0,00 3383 + 0,00	A-4 I-16	D D	3387 + 3397 +	0,00	I-16 A-4	E	
3495 + 0,00 3500 + 0,00 3510 + 0,00	R-1 A-4 I-17	D D D	3495 +	0,00	R-1	E	
3522 + 0,00	R-3	D	3514 + 3524 +	0,00	I-17 A-4	E	
3531 + 0,00 3533 + 0,00 3543 + 0,00 3543 + 0,00	I-2 A-1 A-41 R-2	D D D	3543 + 3543 + 3548 + 3553 +	0,00 0,00 0,00 0,00	A-41 R-2 R-3 A-1		
3555 + 0,00 3558 + 0,00	A-5 R-1	D D	3558 + 3563 +	0,00	R-1 R-3	E	
3575 + 10,0 3581 + 0,00 3637 + 0,00	I-1 I-3 R-3	D D D	3581 +	0,00	1-4	E	
3642 + 0,00 3647 + 0,00 3652 + 0,00	R-1 A-1 R-3	D D	3642 +	0,00	R-1	E	
3652 + 0,00 3657 + 0,00 3657 + 0,00	A-41 R-2	D D	3657 + 3657 + 3662 +	0,00 0,00 0,00	A-41 R-2 R-3	E E E	

ESTACA	CÓDIGO	LADO	ESTACA	CODIGO	LADO
			3667 + 0,00	A-1	E
3672 + 0,00	R-1	E	3672 + 0,00	R-1	E
			3677 + 0,00	R-3	E
3716 + 0,00	1-4	D	3716 + 0,00	I-3	E E
		_	3721 + 0,00	i-1	E
			3740 + 0.00	A-5	Ē
3748 + 10,00	A-4	D	3740 + 0,00	Α-3	_
	R-1	D	3753 + 10,00	R-1	Е
		D	3/53 + 10,00	K-I	
3758 + 0,00	I-18	U		1.40	_
		_	3761 + 10,00	I-18	Е
3765 + 0,00	R-3	D			
			3766 + 0,00	I-2	E
			3771 + 0,00	A-4	E
3775 + 0,00	A-1	D			
3780 + 0,00	R-3	D			
3785 + 0,00	A-41	D	3785 + 0.00	A-41	E
3785 + 0,00	R-2	D	3785 + 0,00	R-2	E
0.00 . 0,00		_	3790 + 0,00	R-3	Ē
			3795 + 0,00	A-1	E
3804 + 0.00	R-1	D	3804 + 0.00	R-1	Ē
3604 + 0,00	K-I	ט		R-3	Ē
0000 . 40.00		_	3809 + 0,00	R-3	
3908 + 10,00	A-4	D			
3918 + 0,00	I-19	D			_
			3925 + 0,00	I-19	Е
			3935 + 0,00	A-4	E
4005 + 0,00	R-3	D			
4010 + 0,00	R-1	D	4010 + 0,00	R-1	E
4015 + 0,00	A-1	D	,		
4020 + 0,00	R-3	D			
4025 + 0,00	A-41	Ď	4025 + 0.00	A-41	E
4025 + 0.00	R-2	Ď	4025 + 0.00	R-2	E E E
7020 T 0,00	11-2		4030 + 0,00	R-3	Ė
				A-1	-
4040 . 000	D 4	_	4035 + 0,00		E E
4040 + 0,00	R-1	D	4040 + 0,00	R-1	E
		_	4045 + 0,00	R-3	E
4068 + 0,00	A-4	D			
4078 + 0,00	I-20	D			
			4082 + 0,00	I-20	E
			4092 + 0,00	A-4	E
4150 + 0,00	R-3	D			
4155 + 0,00	R-1	D	4155 + 0,00	R-1	E
4160 + 0,00	A-1	Ď			_
1100 1 0,00	71.1		l .		

LADO ESQUERDO

Ferrovia: Transnordestina

Trecho: Salgueiro - Parnamirim - Riacho Santa Rosa

Lote: 02

Extensão: 127,48 Km

SINALIZAÇÃO VERTICAL FERROVIÁRIA - LISTAGEM

LADO DIREITO		LADO ESQUERDO		
ESTACA	ESTACA	ESTACA	ESTACA	

SINALIZAÇÃO VERTICAL

	L	ADO DIREITO		LADO ESQUERDO				
	ESTACA	CÓDIGO	LADO	ESTACA	CÓDIGO	LADO		
•	4170 + 0,	00 R-3 00 A-41 ,0 R-2	D D D	4170 + 0,00 4170 + 0,00 4175 + 0,00 4180 + 0,00	A-41 R-2 R-3 A-1	E E E		
	4185 + 0,	00 R-1	D	4185 + 0,00 4190 + 0,00	R-1 R-3	Ē		
	4209 + 0, 4214 + 0,	00 R-3 00 R-1 00 A-1 00 R-3	D D D	4209 + 0,00	R-1	E		
	4224 + 0,	00 A-41 00 R-2	D D	4224 + 0,00 4224 + 0,00 4229 + 0,00 4234 + 0,00	A-41 R-2 R-3 A-1	E E E		
	4239 + 0,	00 R-1	D	4239 + 0,00 4244 + 0,00	R-1 R-3	E E E		
		00 A-4 00 I-21	D D	4262 + 0,00	I-21	E		
	4694 + 0,	00 R-3 00 R-1 00 A-1	D D D	4272 + 0,00 4694 + 0,00	A-4 R-1	E		
	4709 + 0,	00 R-3 00 A-41 00 R-2	D D	4709 + 0,00 4709 + 0,00 4714 + 0,00	A-41 A-2 R-3	E E E E		
	4725 + 0,	00 R-1	D	4719 + 0,00 4725 + 0,00 4730 + 0,00	A-1 R-1 R-3	E		
		,00 A-4 ,00 I-22	D D	4781 + 0,00	I-22	E		
	4834 + 10	,00 R-3	D	4791 + 0,00	A-4	Ē		
	4839 + 10 4844 + 10	,00 R-1 ,00 A-1 ,00 R-3	D D D	4839 + 10,00	R-1	E		
	4854 + 10	,00 A-41 ,00 R-2	D D	4854 + 10,00 4854 + 10,00 4859 + 10,00	A-41 R-2 R-3	E E E		

LADO	DIREITO		LADO ESQUERDO			
ESTACA	CÓDIGO	LADO	ESTACA	CÓDIGO	LADO	
4869 + 10,00	R-1	D	4864 + 10,00 4869 + 10,00 4874 + 10,00	A-1 R-1 R-3	E E E	
4965 + 0,00 4975 + 0,00	A-4 I-23	D D	4979 + 0.00	I-23	E	
5039 + 0,00 5044 + 0,00	R-3 R-1	D D	4989 + 0,00 5044 + 0.00	A-4 R-1	E E	
5044 + 0,00 5049 + 0,00 5054 + 0,00	A-1 R-3	D D	5044 + 0,00	K-I		
5059 + 0,00 5059 + 0,00	A-41 R-2	D D	5059 + 0,00 5059 + 0,00 5064 + 0,00 5069 + 0,00	A-41 R-2 R-3 A-1	шшшшшш	
5074 + 0,00	R-1	D	5074 + 0,00 5079 + 0,00	R-1 R-3	E	
5296 + 0,00 5304 + 0,00 5309 + 0,00 5314 + 0,00	R-3 R-1 A-1 R-3	D D D	5304 + 0,00	R-1	E	
5319 + 0,00 5319 + 0,00	A-41 R-2	D D	5319 + 0,00 5319 + 0,00 5324 + 10,00 5329 + 10,00	A-41 R-2 R-3 A-1	шшшш	
5334 + 10,00	R-1	D	5329 + 10,00 5334 + 10,00 5339 + 10,00	R-1 R-3	E	
5390 + 0,00 5395 + 0,00 5405 + 0,00 5410 + 0,00	R-3 R-1 A-1 R-3	D D D	5395 + 0,00	R-1	E	
5415 + 0,00 5415 + 0,00	A-41 R-2	D D	5415 + 0,00 5415 + 0,00 5420 + 0,00 5425 + 0,00	A-41 R-2 R-3 A-1	E E E	
5430 + 0,00	R-1	D	5430 + 0,00 5435 + 0,00	R-1 R-3	E	
5440 + 0,00 5450 + 0,00	A-4 I-24	D D	5454 + 0.00	I-24	_	
			5454 + 0,00 5464 + 0,00	1-24 A-4	E E	

Ferrovia: Transnordestina

Trecho: Salgueiro - Parnamirim - Riacho Santa Rosa

Lote: 02

Extensão: 127,48 Km

SINALIZAÇÃO VERTICAL FERROVIÁRIA - LISTAGEM

		1					
LADO [LADO DIREITO LADO ESQUERDO						
ESTACA	ESTACA	ESTACA	ESTACA				

SINALIZAÇÃO VERTICAL

LADO	DIREITO		LADO ESQUERDO				
ESTACA	CÓDIGO	LADO	ESTA	ACA	CÓDIGO	LADO	
5610 + 10,00 5615 + 0,00 5620 + 0,00	R-3 R-1 A-1	D D D	5615 +	0,00	R-1	E	
5625 + 0,00 5630 + 0,00 5630 + 0,00	R-3 A-41 R-2	D D D	5630 + 5630 + 5635 +	0,00 0,00 0,00	A-41 R-2 R-3		
5645 + 0,00	R-1	D	5640 + 5645 + 5655 +	0,00 0,00 0,00	A-1 R-1 R-3	E E E	
5735 + 0,00 5740 + 0,00 5745 + 0,00 5750 + 0,00	R-3 R-1 A-1 R-3	D D D	5740 +	0,00	R-1	E	
5755 + 0,00 5755 + 0,00 5755 + 0,00	A-41 R-2	D D	5755 + 5755 + 5760 + 5765 + 5775 +	0,00 0,00 0,00 0,00 0,00	A-41 R-2 R-3 A-1 R-3	E E E	
5778 + 0,00 5788 + 0,00	A-4 I-25	D D	5791 +	10,00	I-25	E	
5800 + 0,00	A-1		5801 +	10,00	A-4	_	
5805 + 0,00 5810 + 0,00 5810 + 0,00	R-3 A-41 R-2	D D	5810 + 5810 + 5815 +	0,00 0,00 0,00	A-41 R-2 R-3	E E E	
5825 + 0,00	R-1	D	5820 + 5825 + 5830 +	0,00 0,00 0,00	A-1 R-1 R-3	E E E	
5902 + 0,00 5907 + 0,00 5912 + 0,00 5917 + 0,00	R-3 R-1 A-1 R-3	D D D	5907 +	0,00	R-1	E	
5917 + 0,00 5922 + 0,00 5922 + 0,00	A-41 R-2	D D	5922 + 5922 + 5927 +	0,00 0,00 0,00	A-41 R-2 R-3	E E E	
5937 + 0,00	R-1	D	5932 + 5937 + 5942 +	0,00 0,00 0,00	A-1 R-1 R-3	E E	
6110 + 0,00	I-2	D		0,00		_	

	LADO DIREITO			LADO ESQUERDO		
1	ESTACA	CÓDIGO	LADO	ESTACA	CÓDIGO	LADO
	ESTACA 6133 + 0,00 6154 + 0,00 6159 + 0,00 6294 + 0,00	CÓDIGO A-5 I-1 I-3 I-4	LADO D D D D	ESTACA 6159 + 0,00 6294 + 0,00 6299 + 0,00 6321 + 0,00 6345 + 0,00	I-4	LADO E E E E E E E E E E E E E E E E E E E

Ferrovia: Transnordestina

Trecho: Salgueiro - Parnamirim - Riacho Santa Rosa

Lote: 02

Extensão: 127,48 Km

SINALIZAÇÃO VERTICAL FERROVIÁRIA - LISTAGEM

4.7 Projeto de Obras Complementares

4.7.1 Generalidades

As obras complementares constarão do seguinte:

- Vedação da faixa de domínio;
- Enrocamento e filtro de transição;
- Proteção vegetal.

4.7.2 Vedação da Faixa de Domínio

A vedação da faixa de domínio será feita com a implantação de cercas de concreto dotadas de 6 fios de arame farpado.

As cercas serão localizadas em pontos delimitadores da faixa de domínio da ferrovia e executadas de acordo com as especificações do DNIT, ao longo de todo o trecho.

4.7.3 Enrocamento e Filtro de Transição

Alguns taludes deverão ser protegidos por meio de um enrocamento executado na saia do aterro e de acordo com as seguintes especificações:

- A proteção dos taludes dos aterros será do tipo enrocamento "rip-rap", constituído de pedra de vários tamanhos;
- O "rip-rap" terá espessura de 0,50m e a camada filtrante de apoio, espessura de 0,20m;

- O "rip-rap" e a camada filtrante deverão atingir a cota de 1m acima da máxima enchente;
- As pedras utilizadas no "rip-rap" deverão ser duras, densas e ter formas angulares. A
 dimensão máxima das pedras não deve ser superior a 0,50m. A dimensão de 50%
 das pedras deve ser superior a 0,40m. Pedras com até 0,05m de dimensão podem
 ser usadas. Para o preenchimento dos vazios devem ser usados agregados menores,
 porém não contendo fração passando na peneira 200;
- A camada filtrante ou camada de transição interposta entre o "rip-rap" e o solo do talude deve ser constituído por materiais cuja granulometria atenda em relação ao material do maciço, as condições estabelecidas a seguir:

$$5 \le \frac{D15 (F)}{D15 (S)} \le 40$$

O material da camada filtrante n\u00e3o deve conter mais de 5\u00b8 passando na peneira n\u00a9
200 e sua curva granulom\u00e9trica deve ser aproximadamente paralela \u00e0 do solo do
talude.

Nas relações acima citadas, tem-se:

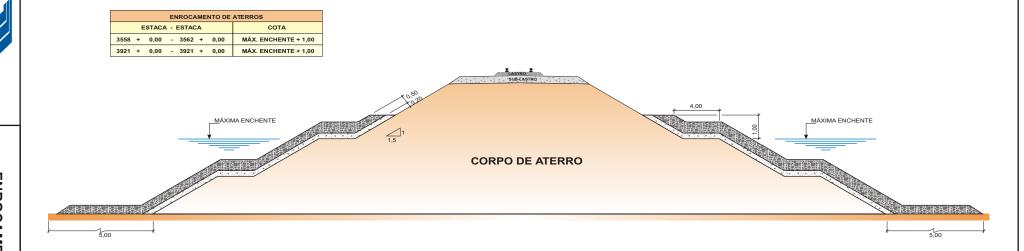
D₁₅ - É o diâmetro correspondente a uma percentagem de 15%;

D₈₅ - É o diâmetro correspondente a uma percentagem de 85%;

As letras F e S significam, respectivamente, filtro e solo do talude.

- A granulometria da camada filtrante deverá ser fixa pela Fiscalização, durante a execução dos serviços, em função das condições formuladas;
- O material da camada filtrante poderá ser obtido combinado-se convenientemente, areia com agregados britados ou seixos rolados.

Poderá ser optado o emprego de manta Bidim OP 40 ou OP 50.

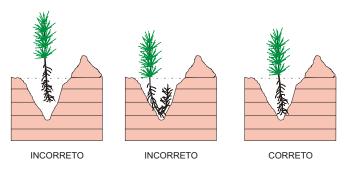

4.7.4 Proteção Vegetal

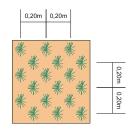
A proteção vegetal será feita nos locais sujeitos à erosão. Esses locais poderão ser as saias dos taludes, as áreas de empréstimos, banquetas, descidas d'água, sarjetas, etc.


A proteção vegetal deverá ser realizada com a finalidade de dar resistência às superfícies dos locais sujeitos à erosão.

Para a proteção vegetal deverá ser utilizada a Hidrossemeadura, para os taludes dos aterros e nos taludes dos cortes.

Os projetos-tipo de Obras Complementares estão apresentados no Volume 2 – Projeto de Execução.


		ENROCAMEN	TO NAS PONTES
LOCALI	ZAÇ	ÃO	DENOMINAÇÃO
619	+	4,00	Ponte s/ o Riacho do Miguel
978	+	0,40	Ponte s/ o Riacho S/ Nome - 01
1909	+	8,23	Ponte s/ o Rio Traíras
2960	+	1,67	Ponte s/ o Açude Abóboras
2955	+	0,00	Ponte s/ o Riacho Parnamirim
3032	+	13,60	Ponte s/ o Rio Brígida
3215	+	14,00	Ponte s/ o Riacho S/ Nome - 02
3384	+	15,40	Ponte s/ o Riacho do Veado
3512	+	5,40	Ponte s/ o Riacho Palestina
3759	+	15,40	Ponte s/ o Riacho S/ Nome - 03
3921	+	12,60	Ponte s/ o Riacho da Volta
4079	+	15,40	Ponte s/ o Riacho da Fazenda
4259	+	17,90	Ponte s/ o Riacho Curralinho
4777	+	5,40	Ponte s/ o Riacho São Pedro
4977	+	0,40	Ponte s/ o Riacho Arueira
5452	+	5,40	Ponte s/ o Riacho Pau Ferrado
5789	+	15.40	Ponte s/ o Riacho Urimamã
	619 978 1909 2960 2955 3032 3215 3384 3512 3759 3921 4079 4259 4777 4977 5452	619 + 978 + 1909 + 2960 + 2955 + 3032 + 3512 + 3759 + 4079 + 4459 + 4777 + 5452 + 1909	1909 + 4,00 978 + 0,40 1909 + 8,23 2960 + 1,67 2955 + 0,00 3302 + 13,60 3215 + 14,00 3384 + 15,40 3512 + 5,40 3759 + 15,40 4079 + 15,40 4079 + 15,40 44977 + 5,40 4977 + 0,40 5452 + 5,40


O REVESTIMENTO VEGETAL DOS TALUDES SERÁ EXECUTADO POR MEIO DE MUDA, LEIVAS OU HIDROSSEMEADURA. O PROCESSO A SER UTILIZADO NOS CORTES SERÁ SEMPRE HIDROSSEMEADURA. NOS ATERROS, O PROCESSO SERÁ DEFERIDO PELA FISCALIZAÇÃO. OS PROCEDIMENTOS PARA A EXECUÇÃO, SERÁ OS SEGUINTES:

1 - PLANTIO DE MUDAS

SERÁ DE ACORDO COM O ESQUEMA ABAIXO

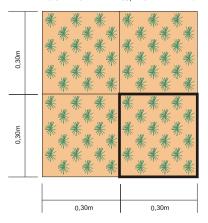
PLANTIO DAS MUDAS

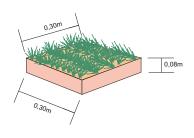
AFASTAMENTO DAS MUDAS

ÁGUA/m².

INCORRETO

PÓ DE SERRA ÚMIDO


CORRINDO AS RAÍZES

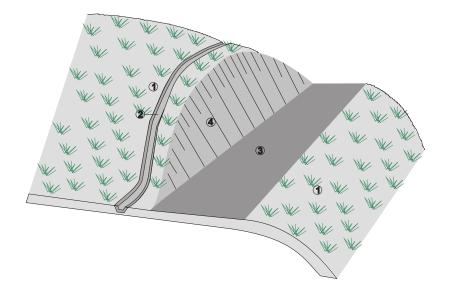

AS COVAS SERÃO PREENCHIDAS COM SOLO ORGÂNICO, ADICIONANDO-SE 5g, POR COVA, DE FERTILIZANTE DO TIPO SUPER-FOSFATO SIMPLES. SERÃO FEITAS IRRIGAÇÕES SEMANALMENTE E, UMA VEZ POR MÊS, DURANTE 6 MESES, A IRRIGAÇÃO SERÁ COM UMA SOLUCÃO DE ÁGUA E URÉIA A 2% A UMA RAZÃO DE 5 LITROS DE

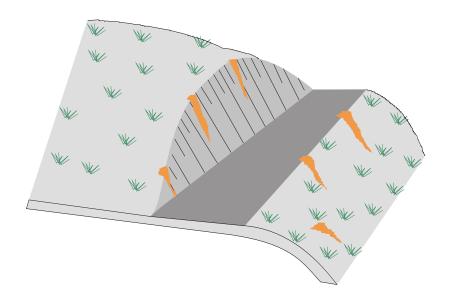
2 - PLANTIO POR LEIVAS

AS LEIVAS SERÃO PREPARADAS EM SEMENTEIRAS. A LEIVA SERÁ CONSTITUIDA POR: 1 PARTE DE TERRA VEGETAL, 2 PARTES DE SOLO ARGILOSO, E SUPER-FOSFATO SIMPLES, DE MODO A FORNECER UMA CONCENTRAÇÃO DE 50g/m².

O TRANSPORTE DOS BLOCOS DE MUDAS PARA O TALUDE SERÁ DE ACORDO COM O ESQUEMA ABAIXO. APÓS O PLANTIO, O TALUDE SERÁ IRRIGADO SEMANALMENTE, E, UMA VEZ POR MÊS, DURANTE 6 MESES, A IRRIGAÇÃO SERÁ COM UMA SOLUÇÃO DE ÁGUA E URÉIA A 2%. A UMA RAZÃO DE 5 LITROS D'ÁGUA/m².

3 - HIDROSSEMEADURA


OS TALUDES DE CORTE ONDE SERÁ ADOTADA A HIDROSSEMEADURA, NÃO DEVERÃO RECEBER ACABAMENTO COM LÂMINA DE MOTONIVELADORA.


A HIDROSSEMEADURA OBEDECERÁ ÀS SEGUINTES ETAPAS:

- a) APLICAÇÃO DA SOLUÇÃO COM SEMENTES, FERTILIZANTES, MATERIAL ANTI-EROSIVO E DEFENSIVOS, SE NECESSÁRIO, EM TAXAS APROVADAS PELA FISCALIZAÇÃO, PARA CADA TIPO DE SOLO.
- b) APLICAÇÃO DE UMA CAMADA DE FENO (MULCHING) E EMULSÃO ASFÁLTICA.
- C)
 IRRIGAÇÃO SEMANAL, E, UMA VEZ POR MÊS, DURANTE 6 MESES, A IRRIGAÇÃO SERÁ COM UMA SOLUÇÃO DE ÁGUA E URÉIA A 2%, A UMA RAZÃO DE 5 LITROS D'ÁGUA/m².

