

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

ÍNDICE

II.5 -	Diagnóstico Amb	iental	1/178
	II.5.1 - Me	io Físico	1/178
	II.5.1.1 -	Climatologia e Condições Meteorológicas	1/178
	II.5.1.1.1	- Dinâmica Atmosférica e Fenômenos Meteorológicos	1/178
	II.5.1.1.2	- Caracterização Climática	5/178
	II.5.1.1.3	- Parâmetros Meteorológicos Atuantes (A)	6/178
	II.5.1.2 -	Geologia e Geomorfologia	20/178
	II.5.1.2.1	- Introdução e Apresentação do Mapeamento (A)	20/178
	II.5.1.2.2	- Geologia Local e Regional (B)	22/178
	II.5.1.2.3	- Unidades Geológicas Atravessadas pelo Gasoduto (C)	37/178
	II.5.1.2.4	- Zona Sísmica, Estratigrafia e Hidrogeologia (D)	40/178
	II.5.1.2.5	- Características de Resistência, Colapsividade e Deformabilidade (E)	73/178
	II.5.1.2.6	- Zonas Cársticas e Áreas Susceptíveis a Dolinamentos (F)	74/178
	II.5.1.2.7	- Cavidades Naturais e Monumentos Naturais Relevantes (G)	74/178
	II.5.1.2.8	- Geomorfologia (H)	74/178
	II.5.1.3 -	Geotecnia e Pedologia	87/178
	II.5.1.3.1	- Risco Geológico-Geotécnico (A)	87/178
	II.5.1.3.2	- Descrição dos Processos Erosivos (B)	91/178
	II.5.1.3.3	- Pedologia (C)	103/178
	II.5.1.4 -	Recursos Minerais	142/178
	II.5.1.4.1	- Mapeamento das Atividades Minerárias (A)	142/178
	II.5.1.4.2	- Apresentação do Diagnóstico junto ao DNPM (B)	152/178
	II.5.1.5 -	Recursos Hídricos	152/178

Técnico: Índice Geral 1/2

Coordenador:

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 Rev. nº 00

II.5.1.5.1 -	Considerações Iniciais	153/178
II.5.1.5.2 -	Caracterização da Região Hidrográfica do Tocantins - Araguaia e Região Hidrográfica do Atlântico Nordeste Ocidental	154/178
II.5.1.5.3 -	Caracterização das Principais Drenagens da Área de Influência	156/178
II.5.1.5.4 -	Condições de Proteção dos Corpos d'água	164/178
II.5.1.5.5 -	Usos da Água e Fontes Poluidoras	166/178
II.5.1.6 - Patri	mômio Espeleológico	169/178
II.5.1.6.1 -	Prospecção Exocárstica e Mapeamento (A)	169/178
II.5.1.6.2 -	Procedimentos para o Levantamento das Cavidades Existentes (B)	169/178
II.5.1.6.3 -	Considerações Iniciais	170/178
II.5.1.6.4 -	Considerações Finais	171/178
II.5.1.7 - Sismo	ologia	171/178
II.5.1.7.1 -	Caracterização dos Aspectos Sismológicos (A)	171/178
II.5.1.7.2 -	Considerações Gerais	172/178
II.5.1.7.3 -	Aspectos Sismológicos da Área de Estudo	173/178
II.5.1.7.4 -	Considerações Finais	178/178

ANEXOS DO ITEM II.5.1 - MEIO FÍSICO

Anexo II.5.1-1 - Relatório Fotográfico

2/2

Coordenador:	Técnico:	
		Índice Geral

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

Legendas

Quadro II.5.1-2 - Estações Meteorológicas utilizadas
Gráfico II.5.1-1 - Variação de temperatura máxima absoluta entre Imperatriz, Belém e Marabá
Gráfico II.5.1-2 - Variação da temperatura mínima absoluta nas estações Imperatriz, Belém e Marabá
Gráfico II.5.1-3 - Variação de temperatura média entre Imperatriz, Belém e Marabá
Gráfico II.5.1-4 - Variação de precipitação total acumulada entre Imperatriz, Belém e Marabá10/178
Gráfico II.5.1-5 - Altura máxima da precipitação em 24hs entre Imperatriz, Belém e Marabá11/178
Gráfico II.5.1-6 - Variação anual de pressão entre Imperatriz, Belém e Marabá
Gráfico II.5.1-7 - Variação anual de umidade relativa entre Imperatriz, Belém e Marabá14/178
Quadro II.5.1-3 - Estações Meteorológicas utilizadas para análise de ventos
Figura II.5.1-1 - Rosa dos Ventos
Figura II.5.1-1 - Rosa dos Ventos
Quadro II.5.1-4 - Incidência e Velocidade Média de Ventos - Estação de Barcarena (PA) e
Quadro II.5.1-4 - Incidência e Velocidade Média de Ventos - Estação de Barcarena (PA) e Açailândia (Ma) - 2005
Quadro II.5.1-4 - Incidência e Velocidade Média de Ventos - Estação de Barcarena (PA) e Açailândia (Ma) - 2005
Quadro II.5.1-4 - Incidência e Velocidade Média de Ventos - Estação de Barcarena (PA) e Açailândia (Ma) - 2005
Quadro II.5.1-4 - Incidência e Velocidade Média de Ventos - Estação de Barcarena (PA) e Açailândia (Ma) - 2005

Coordenador: Técnico:

Indice Geral 1/7

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 Rev. nº 00

Figura II.5.1-3 - Declividade e LANDSAT 7		
Figura II.5.1-4 - Compartimentação geotectônica da América do Sul. Modificado de Almeida <i>et</i> al. (1977; 1981)		
Figura II.5.1-5 - Associações tectônicas e recursos minerais das Bacias do Parnaíba, Grajaú, e Marajó (Extraído de Geologia e Recursos Minerais do Estado do Pará, 2008, CPRM)		
Figura II.5.1-6 - Intercalação de filitos pelíticos com metassiltitos		
Figura II.5.1-7 - Arenito caulinico fino com níveis conglomeráticos, apresentado estratificação cruzada		
Figura II.5.1-8 - Arenito fino esbranquiçado, as margens do rio Capim31/178		
Figura II.5.1-9 - Detalhe de argilito com níveis avermelhados laminados		
Figura II.5.1-10 - Concreções e esferolitos, típicos de horizonte superior pertencente a lateritas maduras		
Figura II.5.1-11 - Depósito de areias finas, inconsolidados e/ou semiconsolidados, e cascalhos		
Figura II.5.1-12 - Depósito estuarino, predominantemente, arenoso		
Figura II.5.1-13 - Sedimentos clásticos, inconsolidados, em depósitos de canais		
Quadro II.5.1-7 - Resumo geológico da área de influência do Gasoduto do Pará		
Quadro II.5.1-8 - Resumo de Unidades Litoestratigráficas da AII do Gasoduto do Pará37/178		
Quadro II.5.1-9 - Local (km) em que o Gasoduto atravessa as Unidades Geológicas		
Quadro II.5.1-10 - Unidades Litológicas aflorantes na AII do Gasoduto do Pará		
Figura II.5.1-14 - Mapa de localização e arcabouço estrutural da Bacia de Marajó		
Figura II.5.1-15 - Gametá		
Figura II.5.1-16 - Carta estratigráfica simplificada da Bacia de Marajó		
Figura II.5.1-17 - Localização geográfica da Bacia do Parnaíba e principais lineamentos estruturais		
Coordenador: Técnico:		

GASODUTO DO PARÁ Estudo de Impacto Ambiental - EIA

Figura II.5.1-18 - Seção Longitudinal da Bacia do Parnaíba - Seção Longitudinal NW-SE da Bacia do			
Parnaíba e rift da Bacia do Marajó (localização na Figura II.5.1-17), com			
localização dos furos de sondagem realizados nas localidades de Limoeiro, Badajós,			
Gurupi, Palestina, Pindaré-Mirim, Floriano			
Figura II.5.1-19 - Carta Estratigráfica simplificada da Bacia do Parnaíba			
Figura II.5.1-20 - Exemplares fósseis da Bacia do Parnaíba. A) estrutura reprodutiva feminina de			
cúpula de pteridospermas primitivas, Formação Poti; B) fronde de Diplothmema			
gothanica, pteridosperma primitiva típica do Mississipiano, Formação Poti; C)			
esporangios de Kegelidium lamegoi, pteridosperma primitiva, Formação Poti; D)			
caule de Psaronius de base completa, Formação Pedra do Fogo; E) Lepidotes			
piauhyensis, peixe do Jurássico, Formação Pastos Bons (comprimento = 29 cm); F)			
Pleurochonetes comstocki, braquiópode do Devoniano Médio, Formação Cabeças			
(escala gráfica: 10 mm)			
Figura II.5.1-21 - Exemplar fósseis em nódulo de arenito coletado em Esperantina/TO			
Figura II.5.1-22 - Principais aquíferos do Brasil (ANA, 2005)			
Quadro II.5.1-11 - Características de resistência, colapsividade e deformabilidade para a área			
mapeada			
Figura II.5.1-23 - Superfície em níveis altimétricos			
Figura II.5.1-23 - Superfície em níveis altimétricos			
Figura II.5.1-23 - Superfície em níveis altimétricos			
Figura II.5.1-23 - Superfície em níveis altimétricos			
Figura II.5.1-23 - Superfície em níveis altimétricos			
Figura II.5.1-23 - Superfície em níveis altimétricos			
Figura II.5.1-23 - Superfície em níveis altimétricos			
Figura II.5.1-23 - Superfície em níveis altimétricos			
Figura II.5.1-23 - Superfície em níveis altimétricos			
Figura II.5.1-23 - Superfície em níveis altimétricos			
Figura II.5.1-23 - Superfície em níveis altimétricos			
Figura II.5.1-23 - Superfície em níveis altimétricos			
Figura II.5.1-23 - Superfície em níveis altimétricos			

Técnico: 3/7 Índice Geral

Coordenador:

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 Rev. nº 00

Quadro II.5.1-12 - Resumo das Unidades Geomorfológicas da Área de Influência do Gasoduto do				
Pará82/178				
Quadro II.5.1-13 - Local (km) em que o Gasoduto atravessa as Unidades Geomorfológicas				
Figura II.5.1-29 - Depósito aluvionar sob a ponte				
Figura II.5.1-30 - Rio com aproximadamente 1,5km de largura				
Figura II.5.1-31 - Rio com largura considerável (notar linha de transmissão) e entorno alagadiço89/178				
Figura II.5.1-32 - Cicatriz erosiva, a montante da estrada, recoberta por vegetação90/178				
Figura II.5.1-33 - Voçorocas a jusante da rodovia				
Figura II.5.1-34 - Voçorocas, a montante da rodovia				
Figura II.5.1-35 - Voçorocas, a jusante da rodovia				
Figura II.5.1-36 - Imagem de satélite (31/07/2005 Digital Globe - Google Earth) da cidade de Açailândia com destaque para voçoroca (em vermelho) evoluindo em direção à área urbana da cidade				
Figura II.5.1-37 - Frente de expansão da rede de drenagem, através de processos erosivos				
acelerados, sobre o divisor topográfico que sustenta um relevo tabular entre os				
municípios de Ulianópolis e Dom Eliseu no Pará93/178				
Figura II.5.1-38 - Modelo digital do terreno com detalhe (quadrado em vermelho) para a zona de				
transição entre as unidades geomorfológicas de superfície tabular erosiva e				
dissecação em ravinas. E escarpa erosiva é ilustrada com o traçado pontilhado				
preto na interface entre as duas unidades. A diretriz do duto é representada na cor vermelha				
COT VERTICALITY 170				
Figura II.5.1-39 - Gado sobre solo exposto sem cobertura vegetal, sujeito ao escoamento				
superficial e erosão por lençol96/178				
Figura II.5.1-40 - Sulcos erosivos e ravinas provenientes do escoamento superficial sobre o solo				
compactado pelo pisoteio do gado96/178				
Figura II.5.1-41 - Sulco erosivo profundo próximo a uma plantação de eucalipto, intensificado				
pela falta de cobertura vegetal e de serra pilheira sobre o solo exposto				
Coordenador: Técnico:				

Estudo de Impacto Ambiental - EIA

Figura II.5.1-43 - Voçoroca próxima à estrada BR010, nas coordenadas 218330E 9564252N98/178			
Figura II.5.1-44 - Voçoroca com presença de vegetação em estágio inicial de sucessão em seu eixo de drenagem. Ponto nas coordenadas 218490E 9517198N			
Figura II.5.1-45 - Corte de estrada, às margens da BR-010 , com presença de movimentos de massa e queda de blocos. Há no afloramento a presença de fraturas sub-verticais (linhas em vermelho), perpendiculares ao acamamento sedimentar, que facilitam o avanço da frente de intemperismo e, consequentemente, a queda de blocos			
Figura II.5.1-46 - Ravina na base do talude de corte de uma estrada vicinal. O aprofundamento do sulco erosivo (polígono em vermelho) acaba por induzir o colapsamento do material na encosta (linhas laranja)			
Figura II.5.1-47 - Movimentos de massa do tipo rotacional na margem côncava do canal, deflagrados pelo solapamento da base pela ação do rio			
Figura II.5.1-48 - Concavidade nas proximidades de Açailândia no Maranhão			
Figura II.5.1-49 - Áreas côncavas do relevo com maior sujeição a processos erosivos			
Quadro II.5.1-14 - Localização dos Processos Erosivos			
Figura II.5.1-50 - Aspecto da vegetação de floresta tropical perenifólia com alterações que domina ao longo de todo o traçado do gasoduto			
Figura II.5.1-51 - Aspecto da vegetação das várzeas na região			
Quadro II.5.1-15 - Área e porcentagem das unidades de mapeamento			
Quadro II.5.1-16 - Local (km) em que o Gasoduto atravessa as Unidades de Mapeamento de Solo e sua Aptidão Agrícola e Susceptibilidade à Erosão 126/178			
Quadro II.5.1-17 - Simbologia das classes de aptidão agrícola das terras			
Quadro II.5.1-18 - Resultados da avaliação da aptidão Agrícola das terras			
Quadro II.5.1-19 - Legenda da aptidão agrícola das terras 135/178 Coordenador: Técnico:			

Indice Geral 5/7

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 Rev. nº 00

Quadro II.5.1-20 - Aptidão Agrícola das Terras atravessadas pelo gasoduto	135/178		
Quadro II.5.1-21 - Avaliação da susceptibilidade à erosão dos solos da área de influência do gasoduto do Pará	139/178		
Quadro II.5.1-22 - Resumo dos resultados obtidos	140/178		
Quadro II.5.1-23 - Susceptibilidade à Erosão dos solos atravessados pelo gasoduto	141/178		
Quadro II.5.1-24 - Recursos minerários requeridos ao DNPM na AII do Gasoduto do Pará	143/178		
Figura II.5.1-52 - As 12 Regiões Hidrográficas do Brasil, da Divisão Hidrográfica Nacional (Resolução nº 32 do CNRH, 2003), com detalhe para o gasoduto em vermelho. Fonte: Modificado de Bases do PNRH, 2005. A versão ampliada da ilustração encontra-se no Mapa de Regiões Hidrográficas (2330-00-EIA-DE-1005)	154/178		
Quadro II.5.1-25 - Subdivisões das Regiões Hidrográficas do Tocantins-Araguaia e do Atlântico Nordeste Ocidental 1	155/178		
Quadro II.5.1-26 - Característica dos corpos hídricos cortados pelo duto (Fuso 22)	156/178		
Quadro II.5.1-27 - Característica dos corpos hídricos cortados pelo duto (Fuso 23)	159/178		
Figura II.5.1-53 - Diagrama Multifilar dos principais cursos d'água atravessados pela diretriz do Gasoduto do Pará	162/178		
Quadro II.5.1-28 - Disponibilidade Hídrica por habitante das subdivisões Tocantins Baixo, Tocantins Alto, Araguaia e Gurupi	166/178		
Quadro II.5.1-29 - Balanço entre demanda e disponibilidade hídrica para vazão média e de permanência nas subdivisões Tocantins Baixo, Tocantins Alto e Araguaia (região hidrográfica do Tocantins-Araguaia e Gurupi, na região hidrográfica do Atlântico Nordeste Ocidental	167/178		
Gráfico II.5.1-11 - Percentual de usos na Região Hidrográfica Tocantins-Araguaia	168/178		
Gráfico II.5.1-12 - Percentual de usos na Região Hidrográfica do Atlântico Nordeste Ocidental, na subdivisão Gurupi	168/178		
Figura II.5.1-54 - Mapa com dados sobre sismos com magnitude 3.0 ou mais, ocorridos no Brasil,			
desde a época da colonização, até 1996. As informações mais antigas, indicadas Coordenador: Técnico:			
	lice Geral		

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

	por triângulos, são chamadas históricas, e foram obtidas após um longo e minucioso		
	trabalho de pesquisa em bibliotecas, livros, diários e jornais. Os dados dos		
	epicentros, indicados por círculos, são relativamente mais novos e foram obtidos		
	por equipamentos sismográficos	73/178	
Quadro II.5.1	1-30 - Lista de sismos ocorridos nos Estados do Pará, Maranhão e Tocantins (1860 -		
	2009)	75/178	

Coordenador: Técnico:

Indice Geral 7/7

TRANSPORTADORA DE GÁS DO PARA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00 GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

II.5 - DIAGNÓSTICO AMBIENTAL

II.5.1 - Meio Físico

II.5.1.1 - Climatologia e Condições Meteorológicas

A All do Gasoduto engloba uma área geográfica do globo cuja atuação da dinâmica atmosférica e climática é muito forte. A região da Amazônia Legal, da qual fazem parte os Estados do Pará e Maranhão, é afetada por diversos elementos e fenômenos climáticos, cuja interferência direta condiciona a circulação geral da atmosfera local, conferindo peculiaridades climáticas e meteorológicas à região.

II.5.1.1.1 - Dinâmica Atmosférica e Fenômenos Meteorológicos

Zona de Convergência Intertropical e Massas de Ar Atmosférico

A Zona de Convergência Intertropical (ZCIT) forma-se nas áreas de baixas latitudes e consiste na região de convergência dos ventos alísios provenientes do SE com os do NE, criando ascendência de massas de ar normalmente úmidas. Dinamicamente, a ZCIT está associada a uma faixa de baixa pressão e convergência do escoamento nos baixos níveis da atmosfera, a qual promove as condições favoráveis ao movimento ascendente e conseqüente presença de nebulosidade e precipitação. Também é conhecida como Equador Meteorológico, Descontinuidade Tropical, Zona Intertropical de Convergência, Frente Intertropical, além de outros.

A ZCIT, acompanhando o Equador Térmico (isoterma da máxima temperatura do globo que segue pelas massas d'água dos oceanos, adentrando os continentes), sobre a América do Sul se desloca aproximadamente 5° S no mês de março e 10° N em setembro (Mendonça & Danni-Oliveira, 2007). A posição da ZCIT condiciona a pluviosidade regional.

Devido ao fato de a posição da ZCIT ser predominantemente sobre os oceanos, é observado que seu mecanismo modifica-se conforme se apresentam anomalias na temperatura da água.

Outro fator climático importante para incremento ou declínio do índice de precipitação é a Massa Equatorial do Atlântico Norte e a do Atlântico Sul (respectivamente MEAN e MEAS) que são formadas nos anticiclones dos Açores (ao norte) e Santa Helena (ao sul), sendo

Coordenador: Técnico:

II.5.1 - Meio Físico 1/178

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

atraídas para o continente devido à diferença de pressão entre continente e oceano. A MEAN atua principalmente na porção norte e a MEAS no extremo nordeste da América do Sul.

A amplitude térmica anual é maior do que a diária, e a diferenciação entre inverno e verão é consideravelmente pequena.

A Massa Equatorial Continental (MEC) é formada pela divergência dos ventos alísios ou doldrums (localizados na porção centro-ocidental da Planície Amazônica), caracterizada pela elevada temperatura, umidade e proximidade do Equador. O fator principal para a enorme carga de umidade da massa é a presença da extensa e caudalosa drenagem da Bacia Hidrográfica do rio Amazonas coberta pela densa e exuberante floresta, além da influência direta da ZCIT e da MEAN.

Molion (1993) estuda as circulações de macro e meso-escala que atuam na Amazônia e os processos dinâmicos que organizam e promovem a precipitação naquela área. Segundo este autor, os mecanismos que provocam chuva na Amazônia Legal podem ser agrupados em 3 tipos:

- ► convecção diurna resultante do aquecimento da superfície e condições de larga-escala favoráveis;
- ▶ linhas de instabilidade originadas na costa N-NE do litoral do Atlântico;
- ▶ aglomerados convectivos de meso e larga escala, associados com a penetração de sistemas frontais nas Regiões Sul e Sudeste do Brasil e interagindo com a região Amazônica.

Circulação Geral e Alta da Bolívia

A circulação geral da alta troposfera sobre a América do Sul tem sido bastante estudada nos últimos anos (Santos, 1986). Esta região possui como característica o desenvolvimento de um anticiclone em altos níveis na camada atmosférica durante os meses de verão, sendo associado com a forte convecção que ocorre na região Amazônica. Este elemento foi denominado de Alta da Bolívia (AB), pois, situa-se sobre a região do altiplano boliviano. Durante a época de inverno, não ocorre tal fenômeno. A localização geográfica da Alta da Bolívia possui variação intrasazonal e interanual, dependendo da convecção na área.

Santos (1986) observou que, durante anos menos chuvosos na região Amazônica, a AB mostrava-se de modo menos intenso. Analisando anos de ocorrência de El Niño (Janes & Horel, 1989) foi reportado em pesquisas minuciosas, que a AB localiza-se, em geral, a oeste de sua

Coordenador: Técnico:

2/178

II.5.1 - Meio Físico

TRANSPORTADORA DE GAS DO RAPA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

AB.

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

posição climatológica. Também foi observado que, para o evento do El Niño (1982-1983), a

A manutenção deste centro quente anti-ciclonônico dá-se devido à convergência, em baixos níveis da umidade que vem de NW e E. A convergência provoca forte convecção, condensação e liberação de calor latente na média e alta troposfera, associada à atividade convectiva (Marengo, 2003). Entretanto, esta atividade convectiva possui um ciclo anual de migração SE/NW, partindo da região Amazônica durante os meses de dezembro a fevereiro e deslocando-se até a América Central (trimestre junho a agosto).

atividade convectiva e a precipitação na Amazônia diminuíram, com o enfraquecimento da

Segundo os resultados de Horel *et al.* (1989), a atividade convectiva sobre a América Tropical possui um deslocamento sazonal ao longo do eixo SE/NW, permanecendo 5 meses em cada hemisfério.

El Niño e La Niña

O evento do El Niño de 1982-1983 foi um dos mais intensos e afetou o clima da América do Sul de diversas maneiras (Marengo, 2003). No caso da região da Amazônia Legal, este episódio provocou um período extremamente seco entre janeiro e fevereiro durante a estação chuvosa na Amazônica Central. O desvio da precipitação neste período apresentou valores de até - 70% na área de Óbidos (AM), com um valor menor na parte mais próxima do Oceano Atlântico (-20% em Belém). Este comportamento foi devido à célula de Walker deslocar-se para a região sobre a Amazônia, inibindo a formação de atividades convectivas (Nobre & Oliveira, 1987). O período de janeiro e fevereiro de 1982-1983 foi caracterizado por possuir o menor índice pluviométrico dos 50 anos anteriores. Em um estudo complementar a este, Kayano & Moura (1986) analisaram a precipitação na América do Sul durante todo o evento do El Niño (junho de 1982 a agosto de 1983), indicando que a Amazônia sofreu uma seca durante todo este período.

Uma série de outros estudos também demonstrou os efeitos do evento El Niño na hidrologia da Amazônia. Marengo (1992) demonstrou que em anos de atuação de El Niño muito intenso, como foram os anos de 1925-26, 1976-77 ou 1982-83, a precipitação do verão foi mais baixa que nos anos normais sobre a Amazônia do Norte; um estudo de Marengo (1996) para a Amazônia Peruana mostra que os níveis de água do rio Solimões em Iquitos e as chuvas registradas mostram anomalias negativas durante anos de El Niño muito intenso. Estudos de modelagem do clima feitos por Marengo & Hastenrath (1993) mostram que, durante anos de grande aquecimento das águas do Pacífico equatorial central, a ZCIT situa-se de forma

Coordenador: Técnico.

II.5.1 - Meio Físico 3/178

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

anormal mais ao norte do que sua posição normal sobre o Atlântico tropical. Consequentemente os ventos alísios de NE enfraquecem, reduzindo a umidade que penetra no interior da região Amazônica.

No Quadro II.5.1-1 é apresentado um resumo de atuação de El Niño e La Nina na região da Amazônia Legal.

Quadro II.5.1-1- Ocorrências de El Nino e La Niña

El Niño		
1877 - 1878	1888 - 1889	
1896 - 1897	1899	
1902 - 1903	1905 - 1906	
1911 - 1912	1913 - 1914	
1918 - 1919	1923	
1925 - 1926	1932	
1939 - 1941	1946 - 1947	
1951	1953	
1957 - 1959	1963	
1965 - 1966	1968 - 1970	
1972 - 1973	1976 - 1977	
1977 - 1978	1979 - 1980	
1982 - 1983	1986 - 1988	
1990 - 1993	1994 - 1995	
1997 - 1998	2002 - 2003	
2004 - 2005	2006 - 2007	

La Niña				
1886	1903 - 1904			
1906 - 1908	1909 - 1910			
1916 - 1918	1924 - 1925			
1928 - 1929	1938 - 1939			
1949 - 1951	1954 - 1956			
1964 - 1965	1970 - 1971			
1973 - 1976	1983 - 1984			
1984 - 1985	1988 - 1989			
1995 - 1996	1998 - 2001			

Fonte: INMET - Glossário Online.

Legenda:

Forte Moderada Fraco

Friagens

Embora a região da Amazônia Legal situe-se geograficamente próxima ao Equador, a parte meridional sofre, eventualmente, a ação de sistemas frontais (frentes-frias), o que provoca localmente o fenômeno denominado de Friagem. O efeito destas invasões de ar polar na Amazônia tem sido pouco estudado. Fisch (1996) realizou uma estatística simples do número de eventos de Friagem na região ao sul do Pará durante os anos de 1992 e 1993 e obteve uma frequência de ocorrência de sete casos ao ano, entre os meses de maio e agosto. Brinkman & Ribeiro (1972) citam que, no caso da Amazônia Central, ocorrem de duas a três Friagens ao ano, nos meses de seca, de junho a outubro.

Coordenador: Técnico:

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

II.5.1.1.2 - Caracterização Climática

A caracterização climática da All do empreendimento e entorno também pode ser estabelecida a partir da análise descritiva dos mecanismos de circulação e de geração de fenômenos meteorológicos associados aos parâmetros estatísticos médios dos principais parâmetros, e pelos critérios de classificação de Köppen.

A classificação de Köppen (1948) é baseada nos valores médios de temperatura do ar (coletados mensal e anualmente, além das médias do mês mais frio e do mais quente) e de precipitações pluviométricas, porém, sua sazonalidade não caracteriza completamente as condições ambientais de uma região, embora forneça uma descrição útil dos aspectos climáticos.

O Estado do Pará segundo sua extensão geográfica, de aproximadamente 1.257.000 km, apresenta uma variação climática bastante diversificada, com uma distribuição de períodos de chuvas e estiagem, os quais diferenciam as regiões em função da sazonalidade.

De acordo com Köppen (1948), a região do Gasoduto apresenta influência dos seguintes tipos climáticos:

- Af Equatorial chuvoso de floresta com subseca: 3 meses secos;
- Am Tropical-equatorial de monção com breve estação seca no inverno e chuvas intensas durante o resto do ano: 4 a 5 meses secos;
- Aw Tropical-equatorial de savana com chuvas de verão: 4 a 7 meses secos.

Evidencia-se uma marcante diversidade climatológica no Estado do Pára, sobretudo quando se considera a grande dimensão de seu território. Não somente as temperaturas médias são fortemente influenciadas pela associação relevo-altitude-continentalidade, mas também o regime e a distribuição dos totais pluviométricos são notoriamente modificados, segundo a posição do local, se a barlavento ou a sotavento dos ventos úmidos carreados pelas circulações atmosféricas e de brisas marítimas na maior parte do ano.

Coordenador: Técnico:

II.5.1 - Meio Físico 5/178

GASODUTO DO PARÁ Estudo de Impacto Ambiental - EIA 2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

II.5.1.1.3 - Parâmetros Meteorológicos Atuantes (A)

Para a análise climática da Área de Influência Indireta do Gasoduto do Pará foram utilizados os dados das Estações Convencionais Belém, Imperatriz, e Marabá; dadas as suas características de proximidade com a área de implantação do empreendimento (Quadro II.5.1-2).

Quadro II.5.1-2 - Estações Meteorológicas utilizadas

Estação	Latitude (S)	Longitude (W)	Altitude (m)	Órgão Responsável	Período de Observação
Belém	1.43°	48.43°	10	DISME / INMET	1961-1990
Imperatriz	5.53°	47.48°	123,30	DISME / INMET	1961-1990
Marabá	5.37°	49.13°	95	DISME / INMET	1961-1990

II.5.1.1.3.1 - Temperatura do Ar

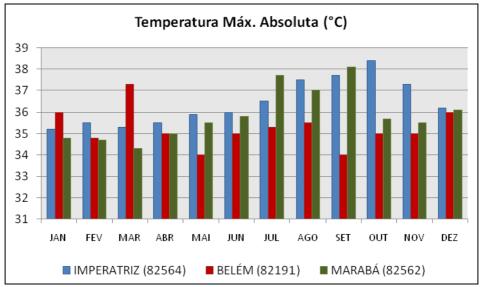
A temperatura do ar constitui-se em um parâmetro de interesse para os estudos que dizem respeito ao meio ambiente. Basicamente, reflete os resultados dos impactos energéticos da radiação solar sobre o sistema superfície-atmosfera combinados com aspectos astronômicos e dinâmicos de micro, meso e macro-escalas. Particularmente, a avaliação do comportamento das temperaturas médias ao longo do ano permite a identificação da sazonalidade, em função da plotagem das curvas referentes às médias das máximas temperaturas, médias compensadas e médias das mínimas temperaturas a partir das informações de cada mês. As curvas resultantes dos valores das médias das máximas e mínimas temperaturas apresentam estreita correlação com as curvas das médias compensadas e as de valores relativos máximos e mínimos.

As temperaturas do ar na região do empreendimento podem ser caracterizadas de acordo com os dados da Normal Climatológica de 1961-1990 do INMET (2010a), para as Estações Meteorológicas de Imperatriz, Belém e Marabá (Gráfico II.5.1-1, Gráfico II.5.1-2 e Gráfico II.5.1-3). Os valores da temperatura média compensada variam entre 26 e 27,5 °C anuais, tendo a temperatura máxima variação entre 31 e 34 °C, e a mínima uma variação de 20 a 23 °C.

Na análise dos dados registrados pela Estação Imperatriz, a temperatura máxima absoluta para o período primavera-verão (outubro a março) oscilou entre 35 e 38,4°C, atingindo um pico de 38,4°C em outubro de 1987. Já para o período outono-inverno (abril a setembro) a oscilação esteve entre 35,5 e 37,7°C, com pico de 37,7 °C em março de 1981.

A Estação Belém, para o período de primavera-verão, apresentou oscilação da temperatura máxima absoluta entre 34,8 e 37,3 °C, com o pico de 37,3 °C em março de 1982. Este pico de

Coordenador: Técnico:
6/178 II.5.1 - Meio Físico


TEANS DO PLAN OF SAS DO PAPA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00 GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

temperatura em março de 1982, pode ser relacionado com o fenômeno meteorológico do El Niño que teve forte atuação nos anos de 1982-1983, conforme apresentado no **Quadro II.5.1-1**. No período outono-inverno (abril a setembro) a temperatura máxima absoluta variou entre 34 e 35,5 °C, com pico de 35,5 °C em agosto de 1970.

Já a Estação Meteorológica Marabá, para o período de primavera-verão (outubro a março), apresentou uma variação entre 34 e 35,7 °C, atingindo pico de 35,7 em outubro de 1987. Nos meses de abril a setembro, período de outono-inverno, os registros variaram entre 35 e 38,1 °C, com pico de 38,1 °C em setembro de 1974. O **Gráfico II.5.1-1** apresenta os dados de temperatura máxima absoluta descritos acima.

Fonte: Compilação de dados INMET e CPTEC/INPE, 2009

Gráfico II.5.1-1 - Variação de temperatura máxima absoluta entre Imperatriz, Belém e Marabá

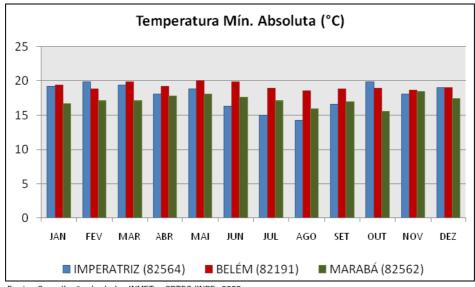
Em relação às temperaturas mínimas absolutas, para a Estação Imperatriz os valores oscilaram entre 14 e 20°C durante todo o ano, tendo sido registrada a menor temperatura mínima absoluta - 14,3°C - durante o mês de agosto de 1966, período de outono-inverno.

A Estação Belém registrou a menor temperatura mínima absoluta em dois momentos: 18,5°C em agosto de 1984 e 18,6°C em novembro de 1983. No total do período observado (1961-1990), as mínimas absolutas sempre estiveram entre 18 e 20°C.

Já a Estação Marabá registrou uma oscilação entre 15 e 18,4°C da temperatura mínima absoluta ao longo do ano, com menor temperatura mínima absoluta de 15,6°C em outubro de 1975.

Coordenador: Técnico:

II.5.1 - Meio Físico 7/178



GASODUTO DO PARÁ Estudo de Impacto Ambiental - EIA

2330-00-FIA-RI -0001-00 Julho de 2010 - Rev. nº 00

As variações na temperatura mínima absoluta coletadas nestas três estações estão ilustradas no Gráfico II.5.1-2.

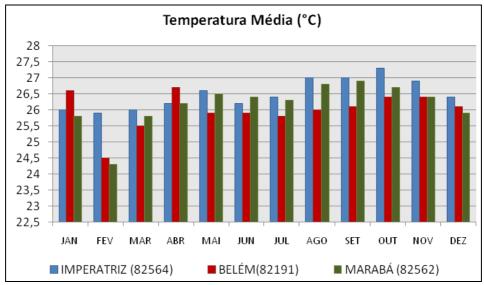
Fonte: Compilação de dados INMET e CPTEC/INPE, 2009

Gráfico II.5.1-2 - Variação da temperatura mínima absoluta nas estações Imperatriz, Belém e Marabá

As temperaturas médias da região do empreendimento apresentaram na séria histórica analisada, médias sempre superiores a 24°C para todo o ano (Gráfico II.5.1-3). Contudo há diferenciação no comportamento das oscilações sazonais entre as estações.

As temperaturas médias anuais registradas na Estação de Imperatriz apresentaram uma distribuição sazonal verão-inverno mais branda entre as estações. As temperaturas registradas entre fevereiro e julho tiveram uma oscilação máxima de 0,5°C, enquanto que no período agostojaneiro esta oscilação foi de até 1,3°C.

Já a Estação de Belém registrou as oscilações mais acentuadas, com temperaturas nos meses de fevereiro a julho oscilando 2,2°C, e no período agosto-janeiro com máxima de 0,6°C. As temperaturas médias registradas na Estação de Marabá tiveram entre fevereiro e julho oscilação de até 2,2°C, enquanto que no período agosto-janeiro esta oscilação foi de 1,1°C.


Técnico: 8/178

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

Fonte: Compilação de dados INMET e CPTEC/INPE, 2009

Gráfico II.5.1-3 - Variação de temperatura média entre Imperatriz, Belém e Marabá

Essa diferença das temperaturas médias registradas pelas estações meteorológicas selecionadas pode ser explicada pela interação dos mecanismos de circulação geral da atmosfera na região, atrelada à atuação das massas de ar e às características topográficas e de continentalidade/maritimidade em que se encontram alocadas as mesmas. No caso de locais mais elevados topograficamente, em situação de não-saturação do ar, deve-se considerar a redução da temperatura com a altitude.

II.5.1.1.3.2 - Chuvas: Precipitação e Pluviometria

As precipitações pluviométricas que atingem a região atravessada pelo Gasoduto do Pará estão associadas a diversos mecanismos atmosféricos e meteorológicos, tais como: ZCIT, massas de ar equatoriais (MEAN, MEAS e MEC), frentes-frias e anos com atuação de El Niño e La Niña, além da incidência e procedência de ventos úmidos.

Nas Normais Climatológicas do período 1961-1990, a precipitação total acumulada, apresenta um valor cujo intervalo varia de 1.500 a 3.000 mm para a região onde será implantado o gasoduto (INMET, 2010a) (Gráfico II.5.1-4).

Para o período de observação (1961-1990), a precipitação total registrada pela Estação Imperatriz durante o período sazonal primavera-verão (outubro a março) apresentou precipitação acumulada entre 90 e 280 mm/mês, com pico de precipitação durante o mês de março, o que

Coordenador: Técnico.

II.5.1 - Meio Físico 9/178

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

pode ser explicado pela atuação de fenômenos climatológicos de circulação de macro e meso escalas, tais como a expansão da ZCIT e da MEAN, atrelada à localização geográfica da estação.

Já a Estação de Belém registrou para o mesmo período de observação (1961-1990) índices pluviométricos acima de 110mm/mês ao longo do ano, devido principalmente à sua localização próxima ao oceano, sofrendo influência direta dos fenômeno meteorológicos. A precipitação total acumulada para o período primavera-verão (outubro-março) variou entre 112 e 437 mm/mês, com pico em março.

Na Estação Marabá a precipitação total acumulada no período primavera-verão (outubro-março) variou entre 120 e 387mm/mês, atingindo o pico no mês de março.

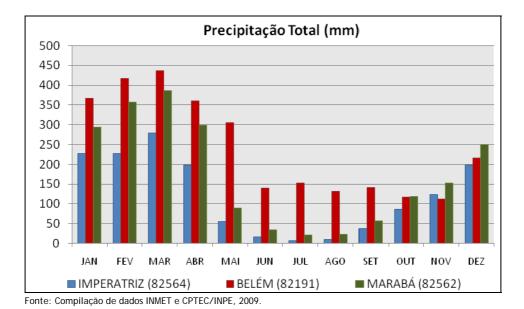


Gráfico II.5.1-4 - Variação de precipitação total acumulada entre Imperatriz, Belém e Marabá

As precipitações mínimas, normalmente registradas durante o período sazonal de outono-inverno (abril a setembro), para a Estação Imperatriz oscilaram entre 6,5 e 200 mm/mês, com pico de precipitação durante o mês de abril. No mesmo período (abril a setembro) a Estação Belém registrou oscilação entre 111 e 360 mm/mês, com pico também no mês de abril. Já para a Estação Marabá as precipitações mínimas oscilaram entre 20 e 298,8 mm/mês, atingindo o pico em abril. O volume de chuvas é normal para o clima equatorial reinante, devido o mês de abril se tratar de um período de transição entre a estação seca e úmida.

Outra explicação para estes picos de precipitação durante o mês de abril, registrados pelas estações para o período de observação, pode ser dada pela atuação do fenômeno meteorológico

 Coordenador:
 Técnico:

 10/178
 II.5.1 - Meio Físico

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

de La Niña, ocorrido principalmente nos anos de 1973-76 e 1988-89 conforme apresentado no **Quadro II.5.1-1**. Em anos com atuação de La Niña, quando há uma maior permanência da ZCIT na região chamada Amazônia Legal e, em especial no Meio Norte, as chuvas se concentram em volume e duração do precipitado nos meses de verão-outono, cujo mês de abril é o de transição.

A altura máxima atingida pela precipitação pluviométrica em período de 24h é utilizada dentre outras coisas, para o estudo das condições de potencial de erodibilidade das terras na área de entorno do empreendimento.

O Gráfico II.5.1-5 mostra a variação mensal da precipitação na altura máxima atingida em 24h total média no período de 1961-1990. Na Estação Imperatriz e Marabá percebe-se nitidamente que embora o período sazonal de outono-inverno (abril-setembro), em relação à precipitação acumulada apresente-se relativamente seco, salvo a exceção de abril, a precipitação máxima em 24h não apresenta tais características de estiagem para este período. As menores alturas em 24h na Estação Imperatriz estão relacionadas aos meses de junho-agosto, oscilando entre 20 e 50 mm/mês. Já para a Estação Marabá as menores alturas da precipitação em 24h estão nos meses de junho-julho, oscilando entre 33 e 50 mm/mês.

A Estação Belém também não apresentou, em relação à precipitação máxima de 24h, períodos com características de estiagem, mesmo no período de outono-inverno (abril-setembro). As menores alturas em 24h estão relacionadas ao mês de setembro, com índice de 67,4 mm.

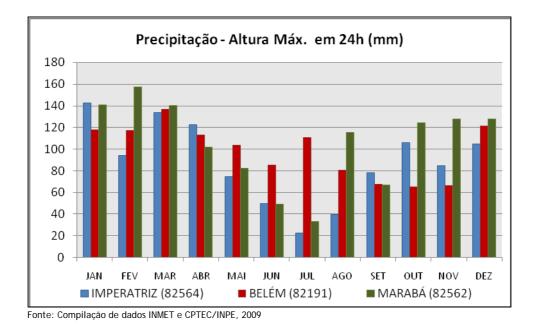


Gráfico II.5.1-5 - Altura máxima da precipitação em 24hs entre Imperatriz, Belém e Marabá

Coordenador: Técnico:

11.5.1 - Meio Físico

11/178

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

Assim, conclui-se que a distribuição da pluviosidade - precipitação total acumulada e altura máxima em 24h - mostra-se sazonalmente bem delineada, com períodos mais chuvosos nos meses de primavera-verão e mais secos nos meses de outono-inverno, comportamento característico do regime equatorial-tropical atuante na região analisada.

II.5.1.1.3.3 - Pressão Atmosférica

Sob o ponto de vista dinâmico, a pressão atmosférica é um importante elemento de caracterização dos sistemas de circulação de larga e meso-escalas.

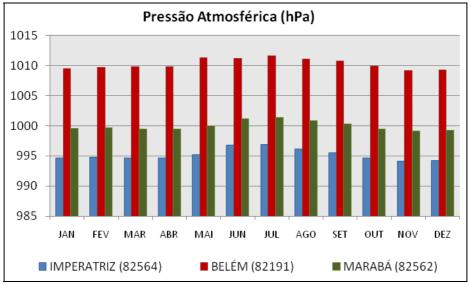
As variações temporais da pressão atmosférica se dão associadas a ciclos bem definidos e às incursões do ar com distintas características termodinâmicas. Numa base diária, pequenas variações ocorrem por conta da chamada "maré barométrica", resultando em dois momentos de máximos valores relativos entre dois outros momentos de mínimos relativos.

Sazonalmente, os valores de pressão atmosférica são maiores no inverno que no verão, graças à interação de diversos fatores, tais como a posição relativa do sol no Hemisfério Norte - proporcionando energia solar incidente de menor intensidade e, por conseguinte, menor convecção continental -, e às maiores intensidades das massas polares migratórias de origem Antártica. No verão, o aquecimento solar mais intensificado incidindo sobre a superfície, cria movimentos verticais ascendentes, que podem ou não formarem nuvens, contrapondo-se ao peso do ar atmosférico acarretando na redução da pressão atmosférica sobre a superfície. Na prática meteorológica, a pressão atmosférica é reduzida ao nível do mar para eliminar os efeitos de altitude e torná-la comparável espacialmente, bem como para permitir a identificação das configurações dos sistemas atmosféricos.

Em série histórica referente à pressão atmosférica da AII e entorno, este parâmetro climático pouco modificou, considerando o período em questão, para as estações de Imperatriz, Belém e Marabá (Gráfico II.5.1-6). Os maiores valores de pressão no inverno devem-se às massas de ar migratórias, procedentes das regiões polares, tipicamente incidentes durante esta época do ano, atreladas ao consequente resfriamento das massas atmosféricas atuantes no Hemisfério Sul.

A diferença de valores de pressão, notadamente visível entre as estações devem-se exclusivamente à sua localização topográfica, uma vez que este parâmetro meteorológico é inversamente proporcional à elevação topográfica.

Coordenador: Técnico:


12/178

II.5.1 - Meio Físico

Brasil TRANSPORTADORA DE OAS DO PARA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00 GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

Fonte: Compilação de dados INMET e CPTEC/INPE, 2009

Gráfico II.5.1-6 - Variação anual de pressão entre Imperatriz, Belém e Marabá

II.5.1.1.3.4 - Umidade Relativa do Ar

Os valores de umidade relativa do ar são inversamente proporcionais à temperatura do ar e dependem, regionalmente, dos processos de aquecimento ou resfriamento do ar, transporte horizontal de vapor d'água e precipitações. Em situações de intensas frentes-frias acompanhadas de chuvas ou de frentes-frias estacionárias com chuvas, os valores de umidade relativa do ar podem sofrer acentuadas elevações até a saturação.

De acordo com o **Gráfico II.5.1-7**, na Estação Imperatriz, a umidade relativa do ar apresentou intervalo de 70 a 85% para o período primavera-verão (outubro-março), e intervalo de 60 a 85% para outono-inverno (abril-setembro).

Já para a Estação Belém, a umidade relativa do ar para os mesmos períodos sazonais apresentouse com maiores oscilações, indo de 83 a 91% durante primavera-verão (outubro-março), e intervalo de 84 a 88% para outono-inverno (abril-setembro). Na Estação Marabá os valores registrados para o período primavera-verão (outubro-março) oscilaram entre 81 e 87% de umidade relativa no ar, e intervalo de 76 e 87% no período outono- inverno (abril-setembro).

Coordenador: Técnico:

II.5.1 - Meio Físico 13/178

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

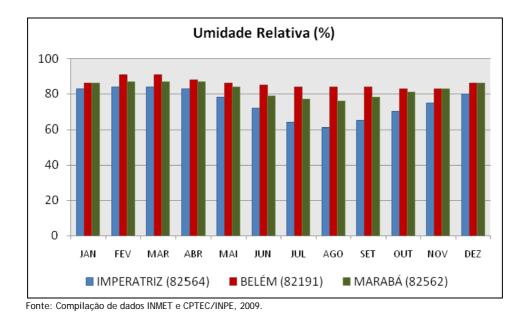


Gráfico II.5.1-7 - Variação anual de umidade relativa entre Imperatriz, Belém e Marabá

A distribuição da umidade relativa do ar de forma similar durante todo o ano registrada pela Estação Imperatriz e Marabá se dá graças ao caráter continental de localização das mesmas, uma vez que a diferença de amplitude térmica diária (ATD) é diretamente proporcional ao caráter de continentalidade. As massas de terra absorvem calor atmosférico mais rápido, fazendo com que a água presente nas camadas de solo se aqueça e evapore mais rapidamente. A Estação Marabá além de apresentar características de continentalidade, está inserida em uma área que sofre influência direta de brisa fluvial proveniente de rios como, por exemplo, o Rio Tocantins e o Rio Araguaia.

Já na Estação de Belém a justificativa para a distribuição semelhante da umidade relativa do ar durante todo o ano, está relacionada com o fator de maritimidade da região que se localiza próximo ao Oceano Atlântico. Assim variações e amplitudes térmicas são caracterizadas como moderadas ao longo do ano, com exceção de anos que ocorram anomalias climatológicas.

Coordenador: Técnico:

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

II.5.1.1.3.5 - Ventos: Direção e Velocidade

Para a análise do comportamento de ventos da Área de Influência Indireta do Gasoduto do Pará foram utilizados os dados das Estações Convencionais Barcarena (32262) e Açailândia (31972); dadas as suas características de proximidade com a área de implantação do empreendimento e disponibilidade de dados (Quadro II.5.1-3). Além dessas estações meteorológicas foram utilizados dados disponibilizados pela Marinha do Brasil entre as latitudes: 1°36′00′′S e 4°30′00′′S, e entre as longitudes: 48°48′00′′W e 49°00′00′′W, no estado do Pará.

Quadro II.5.1-3 - Estações Meteorológicas utilizadas para análise de ventos

Estação	Latitude (S)	Longitude (W)	Altitude (m)	Órgão Responsável	Período de Observação
Barcanena (32262)	1,54°	48,74°		2°Disme/INMET	2005
Açailândia (31972)	5,03°	47,55°	392	2° Disme/INMET	2005

Para melhor caracterizar a área de estudo, é necessário observar os mecanismos de circulação dos ventos para as diversas estações do ano e níveis de pressão sobre todo o globo terrestre. A direção e a velocidade dos ventos estão associadas às diversas escalas de circulação atmosférica e apresentam significativas interatividades espaciais, bem como nítidas variabilidades temporais.

De modo geral, a região norte do Brasil onde está localizada a All é cortada de um extremo a outro, pelo Equador e caracteriza-se por baixas altitudes (0 a 200 m). São quatro os principais sistemas de circulação atmosférica que atuam na região, a saber: sistema de ventos de Nordeste (NE) a Leste (E) dos anticiclones subtropicais do Atlântico Sul e dos Açores, geralmente acompanhados de tempo estável; sistema de ventos de Oeste (O) da massa equatorial continental (MEC); sistema de ventos de Norte (N) da Convergência Intertropical (CIT); e sistema de ventos de Sul (S) do anticiclone Polar. Estes três últimos sistemas são responsáveis por instabilidade e chuvas na área. Estes parâmetros são de extrema relevância, por exemplo, nas avaliações da poluição do ar nas diversas escalas (local, regional ou global), pois, deles resultam, respectivamente, o sentido do deslocamento da pluma de poluição e a forma de dispersão da mesma.

O estudo de ventos na AII do Gasoduto requer a análise da direção de procedência de ventos locais, tomados por estações meteorológicas existentes na área, buscando o entendimento da dinâmica atuante. Para isso, a direção de procedência do vento advém do quadrante e subquadrante, de acordo com os pontos cardeais, colaterais e subcolaterais da Rosa-dos-Ventos, sempre no sentido horário (Figura II.5.1-1).

Coordenador: Técnico:

II.5.1 - Meio Físico 15/178

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

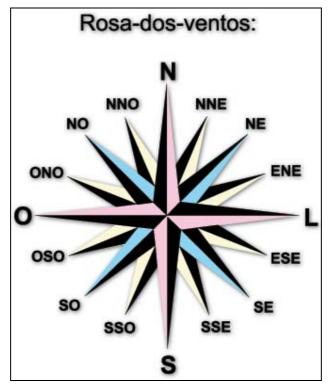


Figura II.5.1-1 - Rosa dos Ventos

Essas direções de procedência de ventos, evidentemente, não ocorrem simultaneamente, à exceção de situações de forte aquecimento solar no verão, gerando brisas marítimas/continentais ou quando há um regime de circulação regional associado a uma aproximação frontal fria, especialmente no período verão-outono (dezembro/março).

As calmarias ocorrem quando não há diferenças de pressão entre as zonas de massas de ar, já que o vento, nada mais é que o deslocamento de pequenas porções de massa de ar que se movem, necessariamente, no sentido das zonas de Alta Pressão (AP) para as zonas de Baixa Pressão (BP).

Para demonstrar graficamente a direção e a freqüência de incidência de ventos na AII do empreendimento, os resultados foram agrupados de modo a representar o valor total de incidência geral de ventos, de acordo com a sua direção de procedência. Para chegar ao número de incidência referente à frequência média mensal de ventos, os valores foram alcançados a partir da seguinte equação:

Coordenador: Técnico:

16/178 II.5.1 - Meio Físico

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

<u>Vd x 10</u> n

Onde:

Vd - soma da coleta diária de (4) valores

n - dias do mês

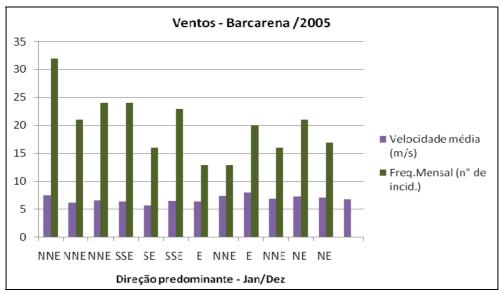
Os dados coletados no ano de 2005 geraram os resultados apresentados no Quadro II.5.1-4, para as estações de Barcarena (32262) e Açailândia (31972)

Quadro II.5.1-4 - Incidência e Velocidade Média de Ventos - Estação de Barcarena (PA) e Açailândia (Ma) - 2005

Mê -	•	edominante ia (DPP)	•	edominante ria (DPS)	Calmarias Velocidade Média (nº de dias de Incidência de ocorrência) (m/s)		de Incidência		Frequência Mensal (n° de incidência)			
Mês	TTIIIIdi	ій (Бі і)	Securida	11a (DI 3)			ı/s)	Barcarena		Açailândia		
	Barcarena	Açailândia	Barcarena	Açailândia	Barcarena	Açailândia	Barcarena	Açailândia	DPP	DPS	DPP	DPS
Janeiro	NNE	E - N	E	S	1	4	7,59	2,08	32	15	7	6
Fevereiro	NNE	E	S SE	S SE	1	4	6,18	2,16	21	14	8	7
Março	NNE	N	E	S SE	2	6	6,59	1,77	24	19	12	11
Abril	S SE	S SE	NNE	N	2	5	6,38	2,31	24	19	11	7
Maio	SE	S SE	S SE	S	0	4	5,73	2,55	16	8	23	10
Junho	S SE	S SE	NNE	S	0	0	6,5	6,4	23	17	24	16
Julho	E	S SE	NNE	W-NW	0	1	6,46	6,5	13	9	20	5
Agosto	NNE	S SE	E	N-NW	1	2	7,5	3,16	13	12	9	6
Setembro	E	NNE	NE	S SE	0	3	8	3,7	20	19	16	8
Outubro	NNE	N	NE	E-NE	2	1	6,96	3,58	16	15	12	8
Novembro	NE	N	ENE	E - NE	2	0	7,3	3,34	21	14	9	5
Dezembro	NE	N	E	NNW	1	0	7,13	2,79	17	12	11	7
Anual	NNE	S SE	E	S SE	12	12	6,86	3,36	240	173	162	96

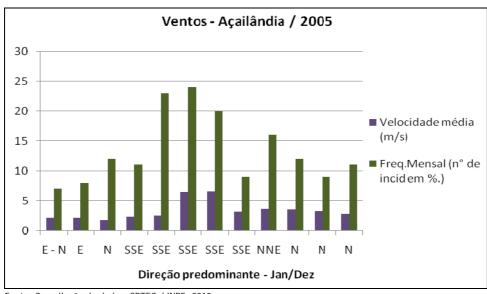
Fonte: Compilação de dados: CPTEC/INPE, 2010.

No Gráfico II.5.1-8 estão representadas as direções predominantes médias e a velocidade média anual na estação de Barcarena.


Coordenador. Técnico:

II.5.1 - Meio Físico

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA


2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

Fonte: Compilação de dados: CPTEC / INPE, 2010

Gráfico II.5.1-8 - Direção predominante e velocidade média anual para Barcarena

No Gráfico II.5.1-9 estão representadas as direções predominantes médias e a velocidade média anual na estação de Açailândia.

Fonte: Compilação de dados: CPTEC / INPE, 2010

Gráfico II.5.1-9 - Direção predominante e velocidade média anual para Açailândia

Os valores demonstrados no Quadro II.5.1-4 foram reagrupados, obtendo como resultado os valores mais freqüentes, demonstrados no Quadro II.5.1-5.

Coordenador: Técnico:

18/178

II.5.1 - Meio Físico

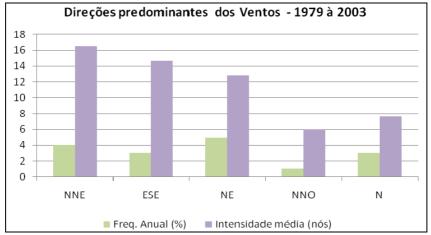
GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

Quadro II.5.1-5 - Direções Predominantes e Freqüência Média Anual (Barcarena/ Açailândia)

Quadrante (sentido horário)	Direção Predominante Primária (DPP)	Direção Predominante Secundária (DPS)	Frequ Média A de inci	nual (nº
Horar Io)	Fillialia (DFF)	Securidaria (DFS)	DPP	DPS
1°	NNE	E	106	58
2°	S SE	S	87	32

Fonte: Compilação de dados: CPTEC/INPE, 2010.


Também foram coletados dados no período de 1979 - 2003 (Marinha do Brasil) que geraram os resultados apresentados no **Quadro II.5.1-6**, que ficam entre as latitudes: 1°36′00′′S e 4°30′00′′S, e entre as longitudes: 48°48′00′′W e 49°00′00′′W, no estado do Pará.

Quadro II.5.1-6 - Direção e freqüência anual de Ventos

Direção dos ventos	Freq. Anual (%)	Intensidade média (nós)
NNE	4	16,5
ESE	3	14,6
NE	5	12,8
NNO	1	6
N	3	7,6

Fonte: Compilação de dados: Marinha do Brasil - DHN / 2010

Os dados apresentados no Quadro II.5.1-6 estão demonstrados no Gráfico II.5.1-10 abaixo para melhor visualização.

Fonte: Compilação de dados: Marinha do Brasil - DHN $\overline{\ /\ 2010}$

 $\label{eq:Grafico II.5.1-10 - Direção predominante e intensidade média dos ventos} Gráfico II.5.1-10 - Direção predominante e intensidade média dos ventos de la constant de la constant$

Coordenador: Técnico:

11.5.1 - Meio Físico

19/178

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

As duas primeiras predominâncias das direções dos ventos (DPP e DPS) para a Estação Barcarena, respectivamente NNE e E (2005), e também os dados mostrados no Gráfico II.5.1-10, com direção predominante NNE (1979-2003), demonstram a incidência de ventos úmidos, provenientes de áreas sobre o oceano Atlântico ou mesmo resultantes do deslocamento local ocasionado pela diferença de pressão entre as massas de ar de Alta para Baixa Pressão atmosférica, além de estar na área de abrangência da Zona de Convergência Intertropical. É notável que nesta região predomine a calmaria, e as amplitudes térmicas diárias são pequenas. As precipitações correntes nessa localidade procedem de movimentos convectivos e não da turbulência dos ventos.

II.5.1.2 - Geologia e Geomorfologia

II.5.1.2.1 - Introdução e Apresentação do Mapeamento (A)

A Área de Influência do empreendimento encontra-se inserida em uma região de geologia complexa da Plataforma Sul-Americana onde ocorreram diversos eventos geotectônicos, apresentando uma sequência de unidades litoestratigráficas de idades bastante variáveis.

A caracterização das unidades litoestratigráficas baseou-se na compatibilização de trabalhos anteriores, principalmente aqueles executados pelo Projeto RADAMBRASIL, pela CPRM e pelo DNPM. A etapa inicial dos estudos compreendeu uma ampla pesquisa bibliográfica da área de influência. Com base no material obtido e a partir das compilações e compatibilizações de informações geológicas, obtidas em mapeamentos regionais existentes em escala 1:1.000.000 e 1:250.000 elaborou-se um arcabouço conceitual das características geológicas da área de influência. Numa etapa seguinte procedeu-se a interpretação preliminar de imagens de radar na escala 1:250.000, para delimitar os principais domínios e/ou padrões fisiográficos e macroambientes. A seguir foi efetuada a correlação com o material bibliográfico disponível para a elaboração de uma legenda preliminar de identificação dos diferentes ambientes litoestratigráficos.

Na identificação e delimitação das unidades litoestratigráficas foi empregado, a partir dos dados do SRTM (USGS, 2008) (Figura II.5.1-2), um mapa de declividade (Figura II.5.1-3-A), utilizandose o ArcGIS Desktop 9.3. Imagens do sensor ETM⁺ do LANDSAT 7 com resolução espacial de 30 m também foram utilizadas neste processo (Figura II.5.1-3-B).

Coordenador: Técnico:
20/178 II.5.1 - Meio Físico

Ecology Brasil

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

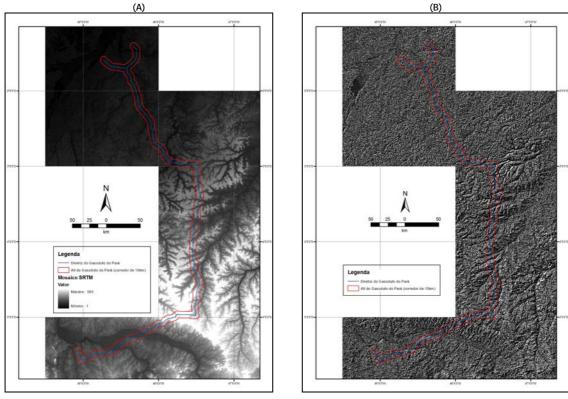


Figura II.5.1-2 - Mosaico composto com imagens de radar SRTM, com resolução espacial de 90m. A Figura B ilustra o Hillshade elaborado a partir do SRTM, simulando a sombra sobre o relevo. Através do Hillshade, os principais lineamentos e falhas foram interpretados para que fossem representadas as estruturas no mapa geológico

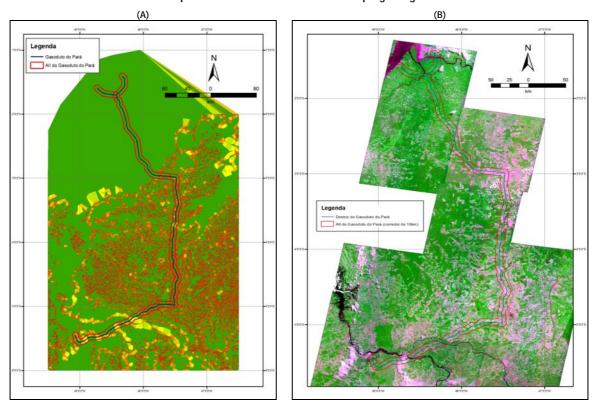


Figura II.5.1-3 - Declividade e LANDSAT 7

Coordenador: Técnico:

II.5.1 - Meio Físico 21/178

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

Durante a investigação de campo foram registrados os aspectos conjuntos da litologia, aspectos morfológicos dos solos e aspectos referentes à geomorfologia, relevo, declividade, vegetação, pedregosidade, rochosidade, tipo de erosão e drenagem interna dos solos. A fase final dos trabalhos constou de acertos cartográficos, revisão das descrições e da legenda de identificação das unidades litoestratigráficas e elaboração do mapa de geologia utilizando-se do programa de sistema de informação geográfica - ArcGIS Desktop versão 9.3.

A versão final do mapa geológico-tectônico, contendo as principais feições estruturais, geológicas e tectônicas da AII e AID encontra-se no Desenho 2330-00-EIA-DE-2002-00 - Mapa de Geologia, no Caderno de Mapas do EIA, Volume II.

II.5.1.2.2 - Geologia Local e Regional (B)

Contexto Geotectônico

As grandes unidades geotectônicas que constituem o continente sul-americano, ou porção continental emersa da Placa Sul-Americana são a Plataforma Sul-Americana e a Cadeia Andina (Almeida *et al.* 1981). O território brasileiro ocupa grande parte da Plataforma Sul-Americana, definida por três escudos Pré-cambrianos: Brasil Central ou Guaporé, das Guianas e Atlântico, além de extensas áreas de coberturas plataformais Fanerozóicas, acumuladas em diversas bacias sedimentares, destacando-se as do Amazonas e Solimões, do Paraná, e do Parnaíba, grosso modo (Figura II.5.1-4).

Coordenador: Técnico:

22/178

II.5.1 - Meio Físico

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

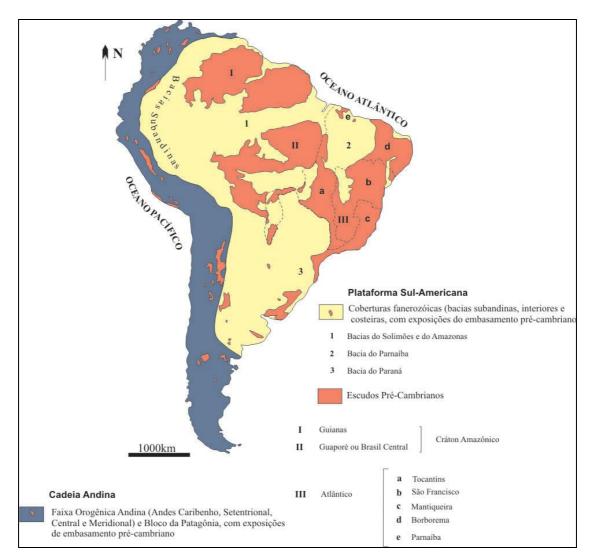


Figura II.5.1-4 - Compartimentação geotectônica da América do Sul. Modificado de Almeida *et al.* (1977; 1981)

Em termos de tectônica global, os primeiros estágios de evolução da Plataforma Sul-Americana estão relacionados à evolução do supercontinente Gondwana, que ao se colidir com a placa da Laurásia, no final do Permiano, formou o supercontinente Pangea. A ativação do manto por plumas mantélicas e a distensão durante o Triássico-Jurássico, e depois no Neocretáceo, respectivamente, relacionada à abertura do Oceano Atlântico equatorial e meridional, causou a quebra destes supercontinentes (Almeida *et al.* 2000, Brito Neves, 2002).

Todavia, a aglutinação das massas continentais (Laurásia, Gondwana Oeste e Leste) se deveu a orogenias Paleozóicas e Mesozóicas registradas nas Américas e na Europa. No Paleozóico, as bordas da placa Gondwana foram afetadas por orogenias, e nas porções interiores

Coordenador: Técnico:

II.5.1 - Meio Físico 23/178

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

24/178

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

II.5.1 - Meio Físico

predominaram uma tectônica extensional e sedimentação intracratônicas, que formou os riftes e as sinéclises.

Por sua vez, no Mesozóico e Cenozóico, os esforços compressivos das orogenias andina e caribenha alcançaram as bacias Fanerozóicas da porção norte e ocidental da Plataforma Sul-Americana (Almeida *et al.*, 2000; Zalan, 2004).

A tectônica de formação, o preenchimento, os eventos magmáticos associados e as reativações tectônicas das bacias sedimentares Fanerozóicas estão relacionados a diferentes estágios de evolução da Plataforma Sul-Americana. Tal evolução, iniciada com a consolidação de uma plataforma, após as Orogêneses do Ciclo Brasiliano/Pan-Africano (725-500Ma) no limite Neoproterozóico-Cambriano, e com a formação de riftes intracontinentais, pode ter se estendido até o Ordoviciano.

Essa etapa de transição foi sucedida pela formação de grandes sinéclises intracratônicas Paleozóicas, com transgressões e regressões marinhas que iniciaram no final do Ordoviciano e se estenderam até final do Permiano, marcando o Estágio de Estabilização da Plataforma Sul-Americana.

Após um período de calma tectônica teve início uma ativação Meso-Cenozóica (Estágio de Reativação) relacionada à abertura do Oceano Atlântico, com pulsos de magmatismo básico do Neotriássico ao Eocretáceo, formação de riftes abortados e recobrimento das sinéclises Paleozóicas. A partir do Neocretáceo, a distensão relacionada à separação Brasil-África formou bacias divergentes na margem continental atlântica, com magmatismo toleiítico e alcalino associados.

As bacias Fanerozóicas do norte do Brasil são agrupadas na Província Amazonas (bacias Amazonas, Solimões, do Alto Tapajós, Acre e Tacutu) e na Província Parnaíba (bacias do Parnaíba, Alpercatas, Grajaú, Bragança-Viseu, São Luís).

A Província Estrutural Parnaíba (Almeida *et al.*, 1977; Hasui *et al.* 1984a) localiza-se ao longo do limite entre as regiões norte e nordeste do Brasil e engloba parte dos estados do Pará, Maranhão, Piauí e Tocantins. É limitada a norte pelo Oceano Atlântico, a oeste pelo Cráton Amazônico a sudoeste pela Província Tocantins, ao sul pelo Cráton São Francisco e a leste pela Província Borborema. É uma das províncias estruturais brasileiras em que predominam rochas sedimentares e vulcânicas não deformadas depositadas em bacias sedimentares Fanerozóicas. Rochas Pré- cambrianas afloram como janelas erosivas e tectônicas em meio a

Coordenador. Técnico:

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

essa cobertura sedimentar e constituem parte dos orógenos conhecidos como Fragmento Cratônico São Luís e Cinturão Gurupi (Almeida *et al.* 1976).

A Província Estrutural Tocantins (Almeida *et al.*1977), localizada na região central do país, nos estados do Pará, Tocantins e Goiás, é uma entidade tectônica formada por um sistema de orógenos essencialmente Neoproterozóicos, denominados Faixas Brasília, Paraguai e Araguaia, e Arco Magmático de Goiás, cuja evolução se deu durante o Ciclo Orogênico Brasiliano/Pan-Africano, a partir da convergência e colisão de blocos continentais: o Cráton Amazônico (a oeste), o Cráton São Francisco (a leste) e o Cráton Paranapanema (a sudoeste, e encoberto por rochas Fanerozóicas da Bacia do Paraná), durante a amalgamação do Gondwana Oriental (Delgado *et al.* 2003).

A porção setentrional desta província está representada, no estado do Pará, pelo Cinturão Araguaia (Almeida *et al.* 1981), que margeia a borda oriental do Cráton Amazônico, e que corresponde ao segmento norte do Cinturão Paraguai-Araguaia (Almeida *et al.* 1981).

O Cinturão Araguaia apresenta extensão de, aproximadamente, 1200 km e largura de cerca de 100 m, prolongando-se na direção N-S, margeando a borda leste do Cráton Amazônico, desde o extremo norte do estado do Tocantins até o noroeste de estado Goiás. A leste, o Cinturão Araguaia é recoberto por rochas sedimentares Fanerozóicas da Bacia do Parnaíba, e a sudeste faz contato com o Maciço de Goiás (Almeida *et al.* 1976).

Geologia Regional

Na região, as unidades Neoproterozóicas que constituem o Cinturão Araguaia são os grupos Baixo Araguaia e Tucuruí, que representam uma sequencia de margem passiva, e os corpos máfico-ultramáficos dos complexos Quatipuru e Serra do Tapa.

Tal sequencia é constituída, fundamentalmente, pelo Grupo Baixo Araguaia, o qual é composto pelas Formações Morro do Campo, Xambioá, Pequizeiro e Couto Magalhães, que representam um conjunto de rochas metassedimentares dominantemente terrígenas, com contribuição menor de rochas carbonáticas, cujos protólitos sedimentares foram depositados em ambientes marinho raso com praia e plataforma restritas, talude e bacia marinha (Souza e Moreton, 1995; Figueiredo *et al.*, 2007), caracterizando um sistema de margem passiva.

No Pará ocorrem oito bacias sedimentares, sendo três bacias intracratônicas Paleozóicas (bacias do Amazonas, do Alto Tapajós e do Parnaíba), três bacias Mesozóicas de rifte abortado (bacias do Marajó, do Grajaú e Bragança-Viseu) e uma bacia de margem passiva (Bacia do

Coordenador: Técnico:

II.5.1 - Meio Físico 25/178

GASODUTO DO PARÁ Estudo de Impacto Ambiental - EIA

26/178

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

Pará-Maranhão). Existem poucos registros de eventos magmáticos relacionados à formação de riftes precursores das sinéclises Paleozóicas.

A Bacia do Parnaíba apresenta uma forma circular, ocupa cerca de 600.000 km² da região norte e nordeste do Brasil, e no seu depocentro atinge 3.500 m de espessura (Góes e Feijó, 1994; Milani e Zalan, 1999). Esta sinéclise Paleozóica se implantou sobre riftes Proterozóicos e Cambro-ordovicianos instalados no embasamento Pré-cambriano (Góes e Feijó, 1994; Brito Neves, 2002), representado por segmentos da Província Borborema, do Cráton São Francisco, do Fragmento Cratônico São Luís e dos cinturões Araguaia e Gurupi.

Costa e Hasui (1997) distinguiram falhas normais oblíquas N-S nas bordas oriental e ocidental da Bacia do Parnaíba, e normais frontais NE-SW na borda sudeste, cortadas por falhas reativadas do Lineamento Transbrasiliano, além de falhas de transferência NW-SE que compartimentaram a bacia. O *trend* N-S é oblíquo ao eixo de distensão das bacias Paleozóicas da região norte do Brasil que, conforme proposto por Costa e Hasui (1997), foi herdado do Cinturão Araguaia, de evolução Brasiliana.

A borda setentrional da bacia é limitada pelo Arco Ferrer-Urbano Santos, relacionado à implantação de riftes Mesozóicos, e a porção nordeste da bacia é recoberta pelas sequencias Cretáceas das bacias São Luís, Grajaú e Bragança-Viseu, e Paleoneógenas (Grupo Barreiras) da Plataforma Bragantina. No leste do Pará aflora uma pequena parte da borda ocidental da Bacia do Parnaíba, que corresponde a segmentos das sequencias Siluriana (Grupo Serra Grande), devoniana (Grupo Canindé), Carboníferotriássica (Grupo Balsas) e Jurássica (Grupo Mearim).

Durante a abertura do Oceano Atlântico Equatorial, no Cretáceo, bacias em riftes foram implantadas na margem continental da Plataforma Sul-Americana, os quais foram posteriormente abortados. Regionalmente, essas bacias de riftes abortados Mesozóicos estão representadas pelas bacias do Marajó, Grajaú e Bragança-Viseu.

Góes (1995) reuniu na Bacia do Grajaú as sequencias Cretáceas depositadas sobre as sequencias Paleozóicas da Bacia do Parnaíba. A Bacia do Grajaú é limitada a norte pelo Arco Ferrer-Urbano Santos e a sul pela Antéclise Xambioá-Alto Parnaíba, um arqueamento E-W cuja evolução remonta ao Paleozóico. O Arco do Capim (ou Arco Tocantins) a limita a noroeste com a Bacia do Marajó, e o Lineamento Rio Parnaíba a limita a leste com a Bacia do Parnaíba. Esta distribuição confere uma forma semicircular à bacia identificada por Góes (1995). Seu preenchimento alcança 1.500 m de espessura junto ao Arco do Capim e adelgaça em direção a borda sul.

Coordenador: Técnico:

II.5.1 - Meio Físico

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

Contudo, a tectônica extensional e transcorrente que afetou a borda setentrional da Bacia do Grajaú, nas proximidades do Arco Ferrer-Urbano Santos, também afetou sua porção interior, com desenvolvimento de falhas normais, reversas e estruturas de deformação sinsedimentares por atividade sísmica, que atestam intensa atividade tectônica durante o preenchimento, o que descarta o modelo de formação de bacia por subsidência (Góes e Rossetti, 2001; Rossetti, 2001b).

Costa *et al.* (1991) destacaram que o Cinturão Araguaia funcionou como um divisor dos domínios extensionais do Mesozóico no norte do Brasil, e a evolução das bacias Fanerozóicas do Domínio Oriental (Paranaíba, Grajaú, Marajó e Bragança-Viseu) foram controladas por um eixo extensional ENE-WSW diagonalmente oposto ao eixo extensional NW-SE que controlou a evolução das bacias contemporâneas do Domínio Ocidental, a saber, Amazonas, Solimões, Alto Tapajós, Acre e Tacutu (Figura II.5.1-5).

Coordenador: Técnico:

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

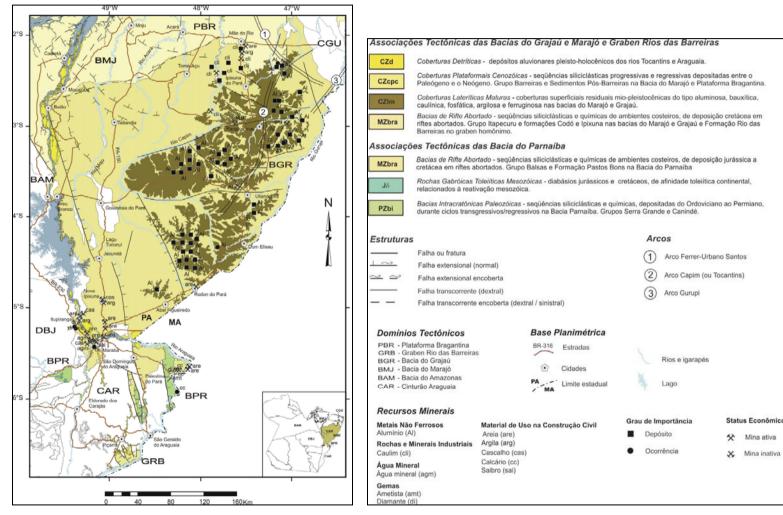


Figura II.5.1-5 - Associações tectônicas e recursos minerais das Bacias do Parnaíba, Grajaú, e Marajó (Extraído de Geologia e Recursos Minerais do Estado do Pará, 2008, CPRM)

Coordenador:	Técnico:

28/178 II.5.1 - Meio Físico

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00 GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

Geologia Local

O mapa geológico, em escala 1:200.000, foi elaborado a partir da análise de fotos aéreas e da compilação de dados pré-existentes na literatura, confrontados ao levantamento de campo executado na área. Tal levantamento originou os pontos-controle, observados no Desenho 2330-00-EIA-DE-2002-00 - Mapa de Geologia no Caderno de Mapas do EIA, Volume II). Desse modo, foram cartografadas as distintas unidades litológicas descritas, a seguir:

► Formação Couto Magalhães

A Fm. Couto Magalhães, definida por Hasui *et al.* (1977), aflora nas margens do rio Araguaia, no trecho entre as cidades de Santana do Araguaia e Conceição do Araguaia, nas adjacências de Araguacema e Conceição do Araguaia, e na rodovia TO-367, nos arredores de Couto Magalhães (Gorayeb, 1981; Figueiredo *et al.*, 1994).

Esta unidade é constituída essencialmente por um conjunto de rochas de baixo grau metamórfico representada por filitos pelíticos e filitos grafitosos, metarcósios, metassiltitos e lentes de quartzitos (Figura II.5.1-6). Os filitos pelíticos apresentam granulação fina, coloração cinza esverdeada e são constituídos por sericita, clorita e quartzo (Gorayeb, 1981; Gorayeb *et al.*, 2008). Souza e Moreton (1995) se referem a estruturas sedimentares primárias preservadas em metarcósios da Formação Couto Magalhães, como estratificações plano-paralelas e cruzadas.

Figura II.5.1-6 - Intercalação de filitos pelíticos com metassiltitos

Coordenador: Técnico:

II.5.1 - Meio Físico 29/178

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

Formação Itapecuru

Campbell *et al.* (1949) denominaram originalmente esta unidade de Fm. Itapecuru, a qual pertence às Bacias do Grajaú, Marajó e Bragança-Viseu, sendo aflorante apenas nas Bacias do Grajaú e Marajó. Góes (1981) considera esta unidade como essencialmente siliciclástica e formada, sobretudo, por arenitos caulínicos finos, com níveis argilosos e conglomeráticos, que exibem, via de regra, abundante estratificação cruzada (Figura II.5.1-7), e que foram depositados em ambiente continental fluvial, sob condições semi-áridas.

Figura II.5.1-7 - Arenito caulinico fino com níveis conglomeráticos, apresentado estratificação cruzada

No entanto, Anaisse Junior (1999), estudando a porção sudoeste da Bacia do Grajaú, na região de Açailância-MA, identificou 11 litofácies, geneticamente associadas aos seguintes ambientes deposicionais:

shoreface, canal de maré, laguna e canal fluvial. O referido autor sugere uma idade Albiana-cenomaniana para os depósitos estudados.

▶ Formacao Ipixuna

Francisco *et al.* (1971) denominaram de Fm. Ipixuna as rochas sedimentares que ocorrem na região entre São Miguel do Guamá, no Pará, e Imperatriz, no Maranhão. Localmente, essa formação se encontra exposta na região do rio Capim. Sua posição estratigráfica é

Coordenador: Técnico:

30/178

II.5.1 - Meio Físico

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

entre os grupos Barreiras (Paleógeno-Neógeno) e Itapecuru (Cetáceo). Rossetti e Góes (2004) assinalam que a Formação Ipixuna compreende argilitos caulínicos e arenitos finos a grossos, originada em ambiente flúvio-lacustre (Figura II.5.1-8).

Figura II.5.1-8 - Arenito fino esbranquiçado, as margens do rio Capim

Grupo Barreiras

Neste trabalho considera-se como Gr. Barreiras a sucessão de estratos Oligo-miocênicos, geneticamente relacionados, que abrange as unidades litoestratigráficas conhecidas como Formação Pirabas e Formação (ou Grupo) Barreiras (Aguiar, 1969; Arantes *et al.*, 1972; Arai *et al.*, 1988; Góes *et al.*, 1990; Rossetti, 2006). Rochas da sucessão Oligo-miocênica afloram na zona costeira desde o estado do Amapá (rio Cassiporé), onde ocorrem em longa faixa contínua, até o estado do Rio de Janeiro.

Rossetti e Góes (2004) distinguem uma variedade de fácies carbonáticas, mistas carbonático-siliciclásticas (Fm. Pirabas/Barreiras Inferior) e siliciclásticas (Barreiras Médio/Superior) para o Gr. Barreiras. As fácies siliciclásticas compreendem argilitos, arenitos e conglomerados. Os argilitos variam desde verdes a negros e de amarelados a avermelhados, geralmente laminados, onde os mais enegrecidos podem conter restos vegetais e piritização (Figura II.5.1-9). Os arenitos são, em geral, estratificados e os conglomerados sustentados por matriz areno-argilosa. Tanto as fácies argilosas quanto as arenosas registraram influência de maré.

Coordenador: Técnico.

II.5.1 - Meio Físico 31/178

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

II.5.1 - Meio Físico

Figura II.5.1-9 - Detalhe de argilito com níveis avermelhados laminados

Depósitos lateríticos

32/178

Esta unidade relaciona-se à Superfície de Aplainamento Sul-Americana (King, 1956), do Cretáceo Superior ao Terciário Inferior, e constitui platôs que formam o relevo atual. Geralmente define um relevo tabular, fortemente dissecado, como na região de Paragominas, onde a altitude decresce de cerca de 400 m até cerca de 100 m, em uma distância em torno de 300 km (Kotschoubey *et al.*, 2005). No estado do Pará, esta unidade está bem representada na porção nordeste, sobre as formações lpixuna e Itapecuru.

Caracterizam-se como lateritas maturas, de acordo ao proposto por Costa (1991), que, em geral, apresentam um perfil laterítico completo, constituído pelos horizontes (dispostos da base para o topo) pálido transicional, argiloso, bauxítico e/ou fosfático e crosta ferruginosa.

Diretamente sobre a rocha mãe desenvolve-se o horizonte pálido, seguido pelo horizonte argiloso, que é o de maior espessura do perfil, que varia geralmente entre 10 e 30 m, e apresenta na parte inferior, estruturas primárias reliquiares, possuindo como minerais singenéticos principais os argilominerais e os oxi-hidróxidos de ferro.

No horizonte bauxítico e/ou fosfático, que é o que melhor caracteriza tais lateritas, a constituição mineralógica é basicamente de hidróxido (bauxita) e/ou de fosfatos de alumínio, sendo comuns estruturas singenéticas, do tipo esferolítica (oólitos e pisólitos), maciça, terrosa, cavernosa, colunar e vermicular.

O horizonte superior é a crosta ferruginosa, onde comumente se encontram agregados de nódulos ou de fragmentos, concreções e esferólitos cimentados por hidróxidos e/ou

Coordenador: Técnico:

2330-00-FIA-RI -0001-00

Julho de 2010 - Rev. nº 00

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

fosfatos de alumínio, pisólitos composto de fragmentos de hidróxidos de ferro interligados por finos córtices microcristalinos (Figura II.5.1-10).

Figura II.5.1-10 - Concreções e esferolitos, típicos de horizonte superior pertencente a lateritas maduras

Tais depósitos lateríticos têm grande importância metalogenética, uma vez que a eles estão relacionados grandes depósitos minerais, a exemplo dos depósitos de ferro e ouro de Carajás (serras Norte, Sul e Leste, Bahia, Águas Claras), de caulim do Capim, de bauxita dos distritos de Trombetas-Juriti, Almerim e Paragominas, de níquel do sul do Pará (Onça, Puma, Vermelho) e outros.

Depósitos flúvio-lacustrinos

Esta unidade foi observada apenas no extremo sudoeste do Pará, no alto curso do Rio Tapajós, embora seja amplamente reconhecida em diversos setores. São depósitos sedimentares constituídos por argila, areia e cascalho, inconsolidados e semiconsolidados, que ocorrem nas margens dos rios, com nível topográfico mais elevado que o das planícies aluvionares atuais, sendo geralmente recobertos por vegetação, e sua evolução está relacionada à dinâmica fluvial (Figura II.5.1-11).

Coordenador: Técnico:

II.5.1 - Meio Físico 33/178

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

Figura II.5.1-11 - Depósito de areias finas, inconsolidados e/ou semiconsolidados, e cascalhos

Tais depósitos recobrem em descontinuidade, indistintamente, rochas Pré-cambrianas e Fanerozóicas, e sua idade é arbitrada no limite Pleistoceno-Holoceno, em função de serem mais antigos que os depósitos aluvionares recentes Holocênicos.

Depósitos flúvio-marinhos

Nesta unidade são agrupados conjuntamente depósitos sedimentares de praias, dunas costeiras, manguezais e pântanos salinos, que constituem a planície costeira, dominada por um regime de macromarés. Tais depósitos estão distribuídos em segmentos esparsos ao longo da porção oriental da Ilha de Marajó, e mais expressivamente no litoral nordeste do estado do Pará, onde representa uma faixa sedimentar contínua, associada a uma linha de costa indentada, com uma extensa zona de intermaré recortada por intrincada rede de canais de maré, sendo que os mais expressivos têm foz em estuário (Figura II.5.1-12).

De um modo geral, estes depósitos são essencialmente arenosos quando associados a depósitos de praias e dunas, e predominantemente pelíticos, com grande contribuição de matéria orgânica, quando constituem os depósitos de manguezais e pântanos salinos.

34/178 II.5.1 - Meio Físico

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

Figura II.5.1-12 - Depósito estuarino, predominantemente, arenoso.

▶ Depósitos aluvionares

Esta unidade representa os sedimentos clásticos inconsolidados relacionados às planícies aluvionares atuais dos principais cursos d'água que constituem, basicamente, depósitos de canais (barras em pontal e barras de canais) e de planícies de inundação (Figura II.5.1-13). Estes depósitos destacam-se por sua morfologia típica de planícies sedimentares associadas ao sistema fluvial, e são, de modo geral, constituídos por sedimentos arenosos a argilosos, com níveis de cascalho e matéria orgânica, inconsolidados a semiconsolidados.

Figura II.5.1-13 - Sedimentos clásticos, inconsolidados, em depósitos de canais

O Quadro II.5.1-7 apresenta as principais características das unidades litoestratigráficas da área de influência do Gasoduto do Pará.

Coordenador: Técnico:

II.5.1 - Meio Físico 35/178

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

Quadro II.5.1-7 - Resumo geológico da área de influência do Gasoduto do Pará

Unidade Cronogeológica		Unidade Litoestratigráfica	Litologia		Ambiente
Era	Período	Littoestratigranica	Dominante	Subordinada	
	Quaternário	Depósitos Aluvionares e Flúvio-Marinhos	Areia fina a média e material silto-argiloso; areia fina, silte e argila	Areia grossa; conglomerado desorganizado de arcabouço aberto, constituído de fragmentos angulosos a subangulosos de laterita e subordinadamente, seixos de quartzo e bolas de argila.	Sistema fluvial
Cenozóico	Neogeno	Grupo Barreiras	Conglomerado constituído de fragmentos de laterita ferruginosa e/ou aluminoso desorganizado com arcabouço aberto suportado por matriz areno-argilosa; arenito de granulação fina a média com matriz argilosa, desorganizada		Sistema fluvial- aluvial Ocorrem sedimentos que variam de finos conglomeráticos depositados por fluxos de detritos Apresenta alguns seixos compostos de fragmentos lateríticos.
CENOZÓICO	NEOGENO	FORMAÇÃO IPIXUNA	Conglomerado constituído de seixos subarredondados a arredondados de quartzo, apresentando granodecrescência e formando corpos lenticulares, arenito de granulação média a grossa com grânulos e pequenos seixos de quartzo e bolas de argila imersos em matriz argilosa, com estratificação cruzada.	Arenito friável de granulação fina a média	Sistema fluvial aluviais. Apresenta níveis de alteração supergênica. Algumas vezes ocorrem seixos de quartzo cimentados por óxidos de ferro. Subordinadamente sedimentos eólicos.
Cenozóico	Neogeno	Depósitos Detríticos e Lateríticos	Laterita e Sedimentos Detrito-Laterítico		Superfícies planas elevadas de platôs
Mesozóico	Cretáceo	Formação Itapecuru	Arenito arcoseano e arcóseo de granulação média a grossa com estratificação cruzada acanalada e tabular de pequeno a médio porte; arenito conglomerático a conglomerado arenítico, arcoseano, com alguma matriz composta de areia fina a argila,	Pelito avermelhado com climbing e riples marks; arenito arcoseano a arcóseo de granulação fina a média, com estratificação cruzada de grande porte.	Sistema fluvial <i>braided</i> com contribuição lacustre, ou lagunar e estuarino. Presente depósitos eólicos.
Neoprote- Rozóico	Toniano	Formação Couto Magalhães	Filitos e ardósias, com intercalações subordinadas de metarenitos, metassilexitos, alguns hematíticos, metassiltitos, metagrauvacas e mármores		

0	T//
Coordenador:	Técnico:

36/178 II.5.1 - Meio Físico

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00 GASODUTO DO PARÁ

O resultado do somatório total com as áreas e percentuais de ocorrência das unidades litoestratigráficas da área de influência do Gasoduto do Pará são apresentados no **Quadro** II.5.1-8.

Quadro II.5.1-8 - Resumo de Unidades Litoestratigráficas da All do Gasoduto do Pará

Símbolo	Unidade Litoestratigráfica	Área (ha)	%
Qa	Sedimentos aluvionares do Quartenário	89.646,21	12,50
Qfm	Sedimentos de natureza fluvio-marinha	20.096,86	2,80
Nd	Cobertura detrito/laterítica do Terciário	102.141,93	14,24
ENb	Grupo Barreiras	176.094,42	24,55
ENi	Formação Ipixuna	77.182,94	10,76
Kit	Formação Itapecuru	196.613,09	27,41
NPct	Formação Couto Magalhaes	47.187,42	6,58
	Água	8.227,71	1,15
	Total	717.190,58	100,0

O Quadro II.5.1-8 mostra que mais da metade da área de influência do gasoduto (52%) é ocupada pela Formação Itapecuru, que cobre 196.613 ha (27,4%) e Grupo Barreiras, com 176.094 ha ou 24,5% da área de influência do gasoduto.

II.5.1.2.3 - Unidades Geológicas Atravessadas pelo Gasoduto (C)

O Quadro II.5.1-9 indica as Unidades Geológicas atravessadas ao longo do gasoduto (em quilômetros).

Quadro II.5.1-9 - Local (km) em que o Gasoduto atravessa as Unidades Geológicas

Quilômetro de Ocorrëncia (Km)	Unidade Geológica
Área inicial até 5,5.	NPct
5,5 a 13,5	Nd
13,5 a 51,4.	NPct
51,4 a 67,7	Nd
67,7 a 68,5	Rio
68,5 a 92,8	Qa
92,8 a 101,4	Kit
101,4 a 112	Qa
112 a 113,2	Rio
113,2 a 117	Qa
117 a 153,4	Kit
153,4 a 167,2	Nd
167,2 a 180,5	Kit
180,5 a 182,4	Nd
	·

II.5.1 - Meio Físico 37/178

Técnico:

Coordenador:

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

182,4 a 183,9	Quilômetro de Ocorrëncia (Km)	Unidade Geológica
183,9 a 190,9		
190, 9 a 234, 9		
234,9 a 244,3		
244,3 a 244,9 244,9 a 246,3 Nd 246,3 a 285,8 Kit 285,8 a 287,6 Nd 287,6 a 308,8 Kit 308,8 a 315,6 Nd 315,6 a 321,8 Kit 321,8 a 322,9 Qa 322,9 a 325,4 Enb 325,4 a 326,3 Kit 339,5 a 349,2 Enb 349,2 a 351,4 Qa 351,4 a 353,9 Kit 360,2 a 366,5 Kit 360,2 a 366,5 Kit 372,6 a 374,1 Nd 374,1 a 375,7 Xit 375,7 a 377,8 Xit 379,6 a 381,7 Xit 381,7 a 382,2 Qa 382,2 a 382,8 Kit 389,3 a 397 Nd 399,7 a 402,2 Qa 402,2 a 407,7 Au 414,7 a 416,5 Au Kit Nd 241,7 a 414,7 Au 414,7 a 416,5 Au Kit Au 384,4 a 189,9 Nd 408,9 a 413,7 Kit 417,1 a 421,3 Eni Nd 417,1 a 421,3 Eni	, ,	
244,9 a 246,3 246,3 a 285,8 Kit 285,8 a 287,6 Nd 287,6 a 308,8 Kit 308,8 a 315,6 Nd 315,6 a 321,8 Kit 321,8 a 322,9 Qa 322,9 a 325,4 Enb 325,4 a 326,3 Kit 339,5 a 349,2 Enb 349,2 a 351,4 Qa 351,4 a 353,9 Kit 360,5 a 369 Nd 369,8 a 372,2 Qa 372,2 a 372,6 Kit 372,6 a 374,1 Nd 374,1 a 375,7 A 377,8 A 379,6 A 381,7 a 382,2 Qa 382,2 a 382,8 Kit 382,8 a 383,5 ENi 389,3 a 397 Nd 399,7 a 402,2 Qa 402,2 a 407,7 ENi 407,7 a 408,9 Nd 418,1 a 16,5 ENi 416,5 a 417,1 Nd 417,1 a 416,5 ENi 416,5 a 417,1 Nd 417,1 a 416,5 ENi 416,5 a 417,1 Nd 417,1 a 416,5 ENi 416,5 a 417,1 Nd 417,1 a 421,3 ENi		
246,3 a 285,8		
285,8 a 287,6 Nd 287,6 a 308,8 Kit 308,8 a 315,6 Nd 315,6 a 321,8 Kit 321,8 a 322,9 Qa 322,9 a 325,4 Enb 325,4 a 326,3 Kit 339,5 a 349,2 Enb 349,2 a 351,4 Qa 351,4 a 353,9 Kit 360,5 a 369 Nd 369,8 a 372,2 Qa 372,2 a 372,6 Kit 372,6 a 374,1 Nd 374,1 a 375,7 a 377,8 Nd 377,8 a 379,6 ENi 379,6 a 381,7 Kit 381,7 a 382,2 Qa 382,8 a 383,5 ENi 389,3 a 397 Nd 397,7 a 402,2 Qa 402,2 a 407,7 ENi 407,7 a 408,9 Nd 415,5 a 417,1 Nd 417,1 a 421,3 ENi		
287,6 a 308,8 308,8 a 315,6 Nd 315,6 a 321,8 Kit 321,8 a 322,9 Qa 322,9 a 325,4 Enb 325,4 a 326,3 Kit 336,3 a 332,1 Enb 332,1 a 339,5 Kit 339,5 a 349,2 Enb 349,2 a 351,4 Qa 351,4 a 353,9 Kit 353,9 a 358,2 Qa 358,2 a 360,2 Nd 360,2 a 366,5 Kit 366,5 a 369 Nd 369,8 a 372,2 Qa 372,2 a 372,6 Kit 372,6 a 374,1 Nd 374,1 a 375,7 Kit 375,7 a 377,8 Nd 377,8 a 379,6 ENi 379,6 a 381,7 Kit 381,7 a 382,2 Qa 382,2 a 382,8 Kit 382,8 a 383,5 ENi 383,5 a 384,4 Nd 384,4 a 389,3 ENi 399,7 a 402,2 Qa 402,2 a 407,7 ENi 413,7 a 414,7 Nd 414,7 a 416,5 ENi Kit Nd 417,1 a 421,3 ENi ENi	·	
308,8 a 315,6		
315,6 a 321,8		
321,8 a 322,9		
322,9 a 325,4		
325,4 a 326,3		
326,3 a 332,1 Enb 332,1 a 339,5 Kit 339,5 a 349,2 Enb 349,2 a 351,4 Qa 351,4 a 353,9 Kit 353,9 a 358,2 Qa 358,2 a 360,2 Nd 360,2 a 366,5 Kit 366,5 a 369 Nd 369 a 369,8 Kit 369,8 a 372,2 Qa 372,2 a 372,6 Kit 372,6 a 374,1 Nd 374,1 a 375,7 Kit 375,7 a 377,8 Nd 377,8 a 379,6 ENi 379,6 a 381,7 Kit 381,7 a 382,2 Qa 382,2 a 382,8 Kit 382,8 a 383,5 ENi 383,5 a 384,4 Nd 384,4 a 389,3 ENi 389,3 a 397 Nd 397 a 399,7 ENi 399,7 a 402,2 Qa 402,2 a 407,7 ENi 407,7 a 408,9 Nd 408,9 a 413,7 ENi 413,7 a 414,7 Nd 414,7 a 416,5 ENi 416,5 a 417,1 Nd 417,1 a 421,3 ENi		
332,1 a 339,5 Kit 339,5 a 349,2 Enb 349,2 a 351,4 Qa 351,4 a 353,9 Kit 353,9 a 358,2 Qa 358,2 a 360,2 Nd 360,2 a 366,5 Kit 366,5 a 369 Nd 369 a 369,8 Kit 372,6 a 374,1 Nd 374,1 a 375,7 Kit 375,7 a 377,8 Nd 377,8 a 379,6 ENi 381,7 a 382,2 Qa 382,2 a 382,8 Kit 382,8 a 383,5 ENi 383,5 a 384,4 Nd 384,4 a 389,3 ENi 389,3 a 397 Nd 397 a 399,7 ENi 399,7 a 402,2 Qa 402,2 a 407,7 ENi 407,7 a 408,9 Nd 414,7 a 416,5 ENi 416,5 a 417,1 Nd 417,1 a 421,3 ENi		
339,5 a 349,2 349,2 a 351,4 351,4 a 353,9 353,9 a 358,2 358,2 a 360,2 360,2 a 366,5 360,5 a 369 Nd 369 a 369,8 369,8 a 372,2 372,6 a 374,1 Nd 374,1 a 375,7 375,7 a 377,8 Nd 377,8 a 379,6 381,7 a 382,2 382,2 a 382,8 Kit 382,8 a 383,5 ENi 389,3 a 397 Nd 397 a 399,7 ENi 399,7 a 402,2 402,2 a 407,7 407,7 a 408,9 Add		
349,2 a 351,4 Qa 351,4 a 353,9 Kit 353,9 a 358,2 Qa 358,2 a 360,2 Nd 360,2 a 366,5 Kit 366,5 a 369 Nd 369 a 369,8 Kit 369,8 a 372,2 Qa 372,2 a 372,6 Kit 374,1 a 375,7 Kit 375,7 a 377,8 Nd 377,8 a 379,6 ENi 381,7 a 382,2 Qa 382,2 a 382,8 Kit 382,8 a 383,5 ENi 383,5 a 384,4 Nd 384,4 a 389,3 ENi 389,3 a 397 Nd 397 a 399,7 ENi 399,7 a 402,2 Qa 402,2 a 407,7 ENi 407,7 a 408,9 Nd 408,9 a 413,7 ENi 411,7 a 416,5 ENi 411,7 a 416,5 ENi 411,7 a 421,3 ENi		
351,4 a 353,9 358,2 358,2 a 360,2 358,2 a 360,2 360,2 a 366,5 Kit 366,5 a 369 Nd 369 a 369,8 Kit 369,8 a 372,2 Qa 372,2 a 372,6 Kit 372,6 a 374,1 Nd 374,1 a 375,7 Kit 375,7 a 377,8 Nd 377,8 a 379,6 ENi 381,7 a 382,2 Qa 382,2 a 382,8 Kit 382,8 a 383,5 ENi 383,5 a 384,4 Nd 384,4 a 389,3 ENi 399,7 a 402,2 Qa 402,2 a 407,7 ENi 407,7 a 408,9 Ada 414,7 Ada 414,7 Ada 416,5 ENi 416,5 a 417,1 Nd Ada 417,1 a 421,3 ENi	·	
353,9 a 358,2 Qa 358,2 a 360,2 Nd 360,2 a 366,5 Kit 366,5 a 369 Nd 369 a 369,8 Kit 369,8 a 372,2 Qa 372,2 a 372,6 Kit 374,1 a 375,7 Kit 375,7 a 377,8 Nd 377,8 a 379,6 ENi 381,7 a 382,2 Qa 382,2 a 382,8 Kit 382,8 a 383,5 ENi 383,5 a 384,4 Nd 384,4 a 389,3 ENi 389,3 a 397 Nd 397, a 402,2 Qa 402,2 a 407,7 ENi 407,7 a 408,9 Nd 408,9 a 413,7 ENi 413,7 a 414,7 Nd 414,7 a 416,5 ENi 416,5 a 417,1 Nd 417,1 a 421,3 ENi	, , , ,	
358,2 a 360,2 360,2 a 366,5 360,2 a 366,5 366,5 a 369 Nd 369 a 369,8 Kit 369,8 a 372,2 Qa 372,2 a 372,6 Kit 372,6 a 374,1 Nd 374,1 a 375,7 Kit 375,7 a 377,8 Nd 379,6 a 381,7 Kit 381,7 a 382,2 Qa 382,2 a 382,8 Kit 382,8 a 383,5 ENi 383,5 a 384,4 Nd 384,4 a 389,3 ENi 389,3 a 397 Nd 397,7 a 402,2 Qa 402,2 a 407,7 ENi 407,7 a 408,9 Adone		
360,2 a 366,5 366,5 a 369 Nd 369 a 369,8 Kit 369,8 a 372,2 Qa 372,2 a 372,6 Kit 372,6 a 374,1 Nd 374,1 a 375,7 Kit 375,7 a 377,8 Nd 377,8 a 379,6 ENi 381,7 a 382,2 Qa 382,2 a 382,8 Kit 382,8 a 383,5 ENi 383,5 a 384,4 Nd 384,4 a 389,3 ENi 389,3 a 397 Nd 397 a 399,7 ENi 399,7 a 402,2 Qa 402,2 a 407,7 ENi 407,7 a 408,9 A08,9 a 413,7 ENi 413,7 a 414,7 Nd 414,7 a 416,5 ENi 416,5 a 417,1 Nd 417,1 a 421,3 ENi		
366,5 a 369 369 a 369,8 369,8 a 372,2 Qa 372,2 a 372,6 Kit 372,6 a 374,1 Nd 374,1 a 375,7 Kit 375,7 a 377,8 Nd 377,8 a 379,6 ENi 379,6 a 381,7 Kit 382,2 a 382,2 Qa 382,2 a 382,8 Kit 382,8 a 383,5 ENi 383,5 a 384,4 Nd 384,4 a 389,3 ENi 389,3 a 397 Nd 397, a 402,2 Qa 402,2 a 407,7 ENi 407,7 a 408,9 Nd 408,9 a 413,7 ENi 413,7 a 414,7 Nd 414,7 a 416,5 ENi 416,5 a 417,1 Nd 417,1 a 421,3 ENi	·	
369 a 369,8 369,8 a 372,2 Qa 372,2 a 372,6 Kit 372,6 a 374,1 Nd 374,1 a 375,7 Kit 375,7 a 377,8 Nd 377,8 a 379,6 ENi 381,7 a 382,2 Qa 382,2 a 382,8 Kit 382,8 a 383,5 ENi 383,5 a 384,4 Nd 384,4 a 389,3 ENi 389,3 a 397 Nd 397 a 399,7 ENi 399,7 a 402,2 Qa 402,2 a 407,7 ENi 407,7 a 408,9 Nd 408,9 a 413,7 A13,7 a 414,7 Nd 414,7 a 416,5 ENi 416,5 a 417,1 Nd 417,1 a 421,3 ENi		
369,8 a 372,2 372,2 a 372,6 Kit 372,6 a 374,1 Nd 374,1 a 375,7 Kit 375,7 a 377,8 Nd 377,8 a 379,6 ENi 379,6 a 381,7 Kit 381,7 a 382,2 Qa 382,2 a 382,8 Kit 382,8 a 383,5 ENi 383,5 a 384,4 Nd 384,4 a 389,3 ENi 389,3 a 397 Nd 397 a 399,7 ENi 399,7 a 402,2 Qa 402,2 a 407,7 ENi 407,7 a 408,9 Nd 408,9 a 413,7 ENi 413,7 a 414,7 Nd 414,7 a 416,5 ENi 416,5 a 417,1 Nd 417,1 a 421,3 ENi		
372,2 a 372,6 372,6 a 374,1 Nd 374,1 a 375,7 Kit 375,7 a 377,8 Nd 377,8 a 379,6 ENi 379,6 a 381,7 Kit 381,7 a 382,2 Qa 382,2 a 382,8 Kit 382,8 a 383,5 ENi 383,5 a 384,4 Nd 384,4 a 389,3 ENi 389,3 a 397 Nd 397 a 399,7 ENi 399,7 a 402,2 Qa 402,2 a 407,7 ENi 407,7 a 408,9 Nd 408,9 a 413,7 A13,7 a 414,7 Nd 414,7 a 416,5 ENi 416,5 a 417,1 Nd 417,1 a 421,3 ENi	369 a 369,8	Kit
372,6 a 374,1 Nd 374,1 a 375,7 Kit 375,7 a 377,8 Nd 377,8 a 379,6 ENi 379,6 a 381,7 Kit 381,7 a 382,2 Qa 382,2 a 382,8 Kit 382,8 a 383,5 ENi 383,5 a 384,4 Nd 384,4 a 389,3 ENi 389,3 a 397 Nd 397 a 399,7 ENi 399,7 a 402,2 Qa 402,2 a 407,7 ENi 407,7 a 408,9 Nd 408,9 a 413,7 ENi 413,7 a 414,7 Nd 414,7 a 416,5 ENi 416,5 a 417,1 Nd 417,1 a 421,3 ENi	·	
374,1 a 375,7 375,7 a 377,8 Nd 377,8 a 379,6 ENi 379,6 a 381,7 Kit 381,7 a 382,2 Qa 382,2 a 382,8 Kit 382,8 a 383,5 ENi 383,5 a 384,4 Nd 384,4 a 389,3 ENi 389,3 a 397 Nd 397 a 399,7 ENi 399,7 a 402,2 Qa 402,2 a 407,7 ENi 407,7 a 408,9 Nd 408,9 a 413,7 ENi 413,7 a 414,7 Nd 414,7 a 416,5 ENi 416,5 a 417,1 Nd 417,1 a 421,3 ENi	372,2 a 372,6	
375,7 a 377,8 377,8 a 379,6 379,6 a 381,7 Kit 381,7 a 382,2 Qa 382,2 a 382,8 Kit 382,8 a 383,5 ENi 383,5 a 384,4 Nd 384,4 a 389,3 ENi 389,3 a 397 Nd 397 a 399,7 ENi 399,7 a 402,2 Qa 402,2 a 407,7 ENi 407,7 a 408,9 Nd 408,9 a 413,7 HORE ENI 413,7 a 414,7 Nd 414,7 a 416,5 ENi 416,5 a 417,1 Nd 417,1 a 421,3 ENi	·	
377,8 a 379,6 379,6 a 381,7 Kit 381,7 a 382,2 Qa 382,2 a 382,8 Kit 382,8 a 383,5 ENi 383,5 a 384,4 Nd 384,4 a 389,3 ENi 389,3 a 397 Nd 397 a 399,7 ENi 399,7 a 402,2 Qa 402,2 a 407,7 ENi 407,7 a 408,9 Nd 408,9 a 413,7 A13,7 a 414,7 Nd 414,7 a 416,5 ENi 416,5 a 417,1 Nd 417,1 a 421,3 ENi	374,1 a 375,7	
379,6 a 381,7 381,7 a 382,2 Qa 382,2 a 382,8 Kit 382,8 a 383,5 ENi 383,5 a 384,4 Nd 384,4 a 389,3 ENi 389,3 a 397 Nd 397 a 399,7 ENi 399,7 a 402,2 Qa 402,2 a 407,7 ENi 407,7 a 408,9 Nd 408,9 a 413,7 ENi 413,7 a 414,7 Nd 414,7 a 416,5 ENi 416,5 a 417,1 Nd 417,1 a 421,3 ENi	375,7 a 377,8	Nd
381,7 a 382,2 382,2 a 382,8 Kit 382,8 a 383,5 ENi 383,5 a 384,4 Nd 384,4 a 389,3 ENi 389,3 a 397 Nd 397 a 399,7 ENi 399,7 a 402,2 Qa 402,2 a 407,7 ENi 407,7 a 408,9 Nd 408,9 a 413,7 ENi 413,7 a 414,7 Nd 414,7 a 416,5 ENi 416,5 a 417,1 Nd 417,1 a 421,3 ENi	377,8 a 379,6	ENi
382,2 a 382,8 382,8 a 383,5 ENi 383,5 a 384,4 Nd 384,4 a 389,3 ENi 389,3 a 397 Nd 397 a 399,7 ENi 399,7 a 402,2 402,2 a 407,7 ENi 407,7 a 408,9 Nd 408,9 a 413,7 ENi 413,7 a 414,7 Nd 414,7 a 416,5 ENi 416,5 a 417,1 Nd 417,1 a 421,3 ENi	379,6 a 381,7	Kit
382,8 a 383,5 383,5 a 384,4 Nd 384,4 a 389,3 ENi 389,3 a 397 Nd 397 a 399,7 ENi 399,7 a 402,2 Qa 402,2 a 407,7 ENi 407,7 a 408,9 Nd 408,9 a 413,7 ENi 413,7 a 414,7 Nd 414,7 a 416,5 ENi 416,5 a 417,1 Nd 417,1 a 421,3 ENi	381,7 a 382,2	Qa
383,5 a 384,4 Nd 384,4 a 389,3 ENi 389,3 a 397 Nd 397 a 399,7 ENi 399,7 a 402,2 Qa 402,2 a 407,7 ENi 407,7 a 408,9 Nd 408,9 a 413,7 ENi 413,7 a 414,7 Nd 414,7 a 416,5 ENi 416,5 a 417,1 Nd 417,1 a 421,3 ENi	382,2 a 382,8	Kit
384,4 a 389,3 389,3 a 397 Nd 397 a 399,7 ENi 399,7 a 402,2 Qa 402,2 a 407,7 ENi 407,7 a 408,9 Nd 408,9 a 413,7 ENi 413,7 a 414,7 Nd 414,7 a 416,5 ENi 416,5 a 417,1 Nd 417,1 a 421,3 ENi	· · · ·	
389,3 a 397 397 a 399,7 ENi 399,7 a 402,2 Qa 402,2 a 407,7 ENi 407,7 a 408,9 Nd 408,9 a 413,7 ENi 413,7 a 414,7 Nd 414,7 a 416,5 ENi 416,5 a 417,1 Nd 417,1 a 421,3 ENi		
397 a 399,7 ENi 399,7 a 402,2 Qa 402,2 a 407,7 ENi 407,7 a 408,9 Nd 408,9 a 413,7 ENi 413,7 a 414,7 Nd 414,7 a 416,5 ENi 416,5 a 417,1 Nd 417,1 a 421,3 ENi	' '	ENi
399,7 a 402,2 Qa 402,2 a 407,7 ENi 407,7 a 408,9 Nd 408,9 a 413,7 ENi 413,7 a 414,7 Nd 414,7 a 416,5 ENi 416,5 a 417,1 Nd 417,1 a 421,3 ENi	·	
402,2 a 407,7 ENi 407,7 a 408,9 Nd 408,9 a 413,7 ENi 413,7 a 414,7 Nd 414,7 a 416,5 ENi 416,5 a 417,1 Nd 417,1 a 421,3 ENi		ENi
407,7 a 408,9 Nd 408,9 a 413,7 ENi 413,7 a 414,7 Nd 414,7 a 416,5 ENi 416,5 a 417,1 Nd 417,1 a 421,3 ENi	399,7 a 402,2	Qa
408,9 a 413,7 ENi 413,7 a 414,7 Nd 414,7 a 416,5 ENi 416,5 a 417,1 Nd 417,1 a 421,3 ENi	402,2 a 407,7	ENi
413,7 a 414,7 Nd 414,7 a 416,5 ENi 416,5 a 417,1 Nd 417,1 a 421,3 ENi	407,7 a 408,9	Nd
414,7 a 416,5 ENi 416,5 a 417,1 Nd 417,1 a 421,3 ENi	408,9 a 413,7	ENi
416,5 a 417,1 Nd 417,1 a 421,3 ENi	413,7 a 414,7	Nd
417,1 a 421,3 ENi	414,7 a 416,5	ENi
	416,5 a 417,1	Nd
421.3 a 433 6 Nd	417,1 a 421,3	ENi
121,0 4 100,0	421,3 a 433,6	Nd
433,6 a 435 Qa	433,6 a 435	Qa

Coordenador: Técnico:

38/178 II.5.1 - Meio Físico

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

Quilômetro de Ocorrëncia (Km)	Unidade Geológica
435 a 438,5	Nd
438,5 a 444,7	ENi
444,7 a 445,7	Qa
445,7 a 448,8	ENi
448,8 a 449,9	Qa
449,9 a 453,8	ENi
453,8 a 458,3	Nd
458,3 a 467,3	ENi
467,3 a 469	Qa
469 a 470,3	ENi
470,3 a 472,8	Qa
472,8 a 508,7	ENi
508,7 a 510,4	Qa
510,4 a 530	ENb
530 a 530,6	Qa
530,6 a 539,9	ENb
539,9 a 540,6	Qa
540,6 a 544,9	ENb
544,9 a 545,3	Qa
545,3 a 553,8	ENb
553,8 a 554,4	Qa
554,5 a 556	ENb
556 a 558	Qa
558 a 564	ENb
564 a 564,7	Qa
564,7 a 565,4	ENb
565,4 a 566,1	Qa
566,1 a 573,9	ENb
573,9 a 578,7	Qa
578,7 a 592,1	ENb
592,1 a 594	Qa
594 a 595,7	ENb
595,7 a 596,7	Qa
596,7 a 617,1	ENb
617,1 a 618,7	Qa
618,7 a 625	ENb
625 a 626,8	Qa
626,8 a 628	ENb
628 a 629	Qfm
629 a 631,9	ENb
631,9 a 635,5	Qfm
635,5 a 636,6	ENb
636,6 a 638,8	Qfm
638,8 a 639,3	Rio
639,3 a 651,8	ENb
651,8 a 653,2	Qa
653,2 a 662,6	ENb
662,6 a 665	Qa

Coordenador. Técnico:

II.5.1 - Meio Físico 39/178

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

Quilômetro de Ocorrëncia (Km)	Unidade Geológica
665 a 669,1	ENb
669,1 a 671,7	Qa
671,7 a 672,7	ENb
672,7 a 675,3 (Área final do gasoduto braço esquerdo).	Qa
675,3 (início do braço direito) a 676,6	ENb
676,6 a 678,2	Qfm
678,2 a 678,6	Rio
678,6 a 694	ENb
694 a 694,8	Qa
694,8 a 704,4	ENb
704,4 a 706,3	Qfm
706,3 a 708,3	Rio
708,3 a 716,4 (área final do gasoduto braço direito)	Qfm

II.5.1.2.4 - Zona Sísmica, Estratigrafia e Hidrogeologia (D)

II.5.1.2.4.1 - Zona Sísmica

Devido à baixa ocorrência de terremotos na região de estudo, corroborados por autores como Costa et al. (1996), não existem indícios que comprovem atividade tectônica recente (Neotectônica) na área percorrida pelo Gasoduto do Pará, caracterizando, portanto, a área do empreendimento com uma zona livre de atividade sísmica. No item sobre sismologia, adiante, um maior detalhamento é apresentado para a avaliação das condições sísmicas da região.

II.5.1.2.4.2 - Estratigrafia e Aspectos Paleontológicos

II.5.1.2.4.2.1 - Aspectos Metodológicos Gerais

O levantamento de Paleontologia, relacionado às Bacias Sedimentares do Marajó e do Parnaíba, foi baseado em dados secundários coletados em bibliografia publicada e banco de dados de instituições reconhecidas nacional e internacionalmente, com cruzamento de informações e dados, sendo elaborado de forma descritiva.

Para levantamento de dados secundários de Paleontologia foram consultados publicações e banco de dados da Fundação Paleontológica Phoenix, do Departamento de Geologia e Paleontologia do Museu Nacional (MN/UFRJ), do Departamento de Paleontologia do Instituto de Geologia da Universidade Federal do Rio de Janeiro (UFRJ), da Sociedade Brasileira de Paleontologia (SBP) e de bibliografia acadêmica específica mais recente que trate do assunto.

Coordenador: Técnico:
40/178 II.5.1 - Meio Físico

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

II.5.1.2.4.2.2 - Considerações Gerais de Formação Geológica da Região da Amazônia Legal

A evolução pré-cambriana da região amazônica em geral pode ser entendida através de dois eventos tectônicos principais. O mais antigo, denominado Orogenia Termo-Tectônica Transamazônica, promoveu a organização dos terrenos de granito-*greenstone* e dos cinturões de alto grau metamórfico. O segundo evento orogênico, denominado Orogenia Caledoniana, durante o Mesoproterozóico, proporcionou a formação de várias bacias, dentre elas o Gráben do Cachimbo, posteriormente submetidas à inversão positiva na evolução do Neoproterozóico. Os lineamentos principais criados por estes ciclos orogênicos controlaram intensamente o arcabouço geral das Bacias Sedimentares da região durante o Paleozóico e as estruturas e coberturas vulcano-sedimentares geradas durante o Mesozóico e Cenozóico (Wanderley Filho & Costa, 1991).

Posteriormente, associado a grandes mudanças climáticas, de frio para quente e árido, ocorreram ciclos de deposição de sedimentos na região amazônica (Cunha *et al.*, 1994), representados pelas Unidades Litoestratigráficas que compõem as Bacias Sedimentares localizadas na Planície Amazônica.

As sinéclises foram submetidas a forças distensivas de direção E→W, que antecederam à abertura do Atlântico Norte-Equatorial, propiciando a formação de fraturas de alívio de direção N→S. Por elas ascendeu magma basáltico que deu origem a um enxame de diques e soleiras de diabásio de idades juro-triássicas Pastana (1999).

Os principais sistemas de falhas e fraturas na região apresentam direção segundo NWN→SSE. As estruturas alinhadas, segundo a direção NW→SE, são observadas no relevo sob a morfologia de serras que ocorrem com frequência nas rochas do Complexo Guianense.

O desenvolvimento dos processos erosivos está controlado, muitas vezes, pelas estruturas naturais das rochas; fraturas, falhamentos. Direções dos eixos de ravinas e boçorocas coincidem com os lineamentos locais NE e NW. Ocorre uma relação entre o compartimento morfoestrutural da região e a distribuição dos processos erosivos.

Na região de entorno, as estruturas compõem dois conjuntos principais atribuídos ao Neógeno e ao Quaternário. As estruturas do Neógeno correspondem a falhas inversas e dobras de direções ENE→WSW e NE→SW que afetam os sedimentos da Formação Alter do Chão. Tais falhas formam sistemas imbricados mergulhando para ENW ou SE e marcam estruturas em flor positiva. As dobras têm estilos variados - suaves ou fechadas - e possuem planos axiais verticais a subverticais. Essas estruturas condicionam um relevo de serras alongadas na direção NE→SW e com altitudes até 200 m.

Coordenador: Técnico:

II.5.1 - Meio Físico

41/178

GASODUTO DO PARÁ Estudo de Impacto Ambiental - EIA

42/178

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

Estruturas do Quaternário formam segmentos distensivos constituídos por falhas normais de alto ângulo controlando o baixo curso do rio Trombetas e o trecho do rio Amazonas. É comum nessa região, a ocorrência de lagos relacionados com meandros abandonados por migração de canais devido a jogos de blocos de falha, bem como a presença de extensos depósitos de sedimentos pelíticos vinculados às planícies de inundação.

Os registros de movimentos recentes em várias áreas através de estudos sedimentológicos, geomorfológicos, estruturais e sismológicos com as mesmas características dos movimentos tectônicos do Mioceno, indicam a continuidade da evolução neotectônica adentrando no Quaternário, sendo que muitas estruturas permanecem ativas.

No Quadro II.5.1-10 são apresentadas as unidades litológicas fossilíferas aflorantes da AlI do Gasoduto do Pará.

Quadro II.5.1-10 - Unidades Litológicas aflorantes na All do Gasoduto do Pará

Era	Período	Época	Idade (Ma)	Unidades Litológicas
Mesozóico	Cretáceo	Eocretáceo/Neocretáceo - Albiano/Cenomaniano	99.6 - 93.6	Formação Itapecuru
Mesozóico - Cenozóico	Cretáceo/Paleógeno	Neocretáceo/Paleoceno? - Maastrichtiano/Daniano?	70.6 - 61.1	Formação Ipixuna
Cenozóico	Neógeno	Mioceno - Plioceno	23.03 - 2.588	Formação Barreiras

Fonte: Compilação de dados: Caputo et al., 2005; Galvão, 2004; Santos Jr. & Rossetti, 2003; ICS, 2009.

II.5.1.2.4.2.3 - Formação Geológico-Estrutural das Bacias Sedimentares

A área onde será edificado o Gasoduto do Pará está assentada sobre uma região de geologia complexa da Plataforma Sul-Americana onde ocorreram diversos eventos geotectônicos, com terrenos geológicos apresentando uma sequência de unidades litoestratigráficas de idades bastante variáveis. Na Plataforma Sul-Americana foram identificadas e mapeadas sinéclises sedimentares margeadas por rochas cristalinas dos crátons Amazônico, São Luís e São Francisco (Almeida & Hasui, 1984).

Neste contexto, as bacias paleozóicas brasileiras, distribuídas por cerca de 3.350.000 km (Milani & Zalán, 1999), destacam-se no cenário geológico nacional por ocuparem cerca de 70% da área sedimentar e quase 40% do território brasileiro. Do ponto de vista geotectônico, são genericamente classificadas como bacias de interior cratônico. Nesse conceito, representam regiões sedimentares instaladas no interior de placas tectônicas, reunindo um registro sedimentar disposto de modo um tanto simétrico, numa depressão de fundo relativamente plano

II.5.1 - Meio Físico

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

(sinéclises), circundadas por rochas do embasamento cristalino. Essa classificação não deixa de ser muito simplista, já que acaba tendo-se a impressão de que essas bacias apresentaram evolução geológica muito estável, sem estarem, necessariamente, submetidas a esforços tectônicos significativos.

O próprio conceito de bacia de posicionamento intraplaca sugere que essas bacias não teriam uma participação efetiva dos domínios oceânicos em sua evolução. Contrariando esses aspectos, o que se observa é algo muito diverso do que pressupõe essa terminologia conceitual.

Estas bacias foram instaladas sobre as porções mais internas do que hoje se denomina placa Sul-Americana, ocupando a região conhecida como Plataforma Sul-Americana (Almeida *et al.*, 1987), formada principalmente, por complexos arqueanos ígneo-metamórficos. Esse domínio geotectônico sofreu sua consolidação com o Ciclo Brasiliano-Panafricano, ocorrido ao final do Proterozóico (850 - 542 Ma), após o qual, porções crustais distintas foram amalgamadas, compondo a placa Sulamericana-Africana e, consequentemente, originando o Continente Gondwana.

Internamente, a Plataforma Sul-Americana é composta por extensos escudos pré-cambrianos, por sua vez caracterizados por áreas tectonicamente estáveis anteriores ao Ciclo Brasiliano, os crátons, circundadas por faixas ditas "móveis", ativadas durante esse ciclo. De certo modo, essas faixas controlariam, durante o Paleozóico (542 - 251 Ma), a evolução das bacias intracratônicas. Sobre as áreas cratônicas, no início do Fanerozóico, foram instaladas cinco grandes sinéclises a partir, provavelmente, do início do Cambriano (542 - 501 Ma). São elas as bacias do Amazonas, Solimões, Parnaíba, Paraná e Chaco-Paraná, esta última ocupando parte dos atuais territórios do Paraguai, Uruguai e Argentina. Apesar de hoje estarem geograficamente separadas, estas sinéclises certamente representavam áreas sedimentares muito mais amplas, sendo possível que tenham estado interligadas entre si. Seções paleozóicas presentes nas bacias de Sergipe-Alagoas, Recôncavo, Tucano, Jatobá, Camamu e Pelotas, na margem leste brasileira, e Barreirinhas e Marajó, na margem equatorial, seriam resquícios da continuidade dessas sinéclises.

Embora ocupem uma extensão territorial tão ampla, os mecanismos causadores da subsidência inicial dessas áreas que, continuada, permitiram o acúmulo de uma espessura superior a 7000m de sedimentos, são ainda desconhecidos (Milani & Zalán, 1999). Algumas dessas bacias, como as do Amazonas, Parnaíba e Paraná, exibem registros de um estágio *rift* anterior ao desenvolvimento das sinéclises. Contudo, a extensão geográfica desses depósitos, e a idade muito antiga de suas gêneses - *rifts* proterozóicos (2500 - 542 Ma), nas bacias do Amazonas e Parnaíba; *rift* ordoviciano (488 - 443 Ma), na bacia do Paraná -, desabilita esse estágio como um

Coordenador: Técnico:

II.5.1 - Meio Físico 43/178

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

precursor dessas sinéclises. Um dos mecanismos mais aceitos sugere que a origem destas esteja relacionada a processos de distensão crustal associados à reativação extensional do embasamento no início do Paleozóico, sendo a continuidade da subsidência mantida pela flexura litosférica decorrente de eventos orogênicos nas margens da placa (Johnson, 1971). A subsidência poderia ainda estar relacionada ao resfriamento diferenciado das áreas cratônicas das faixas móveis em direção ao centro do cráton, após terem cessado os eventos tectônicos brasilianos (Neo-Proterozóicos).

O preenchimento das sinéclises paleozóicas foi, fundamentalmente, siliciclástico, à exceção da deposição de sedimentos carbonáticos e evaporíticos durante o Carbonífero das bacias de Solimões e Amazonas, de sedimentos carbonáticos durante o Permiano das bacias do Parnaíba, Paraná, Chaco-Paraná e Sergipe-Alagoas, e evaporitos durante o Permiano das bacias do Recôncavo e Camamu.

A sucessão paleozóica pode ser agrupada em duas grandes sequências, uma transgressiva, distribuída do Cambriano/Ordoviciano (entre 501 e 471 Ma) ao Neo-Carbonífero/Eopermiano (entre 306 e 284 Ma), e outra regressiva, do final do Permiano (260 - 251 Ma), a qual é marcada por características camadas oxidadas (*red beds*). Na sequência inferior (transgressiva), três eventos glaciais podem ser discriminados, tendo ocorrido de forma distinta em cada região, de acordo com a posição do Gondwana, em relação ao pólo sul em cada época (Caputo & Crowell, 1985): 1) Landoveriano (Eosiluriano: 443 - 428 Ma), nas bacias do Parnaíba, Paraná e Amazonas, 2) Frasniano (Devoniano: 416 - 359 Ma) a Tournaisiano (Mississipiano Inferior - Carbonífero: 359 - 345 Ma), nas bacias do Parnaíba, Solimões e Amazonas, e 3) Pensilvaniano (Carbonífero: 318 - 299 Ma) a Sakmariano (Eopermiano: 294 - 284 Ma), nas bacias do Paraná, Chaco-Paraná, Sergipe-Alagoas e Jatobá.

As diversas sequências sedimentares que preenchem as sinéclises paleozóicas muitas vezes apresentam limites comuns, representados por eventos síncronos de erosão, associados a eventos orogênicos regionais, que sucederam histórias de subsidência e deposição semelhantes, o que sugere, de certa forma, uma origem similar. De modo geral, quatro sequências de primeira ordem podem ser reconhecidas: cambro-ordoviciana, siluro-devoniana, devoniano-carbonífera e permo-carbonífera.

Coordenador: Técnico:
44/178

II.5.1 - Meio Físico

TRANSPORTADORA DE GÁS DO PARÁ

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00 GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

II.5.1.2.4.2.4 - Sequências Deposicionais das Bacias Paleozóicas

Sequência de Sedimentação Cambro-Ordoviciana (501 - 471 Ma)

A primeira sequência engloba os registros mais antigos de sedimentação, preservados apenas parcialmente em algumas bacias paleozóicas. Na bacia do Solimões, compreendem sedimentos inseridos na Formação Benjamin Constant, cuja idade meso-ordoviciana teria sido comprovada pela presença de acritarcos e quitinozoários (Quadros, 1986; Cruz, 1987). Em outras bacias, as unidades mais antigas atribuídas ao cambro-ordoviciano apresentam o posicionamento cronoestratigráfico ainda duvidoso e validade estratigráfica questionável, como é o caso das formações Mirador (bacia do Parnaíba) e Lãs Breñas (bacia do Chaco-Paraná), e Grupo Estância, na bacia de Sergipe. Na Bacia do Parnaíba, esta sequência é ainda de idade duvidosa, visto que não há uma validade estratigráfica inquestionável que insira a Formação Mirador, como é o caso, como sendo a primeira camada estratigráfica da referida bacia.

Esta sequência encontra-se separada da seguinte por uma discordância associada à orogenia Taconiana, do final do Ordoviciano, a qual foi responsável pela erosão da parte superior de quaisquer seções de idade ordoviciana porventura depositadas.

Sequência de Sedimentação Siluro-Devoniana (418 - 397 Ma)

A sequência siluro-devoniana engloba sedimentos predominantemente silurianos. Entretanto, algum registro neo-ordoviciano ficou preservado como a porção basal desta sequência nas bacias do Amazonas (Formação Autás-Mirim), Parnaíba (Formação Ipu), e do Paraná (Formações Alto Graças e Iapó). Um grande evento erosivo do Neo-Siluriano ao Eodevoniano, marcou a ação orogênica Caledoniana sobre as sinéclises paleozóicas, reduzindo grande parte da seção eodevoniana, que representa o topo da sequência siluro-devoniana. A importância desta sequência reside na caracterização da glaciação neo-ordoviciana, a mais antiga ocorrida no Gondwana, registrada nas bacias do Paraná e Parnaíba. Como parte deste registro glacial, a sequência siluro-devoniana representa uma deposição em ambiente essencialmente marinho nerítico.

A orogenia Caledoniana constitui o limite para a sequência seguinte, distribuída do Devoniano ao Carbonífero Inferior.

Sequência de Sedimentação Devoniano-Carbonífera (385 - 318 Ma)

Esta sequência está preservada em todas as grandes sinéclises do Paleozóico, sendo representada por uma sedimentação marinha nerítica a transicional, interdigitada a sistemas

Coordenador: Técnico:

II.5.1 - Meio Físico 45/178

GASODUTO DO PARÁ Estudo de Impacto Ambiental - EIA 2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

flúvio-deltaicos. Nela encontra-se o registro de três eventos glaciais distintos, o mais antigo, de idade Givetiana-Frasniana (391 - 374 Ma) representado pela Formação Cabeças, na Bacia do Parnaíba, outro de idade Fameniana (374 - 359 Ma - Daemon & Contreiras, 1971) na bacia do Amazonas, representado pela Formação Curiri, e um último posicionado entre o Eifeliano superior e o Fameniano superior (397 - 359 Ma - Grahn, 1990) ou no Tournaisiano (359 - 345 Ma - Quadros *et al.*, 1992), registrado pelo Membro Jaraqui, da Formação Jandiatuba, na bacia do Solimões.

A maior parte do Mississipiano superior (326 - 318 Ma) está ausente no registro sedimentar das bacias paleozóicas. Essa ausência é reflexo dos eventos erosivos relacionados à orogenia Eoherciniana, constituindo uma das principais discordâncias discriminadas nestas bacias.

Sequência de Sedimentação Carbonífero-Permiana (306 - 270 Ma)

A última grande sequência paleozóica é representada pela seção carbonífero-permiana. Em algumas sinéclises, a exemplo das bacias do Parnaíba e dos Parecis, essa sequência pode estender-se até o Triássico. Essa variação de amplitude temporal é reflexo, principalmente, do alcance dos efeitos da orogenia Tardiherciniana (Gondwanides), durante o Triássico, na erosão das sequências outrora depositadas. Um evento erosivo de menor magnitude, posicionado no Sakmariano (Eopermiano: 294 - 284 Ma), porém não menos importante, ocorre localmente, dividindo essa sequência em duas menores, uma carbonífera e outra permiana. Isso é observado em algumas bacias, como em Sergipe-Alagoas, Tucano Norte-Jatobá e Parecis. A sequência carbonífero-permiana pode ser simplificadamente caracterizada por um sistema transgressivo-regressivo, em cuja base predominam sedimentos alúvio-flúvio-eólicos, seguidos pela implantação de um sistema deposicional marinho restrito a nerítico no final do Carbonífero (bacias do Solimões e Amazonas) ou durante o Permiano (bacias do Acre, Parnaíba e Paraná) e, por fim, com o retorno de condições continentais no Permiano/Triássico. Na Bacia do Paraná, um evento tectônico localizado, relacionado à orogenia La Ventana (DeWitt & Ransome, 1992), ocorrido entre o Eo e Mesotriássico (251 a 228 Ma), originou uma discordância que separa a seção neotriássica (Formações Pirambóia e Rosário do Sul) da sequência carbonífero-permiana.

A discordância gerada pela orogenia Tardiherciniana (Permo-Triássico: 253 - 249 Ma) marca o fim da história do preenchimento sedimentar paleozóico das grandes sinéclises do Gondwana. Não encerra, contudo, sua história deposicional que, em maior ou menor escala, refletiria, dentre outros, dois importantes eventos geológicos do Mesozóico e Cenozóico: a ruptura do Gondwana, com a separação das placas Sul-Americana e Africana e a Orogenia Andina. Apesar

Coordenador: Técnico:
46/178 II.5.1 - Meio Físico

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

de o registro sedimentar um tanto semelhante, o posicionamento das bacias em relação à Plataforma Sul-Americana fez com que fossem afetadas de modo distinto por esses eventos.

As bacias mais ocidentais, como Amazonas e Solimões, adjacentes à Cordilheira Andina, estiveram submetidas a um sistema convergente já ativo na época, que resultou em diversos ciclos orogênicos com magmatismo associado desde o Triássico. Por outro lado, as bacias mais orientais, como Parnaíba e Paraná, sofreram muito mais as influências magmáticas decorrentes da ruptura do Gondwana, entre o Jurássico e o Cretáceo.

O Gasoduto do Pará atravessa, no sentido aproximado $S \rightarrow N$, áreas pertencentes à sinéclise sedimentar da Bacia do Marajó e, no sentido aproximado $E \rightarrow W$, áreas da sinéclise do Parnaíba. As unidades litoestratigráficas que a compõe serão mais bem descritas a seguir.

▶ Bacia Sedimentar do Marajó

A bacia de Marajó, também chamada de Rift de Marajó ou Gráben de Marajó, está situada na região Norte do Brasil, na confluência dos rios Amazonas e Tocantins. Cobre uma área de aproximadamente 53.000 km² e as feições geológicas limítrofes são: ao norte, a bacia da Foz do Amazonas; ao sul, rochas do Escudo Brasileiro; a sudeste, o Arco de Tocantins; e a oeste, o Arco de Gurupá (Galvão, 2004) (Figura II.5.1-14).

Coordenador: Técnico:

II.5.1 - Meio Físico 47/178

GASODUTO DO PARÁ Estudo de Impacto Ambiental - EIA 2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

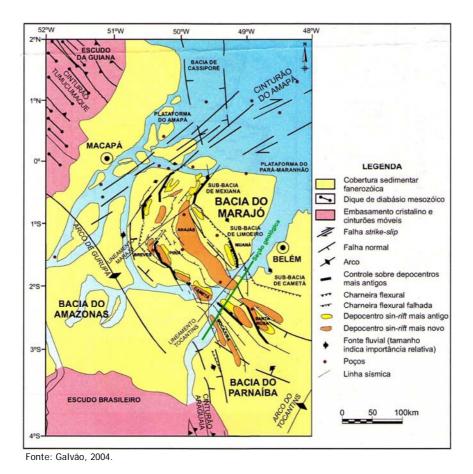
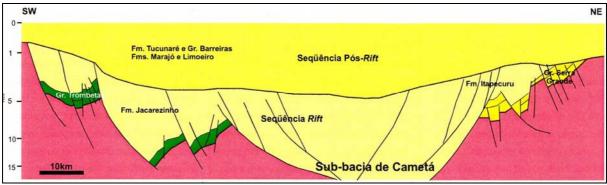


Figura II.5.1-14 - Mapa de localização e arcabouço estrutural da Bacia de Marajó

A caracterização do rift da bacia de Marajó advém da clara observação de grandes ilhas normais, cujos rejeitos podem atingir até 6 km. Aparentemente, a magnitude dos fenômenos geológicos relacionados à sua formação não permitiu que houvesse a formação de crosta oceânica. Os levantamentos geofísicos efetuados, evidencia a sua forma defletida, semelhante a uma meia-lua.

A Bacia do Marajó é compartimentada em três sub-bacias (Mexiana, Limoeiro e Cametá), todas facilmente reconhecíveis em mapeamentos sísmicos do embasamento. Estas sub-bacias por sua vez encontram-se separadas umas das outras por zonas de cisalhamento de direção NE-SW, provavelmente de rejeito direcional, como sugerem os dados geofísicos (sísmica e gravimetria), bem como a própria configuração estrutural regional da bacia. Cada compartimento desses possui características próprias de dimensão, orientação, comportamento gravimétrico e aeromagnetométrico, tipo e intensidade do falhamento, além de disposição e espessura dos intervalos sin e pós-rift (Figura II.5.1-15). Poços perfurados na bacia evidenciam espessa deposição siliciclástica, com espessura estimada em dados sísmicos de até 11 km, envolvendo estratos pré, sin e pós-rift (Galvão, 2004).

Coordenador: Técnico:


48/178 II.5.1 - Meio Físico

TRANSPORTADORA DE GÁS DO PARÁ

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00 GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

Fonte: Galvão, 2004.

Figura II.5.1-15 - Gametá

Poços perfurados na bacia evidenciam espessa deposição siliciclástica, com espessura estimada em dados sísmicos de até 11 km, envolvendo estratos pré, sin e pós-rift (Galvão, 2004). A sequencia deposicional da Bacia de Marajó é dividida em estágios de pré-rift, rift e pós-rift, conforme a sua carta estratigráfica (Figura II.5.1-16).

Coordenador. Técnico:

II.5.1 - Meio Físico 49/178

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

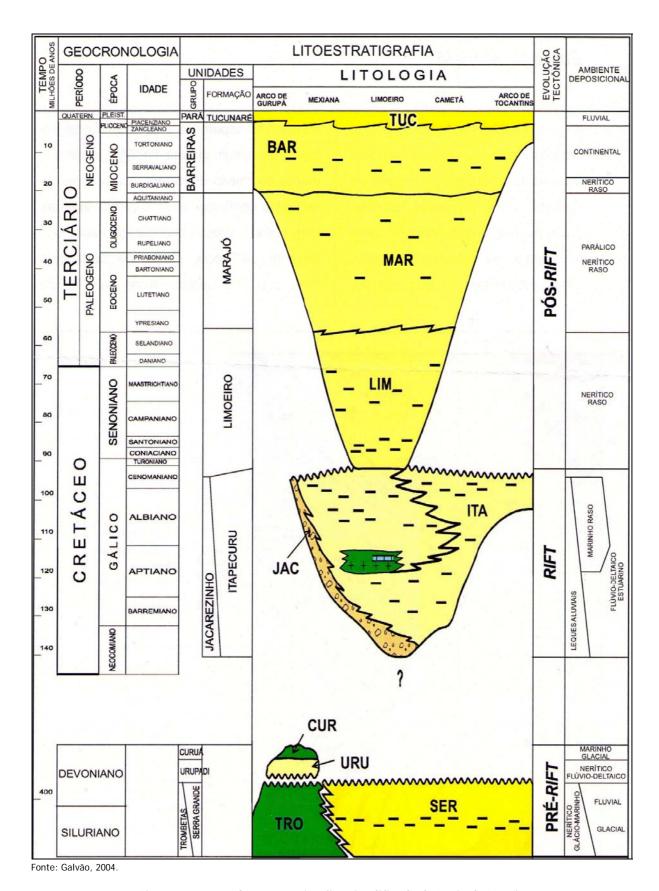


Figura II.5.1-16 - Carta estratigráfica simplificada da Bacia de Marajó

Coordenador:Técnico:50/178II.5.1 - Meio Físico

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

A sequencia pré-rift é constituída por dois conjuntos de rochas: metamórficas e graníticas, pertencentes ao embasamento cristalino, e rochas sedimentares de idade paleozóica, depositadas em condições intracratônicas. Apenas três poços atravessam a seção paleozóica, sendo dois situados sobre os arcos de Tocantins e Gurupá, e o terceiro, dentro do sistema rift.

Esses poços encerram estratos silurodevonianos, ora correlacionáveis aos sedimentos terrígenos fluviais e fluvio-glaciais a marinho raso do Grupo Serra Grande, na bacia do Parnaíba, ora correlacionáveis aos folhetos e diamictitos marinhos/glaciais da Formação Curiri/Grupo Urupadi ou sedimentos do Grupo Trombetas, da bacia do Baixo Amazonas. Estima-se espessura regional variável entre 500 e 1300m para os estratos paleozóicos. Além disso, os mesmos podem estar ausentes, devido à não deposição e/ou erosão, na porção oriental da sub-bacia de Mexiana, centro axial da sub-bacia de Limoeiro e extremo sudeste da sub-bacia de Cametá (Carvajal, *et al.*, 1989).

Não se observa espessamento desses estratos junto às falhas. Sismicamente, a referida sequencia apresenta um caráter bastante homogêneo em toda a bacia, o que sugere um ambiente de deposição também uniforme, favorecendo assim a hipótese de contribuição marinha. Estudos sísmicos de amplitude versus offset (AVO), desenvolvidos na área de Muaná, indicaram que o intervalo pré-rift é argiloso, quando comparado às areias e aos siltes do final do rift e do pós-rift. Interpretações alternativas do intervalo pré-rift tentam estender sua deposição até o Mesozóico, em épocas imediatamente anteriores ao fenômeno de rifteamento, com possibilidade, inclusive, de esse intervalo constituir um lençol arenoso flúvio-eólico, em analogia direta com a Formação Sergi na bacia do Recôncavo (Carvajal *et al.*, 1989; Carnes et al., 1989).

A ambiência sedimentar na qual se desenvolveu a sequencia basal de preenchimento do rift ainda é foco de dúvidas, bem como a idade em que tal fato sucedeu. Sismicamente percebe-se, pelo menos, a deposição de dois pacotes sin-rift (Carvajal et al., 1989; Carnes et al., 1989). O intervalo mais antigo pode encerrar sedimentos de idade neocomiana (pré-Barremiano) passa concordantemente, na maioria das vezes, para os estratos mais novos, o que muitas vezes dificulta essa separação. Eventualmente, ocorrem truncamentos erosivos, de rastreamento lateral precário, na passagem de uma seção para outra.

Suspeita-se da presença desses estratos mais antigos ao longo da sub-bacia de Cametá mais bem definido ao longo do eixo do seu depocentro, em ambos os flancos da sub-bacia de Limoeiro e no flanco oeste da sub-bacia de Mexiana (Carnes et al., 1989). Não se verifica

Coordenador: Técnico.

II.5.1 - Meio Físico 51/178

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

nesse intervalo a uniformidade regional na espessura, ou mesmo a continuidade e facilidade de correlação, observadas na sequencia pré-rift. Essa sedimentação possui uma distribuição parecida com a do pré-rift, porém mais restrita.

A seção sin-rift superior, amostrada por perfuração, envolve estratos com idades variando do Aptiano/Barremiano até o Cenomaniano. Ocorre em toda a bacia e é geralmente caracterizada em sísmica por amplitudes homogêneas e caráter consistindo em reflexões descontínuas de média a alta amplitude, ou ainda em reflexões do tipo *hummocky*, de média a baixa amplitude. Os estratos dessa sequencia muitas vezes mergulham fortemente contra falhas de baixo ângulo, com freqüência, crescimento de seção. Dos poços que atravessaram essa sequencia, todos revelam sedimentos clásticos-arenosos proximais, depositados em ambiente continental a transicional, variando de fluvial a flúvio-deltaico/estuarino, com contribuições locais de marinho marginal (Formação Itapecuru). Junto á borda oeste falhada, observam-se fanglomerados de leques aluviais (Formação Jacarezinho).

É provável que as principais áreas fonte situavam-se ao sul da bacia, com a borda flexural sul da sub-bacia de Cametá constituindo um canal natural para os sistemas fluviais fluírem para norte, provavelmente em situação axial em relação à calha rift (Carnes, *et al.*, 1989). Esse quadro pode ter se modificado no Albo-Aptiano, como consequencia da forte transgressão identificada nas bacias de Barreirinhas, Bragança-Viseu e São Luís (Formação Codó). É possível que essa transgressão ocorra em Marajó, talvez refletindo divergência temporária de pelo menos um grande distributário para fora do sistema Marajó.

As fontes sedimentares de norte e leste teriam importância secundária, devido ao fato da plataforma do Pará-Maranhão ter colapsado durante o desenvolvimento da margem equatorial brasileira. Esse evento provavelmente desenvolveu um divisor de drenagens entre a bacia e a margem atlântica contemporânea. Outro elemento importante seria a presença de outras calhas de captação de sedimentos a leste, como as bacias de Bragança-Viseu e São Luís. Os sedimentos provenientes de oeste (Arco de Gurupá), aparentemente ficaram confinados às proximidades das grandes falhas normais de formação da bacia, boa parte deles depositados em virtude de fluxos gravitacionais. Dados paleontológicos obtidos a partir da amostragem dos poços indicam que o final da sedimentação rift ocorreu durante o Cenomaniano.

Após o intenso tectonismo da fase rift, o qual desencadeou uma forte subsidência mecânica ao longo das falhas normais, ocorreu um período de exposição de boa parte da

Coordenador: Técnico:

52/178 II.5.1 - Meio Físico

TEANS OF TARGET OF BAR A

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00 GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

bacia, quando então se fazem sentir processos de erosão e/ou não deposição. A discordância na base da sequencia pós-rift, que em alguns locais deve passar a uma concordância equivalente, facilmente reconhecida em sísmica, reflete tais condições. Um estudo do significado cronoestratigráfico dessa discordância revela ser o fato não deposicional e/ou erosivo envolvido na mesma cada vez maior em direção ao sul (Avenius, 1988). Isto é, a deposição da base do intervalo pós-rift procede de norte para sul, com a porção meridional da bacia possuindo o maior período de exposição. Denomina-se sequencia pós-rift os estratos deposicionados sobre essa discordância, em uma falha de maior estabilidade tectônica.

Tal sequencia corresponde à seção mais bem conhecida e geralmente representada na sísmica por reflexões contínuas de correlação regional de média a alta amplitude, em sentido contraste com os estratos inferiores. Sua base é especialmente caracterizada por eventos de lata continuidade e coerência. O mais proeminente deles corresponde a uma seção argilo-siltosa, bem definida em alguns poços em Mexiana e Limoeiro (Avenius, 1988; Carvajal, *et al.*, 1989).

O eixo de máxima espessura do intervalo coincide com o alinhamento de altos intervalos do embasamento cristalino, ambos crescentes em Limoeiro. Seus limites extrapolam o do rift, no entanto tendem a se orientar segundo a disposição do mesmo. A porção superior da sequencia pós-rift sobrepõe-se concordantemente ao intervalo inferior (formação Marajó e Tucunaré). Sua área de ocorrência envolve toda a bacia, adelgaçando-se em direção aos arcos de Tocantins e Gurupá. Em Cametá deposita-se diretamente sobre a sequencia rift e, na região dos arcos supracitados, sobre os sedimentos pré-rift ou sobre o embasamento Pré-Cambriano. Há um registro de um poço na costa do Amapá, na porção offshore da subbacia de Mexiana, de intenso vulcanismo básico situado na faixa de 80 Ma (base do pós-rift).

A ambiência sedimentar ocorre predominantemente em condições flúvio-deltaicas e fluvias, com contribuições marinha bem mais freqüentes que na seção rift. A Formação lpixuna consiste de uma sucessão sedimentar tipicamente caulínica de aproximadamente 40m de espessura, composta por associações de fácies sedimentares de ambientes fluvial, marinho e transicional estuarino com planícies de maré (Santos Jr. & Rossetti, 2003). Pequenas contribuições tufáceas também são identificadas. Diante desse quadro, percebese que não existe do ponto de vista das condições de preenchimento da bacia, mudanças significativas do sin-rift mais novo para o pós-rift, mesmo nas áreas onde o hiato entre as duas sequencias é máximo. O que se nota é uma persistência de depósitos clásticos síltico-

Coordenador: Técnico.

II.5.1 - Meio Físico 53/178

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

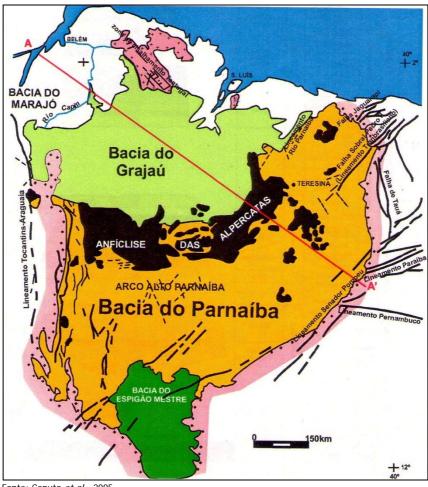
arenoso (alto influxo sedimentar), cuja tendência é de alternância, não interrompida pela passagem rift/pós-rift, de ambiência continental a transicional, com algumas contribuições marinhas de profundidade rasa.

A sedimentação mais recente na região da Bacia de Marajó (pós-Mioceno), aparentemente passa a não guardar qualquer relação com as peculiaridades dos fenômenos intrínsecos à evolução do rift sotoposto, já praticamente todo assoreado Esses sedimentos correspondem a depósitos de planície costeira, constituídos pela Formação Barreiras e/ou pelos sedimentos indiferenciados do sistema de drenagem do Rio Amazonas, Grupo Pará (Formação Tucunaré).