PROTEÇÃO AMBIENTAL EM ÁREAS EXPLORADAS

ESCAVAÇÕES EXTRA LEITO ESTRADAL (EMPRÉSTIMOS OU JAZIDAS)

OBS.: ÁREA NÃO TRATADA APÓS EXPLORAÇÃO OCASIONANDO EROSÕES SUPERFICIAIS OU RAVINAS

OBS.: EMPRÉSTIMO OU JAZIDA TRATADO APÓS EXPLORAÇÃO; NO CASO DE ALARGAMENTO DE CORTE O PROCEDIMENTO É IDÊNTICO, MENOS NO ÍTEM 3

- 1 TERRENO NATURAL
- 2 VALETA DE PROTEÇÃO DE CRISTA DE CORTE REVESTIDA COM GRAMÍNEA
- (3) LOCAL DA EXPLORAÇÃO A SER REGULARIZADO E EM SEGUIDA TRAZIDO O MATERIAL VEGETAL ORIGINAL (HUMUS), ESCARIFICAR OU UMIDIFICAR
- (4) TALUDE DE CORTE ESTABILIZADO E PLANTADO COM CAPIM SÂNDALO

OBS.: EVITAR EXPLORAÇÃO EM ÁREAS PLANAS DEIXANDO BURACOS OU PROVOCANDO FORMAÇÃO DE BACIAS

LOCALIZ	ZAÇÃO	LADO	EXTENSÃO	CORTE OU	ALTURA MÉDIA (m)	ÁREA	ÁREA TOTAL (m²)	LOCAL	IZAÇÃO		EXTENSÃO	CORTE OU	ALTURA MÉDIA	ÁREA	ÁREA TOTAL
ESTACA	ESTACA	LADO	(m)	ATERRO	ALTURA MEDIA (M)	(m²)	AREA TOTAL (m²)	ESTACA	ESTACA	LADO	(m)	ATERRO	(m)	(m²)	(m²)
			HIDROS	SEMEADURA	•		•		•		HIDROSS	SEMEADURA			
0 + 0,00	27 + 13,00	LD/LE	553,00	ATERRO	17,79	9.835,66	19.671,32	1.113 + 9,00	1.145 + 0,00	LD/LE	631,00	ATERRO	5,63	3.555,05	7.110,11
27 + 13,00	44 + 15,00	LD/LE	342,00	CORTE	7,89	2.697,70	5.395,39	1.145 + 0,00	1.156 + 10,00	LD/LE	230,00	CORTE	1,01	232,30	464,60
44 + 15,00	64 + 10,00	LD/LE	395,00	ATERRO	12,93	5.108,34	10.216,68	1.156 + 10,00	1.165 + 0,00	LD/LE	170,00	ATERRO	1,20	203,83	407,66
64 + 10,00	84 + 13,00	LD/LE	403,00	CORTE	8,72	3.515,77	7.031,54	1.165 + 0,00	1.227 + 8,00	LD/LE	1.248,00	CORTE	7,96	9.929,09	19.858,18
84 + 13,00	192 + 0,00	LD/LE	2.147,00	ATERRO	19,01	40.804,81	81.609,62	1.227 + 8,00	1.230 + 17,00	LD/LE	69,00	ATERRO	0,93	64,34	128,69
192 + 0,00	195 + 0,00	LD/LE	60,00	CORTE	1,17	70,08	140,16	1.230 + 17,00	1.251 + 0,00	LD/LE	403,00	CORTE	3,91	1.575,13	3.150,25
195 + 0,00	208 + 10,00	LD/LE	270,00	ATERRO	13,09	3.535,11	7.070,22	1.251 + 0,00	1.264 + 7,00	LD/LE	267,00	ATERRO	2,13	569,78	1.139,56
208 + 10,00	210 + 0,00	LD/LE	30,00	CORTE	0,16	4,65	9,30	1.264 + 7,00	1.286 + 0,00	LD/LE	433,00	CORTE	3,59	1.555,34	3.110,67
210 + 10,00	237 + 15,00	LD/LE	545,00	ATERRO	13,55	7.384,21	14.768,41	1.286 + 0,00	1.292 + 10,00	LD/LE	130,00	ATERRO	1,71	222,43	444,86
237 + 15,00	256 + 4,00	LD/LE	369,00	CORTE	5,98	2.207,36	4.414,72	1.292 + 10,00	1.307 + 0,00	LD/LE	290,00	CORTE	0,78	225,04	450,08
256 + 4,00	271 + 7,00	LD/LE	303,00	ATERRO	8,33	2.522,48	5.044,95	1.307 + 0,00	1.331 + 7,00	LD/LE	487,00	ATERRO	3,72	1.813,34	3.626,69
271 + 7,00	276 + 10,00	LD/LE	103,00	CORTE	1,21	124,37	248,75	1.331 + 7,00	1.351 + 4,00	LD/LE	397,00	CORTE	3,80	1.510,19	3.020,38
276 + 10,00	352 + 8,00	LD/LE	1.518,00	ATERRO	21,05	31.954,66	63.909,32	1.351 + 4,00	1.375 + 12,00	LD/LE	488,00	ATERRO	7,95	3.877,16	7.754,32
352 + 8,00	364 + 2,00	LD/LE	234,00	CORTE	4,40	1.029,02	2.058,03	1.375 + 12,00	1.397 + 0,00	LD/LE	428,00	CORTE	1,83	783,45	1.566,91
364 + 2,00	367 + 14,00	LD/LE	72,00	ATERRO	5,18	372,67	745,34	1.397 + 0,00	1.433 + 0,00	LD/LE	720,00	ATERRO	6,03	4.338,36	8.676,72
367 + 14,00	372 + 15,00	LD/LE	101,00	CORTE	2,46	248,16	496,31	1.433 + 0,00	1.441 + 11,00	LD/LE	171,00	CORTE	1,36	232,47	464,95
372 + 15,00	380 + 16,00	LD/LE	161,00	ATERRO	6,09	980,65	1.961,30	1.441 + 11,00	1.451 + 0,00	LD/LE	189,00	ATERRO	1,79	338,03	676,05
380 + 16,00	387 + 0,00	LD/LE	124,00	CORTE	1,54	190,46	380,93	1.451 + 0,00	1.459 + 0,00	LD/LE	160,00	CORTE	0,88	140,32	280,64
387 + 0,00	390 + 15,00	LD/LE	75,00	ATERRO	1,51	113,03	226,05	1.459 + 0,00	1.516 + 0,00	LD/LE	1.140,00	ATERRO	1,83	2.082,21	4.164,42
390 + 15,00	394 + 2,00	LD/LE	67,00	CORTE	1,54	103,31	206,63	1.516 + 0,00	1.530 + 11,00	LD/LE	291,00	CORTE	2,32	675,41	1.350,82
394 + 2,00	394 + 9,00	LD/LE	7,00	ATERRO	0,28	1,95	3,90	1.530 + 11,00	1.547 + 0,00	LD/LE	329,00	ATERRO	4,78	1.572,13	3.144,25
394 + 9,00	450 + 5,00	LD/LE	1.116,00	CORTE	11,14	12.429,45	24.858,90	1.547 + 0,00	1.553 + 15,00	LD/LE	135,00	CORTE	0,12	16,27	32,54
450 + 5,00	499 + 14,00	LD/LE	989,00	ATERRO	10,93	10.813,23	21.626,46	1.553 + 15,00	1.556 + 10,00	LD/LE	55,00	ATERRO	0,14	7,70	15,40
499 + 14,00	505 + 14,00	LD/LE	120,00	CORTE	1,05	126,12	252,24	1.556 + 10,00	1.557 + 10,00	LD/LE	20,00	CORTE	0,05	0,92	1,84
505 + 14,00	536 + 14,00	LD/LE	620,00	ATERRO	7,23	4.482,60	8.965,20	1.557 + 10,00	1.598 + 0,00	LD/LE	810,00	ATERRO	10,00	8.100,41	16.200,81
536 + 14,00	596 + 8,00	LD/LE	1.194,00	CORTE	17,09	20.406,65	40.813,31	1.598 + 0,00	1.663 + 12,00	LD/LE	1.312,00	CORTE	5,32	6.985,09	13.970,18
596 + 8,00	597 + 10,00	LD/LE	22,00	ATERRO	0,38	8,42	16,83	1.663 + 12,00	1.673 + 14,00	LD/LE	202,00	ATERRO	7,23	1.461,37	2.922,74
597 + 10,00	602 + 10,00	LD/LE	100,00	CORTE	0,46	45,80	91,60	1.673 + 14,00	1.683 + 6,00	LD/LE	192,00	CORTE	2,81	539,52	1.079,04
602 + 10,00	618 + 1,50	LD/LE	311,50	ATERRO	10,01	3.117,34	6.234,67	1.683 + 6,00	1.686 + 17,00	LD/LE	71,00	ATERRO	3,55	251,70	503,39
620 6,50	633 4,00	LD/LE	257,50	ATERRO	11,43	2.942,84	5.885,68	1.686 + 17,00	1.700 + 0,00	LD/LE	263,00	CORTE	6,96	1.829,17	3.658,33
633 + 4,00	698 + 10,00	LD/LE	1.306,00	CORTE	12,36	16.144,77	32.289,54	1.700 + 0,00	1.724 + 0,00	LD/LE	480,00	ATERRO	10,07	4.833,60	9.667,20
698 + 10,00	717 + 15,00	LD/LE	385,00	ATERRO	5,36	2.062,64	4.125,28	1.724 + 0,00	1.735 + 17,00	LD/LE	237,00	CORTE	5,23	1.239,04	2.478,07
717 + 15,00	723 + 15,00	LD/LE	120,00	CORTE	0,57	68,22	136,44	1.735 + 17,00	1.761 + 6,00	LD/LE	509,00	ATERRO	2,85	1.449,63	2.899,26
723 + 15,00	750 + 17,00	LD/LE	542,00	ATERRO	7,30	3.954,43	7.908,86	1.761 + 6,00	1.764 + 16,00	LD/LE	70,00	CORTE	2,77	193,97	387,94
750 + 17,00	753 + 11,00	LD/LE	54,00	CORTE	0,73	39,58	79,16	1.764 + 16,00	1.770 + 15,00	LD/LE	119,00	ATERRO	7,37	877,15	1.754,30
753 + 11,00	754 + 3,00	LD/LE	12,00	ATERRO	0,80	9,63	19,26	1.770 + 15,00	1.773 + 13,00	LD/LE	58,00	CORTE	0,48	27,81	55,62
754 + 3,00	827 + 10,00	LD/LE	1.467,00	CORTE	7,50	10.998,10	21.996,20	1.773 + 13,00	1.815 + 13,00	LD/LE	840,00	ATERRO	15,44	12.967,50	25.935,00
827 + 10,00	976 + 2,90	LD/LE	2.972,90	ATERRO	14,25	42.350,45	84.700,89	1.815 + 13,00	1.830 + 5,00	LD/LE	292,00	CORTE	4,96	1.449,63	2.899,27
981 12,90	1.053 11,00	LD/LE	1.438,10	ATERRO	15,73	22.625,63	45.251,25	1.830 + 5,00	1.831 + 18,00	LD/LE	33,00	ATERRO	2,06	67,83	135,66
1.053 + 11,00	1.113 + 9,00	LD/LE	1.198,00	CORTE	9,11	10.913,18	21.826,36	1.831 + 18,00	1.833 + 4,00	LD/LE	26,00	CORTE	0,62	16,03	32,06
													SUB-TOTAL	354.153,22	708.306,45

SECR	ETARIA DE DESENVOLVIMENTO ECONÔMICO	SDEC
FERROVIA TRANSNORDESTINA	Trecho : Salgueiro - Parnamirim - Riacho Santa Rosa Lote : 02 Extensão : 127,48 km	MAIA MELO ENGENHARIA LTDA.
	HIDROSSEMEADURA - LISTAGEM	DES 4.7.5.1