A porção emersa do rift Marajó não corresponde mais a uma grande calha deposicional para esses sedimentos, que se espessam em direção à parte submersa da sub-bacia de Mexiana, em um processo de migração da deposição para o mar durante a fase de deriva da margem continental (Wernlund, 1986).

► Bacia Sedimentar do Parnaíba

A Bacia do Parnaíba apresenta arcabouço influenciado por feições estruturais do embasamento cristalino. Separa-se ao norte da bacia de São Luís - Grajaú pela Anfíclise das Alpercatas, a oeste separa-se do Cráton Amazônico e da Bacia do Marajó pelo Lineamento Tocantins-Araguaia, e ao sul separa-se da Bacia Sanfranciscana pelo arco do Cráton São Francisco através da Bacia do Espigão Mestre (Figura II.5.1-17).


Coordenador: Técnico:

54/178

II.5.1 - Meio Físico

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

Fonte: Caputo et al., 2005.

Figura II.5.1-17 - Localização geográfica da Bacia do Parnaíba e principais lineamentos estruturais

De forma quase circular, a Bacia do Parnaíba abrange uma superfície atual de cerca de 600.000km (Aguiar, 1971), mas, durante o Paleozóico, ocupava parte da região Nordeste e fazia parte da bacia africana Taoudeni (Caputo, 1984). A erosão durante e após a ruptura de Gondwana, no Cretáceo, em conjunto com a erosão atual, vem reduzindo suas dimensões através do recuo de escarpamentos (Caputo et al., 2005). É classificada como uma bacia intracratônica, com cerca de pouco mais que 2.500m de sedimentos e 500m de rochas básicas (Cunha, 1986), na forma de soleiras e derrames, tendo sido invadida muitas vezes, até o Eocarbonífero, por mares epicontinentais que transgrediram a bacia através do norte da África. A maior parte das áreas-fonte de sedimentos se situava na África central, com menor aporte sedimentar das áreas do escudo brasileiro.

Formações correlacionáveis às da Bacia do Parnaíba são encontradas nas bacias do Jatobá, Amazonas e Solimões, no Brasil, e na República de Gana em áreas emersas e submersas,

Coordenador: Técnico: II.5.1 - Meio Físico 55/178

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

bem como em outros países do norte da África (Caputo *et al.*, 2005). Ela também estava ligada à Bacia do Amazonas através da região do Marajó (Aguiar, 1971), onde as sequências estratigráficas da maioria das formações são, predominantemente, de fácies marinha (Cunha, 1986).

O processo de sedimentação da sinéclise do Parnaíba foi iniciado após o ciclo termotectônico Brasiliano-Panafricano, no fim do Ordoviciano, juntamente com as demais bacias intracratônicas brasileiras Solimões, Amazonas e Paraná. Foram detectados *rifts* em sondagens e interpretações sísmicas e gravimétricas (Cunha, 1986), com direção norte-sul, de possível idade cambro-ordoviciana, precursores da formação da bacia. Reativações de alinhamentos brasilianos E-W e NE-SW influenciaram a sedimentação na bacia (Figura II.5.1-18).

Coordenador: Técnico:

56/178

II.5.1 - Meio Físico

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

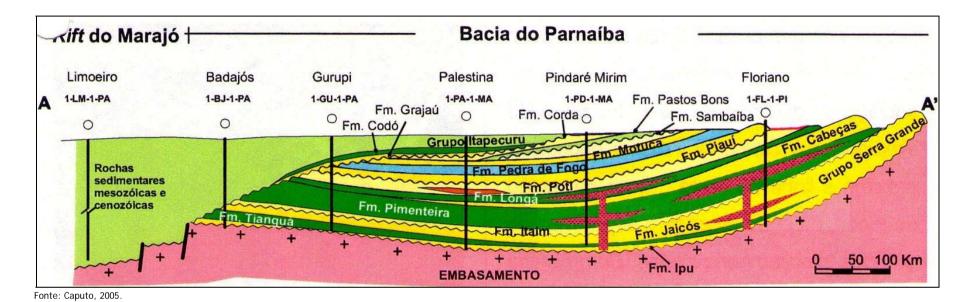


Figura II.5.1-18 - Seção Longitudinal da Bacia do Parnaíba - Seção Longitudinal NW-SE da Bacia do Parnaíba e *rift* da Bacia do Marajó (localização na Figura II.5.1-17), com localização dos furos de sondagem realizados nas localidades de Limoeiro, Badajós, Gurupi, Palestina, Pindaré-Mirim, Floriano

Coordenador: Técnico:

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

A carta estratigráfica da Bacia do Parnaíba apresenta, de forma clara, os eventos geológicos e termo-tectônicos que contribuíram para as diferentes etapas de sedimentação na Bacia do Parnaíba (Figura II.5.1-19). O relevo inicial sobre o qual foram depositados os sedimentos paleozóicos era relativamente movimentado, pois a seção basal do Grupo Serra Grande (Formação Ipu) apresenta ausência de seções e grandes variações de espessura em pequenas distâncias, como observado na Serra da Capivara.

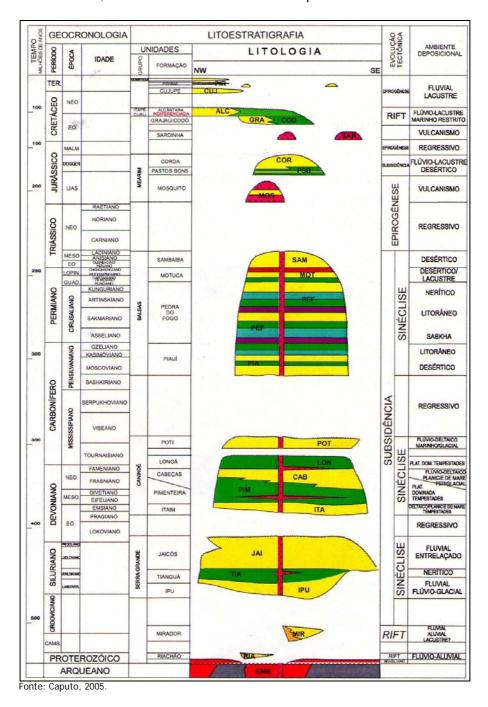


Figura II.5.1-19 - Carta Estratigráfica simplificada da Bacia do Parnaíba

Coordenador: Técnico:

58/178

II.5.1 - Meio Físico

TEANS DO PLAN OF SAS DO PAPA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00 GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

O Grupo Serra Grande, subdividido nas formações Ipu, Tianguá e Jaicós, aflora apenas nas partes leste e sudeste da bacia, sendo recoberto discordantemente pelos grupos Itapecuru, a noroeste, e Canindé nos demais flancos (Rodrigues, 1967). A Formação Ipu é composta por espessos pacotes de arenitos finos a médios, brancos a róseos, com estratificação cruzada, de espessura variável, sobrepostos por conglomerados e arenitos conglomeráticos com características glaciais e flúvio-glaciais. Seguida pela Formação Tianguá, composta de folhelhos, siltitos cinzas e arenitos cinza-esbranquiçados intercalados que, em diversas partes, a unidade afina antes de chegar às atuais bordas, com exceção da região nordeste da bacia. A unidade superior é a Formação Jaicós (Eosiluriana a Eodevoniana), composta de arenitos e conglomerados cinza-esbranquiçados com alteração para cores amareladas (Caputo & Lima, 1984).

O Grupo Canindé é formado pelas formações Itaim (arenitos), Pimenteira (folhelhos e arenitos), Cabeças (arenitos e diamictitos), Longá (folhelhos cinzas) e Poti (arenitos e, subordinadamente, folhelhos cinzas e diamictitos), de idade eodevoniana a eocarbonífera (Kegel, 1953; Carozzi *et al.*, 1975). Os diamictitos das formações Cabeças e Poti são de origem glacial, portanto podem ser chamados de tilitos (Caputo, 1984b).

A glaciação neodevoniana (Formação Cabeças) é mais bem evidenciada que a siluriana (Formação Ipu) e a eocarbonífera (Formação Poti). Associados aos tilitos devonianos ocorrem matacões do embasamento, alguns seixos estriados, polidos e facetados, pavimentos estriados, varvitos, alguns dos quais com seixos pingados. Esses tilitos ocorrem sobre as formações Cabeças Superior, Cabeças Inferior, Pimenteira Inferior e sobre o embasamento na região do município de Colinas do Tocantins, em direção à borda oeste da bacia, indicando a presença de uma extensa discordância relacionada com abrasão glacial e abaixamento do nível médio relativo do mar. Os tilitos mostram até 95% de material palinológico de vários andares do Devoniano, indicando que as geleiras removeram grande quantidade de sedimentos paleozóicos previamente depositados (Loboziak *et al.*, 2000). No Rio Araquaia, a Formação Cabeças é representada apenas pelos tilitos (Aguiar, 1971).

A Formação Poti (unidade superior do Grupo Canindé) é discordante sobre a Formação Longá e foi depositada em condições climáticas glaciais e periglaciais, que se tornaram mais amenas em direção ao topo da seção (Góes, 1995).

Após um amplo abaixamento do nível médio relativo do mar, em função das orogenias que consolidavam o Continente Pangea, o novo ciclo sedimentar formado pelo Grupo Balsas foi depositado em condições climáticas quentes e semi-áridas e em diferentes condições de

Coordenador: Técnico.

II.5.1 - Meio Físico 59/178

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

geometria da bacia. A comunicação marinha com o norte da África foi bloqueada pela orogenia Herciniana; o Arco de Purus (entre as bacias do Solimões e do Amazonas) foi rebaixado por erosão e as novas transgressões vieram através dos rios Solimões e Amazonas até a sinéclise do Parnaíba. O conteúdo fossilífero neocarbonífero dessas bacias apresenta as mesmas afinidades paleontológicas andinas (Caputo, 1984a).

O Grupo Balsas, constituído pelas formações Piauí (arenitos e, subordinadamente, calcários), Pedra do Fogo (siltitos, folhelhos, arenitos, calcários e evaporitos intercalados), Motuca (siltitos, folhelhos, arenitos e evaporitos) e Sambaíba (arenitos eólicos) mostra condições áridas com incursões marinhas (ciclotemas evaporíticos). As formações deste grupo recobriram as unidades mais antigas na margem oeste da bacia, depositando parte da Formação Pedra de Fogo sobre o embasamento. O clima seco pode ser atribuído à migração da porção norte do Continente Gondwana ocidental para baixas latitudes, onde predominava a evaporação e a limitação da pluviosidade no interior do vasto Continente Pangea. Este grupo de sedimentos foi acumulado entre o Neo-Carbonífero e o Triássico.

A sequência seguinte, representada pelo Grupo Mearim, é a mais controversa, de idade Jurássica e Cretácea, pois apresenta reflexos da fragmentação dos continentes Pangea e Gondwana, com a formação de falhamentos, soleiras de diabásio e derrames de basalto intercalados com sedimentos do grupo, em três intervalos diferentes de tempo. A região com maior atividade ígnea, correspondente à Anfíclise das Alpercatas (Góes, 1995), recebeu um volume significativo de rochas vulcânicas e subvulcânicas. A unidade basal deste Grupo é representada pela Formação Mosquito, subdividida em cinco Membros, da base para o topo: Basalto Inferior, Membro Macapá, Basalto Médio, Membro Tingui e Basalto Superior. Acima desta seguem as formações Pastos Bons (folhelhos e arenitos), Corda (arenitos) e Sardinha (basaltos).

Antes da fragmentação do Continente Gondwana, houve soerguimento epirogenético nas porções leste e norte da costa brasileira, com erosão dos sedimentos paleozóicos, até expor parcialmente o embasamento nas regiões Nordeste e do Marajó.

O deslocamento transcorrente lateral do continente africano em relação ao sul-americano, na margem norte brasileira, ocasionou esforços transpessivos e transtensivos mesozóicos que resultaram em soerguimentos e subsidências localizados, bem como falhamentos normais e reversos e dobras na seção paleozóica no setor norte da bacia (Góes *et al.*, 1989).

No Cretáceo, a subsidência termomecânica nas porções noroeste e norte da Bacia do Parnaíba e a elevação do nível do mar causaram deposição das formações Grajaú/Codó,

Coordenador: Técnico:

60/178

II.5.1 - Meio Físico

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

durante o Aptiano (125 - 112 Ma), e do Grupo Itapecuru, no restante do Cretáceo (112 - 2.5 Ma). A Formação Codó apresenta condições inicialmente lacustres e depois marinhas com seções altamente anóxicas em clima semi-árido (folhelhos ricos em matéria orgânica e evaporitos) e a Formação Grajaú indica a presença de rios e deltas às margens da bacia Codó.

O Grupo Itapecuru é subdividido em duas unidades: Unidade Indiferenciada (Eoalbiano/Neo-Albiano), constituída por aproximadamente 600-800 metros de argilitos e arenitos; e a Formação Alcântara (Neo-Albiano/Cenomaniano). No fim do Cretáceo e início do Paleógeno foi depositada a Formação Cujupe, que ocorre na borda norte da Bacia de São Luís - Grajaú (Rossetti & Truckenbrodt, 1997).

Os sedimentos foram depositados sob condições quentes e úmidas. Estas sequências incluem depósitos aluviais a marinho-transicionais situados na Bacia do Grajaú (Góes, 1995). Enquanto no norte e noroeste e no sul da Bacia do Parnaíba ocorria sedimentação, a sua parte central era arqueada, formando o Alto do Parnaíba (Góes, 1995; Góes & Coimbra, 1996).

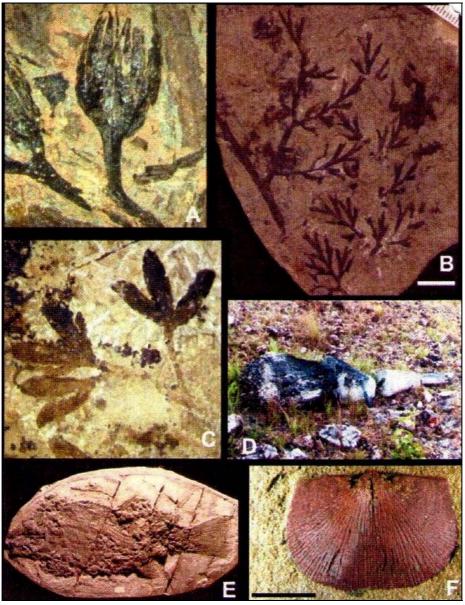
A sedimentação ao sul do arco, que formou a Bacia do Espigão-Mestre (diferenciada da bacia Sanfranciscana - Góes, 1995) foi de caráter continental, constituída pelas formações clásticas Areado e Urucuia, conforme apresentado no Desenho 2330-00-EIA-DE-2002-00 - Mapa de Geologia, no Caderno de Mapas do EIA, Vol. II. Nos mapeamentos da Bacia do Espigão-Mestre (Lima & Leite, 1978) são indicados supostos depósitos terciários no topo de chapadas, mas se tratam de formações mais antigas alteradas por intemperismo, algumas com processos de bauxitização e caulinização nos amplos chapadões característicos da região.

Durante o restante do Cenozóico, a Bacia do Parnaíba foi alvo de erosão generalizada e sedimentação localizada ao longo de rios e em lagos, como a Camada Nova lorque (folhelhos e siltitos cinza-escuros), depositadas durante o Plioceno. Nas regiões costeiras depositou-se a Formação Pirabas (calcários e folhelhos) durante o Mioceno, e a Formação Barreiras (camadas vermelhas) no Plio-Pleistoceno. A presença de falhas cortando as seções mais novas indica muita atividade neotectônica possivelmente relacionada com a migração da placa sul-americana para noroeste sobre um manto termalmente não muito uniforme.

Em termos paleontológicos, o registro da Bacia do Parnaíba é bastante diversificado. As assembléias fossilíferas encontradas em suas unidades sedimentares litoestratigráficas, são representadas por diversos espécimes vegetais e animais (Figura II.5.1-20).

Coordenador. Técnico:

II.5.1 - Meio Físico 61/178



GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

Fonte: Caputo, 2005.

Figura II.5.1-20 - Exemplares fósseis da Bacia do Parnaíba. A) estrutura reprodutiva feminina de cúpula de pteridospermas primitivas, Formação Poti; B) fronde de *Diplothmema gothanica*, pteridosperma primitiva típica do Mississipiano, Formação Poti; C) esporangios de Kegelidium lamegoi, pteridosperma primitiva, Formação Poti; D) caule de Psaronius de base completa, Formação Pedra do Fogo; E) *Lepidotes piauhyensis*, peixe do Jurássico, Formação Pastos Bons (comprimento = 29 cm); F) *Pleurochonetes comstocki*, braquiópode do Devoniano Médio, Formação Cabeças (escala gráfica: 10 mm)

Dentre estes, são encontrados fósseis-guia de palinomorfos, inúmeros exemplares de icnofósseis e insetos, além de exemplares de vegetais fossilizados.

Coordenador: Técnico:

62/178 II.5.1 - Meio Físico

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

O Grupo Serra Grande compreende as formações Ipu, Tianguá e Jaicós. O conteúdo paleontológico destas formações, representado por microfósseis marinhos, como quitinozoários, acritarcos e miósporos, foram atribuídos ao Siluriano (443 - 416 Ma), assinalando maior número de espécies de quitinozoários e acritarcos, correlacionando estes sedimentos aos da Formação Pitinga, da Bacia do Amazonas.

Na <u>Formação Tianguá</u>, foram registrados graptólitos dos gêneros *Monograptus* e *Climacograptus cf. scalaris*, reforçando a datação de idade Siluriana para os sedimentos deste grupo litoestratigráfico.

Na parte superior da <u>Formação Ipu</u>, foram identificados quitinozoários *Spinachitina erichseni*, espécie comum com as fácies laterais da Formação Tianguá.

O Grupo Canindé é composto pelas formações Itaim, Pimenteira, Cabeças, Longá e Poti. Em termos megaflorísticos, o Grupo Canindé apresenta poucos registros, distribuídos esparsamente ao longo de suas unidades devonianas (Dolianiti, 1972).

No membro inferior da <u>Formação Pimenteira</u> são reportados apenas alguns restos de prováveis algas ou primitivas briófitas (*Spirophyton*), enquanto que no superior, além de algas nematófitas (*Spongiophyton*), ocorrem fragmentos de pequenas licófitas terrestres (*Paleostigma*, *Protolepidodendron*, *Archaeosigillaria*), indicando depósitos proximais à costa.

Em sedimentos tidos como membro inferior da <u>Formação Cabeças</u>, foram encontrados restos de uma única licófita primitiva (*Haplostigma*). Por outro lado, o registro microflorístico é abundante nestas unidades, incluindo elementos marinhos e terrestres. Entre os marinhos, é comum a presença de acritarcas, quitinozoários e algas tasmanáceas (*Tasmanites*) em determinados níveis das unidades devonianas e mesmo da <u>Formação Longá</u>.

Os esporos, por sua vez, são abundantes e relativamente diversificados, incluindo alguns fósseis-guias encontrados do Devoniano Médio ao Carbonífero Inferior (Tournaisiano - Loboziak *et al.*, 2000; Loboziak & Melo, 2002). O conteúdo palinológico permite datar a <u>Formação Itaim</u> como Eodevoniana, a <u>Formação Pimenteira</u> como tendo sido depositada no intervalo Mesodevoniano a Neo-Devoniano (Eifeliano-Frasniano), a <u>Formação Cabeças</u> como neo-devoniana (Frasniano-Fameniano) e a <u>Formação Longá</u> como neo-devoniana a eocarbonífera (Fameniano tardio-Mesotournasiano).

Coordenador: Técnico:

II.5.1 - Meio Físico 63/178

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

No Grupo Canindé conservaram-se moldes de conchas e carapaças (icnofósseis) de invertebrados que constituem tafocenoses marinhas de plataformas rasas, típicas do Devoniano. Nelas predominam restos fossilizados de braquiópodes, seguidos em abundância por biválvios e, em menor número, por crinóides, *Tentaculites*, trilobitas, gastrópodes, conulárias e hiolitídeos. Com exceção dos restos de invertebrados presentes no furo de sondagem, feita em Carolina, no Maranhão, provavelmente pertencentes à <u>Formação Itaim</u>, os fósseis de invertebrados devonianos da Bacia do Parnaíba, conhecidos até o momento, foram coletados em afloramentos de idade mesodevoniana das formações Pimenteira e Cabeças, no flanco leste da mesma.

Entre os afloramentos da <u>Formação Pimenteira</u>, destacam-se o das proximidades da cidade de Itainópolis, onde arenitos portadores de associações dominadas pelo braquiópode *Tropidoleptus carinatus* indicam deposição próxima à linha de costa (Fonseca & Melo, 1987), e os da região de Picos, de onde procedem espécimes de grandes trilobitas homalótidas (*Burmeisteria notica*), alguns enrolados no interior de concreções ferruginosas (Carvalho, 1995).

Os macrofósseis de invertebrados da <u>Formação Cabeças</u> estão restritos a sua porção basal e geralmente associados a depósitos de tempestades (estratificação *hummock*). Estes registros fósseis são abundantes em várias localidades na região da cidade de Picos e nas redondezas de Pimenteiras, no Piauí. Nessas tafocenoses a forma mais abundante é o braquiópode *Plerochonetes comstocki*, descrito originalmente para a Formação Ererê da Bacia do Amazonas (Melo, 1988; Fonseca, 2001).

Pelo fato da <u>Formação Cabeças</u> ter sido depositada em paleoambiente flúvio-deltáico com transição para planície de maré e em paleoclima periglacial, apresenta estratigrafias sedimentares bastante peculiares, como a representada pela estratificação *hummock*, formada pelo vai-e-vem sincronizado das vagas das ondas de tempestade.

A <u>Formação Poti</u> é rica em macro e microfósseis vegetais, sendo que os macrofósseis são mais abundantes em direção ao topo da unidade (lannuzzi, 1994). O conteúdo palinológico (micro e megásporos) tem indicado uma idade eocarbonífera, mais precisamente Viseana (345 - 326 Ma), para a Formação Poti (Melo & Loboziak, 2000). Entre os megásporas há espécies relacionadas aos gêneros *Lagenoisporites, Duosporites, Triletes, Setosisporites* e *Cystosporites* (Trindade, 1971), enquanto que na megaflora predominam as folhagens (*Diplothmema, Aneimitels Adiantites, "Triphyllopteris", Nothorhacopteris, Sphenopteridium?, Fryopsis*) e estruturas reprodutivas (*Kegelidium, Calymmatotheca?*) de

Coordenador: Técnico:

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

primitivas pteridospermas. Restos de *Paulophyton*, uma enigmática planta de hábitos psilofítico são abundantes, porém licófitas (*"Lepidodendropsis"*) e esfenófitas (*Archaeocalamites*) são raramente registradas (lannuzzi, 1994; Dolianiti, 1954; Dolianiti, 1980).

Os mares epicontinentais do Carbonífero (Mesopensilvaniano) da Bacia do Parnaíba foram mais quentes que os do Devoniano, e permitiram a deposição de carbonatos presentes na base do Grupo Balsas (que compreende as formações Piauí, Pedra do Fogo, Motuca e Sambaíba). Nesses sedimentos foram depositados os espécimes que compõem a fauna de invertebrados marinhos da <u>Formação Piauí</u>, correlacionáveis à da <u>Formação Itaituba</u> do Pensilvaniano da Bacia do Amazonas.

Os calcários que afloram atualmente no flanco leste da bacia, apresentam uma assembléia fossilífera onde predominam os moluscos (biválvios e gastrópodes), juntamente com braquiópodes, uma espécie de cefalópode, uma de trilobita e uma de briozoário (Anelli, 1999). De um modo geral, os calcários estão associados a paleoambientes costeiros rasos, com estruturas de retrabalhamento por ondas de marés e tempestade, onde predominam formas filtradoras de biválvios e briozoários e um alto grau de retrabalhamento dos bioclástos (Lima Filho, 1991). Entretanto, ocorre também fácies interpretada como de paleoambiente mais restrito ou pouco mais profundo, onde predominam restos de braquiópodes com baixo grau de retrabalhamento.

A <u>Formação Piauí</u> apresenta escassos restos de megafósseis relacionados às esfenófitas (*Calamites*) e fetos (*Pecopteris*) (Dolianiti, 1972). No entanto, a microflora mostra-se bem mais diversificada, apresentando certa abundância de esporos e grãos de pólen não bem estudados até hoje, mas que indicam uma idade neo-carbonífera aos depósitos (Muller, 1962).

A <u>Formação Pedra de Fogo</u> é caracterizada pela abundância de caules silicificados no topo da unidade, famosos por suas características anatômicas únicas e excelente estado de conservação. Entre estes predominam os pseudocaules de fetos arborescentes da Ordem Marattiales (*Psaronius, Tietea*), que ocorrem associados a caules de esfenófitas (*Arthropitys*) e gimnospermas (*Cyclomedulloxylon*), as quais podem apresentar afinidades cordaitaleanas (*Amyelon, Carolinapitys*) ou pteridospérmicas (*Cycadoxylon, Teresinoxylon, Araguainarachis*) (Coimbra & Mussa, 1984; Mussa & Coimbra, 1987). Florestas petrificadas com vegetais em posição de vida têm sido documentadas, como às margens do rio Poti, em Teresina (Caldas *et al.*, 1989). No entanto, menos famosos são os restos de licófitas

Coordenador: Técnico:

II.5.1 - Meio Físico 65/178

GASODUTO DO PARÁ

66/178

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

(*Cyclostigma*) e esfenófitas (*Sphenophyllum*, *Calamites*) e fetos (*Pecopteris*) preservados na forma de compressões/impressões, registrados desde a porção média até a superior da unidade litoestratigráfica (Dolianiti, 1972; lannuzzi & Scherer, 2001). A Formação Pedra de Fogo registra também uma microflora variada e relativamente abundante, onde predominam grãos de pólen alados cujas idades vão desde o Eo até o Neo-Permiano (Dino *et al.*, 2002).

A <u>Formação Motuca</u> também apresenta uma megaflora similar à da Formação Pedra de Fogo, porém ainda não bem estudada. Entre os elementos presentes há pseudocaules de fetos (*Psaronius, Dembachia, Grammatopteris, Tietea*) e caules de esfenófitas (*Arthopitys*) e gimnospermas, e impressões de fetos (*Pecopteris*), esfenófitas (*Paracalamites*), cordaitaleanas (*Cordaites*) e sementes (Röbler & Galtier, 2002).

O Grupo Mearim é composto pelas formações Mosquito, Pastos Bons e Corda. Dentre estas, apenas as formações Pastos Bons e Corda são de natureza sedimentar.

A <u>Formação Pastos Bons</u> corresponde a um ciclo de sedimentação de bacias interiores que compreende a sequência de paleolagos encontrados na margem leste.

A assembléia fossilífera que caracteriza esta formação é representada por palinomorfos de esporos e polens, pertencentes às espécies *Dicheiropollis etruscus*, *Exesipollenites tumullus* e *Vitreiporites pallidus*. Também são encontrados conchostráceos associados à ictiofauna: *Palaeolimnadiopsis pauloi*, *Echeinesteria Semigibosa*, *Liostheria florianensis*, *Lioestheria* sp., *Pseudestheria* sp. 1, *Pseudestheria* sp. 2, *Asmussia* ? sp. A. e *Macrolimnadiopsis*.

Dentre os macrofósseis, os exemplares de ictiofósseis mais abundantes são os peixes Lepidotes piauhyensis (Figura II.5.1-20-E), além de outros exemplares referidos às famílias Semionotidae, Macrosemiidae e Pleuropholidae (*Gondwanapleuropholis longimaxillaris*)

A <u>Formação Corda</u> é caracterizada por uma sedimentação de ambiente desértico e fluvial de alta enregia, onde a preservação de fósseis foi um evento muito raro. Assim, os microfósseis encontrados nesta formação são representados por conchostráceos dos gêneros Lioestheria e Macrolimnadiopsis, além dos ostracodes Candona. Pegadas de répteis relacionadas a saurópodos também foram identificadas nesta formação sedimentar, em camadas de arenitos à margem do rio Tocantins em Itaguatins.

Coordenador: Técnico:

II.5.1 - Meio Físico

TRANSPORTADORA DE GAS DO RAPA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00 GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

O Grupo Itapecuru é composto pelas formações Codó, Grajaú, Alcântara e Pirabas. Nos sedimentos pelíticos aptianos da <u>Formação Codó</u> ocorrem restos de moluscos biválvios (representados por bancos de ostras) e gastrópodes, além de ostracodes, conchostráceos e insetos (Petri & Fúlfaro, 1983).

Na <u>Formação Alcântara</u>, os restos fósseis de biválvios das famílias Mytilidae, Inoceramidae, Pectinidae, Plicatulidae, Limidae, Ostreidae, Trigonidae e Mactridae possibilitaram a inferência de uma fácies estuarina para a unidade na área de São Luis, Maranhão (Klein & Ferreira, 1979). Já a presença de moluscos dulcícolas (*Anodontites e Castalia*) em diversos afloramentos de arenitos calcíferos e intercalações carbonáticas ao longo do rio Itapecuru, assim como sua associação com conchostráceos cizicídeos, indicaria clima quente com alta alcalinidade (Ferreira *et al.*, 1995). Gastrópodes viviparídeos e biválvios da família Hyriidae também foram identificados no Grupo Itapecuru, indicando ambiente fluvial, ao qual se associavam corpos aquáticos lênticos com relativa profundidade e perenidade (Senra, 2002). Em depósitos lacustres hoje submersos pelas águas represadas pela barragem de Boa Esperança, preservou-se uma flora conhecida como "Tafoflora das camadas Nova lorque". Esta flora é composta por restos foliares de angiospermas das ordens Fabales, Laurales, Sapindales, Malvales, Ebenales e Liliales, além de uns poucos frutos. A microflora correspondente não se encontra totalmente estudada, mas é indicativa de idade pliocena (Cristalli, 1997).

De idade provavelmente miocena, há também a flora fóssil da <u>Formação Pirabas</u>, que é composta por restos de angiospermas das famílias Caryocaraceae, Chrysobalanaceae, Dilleniaceae, Ebenaceae, Euphorbiaceae, Lauraceae, Melastomataceae, Meliaceae, Myrtaceae, Nyctaginaceae, Rapateaceae, Rhyzophoraceae, Bubiaceae, Rutaceae, Sapindaceae, Theaceae e Tiliaceae (Duarte, 2004). Entre os grupos de invertebrados fósseis conhecidos desta formação destacam-se os moluscos e, entre eles, os biválvios da família Pectinaidae, geralmente muito bem preservados, conservando sua concha de carbonato de cálcio.

Em visita feita à região do empreendimento, no município tocantinense de Esperantina, o Sr Juvenal das Neves Oliveira, coletou nos limites internos deste, um exemplar de peixe fossilizado em nódulo de arenito, possivelmente um espécime *Dastilbe* sp. (Figura II.5.1-21).

Coordenador: Técnico:

II.5.1 - Meio Físico 67/178

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

Figura II.5.1-21 - Exemplar fósseis em nódulo de arenito coletado em Esperantina/TO

II.5.1.2.4.2.5 - Unidades Litoestratigráficas e Potencial Paleontológico

As unidades litoestratigráficas presentes na diretriz do Gasoduto do Pará e suas assembléias fossilíferas são apresentadas abaixo:

Formação Barreiras - ENb

A Formação Barreiras tem na comunidade científica sua evolução cronológica e genética descritas em diversos estudos e levantamentos geológicos. Alguns estudos, utilizando informações palinológicas, datam o início de sua deposição no Mioceno indo até o Plioceno-Pleistoceno. Contudo, ainda há muita controvérsia sobre seus processos diagenéticos e de paleoambientes de deposição. Por certeza, tem-se apenas que sua origem se deu em ambiente fluvial e litorâneo, dominado por correntes de maré (Arai *et al.*, 1988; Rossetti *et al.*, 1989, 1990; Rossetti, 2000; Rossetti & Santos Jr., 2004).

Resumidamente, a Formação Barreiras é composta por: arenitos finos, siltitos e argilitos culínicos com lentes de conglomerado e arenito médio a grosso, pouco consolidado até friáveis; em geral maciços ou horizontalmente estratificados, ocasionalmente com estratificação cruzada; vermelho, amarelo e branco. Ocorre sobreposta à Formação Curuá, em contato discordante.

Segundo Rossetti (2006) há carência de fósseis na sucessão miocênica siliciclástica em questão, porém mostra-se bastante rica em icnofósseis, que são elementos auxiliares na caracterização paleoambiental.

Assim, os icnofósseis presentes, incluindo-se Thalassinoides, Ophiomorpha, Skolithos, Gyrolithes, Planolites, Diplocraterion, Taenidium, Psilonichnus, Palaeophycus, Teichichnus,

Coordenador: Técnico:

68/178

II.5.1 - Meio Físico

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

Chondrichthyes, Rhizocorallium, Phycosiphon e Cylindrichnus, definem assembléias empobrecidas típicas de ambientes mixoalinos ou marinho-transicionais (Góes et al., 1990; Távora & Silva, 2001; Netto & Rossetti, 2003; Rossetti & Santos Jr., 2004).

Formação Ipixuna - ENi

Na Formação Ipixuna ocorrem arenitos com estratificação/laminação cruzada e, subordinadamente, siltitos, argilitos e conglomerados intraformacionais. Estas rochas estão organizadas em sucessão com tendência geral granodecrescente ascendente, embora internamente também ocorram ciclos com tendências tanto granocrescente quanto granodecrescente ascendente. Traços fósseis, quando presentes, ocorrem de forma dispersa.

Seu ambiente de deposição foi subdividido em 3 associações, apresentendo estruturas sedimentares de paleoambiente de canal fluvial de estilo meandrante com planície de inundação/meandro abandonado; complexo estuarino influenciado por maré e marinho raso.

Os fósseis presentes na Formação Ipixuna são caracterizados por: *Ophiomorpha, Thalassinoides, Planolites, Skolithos, Diploclaterion, Teichichinus, Taenidium, Cylindrichnus* e *Chondrichthyes*? (Santos Jr. & Rossetti, 2003).

Formação Itapecuru - Kit

A Formação Itapecuru, também denominada Grupo Itapecuru, apresenta as seguintes assembléias fossilíferas: biválvios das famílias Mytilidae, Inoceramidae, Pectinidae, Plicatulidae, Limidae, Ostreidae, Trigonidae e Mactridae; moluscos dulcícolas *Anodontites* e *Castalia*; biválvios da família Hyriidae; restos foliares de angiospermas das ordens Fabales, Laurales, Sapindales, Malvales, Ebenales e Liliales, além de uns poucos frutos; angiospermas das famílias Caryocaraceae, Chrysobalanaceae, Dilleniaceae, Ebenaceae, Euphorbiaceae, Lauraceae, Melastomataceae, Meliaceae, Myrtaceae, Nyctaginaceae, Rapateaceae, Rhyzophoraceae, Bubiaceae, Rutaceae, Sapindaceae, Theaceae e Tiliaceae (Duarte, 2004).

II.5.1.2.4.3 - Hidrogeologia Regional

A água subterrânea pode ocorrer em rochas de todas as idades, em maior ou menor volume, desde as mais antigas até as mais recentes. Estas últimas, classificadas no Terciário e Quaternário, de modo geral, são aquíferos melhores que as primeiras, fruto da redução da porosidade e permeabilidade por que passaram as rochas mais antigas, uma vez que já foram comprimidas e cimentadas.

Coordenador: Técnico:

II.5.1 - Meio Físico 69/178

GASODUTO DO PARÁ Estudo de Impacto Ambiental - EIA 2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

A água subterrânea se acumula e circula nos espaços intersticiais das rochas, constituindo assim as reservas de águas do subsolo. A principal origem para a formação desses mananciais é a precipitação pluviométrica através da infiltração direta ou diferencial, fazendo com que, na moderna abordagem do gerenciamento integrado dos recursos hídricos, a hidrogeologia não mais se preocupe somente com as águas subterrâneas, mas também a relacione com o ciclo hidrológico.

A água subterrânea, de modo geral, pode-se encontrar em aquíferos classificados como confinados, semiconfinados ou aquíferos livres.

Os aquíferos confinados, em cujas rochas as águas se apresentam em condições artesianas, podem ser representados por rochas do embasamento cristalino ou por rochas sedimentares.

No caso do embasamento cristalino, o sistema de aquífero caracteriza-se pela concentração e circulação de água através de fissuras, juntas, diáclases e fraturas existentes nas rochas. É o conjunto desses interespaços que determina a capacidade de armazenar e produzir água subterrânea. Por outro lado, o volume de vazios de fissuração depende do tipo, densidade, extensão e profundidade das fraturas, que estão diretamente relacionados ao tipo e intensidade do tectonismo que atuou na região onde se encontram essas rochas.

A recarga desses aquíferos se processa principalmente pela infiltração da água retida no manto de alteração (solos permeáveis e várzeas saturadas) e nas coberturas do terciário e quaternário, ou através dos cursos d'água nos pontos de coincidências com as linhas de fratura. A contribuição a partir da infiltração direta das precipitações pluviométricas é muito reduzida.

Com relação aos aquíferos confinados em rochas sedimentares, estes se constituem, de modo geral, em melhores sistemas de aquíferos, principalmente em função da reduzida cimentação e compactação a que foram submetidas as rochas, permitindo a elas uma maior porosidade e permeabilidade. Para se enquadrar como aquífero confinado, essas rochas sedimentares devem apresentar camadas de base e topo impermeáveis, confinando a água no interior do aquífero.

Considerados em conjunto, os arenitos, dentre as diversas rochas sedimentares, são os melhores aquíferos, desde que se apresentem pouco cimentados. Além de sua extensa distribuição, geralmente apresentam boas características de armazenamento e transmissibilidade.

Os aquíferos confinados, explorados por meio de poços tubulares profundos, apresentam vantagens em relação às captações superficiais, pois, em geral, são menos passíveis de

Coordenador: Técnico:

70/178 II.5.1 - Meio Físico

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

contaminação, necessitando, na maioria dos casos, de simples desinfecção para atender às exigências de potabilidade.

Além disso, os poços profundos geram vazão superior, capaz de atender áreas urbanas, atividades industriais ou grandes projetos na área rural. A capacidade de produção destes poços é função basicamente da geologia local e das áreas de recarga.

O aquífero livre geralmente situa-se mais próximo à superfície, encontrando-se as águas nos poros deste aquífero sob pressão atmosférica, como se estivesse ao ar livre. Nessas condições, o aquífero é comumente chamado de lençol freático ou aquífero livre, não apresentando condições artesianas de confinamento. Este aquífero livre é abastecido principalmente pelas águas pluviais.

Com relação à contaminação, as águas freáticas são muito mais susceptíveis de serem contaminadas ou poluídas, devido à proximidade dessas águas com a superfície, onde o uso do solo superficial poderá alterar a sua qualidade. Cisternas ou cacimbas próximas à criação de animais ou a lixo mal disposto no solo podem apresentar sinais de contaminação, enquanto perfurações localizadas junto a culturas agrícolas que empreguem defensivos podem apresentar traços dos elementos utilizados. Da mesma forma, a proximidade entre os poços rasos e as fossas negras representa risco de contaminação das águas freáticas por coliformes fecais.

Diante do exposto, o diagnóstico da hidrogeologia da região em estudo, além da abordagem dos principais sistemas de aquíferos existentes, procurou focar no lençol freático da área em função de ser este o aquífero com potencial de se contaminar ao longo da implantação, e, sobretudo, da operação do empreendimento, além da inexistência de poços tubulares profundos na área de estudo e ainda da previsão de não utilizar águas subterrâneas como fonte de abastecimento do futuro empreendimento.

1. Aquíferos presentes na Área de Influencia Direta

São dois os aquíferos presentes na AID do gasoduto. O Aquífero Barreiras na região mais a norte e o Aquífero Itapecuru, Figura II.5.1-22.

Coordenador. Técnico:

II.5.1 - Meio Físico 71/178

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

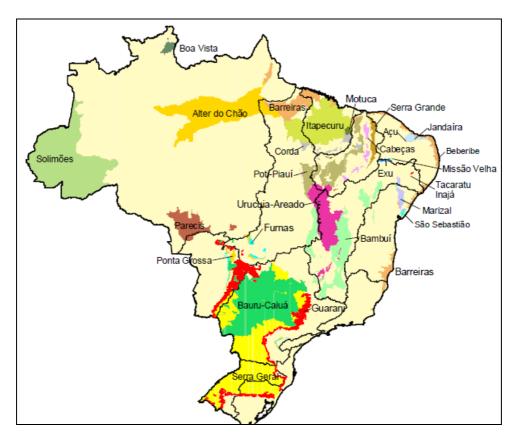


Figura II.5.1-22 - Principais aquíferos do Brasil (ANA, 2005)

II.5.1.2.4.3.1 - Aquífero Grupo Barreiras

Os sedimentos areno-argilosos do Grupo Barreiras distribuem-se na porção localizada norte da área prevista para implantação do Gasoduto do Pará.

Este aquífero consiste num pacote de rochas formado por intercalações de níveis arenoargilosos a arenosos com níveis argilosos a argilo-siltosos. Esta característica textural determina um aquífero no qual o fluxo de água subterrânea pode-se encontrar parcialmente confinado dentro de determinados compartimentos sedimentares mais porosos, sendo efetivamente selado por uma camada adjacente menos permeável. Esta quebra na transmissividade ocasiona a existência de aquíferos semiconfinados contidos no interior de um aquífero livre regional.

Este sistema de aquífero permite tanto a presença de aquíferos livres como confinados, dependendo da profundidade e do local a ser perfurado, muito embora a grande maioria dos poços perfurados o qualifique como um aquífero aberto, uma vez que não apresenta regionalmente, nas profundidades exploradas, camadas impermeáveis que o limite e lhe dê condições artesianas. No entanto, as rochas formadoras deste aquífero se caracterizam pela

Coordenador: Técnico:

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

grande heterogeneidade dos sedimentos, ora mais arenosos, ora mais argilosos, fazendo com que ocorra uma variação muito grande do potencial aquífero de cada região considerada.

Em diversas áreas de ocorrência dos sedimentos do Grupo Barreiras observa-se a captação de águas neste aquífero através de poços tubulares profundos, cuja utilização se destina tanto para o uso doméstico em unidades industriais como para uso exclusivamente doméstico em unidades condominiais ou rurais.

II.5.1.2.4.3.2 - Aguífero Itapecuru

O sistema aquífero Itapecuru ocupa o topo da Bacia Sedimentar do Parnaíba. Aflora nos estados do Maranhão e Pará, apresentando grande área de recarga, com 204.979 km². O aquífero Itapecuru é Iitologicamente formado por arenitos finos a muito finos, predominantemente argilosos, esbranquiçados, avermelhados e cremes, com níveis sílticos e argilosos, e grosseiros na base. A recarga desse aquífero é realizada, principalmente, através de infiltração direta das precipitações pluviométricas e pelos rios que o drenam. Apesar da grande área de ocorrência, essa alimentação é, em parte, prejudicada pelo desenvolvimento de horizontes plínticos, que constituem verdadeiras barreiras hidrogeológicas, fazendo com que o movimento descendente das águas infiltradas seja inibido. Por outro lado, o intenso desmatamento contribui também para um menor tempo de permanência das águas precipitadas pela atmosfera no solo, acelerando os processos erosivos e provocando um maior escoamento superficial.

II.5.1.2.5 - Características de Resistência, Colapsividade e Deformabilidade (E)

O Quadro II.5.1-11 apresenta as características de resistência, colapsividade e deformabilidade para a área mapeada. Os resultados apresentados variam de 1 a 5, sendo 1 baixo e 5 alto. Estes valores foram gerados com base na litologia presente, podendo variar localmente, devido a variações locais da litologia e fatores externos, como cobertura vegetal, estruturas geológicas (falhas, diaclases, etc), presença de linhas de água, entre outros.

Quadro II.5.1-11 - Características de resistência, colapsividade e deformabilidade para a área mapeada

Unidade litoestratigráfica	Resistência	Colapsividade	Deformabilidade
Depósitos Aluvionares e Flúvio-Marinhos	2	1	1
Grupo Barreiras	3	2	3
Formação Ipixuna	1	1	2
Depósitos Detríticos e Lateríticos	3	3	2
Formação Itapecuru	2	2	3
Formação couto Magalhães	4	4	4

Coordenador: Técnico:

II.5.1 - Meio Físico 73/178

GASODUTO DO PARÁ Estudo de Impacto Ambiental - EIA

2330-00-FIA-RI -0001-00 Julho de 2010 - Rev. nº 00

Zonas Cársticas e Áreas Susceptíveis a Dolinamentos (F) II.5.1.2.6 -

A geologia reconhecida na área de influencia indireta não apresenta litologias carbonatadas, isto é, rochas cuja composição mineralógica não apresenta CaCO3, assim sendo não é suscetível em apresentar áreas cársticas ou dolinamentos.

II.5.1.2.7 -Cavidades Naturais e Monumentos Naturais Relevantes (G)

De acordo com o cadastro nacional de cavernas da sociedade brasileira de espeleologia (CNC/SBE), com o centro nacional de Estudo Proteção e Manejo de Cavernas (CECAV/IBAMA) e o Grupo Espeleológico de Marabá (GEM), não existem sítio espeleológicos já cadastrados na área de influência direta e indireta do empreendimento. As cavidades naturais localizadas próximas ao empreendimento estão representadas no Desenho 2330-00-EIA-DE-2010-00 - Mapa de Potencialidade e Ocorrência Espeleológica, no Caderno de Mapas do EIA, Vol II.

II.5.1.2.8 -Geomorfologia (H)

II.5.1.2.8.1 -Considerações Gerais

O estudo do relevo da Área de Influência Indireta do Gasoduto do Pará apresenta uma ampla variedade de feições e formas geomorfológicas, resultantes do tectonismo regional, diversidades litológicas e de implicações morfo-climáticas de caráter regional. A interação existente entre esses fatores resultou na presença de diversas superfícies distribuídas em níveis altimétricos diferenciados, construindo grandes compartimentos e subcompartimentos com altitudes variadas, formando distintas unidades de relevo, como: planaltos, depressões e planícies. A Figura II.5.1-23 nos mostra a altimetria da região do empreendimento.O mapeamento da Geomorfologia é apresentado no Caderno de Mapas, Volume II (2330-00-EIA-DE-2004-00)

Em relação às rochas sedimentares da Bacia do Parnaíba, as variações litológicas não são muito expressivas como as do embasamento cristalino, predominando arenitos, siltitos, argilitos conglomerados e folhelhos. Essas variações chegam a refletir em mudanças nas feições morfológicas, mesmo em sistemas morfoclimáticos semelhantes.

Técnico. 74/178

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00 GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

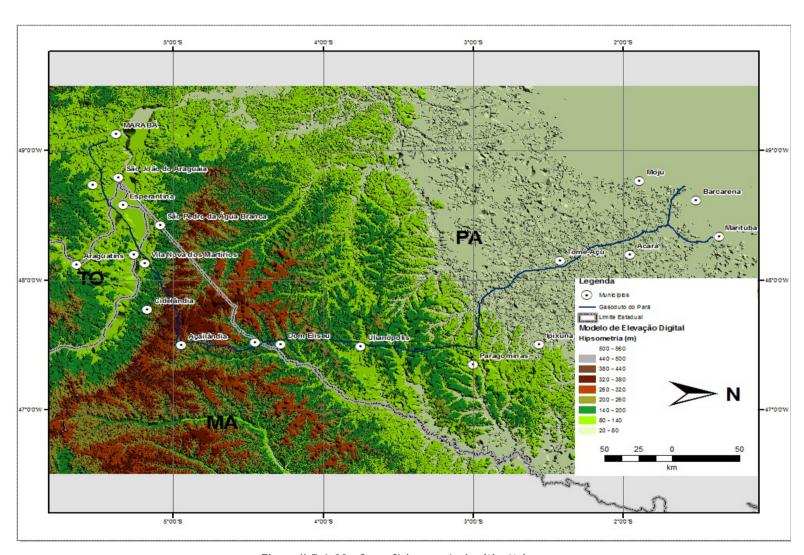
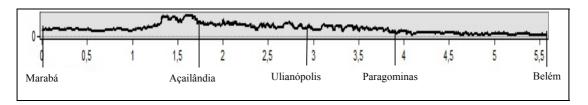


Figura II.5.1-23 - Superfície em níveis altimétricos

Coordenador: Técnico:

II.5.1 - Meio Físico 75/178



GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

Perfil topográfico longitudinal do gasoduto

II.5.1.2.8.2 - Unidades Morfoestruturais da Área de Influência

II.5.1.2.8.2.1 - Planaltos

Essa unidade morfoestrutural está totalmente inserida no domínio morfoclimático dos planaltos amazônicos rebaixados ou dissecados das áreas colinosas e planícies revestidas de florestas densas.

A esse tipo de modelado correspondem às subunidades geomorfológicas Planalto Setentrional Pará-Maranhão e Planalto Rebaixado da Amazônia (do Baixo Amazonas - Figura II.5.1-24), caracterizadas por um relevo que varia de plano a suave ondulado, declividades normalmente inferiores a 10%, tabular com superfícies apresentando altitudes que variam entre 200 e 300 metros no Planalto Setentrional e com altitudes inferiores a 200 metros no Planalto Rebaixado da Amazônia.

Em geral apresentam coberturas detrítico-lateríticas com horizontes de concreções ferruginosas e/ou limoníticas e sedimentos arenosos e areno-argilosos avermelhados (Figura II.5.1-25). Essa cobertura encontra-se intemperizada e pedogeneizada, originando Latossolos com revestimento de floresta densa.

Figura II.5.1-24 - Planalto Rebaixado da Amazônia, próximo à Bélem, caracterizado por um relevo plano com baixa declividade

Coordenador: Técnico:

76/178 II.5.1 - Meio Físico

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

Figura II.5.1-25 - Coberturas detrítico-lateríticas no Planalto Setentrional Pará-Maranhão

II.5.1.2.8.2.2 - Depressões

A esse tipo de modelado na área de influência indireta do Gasoduto do Pará corresponde apenas a Depr'essão Periférica do Sul do Pará. A paisagem dessa unidade é constituída pelo resultado do rebaixamento do pediplano pliocênico por uma fase de pediplanação posterior, com dominância de relevo variando de plano a suave ondulado com declives inferiores a 8% e relevo ondulado com declives variando entre 8 e 20%, nas porções mais dissecadas dessa depressão e áreas de transição para o Planalto Pará-Maranhão (Figura II.5.1-26).

Figura II.5.1-26 - Rio Tocantíns na Depressão Periférica do Sul do Pará, próximo ao contato da depressão com o Planalto Pará-Maranhão

Coordenador: Técnico:

II.5.1 - Meio Físico 77/178

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

II.5.1.2.8.2.3 - Planícies

As planícies são ambientes deposicionais, onde o transporte erosivo perde energia e descarrega os materiais provenientes das depressões erosivas e áreas planálticas (Figura II.5.1-27 e Figura II.5.1-28). Ocorrendo fundamentalmente associadas ao transporte fluvial, estas áreas deposicionais formaram alúvios nas planícies de inundação dos rios, bem como em terraços mais antigos. Na área de influência do Gasoduto, os aluviões e terraços ocorrem fundamentalmente em sua porção sul, nas margens e na confluência dos rios Tocantins e Araguaia e alguns raros afluentes secundários, formando pequenas manchas, com relevo dominantemente plano, e declividade inferior a 3%. São constituídos de sedimentos quaternários aluvionares, compostos por cascalhos, areias, siltes e argilas. São depósitos heterogêneos e localmente selecionados pela ação das águas correntes. Neles, dominam Gleissolos Háplicos e Neossolos Flúvicos de textura variada e argila de atividade baixa.

Figura II.5.1-27 - Planície fluvial do rio tocantis. A baixa energia de transporte de sedimentos acaba por formar ilhas fluviais ao longo do rio

Figura II.5.1-28 - Planície fluvial e terraço às margens do rio Capim. Na margem direita do rio, covexa, há um ambiente de deposição de sedimentos do rio, formando uma planície. Na margem esquerda, côncava, há erosão sobre o terraço fluvial

II.5.1.2.8.3 - Distribuição das Unidades Morfo-Estruturais

Em sua porção norte, quando sai da cidade de Marabá (PA) o gasoduto corre pela Depressão Periférica do Sul do Pará em áreas dissecadas dos planaltos amazônicos rebaixados em relevos colinosos suaves. Essa área caracteriza-se por uma feição geomorfológica proveniente do rebaixamento do pediplano pliocênico, formador dos planaltos sedimentares aí presentes. Denominada de depressão periférica, essas áreas constituem em uma zona de circundesnudação, após a deposição da formação Barreira. Nessa feição os planaltos foram dissecados e as depressões formadas por sucessivas fases erosivas que resultaram em um relevo de colinas suaves com baixa declividade e topo plano entalhados por canais em formas de ravinas.

Coordenador. Técnico:

78/178 II.5.1 - Meio Físico

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

Ainda neste trecho inicial, o gasoduto cortará as planícies e terraços fluviais que representam áreas caracterizadas por processos deposicionais - acumulação de sedimentos - nas margens dos rios Araguaia, Tocantins. A denominação dessa unidade de relevo está circunscrita à ampla faixa que abrange os depósitos quaternários recentes, inseridas na Depressão Periférica do Sul do Pará as margens dos referidos cursos de água.

Já nas proximidades da cidade de Açailândia no estado do Maranhão o gasoduto atravessa a área de transição entre a Depressão Periférica do Sul do Pará e o Planalto Setentrional Pará-Maranhão. Neste trecho, o gasoduto corta formas estruturais e erosivas de processos de pedimentação.

A partir da cidade de Açailândia no estado do Maranhão o gasoduto flerte rumo ao norte até a cidade de Paragominas no estado do Pará. Num trecho de cerca de 230 km, o gasoduto corre paralelo à rodovia BR-010, Belém-Brasília. Neste trecho o gasoduto corre totalmente sobre a unidade morfo-estrutural do Planalto Sententrional do Pará-Maranhão que se caracteriza pelos planaltos amazônicos rebaixados e dissecados com áreas colinosas, originalmente revestidos por florestas densas. No traçado do gasoduto dominam as formas de superfícies de aplainamento talhada em rochas sedimentares e por longos vales interplanálticos.

O Planalto Setentrional do Pará-Maranhão está bem caracterizado por uma drenagem de fundo chato e margens bem recortadas com afluentes secundários formando um padrão retangular. Esse conjunto reflete a estrutura de camadas sedimentares subhorizontais, constituída por sedimentos cretácicos e paleogênicos.

Em seu trecho final, a partir da cidade de Paragominas (PA), quando o duto toma o rumo noroeste até o seu ponto final, este corre sobre a unidade morfo-estrutural do Planalto Rebaixado da Amazônia (do Baixo Amazonas).

Coordenador: Técnico.

II.5.1 - Meio Físico 79/178

GASODUTO DO PARÁ Estudo de Impacto Ambiental - EIA 2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

II.5.1.2.8.4 - Unidades de Relevo Geomorfológicas (Área de Influência Indireta)

Numa visão de conjunto, a Área de Influência Indireta do Gasoduto do Pará mostra aspectos heterogêneos de morfologia. Com o objetivo de definir tais aspectos, sugerem-se quatro setores individualizados do ponto de vista geomorfológico. Dois associados aos Planaltos da Amazônia, um terceiro que compreende a Depressão Periférica do Sul do Pará e por fim, porém sem constituir uma unidade morfo-estrutural, as formas de acumulação das margens dos rios Araguaia e Tocantins.

A interpretação das imagens do SRTM e as observações de campo indicam que os componentes estruturais e litológicos são os fatores mais relevantes na configuração dos padrões geomorfológicos gerais ao longo do traçado do gasoduto.

Neste sentido, podem ser sugeridas para a área de influência direta do gasoduto nove unidades geomorfológicas distintas, correspondendo às unidades de Áreas Dissecadas, Formas Erodidas e Formas de Acumulação, conforme as unidades de relevo apresentadas a seguir.

II.5.1.2.8.4.1 - Formas de Acumulação

Essas formas ocorrem predominantemente no trecho inicial do gasoduto, entre os quilômetros 69 e 127, nas várzeas dos rios Araguaia e Tocantins, onde o gasoduto os corta no sentido nordeste em direção a cidade de Açailândia.

- Apf Planícies fluviais. Faixa de aluviões recentes em baixadas inundáveis de fundo de vale.
- Atf Terraços fluviais. Terraços com depósitos inconsolidados apresentando lagoas em alguns trechos. Podem estar pedimentados.

A partir deste ponto, domina a forma de acumulação de Planícies Fluviais nas baixas dos cursos de água mais pronunciados a serem cortados pelo gasoduto. Essa unidade ocorre distribuída ao longo de todo o traçado do gasoduto, seja na linha 1, seja na linha 2.

No trecho final, novas ocorrências de terraços fluviais foram identificadas, entre os km 628 e 645 e entre os km 677 e a área final do gasoduto.

 Coordenador:
 Técnico:

 80/178
 II.5.1 - Meio Físico

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

II.5.1.2.8.4.2 - Formas Erodidas

As superfícies pediplanas (Espp) dominam quase que exclusivamente as formas de relevo a partir do km 537 do gasoduto, sendo entrecortada apenas nas baixadas mais amplas por terraços fluviais e planícies fluviais.

As demais ocorrências dessa unidade de relevo distribuem-se ao longo do duto, com concentração entre os km 167 e 286, nas proximidades da cidade de Açailandia.

 Espp - Superfícies pediplanadas. Aplainamentos em retomada de erosão recente, elaborado geralmente em rochas sedimentares. Parcialmente recobertos por depósitos inconsolidados.

A unidade de relevo caracterizada por formas erodidas em superfícies tabulares erosivas (Estb) ocorre com menor freqüência na área de influência do gasoduto, concentrando-se próximo a cidade de Açailândia, km 153 a 315 e nas proximidades da cidade de Paragominas, entre os km 358 e 458 do gasoduto.

• Estb - Superfície tabular erosiva. Superfície de aplainamento talhada em rochas sedimentares, topograficamente elevada.

II.5.1.2.8.4.3 - Áreas Dissecadas

Na área de influência do gasoduto as formas de relevo dominantes são as diferentes formas de dissecação conforme pode ser visualizado nas unidades listadas a seguir.

- Dcr Dissecado em colinas e ravinas. Forma de dissecação em colinas com ramificações de canais intermitentes, resultantes da retomada de erosão recente ou influência litológica.
- Dit Dissecado em interflúvios tabulares. Forma de dissecação determinada pelo aprofundamento de talvegues em relevos tabulares, geralmente formando um padrão de drenagem retangular.
- Dr Dissecado em ravinas. Formas de dissecação superficiais resultantes do entalhamento por drenagem incipiente.
- Drv Dissecado em ravinas e vales encaixados. Dissecação resultante da evolução do dissecado em ravinas, com maior aprofundamento da drenagem.
- Drvit Dissecado em ravinas, vales encaixados e interflúvios tabulares. Formas associadas de diferentes tipos de dissecação.

Coordenador: Técnico:

11.5.1 - Meio Físico 81/178

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

II.5.1.2.8.5 - Considerações Finais

Numa avaliação quanto aos aspectos geomorfológicos, o relevo, em geral, não oferece restrições sérias quanto à abertura de valas, lançamento da linha e implantação do gasoduto, em virtude da ocorrência de vastas áreas de topografia plana. Porém a ausência de manejo dos solos, bem como a remoção da cobertura vegetal e cortes de estrada mal drenados, podem provocar a detonação de processos erosivos superficiais incisos, tipo ravinamento.

Na situação apresentada, trata-se de formas amplas, com declives normalmente suaves e aprofundamento de drenagem fraca a moderado. Nesta interpretação podem-se incluir grandes parcelas das unidades da Depressão Periférica do Pará, nos trechos iniciais do gasoduto, próximo a cidade de Marabá no Pará, do Planalto Sententrional Pará-Maranhão, no trecho central do gasoduto e dos Planaltos Rebaixados da Amazônia, na porção final do gasoduto. O resultado do somatório total com as áreas e percentuais de ocorrência das unidades geomorfológicas relativo à área de influência do Gasoduto do Pará é apresentado no Quadro II.5.1-12.

Quadro II.5.1-12 - Resumo das Unidades Geomorfológicas da Área de Influência do Gasoduto do Pará

Símbolo	Unidade Geomorflógica	Área (ha)	%
Apf	Planícies fluviais. Faixa de aluviões recentes em baixadas inundáveis de fundo de vale.	98.274,74	13,70
Atf	Terraços fluviais. Terraços com depósitos inconsolidados apresentando lagoas em alguns trechos. Podem estar pedimentados.	28.031,37	3,91
Dcr	Dissecado em colinas e ravinas. Forma de dissecação em colinas com ramificações de canais intermitentes, resultantes da retomada de erosão recente ou influência litológica.	47.187,42	6,58
Dit	Dissecado em interflúvios tabulares. Forma de dissecação determinada pelo aprofundamento de talvegues em relevos tabulares, geralmente formando um padrão de drenagem retangular	47.429,19	6,61
Dr	Dissecado em ravinas. Formas de dissecação superficiais resultantes do entalhamento por drenagem incipiente.	7.982,45	1,11
Drv	Dissecado em ravinas e vales encaixados. Dissecação resultante da evolução do dissecado em ravinas, com maior aprofundamento da drenagem.	6.988,87	0,97
Drvit	Dissecado em ravinas, vales encaixados e interflúvios tabulares. Formas associadas de diferentes tipos de dissecação	102.083,16	14,23
Espp	Superfícies pediplanadas. Aplainamentos em retomada de erosão recente, elaborados geralmente em rochas sedimentares. Parcialmente recobertos por depósitos inconsolidados.	289.404,81	40,35
Estb	Superfície tabular erosiva. Superfície de aplainamento talhada em rochas précambrianas, topograficamente elevada.	81.580,76	11,38
Água		8.227,71	1,15
Total		717.190,48	100,00

O Quadro II.5.1-12 mostra que as formas de relevo erodidas, Superfícies pediplanadas (Espp) e Superfície tabular erosiva (Estb) ocupam mais da metade da área de influência do gasoduto, 370.986 ha (51,7%), sendo que as Superfícies pediplanadas (Espp) são dominantes com 40,4%.

Zoordenador:Técnico:82/178II.5.1 - Meio Físico

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

As formas dissecadas ocupam 211.671 ha (29,5%) sendo que o Dissecado em ravinas, vales encaixados e interflúvios tabulares ocupam 14,2% da área de influência do gasoduto.

As formas de acumulação, Planícies fluviais (Apf) e Terraços fluviais (Atf), ocupam 126.306 ha (17,6%). Dentre estas, as Planícies fluviais (Apf) ocorrem em 13,7% da área.

II.5.1.2.8.5.1 - Unidades Geomorfológicas Atravessadas pelo Gasoduto

O Quadro II.5.1-13 apresenta as Unidades Geomorfológicas que são atravessadas pelo gasoduto (em quilômetros).

Quadro II.5.1-13 - Local (km) em que o Gasoduto atravessa as Unidades Geomorfológicas

Quilômetro de Ocorrência (Km)	Unidade Geomorfológica	
área inicial até 5,5.	Dcr	
5,5 a 13,5	Espp	
13,5 a 51,4.	Dcr	
51,4 a 67,7	Espp	
67,7 a 68,5	Rio	
68,5 a 92,8	Apf	
92,8 a 101,4	Drvit	
101,4 a 112	Apf	
112 a 113,2	Rio	
113,2 a 117	Apf	
117 a 127,2	Atf	
127,2 a 153,4	Drvit	
153,4 a 167,2	Estb	
167,2 a 180,5	Espp	
180,5 a 182,4	Estb	
182,4 a 183,9	Espp	
183,9 a 190,9	Estb	
190,9 a 196,8	Drvit	
196,8 a 198,5	Espp	
198,5 a 199,7	Drvit	
199,7 a 208,8	Espp	
208,8 a 210	Drvit	
210 a 215,9	Espp	
215,9 a 216,7	Drvit	
216,7 a 231,4	Espp	
231,4 a 234,9	Drvit	
234,9 a 244,3	Estb	
244,3 a 244,9	Drvit	
244,9 a 246,3	Estb	
246,3 a 246,7	Drvit	
246,7 a 285,8	Espp	
285,8 a 287,6	Estb	

Coordenador: Técnico: 83/178

GASODUTO DO PARÁ

84/178

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

Quilômetro de Ocorrência (Km)	Unidade Geomorfológica
287,6 a 308,8	Drvit
308,8 a 315,6	Estb
315,6 a 321,8	Drvit
321,8 a 322,9	Apf
322,9 a 325,4	Espp
325,4 a 326,3	Drvit
326,3 a 332,1	Espp
332,1 a 339,5	Drvit
339,5 a 349,2 349,2 a 351,4	Espp
	Apf
351,4 a 353,9	Espp
353,9 a 358,2	Apf
358,2 a 360,2	Estb
360,2 a 366,5	Espp
366,5 a 369	Estb
369 a 369,8	Espp
369,8 a 372,2	Apf
372,2 a 372,6	Espp
372,6 a 374,1	Estb
374,1 a 375,7	Espp
375,7 a 377,8	Estb
377,8 a 381,7	Espp
381,7 a 382,2	Apf
382,2 a 383,5	Espp
383,5 a 384,4	Estb
384,4 a 389,3	Espp
389,3 a 397	Estb
397 a 399,7	Espp
399,7 a 402,2	Apf
402,2 a 407,7	Espp
407,7 a 408,9	Estb
408,9 a 413,7	Espp
413,7 a 414,7	Estb
414,7 a 416,5	Espp
416,5 a 417,1	Dit
417,1 a 421,3	Espp
421,3 a 433,6	Estb
433,6 a 435	Apf
435 a 438,5	Estb
438,5 a 444,7	Dit
444,7 a 445,7	Apf
445,7 a 448,8	Dit
448,8 a 449,9	Apf
449,9 a 453,8	Dr
453,8 a 458,3	Estb
458,3 a 467,3	Dr
467,3 a 469	Apf
469 a 470,3	Espp
1	1

Coordenador: Técnico: II.5.1 - Meio Físico

TGP

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

Quilômetro de Ocorrência (Km)	Unidade Geomorfológica
470,3 a 472,8	Apf
472,8 a 476,5	Dit
476,5 a 477,8	Espp
477,8 a 482,7	Dit
482,7 a 484,5	Espp
484,5 a 508,7	Dit
508,7 a 510,4	Apf
510,4 a 530	Espp
530 a 530,6	Apf
530,6 a 536,6	Drv
536,6 a 539,9	Espp
539,9 a 540,6	Apf
540,6 a 544,9	Espp
544,9 a 545,3	Apf
545,3 a 553,8	Espp
553,8 a 554,4	Apf
554,5 a 556	Espp
556 a 558	Apf
558 a 564	Espp
564 a 564,7	Apf
564,7 a 565,4	Espp
565,4 a 566,1	Apf
566,1 a 573,9	Espp
573,9 a 578,7	Apf
578,7 a 592,1	Espp
592,1 a 594	Apf
594 a 595,7	Espp
595,7 a 596,7	Apf
596,7 a 617,1	Espp
617,1 a 618,7	Apf
618,7 a 625	Espp
625 a 626,8	Apf
626,8 a 628	
	Espp
628 a 629 629 a 631,9	Atf Espp
631,9 a 635,5	Atf
635,5 a 638,8	Espp
638,8 a 639,3	Rio
639,3 a 645,5	Atf
645,5 a 651,8	Espp
651,8 a 653,2	Apf
653,2 a 662,6	Espp
662,6 a 665	Apf
665 a 669,1	Espp
669,1 a 671,7	Apf
671,7 a 672,7	Espp

Coordenador: Técnico:

II.5.1 - Meio Físico 85/178

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

Quilômetro de Ocorrência (Km)	Unidade Geomorfológica
672,7 a 675,3 (área final do gasoduto braço esquerdo).	Apf
675,3 (início do braço direito) a 676,6	Espp
676,6 a 678,2	Atf
678,2 a 678,6	Rio
678,6 a 680,5	Atf
680,5 a 694	Espp
694 a 694,8	Apf
694,8 a 704,4	Espp
704,4 a 706,3	Apf
706,3 a 708,3	Rio
708,3 a 712,5	Apf
712,5 a 716,4 (área final do gasoduto braço direito)	Atf

II.5.1.2.8.5.2 - Conclusões

Desse modo, concluímos que ao longo da faixa ocorrem trechos mais críticos, tais como, nos domínios de solos arenosos muito erodíveis (que já apresentam enormes voçorocas, ilustradas no relatório), de solos muito friáveis, e de solos moles; assim como, existem trechos menos críticos, tais como, nos domínios de solos residuais de rochas metamórficas em relevo pouco acentuado, de solos inundados, e de solos hidromórficos.

Contudo, tendo em vista que o principal objetivo do acompanhamento técnico da obra é a garantia da sua qualidade, recomenda-se que todas as escavações devam ser inspecionadas e, quando se fizer necessário, mapeadas por um geólogo de engenharia que deverá registrar, em plantas e seções, as litologias, o nível do lençol freático e os parâmetros geomecânicos encontrados, tais como, graus de alteração, fraturamento, coerência, características das descontinuidades, etc., além de liberar a vala, o túnel ou a fundação para as obras de contenção, montagem e reaterro.

Um acompanhamento bem documentado, afinado com o projeto, naturalmente, possibilitará um diagnóstico mais fidedigno de qualquer problema geotécnico que, eventualmente, venha a ocorrer após a entrada do sistema em operação, assim como, norteará a sua investigação e as medidas corretivas a serem tomadas. Indubitavelmente, a inspeção sistemática de todo o traçado de uma dutovia constitui a forma de controle mais rápida e, em muitos casos, mais eficiente, de monitorização para prevenção e solução de problemas geotécnicos.

 Coordenador:
 Técnico:

 86/178
 II.5.1 - Meio Físico

TRANSPORTADORA DE GÁS DO PARÁ

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00 GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

II.5.1.3 - Geotecnia e Pedologia

II.5.1.3.1 - Risco Geológico-Geotécnico (A)

O primeiro aspecto observado numa dutovia, a ser implantada ou em operação, é a interação do seu traçado com o relevo da região atravessada. Seu caminhamento, preferencialmente retilíneo, costuma interceptar planícies e encostas onde ocorrem depósitos de aluviões, coluviões, corpos de tálus e até dunas, no caso de zonas litorâneas. No presente caso, todas as feições supracitadas, excetuando-se as dunas, são encontradas (Figura II.5.1-29).

Figura II.5.1-29 - Depósito aluvionar sob a ponte

Qualquer estrutura a ser implantada sobre o maciço solo/rocha interage diretamente com ele, ou seja, introduz elementos que alteram o equilíbrio das forças ou o equilíbrio físico-químico atuantes, e é submetida a parâmetros ou fenômenos já instalados ou que venham a se manifestar no futuro. Essa interação começa durante a fase de construção, quando são realizadas escavações, serviços de fundação, drenagens, etc. e perdura após término da obra, num novo estado de equilíbrio que não seja prejudicial à estabilidade da estrutura ou à sua funcionalidade e durabilidade. Então, podem ocorrer interações de natureza física, físico-química ou química, redundando todas elas, geralmente, em efeitos físicos sobre a estrutura.

As interações físicas correspondem a esforços aplicados ou recebidos, de compressão ou tração, em função das características geotécnicas da fundação e das peculiaridades de cada estrutura. As interações físico-químicas dependem, fundamentalmente, das condições geoquímicas e hidrogeológicas da fundação. As interações químicas, por sua vez, são decorrentes de vazamentos em tubulações. Naturalmente, todas podem ocorrer de forma isolada, mas, é muito comum a sua associação quando um tipo de problema desencadeia outros, de natureza diversa.

Coordenador. Técnico:

II.5.1 - Meio Físico 87/178

GASODUTO DO PARÁ Estudo de Impacto Ambiental - EIA 2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

Por serem estruturas enterradas a pequena profundidade, o esforço transmitido ao terreno, geralmente, é de compressão, atuando sob a superfície de apoio, em função do próprio peso. Tal solicitação mecânica, com o tempo, tende a deformar o terreno, sendo particularmente importante no caso de adensamento dos solos argilosos saturados.

Todavia, a estrutura também recebe esforços da fundação, quer sejam passivos, de reação aos esforços por ela imprimidos, ou ativos, representados por empuxos do solo, subpressões e rupturas da fundação ou taludes de escavações. Nesse caso, as tensões desses esforços podem ser de compressão, tração ou cisalhantes e podem causar rompimento das tubulações.

Dutovias de aço, ferro fundido ou concreto são estruturas que, soterradas, tendem a sofrer corrosão, em virtude da agressividade físico-química do solo, podendo ocasionar vazamentos. Isto pode acontecer em bacias sedimentares, onde ocorram folhelhos, argilitos e siltitos, e depósitos aluviais recentes que, por conterem turfa ou argilas orgânicas, acidificam o pH do solo. Esse tipo de problema foi constatado em tubulações metálicas enterradas em sedimentos carboníferos da Fm. Rio Bonito, no Paraná.

Outra situação comum, em se tratando de bacias sedimentares, seria a existência de argilas expansivas que podem estar presentes nos argilitos, siltitos, folhelhos e respectivos produtos de alteração. Como consequencia, os taludes de escavações se deterioram, provoca desabamentos em túneis e valas, e empuxos indesejáveis sobre estruturas.

Argilas com baixa capacidade de suporte estão quase sempre associadas a depósitos de aluviões, sendo comum a sua ocorrência em planícies fluviais e costeiras. Por suas baixas permeabilidades, reagem lentamente às flutuações da superfície freática, podendo causar artesianismo na água do subsolo. Devido a essas características, tais materiais apresentam estabilidade precária nas escavações de valas mais profundas e sofrem adensamento quando submetidos à aplicação de cargas, denotando possíveis recalques.

Areias friáveis, que podem ser encontradas em coluviões e mesmo em bacias sedimentares, suportam cargas relativamente baixas e podem sofrer liquefação, adensando-se bruscamente quando submetidas a vibrações e também podem causar rupturas em dutos. Corpos de tálus, quando apresentam equilíbrio precário, sujeitos a rastejos e, eventualmente, a escorregamentos, podem se instabilizar quando escavados, comprometendo a própria escavação ou a própria encosta onde está sendo implantada a obra. Por se tratarem de depósitos formados por gravidade, sua compacidade normalmente é baixa, com solos friáveis.

 R8/178
 Técnico:

 11.5.1 - Meio Físico

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

Portanto, devido às razões supracitadas, a menos que seja impossível evitá-los, através de traçados alternativos, deve-se minimizar a interceptação desses solos transportados, como observado durante a instalação de linhas de transmissão na região de Belém (PA).

Nos traçados de dutovias, a travessia de cursos d'água e áreas alagadas é uma ocorrência constante (Figura II.5.1-30 e Figura II.5.1-31). Naturalmente, recomenda-se que tais trechos sejam evitados ou que a interceptação seja a menor possível, pois a ocorrência de água à superfície dificulta qualquer tipo de obra e pode requerer ancoragens e proteções adicionais contra correntes, ondas e, até mesmo, embarcações.

Figura II.5.1-30 - Rio com aproximadamente 1,5km de largura

Figura II.5.1-31 - Rio com largura considerável (notar linha de transmissão) e entorno alagadiço

O entendimento das condições hidrogeológicas locais restringe-se, geralmente, ao conhecimento da posição do nível do lençol freático e seu comportamento. Conforme descrito anteriormente, a água quase sempre esta presente nos casos de escorregamentos, por introduzir tensões em estruturas da rocha ou reduzir os parâmetros de resistência dos solos. Seu concurso é, ainda, a condição principal para que se instalem processos de expansividade, colapsividade e erosão, e o meio se torne agressivo para estruturas subterrâneas ou enterradas.

Em dutos enterrados, a elevação do nível da água no subsolo provoca empuxos indesejáveis que, dependendo da relação diâmetro x profundidade, produzem flutuação e arrancamento quando o peso do conjunto tubo-reaterro é menor que o empuxo da água.

A profundidade do topo rochoso e o tipo de contato da mesma com o solo de cobertura são função de inúmeros fatores geológicos e ambientais, intervenientes entre si. De acordo à geologia, relevo e clima, podem apresentar zonas mais ou menos alteradas, transições com o manto de alteração e grandes irregularidades. Devido ao grande contraste de permeabilidade entre o solo e a rocha, essa interface, frequentemente, constitui um meio preferencial de

Coordenador: Técnico:

II.5.1 - Meio Físico 89/178

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

percolação de água, podendo desencadear processos erosivos (Figura II.5.1-32, Figura II.5.1-33, Figura II.5.1-34 e Figura II.5.1-35), saturação de maciços e instabilidades.

Figura II.5.1-32 - Cicatriz erosiva, a montante da estrada, recoberta por vegetação

Figura II.5.1-33 - Voçorocas a jusante da rodovia

Figura II.5.1-34 - Voçorocas, a montante da rodovia

Figura II.5.1-35 - Voçorocas, a jusante da rodovia

Parte dos resultados aqui apresentados deriva do levantamento geológico-geotécnico das AID eAII do Gasoduto do Pará. A outra parte - relativa à abordagem dos aspectos geotécnicos - deriva (apenas) da análise interpretativa do mapa geológico da região e é baseada na descrição dos movimentos de massa e ou processos erosivos identificados na AII do gasoduto.

Neste sentido, trata-se, como explicitado por Aguiar & Cerri (1996), de uma Carta Básica, com unidades geotécnicas definidas com base em levantamentos executados anteriormente, na escala 1:200.000, sem a realização de etapas de investigação, como ensaios de laboratório ou ensaios *in situ*. Mais ainda, trata-se de uma Carta Dirigida, gerada a partir da identificação dos problemas já detectados na AII e que expõe as limitações e potencialidades dos terrenos, tal como exposto por Bitar et al. (1992).

Coordenador: Técnico:

90/178 II.5.1 - Meio Físico

GASODUTO DO PARÁ Estudo de Impacto Ambiental - EIA

91/178

A metodologia de sua preparação levou em conta, tal como explicitado pela Sistemática IAEG, as características das rochas e solos e dos fenômenos geodinâmicos, mas não das condições hidrogeológicas e das condições geomorfológicas. É, portanto, um mapa de finalidade especial, destacando aspectos específicos do meio-físico ou das condições geotécnicas para a construção de um gasoduto, preparado numa escala pequena ≤ 1:100.000 e de caráter geral. Na 1ª fase, definiu-se o problema a ser investigado; formulou-se uma hipótese de trabalho e definiram-se os atributos do meio físico a serem analisados. Na 2ª fase, dividiu-se a área em unidades (zonas homogêneas), em função das propriedades e das relações dos atributos analisados.

A análise detalhada das características geológicas dos litotipos presentes na All do Gasoduto do Pará, acompanhada da observação e do levantamento de campo, com definição de pontoscontrole, permitiu o zoneamento preliminar da AII, ao longo do traçado, em 06 (seis) unidades geotécnicas e a indicação dos pontos problemáticos.

Conquanto, a carta geotécnica preliminar, na escala 1:200.000, apresenta as seguintes unidades de comportamento:

- Solos residuais de rocha metamórfica de baixo grau em relevo pouco acentuado, denotando uma erodibilidade reduzida;
- Solos hidromórficos com adensamento reduzido:
- Solos residuais arenosos muito erodíveis que se apresentam, localmente, sobrepostos por uma capa laterítica, a qual pode atuar positivamente, no sentido de evitar e/ou amenizar tamanho potencial erodível;

Solos muito friáveis;

- Solos inundados, naturalmente, com baixa compressibilidade; e
- Solos moles flúvio-marinhos.

II.5.1.3.2 -Descrição dos Processos Erosivos (B)

O relevo da área de influência do gasoduto encontra-se bastante trabalhado pela evolução geomorfológica de longo tempo, apresentando ajustes das encostas e fundos de vale, aos níveis de base locais. Processos antrópicos levaram a alteração da paisagem, através do rebaixamento de níveis de base locais a partir da escavação de leitos fluviais pela mineração, pela substituição da cobertura vegetal por pastagens ou pelo corte de estradas e construções. Além do histórico da

Coordenador Técnico:

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

92/178

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

II.5.1 - Meio Físico

ocupação, processos naturais também são responsáveis pela ocorrência de processos erosivos, sobretudo movimentos de massa associados a encostas mais íngremes. De maneira geral, a paisagem ao longo da diretriz do duto encontra-se em um relevo que varia de plano a suave ondulado, apresentando, portanto, baixa suscetibilidade à erosão. Entretanto, nas proximidades das cidades de Açailândia, no Maranhão, e Ulianópolis e Dom Eliseu, no Pará, há uma concentração de processos erosivos acelerados, principalmente na forma de voçorocas.

Os focos erosivos e seus respectivos processos genéticos na região do Estado do Maranhão há muito já vem sendo monitorados e pesquisados. Marçal (2000) fez um levantamento da suscetibilidade à erosão dos solos no alto curso da Bacia Hidrográfica do rio Açailândia. Segundo este trabalho, o processo de valorização e uso da terra pelo qual passou esta região, principalmente em função da implantação das rodovias e ferrovias, foi tão intenso que proporcionou a origem de muitos dos problemas ambientais que a região enfrenta nos dias atuais (Figura II.5.1-36), dentre eles o problema da erosão por voçorocamento (Marçal, 2000).

Figura II.5.1-36 - Imagem de satélite (31/07/2005 Digital Globe - Google Earth) da cidade de Açailândia com destaque para voçoroca (em vermelho) evoluindo em direção à área urbana da cidade

Por sua vez, nos municípios de Ulianópolis e Dom Eliseu, no Pará, há a presença de um divisor topográfico entre as bacias dos rios Gurupi e Surubiú (afluente do rio Capim) com um considerável agrupamento de cicatrizes erosivas derivadas da instabilidade morfodinâmica presente nesta região. Tal divisor, submetido ao processo geomorfológico de captura de drenagem, apresenta feições erosivas originadas a partir da dinâmica entre os diferentes níveis de base locais que regulam estas duas bacias. Este fenômeno, entretanto, trata-se de fenômeno natural e normal, um fato inevitável no curso da evolução geomorfológica de um rio.

Coordenador: Técnico:

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

A Figura II.5.1-37 mostra como o divisor topográfico, em vermelho, sustenta uma forma de relevo tabular, sendo aos poucos desgastado pela evolução da expansão da rede de drenagem, sempre a remontante, por meio de processos erosivos incisos como ravinas e voçorocas.

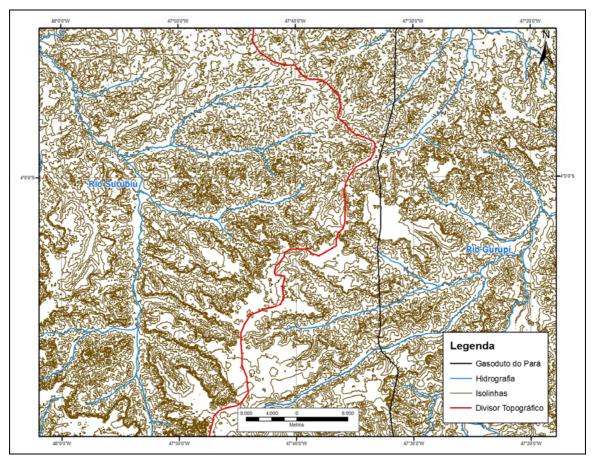


Figura II.5.1-37 - Frente de expansão da rede de drenagem, através de processos erosivos acelerados, sobre o divisor topográfico que sustenta um relevo tabular entre os municípios de Ulianópolis e Dom Eliseu no Pará

Justamente na interface entre as unidades geomorfológicas de superfíce tabular erosiva (Estb) e dissecação em ravinas e vales encaixados (Drvit), uma escarpa erosiva é formada (Figura II.5.1-35), sinalizando a importância de medidas conservacionistas nestes locais. A tendência de evolução da paisagem é que as superfícies tabulares, que desfrutam de relativa estabilidade em relação à dinâmica hidroerosiva, venham a migrar através de processos erosivos acelerados, como voçorocas e sulcos erosivos incisos, para a unidade de dissecação em ravinas e vales encaixados.

Coordenador: Técnico:

II.5.1 - Meio Físico 93/178

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

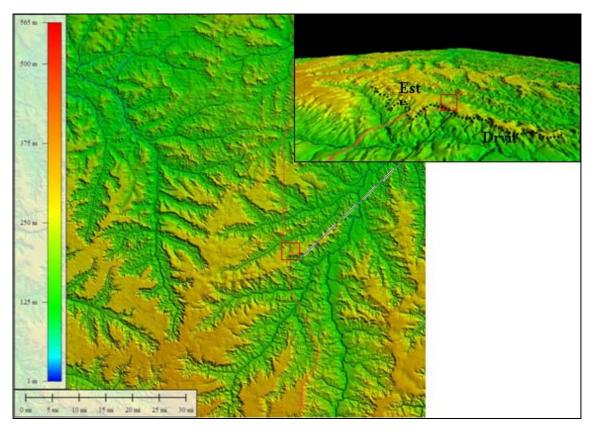


Figura II.5.1-38 - Modelo digital do terreno com detalhe (quadrado em vermelho) para a zona de transição entre as unidades geomorfológicas de superfície tabular erosiva e dissecação em ravinas. E escarpa erosiva é ilustrada com o traçado pontilhado preto na interface entre as duas unidades.

A diretriz do duto é representada na cor vermelha

O solo se apresenta como um fator preponderante na ocorrência da erosão, as quais são frequentes nos setores onde ocorre a predominância dos solos mais arenosos, que no caso, correspondem à associação dos Latossolos. Nas áreas de ocorrência da associação dos Argissolos, que texturalmente são mais argilosos, se tem o registro de ocorrência de erosão, porém não de forma acelerada e expansiva como vem ocorrendo com a associação dos Latossolos (Marçal, 2000). Estas condições, quando analisadas juntamente com o clima da região de fortes chuvas concentradas, e o tipo de uso da terra caracterizado por intenso desmatamento para atividades agropastoris e de revegetação por plantio de eucaliptos, alcançam delimitações e restrições impostas pelos elementos que estão influenciando na fragilidade do terreno, respondendo de forma diferenciada à questão da erosão (Marçal, 2000).

Combinado a esses fatores, conforme demonstra Marçal (2000), ainda existe uma tendência das feições erosivas ocorrerem preferencialmente próximo às zonas de transição entre fácies de dissecação do relevo. Além disso, as informações de caráter geológico estrutural indicam uma correlação das erosões com áreas de descontinuidades representadas por lineamentos da

Coordenador: Técnico:

94/178 II.5.1 - Meio Físico

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

drenagem. Esses dois fatos somados indicam que áreas consideradas como de descontinuidades (geológica ou geomorfológica) são potenciais à ocorrência de focos erosivos.

Por tais motivos, a área de estudo apresenta contundentes processos erosivos gerados por causas antrópicas e naturais. Os processos erosivos encontrados na área, capazes de produzir sedimentos que venham assorear os cursos d'água ou instabilizar encostas, estão concentrados na porção central do traçado do duto, associado ao domínio Drvit - Dissecação em ravinas - e, ao mesmo tempo, no domínio Estb - Superfície tabular erosiva-, sobretudo em solos das unidades de mapeamento LAd17 e LAd3. Resta ainda a ocorrência de movimentos de massa de pouca profundidade nas áreas de relevo mais movimentado e a presença de sulcos erosivos nas áreas de maior pisoteio do gado.

Por meio de observações *in loco*, realizadas durante a campanha de campo em novembro de 2009, foi possível estabelecer e identificar os pontos de maior ocorrência de processos erosivos e movimentos de massa, e quais os principais tipos de processos e movimentos deflagrados de acordo com a compartimentação geomorfológica, pendente da vertente e tipo de cobertura de solo/geologia da área. Foram efetuadas observações e registros fotográficos em 94 pontos georreferenciados ao longo da AII do gasoduto, que posteriormente, em uma etapa de escritório, foram cruzadas com análises das cartas topográficas do IBGE e Ministério do Exército (Diretoria de Serviço Geográfico - DSG), fotografias aéreas e imagens de radar.

Assim sendo, tais processos erosivos merecem destaque quanto a seus mecanismos detonadores, sendo descritos a seguir.

II.5.1.3.2.1 - Sulcos Erosivos e Ravinas - Feições Erosivas do Escoamento Superficial

Os mecanismos de detonação desse processo iniciam-se pelo escoamento superficial provocado pela diminuição da capacidade de infiltração. Esta condição é atingida pela compactação dos solos pelo pisoteio do gado e pelo processo de "splash erosion", desencadeado em solos expostos. O impacto direto das gotas desestruturam os agregados do topo do solo, soltando partículas menores que obstruem os poros do solo dificultando o processo de infiltração. A precipitação que excede a capacidade de infiltração dos solos escoa superficialmente, removendo as partículas minerais e a matéria orgânica, responsável pela fertilidade dos solos (Horton, 1945; Dunne & Leopold, 1978; Guerra, 1991). O escoamento superficial concentra-se em sulcos que, aprofundando-se, originam as ravinas.

Coordenador: Técnico:

11.5.1 - Meio Físico

95/178

GASODUTO DO PARÁ Estudo de Impacto Ambiental - EIA 2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

No geral, o uso e manejo dos solos direcionados para pastagem ocorrem em quase todo o traçado do duto. A utilização agropecuária sem um plano de manejo adequado, com a retirada da vegetação e muitas vezes com uso de queimadas sucessivas é, sem dúvida, processo indutor deste tipo de processo erosivo, como pode ser observado nas Figura II.5.1-39 e Figura II.5.1-40. O produto resultante desta interação gera problemas na capacidade produtiva do solo, como por exemplo, a perda de matéria orgânica e de nutrientes, a alteração da micromorfologia do topo do solo, assim como a redução na capacidade de infiltração da água e a detonação de processos superficiais de erosão do solo. Grandes quantidades do melhor solo (Horizonte A) são transportadas pelo escoamento superficial, reduzindo sua fertilidade, o que, certamente, prejudica a produção.

Figura II.5.1-39 - Gado sobre solo exposto sem cobertura vegetal, sujeito ao escoamento superficial e erosão por lençol

Figura II.5.1-40 - Sulcos erosivos e ravinas provenientes do escoamento superficial sobre o solo compactado pelo pisoteio do gado

Os processos de erosão linear concentrado, caracterizados pelo escoamento pluvial, são bastante comuns na área, principalmente às margens de estradas vicinais. Os principais tipos observados foram ravinas abertas em solos e sedimentos argilosos bastante aprofundadas segundo a sua localização no relevo, fendas erosivas de pouca a média profundidade em solos arenosos/arenoargilosos e sulcos profundos, também em solos e sedimentos argilosos/silto-arenosos (Figura II.5.1-41).

Coordenador: Técnico:

96/178 II.5.1 - Meio Físico

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

Figura II.5.1-41 - Sulco erosivo profundo próximo a uma plantação de eucalipto, intensificado pela falta de cobertura vegetal e de serra pilheira sobre o solo exposto

II.5.1.3.2.2 - Vocorocas

Este processo erosivo é desencadeado por fluxos subsuperficiais do escoamento da água na zona aerada dos solos, assim como, por fluxos subterrâneos na zona saturada. A existência de faces de exfiltração, seja pelo corte natural de uma incisão fluvial ou por atividades antrópicas para construção de estradas e casas ou por mineração dos leitos fluviais, permite a saída desses fluxos, que migram pelas encostas em direção aos fundos de vale. Dependendo da poropressão exercida na face de exfiltração, tais fluxos podem desencadear processos erosivos em forma de *pipes*, chegando à formação de túneis erosivos. Os túneis erosivos recuam remontante e ao sofrerem colapso de seus tetos abrem o processo de voçorocamento, podendo ocorrer tanto em encostas como em fundos de vale (Coelho Netto, 2003).

Os domínios geomorfológicos, em que pulsos erosivos desencadeados pelo rebaixamento de níveis de base ocorrem, criam faces de exfiltração pela incisão fluvial, o que desencadeia pela expansão da rede de drenagem, processos de voçorocamento.

As unidades de mapeamento geomorfológico Drvit - Dissecado em ravinas, vales encaixados e interflúvios tabulares, Estb - Superfícies tabulares erosivas e Espp - Superfícies pediplanadas apresentam aplainamentos em retomada de erosão recente, elaborados geralmente em rochas sedimentares. As voçorocas atingem grandes profundidades nesta área, constituindo uma paisagem em pleno processo de degradação (Figura II.5.1-42, Figura II.5.1-43 e Figura II.5.1-44).

Coordenador: Técnico:

II.5.1 - Meio Físico 97/178

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

A instalação do duto nesta área deve evitar tais feições erosivas, bem como áreas na direção do recuo destes processos. As taxas de recuo dos voçorocamentos ocorrem em escala histórica, podendo atingir facilmente construções e estruturas instabilizando-as e colocando em risco empreendimentos e moradores. A localização desses processos é apresentada no Desenho 2330-00-EIA-DE-5002-00 - Mapa de Pontos Notáveis, no Caderno de Mapas de EIA, Volume I.

Figura II.5.1-42 - Voçoroca na encosta, diagnosticada como resultado da expansão remontante da rede de drenagem. Coordenadas 219716E 9750168N

Figura II.5.1-43 - Voçoroca próxima à estrada BR010, nas coordenadas 218330E 9564252N

Figura II.5.1-44 - Voçoroca com presença de vegetação em estágio inicial de sucessão em seu eixo de drenagem. Ponto nas coordenadas 218490E 9517198N

Conforme mencionado por Marçal (2000) e Marçal & Guerra (2004), os processos erosivos que assolam a área atravessada pelo empreendimento são caracterizados especialmente por voçorocamentos abertos em calhas de drenagem das vertentes que recortam as chapadas e tabuleiros sedimentares que compõem a região. Estes tabuleiros e chapadas são áreas remanescentes das fases de retomadas erosivas que atuaram sobre os sedimentos da Bacia Sedimentar do Parnaíba.

Coordenador: Técnico:

98/178 II.5.1 - Meio Físico

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

A baixa coesão dos microagregados dos sedimentos inconsolidados da Bacia do Parnaíba conjugada aos altos níveis pluviométricos do período chuvoso e à exposição do solo com a retirada da vegetação original, principalmente para o plantio de eucalipto, favorecem a deflagração de voçorocamentos e alguns movimentos de massa, dentre os quais os movimentos ocasionados por solifluxão observados nos taludes de corte de estradas, caracterizados por escorregamentos e rastejos e desbarrancamentos e solapamentos nas margens dos cursos d'água.

O material sedimentar carreado, proveniente destes focos erosivos e movimentos de massa, é disposto e acumula-se nas extensas planícies, terraços e calhas aluviais dos rios de maior porte que são atravessados pelo empreendimento, intercalado entre as frações granulométricas argila, silte e areia.

II.5.1.3.2.3 - Movimentos de Massa

Os movimentos de massa são processos de mobilização por gravidade do material intemperizado que recobre o substrato geológico, podendo ter ou não influência de poropressões positivas da água no solo. Vale ressaltar que tais processos são comuns em áreas de pastagens com gramíneas que possuem padrão de enraizamento homogêneo. A zona de raízes atinge poucas dezenas de centímetros no solo (30 a 40 cm) e constitui um horizonte de infiltração relativamente mais permeável que a zona sub-radicular, imediatamente abaixo. A descontinuidade hidráulica gerada por essa diferença de permeabilidade é capaz de gerar poropressões críticas a ponto de promover o destacamento do solo acima desta zona. Dá-se origem então a um deslizamento de pouca profundidade, mas que contribui consideravelmente com sedimentos ao assoreamento da rede hidrográfica. Ainda são recorrentes os movimentos de massa associados ao recuo de cortes feito por estradas ou nas paredes dos voçorocamentos (Figura II.5.1-45).

Coordenador: Técnico:

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

100/178

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

Figura II.5.1-45 - Corte de estrada, às margens da BR-010, com presença de movimentos de massa e queda de blocos.

Há no afloramento a presença de fraturas sub-verticais (linhas em vermelho), perpendiculares ao acamamento sedimentar, que facilitam o avanço da frente de intemperismo e, consequentemente, a queda de blocos

Outro tipo de movimento de massa comum na área do empreendimento é o escorregamento raso originado a partir do solapamento da base das encostas pela ação de ravinas. O escoamento superficial da água, favorecido em muito dos casos por problemas nas drenagens das estradas, gera a formação de um sulco erosivo na base dos taludes de cortes, comprometendo assim o material a montante (Figura II.5.1-46).

Figura II.5.1-46 - Ravina na base do talude de corte de uma estrada vicinal. O aprofundamento do sulco erosivo (polígono em vermelho) acaba por induzir o colapsamento do material na encosta (linhas laranja)

Coordenador: Técnico:

II.5.1 - Meio Físico

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

Destaque ainda deve ser dado a este processo nas margens dos rios de grande porte que possuem terraços fluviais em suas bordas. A ação erosiva do rio sobre estes taludes ocorre através do solapamento da base pelo transporte de sedimentos, sobretudo em períodos de cheias (Figura II.5.1-47).



Figura II.5.1-47 - Movimentos de massa do tipo rotacional na margem côncava do canal, deflagrados pelo solapamento da base pela ação do rio

II.5.1.3.2.4 - Concavidades

Vale ressaltar o papel das concavidades na evolução do relevo e na ocorrência de processos erosivos. Segundo Coelho Netto (2003) e Avelar & Coelho Netto (1992) a carga total de poropressões das águas subsuperficiais indicou a convergência dos fluxos d'água em direção à base inferior do eixo de concavidades estruturais (aquelas controladas pelas estruturas geológicas). Em alguns casos, na cabeça destes pequenos canais geralmente ocorrem túneis erosivos que evoluem regressivamente podendo dar origem a voçorocas. Nos denominados anfiteatros (cabeceiras de drenagem) desenvolvem-se os "complexos de rampa", descritos por Meis et al.(1981) como as áreas de encostas com geometria côncava, constituídas de feições erosivas em suas porções mais altas da encosta e feições de acumulação de colúvios sucessivos nos seus eixos. Nestas concavidades são comuns também movimentos de massa, associando em si processos erosivos de diversas naturezas e representando, assim, as feições de evolução denudacional das paisagens. Estes processos erosivos podem, ainda, se tornar mais intensos, devido certamente ao mau uso dos solos por atividades antrópicas (Figura II.5.1-48 e Figura II.5.1-49).

Coordenador: Técnico:

II.5.1 - Meio Físico 101/178

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

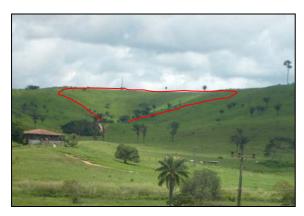


Figura II.5.1-48 - Concavidade nas proximidades de Açailândia no Maranhão

Figura II.5.1-49 - Áreas côncavas do relevo com maior sujeição a processos erosivos

II.5.1.3.2.5 - Considerações Finais

De forma geral, os processos de degradação erosiva ao longo da área do empreendimento estão associados às atividades humanas, tais como plantio de eucalipto, desmatamento ou o uso inadequado de pastagens. Dois aspectos principais merecem a atenção do empreendedor na implementação do gasoduto: as voçorocas nos domínios Geomorfológicos Drvit - Dissecação em ravinas, Estb - Superfícies tabulares erosivas e Espp - Superfícies pediplanadas - na porção central do duto e os movimentos de massa entre os tabuleiros e os rios.

O Quadro II.5.1-14 apresenta uma síntese das principais feições erosivas identificadas em campo e em escritório, a partir da fotointerpretação das imagens de alta resolução.

Quadro II.5.1-14 - Localização dos Processos Erosivos

Ponto	Х	Υ	Fuso	Processo Erosivo
Ponto 11	822082	9732446	22	Ravina
Ponto 12	822788	9745000	22	Ravina
Ponto 22	211323	9671172	23	Mov. Massa
Ponto 25	174000	9690000	23	Ravina
Ponto 40	223775	9619890	23	Ravina
Ponto 45	221013	9577338	23	Voçoroca
Ponto 47	219726	9570168	23	Voçoroca
Ponto 52	218330	9564252	23	Voçoroca
Ponto 54	217250	9547396	23	Voçoroca
Ponto 55	217299	9546742	23	Ravina
Ponto 56	216841	9531968	23	Voçoroca reafeiçoada
Ponto 57	218490	9517198	23	Voçoroca
Ponto 59	218548	9511724	23	Voçoroca
Ponto 78	209117	9452414	23	Ravina

Datum: SAD69.