STACA STACA Cm MIRRO Cm Cm STACA STACA STACA STACA Cm Cm Cm Cm Cm Cm Cm	LOCALI	IZAÇÃO	LADO	EXTENSÃO	CORTE OU	ALTURA MÉDIA (m)	ÁREA	ÍDEA TOTAL (mm)	LOCAL	IZAÇÃO		EXTENSÃO	CORTE OU	ALTURA MÉDIA	ÁREA	ÁREA TOTAL
1.833 ± 4.00 1.006 ± 13.23 LILAE 1.460,23 ATERRO 15.17 76.6711 53.243,43 2.404 ± 15.00 2.405 ± 7.00 LIDAE 13.00 CORTE 4.04 55.64 1.0570.2 1.101	ESTACA	ESTACA	LADO	(m)	ATERRO	ALTURA MEDIA (M)	(m²)	ÁREA TOTAL (m²)	ESTACA	ESTACA	LADO	(m)	ATERRO	(m)	(m²)	(m²)
1912 3.22 1928 4.00 LOLE 200,77 ATERO 20.20 3.266.51 10.551.02 2.405 7.00 2.411 7.00 LOLE 20.00 CORTE 4.04 525.44 10.951.02 1.007		1		HIDROS	SEMEADURA	•		•		•		HIDROSS	SEMEADURA	1		•
1912 3.22 1928 4.00 LOLE 200,77 ATERO 20.20 3.266.51 10.551.02 2.405 7.00 2.411 7.00 LOLE 20.00 CORTE 4.04 525.44 10.951.02 1.007																
1.900 1.900 1.900 1.900 1.901 1.000 1.001E 2.900 2.008T 2.905 2.	1.833 + 4,00	1.906 + 13,23	LD/LE	1.469,23	ATERRO	18,12	26.621,71	53.243,43	2.404 + 15,00	2.405 + 7,00	LD/LE	12,00	ATERRO	0,89	10,67	21,34
1.967 1.500 1.97 5.00 1.00	1.913 3,23	1.926 + 4,00	LD/LE	260,77	ATERRO	20,20	5.266,51	10.533,02	2.405 + 7,00	2.411 + 17,00	LD/LE	130,00	CORTE	4,04	525,46	1.050,92
1424 \$ 5.00 1582 \$ 0.00 101LE \$ 5.00 CORTE \$ 0.45 42.94 \$ 5.86 2.422 \$ 1.700 2.481 \$ 0.00 LOLE \$ 20.00 CORTE \$ 3.64 \$ 0.55.79 10.14 12.90.77 10.14	1.926 + 4,00	1.940 + 13,00	LD/LE	289,00	CORTE	5,18	1.496,73	2.993,46	2.411 + 17,00	2.415 + 4,00	LD/LE	67,00	ATERRO	5,89	394,86	789,73
1.502 + 0.00	1.940 + 13,00	1.947 + 5,00	LD/LE	132,00	ATERRO	6,83	900,97	1.801,93	2.415 + 4,00	2.422 + 17,00	LD/LE	153,00	CORTE	3,77	576,89	1.153,77
1,922 + 12,00	1.947 + 5,00	1.952 + 0,00	LD/LE	95,00	CORTE	0,45	42,94	85,88	2.422 + 17,00	2.431 + 0,00	LD/LE	163,00	ATERRO	3,84	625,19	1.250,37
1977 0.00 1977 0.00 1984 100 101LE 150.00 CORTE 1.56.00 CORTE 1.56.00 1.50.00	1.952 + 0,00	1.962 + 12,00	LD/LE	212,00	ATERRO	4,60	975,31	1.950,61	2.431 + 0,00	2.447 + 0,00	LD/LE	320,00	CORTE	4,58	1.465,76	2.931,52
1977 + 0.00	1.962 + 12,00	1.974 + 0,00	LD/LE	228,00	CORTE	3,16	721,51	1.443,01	2.447 + 0,00	2.447 + 8,00	LD/LE	8,00	ATERRO	0,63	5,07	10,14
1894 + 16.00 1894 + 16.00 1894 + 16.00 LDLE 130.00 ATERRO 5.74 745.55 1.491.10 2.479 + 10.00 2.482 + 3.00 2.585 + 16.00 LDLE 63.00 ATERRO 4.01 282.00 2.582 + 2.00 2.585 + 16.00 LDLE 63.00 ATERRO 4.01 282.00 2.583 + 2.00 2.585 + 16.00 LDLE 63.00 ATERRO 4.01 282.00 2.583 + 2.00 2.585 + 16.00 LDLE 63.00 ATERRO 4.02 2.02 4.02 4.00 2.02 4.00 2.02 4.00	1.974 + 0,00	1.977 + 0,00	LD/LE	60,00	ATERRO	1,74	104,49	208,98	2.447 + 8,00	2.450 + 4,00	LD/LE	56,00	CORTE	0,96	53,73	107,46
1991 + 6.00 2000 + 5.00 LBLE 17900 CORTE 5.70 1.002.67 2.041.14 2.479 + 0.00 2.482 + 3.00 LBLE 6.00 CORTE 6.44 10.765.89 21.582.89 2.011 + 14.00 2.021 + 10.00 LBLE 1675.00 CORTE 6.44 10.796.89 21.582.89 2.011 + 14.00 2.021 + 10.00 LBLE 1675.00 CORTE 6.44 10.796.89 21.582.89 2.011 + 14.00 2.021 + 10.00 LBLE 1675.00 CORTE 6.44 10.796.89 21.582.89 2.011 + 10.00 2.021 + 10.00 2.021 + 10.00 LBLE 1675.00 CORTE 6.44 10.796.89 21.582.89 2.011 + 10.00 2.021 + 10.00 2.021 + 10.00 LBLE 15.00 LBLE 15.00 CORTE 6.48 10.48.82 2.967.81 2.967.81 2.867 + 17.00 2.881 + 6.00 LBLE 289.00 CORTE 1.76 466.43 393.86 2.011 + 10.00 2.021 + 10.	1.977 + 0,00	1.984 + 16,00	LD/LE	156,00	CORTE	3,25	506,92	1.013,84	2.450 + 4,00	2.453 + 10,00	LD/LE	66,00	ATERRO	5,06	333,73	667,46
2.000 + 5.00 2.011 + 14.00 LDLE	1.984 + 16,00	1.991 + 6,00	LD/LE	130,00	ATERRO	5,74	745,55	1.491,10	2.453 + 10,00	2.479 + 0,00	LD/LE	510,00	CORTE	4,30	2.192,75	4.385,49
2011 + 14,00	1.991 + 6,00	2.000 + 5,00	LD/LE	179,00	CORTE	5,70	1.020,57	2.041,14	2.479 + 0,00	2.482 + 3,00	LD/LE	63,00	ATERRO	4,01	252,60	505,20
2.022 + 5.00	2.000 + 5,00	2.011 + 14,00	LD/LE	229,00	ATERRO	4,45	1.019,05	2.038,10	2.482 + 3,00	2.565 + 16,00	LD/LE	1.673,00	CORTE	6,44	10.766,59	21.533,18
2.023 + 5.00	2.011 + 14,00	2.021 + 10,00	LD/LE	196,00	CORTE	7,38	1.446,19	2.892,37	2.565 + 16,00	2.567 + 17,00	LD/LE	41,00	ATERRO	0,48	19,48	38,95
2.031 + 18,00	2.021 + 10,00	2.023 + 5,00	LD/LE	35,00	ATERRO	2,63	92,14	184,28	2.567 + 17,00	2.581 + 6,00	LD/LE	269,00	CORTE	3,02	811,04	1.622,07
2.013 + 16,00	2.023 + 5,00	2.030 + 18,00	LD/LE	153,00	CORTE	6,86	1.048,82	2.097,63	2.581 + 6,00	2.622 + 0,00	LD/LE	814,00	ATERRO	10,55	8.584,04	17.168,07
2.085	2.030 + 18,00	2.031 + 16,00	LD/LE	18,00	ATERRO	1,94	34,97	69,93	2.622 + 0,00	2.635 + 4,00	LD/LE	264,00	CORTE	1,76	465,43	930,86
2.085	2.031 + 16,00	2.049 + 12,00	LD/LE	356,00	CORTE	3,94	1.400,86	2.801,72	2.635 + 4,00	2.635 + 19,00	LD/LE	15,00	ATERRO	0,35	5,18	10,35
2.097 + 10,00	2.049 + 12,00	2.078 + 10,62	LD/LE	578,62	ATERRO	25,28	14.625,49	29.250,98	2.635 + 19,00	2.643 + 1,00	LD/LE	142,00	CORTE	2,00	283,72	567,43
2.097 + 18,00 2.107 + 1,00 LDLE 183,00 ATERRO 6.65 1.216,04 2.432,07 2.761 + 8,00 2.807 + 0,00 LDLE 912,00 ATERRO 8.10 7.384,46 14.768,93 2.107 + 1,00 2.107 + 3,00 2.128 + 2,00 LDLE 149,00 ATERRO 0.08 34.57 69.14 2.812 + 110,00 2.99 19.17 LDLE 2.949,17 ATERRO 18,7 5.500,20 11.000,40 2.132 + 18,00 LDLE 38,00 CORTE 2.14 124,03 28,07 2.801 + 4.17 30.02 + 11.10 LDLE 1.368,33 ATERRO 18,3 25.051,73 5.103,45 2.131 + 10,00 2.132 + 18,00 LDLE 38,00 ATERRO 1.69 64,03 128,06 3.037 + 16,10 3.107 + 17,00 LDLE 1.409,00 ATERRO 15,29 2.1422,56 428,451,3 2.132 + 19,00 2.149 + 15,00 LDLE 2.72,00 ATERRO 12,91 3.510,30 7.020,59 3.125 + 6,00 LDLE 2.494,00 ATERRO 7.41 1.882,93 3.764,79 2.157 + 7,00 LDLE 2.70,00 LDLE 2.70,00 ATERRO 1.31 35.28 70,55 3.186 + 5,00 LDLE 2.50,00 CORTE 1.54,00 ATERRO 1.31 35.28 70,55 3.186 + 5,00 LDLE 2.940,00 ATERRO 2.266,00 ATERRO 1.31 35.28 70,55 3.186 + 5,00 LDLE 2.940,00 ATERRO 1.24,00 ATERRO 1.31 35.28 70,55 3.186 + 5,00 LDLE 2.24,00 ATERRO 1.24,00 ATERRO 1.31 35.28 70,55 3.186 + 5,00 LDLE 2.24,00 ATERRO 1.24,00 ATERRO 1.24,00 ATERRO 1.31 35.28 70,55 3.186 + 5,00 LDLE 2.24,00 ATERRO 1.24,00 ATERRO 1.31 35.28 70,55 3.186 + 5,00 LDLE 2.24,00 ATERRO 1.24,00 ATERRO 1.31 35.28 70,55 3.186 + 5,00 LDLE 2.24,00 ATERRO 1.24,00 ATERRO 1.31 35.28 70,55 3.186 + 5,00 LDLE 2.24,00 ATERRO 1.35 175,24 350,48 1.24,00 ATERRO 1.24,00 LDLE 2.44,00 LDLE 2.44,00 LDLE 2.44,00 LDLE 2.44,00 CORTE 0.87 2.24,40 ATERRO 1.31 35.28 70,45 3.190 + 17,00 3.125 + 7,00 LDLE 1.30,00 CORTE 1.35 175,24 350,48 1.24,00 LDLE 2.24,00 ATERRO 1.48 1.110,00 ATERRO 1.42 2.86,67,50 173,75,01 3.226 + 0,00 LDLE 3.74,00 ATERRO 1.48 1.110,00 ATERRO 1.42 2.86,67,50 173,75,01 3.226 + 0,00 LDLE 3.74,00 ATERRO 1.42 3.524,88 7.049,37 2.24,40 3.226 + 0,00 LDLE 3.74,00 ATERRO 4.88 1.110,00 ATERRO 4.88 1.110,00 ATERRO 4.88 1.110,00 CORTE 1.65 85,42 2.230 + 1,00 LDLE 5.00 ATERRO 4.88 1.110,00 ATERRO 4.88 1.110,00 ATERRO 4.88 1.110,00 ATERRO 4.88 1.110,00 CORTE 4.45 4.50 ATERRO 4.48 4.110,00 LDLE 5.00 ATERRO 4.48 4.110,00 LDLE 5.00 ATERRO 4.48 4.110,00 LDLE 5.	2.085 0,62	2.097 10,00	LD/LE	249,38	ATERRO	18,92	4.718,52	9.437,04	2.643 + 1,00	2.644 + 9,00	LD/LE	28,00	ATERRO	2,62	73,23	146,47
2.107 + 1,00	2.097 + 10,00	2.097 + 18,00	LD/LE	8,00	CORTE	0,12	0,94	1,89	2.644 + 9,00	2.761 + 8,00	LD/LE	2.339,00	CORTE	7,59	17.763,54	35.527,07
2.107 + 3,00	2.097 + 18,00	2.107 + 1,00	LD/LE	183,00	ATERRO	6,65	1.216,04	2.432,07	2.761 + 8,00	2.807 + 0,00	LD/LE	912,00	ATERRO	8,10	7.384,46	14.768,93
2.128 + 2.00	2.107 + 1,00	2.107 + 3,00	LD/LE	2,00	CORTE	1669,51	3.339,01	6.678,03	2.807 + 0,00	2.812 + 10,00	LD/LE	110,00	CORTE	0,68	74,97	149,93
2.131 + 0.00	2.107 + 3,00	2.128 + 2,00	LD/LE	419,00	ATERRO	0,08	34,57	69,14	2.812 + 10,00	2.959 19,17	LD/LE	2.949,17	ATERRO	1,87	5.500,20	11.000,40
2.132 + 19,00	2.128 + 2,00	2.131 + 0,00	LD/LE	58,00	CORTE	2,14	124,03	248,07	2.961 + 4,17	3.029 + 11,10	LD/LE	1.366,93	ATERRO	18,33	25.051,73	50.103,45
2.143 + 15,00	2.131 + 0,00	2.132 + 18,00	LD/LE	38,00	ATERRO	1,69	64,03	128,06	3.037 + 16,10	3.107 + 17,00	LD/LE	1.400,90	ATERRO	15,29	21.422,56	42.845,13
2.157 + 7,00	2.132 + 19,00	2.143 + 15,00	LD/LE	216,00	CORTE	5,35	1.156,57	2.313,14	3.107 + 17,00	3.125 + 6,00	LD/LE	349,00	CORTE	7,22	2.520,30	5.040,61
2.161 + 19,00 2.163 + 6,00 LD/LE 27,00 ATERRO 1,31 35,28 70,55 3.186 + 5,00 3.190 + 17,00 LD/LE 92,00 ATERRO 2,80 257,32 514,65 2.163 + 6,00 2.176 + 0,00 LD/LE 254,00 CORTE 0.87 220,09 440,18 3.190 + 17,00 3.197 + 7,00 LD/LE 130,00 CORTE 1,35 175,24 350,48 2.176 + 0,00 2.188 + 16,00 LD/LE 256,00 ATERRO 4,81 1.232,00 2.464,00 3.197 + 7,00 3.214 + 4,00 LD/LE 337,00 ATERRO 10,46 3.524,68 7.049,37 2.188 + 16,00 LD/LE 214,00 CORTE 0,79 169,06 338,12 3.217 4,00 3.253 + 12,00 LD/LE 176,00 ATERRO 10,23 1.800,30 3.600,61 2.199 + 10,00 LD/LE 611,00 ATERRO 14,22 8.687,50 17,375,01 3.226 + 0,00 3.253 + 12,00 LD/LE 552,00 CORTE 6,19 3.417,71 6.835,42 2.230 + 1,00 LD/LE 1.064,00 CORTE 9,89 10.526,15 21.052,30 3.253 + 12,00 3.266 + 0,00 LD/LE 248,00 ATERRO 4,48 1.110,05 2.220,10 2.283 + 5,00 LD/LE 20,00 ATERRO 0,36 7,23 14,46 3.266 + 0,00 3.275 + 7,00 LD/LE 187,00 CORTE 2,90 542,02 1.084,04 2.284 + 0,00 2.310 + 0,00 LD/LE 520,00 CORTE 1,65 857,48 1.714,96 3.275 + 7,00 3.884 + 12,90 LD/LE 2.185,90 ATERRO 12,34 26.966,36 53.932,71 2.316 + 8,00 2.371 + 9,00 LD/LE 1.061,00 CORTE 0,94 157,58 315,17 3.386 + 17,90 3.405 + 9,00 LD/LE 371,10 ATERRO 11,21 4.160,77 8.321,55 2.371 + 9,00 LD/LE 1.061,00 CORTE 0,07 4.855 9,70 2.371 + 9,00 LD/LE 657,00 CORTE 5,97 3.921,63 7.843,27 3.416 + 0,00 3.421 + 10,00 LD/LE 110,00 CORTE 0,77 84,54 169,07	2.143 + 15,00	2.157 + 7,00	LD/LE	272,00	ATERRO	12,91	3.510,30	7.020,59	3.125 + 6,00	3.138 + 0,00	LD/LE	254,00	ATERRO	7,41	1.882,39	3.764,79
2.163 + 6,00	2.157 + 7,00	2.161 + 19,00	LD/LE	92,00	CORTE	1,67	153,18	306,36	3.138 + 0,00	3.186 + 5,00	LD/LE	965,00	CORTE	17,27	16.668,45	33.336,89
2.176 + 0,00 2.188 + 16,00 LD/LE 256,00 ATERRO 4,81 1.232,00 2.464,00 3.197 + 7,00 3.214 + 4,00 LD/LE 337,00 ATERRO 10,46 3.524,68 7.049,37 2.188 + 16,00 2.199 + 10,00 LD/LE 214,00 CORTE 0,79 169,06 338,12 3.217 4,00 3.226 + 0,00 LD/LE 176,00 ATERRO 10,23 1.800,30 3.600,61 2.199 + 10,00 2.230 + 1,00 LD/LE 611,00 ATERRO 14,22 8.687,50 17.375,01 3.226 + 0,00 LD/LE 552,00 CORTE 6,19 3.417,71 6.835,42 2.230 + 1,00 2.283 + 5,00 LD/LE 1.064,00 CORTE 9,89 10.526,15 21.052,30 3.253 + 12,00 LD/LE 248,00 ATERRO 4,48 1.110,05 2.220,10 2.283 + 5,00 2.284 + 5,00 LD/LE 20,00 ATERRO 0,36 7,23 14,46 3.266 + 0,00 3.275 + 7,00 LD/LE 187,00 CORTE 2,90 542,02 1.084,04 2.284 + 0,00 2.310 + 0,00 LD/LE 552,00 CORTE 1,65 857,48 1.714,96 3.275 + 7,00 3.346 + 17,90 3.405 + 9,00 LD/LE 2185,90 ATERRO 11,21 4.160,77 8.321,55 2.318 + 8,00 2.371 4,00 LD/LE 1.061,00 CORTE 10,40 11.029,10 22.058,19 3.405 + 9,00 3.408 + 15,00 LD/LE 166,00 CORTE 0,07 4,85 9,70 2.371 + 18,00 2.404 + 15,00 LD/LE 657,00 CORTE 5,97 3.921,63 7.843,27 3.416 + 0,00 3.421 + 10,00 LD/LE 110,00 CORTE 0,77 84,54 169,07	2.161 + 19,00	2.163 + 6,00	LD/LE	27,00	ATERRO	1,31	35,28	70,55	3.186 + 5,00	3.190 + 17,00	LD/LE	92,00	ATERRO	2,80	257,32	514,65
2.188 + 16.00	2.163 + 6,00	2.176 + 0,00	LD/LE	254,00	CORTE	0,87	220,09	440,18	3.190 + 17,00	3.197 + 7,00	LD/LE	130,00	CORTE	1,35	175,24	350,48
2.199 + 10,00	2.176 + 0,00	2.188 + 16,00	LD/LE	256,00	ATERRO	4,81	1.232,00	2.464,00	3.197 + 7,00	3.214 + 4,00	LD/LE	337,00	ATERRO	10,46	3.524,68	7.049,37
2.230 + 1,00	2.188 + 16,00	2.199 + 10,00	LD/LE	214,00	CORTE	0,79	169,06	338,12	3.217 4,00	3.226 + 0,00	LD/LE	176,00	ATERRO	10,23	1.800,30	3.600,61
2.283 + 5,00 2.284 + 5,00 LD/LE 20,00 ATERRO 0,36 7,23 14,46 3.266 + 0,00 3.275 + 7,00 LD/LE 187,00 CORTE 2,90 542,02 1.084,04 2.284 + 0,00 2.310 + 0,00 LD/LE 520,00 CORTE 1,65 857,48 1.714,96 3.275 + 7,00 3.384 + 12,90 LD/LE 2.185,90 ATERRO 12,34 26.966,36 53.932,71 2.310 + 0,00 2.318 + 8,00 LD/LE 168,00 ATERRO 0,94 157,58 315,17 3.386 + 17,90 3.405 + 9,00 LD/LE 371,10 ATERRO 11,21 4.160,77 8.321,55 2.318 + 8,00 2.371 + 9,00 LD/LE 1.061,00 CORTE 10,40 11.029,10 22.058,19 3.405 + 9,00 3.408 + 15,00 LD/LE 66,00 CORTE 0,07 4,85 9,70 2.371 + 18,00 2.404 + 15,00 LD/LE 657,00 CORTE 5,97 3.921,63 7.843,27 3.416 + 0,00 3.421 + 10,00 LD/LE 110,00 CORTE 0,77 84,54 169,07	2.199 + 10,00	2.230 + 1,00	LD/LE	611,00	ATERRO	14,22	8.687,50	17.375,01	3.226 + 0,00	3.253 + 12,00	LD/LE	552,00	CORTE	6,19	3.417,71	6.835,42
2.284 + 0.00 2.310 + 0.00 LD/LE 520,00 CORTE 1,65 857,48 1.714,96 3.275 + 7.00 3.384 + 12,90 LD/LE 2.185,90 ATERRO 12,34 26.966,36 53.932,71 2.310 + 0.00 2.318 + 8,00 LD/LE 168,00 ATERRO 0,94 157,58 315,17 3.386 + 17,90 3.405 + 9,00 LD/LE 371,10 ATERRO 11,21 4.160,77 8.321,55 2.318 + 8,00 2.371 + 9,00 LD/LE 1.061,00 CORTE 10,40 11.029,10 22.058,19 3.405 + 9,00 LD/LE 66,00 CORTE 0,07 4,85 9,70 2.371 + 9,00 2.371 18,00 LD/LE 9,00 ATERRO 0,25 2,25 4,51 3.408 + 15,00 3.416 + 0,00 LD/LE 145,00 ATERRO 0,60 86,93 173,86 2.371 + 18,00 2.404 + 15,00 LD/LE 657,00 CORTE 5,97 3.921,63 7.843,27 3.416 + 0,00 LD/LE 110,00 CORTE 0,77 84,54 169,07	2.230 + 1,00	2.283 + 5,00	LD/LE	1.064,00	CORTE	9,89	10.526,15	21.052,30	3.253 + 12,00	3.266 + 0,00	LD/LE	248,00	ATERRO	4,48	1.110,05	2.220,10
2.310 + 0,00	2.283 + 5,00	2.284 + 5,00	LD/LE	20,00	ATERRO			14,46	3.266 + 0,00	3.275 + 7,00	LD/LE	187,00	CORTE	2,90	542,02	1.084,04
2.318 + 8,00 2.371 + 9,00 LD/LE 1.061,00 CORTE 10,40 11.029,10 22.058,19 3.405 + 9,00 3.408 + 15,00 LD/LE 66,00 CORTE 0,07 4,85 9,70 2.371 + 9,00 2.371 18,00 LD/LE 9,00 ATERRO 0,25 2,25 4,51 3.408 + 15,00 3.416 + 0,00 LD/LE 145,00 ATERRO 0,60 86,93 173,86 2.371 + 18,00 2.404 + 15,00 LD/LE 657,00 CORTE 5,97 3.921,63 7.843,27 3.416 + 0,00 3.421 + 10,00 LD/LE 110,00 CORTE 0,77 84,54 169,07	2.284 + 0,00	2.310 + 0,00	LD/LE	520,00	CORTE	1,65	857,48	1.714,96	3.275 + 7,00	3.384 + 12,90	LD/LE	2.185,90	ATERRO	12,34	26.966,36	53.932,71
2.318 + 8,00 2.371 + 9,00 LD/LE 1.061,00 CORTE 10,40 11.029,10 22.058,19 3.405 + 9,00 3.408 + 15,00 LD/LE 66,00 CORTE 0,07 4,85 9,70 2.371 + 9,00 2.371 18,00 LD/LE 9,00 ATERRO 0,25 2,25 4,51 3.408 + 15,00 3.416 + 0,00 LD/LE 145,00 ATERRO 0,60 86,93 173,86 2.371 + 18,00 2.404 + 15,00 LD/LE 657,00 CORTE 5,97 3.921,63 7.843,27 3.416 + 0,00 3.421 + 10,00 LD/LE 110,00 CORTE 0,77 84,54 169,07	2.310 + 0,00	2.318 + 8,00	LD/LE	168,00	ATERRO	0,94	157,58	315,17	3.386 + 17,90	3.405 + 9,00	LD/LE	371,10	ATERRO	11,21	4.160,77	8.321,55
2.371 + 9,00 2.371 18,00 LD/LE 9,00 ATERRO 0,25 2,25 4,51 3.408 + 15,00 3.416 + 0,00 LD/LE 145,00 ATERRO 0,60 86,93 173,86 2.371 + 18,00 2.404 + 15,00 LD/LE 657,00 CORTE 5,97 3.921,63 7.843,27 3.416 + 0,00 3.421 + 10,00 LD/LE 110,00 CORTE 0,77 84,54 169,07	2.318 + 8,00	2.371 + 9,00	LD/LE	1.061,00	CORTE		11.029,10		3.405 + 9,00	3.408 + 15,00	LD/LE	66,00	CORTE	0,07	4,85	
2.371 + 18,00 2.404 + 15,00 LD/LE 657,00 CORTE 5,97 3.921,63 7.843,27 3.416 + 0,00 3.421 + 10,00 LD/LE 110,00 CORTE 0,77 84,54 169,07	2.371 + 9,00	2.371 18,00	LD/LE	9,00	ATERRO	· ·		4,51	3.408 + 15,00	3.416 + 0.00	LD/LE	145,00	ATERRO	0,60	86,93	173,86
	2.371 + 18,00	2.404 + 15.00	LD/LE	657,00	CORTE	5,97	3.921,63	7.843,27	3.416 + 0,00	3.421 + 10,00	LD/LE	110,00	CORTE	0,77	84,54	169,07
														SUB-TOTAL	277.078,01	554.156,03

SECR	ETARIA DE DESENVOLVIMENTO ECONÔMICO	SDEC
FERROVIA TRANSNORDESTINA	Trecho : Salgueiro - Parnamirim - Riacho Santa Rosa Lote : 02 Extensão : 127,48 km	MAIA MELO ENGENHARIA LTDA.
	HIDROSSEMEADURA - LISTAGEM	DES 4.7.5.2