102/178

Coordenador: Técnico:

II.5.1 - Meio Físico

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

Portanto, para a implantação do gasoduto, devem ser evitadas as áreas alinhadas com o recuo de processos erosivos já instalados, bem como as encostas côncavas do relevo, consideradas como frentes da evolução geomorfológica.

Para os processos erosivos provocados pelo escoamento superficial (sulcos e ravinas) ou por movimentos de massa rasos, associados ao enraizamento das gramíneas ou cortes artificiais, as soluções de mitigação são relativamente mais fáceis. Tais medidas estão associadas basicamente à mudança de uso dos solos e à implementação de práticas conservacionistas nas atividades produtivas de agropecuária e mineração.

II.5.1.3.3 - Pedologia (C)

II.5.1.3.3.1 - Considerações Iniciais

O estudo de solos da área de influência do gasoduto, realizado na escala 1:100.000, identificou 35 unidades de mapeamento que representam 8 classes: Argissolos Vermelho-Amarelos Distróficos, Gleissolos Háplicos Tb Distróficos, Latossolos Amarelos Distróficos, Latossolos Vermelho-Amarelos Distróficos, Neossolos Quartzarênicos Órticos, Neossolos Flúvicos Tb Distróficos, Plintossolos Háplicos Distróficos e Plintossolos Pétricos Concrecionários.

A área de influência em questão encontra-se em grande parte recoberta por depósitos dentríticos e/ou lateríticos do neogeno, principalmente sobre a Formação Itapecuru. Ao norte do gasoduto, a partir do km 510 do duto predominam os solos oriundos das rochas do Grupo Barreiras e dos depósitos flúvio-marinhos.

Nas áreas de estudo predominam os relevos aplanados e ainda conservados, com cobertura de Floresta Tropical Perenifólia. De forma generalizada, quanto às formas de dissecação, têm-se o predomínio dos dissecados em ravinas e/ou colinas com relevo de topos aplanados, com diferentes ordens de grandeza e com pouco aprofundamento de drenagem, raramente separada por vales de fundo plano. Quanto às formas erosivas, têm-se o predomínio de superfícies tabulares erosivas, superfícies elaboradas por processos de aplainamento, cortando litologias pré-cambrianas. No trecho final do gasoduto predominam as superfícies pediplanadas desenvolvidas geralmente sobre rochas sedimentares.

O material básico empregado consistiu no mapeamento realizado pelo Projeto RADAMBRASIL publicados na escala 1:1.000.000, (Ministério de Minas e Energia, 1983), bem como folhas planialtimétricas nas escalas 1:100.000.

Coordenador: Técnico:

II.5.1 - Meio Físico 103/178

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

No intuito de melhorar a identificação e a delimitação dos pedoambientes foi elaborado, a partir dos dados do SRTM (USGS, 2008), um mapeamento da declividade utilizando-se o ArcGIS Desktop 9.3. De posse desses mapas e imagens foi efetuada a investigação de campo para elaboração da legenda preliminar de identificação dos diferentes pedoambientes. Estes mapas foram utilizados em substituição às fotografias aéreas tradicionais, devido à inexistência de fotografias em escala adequada para subsidiar este estudo.

II.5.1.3.3.2 - Aspectos metodológicos

Nos estudos de solos, durante a investigação de campo foram registrados os aspectos morfológicos e aspectos referentes à litologia, relevo, declividade, vegetação, pedregosidade, rochosidade, tipo de erosão e drenagem interna dos solos. A fase final dos trabalhos constou de acertos cartográficos, revisão das descrições e da legenda de identificação das unidades de mapeamento conforme o atual Sistema Brasileiro de Classificação de Solos (Embrapa, 2006). Finalmente, foi elaborado o Desenho 2330-00-EIA-DE-2003-00 - Mapa de Solos, no Caderno de Mapas do EIA, Volume II e um relatório fotográfico (Anexo 1) ao final desta seção.

Os critérios, definições e conceitos usados para o estabelecimento das classes de solos e fases são apresentados a seguir, assim como as classes de solos, definidas e descritas de acordo com as normas adotadas por Embrapa (1988a), Embrapa (1988b) e Embrapa (2006).

II.5.1.3.3.3 - Critérios para o Estabelecimento das Classes de Solos e Fases Empregadas

II.5.1.3.3.3.1 - Atributos Diagnósticos

Para a subdivisão das classes de solos em níveis categóricos mais baixos e sempre que apropriado, utilizaram-se os seguintes critérios:

Material orgânico

É aquele expressivamente constituído por compostos orgânicos, o qual pode comportar proporção variavelmente maior ou menor de material mineral. Em qualquer caso, o conteúdo de constituintes orgânicos impõe preponderância de suas propriedades sobre os constituintes minerais.

 Coordenador:
 Técnico:

 104/178
 II.5.1 - Meio Físico

TRANSPORTADORA DE GÁS DO PARÁ

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00 GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

Material mineral

É aquele constituído essencialmente por compostos inorgânicos, em estado mais ou menos intemperizado, podendo, de maneira variável, ser maior a proporção de constituintes secundários, ou de constituintes inatos da própria rocha de origem.

Atividade da argila

Refere-se à capacidade de troca de cátions (valor T) da fração mineral. Atividade alta designa valor igual ou superior 27cmolc/kg de argila e atividade baixa valor inferior a esse. Para esta distinção é considerada a atividade das argilas no horizonte B, ou no C quando não existe B.

Saturação por bases (valor V%)

O termo eutrófico especifica distinção de solos com saturação igual ou superior a 50% e distrófico especifica distinção de solos com saturação inferior a 50%. Para esta distinção é considerada a saturação por bases no horizonte B, ou no C quando não existe B.

Mudança textural abrupta

Consiste em considerável aumento no conteúdo de argila dentro de uma pequena distância vertical, menor ou igual a 8 cm, na zona de transição entre o horizonte A, ou E, e o horizonte subjacente B.

Plintita

É uma formação constituída de mistura de argila, pobre em húmus e rica em ferro, ou ferro e alumínio, com quartzo e outros materiais. Ocorre comumente sob a forma de mosqueados vermelho e vermelho-escuro, com padrões usualmente laminares, poligonais ou reticulados.

Petroplintita

É um material normalmente proveniente da plintita, que sob efeito de ciclos repetidos de umedecimento e secagem sofre consolidação irreversível, dando lugar à formação de nódulos ou de concreções ferruginosas.

Coordenador: Técnico:

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

Caráter Plíntico

Termo usado para distinguir solos que apresentam plintita em quantidade (>5%) ou espessura insuficientes para caracterizar horizonte plínticos, em um ou mais horizontes, em alguma parte da seção de controle que defina a classe.

Caráter Flúvico

Usado para solos formados sob forte influência de sedimentos de natureza aluvionar, que apresentam distribuição irregular do conteúdo de carbono orgânico em profundidade, não relacionada a processos pedogenéticos, e/ou camadas estratificadas em 25% ou mais do volume do solo.

Caráter Concrecionário

Termo utilizado para definir solos que apresentam petroplintita na forma de nódulos ou concreções em um ou mais horizontes dentro da seção de controle que defina a classe em quantidade e/ou com espessura insuficiente para caracterizar horizonte concrecionário. É necessário petroplintita em quantidade mínima de 5% por volume.

Caráter Argilúvico

Usado para distinguir solos que têm concentração de argila no horizonte B, expressa por gradiente textural igual ou maior que 1,4 e/ou iluviação de argila evidenciada pela presença de cerosidade moderada ou forte e/ou presença no *sequum* de horizonte E sobrejacente a horizonte B (não espódico), dentro da seção de controle que defina a classe.

Cerosidade

São filmes muito finos de material inorgânico de naturezas diversas, orientadas ou não, constituindo revestimentos ou superfícies brilhantes nas faces de elementos estruturais, poros ou canais, resultante de movimentação, segregação ou rearranjamento de material coloidal inorgânico (<0,002mm); quando bem desenvolvidos são facilmente perceptíveis, apresentando aspecto lustroso e brilho graxo.

Relação Silte/Argila

Obtida dividindo-se o teor de silte pelo de argila, resultantes da análise granulométrica. A relação silte/argila serve como base para se ter uma idéia do estádio de intemperismo presente em solos de região tropical.

 Coordenador:
 Técnico:

 106/178
 II.5.1 - Meio Físico

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

Minerais Alteráveis

São aqueles instáveis em clima úmido, em comparação com outros minerais, tais como quartzo e argila do grupo das caulinitas, e que, quando se intemperizam, liberam nutrientes para as plantas e ferro ou alumínio.

II.5.1.3.3.4 - Horizontes Diagnósticos Superficiais

Horizonte A proeminente

Horizonte espesso, comparável ao horizonte A chernozêmico quanto à cor, conteúdo de carbono orgânico, consistência, estrutura e espessura, diferenciando-se dele apenas por apresentar saturação por bases (valor V) inferior a 65%.

Horizonte A fraco

É um horizonte mineral superficial que apresenta teores de carbono inferiores a 5,8g/kg, cores muito claras na maior parte do horizonte, com valores quando úmido > 4, e quando seco > 6.

Horizonte A moderado

É um horizonte superficial que apresenta teores de carbono orgânico variáveis, espessura e/ou cor que não satisfazem as condições requeridas para caracterizar um dos demais horizontes supracitados.

II.5.1.3.3.5 - Horizontes Diagnósticos Subsuperficiais

Horizonte B textural

É um horizonte mineral subsuperficial no qual há evidências de acumulação, por iluviação, de argila silicatada e, usualmente, apresenta cerosidade. O conteúdo de argila do horizonte B textural é maior que o do horizonte A e pode, ou não, ser maior que o do horizonte C.

Horizonte B latossólico

Horizonte mineral subsuperficial, com espessura mínima de 50cm, cujos constituintes evidenciam avançado estágio de intemperização, caracterizado pela presença de argilominerais do tipo 1:1 e minerais altamente insolúveis tais como quartzo na fração areia,

Coordenador: Técnico:

II.5.1 - Meio Físico 107/178

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

e de óxidos de ferro e alumínio. Caracteriza-se também pela ausência virtual de minerais primários facilmente intemperizáveis e de argilominerais do tipo 2:1.

Horizonte B incipiente

Horizonte mineral subsuperficial que sofreu alteração física e química em grau não muito avançado, porém suficiente para o desenvolvimento de cor ou de estrutura, e no qual mais da metade do volume de todos os subhorizontes não devem consistir em estrutura da rocha original.

Horizonte plíntico

Horizonte mineral de espessura igual ou maior que 15 cm, caracterizado pela presença de considerável volume de plintita, em quantidade igual ou superior a 15%.

Horizonte glei

Horizonte mineral subsuperficial ou eventualmente superficial caracterizado pela intensa redução de ferro e formado sob condições de excesso de água, o que lhe confere cores neutras ou próximas de neutras na matriz do solo, com ou sem mosqueados. Este horizonte é fortemente influenciado pelo lençol freático, sob prevalência de um regime de umidade redutora, virtualmente livre de oxigênio dissolvido, devido encontrar-se saturada com água durante todo o ano ou pelo menos por um longo período.

Horizonte concrecionário

Horizonte constituído de 50% ou mais, por volume, de material grosseiro com predomínio de petroplintita, do tipo nódulos ou concreções de ferro ou de ferro e alumínio, numa matriz terrosa de textura variável ou matriz de material mais grosseiro. Para ser diagnóstico deve apresentar no mínimo 30 cm de espessura.

II.5.1.3.3.6 - Critérios para Distinção de Fases de Unidades de Mapeamento

II.5.1.3.3.6.1 - Fases de Vegetação Primária

A cobertura vegetal primária é fortemente relacionada ao clima e as propriedades do solo. Na insuficiência de dados climáticos, principalmente hídricos e térmicos, as fases de vegetação são empregadas para facilitar inferências sobre as variações estacionais de umidade dos solos (Embrapa, 2006). Assim, a vegetação original das áreas de influência direta e indireta do

Coordenador. Técnico:

108/178 II.5.1 - Meio Físico

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

gasoduto foi subdividida segundo critérios fitofisionômicos, que compreende deciduidade, porte, composição e densidade, visando fornecer dados principalmente relacionados com o maior ou menor grau de umidade do solo, pelo fato da vegetação natural refletir, de certo modo, as condições climáticas de uma região. As formações vegetais nativas identificadas na área são descritas a seguir: floresta tropical perenifólia e floresta tropical perenifólia de várzea.

Floresta tropical perenifólia

Ainda que apresentando alterações, face ao traçado do gasoduto optar em sua maior extensão pela utilização de faixa as margens das rodovias ou acompanhando o traçado de faixas de outros dutos existentes, a vegetação primitiva da área estudada é composta dominantemente pela floresta tropical perenifólia (Figura II.5.1-50). Disseminada por toda a área, esta fitofisionomia ocorre indiscriminadamente sobre solos das classes dos Argissolos Vermelho-Amarelos Distróficos, Latossolos Amarelos Distróficos, Latossolos Ouartzarênicos Órticos, Plintossolos Háplicos Distróficos e Plintossolos Pétricos Concrecionários.

Figura II.5.1-50 - Aspecto da vegetação de floresta tropical perenifólia com alterações que domina ao longo de todo o traçado do gasoduto

De maneira geral, apresenta estrutura bastante uniforme de seus indivíduos arbóreos, sendo constituída predominantemente por indivíduos arbóreos de altura elevada e grosso diâmetro. Esta fisionomia não apresenta estrato arbustivo nem palmeiras. Na área de influência, grande parte desta vegetação encontra-se alterada e cultivada com pastagens plantadas e pequenas lavouras de milho e feijão.

Coordenador: Técnico:

II.5.1 - Meio Físico 109/178

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

Floresta tropical perenifólia de várzea

Esta fitofisionomia é característica das áreas aluviais, várzeas úmidas e alagadas, nas periferias de cursos d'água, brejos e lugares onde ocorre acúmulo das águas dos rios, lagoas, riachos, podendo, ser influenciada ou não pela cheia dos rios. Essa fase de vegetação ocorre relacionada aos solos das classes NEOSSOLOS FLÚVICOS e GLEISSOLOS. (Figura II.5.1-51). Na área de influência indireta do gasoduto esta formação ocupa as terras baixas apresentando-se muito alterada pelo uso como pastagem.

Figura II.5.1-51 - Aspecto da vegetação das várzeas na região

II.5.1.3.3.6.2 - Fases de relevo

O relevo foi subdividido segundo critérios de declividade, forma do terreno, altura relativa das elevações, tipo e comprimento das pendentes, com o objetivo principal de fornecer subsídios ao estabelecimento dos graus de limitações com relação à erodibilidade dos solos. As classes consideradas na área foram:

- plano superfície de topografia horizontal, onde os desnivelamentos são muito pequenos, com declividades variáveis de 0 a 3%;
- suave ondulado superfície de topografia pouco movimentada, constituída por conjuntos de colinas (elevações de altitudes relativas até 100m), apresentando declives suaves, predominantemente variáveis de 3 a 8%;
- ondulado superfície de topografia pouco movimentada, constituída por conjunto de colinas, apresentando declives moderados, predominantemente variáveis de 8 a 20%;

Coordenador: Técnico:

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

 forte ondulado - superfície de topografia constituída por conjunto de colinas, apresentando declives variáveis de 8 a 20%.

II.5.1.3.3.6.3 - Fases de Erosão

É identificada a fase erodida nos solos que apresentam as classes de erosão forte, muito forte e extremamente forte.

II.5.1.3.3.6.4 - Grupamentos Texturais

Conforme a composição granulométrica do horizonte B, ou do horizonte C, se não existir B, foram consideradas as classes de textura em nível mais generalizado, conforme os seguintes grupamentos: textura muito argilosa > 600g de argila/kg; textura argilosa > 350 e < 600g de argila/kg; textura média < 350g de argila/Kg e > 150g de areia/kg, excluídas as classes texturais areia e areia franca; e textura arenosa que compreende as classes texturais areia e areia franca.

Para as classes de solos com significativa variação textural entre os horizontes superficiais e subsuperficiais, as designações são feitas na forma de fração. Para os Gleissolos e Neossolos Flúvicos, que possuem camadas estratificadas, a designação é feita pela textura dominante dentro de 100 a 120 cm da superfície do solo, admitindo-se, no máximo, duas classes texturais na forma de fração. Exemplo: textura média/argilosa.

II.5.1.3.3.6.5 - Constituição Macroclástica

Caracterização efetuada em função da proporção de cascalhos (diâmetro de 2 mm a 20 mm) em relação à terra fina (fração menor que 2 mm). São reconhecidos os seguintes agrupamentos: pouco cascalhenta: > 80 e < 150g de cascalho na massa do solo/kg; cascalhenta: > 150 e < 500g de cascalho na massa do solo/kg.

II.5.1.3.3.6.6 - Classes de Drenagem

Referem-se à quantidade e rapidez com que a água recebida pelo solo se escoa por infiltração e escorrimento, afetando as condições hídricas do solo e a duração do período em que permanece úmido, molhado ou encharcado. As classes de drenagem distinguidas são denominadas conforme a seguir: excessivamente drenado, fortemente drenado, acentuadamente drenado, bem drenado, moderadamente drenado, imperfeitamente drenado, mal drenado e muito mal drenado.

Coordenador: Técnico:

II.5.1 - Meio Físico 111/178

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

II.5.1.3.3.7 - Descrição das Classes de Solos

As classes de solo identificadas na área de influência do Gasoduto do Pará são definidas a seguir, conforme Embrapa (2006).

II.5.1.3.3.7.1 - Argissolos

Compreende solos minerais, não hidromórficos, com horizonte B textural (Bt) caracterizado por aumento da fração argila em relação ao horizonte A sobrejacente, com argila de baixa atividade. São predominantemente cauliníticos, geralmente bem drenados, de textura arenosa/média, argilosa cascalhenta/argilosa. Na área estudada foi identificada a classe Argissolo Vermelho-Amarelo, descrita a seguir:

Argissolos Vermelho-Amarelos

Esta classe é constituída por solos com horizonte B textural com matiz 5YR ou mais vermelho e mais amarelo que 2,5YR na maior parte dos primeiros 100 cm do horizonte B (inclusive BA). São originados de rochas da formação Couto Magalhães em áreas dissecadas em colinas e ravinas. Apresentam perfis bem drenados, com espessura do sólum superior a 100 cm, e sequência de horizontes do tipo A-Bt-C, com predomínio de caulinita na fração argila, normalmente associados a Cambissolos Háplicos e Latossolos Vermelho-Amarelos.

Compreendem solos predominantemente distróficos, horizonte A moderadamente desenvolvido, com espessura variável de 8 a 50 cm, cores brunadas no matiz 10YR e textura arenosa e média, podendo conter cascalhos em proporções consideráveis (média cascalhenta).

O horizonte B normalmente apresenta cores vermelho-amareladas no matiz 5YR, valores de 4 a 6 e cromas de 3 a 6, textura argilosa cascalhenta, argilosa, muito argilosa ou muito argilosa cascalhenta, normalmente com espessura inferior a 100 cm.

Estão presentes em áreas de relevo plano e suave ondulado e mais raramente ondulado. Ocorrem como 1º componente das unidades de mapeamento PVAd1 e PVAd2, e como 2º componente na unidade LVAd4. A classe de solo, no 4º nível do Sistema Brasileiro de Classificação de Solos (Embrapa, 2006), é ARGISSOLO VERMELHO-AMARELO Distrófico típico. As unidades de mapeamento em que esses solos ocorrem como componente principal ocupam 47.187 ha, cerca de 6,6% da área de influência do gasoduto. A unidade PVAd1 apresenta aptidão agrícola 3(abc)*, ou seja, aptidão Restrita para culturas nos três níveis de manejo e

Coordenador: Técnico:

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

susceptibilidade à erosão Moderada. Já a unidade PVAd2 apresenta aptidão 4(p)**, Restrita para pastagem plantada e susceptibilidade à erosão Ligeira/Moderada.

II.5.1.3.3.7.2 - Cambissolos Háplicos

Estes Cambissolos diferem dos demais por não apresentarem horizonte A húmico e nem caráter flúvico dentro de 120 cm. São bastante raros na área estudada onde foram identificados apenas indivíduos distróficos, de argila de atividade baixa. São bem drenados, e ocorrem apenas como terceiro componente da unidade de mapeamento PVAd2.

Possuem horizonte A moderado ou fraco, com espessura variando de 10 a 25 cm, estrutura moderada ou fraca, geralmente em blocos subangulares associada à estrutura granular e coloração nos matizes 7,5YR e 10YR, com valores de 3 a 5 e cromas de 2 a 6. A textura é argilosa e argilosa cascalhenta.

O horizonte Bi, com espessura variando entre 30 e 100 cm, apresenta textura argilosa ou argilosa cascalhenta, com estrutura fraca ou moderada em blocos subangulares e cor nos matizes 5YR a 10YR, com valores entre 4 e 7 e cromas entre 6 e 8. A fração argila tanto pode ser de atividade baixa como de atividade alta.

A classe de Cambissolo identificada no 4º nível categórico do SiBCS (Embrapa, 2006) foi o CAMBISSOLO HÁPLICO Tb Distrófico típico.

II.5.1.3.3.7.3 - Gleissolos

Compreende solos minerais, hidromórficos, com horizonte A seguido de horizonte glei e ausência de horizonte E. Os solos desta classe são predominantemente distróficos e apresentam geralmente textura média, argilosa ou muito argilosa e baixa atividade da argila. São desenvolvidos essencialmente a partir de sedimentos aluvionares referidos ao quaternário, ocupando as calhas de alguns rios e córregos da região em áreas de planícies fluviais. Na área estudada ocorrem as classes descritas a seguir.

Gleissolos Melânicos

Apresentam horizonte H hístico com menos de 40 cm de espessura, ou horizonte A húmico, proeminente ou chernozêmico. São solos muito mal drenados, com lençol freático elevado na maior parte do ano, e sequência de horizontes do tipo A-Cg ou H-Cg. São solos relativamente recentes, pouco desenvolvidos, originados de sedimentos fluviais e fluviomarinhos de idade quaternária, possuindo, portanto grande variabilidade espacial. São solos fortemente ácidos e

Coordenador: Técnico:

II.5.1 - Meio Físico 113/178

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

2330-00-FIA-RI -0001-00 Julho de 2010 - Rev. nº 00

com saturação de bases muito baixa. A textura mais frequente é média, argilosa ou muito argilosa.

O horizonte A é espesso, de coloração acinzentada muito escura ou preta, resultante da acumulação de materiais orgânicos provenientes da decomposição total ou parcial dos resíduos vegetais. Apresenta normalmente espessura superior a 20 cm e estrutura, quando presente fraca em blocos subangulares e granular, porém é mais comum encontrar-se com o aspecto maciço, devido ao alto teor de umidade. A transição para o horizonte Cg é clara ou abrupta.

O horizonte Cg é formado por camadas descontínuas de coloração acinzentada, com mosqueados comuns a abundantes nas cores avermelhadas, amareladas, brunadas e combinações afins; de aspecto maciço quando úmido, podendo apresentar quando seco estrutura prismástica composta por blocos angulares.

Estes solos têm sua ocorrência relacionada às várzeas úmidas e veredas de alguns rios e córregos da região e ocorrem como membro secundário da associação com Gleissolos Háplicos nas unidades de mapeamento GXbd1, GXbd2 e GXbd3. A classe de solo foi identificada como GLEISSOLO MELÂNICO Tb Distrófico típico.

Gleissolos Háplicos

114/178

Esta classe diferencia-se do Gleissolo Melânico apenas por apresentar horizonte superficial A moderado, com espessura de 10 a 20 cm, cores bruno-acinzentadas a pretas (matizes da ordem de 2,5Y, 5Y, N e 10YR, valores de 2 a 4 e cromas 0 a 2), textura arenosa e média. O horizonte Cg, de textura predominantemente média, apresenta cores acinzentadas com cromas baixos, sendo também frequente à presença de mosqueados.

Estes solos ocorrem em posições fisiográficas de várzeas, assim como os Gleissolos Melânicos, originados de sedimentos aluvionares em relevo plano e ocorrem como 1º componente das unidades de mapeamento GXbd1, GXbd2, GXbd3, GXbd4 e GXbd5, e como 2º componente nas unidades RYbd1 e RYbd2. A vegetação original é a floresta tropical perenifólia de várzea. Os gleissolos ocupam 59.445 ha o que representa 8,3% da área de influência do gasoduto. A classe de solo identificada no 4º nível do SiBCS foi GLEISSOLO HÁPLICO Tb Distrófico típico e GLEISSOLO HÁPLICO Tb Distrófico argissólico.

> Coordenador Técnico. II.5.1 - Meio Físico

TRANSPORTADORA DE GAS DO PARA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00 GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

Os Gleissolos apresentam aptidão agrícola 2(a)b(c), Regular para lavouras no nível de manejo B e Restrita nos níveis A e C e susceptibilidade à erosão Nula. A principal limitação destes solos é o excesso de água.

II.5.1.3.3.7.4 - Latossolos

Compreende solos minerais, não hidromórficos, com horizonte B latossólico imediatamente abaixo de qualquer um dos tipos de horizonte diagnóstico superficial, exceto H hístico. São solos em avançado estágio de intemperização e muito evoluídos. Os Latossolos da área estudada são predominantemente cauliníticos, bem e acentuadamente drenados, distróficos e de textura média, argilosa e muito argilosa. As seguintes classes de Latossolos estão presentes na área:

Latossolos Amarelos

Nesta classe estão enquadrados os Latossolos que apresentam matiz mais amarelo que 5YR na maior parte dos primeiros 100 cm do horizonte B (inclusive BA). Esta classe é frequente na área de estudo, sendo solos muito profundos, bem a acentuadamente drenados, baixa fertilidade natural, com sequência de horizontes do tipo A-Bw-C. São dominantemente cauliníticos e originados de coberturas argilo-arenosas e areno-argilosas do Terciário das formações Barreiras, Itapecuru, Ipixuna e Cobertura Dentrito-Laterítica.

O horizonte A, do tipo fraco ou moderado, tem espessura de 10 a 20 cm, cores bruna, bruno-escura e bruno-amarelado escura no matiz 7,5YR ou mais amarelo e textura média, argilosa e muito argilosa.

O horizonte B apresenta espessura maior que 200 cm, cor bruno-amarelada (matizes 6YR a 10 YR, valor 5 e cromas 6 e 8), textura média, argilosa e muito argilosa. Possui grande homogeneidade vertical com transições graduais e difusas entre os subhorizontes. O grau de saturação por bases é baixo, sendo, portanto distróficos.

Estes solos são dominantes na área de influência e ocupam cerca de 466.600 ha o que representa aproximadamente 65% da área de influência do gasoduto, situados em relevo plano a ondulado, ocorrendo como membro dominante nas unidades de mapeamento LAd1 a LAd17. Os Latossolos apresentam, de modo geral, classe de aptdão agrícola das terras 2(a)bc, isto é, Regular para lavouras nos níveis de manejo B e C e Restrita no nível A e susceptibilidade à erosão Nula/Ligeira a Ligeira/Moderada, sendo a baixa fertilidade natural a maior limitação desses solos. Já a unidade de mapeamento LAd4 apresenta aptidão 2(a)b(c), ou seja, Regular

Coordenador: Técnico.

II.5.1 - Meio Físico 115/178

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

para lavouras no nível de manejo B e Restrita nos níveis A e C e susceptibilidade à erosão Moderada/Forte.

Como componente secundário esses solos ocorrem nas unidades LVAd1, LVAd2, LVAd3, FFc1, FFc2 e FFc3. No 4º nível do SiBCS foram identificadas as classes LATOSSOLO AMARELO Distrófico típico e LATOSSOLO AMARELO Distrófico petroplíntico.

Dentre as classes de Latossolos, as unidades de mapeamento LAd1, LAd6, LAd14, LAd3 e LAd5 são as dominantes, ocupando, respectivamente, 11,0%, 9,3%, 8,7%, 8,4% e 7,5%, da área de influência do gasoduto.

Latossolos Vermelho-Amarelos

Latossolos com matiz 5YR ou mais vermelho e mais amarelo que 2,5YR, na maior parte dos primeiros 100 cm do horizonte B (inclusive BA) estão enquadrados nesta classe. É constituída por solos com horizonte B latossólico muito profundos (horizonte C abaixo de 200 cm de profundidade), são bem a acentuadamente drenados e apresentam sequência de horizontes do tipo A-Bw-C. São dominantemente cauliníticos e também originados de coberturas argiloarenosas e areno-argilosas do Terciário da Formação Itapecuru.

Apresentam horizonte A fraco ou moderado, geralmente com espessura em torno de 10 a 20 cm, com cores bruno-avermelhadas e textura média ou argilosa. A estrutura é fraca e moderada, pequena e média granular, consistência friável e muito friável quando úmido e plástica e pegajosa quando molhado, com transição entre o horizonte A e B plano e gradual.

O horizonte B tem espessura superior a 200 cm, cores vermelho-amareladas (matiz 5YR), textura média ou argilosa e relação silte/argila entre 0,1 e 0,2. A estrutura é fraca, média e grande em blocos, e a consistência é friável e muito friável quando úmido e plástica e pegajosa quando molhado. Apresenta grande homogeneidade vertical com transições graduais e difusas entre os subhorizontes.

Estes solos ocupam uma área bem inferior a dos Latossolos Amarelos, com 39.309 ha ou cerca de 5,5% da área total e estão situados em relevo plano e suave ondulado, ocorrendo como 1º componente nas unidades de mapeamento LVAd1, LVAd2, LVAd3 e LVAd4 e como 2º componente nas unidades PVAd1 e RQo. Os Latossolos Vermelho-Amarelos apresentam aptidão agrícola 2(a)bc, isto é, Regular para lavouras nos níveis de manejo B e C e Restrita no nível A e susceptibilidade à erosão Nula/Ligeira a Ligeira/Moderada.

Coordenador. Técnico:

116/178 II.5.1 - Meio Físico

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

A classe de solo identificada no 4º nível do SiBCS, integrantes das associações foi LATOSSOLO VERMELHO-AMARELO Distrófico típico.

II.5.1.3.3.7.5 - Neossolos

Compreende solos pouco evoluídos e sem horizonte B diagnóstico, com reduzido desenvolvimento pedogenético, em consequencia da baixa intensidade de atuação dos processos, que não conduziram, ainda, a modificações expressivas no material originário.

Neossolos Flúvicos

São solos derivados de sedimentos aluviais com o horizonte A assente sobre horizonte C constituído de camadas estratificadas, sem relação pedogenética entre si. Apresentam grande variabilidade espacial e possuem sequência de horizontes do tipo A-C. Suas características morfológicas tais como coloração, estrutura, textura e consistência são muito variáveis, dependendo da natureza dos sedimentos originários. São profundos a muito profundos, podendo apresentar mosqueados ou horizontes gleizados em profundidade, principalmente se o sedimento for de natureza argilosa. São predominantemente distróficos e de argila de atividade baixa. Ocorrem nas planícies de inundação dos rios da região.

Na área de influência do Gasoduto do Pará esses solos têm horizonte A moderado, com espessura de 5 a 30 cm, cores bruna, bruno-amarelado-escura e bruno-acinzentado-muito escura (matizes da ordem de 10YR e 2,5Y, valores 3 ou 4 e cromas 2 ou 3). Possuem estrutura fraca e moderada pequena e média granular e blocos subangulares, de consistência friável a muito friável quando úmido e ligeiramente plástica a plástica e ligeiramente pegajosa a pegajosa quando molhado, com transição para o horizonte C plana e clara, por vezes abrupta.

O horizonte C apresenta cores predominantes bruno-oliváceas, bruno-oliváceo-claras, brunas e bruno-amareladas (matizes 2,5Y e 10YR, valores 4 ou 5 e cromas de 3 a 6). Estes solos foram identificados em 42.190 ha (5,9% da área estudada), em posições fisiográficas de vales em condições de relevo plano, por vezes com microrrelevo. Ocorre como primeiro componente das unidades mapeadas RYbd1 e RYbd2 e como componente secundário das unidades GXbd4 e GXbd5.

Os Neossolos Flúvicos apresentam aptidão agrícola 2(a)b(c), Regular para lavouras no nível de manejo B e Restrita nos níveis A e C e susceptibilidade à erosão Nula. A principal limitação destes solos é a baixa fertilidade natural.

Coordenador: Técnico:

II.5.1 - Meio Físico 117/178

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

As classes de solo identificadas no 4º nível do SiBCS foram NEOSSOLO FLÚVICO Tb Distrófico típico e NEOSSOLO FLÚVICO Tb Distrófico gleissólico.

Neossolos Quartzarênicos

Os Neossolos Quartzarênicos são solos com sequência de horizontes A-C, sem contato lítico dentro de 50 cm de profundidade, tendo textura areia ou areia-franca até, no mínimo, a profundidade de 150 cm ou até um contato lítico. São essencialmente quartzosos, praticamente destituídos de minerais primários pouco resistentes ao intemperismo. São solos profundos, excessivamente drenados e de muito baixa fertilidade natural.

Possuem horizonte A fraco ou moderado, com espessura entre 10 e 30 cm, estrutura granular fracamente desenvolvida ou grãos simples apresentando coloraração predominante no matiz 10YR, valores 3 a 5 e cromas entre 2 e 6. O horizonte C apresenta-se em grãos simples e soltos, quando úmido ou seco, com coloração nos matizes 5YR, 7,5YR e 10YR, valores de 4 a 6 e cromas de 3 a 8.

Estes solos são desenvolvidos de sedimentos arenosos das Coberturas Dentrito-Lateríticas do Terciário-Quaternário e estão muito associados com Latossolos Vermelho-Amarelos de textura média, ocorrendo em áreas de relevo plano e suave ondulado, abrangendo 20.561 ha, o que equivale a 2,9% da área de influência do gasoduto. Ocorre como componente principal na unidade de mapeamento RQo e como segundo componente na unidade FXd e como terceiro componente nas unidades LAd12 e LAd13.

Os Neossolos Quartzarênicos apresentam aptidão agrícola 5s(n), Regular para silvicultura e Restrita para pastagem natural e susceptibilidade à erosão Ligeira/Moderada. As principais limitações destes solos são baixa fertilidade natural e deficiência de água.

As classes de solo que ocorrem como componentes de associação são NEOSSOLO QUARTZARÊNICO Órtico típico e NEOSSOLO QUARTZARÊNICO Hidromórfico plíntico.

II.5.1.3.3.7.6 - Plintossolos

Esta classe compreende solos minerais formados sob condições de restrição à percolação de água, sujeitos ao efeito temporário de excesso de umidade, de maneira geral possuem drenagem imperfeita que se caracteriza fundamentalmente por apresentar expressiva plintitização com ou sem petroplintita ou horizonte litoplíntico. São solos que apresentam horizonte B textural sobre ou coincidente com horizonte plíntico, ocorrendo, também, solos com horizonte B incipiente, B latossólico, horizonte glei e solos sem horizonte B. Apesar da coloração destes solos ser bastante

Coordenador: Técnico:

118/178

| Coordenador: Técnico: | II.5.1 - Meio Físico | II.5.1 - M

TRANSPORTADORA DE GÁS DO PARÁ

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00 GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

variável, verifica-se o predomínio de cores pálidas, com ou sem mosqueado de cores alaranjadas e vermelhas, ou coloração variegada, acima do horizonte plíntico.

Plintossolos Háplicos

Os solos desta classe diferem dos demais por não apresentarem caráter argilúvico, e nem horizonte concrecionário ou litoplíntico. Compreende solos imperfeitamente drenados a mal drenados, que apresentam plintita nos horizontes subsuperficiais. São moderadamente profundos a profundos, com sequência de horizontes A-B-C, com transições de A para B, abruptas a graduais, e de B para C, graduais ou difusas. São moderadamente ácidos a fortemente ácidos, com saturação de alumínio elevada e atividade da argila sempre baixa. Apresentam mosqueados nos horizontes subsuperficiais, devido a repetidos ciclos de umedecimento e secagem.

Apresentam horizonte A fraco ou moderado, com espessura variando de 10 a 25 cm, com textura arenosa, média, média cascalhenta ou argilosa. A estrutura é fraca em blocos subangulares e granular em grãos simples e a coloração nos matizes 7,5YR e 10YR, com valores variando de 3 a 6 e cromas iguais ou menores que 4.

O horizonte B apresenta textura arenosa, com estrutura fraca ou moderada em blocos subangulares. A coloração é variegada, composta por cores cinzento-claras, cinzento-rosadas, amareladas, vermelho-amareladas e vermelhas.

Esta classe de solo ocupa uma área de 25.555 ha ou 3,6% da área total mapeada, ocorrendo exclusivamente como 1º componente da unidade de mapeamento FXd, sempre em áreas de relevo plano e suave ondulado. Apresentam aptidão agrícola 4(p), Restrita para pastagem plantada e susceptibilidade à erosão Ligeira. As principais limitações destes solos são baixa fertilidade natural e excesso de água.

A classe de solo identificada no 4º nível categórico do SiBCS foi PLINTOSSOLO HÁPLICO Distrófico arênico.

Plintossolos Pétricos

Os Plintossolos Pétricos se distinguem dos demais por apresentarem horizonte concrecionário ou litoplíntico. Estes solos são muito cascalhentos e/ou pedregosos. Esta classe é caracterizada, principalmente por solos que apresentam quantidades significativas de materiais grosseiros, de formas e tamanhos variáveis, com predominância de concreções ferruginosas, além de fragmentos quartzosos, concreções manganosas e material pelítico em

Coordenador: Técnico:

II.5.1 - Meio Físico 119/178

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

diferentes estádios de decomposição, os quais constituem normalmente mais de 50% da composição do solo. São solos com saturação de bases baixa, inferior a 30% e com saturação por alumínio trocável superiores a 50%, principalmente nos horizontes subsuperficiais. Apresentam sequência de horizontes Ac, Bc e C ou Cc, e podem ser desde rasos até profundos.

O horizonte A é do tipo moderado e fraco, com espessura, via de regra, inferior a 20 cm. O horizonte B, que pode ser incipiente, latossólico ou textural, apresenta espessura variável, desde 10 cm (B incipiente) a mais de 100 cm (B latossólico e B textural).

Esta classe de solo é pouco frequente na área, ocupando uma área de 8.109 ha ou 1,2% da área de influência do Gasoduto do Pará. Ocorrem como componente principal das unidades de mapeamento FFc1, FFc2 e FFc3, e como segundo componente nas unidades LAd8, LAd11, LAd12 e LAd13.

Estes solos são indicados para preservação da fauna e flora, classe 6 de aptidão agrícola e apresentam susceptibilidade à erosão Ligeira/Moderada. A baixa fertilidade natural e o impedimento à mecanização são as principais limitações destes solos.

A classe de solo identificada no 4º nível categórico do SiBCS foi PLINTOSSOLO PÉTRICO Concrecionário típico.

II.5.1.3.3.8 - Unidades de Mapeamento

A legenda descritiva de identificação do Desenho 2330-00-EIA-DE-2003-00 - Mapa de Solos, no Caderno de Mapas do EIA, Volume II foi organizada em conformidade com o nível do mapeamento executado, razão pela qual, as unidades de mapeamento são normalmente constituídas por associações de solos, compostas usualmente por duas ou mesmo, em alguns casos, por três classes de solo. A associação das classes de unidades taxonômicas foi necessária face à ocorrência de grande variedade de solos com distribuição irregular pela área de estudo, impossibilitando sua precisa delimitação cartográfica. O Quadro II.5.1-15 apresenta a distribuição das unidades de mapeamento.

Na legenda os solos são classificados até o 4º nível categórico (subgrupos), sendo ainda caracterizadas a textura, o tipo de horizonte A, e as fases de vegetação, relevo, pedregosidade, rochosidade e de erosão. As informações cartográficas foram armazenadas em um Sistema de Informação Geográfica (SIG), para facilitar a organização, manipulação e interpretação dos dados.

Coordenador: Técnico:

120/178

| Técnico: | II.5.1 - Meio Físico | III.5.1 - Meio Físico | II.5.1 - Meio Físico |

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

II.5.1.3.3.8.1 - Legenda de Identificação dos Solos

ARGISSOLOS VERMELHO-AMARELOS Distróficos

- ▶ PVAd1 ARGISSOLO VERMELHO-AMARELO Distrófico típico, textura arenosa/média, relevo suave ondulado + LATOSSOLO VERMELHO-AMARELO Distrófico típico, textura média, relevo plano, ambos A moderado, fase floresta tropical perenifólia.
- ► PVAd2 ARGISSOLO VERMELHO-AMARELO Distrófico típico, relevo suave ondulado + NEOSSOLO LITÓLICO Tb Distrófico típico, relevo ondulado + CAMBISSOLO HÁPLICO Tb Distrófico típico, relevo ondulado, todos A moderado, textura argilosa cascalhenta, fase floresta tropical perenifólia.

GLEISSOLOS HÁPLICOS Tb Distróficos

- ► GXbd1 GLEISSOLO HÁPLICO Tb Distrófico típico, A moderado + GLEISSOLO MELÂNICO Tb Distrófico típico, A proeminente, ambos textura argilosa e muito argilosa, fase floresta tropical perenifólia de várzea, relevo plano.
- ► GXbd2 GLEISSOLO HÁPLICO Tb Distrófico típico, A moderado + GLEISSOLO MELÂNICO Tb Distrófico típico, A proeminente, ambos textura média, fase floresta tropical perenifólia de várzea, relevo plano.
- ► GXbd3 GLEISSOLO HÁPLICO Tb Distrófico típico, A moderado + GLEISSOLO MELÂNICO Tb Distrófico típico, A proeminente, ambos textura média e argilosa, fase floresta tropical perenifólia de várzea, relevo plano.
- ► GXbd4 GLEISSOLO HÁPLICO Tb Distrófico típico, textura argilosa + NEOSSOLO FLÚVICO Tb Distrófico gleissólico, A moderado, textura indiscriminada, ambos fase floresta tropical perenifólia de várzea, relevo plano com microrrelevo.
- GXbd5 GLEISSOLO HÁPLICO Tb Distrófico típico, textura média + NEOSSOLO FLÚVICO Tb Distrófico gleissólico, textura indiscriminada, ambos A moderado, fase floresta tropical perenifólia de várzea, relevo plano com microrrelevo.

LATOSSOLOS AMARELOS Distróficos textura muito argilosa

► LAd1 - LATOSSOLO AMARELO Distrófico típico + LATOSSOLO VERMELHO-AMARELO Distrófico típico, ambos A moderado, textura muito argilosa, fase floresta tropical perenifólia, relevo plano e suave ondulado.

Coordenador: Técnico:

II.5.1 - Meio Físico 121/178

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

LATOSSOLOS AMARELOS Distróficos textura argilosa

- ► LAd2 LATOSSOLO AMARELO Distrófico típico + LATOSSOLO VERMELHO-AMARELO Distrófico típico, ambos A moderado, textura argilosa, fase floresta tropical perenifólia, relevo plano e suave ondulado.
- ► LAd3 LATOSSOLO AMARELO Distrófico típico + LATOSSOLO VERMELHO-AMARELO Distrófico típico, ambos A moderado, textura argilosa, fase floresta tropical perenifólia, relevo suave ondulado e ondulado.
- ► LAd4 LATOSSOLO AMARELO Distrófico típico + PLINTOSSOLO PÉTRICO Concrecionário típico, ambos A moderado, textura argilosa, fase floresta tropical perenifólia, relevo forte ondulado.
- ► LAd5 LATOSSOLO AMARELO Distrófico típico + LATOSSOLO AMARELO Distrófico petroplíntico, ambos A moderado, textura argilosa, fase floresta tropical perenifólia, relevo plano e suave ondulado.
- ► LAdó LATOSSOLO AMARELO Distrófico típico, relevo suave ondulado + LATOSSOLO AMARELO Distrófico petroplíntico, relevo ondulado, ambos A moderado, textura argilosa, fase floresta tropical perenifólia.
- ► LAd7 LATOSSOLO AMARELO Distrófico petroplíntico, A moderado, textura argilosa, fase floresta tropical perenifólia, relevo ondulado.
- ► LAd8 LATOSSOLO AMARELO Distrófico petroplíntico, relevo ondulado + PLINTOSSOLO PÉTRICO Concrecionário típico, relevo forte ondulado, ambos A moderado, textura argilosa, fase floresta tropical perenifólia.
- ► LAd9 LATOSSOLO AMARELO Distrófico típico + LATOSSOLO AMARELO Distrófico plíntico, ambos A moderado, textura argilosa, fase floresta tropical perenifólia, relevo suave ondulado.

LATOSSOLOS AMARELOS Distróficos textura média

► LAd10 - LATOSSOLO AMARELO Distrófico típico + LATOSSOLO AMARELO Distrófico petroplíntico, ambos A moderado, textura média, fase floresta tropical perenifólia, relevo plano e suave ondulado.

Coordenador: Técnico:

122/178

II.5.1 - Meio Físico

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

- ► LAd11 LATOSSOLO AMARELO Distrófico típico, relevo suave ondulado + PLINTOSSOLO PÉTRICO Concrecionário típico, relevo ondulado, ambos A moderado, textura média, fase floresta tropical perenifólia.
- ► LAd12 LATOSSOLO AMARELO Distrófico petroplíntico, textura média + PLINTOSSOLO PÉTRICO Concrecionário típico, textura média + NEOSSOLO QUARTZARÊNICO Órtico típico, todos A moderado, fase floresta tropical perenifólia, relevo relevo suave ondulado e plano.
- ► LAd13 LATOSSOLO AMARELO Distrófico típico, textura média, relevo suave ondulado + PLINTOSSOLO PÉTRICO Concrecionário típico, textura média, relevo ondulado + NEOSSOLO QUARTZARÊNICO Órtico típico, relevo suave ondulado, todos A moderado, fase floresta tropical perenifólia.
- LATOSSOLOS AMARELOS Distróficos textura média e argilosa
 - ► LAd14 LATOSSOLO AMARELO Distrófico típico, A moderado, textura média e argilosa, fase floresta tropical perenifólia, relevo plano e suave ondulado.
 - ► LAd15 LATOSSOLO AMARELO Distrófico típico + LATOSSOLO VERMELHO-AMARELO Distrófico típico, ambos A moderado, textura média e argilosa, fase floresta tropical perenifólia, relevo plano e suave ondulado.
 - ► LAd16 LATOSSOLO AMARELO Distrófico típico, relevo suave ondulado + LATOSSOLO AMARELO Distrófico petroplíntico, relevo ondulado, ambos A moderado, textura média e argilosa, fase floresta tropical perenifólia.
 - ► LAd17 LATOSSOLO AMARELO Distrófico típico + LATOSSOLO AMARELO Distrófico petroplíntico, ambos A moderado, textura média e argilosa, fase floresta tropical perenifólia, relevo plano e suave ondulado.
- LATOSSOLOS VERMELHO-AMARELOS Distróficos
 - ► LVAd1 LATOSSOLO VERMELHO-AMARELO Distrófico típico + LATOSSOLO AMARELO Distrófico típico, A moderado, textura média, fase floresta tropical perenifólia, relevo plano e suave ondulado.

Coordenador. Técnico:

II.5.1 - Meio Físico 123/178

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

- ► LVAd2 LATOSSOLO VERMELHO-AMARELO Distrófico típico, relevo suave ondulado + LATOSSOLO AMARELO Distrófico petroplíntico, relevo ondulado, ambos A moderado, textura média, fase floresta tropical perenifólia.
- ► LVAd3 LATOSSOLO VERMELHO-AMARELO Distrófico típico, relevo suave ondulado + LATOSSOLO AMARELO Distrófico petroplíntico, relevo ondulado, ambos A moderado, textura média e argilosa, fase floresta tropical perenifólia.
- ► LVAd4 LATOSSOLO VERMELHO-AMARELO Distrófico típico, textura média, relevo suave ondulado + ARGISSOLO VERMELHO-AMARELO Distrófico típico, textura arenosa/média, relevo ondulado, ambos A moderado, fase floresta tropical perenifólia.

NEOSSOLOS QUARTZARÊNICOS Órticos

► RQo - NEOSSOLO QUARTZARÊNICO Órtico típico + LATOSSOLO VERMELHO-AMARELO Distrófico típico, textura média, ambos A moderado, fase floresta tropical perenifólia, relevo plano e suave ondulado.

NEOSSOLOS FLÚVICOS Tb Distróficos

- ▶ RYbd1- NEOSSOLO FLÚVICO Tb Distrófico típico, textura argilosa/arenosa/média + GLEISSOLO HÁPLICO Tb Distrófico típico, textura argilosa, ambos A moderado, fase floresta tropical perenifólia de várzea, relevo plano.
- ► RYbd2 NEOSSOLO FLÚVICO Tb Distrófico típico, textura arenosa/média + GLEISSOLO HÁPLICO Tb Distrófico típico, textura média, ambos A moderado, fase floresta tropical perenifólia de várzea, relevo plano.

PLINTOSSOLOS HÁPLICOS Distróficos

► FXd - PLINTOSSOLO HÁPLICO Distrófico arênico, textura arenosa + NEOSSOLO QUARTZARÊNICO Hidromórfico plíntico, ambos A moderado, fase floresta tropical perenifólia, relevo plano e suave ondulado.

PLINTOSSOLOS PÉTRICOS Concrecionários

► FFc1 - PLINTOSSOLO PÉTRICO Concrecionário típico + LATOSSOLO AMARELO Distrófico típico, ambos A moderado, textura argilosa, fase floresta tropical perenifólia, relevo plano e suave ondulado.

Coordenador: Técnico:

124/178

II.5.1 - Meio Físico

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

OCCOLO AMADELO Districtis-

- ► FFc2 PLINTOSSOLO PÉTRICO Concrecionário típico + LATOSSOLO AMARELO Distrófico típico, ambos A moderado, textura muito argilosa, fase floresta tropical perenifólia, relevo ondulado e suave ondulado.
- ► FFc3 PLINTOSSOLO PÉTRICO Concrecionário típico + LATOSSOLO AMARELO Distrófico típico, ambos A moderado, textura média, fase floresta tropical perenifólia, relevo plano e suave ondulado.