ESTACA	ESTACA	LADO			ALTURA MÉDIA (m)							CORTE OU	ALTURA MÉDIA		ÁREA TOTAL
·			(m)	ATERRO	ALI SIXA INEDIA (III)	(m²)	ÁREA TOTAL (m²)	ESTACA	ESTACA	LADO	(m)	ATERRO	(m)	(m²)	(m²)
		i)	HIDROS	SEMEADURA	1		•				HIDROSS	SEMEADURA			
3.421 + 10,00 3.4	.450 + 0,00	LD/LE	570,00	ATERRO	3,50	1.994,15	3.988,29	4.500 + 13,00	4.502 + 0,00	LD/LE	27,00	CORTE	0,08	2,04	4,08
3.450 + 0,00 3.4	.465 + 0,00	LD/LE	300,00	CORTE	1,83	549,00	1.098,00	4.502 + 0,00	4.504 + 10,00	LD/LE	50,00	ATERRO	0,40	20,05	40,10
3.465 + 0,00 3.4	.482 + 0,00	LD/LE	340,00	ATERRO	7,52	2.557,82	5.115,64	4.504 + 10,00	4.512 + 0,00	LD/LE	150,00	CORTE	0,70	104,33	208,65
3.482 + 0,00 3.5	.503 + 0,00	LD/LE	420,00	CORTE	8,07	3.387,72	6.775,44	4.512 + 0,00	4.553 + 12,00	LD/LE	832,00	ATERRO	10,92	9.088,77	18.177,54
3.503 + 0,00 3.5	.511 + 15,40	LD/LE	175,40	ATERRO	13,29	2.330,45	4.660,90	4.553 + 12,00	4.605 + 10,00	LD/LE	1.038,00	CORTE	6,58	6.829,00	13.658,00
3.514 15,40 3.5	.534 + 15,00	LD/LE	399,60	ATERRO	14,39	5.750,04	11.500,09	4.605 + 10,00	4.636 + 15,00	LD/LE	625,00	ATERRO	7,96	4.973,13	9.946,25
3.534 + 15,00 3.5	.543 + 8,00	LD/LE	173,00	CORTE	1,99	344,53	689,06	4.636 + 15,00	4.658 + 0,00	LD/LE	425,00	CORTE	3,41	1.447,98	2.895,95
3.543 + 8,00 3.5	.573 + 8,00	LD/LE	600,00	ATERRO	12,21	7.328,10	14.656,20	4.658 + 0,00	4.676 + 0,00	LD/LE	360,00	ATERRO	7,57	2.723,94	5.447,88
3.573 + 8,00 3.6	.644 + 14,00	LD/LE	1.426,00	CORTE	9,29	13.252,53	26.505,06	4.676 + 0,00	4.680 + 15,00	LD/LE	95,00	CORTE	2,30	218,26	436,53
3.644 + 14,00 3.6	.657 + 0,00	LD/LE	246,00	ATERRO	14,22	3.498,86	6.997,72	4.680 + 15,00	4.687 + 0,00	LD/LE	125,00	ATERRO	7,43	928,88	1.857,75
3.657 + 0,00 3.7	.710 + 0,00	LD/LE	1.060,00	CORTE	6,82	7.231,32	14.462,64	4.687 + 0,00	4.695 + 10,00	LD/LE	170,00	CORTE	5,78	981,75	1.963,50
3.710 + 0,00 3.7	.742 + 0,00	LD/LE	640,00	ATERRO	8,66	5.539,52	11.079,04	4.695 + 10,00	4.708 + 15,00	LD/LE	265,00	ATERRO	4,21	1.114,99	2.229,98
3.742 + 0,00 3.7	.749 + 16,00	LD/LE	156,00	CORTE	1,15	179,24	358,49	4.708 + 15,00	4.723 + 5,00	LD/LE	290,00	ATERRO	6,74	1.955,47	3.910,94
3.749 + 16,00 3.7	.759 + 12,90	LD/LE	196,90	ATERRO	12,37	2.435,55	4.871,11	4.723 + 5,00	4.774 + 17,90	LD/LE	1.032,90	ATERRO	13,78	14.232,85	28.465,69
3.761 + 17,90 3.7	.776 6,00	LD/LE	288,10	ATERRO	8,40	2.418,74	4.837,49	4.781 + 12,90	4.821 + 0,00	LD/LE	787,10	ATERRO	11,87	9.342,09	18.684,18
3.776 + 6,00 3.7	.783 + 0,00	LD/LE	134,00	CORTE	1,55	207,63	415,27	4.821 + 0,00	4.829 + 4,00	LD/LE	164,00	CORTE	3,48	571,21	1.142,42
3.783 + 0,00 3.7	.784 + 10,00	LD/LE	30,00	ATERRO	1,99	59,82	119,64	4.829 + 4,00	4.836 + 0,00	LD/LE	136,00	ATERRO	2,76	374,75	749,50
3.784 + 10,00 3.8	.810 + 16,00	LD/LE	526,00	CORTE	4,46	2.344,65	4.689,29	4.836 + 0,00	4.859 + 10,00	LD/LE	470,00	CORTE	5,34	2.507,92	5.015,84
3.810 + 16,00 3.8	.831 + 0,00	LD/LE	404,00	ATERRO	2,49	1.006,36	2.012,73	4.859 + 10,00	4.867 + 15,00	LD/LE	165,00	ATERRO	8,19	1.351,76	2.703,53
3.831 + 0,00 3.8	.846 + 9,00	LD/LE	309,00	CORTE	2,58	796,76	1.593,51	4.867 + 15,00	4.878 + 10,00	LD/LE	215,00	CORTE	2,33	500,41	1.000,83
3.846 + 9,00 3.9	.919 + 12,60	LD/LE	1.463,60	ATERRO	10,53	15.418,29	30.836,59	4.878 + 10,00	4.898 + 0,00	LD/LE	390,00	ATERRO	10,08	3.932,96	7.865,91
3.925 + 12,60 3.9	.984 + 4,00	LD/LE	1.171,40	ATERRO	16,30	19.093,23	38.186,47	4.898 + 0,00	4.952 + 0,00	LD/LE	1.080,00	CORTE	8,29	8.947,80	17.895,60
3.984 + 4,00 4.0	.025 + 6,00	LD/LE	822,00	CORTE	17,09	14.046,75	28.093,49	4.952 + 0,00	4.976 + 17,90	LD/LE	497,90	ATERRO	15,80	7.866,07	15.732,15
4.025 + 6,00 4.0	.028 + 10,00	LD/LE	64,00	ATERRO	2,47	158,27	316,54	4.978 + 2,90	5.011 + 10,00	LD/LE	667,10	ATERRO	11,42	7.618,28	15.236,56
4.028 + 10,00 4.0	.036 + 6,00	LD/LE	156,00	CORTE	2,23	348,50	697,01	5.011 + 10,00	5.027 + 0,00	LD/LE	310,00	CORTE	2,24	694,40	1.388,80
4.036 + 6,00 4.0	.078 + 5,40	LD/LE	839,40	ATERRO	18,98	15.930,55	31.861,11	5.027 + 0,00	5.038 + 9,00	LD/LE	229,00	ATERRO	3,20	733,72	1.467,43
4.081 5,40 4.1	.103 11,00	LD/LE	445,60	ATERRO	9,19	4.094,40	8.188,79	5.038 + 9,00	5.055 + 7,00	LD/LE	338,00	CORTE	3,77	1.275,78	2.551,56
4.103 + 11,00 4.1	.114 + 7,00	LD/LE	216,00	CORTE	1,18	254,02	508,03	5.055 + 7,00	5.056 + 8,00	LD/LE	21,00	ATERRO	1,10	23,01	46,01
4.114 + 7,00 4.1	.127 + 0,00	LD/LE	253,00	ATERRO	6,85	1.733,68	3.467,37	5.056 + 8,00	5.059 + 0,00	LD/LE	52,00	CORTE	0,76	39,42	78,83
4.127 + 0,00 4.1	.149 + 5,00	LD/LE	445,00	CORTE	2,34	1.041,52	2.083,05	5.059 + 0,00	5.063 + 3,00	LD/LE	83,00	ATERRO	2,37	196,79	393,59
4.149 + 5,00 4.1	.169 + 10,00	LD/LE	405,00	ATERRO	3,96	1.602,18	3.204,36	5.063 + 3,00	5.097 + 9,00	LD/LE	686,00	CORTE	7,34	5.034,90	10.069,79
4.169 + 10,00 4.2	.207 + 4,00	LD/LE	754,00	CORTE	7,17	5.404,30	10.808,59	5.097 + 9,00	5.098 + 0,00	LD/LE	11,00	ATERRO	0,46	5,04	10,09
4.207 + 4,00 4.2	.258 + 2,22	LD/LE	1.018,22	ATERRO	5,59	5.693,89	11.387,77	5.098 + 0,00	5.099 + 12,00	LD/LE	32,00	CORTE	0,72	22,91	45,82
4.260 7,22 4.2	.270 + 13,00	LD/LE	205,78	ATERRO	8,18	1.684,00	3.368,00	5.099 + 12,00	5.115 + 0,00	LD/LE	308,00	ATERRO	5,32	1.639,18	3.278,35
4.270 + 13,00 4.2	.293 + 0,00	LD/LE	447,00	CORTE	1,78	796,33	1.592,66	5.115 + 0,00	5.127 + 0,00	LD/LE	240,00	CORTE	1,27	304,32	608,64
4.293 + 0,00 4.3	.356 + 10,00	LD/LE	1.270,00	ATERRO	4,24	5.389,25	10.778,49	5.127 + 0,00	5.147 + 0,00	LD/LE	400,00	ATERRO	6,12	2.449,60	4.899,20
4.356 + 10,00 4.3	.392 + 0,00	LD/LE	710,00	CORTE	1,96	1.390,54	2.781,07	5.147 + 0,00	5.251 + 0,00	LD/LE	2.080,00	CORTE	5,51	11.469,12	22.938,24
4.392 + 0,00 4.4	.415 + 0,00	LD/LE	460,00	ATERRO	0,92	423,20	846,40	5.251 + 0,00	5.276 + 0,00	LD/LE	500,00	ATERRO	2,29	1.144,75	2.289,50
4.415 + 0,00 4.4	.497 + 0,00	LD/LE	1.640,00	CORTE	2,10	3.446,46	6.892,92	5.276 + 0,00	5.287 + 0,00	LD/LE	220,00	CORTE	0,37	81,40	162,80
4.497 + 0,00 4.5	.500 + 13,00	LD/LE	73,00	ATERRO	1,24	90,48	180,97	5.287 + 0,00	5.318 + 10,00	LD/LE	630,00	ATERRO	1,78	1.119,51	2.239,02
													SUB-TOTAL	275.121,15	550.242,29

SECR	SECRETARIA DE DESENVOLVIMENTO ECONÔMICO								
FERROVIA TRANSNORDESTINA	Lote	: Salgueiro - Parnamirim - Riacho Santa Rosa : 02 : 127,48 km	MAIA MELO ENGENHARIA LTDA.						
	HIDRO	SSEMEADURA - LISTAGEM	DES 4.7.5.3						

LOCALIZ	ZAÇÃO	1.400	EXTENSÃO	CORTE OU	ALTURA MÉDIA ()	ÁREA	ÁDEA TOTAL (***)	LOCAL	IZAÇÃO	1.450	EXTENSÃO	CORTE OU	ALTURA MÉDIA	ÁREA	ÁREA TOTAL
ESTACA	ESTACA	LADO	(m)	ATERRO	ALTURA MEDIA (M)	(m²)	AREA TOTAL (m²)	ESTACA	ESTACA	LADO	(m)	ATERRO	(m)	(m²)	(m²)
			HIDROS	SEMEADURA							HIDROSS	SEMEADURA			
5.318 + 10,00 5.368 + 8,00 5.379 + 12,00 5.385 + 6,00 5.415 + 0,00 5.432 + 0,00 5.454 + 15,40 5.496 + 0,00 5.566 + 16,00 5.585 + 0,00 5.600 + 0,00 5.630 + 0,00		LADO LD/LE	(m)	ATERRO	5,95 4,66 0,99 4,47 3,76 9,77 10,81 6,59 6,84 4,05 5,46 3,12 5,44 0,74 2,82 3,09 7,60 5,93 9,79 4,07 2,86 3,25		11.872,21 2.087,01 224,69 5.313,92 2.558,16 7.723,35 9.266,33 5.220,07 19.380,79 2.951,31 3.277,50 3.744,00 10.222,50 324,28 2.190,07 3.283,70 6.081,20 5.219,72 5.399,36 4.738,88 4.809,84 3.900,00			LADO LD/LE	(m)	ATERRO	_		_

SECF	SDEC	
FERROVIA TRANSNORDESTINA	Trecho : Salgueiro - Parnamirim - Riacho Santa Rosa Lote : 02 Extensão : 127,48 km	MAIA MELO ENGENHARIA LTDA.
	HIDROSSEMEADURA - LISTAGEM	DES 4.7.5.4

ESTACA INICIAL ESTACA FINAL EXTENSÃO (m) LADO EXTENSÃO TOTAL (m) OBSERV 0 + 0,00 47 + 17,00 957,00 E/D 1914,00 Const 48 + 3,00 61 + 17,00 274,00 E/D 548,00 Const 62 + 3,00 187 + 17,00 2.514,00 E/D 5028,00 Const 260 + 3,00 349 + 17,00 1.794,00 E/D 3588,00 Const 350 + 3,00 390 + 17,00 814,00 E/D 5268,00 Const 391 + 3,00 522 + 17,00 2.634,00 E/D 366,00 Const 523 + 3,00 609 + 17,00 1.734,00 E/D 366,00 Const 610 + 3,00 619 + 1,00 178,00 E/D 380,00 Const 629 + 3,00 628 + 17,00 1.874,00 E/D 366,00 Const 629 </th <th></th>	
48 + 3,00 61 + 17,00 274,00 E/D 548,00 Const 62 + 3,00 187 + 17,00 2.514,00 E/D 5028,00 Const 188 + 3,00 259 + 17,00 1.434,00 E/D 2868,00 Const 260 + 3,00 349 + 17,00 1.794,00 E/D 3588,00 Const 350 + 3,00 390 + 17,00 814,00 E/D 1628,00 Const 391 + 3,00 522 + 17,00 2.634,00 E/D 3468,00 Const 523 + 3,00 609 + 17,00 1.734,00 E/D 3468,00 Const 610 + 3,00 619 + 1,00 178,00 E/D 356,00 Const 619 + 7,00 628 + 17,00 <t< th=""><th>/AÇÃO</th></t<>	/AÇÃO
62 + 3,00	truir
188 + 3,00 259 + 17,00 1.434,00 E/D 2868,00 Const 260 + 3,00 349 + 17,00 1.794,00 E/D 3588,00 Const 350 + 3,00 390 + 17,00 814,00 E/D 1628,00 Const 391 + 3,00 522 + 17,00 2.634,00 E/D 5268,00 Const 523 + 3,00 609 + 17,00 1.734,00 E/D 3468,00 Const 610 + 3,00 619 + 1,00 178,00 E/D 380,00 Const 619 + 7,00 628 + 17,00 190,00 E/D 380,00 Const 629 + 3,00 722 + 17,00 1.874,00 E/D 3674,00 Const 723 + 3,00 815 + 0,00	truir
260 + 3,00 349 + 17,00 1.794,00 E/D 3588,00 Const 350 + 3,00 390 + 17,00 814,00 E/D 1628,00 Const 391 + 3,00 522 + 17,00 2.634,00 E/D 5268,00 Const 523 + 3,00 609 + 17,00 1.734,00 E/D 3468,00 Const 610 + 3,00 619 + 1,00 178,00 E/D 356,00 Const 619 + 7,00 628 + 17,00 190,00 E/D 380,00 Const 629 + 3,00 722 + 17,00 1.874,00 E/D 3674,00 Const 723 + 3,00 815 + 0,00 1.837,00 E/D 3674,00 Const 815 + 12,00 821 + 5,00	truir
350 + 3,00	truir
391 + 3,00 522 + 17,00 2.634,00 E/D 5268,00 Const 523 + 3,00 609 + 17,00 1.734,00 E/D 3468,00 Const 610 + 3,00 619 + 1,00 178,00 E/D 356,00 Const 619 + 7,00 628 + 17,00 190,00 E/D 380,00 Const 629 + 3,00 722 + 17,00 1.874,00 E/D 3748,00 Const 723 + 3,00 815 + 0,00 1.837,00 E/D 3674,00 Const 815 + 12,00 821 + 5,00 113,00 E/D 226,00 Const 821 + 17,00 560,00 E/D 1120,00 Const 850 + 3,00 899 + 17,00 994,00 E/D 1988,00	truir
523 + 3,00 609 + 17,00 1.734,00 E/D 3468,00 Const 610 + 3,00 619 + 1,00 178,00 E/D 356,00 Const 619 + 7,00 628 + 17,00 190,00 E/D 380,00 Const 629 + 3,00 722 + 17,00 1.874,00 E/D 3748,00 Const 723 + 3,00 815 + 0,00 1.837,00 E/D 3674,00 Const 815 + 12,00 821 + 5,00 113,00 E/D 226,00 Const 821 + 17,00 560,00 E/D 1120,00 Const 850 + 3,00 899 + 17,00 994,00 E/D 1988,00 Const 900 + 3,00 977 + 17,00 1.554,00 E/D 1428,00	truir
610 + 3,00 619 + 1,00 178,00 E/D 356,00 Const 619 + 7,00 628 + 17,00 190,00 E/D 380,00 Const 629 + 3,00 722 + 17,00 1.874,00 E/D 3748,00 Const 723 + 3,00 815 + 0,00 1.837,00 E/D 3674,00 Const 815 + 12,00 821 + 5,00 113,00 E/D 226,00 Const 821 + 17,00 849 + 17,00 560,00 E/D 1120,00 Const 850 + 3,00 899 + 17,00 994,00 E/D 1988,00 Const 900 + 3,00 977 + 17,00 1.554,00 E/D 3108,00 Const 978 + 3,00 1013 + 17,00 714,00 E/D 1428,00 Const	truir
619 + 7,00 628 + 17,00 190,00 E/D 380,00 Const 629 + 3,00 722 + 17,00 1.874,00 E/D 3748,00 Const 723 + 3,00 815 + 0,00 1.837,00 E/D 3674,00 Const 815 + 12,00 821 + 5,00 113,00 E/D 226,00 Const 821 + 17,00 849 + 17,00 560,00 E/D 1120,00 Const 850 + 3,00 899 + 17,00 994,00 E/D 1988,00 Const 900 + 3,00 977 + 17,00 1.554,00 E/D 3108,00 Const 978 + 3,00 1013 + 17,00 714,00 E/D 1428,00 Const	truir
629 + 3,00 722 + 17,00 1.874,00 E/D 3748,00 Const 723 + 3,00 815 + 0,00 1.837,00 E/D 3674,00 Const 815 + 12,00 821 + 5,00 113,00 E/D 226,00 Const 821 + 17,00 560,00 E/D 1120,00 Const 850 + 3,00 899 + 17,00 994,00 E/D 1988,00 Const 900 + 3,00 977 + 17,00 1.554,00 E/D 3108,00 Const 978 + 3,00 1013 + 17,00 714,00 E/D 1428,00 Const	truir
723 + 3,00 815 + 0,00 1.837,00 E/D 3674,00 Const 815 + 12,00 821 + 5,00 113,00 E/D 226,00 Const 821 + 17,00 560,00 E/D 1120,00 Const 850 + 3,00 899 + 17,00 994,00 E/D 1988,00 Const 900 + 3,00 977 + 17,00 1.554,00 E/D 3108,00 Const 978 + 3,00 1013 + 17,00 714,00 E/D 1428,00 Const	truir
815 + 12,00 821 + 5,00 113,00 E/D 226,00 Const 821 + 17,00 560,00 E/D 1120,00 Const 850 + 3,00 899 + 17,00 994,00 E/D 1988,00 Const 900 + 3,00 977 + 17,00 1.554,00 E/D 3108,00 Const 978 + 3,00 1013 + 17,00 714,00 E/D 1428,00 Const	truir
821 + 17,00 849 + 17,00 560,00 E/D 1120,00 Const 850 + 3,00 899 + 17,00 994,00 E/D 1988,00 Const 900 + 3,00 977 + 17,00 1.554,00 E/D 3108,00 Const 978 + 3,00 1013 + 17,00 714,00 E/D 1428,00 Const	truir
850 + 3,00 899 + 17,00 994,00 E/D 1988,00 Const 900 + 3,00 977 + 17,00 1.554,00 E/D 3108,00 Const 978 + 3,00 1013 + 17,00 714,00 E/D 1428,00 Const	truir
900 + 3,00 977 + 17,00 1.554,00 E/D 3108,00 Const 978 + 3,00 1013 + 17,00 714,00 E/D 1428,00 Const	truir
978 + 3,00 1013 + 17,00 714,00 E/D 1428,00 Const	truir
	truir
1014 + 3.00 1044 + 7.00 604.00 F/D 1208.00 Const	truir
	truir
1044 + 13,00 1179 + 15,00 2.702,00 E/D 5404,00 Const	truir
1180 + 5,00 1256 + 17,00 1.532,00 E/D 3064,00 Const	truir
1257 + 3,00 1529 + 17,00 5.454,00 E/D 10908,00 Const	truir
1530 + 3,00 1783 + 17,00 5.074,00 E/D 10148,00 Const	truir
1784 + 3,00 1829 + 17,00 914,00 E/D 1828,00 Const	truir
1830 + 3,00 1874 + 3,00 880,00 E/D 1760,00 Const	truir
1874 + 9,00 1909 + 5,00 696,00 E/D 1392,00 Const	truir
1909 + 15,00 1925 + 12,00 317,00 E/D 634,00 Const	truir
1925 + 18,00 2044 + 11,00 2.373,00 E/D 4746,00 Const	truir
2044 + 17,00 2081 + 0,00 723,00 E/D 1446,00 Const	truir
2081 + 10,00 2097 + 17,00 327,00 E/D 654,00 Const	truir
2098 + 3,00 2137 + 17,00 794,00 E/D 1588,00 Const	truir
2138 + 3,00 2192 + 4,00 1.081,00 E/D 2162,00 Const	truir
2192 + 10.00 2447 + 7.00 5.097.00 E/D 10194.00 Const	truir
2447 + 13,00 2760 + 17,00 6.264,00 E/D 12528,00 Const	
2761 + 3,00 2788 + 17,00 554,00 E/D 1108,00 Const	truir
2789 + 3,00 2854 + 17,00 1.314,00 E/D 2628,00 Const	
2855 + 3,00 2901 + 7,00 924,00 E/D 1848,00 Const	
2901 + 13,00 2959 + 15,00 1.162,00 E/D 2324,00 Const	
2960 + 5,00 2993 + 4,00 659,00 E/D 1318,00 Const	truir
2993 + 10,00 3032 + 7,00 777,00 E/D 1554,00 Const	truir
3032 + 17,00 3062 + 5,00 588,00 E/D 1176,00 Const	
3062 + 11,00 3204 + 17,00 2.846,00 E/D 5692,00 Const	

		SEGM	IENTO			EXTENSÃO		EXTENSÃO		
ESTA	CA IN	ICIAL	EST	ACA F	INAL	(m)	LADO	TOTAL (m)	OBSERVAÇÃO	
3205	+	3,00	3215	+	9,00	206,00	E/D	412,00	Construir	
3215	+	19,00	3252	+	17,00	738,00	E/D	1476,00	Construir	
3253	+	3,00	3274	+	17,00	434,00	E/D	868,00	Construir	
3275	+	3,00	3323	+	17,00	974,00	E/D	1948,00	Construir	
3324	+	3,00	3384	+	10,00	1.207,00	E/D	2414,00	Construir	
3385	+	0,00	3398	+	0,00	260,00	E/D	520,00	Construir	
3398	+	6,00	3512	+	0,00	2.274,00	E/D	4548,00	Construir	
3512	+	10,00	3542	+	17,00	607,00	E/D	1214,00	Construir	
3543	+	3,00	3759	+	9,00	4.326,00	E/D	8652,00	Construir	
3760	+	19,00	3785	+	2,00	483,00	E/D	966,00	Construir	
3785	+	8,00	3903	+	17,00	2.369,00	E/D	4738,00	Construir	
3904	+	3,00	3921	+	7,00	344,00	E/D	688,00	Construir	
3921	+	17,00	3969	+	12,00	955,00	E/D	1910,00	Construir	
3969	+	18,00	4024	+	17,00	1.099,00	E/D	2198,00	Construir	
4025	+	3,00	4079	+	10,00	1.087,00	E/D	2174,00	Construir	
4080	+	0,00	4169	+	17,00	1.797,00	E/D	3594,00	Construir	
4170	+	3,00	4223	+	17,00	1.074,00	E/D	2148,00	Construir	
4224	+	3,00	4259	+	14,00	711,00	E/D	1422,00	Construir	
4260	+	4,00	4329	+	11,00	1.387,00	E/D	2774,00	Construir	
4329	+	17,00	4542	+	7,00	4.250,00	E/D	8500,00	Construir	
4542	+	13,00	4671	+	17,00	2.584,00	E/D	5168,00	Construir	
4672	+	3,00	4708	+	17,00	734,00	E/D	1468,00	Construir	
4709	+	3,00	4777	+	0,00	1.357,00	E/D	2714,00	Construir	
4777	+	15,00	4797	+	3,00	388,00	E/D	776,00	Construir	
4797	+	9,00	4854	+	7,00	1.138,00	E/D	2276,00	Construir	
4854	+	13,00	4880	+	7,00	514,00	E/D	1028,00	Construir	
4880	+	13,00	4976	+	15,00	1.922,00	E/D	3844,00	Construir	
4977	+	5,00	5058	+	17,00	1.632,00	E/D	3264,00	Construir	
5059	+	3,00	5319	+	3,00	5.200,00	E/D	10400,00	Construir	
5319	+	9,00	5414	+	17,00	1.908,00	E/D	3816,00	Construir	
5415	+	3,00	5444	+	17,00	594,00	E/D	1188,00	Construir	
5445	+	3,00	5452	+	0,00	137,00	E/D	274,00	Construir	
5452	+	10,00	5629	+	17,00	3.547,00	E/D	7094,00	Construir	
5630	+	3,00	5753	+	17,00	2.474,00	E/D	4948,00	Construir	
5754	+	3,00	5789	+	10,00	707,00	E/D	1414,00	Construir	
5790	+	0,00	5809	+	17,00	397,00	E/D	794,00	Construir	
5810	+	3,00	5921	+	17,00	2.234,00	E/D	4468,00	Construir	
5922	+	3,00	6373	+	13,60	9.030,60	E/D	18061,20	Construir	
						TOTAL		253.809,20		

SECRETAR	IA DE DESENVOLVIMENTO ECONÔMICO	SDEC
FERROVIA TRANSNORDESTINA	Trecho : Salgueiro - Parnamirim - Riacho Santa Rosa Lote : 02 Extensão : 127,48 km	MAIA MELO ENGENHARIA LTDA.
	LISTAGEM DE CERCAS	DES 4.7.6

4.8 Componente Ambiental

4.8.1 Passivo Ambiental

Conforme já relacionado nos estudos ambientais não existem ocorrências de passivo ambiental, sujeito a um Projeto Ambiental.

A ausência de Passivos de natureza física decorre, principalmente, da ruralidade que caracteriza segmentos do trecho e do relevo muito pouco movimentado, fazendo com que inexistam taludes instáveis e/ou erodidos, bem como áreas exploradas não tratadas cujos processos erosivos viriam a por em risco a plataforma viária e adjacências.

O segmento Riacho Santa Rosa – Parnamirim está praticamente intocado e é caracterizado por uma vegetação típica de caatinga, com arbustos e alguns indivíduos arbóreos . Segundo o EIA/RIMA é uma das Unidades de Paisagem mais preservadas de todo o entorno da diretriz de traçado da Transnordestina. O relevo é caracterizado como suave ondulado. Onde há morros e serrotes a vegetação também se apresenta bastante preservada. Não há presença de aglomerados urbanos a não ser pelos povoados de Urimamã e Veneza. Os solos identificados nessa unidade são os latossolos e, na maior parte, presença de cascalho.

Por sua vez na passagem pelas aglomerações urbanas a diretriz de traçado não provocará problemas de funcionalidade ou impactos do tipo intrusão visual, segregação urbana e conflitos de tráfego, uma vez que a diretriz de traçado contornará os núcleos urbanos de Vila Veneza, Parnamirim e Salgueiro.

Deste modo, os Passivos, de uma forma geral, decorrem da atividade pecuária, do superpastoreio de ovinos, caprinos, bovinos e outros rebanhos, atividades estas que têm

modificado a composição florística do estrato herbáceo da Caatinga pela pressão de pastejo.

4.8.2 Recuperação das Jazidas a serem Exploradas

A reabilitação ambiental das áreas deverá se pautar pelas seguintes especificações gerais do DNIT (DNER) e particulares e croquis de projetos-tipo apresentados adiante;

- ES 341/97 Proteção do Corpo Estradal Proteção Vegetal, com ênfase para o item
 5.3.2 Áreas Planas ou de Pouca Declividade (atividades de revegetação por aração mecanizada e semeadura manual a lanço);
- ES 288/97 Sarjetas e valetas de drenagem, com destaque para o subitem 5.3.2 -Sarjetas e Valetas com Revestimento Vegetal e item 6 - Manejo Ambiental;
- EP-01 Plantio de Árvores e Arbustos Nativos da Caatinga.

A análise dos croquis das jazidas e empréstimos, bem como as inspeções em campo, indica a presença de vegetação nativa em praticamente todas as ocorrências, com predomínio do porte arbustivo, de Caatinga, razão porque se optou pelo replantio da vegetação nativa, combinado com vegetação graminosa, nas medidas de recuperação ambiental das ocorrências no pós-exploração.

Por sua vez, a espessura média utilizável tanto nas jazidas como nos empréstimos laterais não ultrapassam 1,5 m de profundidade, sendo a grande maioria, inferior a 1,00 m. Desta forma não existirão taludes a serem tratados nas ocorrências de materiais.

As obras de drenagem na recuperação das jazidas e empréstimos consistirão na implantação de valetas tipo VPC-02 no entorno das ocorrências, reencaminhando a drenagem para os talvegues, conforme indicado nos croquis dos projetos — Tipo 1 e 2 apresentados nos QD- 4.8.1 e QD-4.8.2.

Apresenta-se a seguir, a discriminação e quantificação dos serviços a realizar, com os devidos comentários logo a seguir, acerca dos critérios adotados na definição e quantificação dos serviços.

		QUANT	TATIVOS	S DOS SERVIÇ	OS DE REABILIT	AÇÃO AMBIENTAL	-	
	Localização			Localização Serviços a Realizar			Realizar	
Ocorrências	Est.	Lado	Dist. Eixo (m)	Vegetação pré-existente	Valetas revestidas de grama VPC-02 (m)	Plantio de grama/legumi nosas a lanço manual (m2)	Plantio de arbustos/árvores nativos (800 mudas/ha) (ud)	Croqui de Projeto- Tipo (N°)
a) Passivo Ambiental (Obs. 1)								
b) Jazidas de Solo S.1 – Serrote S.2 – Caxito	655 1070	LD LD	136 160	Caatinga rala Caatinga rala	8.200 800 750	693.900 69.300 63.000	54.776 5.544 5.040	1 1
S.3 – Faz.Tabuleiro S.4 – Mulungú S.5 – Abóbora S.6 – Cacheiro S.7 – Xique-Xique S.8 – Serrote da Ema S.9 – Jacaré S.10 – Veneza S.11 – Angico S.12 – Riacho Meio S.13 – Sta. Rosa I S.14 – Sta. Rosa II	1525 1966 2000 2825 3450 4013 4575 5081 5645 5766 6060 6370	LE/D LD LE LD LE LD LE LE LE	eixo 205 20 2.650 981 74 454 125 220 1.450 20	Caatinga rala Caatinga rala Caatinga rala Caatinga	900 640 500 750 450 450 570 700 450 430 420 390	72.900 47.700 44.100 64.800 39.600 39.600 59.400 61.200 36.000 37.800 31.500 27.000	5.832 3.816 3.816 5.184 3.168 3.168 4.752 4.896 4.880 - 2.520 2.160	2 1 1 1 1 1 1 1 1 1 1 1
c) Empréstimos					65.700	6.562.800	258.856	
E.1 E.2 E.3 E.4 E.5 E.6 E.7 E.8 E.9 E.10 E.11 E.12 E.13 E.14 E.15 E.16 E.17 E.18 E.19 E.20 E.21 E.22 E.23 E.24 E.25 E.26 E.27 E.28 E.29 E.30 E.31 E.32 E.33 E.34 E.33 E.34 E.33 E.34 E.35 E.36 E.37 E.37 E.38 E.39 E.38 E.39 E.39 E.30 E.30 E.31 E.31 E.32 E.33 E.34 E.35 E.36 E.36 E.37 E.37 E.38 E.38 E.39 E.39 E.30 E.30 E.31 E.31 E.32 E.33 E.34 E.35 E.36 E.36 E.37 E.37 E.37 E.38 E.38 E.39 E.39 E.30 E.30 E.30 E.30 E.30 E.30 E.30 E.30	10 30 45 75 115 365 410 520 585 765 865 1010 1170 1240 1345 1460 1620 1640 1720 1740 1790 1854 1950 2004 2015 2110 2168 2190	LD LD LE LE LD LD LE LD LE LD LE LD LE LD LE LD LE LD	Margem Margem Margem Margem Margem Margem Margem Margem Margem Margem Margem Margem Margem Margem 150 150 450 200 450 200 450 200 450 200 400 400 400 350 margem Margem	Caatinga rala Caatinga rala Caatinga rala Caatinga rala Caatinga rala Caatinga rala Caatinga	800 900 1.200 2.000 2.000 2.000 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.000 1.000 1.000 1.000 1.000 1.500	80.000 90.000 120.000 200.000 200.000 200.000 160.000 160.000 160.000 160.000 160.000 160.000 160.000 160.000 160.000 160.000 160.000 160.000 160.000 160.000 160.000 160.000 160.000 100.000		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

QUANTITATIVOS DOS SERVIÇOS DE REABILITAÇÃO AMBIENTAL								
	Localização					Serviços a F	Realizar	
Ocorrências	Est.	Lado	Dist. Eixo (m)	Vegetação pré-existente	Valetas revestidas de grama VPC-02 (m)	Plantio de grama/legumi nosas a lanço manual (m2)	Plantio de arbustos/árvores nativos (800 mudas/ha) (ud)	Croqui de Projeto- Tipo (N°)
c) Empréstimos (cont.)								
E.35 E.36 E.37 E.38 E.39 E.40 E.41 E.42 E.43 E.44 E.45 E.46 E.47 E.48 E.49 E.50 E.51 E.52 E.53 E.54 E.55 E.56 E.57 E.58 E.59 E.60 E.61 E.62 E.63 E.64 E.65 E.66 E.67 E.68 E.69 E.70 E.71 E.72 E.73 E.74 E.75 E.78 E.79 E.80 E.81 E.82	2308 2362 2390 2452 2475 2545 2567 2600 2656 2700 2790 2839 2875 3000 3080 3092 3152 3165 3196 3242 3290 3390 3544 3575 3674 3770 4050 4090 4180 4336 4441 4596 4794 4940 5094 5317 5420 5568 5721 5838 5882 5973 6063 6187		Margem	Caatinga rala Caatinga	125 125 125 125 125 125 125 200 125 200 200 200 200 200 1.000 1.000 1.000 1.000 1.000 1.000 1.000 900 1.000 900 900 900 900 900 900 1.000 200 200 200 200 200 200 200 200 200	12.500 12.500 12.500 12.500 20.000 12.500 20.000 20.000 20.000 20.000 20.000 20.000 99.200 99.200 99.200 99.200 78.400 84.100 96.000 72.000 102.400 90.000 96.100 60.000 40.000 24.200 26.000 90.000 105.000 90.000 105.000 105.000 15.000 15.000 15.000 15.000	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.600 1.200 1.200	211122211222211111111111211112221111112222
d) Acampamento						10.000	-	

		QUANT	TATIVO	S DOS SERVIÇ	OS DE REABILIT	AÇÃO AMBIENTAL	-	
	Localização				Serviços a Realizar			
Ocorrências	Est.	Lado	Dist. Eixo (m)	Vegetação pré-existente	Valetas revestidas de grama VPC-02 (m)	Plantio de grama/legumi nosas a lanço manual (m2)	Plantio de arbustos/árvores nativos (800 mudas/ha) (ud)	Plantio de grama em placas (m²)
e) Paisagismo (Interseções)								
BR-232 e PE-85 Acesso a Umãs Acesso Pátio Salgueiro Acesso a Terra Nova Acesso a Caraíbas	820 1180 1355 2137 5807			Não Não Não Não Não		- - - -	- - - -	1.585,21 196,54 106,42 1.316,65 260,82
TOTAIS					73.900	7.266,700	313.632	3.465,64

OBSERVAÇÕES (Memória de Cálculo):

- 1. Conforme já discorrido nos Estudos Ambientais não existem ocorrências de Passivo Ambiental sujeitas a um Projeto Ambiental.
 - 2. Os areais localizam-se no leito do riacho São Miguel, existindo "clareiras" para acesso ao local, sem necessidade de desmatamento de matas ciliares, razão porque não se prevê trabalhos de reabilitação ambiental.
 - 3. As pedreiras consistem em afloramentos rochosos, sendo os maciços desprovidos de vegetação, razão porque não se prevê serviços de recuperação ambiental.
 - 4. Os eventuais Bota-Foras deverão ser depositados no fundo das caixas de empréstimo mais próximas após o que, espalha-se a camada fértil previamente estocada e procedese a revegetação.
 - 5. No cálculo das valetas das jazidas e empréstimos, considerou-se um semi-círculo no entorno da área de cada jazida/empréstimo, para encaminhamento da drenagem para os talvegues, considerando-se, aproximadamente, a extensão de três dos quatro lados de cada ocorrência.
 - 6. Nas ocorrências com vegetação arbórea e arbustiva da Caatinga, deve-se, após se efetuar o tratamento com gramíneas/leguminosas a lanço, plantar-se arbustos nativos/árvores da Caatinga (Especificação EP-01) por mudas (800 arbustos/árvores/ha). Nos empréstimos, face à proximidade com o leito ferroviário não é recomendável o plantio de árvores/arbustos sendo recomendado, apenas, o plantio de gramíneas associadas a leguminosas nativas (ver escolha das espécies vegetais adiante).

Resumo das Quantidades							
Serviços	Unidade	Quantidade	Especificações				
Valeta revestida com grama (VPC-02) Plantio de grama a lanço manual Plantio de mudas espécies nativas Plantio de gramas em placas (leivas)	m m² ud. m²	73.900 7.266,700 313.632 3.465,64	DNER ES-288/97 DNER ES-341/97 EP-01 DNER ES-341/97				

4.8.3 Detalhamento das Etapas para Recuperação das Áreas Degradadas

Estes procedimentos têm como referência parcial o documento "Manejo visando à Conservação e Recuperação de Solos Susceptíveis à Erosão", Maria Inês Nogueira et. alii em Informe Agropecuário, Belo Horizonte, v. 19, n.191, pg. 49-58, 1998.

As etapas envolvidas na recuperação das áreas degradadas (empréstimos e jazidas) envolve as seguintes etapas:

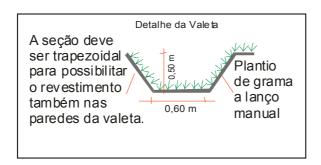
a) Decapeamento e armazenamento da camada superficial do solo

A camada superficial do solo (horizonte A), de cerca de 30 cm de espessura não se presta como material de empréstimo, devido à elevada porcentagem de matéria orgânica e, normalmente, por estarem recobrindo o mineral, rocha ou substrato de interesse. Deve-se, então retirar essas camadas e armazena-las separadamente em local protegido dos efeitos da erosão, de tal forma que elas sejam distribuídas em camadas por ocasião da recuperação, numa tentativa de recompor o perfil original do solo.

Todo o material lenhoso originário de árvores e arbustos deverá ser retirado logo de início e picoteado para ser incorporado a camada fértil a ser estocada o que ajuda a aera-la e tende a também virar húmus com o tempo, não se devendo utilizar fogo nesta operação.

O armazenamento dessa camada superficial não deve exceder 2,0m de altura, no sentido de se evitar a sua fermentação o que provocaria a morte dos microorganismos. Deve-se, ainda, no caso de estocagem por mais de dois meses, revolver-se as pilhas objetivando uma aeração, o que melhora a atividade biológica da camada armazenada.

b) Terraplenagem


Após o término da exploração ou da retirada de material de empréstimo deverão ser feitos os serviços de terraplenagem para que se obtenha a remoldagem do terreno, preparando-o para a fase posterior, de plantio. Este processo visa as melhorias estéticas da paisagem, eliminando-se os efeitos do relevo conturbado, resultante da exploração.

Dois tipos de topografia podem ser usados: terraços ou declives suavizados. No caso do projeto em pauta, pelo fato das áreas das ocorrências de materiais serem relativamente planas, deve-se utilizar a opção de suavizar os declives, ou seja, os taludes resultantes da exploração.

c) Implantação de sistema de drenagem

A drenagem deverá ser implantada no sentido de se desviar as águas para o interior das caixas de empréstimo e/ou jazidas, evitando-se o acúmulo de água. Como as áreas a serem exploradas são relativamente planas, a drenagem deve ser efetuada, através de valetas do

tipo VPC-02 (valeta a céu aberto revestida com grama), no entorno de cada ocorrência (anéis estreitos) encaminhando-se as águas para os talvegues. As valetas devem ter a seção trapezoidal para possibilitar o revestimento vegetal também de suas paredes, como exemplificado na figura a seguir.

d) Recobrimento da área com a camada fértil do solo e descompactação

Esta operação pode anteceder os trabalhos de drenagem, quando for possível executa-la na estação seca. A espessura desta camada é variável em função da disponibilidade de material do solo, condições locais e vegetação a ser utilizada. A distribuição deve ser feita com trator de esteiras e, manualmente nos taludes.

Deve-se espalhar o material das pilhas invertendo a ordem do decapeamento, ou seja, em primeiro lugar as camadas mais profundas e seqüencialmente as mais superficiais que são biologicamente mais ricas.

Após o recobrimento da área, deve ser realizada uma subsolagem, para romper as camadas compactadas do subsolo. Para isto deve-se usar os subsoladores convencionais que atingem 50cm de profundidade, ou, se necessário, equipamentos mais pesados.

e) Preparo da área para plantio

O preparo das áreas para o plantio será efetuado com a correção da acidez do solo, utilizando, de preferência, calcário dolomítico e fazendo-se aplicação de fertilizantes fosfatados. Estes insumos deverão ser aplicados nas áreas a serem recuperadas, segundo as recomendações baseadas nas análises do solo e sua incorporação deve ser feita por ocasião da subsolagem das áreas. Nos taludes resultantes da exploração deve-se efetuar sulcos voltado para o interior da ocorrência distanciados em cerca de 40cm para melhor fixação das sementes de gramíneas/leguminosas

f) Revegetação

Em primeiro lugar reveste-se toda a área com sementes de gramíneas associadas a leguminosas nativas a lanço manual para fornecer o estrado herbáceo e sub-arbustiva e prover uma cobertura imediata como a erosão. Seqüencialmente, efetua-se a abertura de covas para plantio de árvores e arbustos conforme especificação em anexo (EP-01).

4.8.4 Escolha das Espécies Vegetais

As espécies vegetais a serem introduzidas na revegetação das áreas degradadas, após o tratamento dado conforme procedimentos constantes do item anterior, inclui:

- gramíneas associadas a leguminosas a lanço manual visando fornecer uma proteção imediata contra a erosão e prover o estrato graminoso e sub-arbustivo nas áreas;
- arbustos e árvores nativos por mudas, conforme Especificação EP-01 anexa.

a) Gramíneas/Leguminosas

A Especificação DNER-ES-341/97 deverá nortear os procedimentos de plantio, ali constando, inclusive, uma listagem de gramíneas e leguminosas que têm maior capacidade de consorciação e atributos desejáveis como agressividade e rusticidade, rápido desenvolvimento, fácil propagação, baixo custo de implantação, pouca exigência nas condições dos solos e nos cuidados de manutenção, fácil aquisição comercial, consorciabilidade. São as seguintes as espécies vegetais constantes da especificação:

Gramíneas

Leguminosas

Braquiaria Humidícola, Decumbens ou Brizantha
Paspalum notatum (grama Batatais)
Axonopus Obtuzifolius
Eragrostis Curvula (capim chorão)
Milinis Minitiflora (capim gordura ou meloso)
Lolium Multiflorum (azevêm)
Setária anceps (capim sectária)

Pueraria Phaseoloides (kudzu tropical) Calopogonium Muconoides (calopo) Cajanus Cajan (feijão guandu) Centrosema Pubescens (centrosema) Estizolobium anterrinum (mucuna)

Pesquisa efetuada pelo IRI – Internacional Reaserch Institute para o DNIT, à época, DNER, foi conclusiva quanto às seguintes consorciações:

- Brachiaria Humidicola com Pueraria Phaseoleides: melhor comportamento e vantagens sobre todos os aspectos constantes dos atributos básicos desejáveis (já referido);
- Brachiarias com Centrosema Pubescens ou Calopogonium Muconoides: resultados satisfatórios, ficando em segundo plano.

Por sua vez, conforme Alcântara, Pedro Jr. Donzelli, 1993, as gramíneas **capim gordura e as braquiárias** são os mais resistentes a condições adversas de solos, além de deterem maior poder de proteção contra a erosão.

A equipe encarregada da supervisão ambiental, na fase de obras deverá promover a análise dos solos de cada ocorrência, no sentido aferir a consorciação mais produtiva para cada área a ser tratada.

A recuperação da bio-estrutura do solo, devida ao sistema radicular bastante expansivo das gramíneas e leguminosas, produzindo e depositando no solo grande quantidade de matéria orgânica, faz aumentar a capacidade de retenção do oxigênio e da água das precipitações pluviométricas, vitais para o desenvolvimento e manutenção da vida vegetal.

O revestimento vegetal do solo funciona como anteparo natural da incidência solar e a quebra do impacto das gotículas das chuvas, bem como, diminui a velocidade dos fluxos d'água devido as mesmas, protegendo, portanto, o solo, do processo erosivo e conseqüentemente o carreamento do mesmo para formação de assoreamento das regiões baixas da topografia local.

A aplicação mais comum tem uma proporção de cerca de 50 a 60 kg/ha, grupando-se na consorciação das sementes de mudas 3 a 4 espécies vegetais para gramíneas e para leguminosas (devendo-se escolher sementes de leguminosas arbustivas nativas), as quais se completam quanto às suas características botânicas (fixação de nitrogênio pelas leguminosas) e visuais planejadas.

d) Espécies Arbustivas e Arbóreas

Após o tratamento com gramíneas/leguminosas deve-se, agora, proceder ao plantio de arbustos e árvores por mudas nas áreas das jazidas.

A escolha das espécies vegetais a serem introduzidas, corresponde a espécies típicas da região do empreendimento (domínio da Caatinga) pautando-se pelos seguintes condicionantes:

serem nativas da região em estudo;

deterem alto poder de germinação em quaisquer solos, como a seguir descrito (Problemas de Reflorestamento do Nordeste Brasileiro - Romildo F. de Carvalho em As Regiões Naturais do Nordeste e o Meio e a Civilização, J. Vasconcelos Sobrinho, Recife, 1971):

Jurema (Mimosa sp)

"Graças à sua abundante sementação, regenera-se admiravelmente por semente, embora brote pelo tronco depois de cortada. Tem a vantagem de adaptar-se a qualquer condição de solo, propagando-se por isso em terras de aterros ou mineralizados, rochosas e solos pedregosos, secos e úmidos (não encharcados)"

Marmeleiro (Croton sp)

"Regenera-se abundantemente por semente, cuja produção é imensa, nas caatingas do Sertão, Seridó, Agreste, Caatinga Verdadeira e Cariris Velhos. Perpetua-se violentamente por brotação de tronco depois de cortada. Invade grandes áreas abertas depredadas, bem assim, nas áreas de lavouras abandonadas, margens de estradas, caminhos, veredas e aceiros."

Macambira (Bromelia laciniosa)

Planta herbáea, acaule, vivaz, folhas linear-lanceoladas, verde-brilhantes, resistentes, sesseis, dispostas em roseta densa, medindo cerca de 60 cm de comprimento, com as margens erigadas de espinhos fortes e terminando em ponta que se prolonga por fio tenueismo.

Esta planta tolera longas estiagens, e já é muito utilizada em trabalhos de revegetação de taludes e áreas impactadas no Nordeste do Brasil.