II.5.1.3.3.8.2 - Distribuição das Unidades de Mapeamento e Respectivas Porcentagens

Quadro II.5.1-15 - Área e porcentagem das unidades de mapeamento

Símbolo	Vegetação	Relevo	Área	
			ha	%
PVAd1	Floresta Perenifólia	plano e suave ondulado	37396,90	5,21
PVAd2	Floresta Perenifólia	suave ondulado e ondulado	9790,52	1,37
GXbd1	Floresta Perenifólia de Várzea	plano	14138,00	1,97
GXbd2	Floresta Perenifólia de Várzea	plano	2286,10	0,32
GXbd3	Floresta Perenifólia de Várzea	plano	22451,66	3,13
GXbd4	Floresta Perenifólia de Várzea	plano c/microrelevo	11902,36	1,66
GXbd5	Floresta Perenifólia de Várzea	plano c/microrelevo	8666,57	1,21
LAd1	Floresta Perenifólia	plano e suave ondulado	79044,07	11,02
LAd2	Floresta Perenifólia	plano e suave ondulado	11880,14	1,66
LAd3	Floresta Perenifólia	suave ondulado e ondulado	60495,78	8,44
LAd4	Floresta Perenifólia	forte ondulado	6630,96	0,92
LAd5	Floresta Perenifólia	plano e suave ondulado	53642,34	7,48
LAd6	Floresta Perenifólia	suave ondulado e ondulado	66493,26	9,27
LAd7	Floresta Perenifólia	ondulado	11156,38	1,56
LAd8	Floresta Perenifólia	ondulado e forte ondulado	12584,36	1,75
LAd9	Floresta Perenifólia	suave ondulado	344,57	0,05
LAd10	Floresta Perenifólia	plano e suave ondulado	27043,64	3,77
LAd11	Floresta Perenifólia	suave ondulado e ondulado	6988,87	0,97
LAd12	Floresta Perenifólia	suave ondulado e plano	27657,22	3,86
LAd13	Floresta Perenifólia	suave ondulado e ondulado	1658,99	0,23
LAd14	Floresta Perenifólia	plano e suave ondulado	62497,89	8,71
LAd15	Floresta Perenifólia	plano e suave ondulado	4529,84	0,63
LAd16	Floresta Perenifólia	suave ondulado e ondulado	7455,09	1,04
LAd17	Floresta Perenifólia	plano e suave ondulado	26502,88	3,70
LVAd1	Floresta Perenifólia	plano e suave ondulado	15770,36	2,20
LVAd2	Floresta Perenifólia	suave ondulado e ondulado	200,08	0,03
LVAd3	Floresta Perenifólia	suave ondulado e ondulado	19801,89	2,76
LVAd4	Floresta Perenifólia	suave ondulado e ondulado	3537,20	0,49
RQo	Floresta Perenifólia	plano e suave ondulado	20561,17	2,87
RYbd1	Floresta Perenifólia de Várzea	plano	36172,67	5,04
RYbd2	Floresta Perenifólia de Várzea	plano	6017,12	0,84

Coordenador: Técnico:

II.5.1 - Meio Físico 125/178

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

Símbolo	Símbolo Vegetação Relevo		Área	
311110010	vegetação	Kelevo	ha	%
FXd	Floresta Perenifólia	plano e suave ondulado	25555,22	3,56
FFc1	Floresta Perenifólia	plano e suave ondulado	1443,92	0,20
FFc2	Floresta Perenifólia	ondulado e suave ondulado	2814,26	0,39
FFc3	Floresta Perenifólia	plano e suave ondulado	3850,52	0,54
Água			8227,71	1,15
Total			717190,5	100

II.5.1.3.3.8.3 - Classe de Solo Atravessada pelo Gasoduto e Quilometragem em que ocorre

O Quadro II.5.1-16 indica a classe de solo atravessada ao longo do gasoduto (em quilômetros) e a respectiva aptidão agrícola das terras e susceptibilidade à erosão.

Quadro II.5.1-16 - Local (km) em que o Gasoduto atravessa as Unidades de Mapeamento de Solo e sua Aptidão Agrícola e Susceptibilidade à Erosão

Quilômetro de Ocorrência (Km)	Unidade de Mapeamento	Aptidão Agrícola	Susceptibilidade à Erosão
área inicial até 5,5.	PVAd2	4(p)**	ligeira/moderada
5,5 a 13,5	RQo	5s(n)*	Ligeira/Moderada*
13,5 a 51,4.	PVAd1	3(abc)*	moderada
51,4 a 67,7	RQo	5s(n)*	Ligeira/Moderada*
67,7 a 68,5	Rio		
68,5 a 77	RYbd1	2(a)b(c)	Nula
77 a 92,8	GXbd4	2(a)bc	Nula/ligeira
92,8 a 101,4	LVAd3	2(a)bc**	Ligeira/moderada**
101,4 a 112	RYbd1	2(a)b(c)	Nula
112 a 113,2	Rio		
113,2 a 117	RYbd1	2(a)b(c)	Nula
117 a 127,2	FXd	4(p)**	Ligeira**
127,2 a 142	LVAd1	2(a)bc	Nula/ligeira
142 a 144,8	LVAd3	2(a)bc**	Ligeira/moderada**
144,8 a 146	LAd8	2(a)b**	Moderada/Forte**
146 a 151,9	LVAd3	2(a)bc**	Ligeira/moderada**
151,9 a 153,4	LAd8	2(a)b**	Moderada/Forte**
153,4 a 167,2	LAd1	2(a)bc	Nula/ligeira
167,2 a 172,5	LAd6	2(a)bc**	Moderada
172,5 a 174,4	LAd2	2(a)bc	Nula/ligeira
174,4 a 180,5	LAd6	2(a)bc**	Moderada
180,5 a 182,4	LAd1	2(a)bc	Nula/ligeira
182,4 a 183,9	LAd6	2(a)bc**	Moderada
183,9 a 190,9	LAd1	2(a)bc	Nula/ligeira
190,9 a 196,8	LAd7	2(a)b	Moderada
196,8 a 198,5	LAd3	2(a)b(c)	Ligeira/moderada
198,5 a 199,7	LAd8	2(a)b**	Moderada/Forte**
199,7 a 208,8	LAd3	2(a)b(c)	Ligeira/moderada
208,8 a 210	LAd7	2(a)b	Moderada

Coordenador: Técnico:

126/178 II.5.1 - Meio Físico

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

Quilômetro de Ocorrência (Km)	Unidade de Mapeamento	Aptidão Agrícola	Susceptibilidade à Erosão
210 a 215,9	LAd3	2(a)b(c)	Ligeira/moderada
215,9 a 216,7	LAd6	2(a)bc**	Moderada
216,7 a 231,4	LAd3	2(a)b(c)	Ligeira/moderada
231,4 a 232,5	LAd8	2(a)b**	Moderada/Forte
232,5 a 234,9	LAd6	2(a)bc**	Moderada
234,9 a 244,3	LAd1	2(a)bc	Nula/ligeira
244,3 a 244,9	LAd6	2(a)bc**	Moderada
244,9 a 246,3	LAd1	2(a)bc	Nula/ligeira
246,3 a 246,7	LAd6	2(a)bc**	Moderada
246,7 a 285,8	LAd3	2(a)b(c)	Ligeira/moderada
285,8a 287,6	LAd1	2(a)bc	Nula/ligeira
287,6 a 289,7	LAd3	2(a)b(c)	Ligeira/moderada
289,7 a 292,9	LAd2	2(a)bc	Nula/ligeira
299,7 a 302,1	LAd4	2(a)b(c)**	Moderada/Forte**
289,7 a 292,9	LAd2	2(a)bc	Nula/ligeira
292,9 a 295,7	LAd4	2(a)b(c)**	Moderada/Forte**
295,7 a 299,8	LAd2	2(a)bc	Nula/ligeira
299,8 a 302,1	LAd4	2(a)b(c)**	Moderada/Forte**
302,1 a 307,8	LAd2	2(a)bc	Nula/ligeira
307,8 a 308,8	LAd4	2(a)b(c)**	Moderada/Forte**
308,8 a 315,6	LAd1	2(a)bc	Nula/ligeira
315,6 a 318,8	LAd7	2(a)b	Moderada
318,8 a 321,8	LAd5	2(a)bc	Nula/ligeira
321,8 a 322,9	GXbd3	2(a)bc	Nula/ligeira
322,9 a 325,4	LAd17	2(a)bc**	Nula/ligeira
325,4 a 326,3	LAd6	2(a)bc**	Moderada
326,3 a 332,1	LAd17	2(a)bc**	Nula/ligeira
332,1 a 332,8	LAd6	2(a)bc**	Moderada
332,8 a 335,9	LAd5	2(a)bc	Nula/ligeira
335,9 a 337,1	LAd6	2(a)bc**	Moderada
337,1 a 339,5	LAd5	2(a)bc	Nula/ligeira
339,5 a 349,2	LAd17	2(a)bc**	Nula/ligeira
349,2 a 351,4	GXbd3	2(a)bc	Nula/ligeira
351,4 a 353,9	FXd	4(p)**	Ligeira**
353,9 a 358,2	FFc2	6*	Ligeira/moderada*
358,2 a 360,2	LAd1	2(a)bc	Nula/ligeira
360,2 a 366,5	LAd6	2(a)bc**	Moderada
366,5 a 369	LAd1	2(a)bc	Nula/ligeira
369 a 369,8	LAd6	2(a)bc**	Moderada
369,8 a 372,2	GXbd1	2(a)bc 2(a)bc	Nula/ligeira
372,2 a 372,6	LAd6	2(a)bc**	Moderada
372,6 a 374,1	LAd0	2(a)bc 2(a)bc	Nula/ligeira
374,1 a 375,7	LAd6	2(a)bc**	Moderada
374,1 a 375,7 375,7 a 377,8	LAdo LAd1	2(a)bc 2(a)bc	Nula/ligeira
·		2(a)bc**	
377,8 a 379,6	LAd13		Ligeira/moderada**
379,6 a 381,7	FXd CVbd1	4(p)**	Ligeira**
381,7 a 382,2	GXbd1	2(a)bc	Nula/ligeira

Coordenador: Técnico:

II.5.1 - Meio Físico 127/178

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

382,2 a 382,8 382,8 a 383,5 LAC 383,5 a 384,4 384,4 a 389,3 389,3 a 390,5 LAC 390,5 a 394,2 LAC	Ad6 Ad1 Ad6 Ad1	4(p)** 2(a)bc** 2(a)bc 2(a)bc**	à Erosão Ligeira** Moderada Nula/ligeira
382,8 a 383,5 383,5 a 384,4 384,4 a 389,3 389,3 a 390,5 390,5 a 394,2	Ad6 Ad1 Ad6 Ad1	2(a)bc** 2(a)bc	Moderada
383,5 a 384,4 384,4 a 389,3 LA0 389,3 a 390,5 390,5 a 394,2 LA0	Ad1 Ad6 Ad1	2(a)bc	
384,4 a 389,3 389,3 a 390,5 390,5 a 394,2	Ad6 Ad1		Nuia/iiqeira
389,3 a 390,5 LAG 390,5 a 394,2 LAG	Ad1	2(a)bC	Moderada
390,5 a 394,2		2(0)60	
		2(a)bc 2(a)bc**	Nula/ligeira Moderada
·	Ad1	2(a)bc	Nula/ligeira
·	Ad5	2(a)bc	Nula/ligeira
	Xbd1	2(a)bc	Nula/ligeira
	Ad5	2(a)bc	Nula/ligeira
	Ad1	2(a)bc	Nula/ligeira
	Ad5	2(a)bc	Nula/ligeira
	Ad1	2(a)bc	Nula/ligeira
	Ad5	2(a)bc	Nula/ligeira
	Ad6	2(a)bc**	Moderada
	Ad5	2(a)bc	Nula/ligeira
	Ad1	2(a)bc	Nula/ligeira
· ·	Xbd1	2(a)bc	Nula/ligeira
	Ad1	2(a)bc	Nula/ligeira
	Ad6	2(a)bc**	Moderada
444,7 a 445,7	Xbd1	2(a)bc	Nula/ligeira
445,7 a 448,8	Ad6	2(a)bc**	Moderada
448,8 a 449,9 GX	Xbd1	2(a)bc	Nula/ligeira
449,9 a 453,8	Ad6	2(a)bc**	Moderada
453,8 a 458,3	Ad1	2(a)bc	Nula/ligeira
458,3 a 467,3	Ad6	2(a)bc**	Moderada
467,3 a 469 RY	Ybd1	2(a)b(c)	Nula
469 a 470,3	Ad5	2(a)bc**	Moderada
470,3 a 472,8 RY	Ybd1	2(a)b(c)	Nula
472,8 a 476,5	Ad6	2(a)bc**	Moderada
476,5 a 477,8 LAG	Ad15	2(a)bc	Nula/ligeira
477,8 a 482,7	Ad12	3(bc)**	Ligeira**
482,7 a 484,5	Ad15	2(a)bc	Nula/ligeira
484,5 a 508,7	Ad12	3(bc)**	Ligeira**
508,7 a 510,4 GX	Xbd3	2(a)bc	Nula/ligeira
510,4 a 521,2	Ad14	2(a)bc*	Nula/ligeira
521,2 a 530 LAG	Ad10	2(a)bc**	Nula/ligeira
530 a 530,6 GX	Xbd3	2(a)bc	Nula/ligeira
530,6 a 536,6 LAG	Ad11	2(a)bc**	Ligeira/moderada**
536,6 a 539,9 LAG	Ad14	2(a)bc*	Nula/ligeira
539,9 a 540,6 GX	Xbd3	2(a)bc	Nula/ligeira
540,6 a 544,9	Ad14	2(a)bc*	Nula/ligeira
544,9 a 545,3 GX	Xbd3	2(a)bc	Nula/ligeira
545,3 a 553	Ad14	2(a)bc*	Nula/ligeira
	Ad5	2(a)bc	Nula/ligeira
·	Xbd3	2(a)bc	Nula/ligeira
	Ad5	2(a)bc	Nula/ligeira

Coordenador: Técnico:

128/178 II.5.1 - Meio Físico

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

556 a 558 GXbd3 2(a)bc Nula/ligeira 558 a 560,1 LAd14 2(a)bc* Nula/ligeira 560,2 a 563,7 LAd16 2(a)bc** Ligeira/moderada 563,7a 564 LAd14 2(a)bc* Nula/ligeira 564,7 a 565,4 LAd14 2(a)bc* Nula/ligeira 565,4 a 566,1 GXbd3 2(a)bc Nula/ligeira 566,1 a 568 LAd14 2(a)bc* Nula/ligeira 568 a 570 LAd17 2(a)bc* Nula/ligeira 570 a 573,9 LAd14 2(a)bc* Nula/ligeira 578,7 a 592,1 LAd14 2(a)bc* Nula/ligeira 592,1 a 594 GXbd4 2(a)bc Nula/ligeira 594,7 a 595,7 GXbd4 2(a)bc Nula/ligeira 594,7 a 596,7 GXbd4 2(a)bc Nula/ligeira 594,7 a 600,2 LAd5 2(a)bc Nula/ligeira 600,2 a 606,4 LAd5 2(a)bc Nula/ligeira 600,2 a 606,4 LAd14 2(a)bc* Nula/ligeira <t< th=""></t<>
560,2 a 563,7 LAd16 2(a)bc** Ligeira/moderada 563,7a 564 LAd14 2(a)bc** Nula/ligeira 564 a 564,7 GXbd3 2(a)bc Nula/ligeira 565,4 a 566,1 GXbd3 2(a)bc Nula/ligeira 566,1 a 568 LAd14 2(a)bc** Nula/ligeira 568 a 570 LAd17 2(a)bc** Nula/ligeira 573,9 a 573,9 LAd14 2(a)bc** Nula/ligeira 573,9 a 578,7 GXbd3 2(a)bc Nula/ligeira 578,7 a 592,1 LAd14 2(a)bc** Nula/ligeira 592,1 a 594 GXbd4 2(a)bc Nula/ligeira 595,7 a 596,7 GXbd4 2(a)bc Nula/ligeira 596,7 a 600,2 LAd5 2(a)bc Nula/ligeira 600,2 a 606,4 LAd14 2(a)bc Nula/ligeira 610,9 a 614,2 LAd14 2(a)bc* Nula/ligeira 617,1 a 618,7 GXbd5 2(a)bc Nula/ligeira 618,7 a 625 LAd16 2(a)bc* Nula/ligeira
563,7a 564 LAd14 2(a)bc* Nula/ligeira 564 a 564,7 GXbd3 2(a)bc Nula/ligeira 564,7 a 565,4 LAd14 2(a)bc* Nula/ligeira 565,4 a 566,1 GXbd3 2(a)bc Nula/ligeira 566,1 a 568 LAd14 2(a)bc* Nula/ligeira 568 a 570 LAd17 2(a)bc** Nula/ligeira 570 a 573,9 LAd14 2(a)bc* Nula/ligeira 573,9 a 578,7 GXbd3 2(a)bc Nula/ligeira 578,7 a 592,1 LAd14 2(a)bc* Nula/ligeira 592,1 a 594 GXbd4 2(a)bc Nula/ligeira 594, a 595,7 LAd5 2(a)bc Nula/ligeira 596,7 a 600,2 LAd5 2(a)bc Nula/ligeira 600,2 a 606,4 LAd14 2(a)bc Nula/ligeira 610,9 a 614,2 LAd14 2(a)bc* Nula/ligeira 617,1 a 618,7 GXbd5 2(a)bc Nula/ligeira 618,7 a 625 LAd16 2(a)bc* Nula/ligeira 628 a 628 LAd5 2(a)bc Nula/ligeira 628 a 62
564 a 564,7 GXbd3 2(a)bc Nula/ligeira 564,7 a 565,4 LAd14 2(a)bc* Nula/ligeira 565,4 a 566,1 GXbd3 2(a)bc Nula/ligeira 566,1 a 568 LAd14 2(a)bc** Nula/ligeira 568 a 570 LAd17 2(a)bc** Nula/ligeira 570 a 573,9 LAd14 2(a)bc** Nula/ligeira 578,7 a 592,1 LAd14 2(a)bc* Nula/ligeira 578,7 a 592,1 LAd14 2(a)bc Nula/ligeira 592,1 a 594 GXbd4 2(a)bc Nula/ligeira 595,7 a 596,7 LAd5 2(a)bc Nula/ligeira 595,7 a 596,7 GXbd4 2(a)bc Nula/ligeira 596,7 a 600,2 LAd5 2(a)bc Nula/ligeira 600,2 a 606,4 LAd14 2(a)bc* Nula/ligeira 610,9 a 614,2 LAd14 2(a)bc* Nula/ligeira 610,9 a 614,2 LAd14 2(a)bc* Nula/ligeira 617,1 a 618,7 GXbd5 2(a)bc Nula/ligeira
564,7 a 565,4 LAd14 2(a)bc* Nula/ligeira 565,4 a 566,1 GXbd3 2(a)bc Nula/ligeira 566,1 a 568 LAd14 2(a)bc** Nula/ligeira 568 a 570 LAd17 2(a)bc** Nula/ligeira 570 a 573,9 LAd14 2(a)bc** Nula/ligeira 573,9 a 578,7 GXbd3 2(a)bc Nula/ligeira 578,7 a 592,1 LAd14 2(a)bc** Nula/ligeira 592,1 a 594 GXbd4 2(a)bc Nula/ligeira 594 a 595,7 LAd5 2(a)bc Nula/ligeira 595,7 a 596,7 GXbd4 2(a)bc Nula/ligeira 596,7 a 600,2 LAd5 2(a)bc Nula/ligeira 600,2 a 606,4 LAd14 2(a)bc** Nula/ligeira 610,9 a 614,2 LAd5 2(a)bc Nula/ligeira 610,9 a 614,2 LAd14 2(a)bc** Nula/ligeira 617,1 a 618,7 GXbd5 2(a)bc Nula/ligeira 618,7 a 625 LAd16 2(a)bc** Ligeira/moderada*
565,4 a 566,1 GXbd3 2(a)bc Nula/ligeira 566,1 a 568 LAd14 2(a)bc** Nula/ligeira 568 a 570 LAd17 2(a)bc** Nula/ligeira 570 a 573,9 LAd14 2(a)bc* Nula/ligeira 573,9 a 578,7 GXbd3 2(a)bc Nula/ligeira 578,7 a 592,1 LAd14 2(a)bc* Nula/ligeira 592,1 a 594 GXbd4 2(a)bc Nula/ligeira 594 a 595,7 LAd5 2(a)bc Nula/ligeira 595,7 a 596,7 GXbd4 2(a)bc Nula/ligeira 596,7 a 600,2 LAd5 2(a)bc Nula/ligeira 600,2 a 606,4 LAd14 2(a)bc* Nula/ligeira 600,2 a 606,4 LAd14 2(a)bc Nula/ligeira 610,9 a 614,2 LAd14 2(a)bc Nula/ligeira 610,9 a 614,2 LAd14 2(a)bc* Nula/ligeira 611,7 a 618,7 GXbd5 2(a)bc Nula/ligeira 618,7 a 625 LAd16 2(a)bc* Ligeira/moderada
566,1 a 568 LAd14 2(a)bc** Nula/ligeira 568 a 570 LAd17 2(a)bc** Nula/ligeira 570 a 573,9 LAd14 2(a)bc* Nula/ligeira 573,9 a 578,7 GXbd3 2(a)bc Nula/ligeira 578,7 a 592,1 LAd14 2(a)bc* Nula/ligeira 592,1 a 594 GXbd4 2(a)bc Nula/ligeira 594 a 595,7 LAd5 2(a)bc Nula/ligeira 595,7 a 596,7 GXbd4 2(a)bc Nula/ligeira 596,7 a 600,2 LAd5 2(a)bc Nula/ligeira 600,2 a 606,4 LAd14 2(a)bc* Nula/ligeira 600,2 a 606,4 LAd14 2(a)bc Nula/ligeira 610,9 a 614,2 LAd14 2(a)bc Nula/ligeira 610,9 a 614,2 LAd14 2(a)bc* Nula/ligeira 617,1 a 618,7 GXbd5 2(a)bc Nula/ligeira 618,7 a 625 LAd16 2(a)bc* Ligeira/moderada 625 a 626,8 FFc1 6* Ligeira/moderada <
568 a 570 LAd17 2(a)bc** Nula/ligeira 570 a 573,9 LAd14 2(a)bc* Nula/ligeira 573,9 a 578,7 GXbd3 2(a)bc Nula/ligeira 578,7 a 592,1 LAd14 2(a)bc* Nula/ligeira 592,1 a 594 GXbd4 2(a)bc Nula/ligeira 594 a 595,7 LAd5 2(a)bc Nula/ligeira 595,7 a 596,7 GXbd4 2(a)bc Nula/ligeira 596,7 a 600,2 LAd5 2(a)bc Nula/ligeira 600,2 a 606,4 LAd14 2(a)bc* Nula/ligeira 606,4 a 610,9 LAd5 2(a)bc Nula/ligeira 610,9 a 614,2 LAd14 2(a)bc* Nula/ligeira 610,9 a 614,2 LAd14 2(a)bc* Nula/ligeira 617,1 a 618,7 GXbd5 2(a)bc Nula/ligeira 618,7 a 625 LAd16 2(a)bc* Ligeira/moderada 625 a 626,8 FFC1 6* Ligeira/moderada 628 a 629 GXbd5 2(a)bc Nula/ligeira 6
570 a 573,9 LAd14 2(a)bc* Nula/ligeira 573,9 a 578,7 GXbd3 2(a)bc Nula/ligeira 578,7 a 592,1 LAd14 2(a)bc* Nula/ligeira 592,1 a 594 GXbd4 2(a)bc Nula/ligeira 594 a 595,7 LAd5 2(a)bc Nula/ligeira 595,7 a 596,7 GXbd4 2(a)bc Nula/ligeira 600,2 a 606,4 LAd5 2(a)bc Nula/ligeira 600,2 a 606,4 LAd5 2(a)bc Nula/ligeira 610,9 a 614,2 LAd14 2(a)bc* Nula/ligeira 610,9 a 614,2 LAd14 2(a)bc** Nula/ligeira 617,1 a 618,7 GXbd5 2(a)bc Nula/ligeira 618,7 a 625 LAd16 2(a)bc** Ligeira/moderada 625 a 626,8 FFC1 6* Ligeira/moderada* 628 a 629 GXbd5 2(a)bc Nula/ligeira 629 a 631,9 LAd14 2(a)bc* Nula/ligeira 631,9 a 635,5 GXbd5 2(a)bc Nula/ligeira 635,5 a 636,6 LAd6 2(a)bc** Nula/ligeira <t< td=""></t<>
573,9 a 578,7 GXbd3 2(a)bc Nula/ligeira 578,7 a 592,1 LAd14 2(a)bc* Nula/ligeira 592,1 a 594 GXbd4 2(a)bc Nula/ligeira 594 a 595,7 LAd5 2(a)bc Nula/ligeira 596,7 a 596,7 GXbd4 2(a)bc Nula/ligeira 596,7 a 600,2 LAd5 2(a)bc Nula/ligeira 600,2 a 606,4 LAd14 2(a)bc* Nula/ligeira 606,4 a 610,9 LAd5 2(a)bc Nula/ligeira 610,9 a 614,2 LAd14 2(a)bc* Nula/ligeira 614,2 a 617,1 LAd16 2(a)bc* Nula/ligeira 618,7 a 625 LAd16 2(a)bc Nula/ligeira 625 a 626,8 FFC1 6* Ligeira/moderada 625 a 626,8 FFC1 6* Ligeira/moderada 628 a 629 GXbd5 2(a)bc Nula/ligeira 629 a 631,9 LAd14 2(a)bc Nula/ligeira 631,9 a 635,5 GXbd5 2(a)bc Nula/ligeira 635,5 a 636,6 LAd6 2(a)bc* Nula/ligeira 638,8 a 6
578,7 a 592,1 LAd14 2(a)bc* Nula/ligeira 592,1 a 594 GXbd4 2(a)bc Nula/ligeira 594 a 595,7 LAd5 2(a)bc Nula/ligeira 595,7 a 596,7 GXbd4 2(a)bc Nula/ligeira 596,7 a 600,2 LAd5 2(a)bc Nula/ligeira 600,2 a 606,4 LAd14 2(a)bc* Nula/ligeira 606,4 a 610,9 LAd5 2(a)bc Nula/ligeira 610,9 a 614,2 LAd14 2(a)bc* Nula/ligeira 614,2 a 617,1 LAd16 2(a)bc* Nula/ligeira 618,7 a 625 LAd16 2(a)bc Nula/ligeira 618,7 a 625 LAd16 2(a)bc** Ligeira/moderada 625 a 626,8 FFc1 6* Ligeira/moderada* 626,8 a 628 LAd5 2(a)bc Nula/ligeira 628 a 629 GXbd5 2(a)bc Nula/ligeira 631,9 a 635,5 GXbd5 2(a)bc Nula/ligeira 635,5 a 636,6 LAd6 2(a)bc** Moderada 638,8 a 639,3 Rio 639,3 a 645,5 FXd 4(p)**
592,1 a 594 GXbd4 2(a)bc Nula/ligeira 594 a 595,7 LAd5 2(a)bc Nula/ligeira 595,7 a 596,7 GXbd4 2(a)bc Nula/ligeira 596,7 a 600,2 LAd5 2(a)bc Nula/ligeira 600,2 a 606,4 LAd14 2(a)bc* Nula/ligeira 606,4 a 610,9 LAd5 2(a)bc Nula/ligeira 610,9 a 614,2 LAd14 2(a)bc* Nula/ligeira 614,2 a 617,1 LAd16 2(a)bc** Ligeira/moderada 617,1 a 618,7 GXbd5 2(a)bc Nula/ligeira 618,7 a 625 LAd16 2(a)bc** Ligeira/moderada 625 a 626,8 FFc1 6* Ligeira/moderada* 626,8 a 628 LAd5 2(a)bc Nula/ligeira 628 a 629 GXbd5 2(a)bc Nula/ligeira 629 a 631,9 LAd14 2(a)bc* Nula/ligeira 631,9 a 635,5 GXbd5 2(a)bc Nula/ligeira 635,5 a 636,6 LAd6 2(a)bc** Moderada 638,8 a 639,3 Rio Ligeira**
594 a 595,7 LAd5 2(a)bc Nula/ligeira 595,7 a 596,7 GXbd4 2(a)bc Nula/ligeira 596,7 a 600,2 LAd5 2(a)bc Nula/ligeira 600,2 a 606,4 LAd14 2(a)bc* Nula/ligeira 606,4 a 610,9 LAd5 2(a)bc Nula/ligeira 610,9 a 614,2 LAd14 2(a)bc* Nula/ligeira 614,2 a 617,1 LAd16 2(a)bc** Ligeira/moderada 617,1 a 618,7 GXbd5 2(a)bc Nula/ligeira 618,7 a 625 LAd16 2(a)bc** Ligeira/moderada 625 a 626,8 FFc1 6* Ligeira/moderada* 626,8 a 628 LAd5 2(a)bc Nula/ligeira 628 a 629 GXbd5 2(a)bc Nula/ligeira 629 a 631,9 LAd14 2(a)bc* Nula/ligeira 631,9 a 635,5 GXbd5 2(a)bc Nula/ligeira 635,5 a 636,6 LAd6 2(a)bc** Moderada 638,8 a 639,3 Rio 639,3 a 645,5 FXd 4(p)** Ligeira**
595,7 a 596,7 GXbd4 2(a)bc Nula/ligeira 596,7 a 600,2 LAd5 2(a)bc Nula/ligeira 600,2 a 606,4 LAd14 2(a)bc* Nula/ligeira 606,4 a 610,9 LAd5 2(a)bc Nula/ligeira 610,9 a 614,2 LAd14 2(a)bc* Nula/ligeira 617,1 a 618,7 GXbd5 2(a)bc Nula/ligeira 618,7 a 625 LAd16 2(a)bc** Ligeira/moderada 625 a 626,8 FFc1 6* Ligeira/moderada* 626,8 a 628 LAd5 2(a)bc Nula/ligeira 628 a 629 GXbd5 2(a)bc Nula/ligeira 629 a 631,9 LAd14 2(a)bc* Nula/ligeira 631,9 a 635,5 GXbd5 2(a)bc Nula/ligeira 635,5 a 636,6 LAd6 2(a)bc* Nula/ligeira 638,8 a 639,3 Rio 639,3 a 645,5 FXd 4(p)** Ligeira**
596,7 a 600,2 LAd5 2(a)bc Nula/ligeira 600,2 a 606,4 LAd14 2(a)bc* Nula/ligeira 606,4 a 610,9 LAd5 2(a)bc Nula/ligeira 610,9 a 614,2 LAd14 2(a)bc* Nula/ligeira 614,2 a 617,1 LAd16 2(a)bc** Ligeira/moderada 617,1 a 618,7 GXbd5 2(a)bc Nula/ligeira 618,7 a 625 LAd16 2(a)bc** Ligeira/moderada 625 a 626,8 FFc1 6* Ligeira/moderada* 626,8 a 628 LAd5 2(a)bc Nula/ligeira 628 a 629 GXbd5 2(a)bc Nula/ligeira 629 a 631,9 LAd14 2(a)bc* Nula/ligeira 631,9 a 635,5 GXbd5 2(a)bc Nula/ligeira 635,5 a 636,6 LAd6 2(a)bc** Moderada 636,6 a 638,8 FXd 4(p)** Ligeira** 639,3 a 645,5 FXd 4(p)** Ligeira**
600,2 a 606,4 LAd14 2(a)bc* Nula/ligeira 606,4 a 610,9 LAd5 2(a)bc Nula/ligeira 610,9 a 614,2 LAd14 2(a)bc* Nula/ligeira 614,2 a 617,1 LAd16 2(a)bc** Ligeira/moderada 617,1 a 618,7 GXbd5 2(a)bc Nula/ligeira 618,7 a 625 LAd16 2(a)bc** Ligeira/moderada 625 a 626,8 FFc1 6* Ligeira/moderada* 626,8 a 628 LAd5 2(a)bc Nula/ligeira 628 a 629 GXbd5 2(a)bc Nula/ligeira 629 a 631,9 LAd14 2(a)bc* Nula/ligeira 631,9 a 635,5 GXbd5 2(a)bc Nula/ligeira 635,5 a 636,6 LAd6 2(a)bc** Moderada 636,6 a 638,8 FXd 4(p)** Ligeira** 638,8 a 639,3 Rio FXd 4(p)** Ligeira**
606,4 a 610,9 LAd5 2(a)bc Nula/ligeira 610,9 a 614,2 LAd14 2(a)bc* Nula/ligeira 614,2 a 617,1 LAd16 2(a)bc** Ligeira/moderada 617,1 a 618,7 GXbd5 2(a)bc Nula/ligeira 618,7 a 625 LAd16 2(a)bc** Ligeira/moderada 625 a 626,8 FFc1 6* Ligeira/moderada* 626,8 a 628 LAd5 2(a)bc Nula/ligeira 628 a 629 GXbd5 2(a)bc Nula/ligeira 629 a 631,9 LAd14 2(a)bc* Nula/ligeira 631,9 a 635,5 GXbd5 2(a)bc Nula/ligeira 635,5 a 636,6 LAd6 2(a)bc** Moderada 636,6 a 638,8 FXd 4(p)** Ligeira** 638,8 a 639,3 Rio FXd 4(p)** Ligeira**
610,9 a 614,2 614,2 a 617,1 LAd16 C(a)bc** Ligeira/moderada 617,1 a 618,7 GXbd5 C(a)bc LAd16 C(a)bc** Ligeira/moderada 625 a 626,8 FFc1 CAd16 C(a)bc Ligeira/moderada 625 a 626,8 FFc1 CAd5 CAD5 CAD6 CAD6 CAD6 CAD6 CAD6 CAD6 CAD6 CAD6
614,2 a 617,1
617,1 a 618,7 618,7 a 625 LAd16 2(a)bc** Ligeira/moderada 625 a 626,8 626,8 a 628 LAd5 2(a)bc Nula/ligeira 626,8 a 628 LAd5 Ca)bc Nula/ligeira 628 a 629 GXbd5 Ca)bc Nula/ligeira 629 a 631,9 LAd14 Ca)bc Nula/ligeira 631,9 a 635,5 GXbd5 Ca)bc Nula/ligeira 631,9 a 635,5 GXbd5 Ca)bc Nula/ligeira 635,5 a 636,6 LAd6 Ca)bc Nula/ligeira 636,6 a 638,8 FXd A(p)** Ligeira** 638,8 a 639,3 Rio 639,3 a 645,5 FXd A(p)** Ligeira**
618,7 a 625 LAd16 2(a)bc** Ligeira/moderada 625 a 626,8 FFc1 6* Ligeira/moderada* 626,8 a 628 LAd5 2(a)bc Nula/ligeira 628 a 629 GXbd5 2(a)bc Nula/ligeira 629 a 631,9 LAd14 2(a)bc* Nula/ligeira 631,9 a 635,5 GXbd5 2(a)bc Nula/ligeira 635,5 a 636,6 LAd6 2(a)bc** Moderada 636,6 a 638,8 FXd 4(p)** Ligeira** 638,8 a 639,3 Rio 639,3 a 645,5 FXd 4(p)** Ligeira**
625 a 626,8 FFc1 6* Ligeira/moderada* 626,8 a 628 LAd5 2(a)bc Nula/ligeira 628 a 629 GXbd5 2(a)bc Nula/ligeira 629 a 631,9 LAd14 2(a)bc* Nula/ligeira 631,9 a 635,5 GXbd5 2(a)bc Nula/ligeira 635,5 a 636,6 LAd6 2(a)bc** Moderada 636,6 a 638,8 FXd 4(p)** Ligeira** 638,8 a 639,3 Rio 639,3 a 645,5 FXd 4(p)** Ligeira**
626,8 a 628 LAd5 2(a)bc Nula/ligeira 628 a 629 GXbd5 2(a)bc Nula/ligeira 629 a 631,9 LAd14 2(a)bc* Nula/ligeira 631,9 a 635,5 GXbd5 2(a)bc Nula/ligeira 635,5 a 636,6 LAd6 2(a)bc** Moderada 636,6 a 638,8 FXd 4(p)** Ligeira** 638,8 a 639,3 Rio 639,3 a 645,5 FXd 4(p)** Ligeira**
628 a 629 629 a 631,9 631,9 a 635,5 635,5 a 636,6 636,6 a 638,8 638,8 a 639,3 639,3 a 645,5 GXbd5 2(a)bc Nula/ligeira 2(a)bc** Nula/ligeira 2(a)bc** Moderada 4(p)** Ligeira** 4(p)** Ligeira**
629 a 631,9
631,9 a 635,5 635,5 a 636,6 LAd6 2(a)bc** Moderada 636,6 a 638,8 FXd 4(p)** Ligeira** 638,8 a 639,3 Rio 639,3 a 645,5 FXd 4(p)** Ligeira**
635,5 a 636,6
636,6 a 638,8 FXd 4(p)** Ligeira** 638,8 a 639,3 Rio 639,3 a 645,5 FXd 4(p)** Ligeira**
638,8 a 639,3 639,3 a 645,5
639,3 a 645,5 FXd 4(p)** Ligeira**
645,5 a 651,8 LAd5 2(a)bc Nula/ligeira
651,8 a 653,2 GXbd3 2(a)bc Nula/ligeira
653,2 a 662,6 LAd5 4(p)** Ligeira
662,6 a 665 GXbd3 2(a)bc Nula/ligeira
665 a 669,1 LAd17 4(p)** Ligeira
669,1 a 671,7 GXbd3 2(a)bc Nula/ligeira
671,7 a 672,7 LAd17 4(p)** Ligeira
672,7 a 675,3 (área final do gasoduto braço esquerdo). GXbd3 2(a)bc Nula/ligeira
675,3 (início do braço direito) a 676,6 FXd 4(p)** Ligeira**
676,6 a 678,2 GXbd5 2(a)bc Nula/ligeira
678,2 a 678,6 Rio
678,6 a 680,5 FXd 4(p)** Ligeira**
680,5 a 690,9 LAd10 2(a)bc** Nula/ligeira
690,9 a 692 LAd5 2(a)bc Nula/ligeira
692 a 694 LAd10 2(a)bc** Nula/ligeira

Coordenador: Técnico:

II.5.1 - Meio Físico 129/178

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

Quilômetro de Ocorrência (Km)	Unidade de Mapeamento	Aptidão Agrícola	Susceptibilidade à Erosão
694 a 694,8	GXbd2	2(a)bc	Nula/ligeira
694,8 a 704,4	LAd10	2(a)bc**	Nula/ligeira
704,4 a 706,3	RYbd2	2(a)b(c)	Nula
706,3 a 708,3	Rio		
708,3 a 712,5	RYbd2	2(a)b(c)	Nula
712,5 a 716,4 (área final do gasoduto braço direito)	GXbd5	2(a)bc	Nula/ligeira

II.5.1.3.3.9 - Avaliação da Aptidão Agrícola das Terras

II.5.1.3.3.9.1 - Critérios Básicos

O conhecimento da aptidão agrícola de terras é fator relevante para propriciar o uso adequado da oferta ambiental e, sobretudo, evitar depauperação dos recursos naturais. Este estudo foi realizado com o objetivo de oferecer uma visão do potencial agrícola da área de influência indireta do Gasoduto do Pará. Esta avaliação é baseada na metodologia empregada nos estudos básicos desenvolvidos para o planejamento agrícola das terras do Brasil, realizados pelo Ministério da Agricultura, através da Secretaria Nacional de Planejamento - SUPLAN - entre 1977 e 1980 (Ramalho Filho & Beek, 1995).

A avaliação da aptidão agrícola das terras para o Gasoduto do Pará, espacializada no Desenho 2330-00-EIA-DE-2006-00 - Mapa de Aptidão Agrícola, no Caderno de Mapas do EIA, Volume II para a Área de Influência Indireta na escala de 1:250.000, consiste em classificar as terras em seis grupos, baseados na interpretação dos dados fornecidos pelo levantamento pedológico e considerando práticas agrícolas em três níveis de manejo tecnológico: baixo, médio e alto. Essa interpretação é realizada visando um planejamento agrícola de sequeiro, através da avaliação das condições de cada unidade de mapeamento de solos, não só para lavouras como também para pastagens e silvicultura. A metodologia do sistema foi desenvolvida pela SUPLAN - CNPS/EMBRAPA, (Ramalho Filho & Beek, 1995).

O nível de manejo A (primitivo) é baseado em práticas agrícolas que refletem um baixo nível técnico-cultural. No nível B, as práticas de manejo estão condicionadas a um nível razoável de conhecimento técnico. Há alguma aplicação modesta de capital e utilização de resultados de pesquisa para a manutenção e melhoramento das condições agrícolas das terras e das lavouras. As práticas de manejo neste nível de manejo incluem calagem e adubação, tratamentos fitossanitários simples, mecanização com base na tração animal ou na tração motorizada, apenas para desbravamento e preparo inicial do solo.

Coordenador: Técnico:

130/178

II.5.1 - Meio Físico

gasoduto do pará

Estudo de Impacto Ambiental - EIA

As práticas agrícolas no nível C de manejo estão condicionadas a um alto nível de conhecimento tecnológico. Caracteriza-se pela aplicação intensiva de capital para a manutenção e melhoramento das condições das terras e das lavouras. As práticas de manejo são conduzidas com auxílio de maquinaria agrícola e um conhecimento técnico operacional capaz de elevar a capacidade produtiva. Incluem-se, nas práticas de manejo, trabalhos intensivos de drenagem, medidas de controle de erosão, tratos fitossanitários, rotação de culturas com plantio de sementes melhoradas, calagem e fertilizantes em nível econômico indicado através das pesquisas e mecanização adequada.

Foram admitidos 6 grupos de aptidão para avaliar as condições agrícolas de cada unidade de mapeamento do solo, não só para lavouras, como para pastagem plantada, pastagem natural e silvicultura, devendo as áreas inaptas ser indicadas para preservação da flora e da fauna, ou outra atividade não ligada a agricultura. Em outras palavras, as terras consideradas inaptas para lavoura são analisadas de acordo com os fatores básicos limitantes e classificadas segundo sua aptidão para usos menos intensos.

Os grupos 1, 2 e 3 identificam terras cujo tipo de utilização mais intensivo é a lavoura. O grupo 4 é constituído de terras em que o tipo de utilização é a pastagem plantada, enquanto que o grupo 5 engloba subgrupos que identificam terras nas quais os tipos mais intensivos são silvicultura e/ou pastagem natural. O grupo 6 refere-se a terras inaptas para quaisquer tipos de utilizações mencionadas, a não ser em casos especiais.

As classes expressam a aptidão agrícola das terras para um determinado tipo de utilização que são lavouras, pastagem plantada, silvicultura e pastagem natural. As classes de aptidão foram definidas como Boa, Regular, Restrita e Inapta.

Classe Boa

Terra sem limitações significativas para a produção sustentada de um determinado tipo de utilização, observando condições do manejo considerado. Há um mínimo de restrições que não reduz a produtividade ou benefícios expressivamente e não aumenta os insumos acima de um nível aceitável.

Classe Regular

Terras que apresentam limitações moderadas para a produção sustentada de um determinado tipo de utilização, observando as condições de manejo considerado. As limitações reduzem a produtividade ou os benefícios, elevando a necessidade de insumos, de forma a aumentar as

Coordenador: Técnico:

II.5.1 - Meio Físico 131/178

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

vantagens globais a serem obtidas do uso. Ainda que atrativas, essas vantagens são sensivelmente inferiores àquelas auferidas das terras da classe boa.

Classe Restrita

Terras que apresentam limitações fortes para a produção sustentada de um determinado tipo de utilização, observando as condições do manejo considerado. Essas limitações reduzem a produtividade ou os benefícios, ou então aumentam os insumos necessários, de tal maneira, que os custos só seriam justificados marginalmente.

Classe Inapta

Terras apresentando condições que parecem excluir a produção sustentada do tipo de utilização em questão.

A classe de aptidão agrícola das terras, de acordo com os níveis de manejo, é obtida em função do grau limitativo mais forte, referente a qualquer um dos fatores que influenciam a sua utilização agrícola: deficiência de fertilidade, deficiência de água, excesso de água, susceptibilidade à erosão e impedimentos à mecanização.

As classes são representadas por letras A, B e C que expressam aptidão das terras para lavouras, P e N que se referem a pastagem plantada e pastagem natural e S para Silvicultura conforme pode ser observado no Quadro II.5.1-17. Essas letras podem ser maiúsculas, minúsculas ou minúsculas entre parênteses, conforme a classe de aptidão seja Boa, Regular ou Restrita. A classe lnapta não é representada por símbolos. Sua interpretação é feita pela ausência das letras no tipo de utilização.

Quadro II.5.1-17 - Simbologia das classes de aptidão agrícola das terras

	Tipos de utilização (grupos)						
Classe de aptidão agrícola	(, , ,		Pastagem plantada (4)	Silvicultura (5)	Pastagem natural (5)	Inaptas (6)	
aptidad agi iddia	Níve	l de ma	nejo	Nível de manejo B	Nível de manejo	manejo Nível de manejo A	
	Α	В	С	Mivor do manojo B	В	nivor do manejo x	
Boa	Α	В	С	Р	S	N	-
Regular	а	b	С	p	S	n	-
Restrita	(a)	(b)	(c)	(p)	(s)	(n)	-
Inapta	-	-	-	-	-	-	-

Coordenador. Técnico:

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

II.5.1.3.3.9.2 - Resultados da Avaliação da Aptidão Agrícola

Os Quadro II.5.1-18 e Quadro II.5.1-19 apresentam os resultados da avaliação da aptidão agrícola das terras da área de influência do Gasoduto do Pará e as suas respectivas extensões de terras indicadas para os diferentes tipos de utilização.

Observa-se que, dentre os tipos de utilização considerados nesta avaliação, o grupo 2, regular para culturas é a que abrange a maior superfície, totalizando 579.893 ha, o equivalente a 80,9% das terras da área de influência indireta do gasoduto. Estas terras estão relacionadas, principalmente com solos das classes dos Latossolos Amarelos, Latossolos Vermelho-Amarelos e Gleissolos. O principal fator limitante destes solos é a baixíssima fertilidade natural nos Latossolos e o excesso de água nos Gleissolos.

Dentro do grupo 2, a classe de aptidão agrícola 2(a)bc, terras pertencentes à classe de aptidão Regular para lavouras, nos níveis de manejo B e C e Restrita no nível de manejo A, é a que ocupa maior área, cobrindo quase 2/3 da área de influência indireta do gasoduto. Esta classe tem nos Latossolos Amarelos e Latossolos Vermelho-Amarelos os seus representantes. A deficiência de fertilidade é o principal fator limitante à produção agrícola destes solos, que apresentam boas características físicas e boa aptidão para a mecanização, sendo que a utilização de fertilizantes e corretivos torna a produção destes solos bem interessante e sustentável.

As terras com classes piores de aptidão agrícola, classes 4(p) e 5s(n), respectivamente, terras pertencentes à classe de aptidão Restrita para pastagem plantada e terras pertencentes à classe de aptidão Restrita para pastagem natural e Regular para Silvicultura, ocupam 4,9 e 2,9% da área. Estas classes são representadas pelos Argissolos Vermelho-Amarelos em relevo suave ondulado e ondulado, cuja principal limitação é a susceptibilidade à erosão e os Neossolos Quartzarênicos, que apresentam forte susceptibilidade à erosão e a baixa fertilidade como principais limitantes.

As terras não indicadas para utilização agrícola, destinadas para preservação da flora e da fauna devido as suas sérias limitações, perfazem 8.109 ha, o equivalente a 1,1% da área total do gasoduto avaliado. O solo enquadrado neste grupo de aptidão agrícola pertence à classe dos Plintossolos Pétricos Concrecionários, que apresentam elevada presença de concreções na massa do solo.

Coordenador: Técnico:

II.5.1 - Meio Físico 133/178

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

Quadro II.5.1-18 - Resultados da avaliação da aptidão Agrícola das terras

Símbolo	Vegetação	Classes de Relevo	Aptidão	Área	
Simbolo	vegetação	Classes de Relevo	Agrícola	ha	%
PVAd1	Floresta Perenifólia	plano e suave ondulado	3(abc)*	37396,90	5,21
PVAd2	Floresta Perenifólia	suave ondulado e ondulado	4(p)**	9790,52	1,37
GXbd1	Floresta Perenifólia de Várzea	Plano	2(a)b(c)	14138,00	1,97
GXbd2	Floresta Perenifólia de Várzea	Plano	2(a)b(c)	2286,10	0,32
GXbd3	Floresta Perenifólia de Várzea	plano	2(a)b(c)	22451,66	3,13
GXbd4	Floresta Perenifólia de Várzea	plano c/microrelevo	2(a)b(c)	11902,36	1,66
GXbd5	Floresta Perenifólia de Várzea	plano c/microrelevo	2(a)b(c)	8666,57	1,21
LAd1	Floresta Perenifólia	plano e suave ondulado	2(a)bc	79044,07	11,02
LAd2	Floresta Perenifólia	plano e suave ondulado	2(a)bc	11880,14	1,66
LAd3	Floresta Perenifólia	suave ondulado e ondulado	2(a)b(c)	60495,78	8,44
LAd4	Floresta Perenifólia	forte ondulado	2(a)b(c)**	6630,96	0,92
LAd5	Floresta Perenifólia	plano e suave ondulado	2(a)bc	53642,34	7,48
LAd6	Floresta Perenifólia	suave ondulado e ondulado	2(a)bc**	66493,26	9,27
LAd7	Floresta Perenifólia	Ondulado	2(a)b	11156,38	1,56
LAd8	Floresta Perenifólia	ondulado e forte ondulado	2(a)b**	12584,36	1,75
LAd9	Floresta Perenifólia	suave ondulado	2(a)bc**	344,57	0,05
LAd10	Floresta Perenifólia	plano e suave ondulado	2(a)bc**	27043,64	3,77
LAd11	Floresta Perenifólia	suave ondulado e ondulado	2(a)bc**	6988,87	0,97
LAd12	Floresta Perenifólia	suave ondulado e plano	3(bc)**	27657,22	3,86
LAd13	Floresta Perenifólia	suave ondulado e ondulado	2(a)bc**	1658,99	0,23
LAd14	Floresta Perenifólia	plano e suave ondulado	2(a)bc*	62497,89	8,71
LAd15	Floresta Perenifólia	plano e suave ondulado	2(a)bc	4529,84	0,63
LAd16	Floresta Perenifólia	suave ondulado e ondulado	2(a)bc**	7455,09	1,04
LAd17	Floresta Perenifólia	plano e suave ondulado	2(a)bc**	26502,88	3,70
LVAd1	Floresta Perenifólia	plano e suave ondulado	2(a)bc	15770,36	2,20
LVAd2	Floresta Perenifólia	suave ondulado e ondulado	2(a)bc**	200,08	0,03
LVAd3	Floresta Perenifólia	suave ondulado e ondulado	2(a)bc**	19801,89	2,76
LVAd4	Floresta Perenifólia	suave ondulado e ondulado	2(a)bc**	3537,20	0,49
RQo	Floresta Perenifólia	plano e suave ondulado	5s(n)*	20561,17	2,87
RYbd1	Floresta Perenifólia de Várzea	Plano	2(a)b(c)	36172,67	5,04
RYbd2	Floresta Perenifólia de Várzea	Plano	2(a)b(c)	6017,12	0,84
FXd	Floresta Perenifólia	plano e suave ondulado	4(p)**	25555,22	3,56
FFc1	Floresta Perenifólia	plano e suave ondulado	6*	1443,92	0,20
FFc2	Floresta Perenifólia	ondulado e suave ondulado	6*	2814,26	0,39
FFc3	Floresta Perenifólia	plano e suave ondulado	6*	3850,52	0,54
Água				8227,71	1,15
Total				717190,50	100

Coordenador: Técnico: 134/178 II.5.1 - Meio Físico

^{* - 1 (}um) asterisco no símbolo da unidade, indica haver na associação componente com Aptidão superior àquela indicada.
** - 2 (dois) asteriscos no símbolo da unidade, indica haver na associação componente com Aptidão inferior àquela indicada.