Sabiá (Mimosa caesalpiniaefolia) - Família Leguminosas Mimosóideas

"Árvore de até 7 m de altura... comum em todo o Semi-Árido. Pelo seu rápido desenvolvimento, recomenda-se como essência indispensável a qualquer trabalho de reflorestamento do Nordeste seco. Multiplica-se por sementes e estacas. Três anos depois, já fornece madeira pesada, de cerne roxo-escuro. Um sabiazal praticamente não se acaba".

Apresenta-se, a seguir, croquis de soluções-tipo para recuperação das jazidas de solo (Projeto-Tipo 1) e Empréstimos (Projeto-Tipo 2), precedido por um Quadro de Soluções-Tipo do Manual Rodoviário de Conservação, Monitoramento e Controle Ambientais (DNER, 1996), sinalizando-se (em vermelho) as soluções que estão sendo indicadas neste Estudo, as quais estão de acordo com o Nível de Intervenção determinado nos Estudos Ambientais, conforme a metodologia adotada.

Soluções-Tipo	Casos em que as Soluções são Indicadas	Gravidade
GRUPO I		
Redução da inclinação do talude	Taludes muito inclinados, incluindo drenagem	1
Criação de banquetas	Idem, taludes muito altos	1
Execução de aterro de sustentação	Taludes com risco de ruptura	2
Execução e estabil.de bota-foras	Bota-foras	3
Enrocamento	Dissipar águas provenientes do sistema de drenagem	3
Aterro com geotêxtil	Confinamento de solos	3
Terra armada	Recuperação de aterro	3
GRUPO II		
Solo cimento ensacado	Obturação de erosões em taludes	1
Gabiões saco	Proteção superficial de encostas/rios e muros de peso	3
Gabiões caixa	Idem	3
Colchões reno	Idem	3
GRUPO III		
Muro em fogueira	Recuperação de maciço em encostas	2
		2
Muro de pedra argamassada	Contenção de taludes até 3 m	
Muro e concreto ciclópico	Contenção de taludes com alturas maiores	2
Cortina cravada	Obras provisórias ou emergenciais	2
Muros e concreto armado	Recuperação de cortes e aterros	3
Estacas raiz	Taludes sujeitos à ruptura	3
GRUPO IV		
Impermeabilização asfáltica	Proteção superficial de taludes (mau aspecto visual)	1
Pano de pedra	Proteção superficial de taludes	2
Tela metálica	Prevenção contra queda de blocos de rocha	2
		3
Gunita e tela	Proteção de taludes	3
GRUPO V		
Proteção vegetal	Leivas (solos friáveis); mudas (planos); lanço (planos); hidrossem. (taludes	2
Plantio em manta contínua	Taludes suaves e curtos	2
Plantio em canteiros escalonados	Taludes mais longos e com inclinação acentuada	2
Rip/Rap – plantio	Taludes sob erosão superficial com unidade do solo	2
GRUPO VI		2
	Enceminhamente de dronagem	
Canaleta de crista de corte	Encaminhamento da drenagem	2
Canaleta de banqueta	ldem, nas banquetas	2
Canaleta de pé de aterro	ldem, no pé de aterro	2
Sarjeta de pista	ldem, ao longo da pista	2
Descida de água	Reduzir a energia das águas	2
Bacia de amortecimento	Reduzir a energia das águas	2
Caixa coletora	Encaminhamento da drenagem	2
Bueiro de greide	Idem	2
mplantação de drenagem superficial	Idem	3
GRUPO VII		
Barbacãs	Coleta de águas subterrâneas, rehaiyando e lencel	1
	Coleta de águas subterrâneas, rebaixando o lençol	1
Orenos sub-horizontais	Extravasamento de águas internas por percolação	2
GRUPO VIII		
Cordão vegetal	Atenuar poluição atmosférica nas áreas lineiras	2
Passagem de animais selvagens	Circulação de animais silvestres	3
GRUPO IX		
Exploração de jazidas/empréstimo	Proteção vegetal das áreas exploradas e valetas a céu aberto	2
		-
SOLUÇÕES INDICADAS NESTE ESTU	IDO (assinaladas om vormelho)	
	DDO (assinaladas em vermeino) ção, Monitoramento e Controle Ambientais – DNER, 1996	
S Manda Nodovidno de conserva	yas, manasamonto o controlo / implontato DITER, 1000	

4.8.5 Orientações Gerais quanto aos Cuidados com o Meio Ambiente

Este item tem como objetivo prover a equipe encarregada da fiscalização ambiental na fase de obras, de subsídios complementares visando uma gestão ambiental eficaz. O texto tem como fonte várias especificações bem como o Manual Rodoviário de Conservação, Monitoramento e Controle Ambientais do DNER, sintetizando-se na forma de tabela, visando maior objetividade expositiva.

Orientações para a Gestão Ambiental na Fase de Obras

Possíveis Impactos Negativos

1. Canteiro de Obras

- Descaracterização da paisagem por construções improvisadas;
- Carreamento de material pelas chuvas podendo gerar processos erosivos;
- Contaminação de águas devido ao arrasto de substâncias não biodegradáveis (óleos, graxas, material asfáltico, etc.) devido a vazamentos e escapes;
- Transmissão de doenças infectocontagiosas;
- Alterações comportamentais gerando atritos motivados pela ingestão de bebidas alcoólicas inatividade e isolamento das famílias;
- Possibilitade de incômodo à população decorrente de maus odores carreados pelo vento:
- Prejuízo à biota quando instalado em áreas com vegetação nativa primária ou secundária:
- Risco de acidentes com máquinas e equipamentos além de acidentes decorrentes do tráfego de veículos dentre e fora do canteiro.

Monitoramento para Mitigar os Impactos

- Informar a Prefeitura local acerca da instalação do Canteiro e observar a legislação de uso e ocupação do solo vigente no Município de sorte a não haver confrontação legal;
- Prezar no sentido de que as contrações recaiam preferencialmente sobre a mão-de-obra local;
- Só aprovar a instalação do Canteiro em locais onde não ocorram: instalação de processos erosivos, recalques, instabilidades físicas, tipografia acidentada, susceptibilidade a cheias e inundações, afloramento do lençol freático, proximidade de nascentes, ventos direcionados para núcleos urbanos próximos;
- Prezar para que o Canteiro seja instalado em área onde não haja necessidade de desmatamentos significativos, especialmente de vegetação nativa;
- Exigir da Construtora a implantação de fossas sépticas nas áreas do canteiro;
- Na desativação, fiscalizar o tratamento paisagístico da área se a mesma não já estava antropizada;
- Exigir a remoção sistemática da camada superficial de solo poluído com sibstância não biodegradáveis (óleo, graxas, etc.);
- Acompanhar a submissão periódica da mão-de-obra a exames médicos, no sentido de se investigar a ocorrência de doenças infecto-contagiosas;
- Promover palestras de conscientização ecológica junto aos operários e se empenhar na ampliação de alternativas de entretenimento.
- No caso da proximidade com núcleos urbanos, prezar para que não haja conflito entre o horário das atividades e a lei do silêncio em vigor para evitar incômodos à população;
- Exigir da empreiteira a instalação de um sistema de sinalização envolvendo advertências, orientações, riscos e demais aspectos do ordenamento oepracional do tráfego, com objetivos internos e externos;
- Realizar inspeções sistemáticas para observância da manutenção das estruturas de segurança, saúde e lazer e o cumprimento das normas de segurança do trabalho NRs 4, 5, 6, 7, 15, 16, 17, 18, 19, 21 e 26;
- Engajar-se cona Construção para realização de um Programa de Educação Ambiental para todo o pessoal da obra, dando-se ênfase a: importância das matas ciliares, dos riscos de ocorrência de processos erosivos, dos desmatamentos desnecessários e do cumprimento da sinalização de obras, especialmente o s limites de velocidade de caminhões e caçambas nos caminhos de serviço e trechos urbanos;
- Fiscalizar a adequada deposição do lixo.

Orientações para a Gestão Ambiental na Fase de Obras

Possíveis Impactos Negativos

Monitoramento para Mitigar os Impactos

2. Caminhos de Serviço

- Riscos de acidentes no tráfego de caminhões carregados de material para a obra;
- Levantamento de poeira devido ao tráfego de veículos pesados;
- Interrupção de caminhos naturais da fauna;
- Perda de biomassa devido ao desmatamento e decapeamento;
- Promover o aguamento sistemático, na época seca para evitar o levantamento de poeira devido ao tráfego dos veículos;
- Recuperação posterior dos caminhos, quando de sua desativação, procedendo-se a uma subsolagem do solo, aguamento e espalhamento da camada fértil estocada nas laterais visando facultar a regeneração natural da vegetação;
- Fiscalizar a velocidade dos veículos da obra;
- Fiscalizar a implantação de sinalização de advertência.

3. Cursos d'Áqua

- Perda de biota, no caso de implantação/ampliação de pontes e pontilhões;
- Perda de matas ciliares, no caso implantação de acessos para exploração de areais no leito de rios/riachos;
- Desbarrancamento de margens, no caso de exploração de areais no leito de rios/riachos;
- Erosões nos encontros de pontes recémconstruídas e/ou ampliadas com carreamento de solos para o curso d'água;
- Possibilidade de poluição das águas por esgotos oriundos do acampamento, lançados "in natura";
- Possibilidade de poluição originária da lavagem de veículos nas margens dos cursos d'água;

- Possibilidade de carreamento de solos para os corpos d'água, devido à disposição inadequada de botaforas:
- No caso de exploração não comercial de areais prezar para que se explore a areia do leito dos rios o mais distante possível das margens para se evitar desbarrancamentos e promover a reposição florestal dos acessos caso não existam anteriormente;
- Prezar para que em nenhuma hipótese venha a ocorrer lançamento de esgotos "in natura", óleos e graxas e lixo de maneira geral no leito dos rios;
- Fiscalizar a disposição adequada de bota-foras para não haver carreamentos para o leito dos rios.

4. Sinalização de Obras

- Possibilidade de ocorrência de acidentes e/ou transtornos em razão da ausência de um ou mais equipamentos de sinalização para as seguintes situações: faixa central, esquerda ou direita impedida, pista escorregadia, distância do local das obras, obras no acostamento, homens na pista, caminhões e máquinas na pista, trecho impedido, desvio à direita e/ou à esquerda;
- Possibilidade de ocorrência de acidentes em função da ausência de controle da velocidade dos veículos das obras;
- Ausência de sinalização quando couber do tipo barreiras, cones, balizadores e marcadores tubulares; iluminação artificial durante à noite; dispositivos controladores de trânsito como sinalizador com bandeira, carregador de bandeira e carro piloto

- antes do início das obras, deverão ser submetidos à fiscalização do órgão competente, para aprovação do respectivo projeto de sinalização de obras;
- todos os dispositivos e controle de trânsito deverão ter especificações próprias;
- sinais não normatizados não poderão ser colocados nos locais das obras;
- os sinais deverão ser posicionados de forma a não interferir nas distâncias de visibilidade e não limitar-se às condições operacionais dos segmentos;
- o âmbito dos dispositivos deverá considerar: sinais de trânsito, dispositivos de canalização, dispositivos luminosos e controle de trânsito:
- o trânsito, nos trechos em obras, serão controlados por sinais de regulamentação, advertência e indicação;
- os trechos em mão única deverão ser operados por sinaleiros, barreiras e sinais complementares.

Orientações para a Gestão Ambiental na Fase de Obras

Possíveis Impactos Negativos

Monitoramento para Mitigar os Impactos

5. Usinas de Asfalto

- Emissão de material particulado oriundo do secador rotativo além de peneiramento, transferência e manuseio de agregados, balança, pilhas de estocagem e tráfego de veículos em vias de acesso;
- gases resultantes da combustão do óleo (óxidos de enxofre, óxido de nitrogênio, monóxido de carbono e hidrocarbonetos;
- gases oriundos do misturador de asfalto e aquecimento do cimento asfáltico (hidrocarbonetos)
- gases emanados dos tanques de estocagem de óleo combustível e de cimento asfáltico.

Prezar no sentido de que:

- As áreas de implantação das usinas não podem estar sujeitas à instabilidades físicas, a cheias e inundações, próximas a nascentes de cursos d'água e núcleos urbanos, devendo, antes de tudo obedecer à legislação de uso do solo vigente no município envolvido e que se posicione na direção contrária dos ventos que atingem núcleos urbanos;
- seja implantado sistema de sinalização de advertências, orientações e riscos de acidentes;
- Para prevenção da popuição do ar: o material particulado para a atmosfera na ultrapasse concentração superior ao padrão fixado pelo órgão Ambiental do Estado; instale-se sistemas de controle constituído de ciclone e filtro de mangas; dote-se os silos de estocagem de agregados frios de proteções laterais e cobertura para evitar emissõess fugitivas no processo de carregamento; que se enclausure a correia transportadora de agregados frios; que a alimentação do secador seja feita sem emissão visível para a atmosfera; mantenha-se pressão negativa no secador rotativo, enquanto a usina estiver em operação para se evitar emissões de partículas na entrada e saída do mesmo; que se feche os silos de estocagem de massa asfáltica; pavimente-se ou molhe-se as vias de acesso internas; dote-se os silos de estocagem de "filler" de sistema próprio de filtragem a seco; dote-se as chaminés de instalações adequadas para realização de medições.

Fonte: Organizado por Rogério Gutemberg com base na bibliografia especializada, inclusive Manual Rodoviário de Conservação, Monitoramento e Controle do DNER.

EP-01 Reabilitação Ambiental em Áreas de Jazidas e Empréstimos, através do Plantio de Árvores e Arbustos Nativos da Caatinga

1. Generalidades

Esta especificação se aplicará a revegetação de áreas de jazidas de solos ou cascalho, cuja vegetação nativa circundante se caracterize pela presença de espécies arbustivas e arbóreas do ecossistema da Caatinga.

Da mesma forma que a revegetação herbácea, o plantio de árvores e arbustos nativos da Caatinga é processo natural de combate às erosões. Embora mais lento, é, entretanto, mais duradouro e eficaz ao longo do tempo, tendo seus custos reduzidos em função dos seguintes fatores:

- facilidade de obtenção de sementes e mudas no entorno e bancos genéticos;
- possibilidade de se reduzir custos com calagem e adubação tendo em vista a grande adaptabilidade das espécies aos terrenos inférteis;
- baixo custo de manutenção, em virtude da tendência à perpetuação demonstrado por várias espécies;
- extraordinária resistência às secas;
- ampla distribuição geográfica atingindo todo o Polígono das Secas.

No bojo desta especificação está, ainda, o conceito de *recuperação* (Martos et al., 1992), qual seja, o de reestabelecer as condições ambientais de uma área, tornando-as semelhantes às condições anteriores à sua alteração ou, ainda, o conceito de *reabilitação* que está relacionado à idéia do uso e ocupação do solo, de forma compatível com as condições estéticas circunvizinhas.

2. Materiais

- Os materiais necessários à execução da revegetação com arbustos e árvores da Caatinga nas áreas planas ou pouco inclinadas são:
- Adubo orgânico constituído da mistura do solo orgânico natural (top soil) com esterco bovino ou avícola, curtindo na proporção de 50% cada parte.
- Adubo químico NPK (nitrogênio, fósforo e potássio) na proporção necessária e suficiente ao solo, em função da análise edáfica e pedológica do mesmo, bem como os nutrientes que completam a adubação necessária. (enxofre, boro, etc)
- Calcáreo dolomítico para correção da acidez do solo, na proporção necessária a elevação do pH do mesmo ao índice de 5,5, com aplicação máxima de 1,5 t/ha devido ao custo elevado além deste teto.
- sementes de espécies da Caatinga, coletadas no entorno de cada jazida e/ou bancos genéticos.

3. Equipamentos

- Trator de pneus agrícola, potência da ordem de 70 a 90 cv para arrastar as carretas agrícolas, equipamento de aração, calagem, adubação, mistura ou incorporação ao solo dos materiais aplicados, arados e grades.
- Equipamentos agrícolas constituído de arado para sulcar o solo, com lâminas de 15 a 20 polegadas de diâmetro e no mínimo 12 discos.
- Equipamento agrícola de distribuição de calcáreo dolomítico, adubo químico, orgânico e sementes coletadas nas imediações.

4. Execução

Os procedimentos para execução da recuperação das áreas de jazidas com arbustos e árvores da Caatinga, constituirão nas seguintes atividades:

- a) Remoção da Cobertura Vegetal
- b) Preparo do Terreno
- b.1) Obras de Drenagem (implantação de valetas de proteção)
- b.2) Decapeamento
- b.3) Estocagem do Solo Superficial
- b.4) Recomposição do Relevo (Fase Pós-Lavra)
- b.5) Espalhamento do Solo superficial Estocado
- c) Aquisição de Mudas em Bancos Genéticos
- d) Calagem e Adubação

No caso da vegetação de Caatinga, poderá ser utilizado um padrão mínimo de calagem e adubação, constituindo-se, apenas, de adubação orgânica. A calagem poderá ser feita diretamente na pilha estocada da camada fértil estocada.

e) Semeadura

A semeadura de árvores e arbustos deverá ser executada na seguinte modalidade por mudas na proporção de 800 mudas por hectare, conforme esquema da figura anexa a esta Especificação.

5. Espécies Vegetais

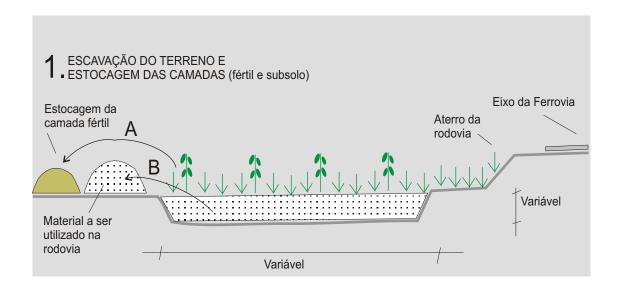
Das espécies vegetais nativas da Caatinga, dá-se prioridade àquelas que reúnem as seguintes características:

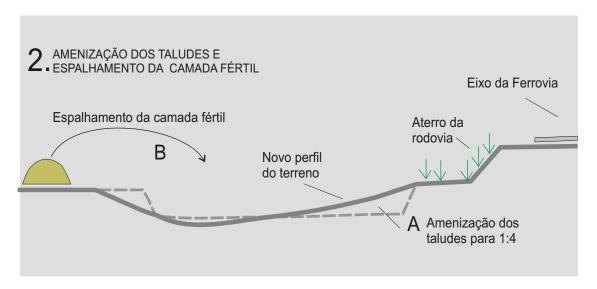
elevado poder germinativo;

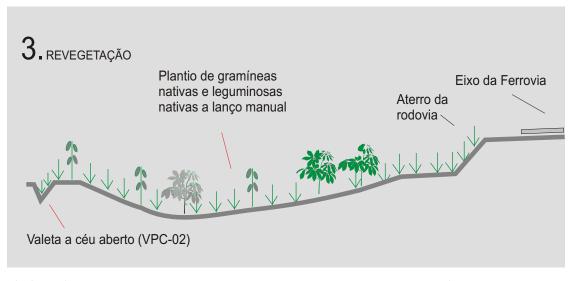
- · rapidez no crescimento;
- boa cobertura:

Dentre as espécies da Caatinga as que mais atendem a estes requisitos são as que estão relacionadas no quadro a seguir. Entretanto, é necessário conhecer o padrão florístico circundante a cada jazida, onde nem sempre são encontradas as espécies aqui relacionadas.

ESPÉCIES DA CAATINGA MAIS FAVORÁVEIS À REABILITAÇÃO DE ÁREAS DEGRADADAS


	Nome Científico	Floração (início)	Frutifi- T cação	ipo	Propagação)	
Família Mimo	saceae						
	eta Mimosa elha Mimosa Mimosa caesa		Nov. Set. Out	Mar. Out. Dez.	Árvore Árvore Árvore	Sementes Sementes Sementes	
Família Euphorbiaceae							
Marmeleiro Quebra-faca	Croton sind		Jan. Jan.	Mar. Mar.		Capsula Sementes	
Família Capp	araceae						
Feijão-Brabo	Cappari	s flexuosa	Ago.	Out.	Arbusto	Sementes	
Família Bromelliaceae							
Macambira	Bromelia la	iciniosa	Mai.	Jul.	Herbác	ea Sem./Est.	


Obs.: A macambira, por ser herbácea é muito apropriada à contenção de taludes.

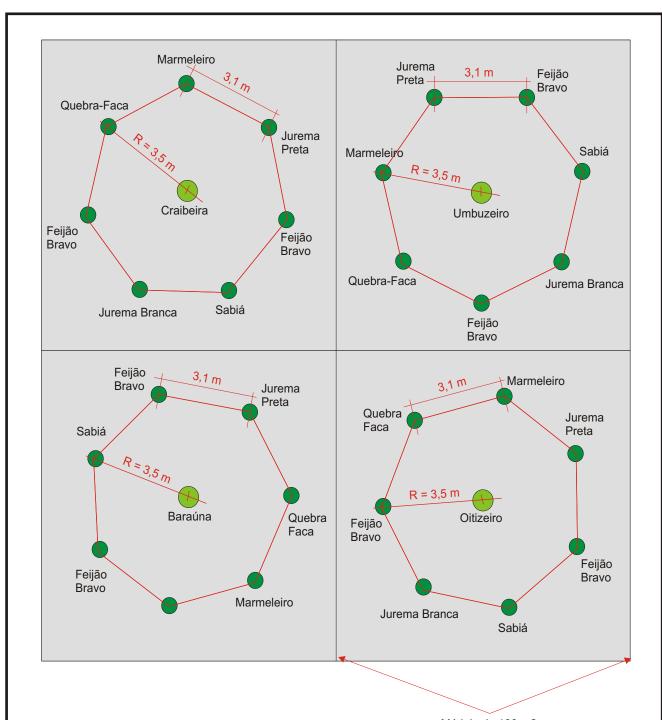

6) Controle

Os controles geométrico e de acabamento serão apreciados pela fiscalização com base na apresentação visual, enquanto, o controle de cobertura da área, vigor de crescimento, persistência serão apreciados pelos processos usuais do plantio agrícola, liberados à fiscalização para aprovação pelo agrônomo responsável pelo plantio e pagamento.

A seguir ilustração da disposição das espécies vegetais a serem plantadas.

OBS.: No fundo das cavas dos empréstimos deverão ser colocados materiais de bota-foras, Neste caso, a camada fértil será espalhada por cima do material.

Ferrovia: Transnordestina


Trecho: Salgueiro- Paranamirim-Riacho Santa Rosa

Lote: 02

Extensão:127,48 km

PROJETO-TIPO 2: RECUPERAÇÃO DE EMPRÉSTIMOS NA FAIXA DE DOMÍNIO

Esquema de tamanho e preenchimento das covas

Módulo de 100 m2

Arbusto/madeira mais mole/ crescimento mais rápido

> Árvore frondosa/madeira mais dura/ crescimento mais lento

Observações:

- Deve-se diversificar as espécies vegetais conforme padrão circundante pré-existente que corresponde ao domínio fitoecológico da Caatinga
- 2) Cada módulo de 100m2 comporta 08 mudas, tendo-se, por hectare: 8 mudas x 100 módulos = **800 mudas/ha.**

Fonte: Idealizado por Rogério Gutemberg com base em bibliografia consultada

Ferrovia: Transnordestina

Trecho: Salgueiro- Paranamirim-Riacho Santa Rosa

Lote: 02

Extensão:127,48 km

ANEXO À ESPECIFICAÇÃO EP-01 ESQUEMA PARA PLANTIO DE ÁRVORES E ARBUSTOS NATIVOS

QD. - 4.8.3

4.9 Projeto de Eliminação das Interferências

As soluções para a eliminação das interferências com o sistema rodoviário e de serviços de utilidade pública foi realizado considerando, de um lado, a concepção geométrica e operacional adotada para a ferrovia, e do outro, as necessidades da comunidade.

O principio básico considerado é de que o corredor ferroviário será parcialmente isolado e vedado, permitindo as passagens em níveis em locais pré-determinados com a devida sinalização. No restante do trecho, a circulação dos trens não deve sofrer qualquer limitação. Nestes, as passagens que unem os dois lados das áreas cortadas serão feitas através de obras-de-arte, em níveis diferentes.

Transposição do Rio São Francisco

O traçado da ferrovia intercepta a diretriz do estudo do trecho VI do projeto da transposição, entretanto, a ferrovia passa com 7,91 m de elevação em relação à cota de fundo do canal, altura suficiente para a passagem do mesmo. A obra necessária para a passagem do canal ficará a cargo do projeto da transposição, conforme reunião realizada na CEHAB.

Rodovias

A interferência com as rodovias pavimentadas será eliminada com a construção de obrasde-arte especiais, permitindo assim a passagem em níveis diferentes. A localização dessas obras são as seguintes:

VIADUTOS	ESTACA			KM
VIADUTO PE – 507 – Acesso a Serrita	815	+	6,00	16,31
VIADUTO BR – 232	821	+	10,00	16,43
VIADUTO PE - 483 - Acesso a Umãs	1180	+	0,00	23,60
VIADUTO PE – 499 – Acesso a Terra Nova	2138	+	0,00	42,76

Acessos as Fazendas

O traçado da ferrovia corta vários acessos às fazendas da região, sendo necessário restabelecer a ligação das rodovias as sedes dessas fazendas. O projeto prevê essas passagens em nível, como também inferior. Neste caso com a implantação de uma obra do tipo ARMCO. A localização dos pontos de cruzamento apresentamos a seguir:

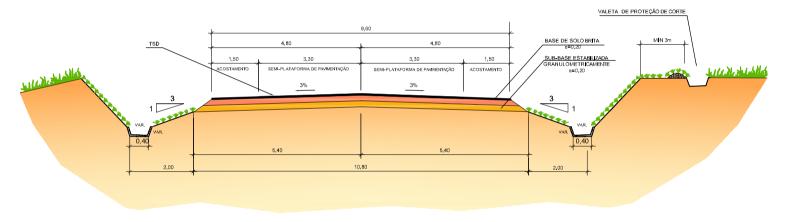
	PASSAGEM INFERIOR						
N°	ES	ESTACAS					
1	48 +		0,00	0,96			
2	62	+	0,00	1,24			
3	188	+	0,00	3,76			
4	260	+	0,00	5,20			
5	350	+	0,00	7,00			
6	523	+	0,00	10,46			
7	610	+	0,00	12,20			
8	629	+	0,00	12,58			
9	850	+	0,00	17,00			
10	900	+	0,00	18,00			
11	1014	+	0,00	20,28			
12	1048	+	0,00	20,96			
13	1784	+	0,00	35,68			
14	1874	+	6,00	37,49			
15	2789	+	0,00	55,78			
16	2901	+	10,00	58,03			
17	2993	+	7,00	59,87			
18	3062	+	8,00	61,25			
19	3205	+	0,00	64,10			
20	3324	+	0,00	66,48			
21	3398	+	3,00	67,96			
22	3904	+	0,00	78,08			
23	3969	+	15,00	79,40			
24	4329	+	14,00	86,59			
25	4542	+	10,00	90,85			
26	4673	+	10,00	93,47			
27	4797	+	6,00	95,95			
28	4882	+	10,00	97,65			
29	5445	+	0,00	108,90			

	PASSAGEM EM NÍVEL							
N°	ES	Km						
1	391	+ 0,00		7,89				
2	723	+	0,00	14,46				
3	1257	+	0,00	25,14				
4	1285	+	0,00	25,70				
5	1530	+	0,00	30,60				
6	1830	+	0,00	36,60				
7	1926	+	0,00	38,52				
8	2044	+	14,00	40,89				
9	2098	+	0,00	41,96				
10	2192	+	7,00	43,85				
11	2447	+	10,00	48,95				
12	2761	+	0,00	55,22				
13	2855	+	0,00	57,10				
14	3253	+	0,00	65,06				
15	3275	+	0,00	65,50				
16	3543	+	0,00	70,86				
17	3656	+	10,00	73,12				
18	3785	+	5,00	75,71				
19	4025	+	0,00	80,50				
20	4170	+	0,00	83,40				
21	4224	+	0,00	84,48				
22	4709	+	0,00	94,18				
23	4854	+	10,00	97,09				
24	5046	+	0,00	100,92				
25	5319	+	6,00	106,39				
26	5415	+	0,00	108,30				
27	5630	+	0,00	112,60				
28	5754	+	0,00	115,08				
29	5809	+	10,00	116,19				
30	5922	+	0,00	118,44				

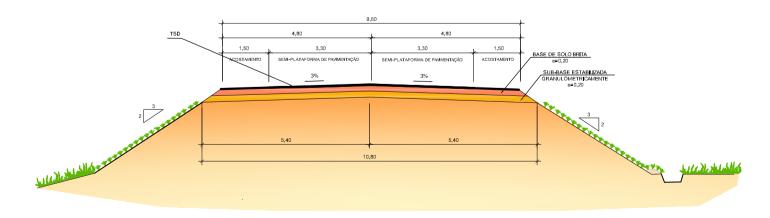
• Linha de Transmissão de Energia Elétrica

É necessário o remanejamento de três torres da linha de transmissão de energia elétrica da CELPE, nos locais indicados a seguir:

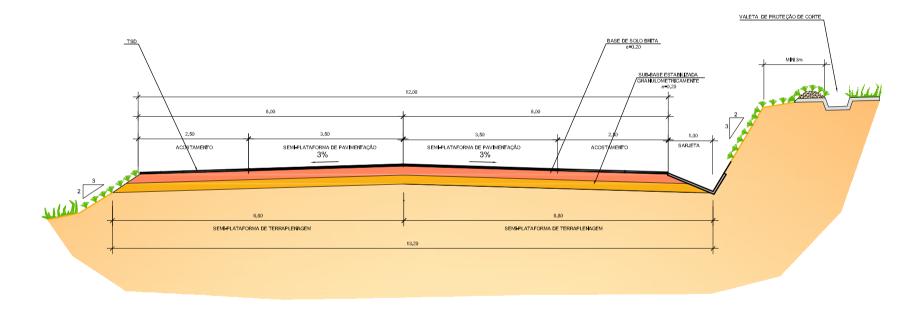
LOCALIZAÇÃO	INTERFERÊNCIAS	QUANTIDADE DE
ESTACA	INTERFERENCIAS	TORRE
827 + 15	TORRE NO OFF SET DO ATERRO	1
2075	ATERRO COM ALTURA DE 16 m	2


• Tubulação de Abastecimento de Água

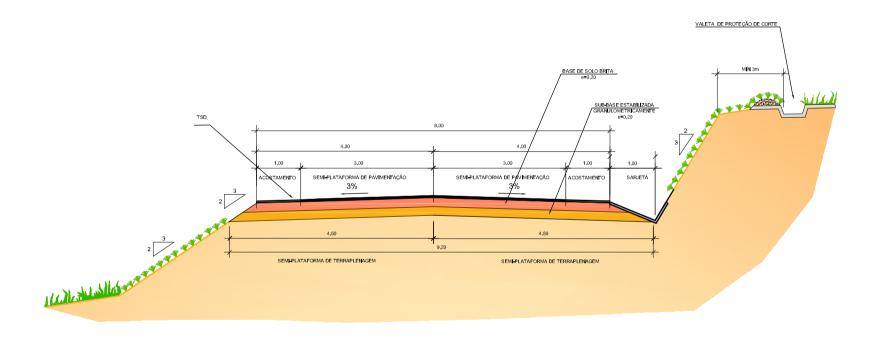
O traçado intercepta uma adutora da COMPESA na estaca 4.143 + 3,60, sendo necessário o rebaixamento da mesma. O projeto e os custos desta obra serão de responsabilidade da concessionária.


DIMENSÕES EM METRO

SEÇÃO TRANSVERSAL TIPO - 1º E 2º ACESSOS AO PÁTIO DE SALGUEIRO


SEÇÃO EM CORTE

SEÇÃO EM ATERRO


SEÇÃO TIPO - ELEVAÇÃO DO GREIDE DA RODOVIA BR-232

DIMENSÕES EM METRO

SEÇÃO TIPO - ELEVAÇÃO DO GREIDE DAS RODOVIAS:

- PE-507 ACESSO A SERRITA
- PE-483 ACESSO A UMÂS
- PE-499 ACESSO A TERRA NOVA

OBS: DIMENSÕES EM METRO

4.10 Projeto de Desapropriação

4.10.1 Introdução

O trecho da Ferrovia Transnordestina do lote 2 com 127,48 km está situada entre as cidades de Salgueiro, Terra Nova, Parnamirim, Santa Maria da Boa Vista e Urimamã localizadas no sertão de Pernambuco, a região tem clima semi-árido ou subúmida com solos rasos pedregoso, montanhosa e rocha de embasamento cristalino, é uma região de chuvas escassas e mal distribuídas.

A vegetação típica da região sertaneja e a caantiga. As mais comuns são macambica, xique xique, mangabeira, catingueira e jurema, nas partes mais úmidas palmeira, Algaroba, Carnaubeira, Pau-Brasil, Maçaranduba e Sucupira. O rio São Francisco e o maior da região, é única fonte de água perene para as populações que habitam suas margem. A economia do sertão nordestino baseia-se na pecuária extensiva, cultivo de algodão em grandes propriedades e nas pequenas propriedades. Plantações de subsistências.

As grandes produções de frutas nas regiões de petrolina, Santa Maria da Boa Vista e cidades vizinhas. Só são possíveis através de sistema de irrigação, retirando do rio São Francisco, o que representa uma parcela muito pequena (em termo ou área) de agricultura permanente.

4.10.1.1 Metodologia Básica Adotada

Generalidades

O levantamento cadastral foi efetuado diretamente no campo, através de levantamento topográfico e contem os limites e confrontações de cada imóvel, a descrição qualitativa e quantitativa das benfeitorias e a identificação dos proprietários.

Metodologia Aplicada

Foram adotados os seguintes métodos:

- Método Comparativo Direto de Dados de Mercado: para os terrenos;
- Método Comparativo Direto de Custos: para as benfeitorias.

Grau de Fundamentação

A avaliação se enquadra na NBR 14.653-3 (Avaliação de Imóveis Rurais) como Avaliação com grau de fundamentação II e grau de precisão I

Tabela 2 - Pontuação para fins de classificação das avaliações quanto ao grau de fundamentação

Item	Especificações das avaliações de imóveis	Para determinação d	а ро	ntuação, os valores cumulativos	na l	horizontal não sã	йO
<u> </u>	rurais	Condição		Condição	pt	Condição	pt
1	Número de dados de mercado efetivamente utilizados	≥ 3 (K+1) e no mínimo 5	18	<u>></u> 5	0		9
2	Qualidade dos dados colhidos no mercado de mesma exploração, conforme em 5.1.2	Todos	15	Maioria	7	Minoria ou ausência	0
3	Visita dos dados de mercado por engenheiro de avaliações	Todos	10	Maioria	6	Minoria ou ausência	0
4	Critério adotado para avaliar construções e instalações	Custo de reedição por planilha especifica	5	Custo de reedição por caderno de preços	3	Como variável conforme anexo A	3
5	Critério adotado para avaliar produções vegetais	Conforme em 10.3	5	Por caderno de preços	3	Como variável conforme anexo A	3
6	Apresentação do laudo, conforme seção 11	Completo	16	Simplificado	1		
7	Utilização do método comparativo direto de dados de mercado	Tratamento cientifico, conforme 7.7.3 e anexo A	15	Tratamento por fatores, conforme em 7.7.2 e anexo	12	Outros tratamentos	2

		Fotográfica	2				
8	Identificação dos dados amostrais	Coordenadas geodésicas ou geográficas		Roteiro de acesso ou croqui de localização	1		
	Documentação do	Fotográfica	4				
9	avaliando que permita	Coordenadas geodésicas ou geográficas	4	Croqui de localização	2		
	Documentação do	Certidão dominial atualizada					
10	imóvel avaliado apresentada pelo contratante refere-se a	Levantamento topográfico planimétrico de acordo as normas	2	Levantamento topográfico planimétrico	2		
Not	a Observar subseção 9.	1.				TOTAL	40

4.10.2 Quanto à fundamentação

Os laudos de avaliação são classificados quanto à fundamentação nos graus indicados na tabela 1, de acordo com a soma dos pontos em função das informações apresentadas.

Tabela 1 – Classificação dos laudos de avaliação quanto à fundamentação

	Grau				
		=	III		
Limite mínimo	12	36	71		
Limite máximo	35	70	100		

Logo nosso laudo se enquadra no grau de fundamentação II.

Tabela 2 – Classificação dos laudos de avaliação quanto a precisão:

Descripão	Grau					
Descrição	III II		I			
Amplitude do intervalo de confiança de 80% em	≤ 30%	30% - 50%	> 50%			
torno do valor central da estimativa	1	30 /0 - 30 /0	7 30 70			

A amplitude do intervalo de confiança máxima encontrada é de 11,73%, enquadrando como grau de precisão I.

Pesquisa de Mercado

A pesquisa de valores para fixação dos preços básicos unitários adotados nas avaliações dos terrenos a serem desapropriados, foi efetuada através de contatos mantidos com corretores autônomos da região, cartórios do Registro Geral de imóveis e Prefeituras, das cidades de Parnamirim, Salgueiro, Terra Nova e Santa Maria da Boa Vista.

Como o Método Comparativo de Dados do Mercado consiste na apuração do valor de um imóvel através da análise do comportamento do mercado imobiliário relativo ao segmento

infocado e prevê a comparação direta com outros Imóveis similares, recentemente transacionados ou em oferta, cujas características, preço e condições gerais sejam conhecidas no mercado, sendo ponderados tecnicamente os dados e atributos das referências de mercado que exerçam influência na formação dos valores, dividimos o trecho estudando em três segmentos:

Zona Rural

- 1. Terrenos situados na região de Salgueiro /Terra Nova
- 2. Terrenos situados na região de Parnamirim
- 3. Terrenos situados na região de Santa Maria da Boa Vista

Relação dos elementos pesquisados

Elemento Nº 1

Localização: Parnamerim

Data:2005

Proprietário : José Jacaúna de Magalhães

Área: 27,7 Ha Preço: R\$ 6.000,00 Preço do Ha R\$ 216,60

Fonte: Cartório de registro de Parnamerim

Elemento Nº 2

Localização: Parnamerim

Data: 2005

Proprietário: João Fábio Junior Pereira

Área: 26,5 Ha Preço: R\$ 5.500,00 Preço do Há: R\$ 207,54

Fonte: Cartório de registro de parnamerim

Elemento Nº 3

Localização: Parnamerim

Data:2005

Proprietário: Fabiano Januário Pereira

Área: 29,5 Ha Preço: R\$ 6.000,00 Preço do Ha: R\$ 201,00

Fonte: Cartório de registro de Salgueiro

Elemento Nº 4

Localização: Parnamerim

Data: 2005

Proprietário: Maria Rozineide de Carvalho

Área: 90,94 Há Preço: R\$ 18.000,00 Preço do Há: R\$ 197,93

Fonte: Cartório de registro de Parnamerim

Elemento Nº 5

Localização: Parnamerim

Data: 2005

Proprietário : Associação dos Produtores Rurais

Da Fazenda Chinun Área: 164,87 Ha Preço: R\$ 40.000,00 Preço do Ha: R\$ 242,62

Fonte: Cartório de registro de Parnamerim

Elemento Nº 6

Localização: Parnamerim

Data:2005

Proprietária : Ricardo de Sá Barreto

Área: 59,4 Ha

Preço: R\$ 17.001,60 Preço do Ha: R\$ 286,6

Fonte: Cartório de registro de Parnamerim

Elemento Nº 7

Localização: Salgueiro

Data:2006

Proprietária: Hercílio de Alencar Carvalho

Área: 45,17 Ha Preço: R\$ 10.000,00 Preço do Ha: R\$ 221,39

Fonte: Cartório de registro de Salgueiro

Elemento Nº 8

Localização: Salgueiro

Data: 2005

Proprietário : Assoc. Peq. Prod. Rurais S. B Verde

Área: 182,13 Ha Preço: R\$ 45.000,00 Preço do Ha: R\$ 247,08

Fonte: Cartório de registro de Salgeuiro

Elemento Nº 9

Localização: Salgueiro

Data:2005

Proprietário: Francisco freire Ferreira

Área: 95,62 Ha Preço: R\$ 18.000,00 Preço do Ha: R\$ 188,25

Fonte: Cartório de registro de Salgueiro

Elemento Nº 10

Localização: Santa Maria da Boa Vista

Data:2006

Proprietário: Andréa Gaziera e outrso

Área: 16,66 Ha Preço: R\$ 9.000,00 Preço do Ha: R\$ 540,22

Fonte: Cartório de registro de Santa Maria da Boa Vista

Elemento Nº 11 (OFERTA)

Localização: Santa Maria da Boa Vista

Data:2007

Proprietário: Anísio José dos Santos

Área: 10,00 Ha Preço: R\$ 10.000,00 Preço do Ha: R\$ 500,00

Fonte: Anísio José dos Santo - Fone (087) 9627 0702

Elemento Nº 12

Localização: Santa Maria da Boa Vista

Data:2006

Proprietário: Ademar Pereira de Jesus

Área: 40,01 Ha Preço: R\$ 15.200,00 Preço do Ha: R\$ 380,00

Fonte: Cartório de registro de Santa Maria da Boa Vista

Elemento Nº 13

Localização: Santa Maria da Boa Vista

Data:2007

Proprietário: Fabriciano

Área: 21,00 Ha

Preço: R\$ 21.000,00 Preço do Ha: R\$ 521,00

Fonte: Fabriciano Fone (087) 9633 1875

a) ZONA RURAL DE SALGUEIRO/PARNAMIRIM

VP	VALOR	FONTE (FF)		FA	RH	
			_			(X - Xm)
	R\$/Ha	а	b		R\$/Ha	^2
1,00	216,60	1,00		1,12	241,94	26,95
2,00	207,54	1,00		1,12	232,44	215,76
3,00	201,00	1,00		1,12	225,12	484,59
4,00	197,93	1,00		1,12	221,68	647,80
5,00	242,62	1,00		1,12	271,73	605,20
6,00	242,00	1,00		1,12	271,04	571,52
7,00	286,21	1,00		1,05	300,52	2850,17
8,00	221,39	1,00		1,05	232,46	215,33
9,00	247,08	1,00		1,12	276,73	875,93
10,00	188,25	1,00		1,05	197,66	2447,38

∑ 8940,63

TOTAL Xm = 2.471,34 247,13

d) ZONA RURAL DE PARNAMIRIM/SANTA MARIA DA BOA VISTA

VP	VALOR	FONTE (FF)		FA	RH	
						(X - Xm)
	R\$/Ha	а	b		R\$/Ha	^2
1,00	216,60	1,00		1,12	242,59	7016,82
2,00	207,54	1,00		1,12	232,44	8819,77
3,00	201,00	1,00		1,12	225,12	10249,22
4,00	197,93	1,00		1,12	221,68	10957,24
5,00	242,62	1,00		1,12	271,73	2983,79
6,00	242,00	1,00		1,12	271,04	3060,13
7,00	286,21	1,00		1,00	286,21	1611,90
8,00	540,22	1,00		1,00	540,22	45736,77
9,00	500,00	0,90		1,00	450,00	15287,24
10,00	380,00	1,00		1,00	380,00	2877,42
11,00	521,00	0,90	•	1,00	468,90	20318,10

128918,38

TOTAL 3.589,94 Xm = 326,36

4.10.2.1 Tratamento Estatístico Dispensados aos Valores Homogenizados

Terrenos Situados na Zona Rural de Salgueiro/Parnamirim

A) Cálculo da média Aritmética

 $X = \sum VP/N$

X = Valor Médio na Região VP = Valor Pesquisado N = Número de elementos

$$X = 247,13$$

B) Desvio Padrão

$$S = \sqrt{\sum (VP - X)^2 / (N - 1)} = 31,52$$

C) Eliminação dos elementos suspeitos pelo método de CHAUVENET

$$N = 10 \rightarrow D/S = 1,96 \text{ TABELADO}$$

$$(VP Min. - X) / S = | (201,00 - 233,20)/29,05 | = 1,57 < 1,96$$

 $(VP Máx. - X) / S = | (286,21 - 233,20)/29,05 | = 1,69 < 1,96$

Os resultados acima atendem a equação, não havendo elementos a serem excluídos.

d) Cálculo dos valores máximos e mínimos da região

$$LC=X\pm tp*S/(N-1)$$

LC = Limite de Confiança

X = Média das amostras

Tp = Coeficiente de Segurança – 80% (Tp = T $_{0.90}$)

Distribuição de Student com N-1 Graus de Liberdade T₉ = 1,38

$$LC = R$247,13 \pm 1,38 * 31,52/\sqrt{9}$$

LC Máximo = R\$ 261,63

LC Mínimo = R\$ 232,64

Amplitude do intervalo de confiança de 80% em torno do valor central da estimativa

A=11,63%

Terrenos Situados na Zona Rural de Salgueiro / Terra Nova

A) Cálculo da média Aritmética

$$X = \sum Vp/N$$

X=Valor Médio na Região

Vp = Valor Pesquisado

N = Números de Elementos

$$X = R$ 326,36$$

B) Desvio Padrão

$$S = \sqrt{\sum (VP - X)^2/(N - 1)} = 113,54$$

C) Eliminação dos elementos suspeitos pelo método de CHAUVENET

VP Mínimo=
$$201,00$$
 X = $326,36$

$$N = 11 \rightarrow D/S = 1,96 \text{ TABELADO}$$

$$(VP Min. - X) / S = | (201,00 - 326,36)/113,54 | = 1,88 < 1,96$$

$$(VP Máx. - X) / S = | (540,22 - 326,36)/113,54 | = 1,10 < 1,96$$

Os resultados acima atendem a equação, não havendo elementos a serem excluídos.

d) Cálculo dos valores máximos e mínimos da região

$$LC=X\pm tp*S/(N-1)$$

LC = Limite de Confiança

X = Média das amostras

Tp = Coeficiente de Segurança – 80% (Tp = T $_{0,90}$)

Distribuição de Student com N-1 Graus de Liberdade T₁₀ = 1,37

$$LC = R$326,36 \pm 1,38 * 113,54 / \sqrt{10}$$

Amplitude do intervalo de confiança de 80% em torno do valor central da estimativa

A=8,87%

4.10.2.2 Valores unitários adotados - R\$ / Ha

Considerando que os aspectos de influência foram ponderados na homogenização e que o mercado encontra-se estável; considerando ainda que qualquer valor dentro do "intervalo de confiança" é aceitável, adotamos o valor médio R\$/Ha de cada região estudada a seguir relacionados:

- a) Zona rural de Salgueiro e Parnamirim R\$ 247,13 / Ha
- b) Zona rural de Parnamirim e Santa Maria R\$ 326,36 / Há

4.10.2.3 Avaliação das benfeitorias

Composição de cerca de arame 5 fios.

Estaca de madeira: R\$ 3,50/un

Arame farpado: R\$ 140,00/500m

Grampo: R\$ 5,00 /Kg

M. obra: R\$ 1,00/m

Para 100 metros teremos

1 rolo de arame : R\$ 140,00 10 kg de grampo : R\$ 50,00 68 estacas : R\$ 238,00 M. Obra : R\$ 100,00 Total : R\$ 528,00

Para 1 metro : R\$ 5,28

4.10.3 Avaliação das Construções

4.10.3.1 Padrões e Situações Paradigmas

a) Padrões

Foram admitidos os seguintes:

a.1) Habitacional

Padrão C - Popular Padrão E - Pobre

a.2) Situações Paradigmas

Padrão C - Popular

- Paredes em alvenaria de tijolo furado ou bloco de concreto;
- Revestimento interno: piso do banheiro e cozinha em cerâmica comum, paredes do WC revestidas até 1,60 m com azulejos brancos; nas demais dependências paredes com caiação de cor sobre massa grossa desempenada e piso de cimento;
- Esquadrias de madeira comum e de ferro tipo basculante;
- Revestimento externo: pintura com caiação de cor sobre massa grossa desempenada;
- Cobertura: telhas cerâmicas ou onduladas de fibrocimento sobre estrutura de madeira;
- Instalações elétrica e hidro-sanitária, embutidas.

Padrão E - Pobre

- Paredes de taipa, com reboco e pintura caiação;
- Cobertura de telha comum de $2^{\underline{a}}$ ou ondulada de fibrocimento usada, sobre estrutura de madeira;
- Esquadrias de madeira comum de 2ª;
- Piso cimentado desempenado;
- Instalação elétrica aparente;
- Água encanada e WC externo.

4.10.3.2 Custos R\$/m² das construções paradigmas

a. Habitacional

```
Padrão C - Popular - R$ 254,32
Padrão E - Pobre - R$ 152,60
```

4.10.3.3 Fontes consultoras - Custos R\$/m²

Usamos a média das tabelas FETAPE: Federação dos Trabalhadores na Agricultura do Estado de Pernambuco e FETAPA: Federação dos Trabalhadores na Agricultura do Estado da Paraíba

Benfeitorias constituídas de construções diversas:

Áreas cobertas, calçadas, muros, cercas, WC externo, reservatórios d'água, etc., foram adotadas as "Composições de Custos" e "Cotações" das seguintes fontes:

- Mercado especializado da região

4.10.3.4 Depreciação dos Imóveis

Foi adotado o método direto de estima, com a seguinte classificação de condições físicas:

a) Bom : 70 a 80% b) Regular : 60% c) Ruim : 50%

4.10.3.5 Relação dos Preços de Plantações

PLANTAÇÃO	FONTE	DATA	R\$ / Ha	REAJUSTE	TOTAL
Capim Búfalo	BANCO NORDESTE	Dez/06	580,00		580,00

	NÚMERO	NÚMERO					CUSTOS (R\$)
MAIA MELO ENGENHARIA LTDA	DE ORDEM	DE CADASTRO	ESTACA	-	ESTACA	PROPRIETÁRIO	ESTIMATIVA DE VALOR
MELO					INICIO DO	LOTE 02	•
ENG	1	001	0 + 0,00	а	55 + 7,00	Antônio Carlos Neto	2.843,95
AHNA	2	002	55 + 7,00	а	78 + 5,00	Francisco Napoleão Rocha	546,24
RIA L	3	003	78 + 5,00	а	241 + 15,02	Aparício Figueira Sampaio	5.880,25
TDA.	4	004	242 + 2,40	а	352 + 10,00	Manoel Bernadino dos Santos	4.540,31
	5	005	352 + 5,10	а	353 + 1,18	Marina José Gondine	231,11
	6	006	355 + 4,83	а	389 + 8,90	Francisco de Assis Coelho	2.070,80
	7	007	389 + 8,90	а	410 + 12,04	Mozim	881,52
	8	008	410 + 12,04	а	426 + 18,13	Antônio Bastião	1.631,81
	9	009	426 + 18,13	а	448 + 6,00	Pedro Tragínio	692,61
ᇛ	10	010	448 + 6,00	а	528 + 18,00	José Tavares de Sá	1.697,70
S	11	011	528 + 18,00	а	536 + 8,34	Luiz da Silva Inácio	541,45
RESUMO	12	012	536 + 8,34	а	546 + 3,02	Maria Vicência Matias	940,62
	13	012A	546 + 3,02	а	576 + 8,52	José Tavares de Sá	925,73
DAS	14	013	576 + 8,52	а	597 + 6,00	Amadeus	461,07
	15	014	597 + 6,00	а	612 + 12,41	Aparicio Figueira Sampaio	504,96
ES	16	015	612 + 12,41	а	620 + 16,73	Antônio Joaquim da Cruz	450,54
₹	17	016	620 + 16,37	а	664 + 14,95	Francisco Manoel de Almeida	1.006,74
RO	18	017	664 + 14,95	а	693 + 3,82	João Alencar	656,68
DESAPROPRIAÇÕE	19	018	693 + 3,82	а	706 + 8,00	Teodomiro Sampaio	323,69
ξ	20	019	706 + 8,00	а	758 + 15,00	Antônio Cesário	771,31
Çõ	21	020	758 + 15,00	а	764 + 18,00	Conhec. por Tuta	473,26
ES	22	021	764 + 18,00	а	814 + 5,03	Teodomiro Sampaio	1.002,83
	23	022	816 + 5,27	а	819 + 14,25	Não Identificado	29,87
	24	023	823 + 8,27	а	862 + 8,46	Teodomiro Sampaio	752,91
	25	024	862 + 8,46	а	869 + 17,00	José Ramos	271,93
QD	26	025	869 + 17,00	а	873 + 18,28	Miro	250,49
4	27	026	874 + 2,32	а	876 + 0,00	Natalia Cibeli Rodrigues	450,91
. 4.10.1	28	027	876 + 0,00	а	878 + 4,00	Manoel Saledade	308,02
	29	028	878 + 4,00	а	888 + 19,71	Raimundo Inácio Bezerra	461,36
	30	029	888 + 19,71	а	898 + 19,17	Dionizio André Geraldo	1.250,35

	NÚMERO	NÚMERO					CUSTOS (R\$)
MAL	DE ORDEM	DE CADASTRO	ESTACA	-	ESTACA	PROPRIETÁRIO	ESTIMATIVA DE VALOR
MAIA MELO ENGENHARIA LTDA	31	030	898 + 19,17	а	910 + 15,60	Gregorio Leite Vasconcelos	961,09
O EN	32	031	910 + 15,60	а	927 + 0,91	João Bosco Filho	642,21
GENI	33	032	927 + 0,91	а	983 + 15,00	João Soledade	7.594,38
IARIA	34	033	983 + 15,00	а	987 + 5,00	Guarani	1.964,52
LTD/	35	034	987 + 5,00	а	998 + 10,98	Não identificado	644,12
,	36	035	998 + 10,98	а	1028 + 15,00	Raimundo Frazão	692,03
	37	036	1028 + 15,00	а	1047 + 14,00	Eurotiude	486,98
	38	037	1047 + 14,00	а	1055 + 0,00	Antônio Mocó	271,93
	39	038	1055 + 0,00	а	1065 + 0,00	Calezim	350,61
	40	039	1065 + 0,00	а	1080 + 0,00	Luiz Felix	522,62
ᇛ	41	040	1080 + 0,00	а	1086 + 11,23	Antônio Justino	429,30
RESUMO	42	041	1086 + 11,23	а	1093 + 17,00	Senhor do Coração (Apelido)	393,45
M	43	042	1093 + 17,00	а	1105 + 11,80	Martins	2.002,74
	44	043	1105 + 11,80	а	1105 + 16,82	Governo do Estado	3,98
DAS	45	044	1106 + 0,00	а	1163 + 10,00	Tuta	919,14
	46	045	1163 + 10,00	а	1179 + 15,58	Aliate	905,66
ES	47	046	1179 + 15,75	а	1197 + 1,28	Deoclecio Otávio da Silva	485,82
ΑP	48	047	1197 + 1,28	а	1201 + 14,14	Donizete Eloy da Silva	949,12
RC	49	048	1201 + 14,14	а	1207 + 6,00	Renato Tadeu	281,10
PF	50	049	1207 + 6,00	а	1213 + 4,70	Romicleide Barros	284,09
Ã	51	050	1213 + 4,70	а	1227 + 19,00	Inácio Otávio da Silva	341,91
DESAPROPRIAÇÕES	52	051	1227 + 19,00	а	1231 + 13,11	Antônio Otávio	251,73
ES	53	052	1231 + 13,11	а	1235 + 5,65	Antônio Sampaio	246,35
	54	053	1235 + 5,65	а	1260 + 19,42	Júnior	1.518,29
	55	054	1260 + 19,42	а	1310 + 1,00	Manoel Pedro	8.131,23
	56	055	1310 + 1,00	а	1312 + 16,74	Damião Ferreira dos Santos	689,33
QD	57	056	1312 + 16,74	а	1389 + 10,00	Ermínie Bernado Vieira	13.206,64
) 4	58	057	1389 + 10,00	а	1405 + 6,00	Antônio Nogueira	3.593,72
4.10.2	59	058	1405 + 6,00	а	1419 + 17,16	José Sebastião da Silva	6.196,91
8	60	059	1419 + 17,16	а	1432 + 7,08	Mariano Raimundo Janoario	4.605,81
	61	059-A	1432 + 7,08	а	1523 + 12,58	Fábio Leite Clementino	5.112,78

	NÚMERO	NÚMERO					CUSTOS (R\$)
MAIA MELO ENGENHARIA LTDA	DE ORDEM	DE CADASTRO	ESTACA	-	ESTACA	PROPRIETÁRIO	ESTIMATIVA DE VALOR
NELO 1	62	060	1523 + 17,88	а	1653 + 16,11	Fernando	1.662,10
ENGE	63	061	1653 + 16,11	а	1788 + 10,00	Raimundo Luiz Monteiro	1.814,02
NHAR	64	062	1788 + 10,00	а	1801 + 10,00	Inácio Clementino Pereira	1.635,98
I Al	65	063	1801 + 10,00	а	1816 + 6,13	Antônio Muniz	700,71
DA.	66	064	1816 + 6,13	а	1835 + 0,00	Renato Cassimiro	387,32
	67	065	1835 + 0,00	а	1851 + 17,81	Francisco Cassimiro	831,23
	68	066	1851 + 17,81	а	1860 + 0,00	Luiz Cassimiro Neto	541,93
	69	067	1860 + 0,00	а	1874 + 2,21	Jesé Agra Pereira	556,08
	70	068	1874 + 2,21	а	1879 + 3,52	Izabel Alves de Jesus Lourenço	546,76
	71	069	1879 + 3,50	а	1885 + 11,00	José Sebastião	819,82
교	72	070	1885 + 11,00	а	1909 + 10,00	Ceni Siplicio	2.850,84
:S	73	071	1909 + 10,00	а	1921 + 10,00	Elson Pereira Martins	712,95
RESUMO	74	072	1921 + 10,00	а	1930 + 2,00	José Neto	420,94
	75	073	1930 + 2,00	а	1945 + 0,00	Sebastião Januário	505,02
DAS	76	074	1945 + 0,00	а	1953 + 13,68	Rosalvo Mariano	329,05
	77	075	1953 + 13,68	а	1960 + 1,57	Alice	301,73
ES	78	076	1960 + 1,57	а	1962 + 10,00	Antônio Ricardo	270,60
₽	79	077	1962 + 10,00	а	1965 + 7,15	João Leite	273,70
l Ro	80	078	1965 + 7,15	а	2016 + 8,00	Rosalvo Mariano	1.232,12
Ÿ	81	079	2016 + 8,00	а	2112 + 0,00	João Pereira de Oliveira	5.555,63
≘	82	080	2112 + 0,00	а	2138 + 7,23	Maria Januária dos Santos	1.392,87
DESAPROPRIAÇÕE	83	081	2138 + 7,23	а	2437 + 16,94	Ricardo	3.703,93
ES	84	082	2438 + 1,76	а	2790 + 0,00	Fernando Cabral	5.048,37
	85	083	2790 + 0,00	а	2841 + 7,64	Moises Sampaio Lima	1.448,94
	86	084	2841 + 7,64	а	2849 + 13,00	Robamar	1.418,15
	87	085	2841 + 7,64	а	2855 + 12,00	Governo do Estado	8,08
QD	88	086	2841 + 7,64	а	2864 + 7,05	Atila Angelim	1.664,77
4	89	087	2864 + 7,05	а	2868 + 10,00	Armando (Carão)	259,85
4.10.3	90	088	2868 + 10,00	а	2873 + 13,62	Altino	350,31
ω	91	089	2873 + 13,62	а	2894 + 9,30	Alfredo	557,49
	92	090	2894 + 9,30	а	2898 + 10,88	José Armando	635,79

	NÚMERO	NÚMERO					CUSTOS (R\$)
MAIA MELO ENGENHARIA LTDA	DE ORDEM	DE CADASTRO	ESTACA	-	ESTACA	PROPRIETÁRIO	ESTIMATIVA DE VALOR
METO 1	93	091	2899 + 0,25	а	2926 + 2,67	Dino de Jeroncio	1.615,85
ENG	94	092	2926 + 2,67	а	2944 + 10,57	Atita	674,80
ENHA	95	093	2944 + 10,57	а	2974 + 9,95	Ronaldo	820,19
RIAL	96	094	2974 + 9,95	а	2979 + 8,84	Luiz Zito	754,33
TDA.	97	095	2679 + 8,84	а	2988 + 18,19	Luíz Gonzaga Sampaio	1.507,98
	98	096	2988 + 18,19	а	2994 + 0,53	Atita	740,44
	99	097	2994 + 0,53	а	3026 + 14,29	Eldo	2.630,84
	100	098	3026 + 14,29	а	3034 + 2,41	Inácio Davi Neto	988,49
	101	099	3034 + 2,41	а	3038 + 12,01	Fernando Cabral	443,50
	102	100	3038 + 12,01	а	3064 + 3,42	Luiz Carlos Cabral	5.776,54
ᆔᇛ	103	101	3064 + 3,42	а	3133 + 18,26	Ivanildo Armando	1.465,81
RESUMO	104	102	3133 + 18,26	а	3148 + 11,07	Bega	797,37
	105	103	3148 + 11,07	а	3178 + 13,51	Atita	1.509,99
	106	104	3178 + 13,51	а	3220 + 18,65	Pedro	831,17
DAS	107	105	3220 + 18,65	а	3224 + 6,14	Evagelita	880,19
	108	106	3244 + 6,14	а	3253 + 11,17	Antonio Neco	324,55
ES	109	107	3253 + 11,17	а	3459 + 4,02	Inácio Rolim	6.071,33
₽	110	108	3459 + 4,02	а	3521 + 9,30	Lundes Menes	1.083,66
RO	111	109	3521 + 9,30	а	3528 + 5,31	Raimundo	889,98
Ρ̈́Ρ	112	110	3528 + 5,31	а	3595 + 14,38	Raul	1.255,57
≅	113	111	3595 + 14,38	а	3619 + 15,96	Luíz Diniz Neto	2.337,86
DESAPROPRIAÇÕES	114	112	3619 + 15,96	а	3636 + 13,64	Dicel	606,57
ES	115	113	3636 + 13,64	а	3644 + 2,56	Raimundo Lustosa	487,09
"	116	114	3644 + 12,56	а	3654 + 0,00	Rinaldo Lustosa	374,30
	117	115	3654 + 0,00	а	3678 + 7,57	Não Identificado	597,30
	118	116	3678 + 7,57	а	3892 + 13,00	Raimundo Lopes	2.438,19
QD	119	117	3892 + 13,00	а	3906 + 14,77	Branco	500,18
) 4	120	118	3906 + 14,77	а	3923 + 5,17	José Clementino	564,36
4.10.4	121	119	3923 + 5,17	а	3939 + 19,87	Antonio Cordeiro	767,75
4	122	120	3939 + 19,87	а	3961 + 10,54	Belarmino Vieira	2.673,76
	123	121	3661 + 10,54	а	4040 + 17,06	Raimundo Benedito	1.287,94

	NÚMERO	NÚMERO					CUSTOS (R\$)
MAIA MELO ENGENHARIA LTDA	DE ORDEM	DE CADASTRO	ESTACA	-	ESTACA	PROPRIETÁRIO	ESTIMATIVA DE VALOR
ME TO	124	122	4040 + 17,06	а	4046 + 4,28	Antonio Cordeiro	751,04
ENG	125	123	4046 + 4,28	а	4065 + 13,57	Francisco Lopes	2.245,94
AHIN	126	124	4065 + 13,57	а	4093 + 9,79	Arnaldo Medeiros	789,77
RIA L	127	125	4093 + 9,79	а	4165 + 8,00	Paulo Farias	1.338,21
TDA.	128	126	4165 + 8,00	а	4208 + 12,38	Marcos Filho	740,41
	129	127	4208 + 12,38	а	4234 + 17,02	Antonio Leite	777,75
	130	128	4234 + 17,02	а	4262 + 0,98	José Mendes	618,59
	131	129	4262 + 0,98	а	4373 + 12,58	Raimundo Tavares	2.122,83
	132	130	4373 + 12,58	а	4404 + 13,57	Maria Medeiros	498,05
	133	131	4404 + 13,56	а	4426 + 17,86	Iva Gomes de Souza	231,98
ᇛ	134	132	4426 + 17,86	а	4646 + 7,07	Zezé Lima	4.615,04
S	135	133	4554 + 18,50	а	4645 + 18,75	Agripino	6.750,36
RESUMO	136	134	4646 + 7,07	а	4671 + 2,64	José Soares	603,43
	137	135	4671 + 2,64	а	4688 + 11,63	José Izadoro	399,20
DAS	138	136	4688 + 11,63	а	4853 + 15,39	Antônio Manuel Barbosa	4.439,89
	139	137	4854 + 0,36	а	5140 + 2,00	Totó	6.961,95
ES	140	138	5140 + 2,00	а	5160 + 1,00	Liozinho	192,77
₽	141	139	5160 + 1,00	а	5254 + 0,84	Leondas	1.220,04
R	142	140	5254 + 0,84	а	5319 + 3,45	Arno	1.319,89
Į Ž	143	141	5319 + 11,23	а	5429 + 18,18	Ranilson	1.498,56
DESAPROPRIAÇÕES	144	142	5429 + 18,18	а	5692 + 5,68	Joaquim Leite	3.148,92
Çõ	145	143	5692 + 5,68	а	5808 + 13,68	José Carvalho	6.665,06
ES	146	144	5808 + 13,68	а	5901 + 2,50	Povoado de Urimamã	2.596,54
	147	145	5901 + 2,5	а	6373 + 13,59	Manuel de Sá Araujo	4.834,05
						TOTAL DO LOTE 02 =	235.025,84
QD 4.10.5							

EXCELÊNCIA : ISO 9001/2000 ISO 14001/2004