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00 GASODUTO DO PARÁ

Quadro II.5.1-19 - Legenda da aptidão agrícola das terras

Aptidão	Descrição	Área	
Agrícola	Descrição	ha	%
2(a)bc	Terras pertencentes à classe de aptidão Regular para lavouras, nos níveis de manejo B e C e a classe de aptidão Restrita no nível de manejo A.	225362,54	31,42
2(a)bc*	Terras pertencentes à classe de aptidão Regular para lavouras, nos níveis de manejo B e C e a classe de aptidão Restrita no nível de manejo A.	62497,89	8,71
2(a)bc**	Terras pertencentes à classe de aptidão Regular para lavouras, nos níveis de manejo B e C e a classe de aptidão Restrita no nível de manejo A.	160026,46	22,31
2(a)b(c)	Terras pertencentes à classe de aptidão Regular para lavouras, no nível de manejo B e a classe de aptidão Restrita nos níveis de manejo A e C.	6630,96	0,92
2(a)b(c)**	Terras pertencentes à classe de aptidão Regular para lavouras, no nível de manejo B e a classe de aptidão Restrita nos níveis de manejo A e C.	11156,38	1,56
2(a)b	Terras pertencentes à classe de aptidão Regular para lavouras, no nível de manejo B, Restrita no nível de manejo A e Inapta no nível C.	12584,36	1,75
2(a)b**	Terras pertencentes à classe de aptidão Regular para lavouras, no nível de manejo B, Restrita no nível de manejo A e Inapta no nível C.		14,17
3(abc)*	Terras pertencentes à classe de aptidão Restrita para lavouras, nos níveis de manejo A, B e C.	37396,90	5,21
3(bc)**	Terras pertencentes à classe de aptidão Restrita para lavouras, nos níveis de manejo B e C e a classe Inapta no nível de manejo A.	27657,22	3,86
4(p)**	Terras pertencentes à classe de aptidão Restrita para pastagem plantada	35345,73	4,93
5s(n)*	Terras pertencentes à classe de aptidão Restrita para pastagem natural e a classe Regular para Silvicultura	20561,17	2,87
6*	Terras sem aptidão para utilização agrícola, reservadas para preservação da fauna e da flora.	8108,70	1,13
Água		8227,71	1,15
Total		717190,50	100,0

II.5.1.3.3.9.3 -Aptidão Agrícola das Terras atravessadas pelo gasoduto

O Quadro II.5.1-20 indica a classe de Aptidão Agrícola das Terras atravessadas ao longo do gasoduto (somatório de quilômetros).

Quadro II.5.1-20 - Aptidão Agrícola das Terras atravessadas pelo gasoduto

Aptidão Agrícola	Km	%
2	605	84,5
3(bc)**	29,7	4,1
4(p)**	46,4	6,5
5s(n)	24	3,3
6	6,4	0,9
Rio	4,9	0,7
Total	716,4	100

Coordenador. Técnico:

II.5.1 - Meio Físico 135/178

^{- 1 (}um) asterisco no símbolo da unidade, indica haver na associação componente com Aptidão superior àquela indicada.

** - 2 (dois) asteriscos no símbolo da unidade, indica haver na associação componente com Aptidão inferior àquela indicada.

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

O Quadro II.5.1-20 mostra que quase 85% (605 km) do gasoduto atravessam áreas com aptidão Regular para culturas, classe 2 de aptidão, enquanto apenas 0,9% (6,4 km) são de áreas indicadas para preservação da flora e da fauna, classe 6.

II.5.1.3.3.10 - Susceptibilidade dos Solos à Erosão

A crescente preocupação em relação à preservação ambiental e exploração sustentada dos recursos naturais, tem provocado uma crescente demanda com relação à utilização de sistemas interpretativos capazes de fornecer predições ou outros instrumentos de prevenção e controle de processos erosivos (IBGE, 2005).

Neste sentido, a avaliação da susceptibilidade à erosão dos solos, utiliza informações dos diferentes componentes ambientais envolvidos direta ou indiretamente nos processos erosivos. As informações, em geral, são de caráter qualitativo e se prestam como instrumento de prevenção para direcionamento de políticas conservacionistas.

II.5.1.3.3.10.1 - Metodologia

A avaliação da susceptibilidade dos solos à erosão trata da maior ou menor resistência dos solos à ação dos agentes da erosão e pretende estabelecer a hierarquização dos diversos solos encontrados na Área de Influência do empreendimento no que se refere a esta característica.

Sabe-se que, em condições de igualdade dos vários fatores ambientais condicionantes da erosão, tais como relevo, características das chuvas, cobertura vegetal, e características de manejo e uso da terra, persistem diferenças significativas na quantidade de terra perdida por erosão, que são atribuídas às diferenças intrínsecas dos diversos tipos de solos, e que tem a denominação de erodibilidade.

Para a determinação dos referidos graus de susceptibilidade de cada uma das áreas delimitadas no Desenho 2330-00-EIA-DE-2003-00 - Mapa de Solos, no Caderno de Mapas do EIA, Volume II são considerados como fatores determinantes na velocidade e atuação dos processos erosivos:

- Volume d'água que atinge o terreno e sua distribuição no tempo e espaço;
- Sazonalidade das precipitações pluviométricas;
- Chuvas intensas a análise das chuvas intensas é extremamente importante, pois, são elas as causadoras dos maiores efeitos erosivos sobre as terras;

Coordenador: Técnico:

136/178

II.5.1 - Meio Físico

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

- Cobertura vegetal o tipo de cobertura vegetal determina a maior ou menor proteção contra o impacto e a remoção das partículas de solo pela água;
- Características de solos espessura do solum (compreende os horizontes A e B), transição entre horizontes (gradiente textural), tipo de argila, textura, estrutura, camadas orgânicas, camadas adensadas em subsuperfície, pedregosidade superficial e subsuperficial, presença de calhaus e matacões, drenagem interna, permeabilidade, entre as mais importantes;
- Lençol freático a profundidade do lençol freático nos solos é fator decisivo, por exemplo, para o desenvolvimento de voçorocas;
- Topografia maiores declividades determinam maiores velocidades de escoamento das águas, aumentando sua capacidade erosiva. O comprimento da pendente é diretamente proporcional ao tempo de escoamento. Se os declives são acentuados, quanto maior a vertente, maior é a erosão e;
- Uso e manejo do solo a indução ou a redução da erosão depende do tipo de cultura e do manejo de solos adotado; a adoção de práticas conservacionistas, como cultivos em curvas de nível, terraceamento, plantio direto, culturas em contorno e outras recomendadas para cada região, reduz consideravelmente os efeitos dos processos erosivos.

Assim, a avaliação da susceptibilidade dos solos da área de influência indireta do gasoduto à erosão foi realizada utilizando-se as informações sobre as litologias, formas do modelado, características dos solos, condições de relevo, declividade e tipo de cobertura vegetal obtidas, principalmente, a partir do levantamento de solos. Esta avaliação foi realizada para todas as trinta e cinco unidades de mapeamento identificadas neste levantamento, com base nos graus de limitação quanto à susceptibilidade à erosão atribuída às unidades taxonômicas, para o nível de manejo A, de menor grau de interferência nos solos, da avaliação da aptidão agrícola das terras estabelecidos por Ramalho Filho & Beek (1995) e que são apresentados a seguir na Descrição das Classes de Susceptibilidade à erosão.

Coordenador: Técnico.

II.5.1 - Meio Físico 137/178

GASODUTO DO PARÁ Estudo de Impacto Ambiental - EIA 2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

II.5.1.3.3.10.2 - Descrição das Classes de Susceptibilidade à Erosão

Nula (N) - terras planas ou quase planas, onde o escoamento superficial da água ou enxurrada é muito lento ou lento. O declive do terreno abaixo de 3% não oferece nenhuma dificuldade ao uso de máquinas agrícolas e não existe também erosão hídrica significativa, exceto, possivelmente, em vertentes cujas rampas sejam muito longas e com solos desprotegidos e altamente susceptíveis à erosão ou quando recebem enxurradas de áreas vizinhas, situadas a montante e mais declivosas. Quando cultivadas por dez a vinte anos podem apresentar erosão ligeira, que pode ser controlada com práticas simples de manejo.

Ligeira (L) - terras com declives suaves, nas quais, na maior parte do ano, o escoamento superficial é lento ou médio. O declive de 3 a 8%, por si só, não impede ou dificulta o trabalho de qualquer tipo de máquina agrícola mais usual. Em algumas terras com esses declives, a erosão hídrica não oferece problema sério; em muitas delas, práticas simples de conservação são necessárias, enquanto em terras muito erodidas e com comprimentos de rampa muito longos, proteções com práticas complexas podem ser necessárias, tais como, sistema de terraços e faixas de retenção. Quando utilizadas com lavouras, por um período de dez a vinte anos, mostram, normalmente, uma perda de 25% ou mais do horizonte superficial, que pode ser prevenida com práticas conservacionistas simples.

Moderada (M) - terras com relevo muito movimentado ou colinosas, onde o escoamento superficial da água é rápido na maior parte dos solos. Terras desta classe são facilmente erodíveis, exceto aquelas mais permeáveis. O relevo é normalmente ondulado, com declives de 8 a 13%. Esse nível de declive pode variar para mais de 13%, quando as condições físicas forem muito favoráveis ou para menos de 8%, quando muito desfavoráveis, como é o caso de solos com horizonte A arenoso e com mudança textura abrupta para o horizonte B. A utilização dessas terras fora dos princípios conservacionistas, pode causar forte erosão laminar e até em sulcos e voçorocas, portanto requerem práticas intensivas de controle à erosão, desde o início de sua utilização agrícola. Normalmente, as áreas que apresentam esse declive devem ser utilizadas preferencialmente para cultivos perenes, pastagens ou reflorestamento.

Forte (F) - representada por terras fortemente inclinadas, cujo escoamento superficial da água é muito rápido na maior parte dos solos. Ocorrem em relevo forte ondulado, com declives normalmente de 13 a 20 %, os quais podem ser maiores ou menores, dependendo de suas condições físicas. Na maioria dos casos a prevenção à erosão é difícil e dispendiosa, podendo ser antieconômica.

Coordenador: Técnico:

138/178

II.5.1 - Meio Físico

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

Muito Forte (MF) - terras fortemente susceptíveis à erosão hídrica e de escoamento superficial muito rápido. Não são recomendáveis ao uso agrícola, sob pena de serem totalmente erodidas em poucos anos. No caso de terras mais frágeis deve ser estabelecida uma cobertura vegetal que evite seu arrasamento.

II.5.1.3.3.10.3 - Resultados da Avaliação da Susceptibilidade á Erosão

Nos Quadro II.5.1-21 e Quadro II.5.1-22 são apresentados os resultados da avaliação da susceptibilidade à erosão dos solos da área de influência indireta do Gasoduto do Pará e respectivas extensões das classes.

Quadro II.5.1-21 - Avaliação da susceptibilidade à erosão dos solos da área de influência do gasoduto do Pará

Símbolo	Classes de Relevo	Classes de Susceptibilidade	Área		
Simbolo	Classes de Relevo	à Erosão	ha	%	
PVAd1	plano e suave ondulado	Moderada*	37396,90	5,21	
PVAd2	suave ondulado e ondulado	ligeira/moderada**	9790,52	1,37	
GXbd1	plano	Nula	14138,00	1,97	
GXbd2	plano	Nula	2286,10	0,32	
GXbd3	plano	Nula	22451,66	3,13	
GXbd4	plano c/microrelevo	Nula	11902,36	1,66	
GXbd5	plano c/microrelevo	Nula	8666,57	1,21	
LAd1	plano e suave ondulado	Nula/ligeira	79044,07	11,02	
LAd2	plano e suave ondulado	Nula/ligeira	11880,14	1,66	
LAd3	suave ondulado e ondulado	Ligeira/moderada	60495,78	8,44	
LAd4	forte ondulado	Moderada/Forte**	6630,96	0,92	
LAd5	plano e suave ondulado	Nula/ligeira	53642,34	7,48	
LAd6	suave ondulado e ondulado	Moderada	66493,26	9,27	
LAd7	ondulado	Moderada	11156,38	1,56	
LAd8	ondulado e forte ondulado	Moderada/Forte**	12584,36	1,75	
LAd9	suave ondulado	Ligeira	344,57	0,05	
LAd10	plano e suave ondulado	Nula/ligeira	27043,64	3,77	
LAd11	suave ondulado e ondulado	Ligeira/moderada**	6988,87	0,97	
LAd12	suave ondulado e plano	Ligeira**	27657,22	3,86	
LAd13	suave ondulado e ondulado	Ligeira/moderada**	1658,99	0,23	
LAd14	plano e suave ondulado	Nula/ligeira	62497,89	8,71	
LAd15	plano e suave ondulado	Nula/ligeira	4529,84	0,63	
LAd16	suave ondulado e ondulado	Ligeira/moderada	7455,09	1,04	
LAd17	plano e suave ondulado	Nula/ligeira	26502,88	3,70	
LVAd1	plano e suave ondulado	Nula/ligeira	15770,36	2,20	
LVAd2	suave ondulado e ondulado	Ligeira**	200,08	0,03	

Coordenador: Técnico:

II.5.1 - Meio Físico 139/178

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

Símbolo	Classes de Relevo	Classes de Susceptibilidade	Área		
311110010	Classes de Relevo	à Erosão	ha	%	
LVAd3	suave ondulado e ondulado	Ligeira/moderada**	19801,89	2,76	
LVAd4	suave ondulado e ondulado	Ligeira/moderada**	3537,20	0,49	
RQo	plano e suave ondulado	Ligeira/Moderada*	20561,17	2,87	
RYbd1	plano	Nula	36172,67	5,04	
RYbd2	plano	Nula	6017,12	0,84	
FXd	plano e suave ondulado	Ligeira**	25555,22	3,56	
FFc1	plano e suave ondulado	Ligeira/moderada*	1443,92	0,20	
FFc2	ondulado e suave ondulado	Moderada/Forte*	2814,26	0,39	
FFc3	plano e suave ondulado	Ligeira/moderada*	3850,52	0,54	
Água			8227,71	1,15	
Total			717190,50	100,00	

Quadro II.5.1-22 - Resumo dos resultados obtidos

Classes de suscetibilidade à erosão	Área (ha)	%
Nula	101634,47	14,17
Nula/Ligeira	280911,16	39,17
Ligeira	53757,09	7,50
Ligeira/Moderada	138398,21	19,30
Moderada	115046,54	16,04
Moderada/Forte	19215,32	2,68
Água	8227,71	1,15
Total	717190,50	100,00

Os resultados alcançados mostram que os solos enquadrados na classe de susceptibilidade à erosão Nula/Ligeira apresentam área superior às demais, perfazendo 280.911 ha, o equivalente a 39,2% da área total avaliada, pertencentes às classes dos Latossolos Amarelos Distróficos ocorrendo em relevo plano e suave ondulado.

Os solos enquadrados na classe de susceptibilidade nula, por sua vez, somam 101.634 ha (14,2% da área total) e pertencem as classes dos Gleissolos Háplicos Tb Distróficos e Neossolos Flúvicos Tb Distróficos, ocorrendo em relevo plano.

Nas classes Ligeira e Ligeira/Moderada, com uma área de 192.155 ha (26,8% da área total avaliada), foram enquadrados os solos das classes dos Latossolos Amarelos Distróficos, Latossolos Vermelho-Amarelos Distróficos, Plintossolos Háplicos Distróficos que ocorrem em relevo dominantemente suave ondulado e ondulado e Plintossolos Pétricos Concrecionários e Neossolos Quartzarênicos Órticos sob relevo plano e suave ondulado.

Coordenador: Técnico:

140/178 II.5.1 - Meio Físico

gasoduto do pará

Estudo de Impacto Ambiental - EIA

A classe Moderada soma 115.047 ha ou 16,0% da área total avaliada. Nesta classe foram enquadrados os solos que ocorrem em relevo de plano a ondulado das classes dos Argissolos Vermelho-Amarelos Distróficos com textura arenosa/média e Latossolos Amarelos Distróficos petroplínticos textura argilosa.

A classe de maior suscetibilidade à erosão é a Moderada/Forte, que representa apenas 2,7% da área total avaliada e ocupa apenas 19.215 ha. Nesta classe encontram-se os Latossolos Amarelos Distróficos petroplínticos que ocorrem em relevo ondulado e forte ondulado.

II.5.1.3.3.10.4 - Susceptibilidade à Erosão dos solos atravessados pelo gasoduto

O Quadro II.5.1-23 indica as classes de Susceptibilidade à Erosão atravessadas ao longo do gasoduto (somatório de quilômetros).

Quadro II.5.1-23 - Susceptibilidade à Erosão dos solos atravessados pelo gasoduto

Suscetibilidade à Erosão	Km	%
Nula	31,1	4,3
Nula/ligeira	328,4	45,8
Ligeira	70,7	9,9
ligeira/moderada	157	21,9
Moderada	115,7	16,2
Moderada/Forte	8,6	1,2
Rio	4,9	0,7
Gasoduto	716,4	100

Os Quadro II.5.1-22 e Quadro II.5.1-23 indicam que metade (369,5 km) do gasoduto atravessa áreas com solos resistentes à erosão (Susceptibilidade Nula/Ligeira e Nula), enquanto 47,9% (343,4 km) apresentam média Susceptibilidade à Erosão (Ligeira, Ligeira/Moderada e Moderada). O gasoduto atravessa 8,6 km (1,2%) de áreas com Forte Susceptibilidade à Erosão.

II.5.1.3.3.10.5 - Conclusões dos Solos, Aptidão Agrícola das terras e Susceptibilidade à Erosão dos solos

A área em estudo apresenta uma média diversidade de unidades taxonômicas, refletindo a variabilidade da paisagem. As principais classes de solo observadas foram Latossolos Amarelos (LA), Latossolos Vermelho-Amarelos (LVA), Argissolos Vermelho-Amarelos (PVA), Gleissolos Háplicos (GX), Neossolos Flúvicos (RY), Neossolos Quartzarênicos (RQ), Plintossolos Háplicos (FX) e Plintossolos Pétricos (FF). Foram cartografadas 35 unidades de mapeamento, diferenciadas em função das classes de solo, vegetação e relevo (padrões fisiográficos).

Coordenador: Técnico:

II.5.1 - Meio Físico 141/178

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

A avaliação da aptidão mostrou que predominam, com mais de 84%, na área de influência indireta do gasoduto, as terras do Grupo 2, indicadas para lavouras; com dominância da classe 2(a)bc. A classe 6, indicada para preservação da flora e da fauna, é pouco representativa ocupando apenas 1,1% da área.

Com relação à avaliação da susceptibilidade à erosão dos solos verifica-se que a maior parte dos solos apresenta susceptibilidade à erosão nula/ligeira, que junto com a classe nula, perfazem 53,3% do total da área. As classes com mais alta susceptibilidade à erosão moderada e moderada/forte, ocupam 18,7% da área.

II.5.1.4 - Recursos Minerais

II.5.1.4.1 - Mapeamento das Atividades Minerárias (A)

Neste item serão tratados os jazimentos minerais que são espacialmente interceptados pelo traçado do Gasoduto do Pará e suas situações legais junto ao Departamento Nacional de Produção Mineral - DNPM. Tais jazimentos serão abordados do ponto de vista factual, ou seja, o que realmente é conhecido em termos de indícios, ocorrências, depósitos, jazidas, garimpos e minas registrados.

Com base no SIGMINE-DNPM, foram levantadas as substâncias requeridas na AII. A espacialização dos polígonos das jazidas minerais está representada no Desenho 2330-00-EIA-DE-2007-00 - Mapa de Processos Minerários, no Caderno de Mapas do EIA, Volume II. Os recursos minerais que suscitaram interesse para aproveitamento econômico são referentes as seguintes substâncias: areia, níquel, diamante, minério de ferro, minério de ouro, minério de cobre, minério de alumínio, água mineral, argila, bauxita, caulim, alumínio, fosfato, granito, laterita, quartzo e saibro. Esses materiais são utilizados, na maioria dos casos, para fins industriais e construção civil.

Foram identificados, no momento de elaboração deste diagnóstico, 143 (cento e quarenta e três) processos na All do Gasoduto, cujas informações específicas de cada processo junto ao Departamento Nacional de Produção Mineral encontram-se especificadas no Quadro II.5.1-24. Em relação à fase de requerimento destes processos, por exemplo, foram encontrados: 64 em fase de autorização de pesquisa, 8 em concessão de lavra, 12 em disponibilidade, 17 em fase de licenciamento, 4 em requerimento de lavra, 15 em requerimento de licenciamento e 23 em requerimento de pesquisa. Os dados foram coletados no Banco de Dados SIGMINE/DNPM em março de 2010.

Coordenador. Técnico:

142/178 II.5.1 - Meio Físico

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

Quadro II.5.1-24 - Recursos minerários requeridos ao DNPM na All do Gasoduto do Pará

Nº do Processo	Fase	Requerente	Último Evento	Substância	Uso	UF
803508/1971	Requerimento de lavra	Vale S A	2 - documento diverso protocolizado em 30/11/2006	Bauxita	Não informado	PA
820720/1971	Requerimento de lavra	Vale S A	2 - documento diverso protocolizado em 30/11/2006	Bauxita	Não informado	PA
805635/1971	Concessão de lavra	Indústria cerâmica da amazènia s.a inca	549 - torna s/efeito notificação cfem (nfldp) em 18/01/2005	Argila	Não informado	PA
807311/1977	Concessão de lavra	Companhia Brasileira de Alumínio	424 - conc lav/relatërio reavaliação reserva apresentado em 06/07/2009	Bauxita	Não informado	PA
807312/1977	Concessão de lavra	Companhia Brasileira de Alumínio	424 - conc lav/relatërio reavaliação reserva apresentado em 06/07/2009	Bauxita	Não informado	PA
807313/1977	Concessão de lavra	Companhia Brasileira de Alumínio	424 - conc lav/relatërio reavaliação reserva apresentado em 06/07/2009	Bauxita	Não informado	PA
850954/1979	Concessão de lavra	Indústria cerâmica da amazènia s.a inca	2 - documento diverso protocolizado em 24/10/2007	Água mineral	Não informado	PA
850417/1982	Licenciamento	Sermeco-servicos mecanizados de eng e co	760 - licen/ral ano base apresentado em 27/03/1987	Areia	Não informado	PA
850038/1988	Concessão de lavra	Parí pigmentos sa	694 - pagamento vistoria fiscalização efetuado em 26/02/2010	Alumínio	Não informado	PA
850197/1989	Autorização de pesquisa	Mineração tapaua Itda	240 - aut pesq/defesa apresentada em 28/08/2009	Alumínio	Não informado	PA
850198/1989	Autorização de pesquisa	Mineração tapaua Itda	240 - aut pesq/defesa apresentada em 28/08/2009	Alumínio	Não informado	PA
850202/1989	Autorização de pesquisa	Rio doce geologia e mineração s.a docegeo	240 - aut pesq/defesa apresentada em 28/08/2009	Alumínio	Não informado	PA
850583/1989	Concessão de lavra	Gema - geologia e mineração mont"alverneltda	694 - pagamento vistoria fiscalização efetuado em 24/12/2009	Água mineral	Não informado	PA
851245/1991	Autorização de pesquisa	Rio doce geologia e mineração s.a docegeo	255 - aut pesq/cumprimento exigência protocoli em 08/08/2005	Alumínio	Não informado	PA
850505/1991	Licenciamento	Belterra - belem terraplanagem	730 - licen/licenciamento autorizado publicado em 03/02/1993	Argila	Não informado	PA

Coc	rdenador:	Técnico:

II.5.1 - Meio Físico 143/178

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

Nº do Processo	Fase	Requerente	Último Evento	Substância	Uso	UF
852184/1992	Requerimento de lavra	Parí pigmentos sa	350 - req lav/requerimento lavra protocolizado em 19/10/2009	Alumínio	Não informado	PA
852184/1992	Requerimento de lavra	Parí pigmentos sa	350 - req lav/requerimento lavra protocolizado em 19/10/2009	Alumínio	Não informado	PA
852389/1993	Autorização de pesquisa	Parí pigmentos sa	290 - aut pesq/relatorio pesq final apresentado em 16/07/2009	Minério de alumínio	Não informado	PA
859525/1995	Autorização de pesquisa	Vale S A	264 - aut pesq/pagamento tah efetuado em 19/12/2008	Caulim	Industrial	PA
859526/1995	Autorização de pesquisa	Vale S A	264 - aut pesq/pagamento tah efetuado em 19/12/2008	Caulim	Não informado	PA
859528/1995	Autorização de pesquisa	Vale S A	318 - aut pesq/relatorio pesq não apv art 30 ii cm pub em 15/01/2010	Alumínio	Não informado	PA
859530/1995	Disponibilidade	Vale S A	99 - disponib/área s/preten proc arq área livre em 01/12/2009	Caulim	Não informado	PA
859531/1995	Disponibilidade	Vale S A	99 - disponib/área s/preten proc arq área livre em 01/12/2009	Caulim	Não informado	PA
859532/1995	Disponibilidade	Vale S A	99 - disponib/área s/preten proc arq área livre em 01/12/2009	Caulim	Não informado	PA
753832/1996	Licenciamento	Belterra terraplenagem Itda	1194 - licen/defesa protocolizada em 27/07/2009	Saibro	Industrial	PA
854482/1996	Autorização de pesquisa	Vale S A	230 - aut pesq/arquivamento auto infracao publ em 12/04/2005	Minério de alumínio	Não informado	PA
753834/1996	Autorização de pesquisa	Vale S A	236 - aut pesq/documento diverso protocolizado em 03/06/2009	Caulim	Não informado	PA
753835/1996	Autorização de pesquisa	Vale S A	236 - aut pesq/documento diverso protocolizado em 03/06/2009	Caulim	Não informado	PA
751955/1996	Autorização de pesquisa	Vale S A	240 - aut pesq/defesa apresentada em 15/04/2009	Minério de alumínio	Não informado	PA
850018/1996	Autorização de pesquisa	Vale S A	255 - aut pesq/cumprimento exigência protocoli em 16/12/2009	Minério de alumínio	Não informado	PA
857329/1996	Autorização de pesquisa	Vale S A	326 - aut pesq/prorrogação prazo 03 anos pub em 02/02/2010	Bauxita	Industrial	PA
850228/1998	Requerimento de licenciamento	Olival Silva da Cruz Cunha	902 - despacho 9.01 retificatorio public em: em 28/03/2000	Argila	Não informado	PA

Coordenador: Técnico:

TEANSPORTADORA DE GAS DO RAPA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00 GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

N° do Processo	Fase	Requerente	Último Evento	Substância	Uso	UF
850461/2000	Disponibilidade	Salinëpolis comércio e empreendimentos Itda	703 - licen/ind art 6 in 01/2001 pub em 06/05/2002	Saibro	Construção civil	PA
850006/2001	Concessão de lavra	Cristalli indústria e comércio Itda	2 - documento diverso protocolizado em 16/03/2007	Água mineral	Industrial	PA
850279/2001	Autorização de pesquisa	Vale S A	236 - aut pesq/documento diverso protocolizado em 23/06/2009	Bauxita	Metalurgia	PA
850283/2001	Autorização de pesquisa	Vale S A	264 - aut pesq/pagamento tah efetuado em 22/12/2009	Bauxita	Metalurgia	PA
850287/2001	Autorização de pesquisa	Vale S A	264 - aut pesq/pagamento tah efetuado em 22/12/2009	Bauxita	Metalurgia	PA
850299/2001	Autorização de pesquisa	Vale S A	264 - aut pesq/pagamento tah efetuado em 22/12/2009	Bauxita	Metalurgia	PA
850309/2001	Autorização de pesquisa	Vale S A	264 - aut pesq/pagamento tah efetuado em 24/07/2009	Bauxita	Metalurgia	PA
850360/2001	Disponibilidade	Transcoelho engenharia Itda	703 - licen/ind art 6 in 01/2001 pub em 30/04/2004	Saibro	Construção civil	PA
850025/2002	Autorização de pesquisa	Edelar machado dos santos	662 - notificação adm pgto débito multa em 10/03/2008	Diamante	Industrial	PA
850059/2002	Requerimento de licenciamento	Consórcio muiraquitā Itda	700 - req licen/requerimento licenciamento protoco em 07/05/2002	Areia	Construção civil	PA
850060/2002	Requerimento de licenciamento	Consórcio muiraquită Itda	700 - req licen/requerimento licenciamento protoco em 13/05/2002	Saibro	Construção civil	PA
850439/2003	Autorização de pesquisa	Vale S A	2 - documento diverso protocolizado em 02/04/2007	Bauxita	Não informado	PA
850440/2003	Autorização de pesquisa	Vale S A	255 - aut pesq/cumprimento exigência protocoli em 17/02/2009	Bauxita	Não informado	PA
850441/2003	Autorização de pesquisa	Vale S A	255 - aut pesq/cumprimento exigência protocoli em 21/10/2008	Bauxita	Não informado	PA
850448/2003	Autorização de pesquisa	Vale S A	264 - aut pesq/pagamento tah efetuado em 22/12/2009	Bauxita	Não informado	PA
850452/2003	Autorização de pesquisa	Vale S A	264 - aut pesq/pagamento tah efetuado em 22/12/2009	Bauxita	Não informado	PA

Coordenador:	Técnico:

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

Nº do Processo	Fase	Requerente	Último Evento	Substância	Uso	UF
850453/2003	Autorização de pesquisa	Vale S A	264 - aut pesq/pagamento tah efetuado em 22/12/2009	Bauxita	Não informado	PA
850454/2003	Autorização de pesquisa	Vale S A	264 - aut pesq/pagamento tah efetuado em 22/12/2009	Bauxita	Não informado	PA
850438/2003	Autorização de pesquisa	Vale S A	264 - aut pesq/pagamento tah efetuado em 24/07/2009	Bauxita	Não informado	PA
850442/2003	Autorização de pesquisa	Vale S A	264 - aut pesq/pagamento tah efetuado em 24/07/2009	Bauxita	Não informado	PA
850443/2003	Autorização de pesquisa	Vale S A	264 - aut pesq/pagamento tah efetuado em 24/07/2009	Bauxita	Não informado	PA
850444/2003	Autorização de pesquisa	Vale S A	264 - aut pesq/pagamento tah efetuado em 24/07/2009	Bauxita	Não informado	PA
850445/2003	Autorização de pesquisa	Vale S A	264 - aut pesq/pagamento tah efetuado em 24/07/2009	Bauxita	Não informado	PA
850446/2003	Autorização de pesquisa	Vale S A	264 - aut pesq/pagamento tah efetuado em 24/07/2009	Bauxita	Não informado	PA
850437/2003	Autorização de pesquisa	Vale S A	264 - aut pesq/pagamento tah efetuado em 29/07/2009	Bauxita	Não informado	PA
850639/2003	Autorização de pesquisa	Vale S A	264 - aut pesq/pagamento tah efetuado em 29/07/2009	Bauxita	Metalurgia	PA
850079/2004	Disponibilidade	Francisco gomes de moura	1341 - aut pesq/área disponibilidade - art 26 em 02/02/2010	Argila	Industrial	PA
850060/2004	Autorização de pesquisa	Vale S A	264 - aut pesq/pagamento tah efetuado em 24/07/2009	Bauxita	Não informado	PA
850067/2004	Autorização de pesquisa	Vale S A	264 - aut pesq/pagamento tah efetuado em 24/07/2009	Bauxita	Não informado	PA
850069/2004	Autorização de pesquisa	Vale S A	264 - aut pesq/pagamento tah efetuado em 24/07/2009	Bauxita	Não informado	PA
850073/2004	Autorização de pesquisa	Vale S A	264 - aut pesq/pagamento tah efetuado em 24/07/2009	Bauxita	Não informado	PA
850074/2004	Autorização de pesquisa	Vale S A	264 - aut pesq/pagamento tah efetuado em 24/07/2009	Bauxita	Não informado	PA

Coordenador:	Técnico:

146/178

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

Nº do Processo	Fase	Requerente	nte Último Evento		Uso	UF
850075/2004	Autorização de pesquisa	Vale S A	264 - aut pesq/pagamento tah efetuado em 24/07/2009	Bauxita	Não informado	PA
806069/2004	Autorização de pesquisa	Vale S A	290 - aut pesq/relatorio pesq final apresentado em 18/11/2009	Bauxita	Industrial	MA
806070/2004	Autorização de pesquisa	Vale S A	290 - aut pesq/relatorio pesq final apresentado em 18/11/2009	Bauxita	Industrial	MA
806072/2004	Autorização de pesquisa	Vale S A	290 - aut pesq/relatorio pesq final apresentado em 18/11/2009	Bauxita	Industrial	PA
850077/2004	Autorização de pesquisa	Vale S A	296 - aut pesq/título cancelado publicado em 20/03/2008	Bauxita	Não informado	PA
806073/2004	Autorização de pesquisa	Vale S A	318 - aut pesq/relatorio pesq não apv art 30 ii cm pub em 18/05/2009	Bauxita	Industrial	MA
850404/2004	Licenciamento	Raimundo de oliveira lima	687 - notificação adm pagto débito vistoria em 02/12/2009	Saibro	Construção civil	PA
850301/2004	Requerimento de licenciamento	Onair rodrigues de bairros	769 - licen/torna s/efeito despacho indeferimento pub em 01/10/2008	Saibro	Construção civil	PA
850680/2005	Autorização de pesquisa	Vale S A	109 - aut pesq/torna s/efeito auto infração pu em 12/11/2007	Níquel	Metalurgia	PA
850678/2005	Disponibilidade	Vale S A	303 - disponib/consid prior disp art 26 cm pub em 16/01/2008	Níquel	Metalurgia	PA
850679/2005	Disponibilidade	Vale S A	303 - disponib/consid prior disp art 26 cm pub em 16/01/2008	Níquel	Metalurgia	PA
850581/2005	Licenciamento	Luiz vicente tramontin	687 - notificação adm pagto débito vistoria em 02/12/2009	Saibro	Construção civil	PA
850563/2005	Licenciamento	Charles rogers da silva	755 - licen/renovação registro licenãa solicitado em 16/11/2009	Argila p/cer. Vermelh	Construção civil	PA
850895/2006	Licenciamento	Parí cerâmica indústria Itda epp	1401 - licen/licença ambiental protocolizada em 22/07/2009	Argila	Cerâmica vermelha	PA
850487/2006	Autorização de pesquisa	Vale S A	264 - aut pesq/pagamento tah efetuado em 22/12/2009	Minério de alumínio	Industrial	PA
850137/2006	Requerimento de licenciamento	Olival Silva da Cruz Cunha	736 - licen/documento diverso protocolizado em 09/06/2006	Saibro	Construção civil	PA

Técnico: Coordenador:

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

Nº do Processo	Fase	Requerente	Último Evento	Substância	Uso	UF
850960/2006	Licenciamento	Gantuss multinegocios Itda	755 - licen/renovação registro licenãa solicitado em 02/12/2008	Saibro	Construção civil	PA
850873/2007	Licenciamento	Francisco gomes de moura	1401 - licen/licença ambiental protocolizada em 10/02/2010	Saibro	Construção civil	PA
850173/2007	Licenciamento	Serraria e cerâmica carijë Itda-epp	1401 - licen/licença ambiental protocolizada em 24/11/2009	Argila	Cerâmica vermelha	PA
850700/2007	Licenciamento	Transterra terraplenagem Itda	1401 - licen/licença ambiental protocolizada em 28/04/2009	Saibro	Construção civil	PA
850559/2007	Licenciamento	Adibens-administração e incorporação de bens imóveis Itda	2 - documento diverso protocolizado em 17/07/2008	Saibro	Construção civil	PA
806076/2007	Autorização de pesquisa	União mineração Itda	224 - aut pesq/auto infração multa publicada em 05/02/2010	Minério de ferro	Industrial	MA
806078/2007	Autorização de pesquisa	União mineração Itda	250 - aut pesq/exigência publicada em 22/02/2010	Minério de ferro	Industrial	MA
806080/2007	Autorização de pesquisa	União mineração Itda	250 - aut pesq/exigência publicada em 22/02/2010	Minério de ferro	Industrial	MA
850931/2007	Autorização de pesquisa	Ppw pesquisa e mineração Itda	264 - aut pesq/pagamento tah efetuado em 29/01/2010	Minério de ferro	Industrial	PA
850610/2007	Disponibilidade	Mineração ouro vermelho Itda.	302 - disponib/habilit edital disponib art 26 cm em 30/11/2009	Bauxita	Industrial	PA
850611/2007	Disponibilidade	Mineração ouro vermelho Itda.	302 - disponib/habilit edital disponib art 26 cm em 30/11/2009	Bauxita	Industrial	PA
850612/2007	Disponibilidade	Mineração ouro vermelho Itda.	302 - disponib/habilit edital disponib art 26 cm em 30/11/2009	Bauxita	Industrial	PA
850613/2007	Disponibilidade	Mineração ouro vermelho Itda.	302 - disponib/habilit edital disponib art 26 cm em 30/11/2009	Bauxita	Industrial	PA
850394/2007	Autorização de pesquisa	Mineração ouro vermelho Itda.	318 - aut pesq/relatorio pesq não apv art 30 ii cm pub em 02/03/2010	Bauxita	Industrial	PA
850395/2007	Autorização de pesquisa	Mineração ouro vermelho Itda.	318 - aut pesq/relatorio pesq não apv art 30 ii cm pub em 02/03/2010	Bauxita	Industrial	PA
850396/2007	Autorização de pesquisa	Mineração ouro vermelho Itda.	318 - aut pesq/relatorio pesq não apv art 30 ii cm pub em 02/03/2010	Bauxita	Industrial	PA

Coordenador:	Técnico:
Cool delladol .	recriico.

148/178

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

Nº do Processo	Fase	Requerente	Último Evento	Substância	Uso	UF
850397/2007	Autorização de pesquisa	Mineração ouro vermelho Itda.	318 - aut pesq/relatorio pesq não apv art 30 ii cm pub em 02/03/2010	Bauxita	Industrial	PA
850840/2007	Licenciamento	Construtora engecil Itda	730 - licen/licenciamento autorizado publicado em 28/03/2008	Saibro	Construção civil	PA
850622/2008	Requerimento de pesquisa	João jorge gonsalves abdon	100 - req pesq/requerimento pesquisa protocolizado em 06/06/2008	Quartzo	Industrial	PA
850796/2008	Requerimento de pesquisa	Vale S A	100 - req pesq/requerimento pesquisa protocolizado em 24/07/2008	Bauxita	Industrial	PA
850796/2008	Requerimento de pesquisa	Vale S A	100 - req pesq/requerimento pesquisa protocolizado em 24/07/2008	Bauxita	Industrial	PA
806304/2008	Requerimento de licenciamento	S. De medeiros costa	1167 - req licen/protocolo orgão ambiental protocolizado em 19/02/2010	Areia	Construção civil	Dado não cadastrado
851302/2008	Licenciamento	Wilton santos brito	1401 - licen/licença ambiental protocolizada em 04/01/2010	Saibro	Construção civil	Dado não cadastrado
851088/2008	Requerimento de pesquisa	Serg serviãos e equipamentos Itda me	150 - req pesq/desistencia protocolizada em 10/08/2009	Minério de ferro	Industrial	Dado não cadastrado
806284/2008	Autorização de pesquisa	União mineração Itda	224 - aut pesq/auto infração multa publicada em 29/01/2010	Minério de ferro	Industrial	Dado não cadastrado
850743/2008	Autorização de pesquisa	Vale S A	264 - aut pesq/pagamento tah efetuado em 22/12/2009	Bauxita	Industrial	Pa
806088/2008	Autorização de pesquisa	Vale S A	264 - aut pesq/pagamento tah efetuado em 24/07/2009	Minério de cobre	Industrial	Ма
806110/2008	Autorização de pesquisa	Fosfatar mineração Itda	264 - aut pesq/pagamento tah efetuado em 29/01/2010	Fosfato	Fertilizantes	Ма
806069/2008	Autorização de pesquisa	Aþaí florestal Itda	278 - aut pesq/renuncia alvará pesq protocoliz em 25/06/2009	Bauxita	Industrial	Ма
851033/2008	Autorização de pesquisa	José manuel carreteiro	635 - aut pesq/auto infração multa-tah em 09/02/2010	Diamante	Industrial	Dado não cadastrado
850251/2008	Autorização de pesquisa	lgor jorge rolim de oliveira	662 - notificação adm pgto débito multa em 01/02/2010	Granito	Revestimento	Pa
851189/2008	Requerimento de licenciamento	Delta Construcoes S.a	700 - req licen/requerimento licenciamento protoco em 05/11/2008	Saibro	Construção civil	Dado não cadastrado

Técnico: Coordenador:

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

Nº do Processo	Fase	Requerente	Último Evento	Substância	Uso	UF
851202/2008	Requerimento de licenciamento	Delta Construcoes S.a	700 - req licen/requerimento licenciamento protoco em 07/11/2008	Areia	Construção civil	Dado não cadastrado
851193/2008	Requerimento de licenciamento	Delta Construcoes S.a	780 - req licen/desistencia protocolizada em 22/09/2009	Saibro	Construção civil	Dado não cadastrado
851194/2008	Requerimento de licenciamento	Delta Construcoes S.a	780 - req licen/desistencia protocolizada em 22/09/2009	Saibro	Construção civil	Dado não cadastrado
850524/2009	Requerimento de pesquisa	Vale S A	100 - req pesq/requerimento pesquisa protocolizado em 02/09/2009	Caulim	Industrial	Dado não cadastrado
850722/2009	Requerimento de pesquisa	Calmit mineração e Participação Ltda	100 - req pesq/requerimento pesquisa protocolizado em 09/11/2009	Argila	Industrial	Dado não cadastrado
850723/2009	Requerimento de pesquisa	Calmit mineração e Participação Ltda	100 - req pesq/requerimento pesquisa protocolizado em 09/11/2009	Argila	Industrial	Dado não cadastrado
850724/2009	Requerimento de pesquisa	Calmit mineração e Participação Ltda	100 - req pesq/requerimento pesquisa protocolizado em 09/11/2009	Argila	Industrial	Dado não cadastrado
850725/2009	Requerimento de pesquisa	Calmit mineração e Participação Ltda	100 - req pesq/requerimento pesquisa protocolizado em 09/11/2009	Argila	Industrial	Dado não cadastrado
850726/2009	Requerimento de pesquisa	Calmit mineração e Participação Ltda	100 - req pesq/requerimento pesquisa protocolizado em 09/11/2009	Argila	Industrial	Dado não cadastrado
850727/2009	Requerimento de pesquisa	Calmit mineração e Participação Ltda	100 - req pesq/requerimento pesquisa protocolizado em 09/11/2009	Argila	Industrial	Dado não cadastrado
850728/2009	Requerimento de pesquisa	Calmit mineração e Participação Ltda	100 - req pesq/requerimento pesquisa protocolizado em 09/11/2009	Argila	Industrial	Dado não cadastrado
850729/2009	Requerimento de pesquisa	Calmit mineração e Participação Ltda	100 - req pesq/requerimento pesquisa protocolizado em 09/11/2009	Argila	Industrial	Dado não cadastrado
850730/2009	Requerimento de pesquisa	Calmit mineração e Participação Ltda	100 - req pesq/requerimento pesquisa protocolizado em 09/11/2009	Argila	Industrial	Dado não cadastrado
850731/2009	Requerimento de pesquisa	Calmit mineração e Participação Ltda	100 - req pesq/requerimento pesquisa protocolizado em 09/11/2009	Argila	Industrial	Dado não cadastrado
850732/2009	Requerimento de pesquisa	Calmit mineração e Participação Ltda	100 - req pesq/requerimento pesquisa protocolizado em 09/11/2009	Argila	Industrial	Dado não cadastrado
850733/2009	Requerimento de pesquisa	Calmit mineração e Participação Ltda	100 - req pesq/requerimento pesquisa protocolizado em 09/11/2009	Argila	Industrial	Dado não cadastrado

Coordenador:	Técnico:
Cool delladol .	recriico.

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

Nº do Processo	Fase	Requerente	Último Evento	Substância	Uso	UF
850734/2009	Requerimento de pesquisa	Calmit mineração e Participação Ltda	100 - req pesq/requerimento pesquisa protocolizado em 09/11/2009	Argila	Industrial	Dado não cadastrado
850735/2009	Requerimento de pesquisa	Calmit mineração e Participação Ltda	100 - req pesq/requerimento pesquisa protocolizado em 09/11/2009	Argila	Industrial	Dado não cadastrado
850736/2009	Requerimento de pesquisa	Calmit mineração e Participação Ltda	100 - req pesq/requerimento pesquisa protocolizado em 09/11/2009	Argila	Industrial	Dado não cadastrado
850825/2009	Requerimento de pesquisa	João jorge gonsalves abdon	100 - req pesq/requerimento pesquisa protocolizado em 14/12/2009	Minério de ouro	Industrial	Dado não cadastrado
850113/2009	Requerimento de pesquisa	Votorantim cimentos n ne s a	100 - req pesq/requerimento pesquisa protocolizado em 19/03/2009	Argila	Industrial	Dado não cadastrado
850782/2009	Requerimento de pesquisa	Vale S A	100 - req pesq/requerimento pesquisa protocolizado em 30/11/2009	Caulim	Industrial	Dado não cadastrado
864249/2009	Requerimento de licenciamento	Otacília saraiva sousa	1154 - req licen/documento diverso protocolizado em 19/08/2009	Areia	Construção civil	Dado não cadastrado
850490/2009	Requerimento de licenciamento	Indústria e Comércio de Cerámica Ulianópolis Ltda Epp	1400 - req licen/licença ambiental protocolizada em 05/11/2009	Areia	Construção civil	Dado não cadastrado
806001/2009	Autorização de pesquisa	União mineração Itda	264 - aut pesq/pagamento tah efetuado em 27/01/2010	Minério de ferro	Industrial	Dado não cadastrado
864382/2009	Requerimento de licenciamento	José nilton uruþu	700 - req licen/requerimento licenciamento protoco em 09/12/2009	Argila	Cerâmica vermelha	Dado não cadastrado
850110/2009	Requerimento de licenciamento	Olival Silva da Cruz Cunha	700 - req licen/requerimento licenciamento protoco em 19/03/2009	Saibro	Construção civil	Dado não cadastrado
850274/2009	Licenciamento	A.p.locaþòo de Míquinas e Equipamentos Ltda	730 - licen/licenciamento autorizado publicado em 02/03/2010	Saibro	Construção civil	Dado não cadastrado
850480/2009	Licenciamento	Belterra terraplenagem Itda	730 - licen/licenciamento autorizado publicado em 02/10/2009	Saibro	Construção civil	Dado não cadastrado
850002/2009	Licenciamento	José de Sousa Coelho Filho	730 - licen/licenciamento autorizado publicado em 09/11/2009	Saibro	Construção civil	Dado não cadastrado
806008/2010	Requerimento de licenciamento	Ipanema produtos florestais Itda.	1154 - req licen/documento diverso protocolizado em 18/02/2010	Laterita	Construção civil	Dado não cadastrado

Fonte: SIGMINE/DNPM, março de 2010.

Coordenador: Técnico:

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

As atividades minerárias relacionadas no Quadro II.5.1-24 poderão sofrer interferências e/ou alterações com a implantação do empreendimento. Da mesma forma, quaisquer outras atividades de mineração futuras são passíveis de restrições ou impedimentos com o início da operação do Gasoduto.

II.5.1.4.2 - Apresentação do Diagnóstico junto ao DNPM (B)

A apresentação desses dados de processos minerários justifica-se também pela necessidade de neutralizar ou minimizar as interferências que porventura ocorram nas áreas em concessão pelo DNPM, sendo, portanto, elaboradas futuramente diretrizes para o processo de assinatura dos termos de renúncia que estiverem com os títulos minerários atualizados no DNPM, conforme recomendado no Programa de Gestão de Interferência com as Atividades Minerárias. Da mesma forma será encaminhado à mesma instituição o pedido de bloqueio dos processos ora vigentes.

Cabe ressaltar que os trâmites legais junto ao DNPM podem sofrer modificações em relação à fase dos processos minerários apresentados neste relatório. Sendo assim, até a data de emissão da Licença de Instalação (LI) do empreendimento, deverão ser levantados regularmente todos os processos de interesse mineral que estejam sendo atravessados pelo traçado do Gasoduto, para que tais áreas sejam bloqueadas em virtude da construção/operação do empreendimento.

II.5.1.5 - Recursos Hídricos

O diagnóstico e os mapas referentes aos Recursos Hídricos das Áreas de Influência do Gasoduto do Pará foram elaborados com base em dados bibliográficos publicados e na Divisão Hidrográfica Nacional, segundo o Plano Nacional de Recursos Hídricos, elaborado pelo Ministério do Meio Ambiente e utilizada pela Agência Nacional de Águas - ANA. Portanto, foram consideradas as regiões hidrográficas do Tocantins-Araguaia e do Atlântico Nordeste Ocidental, onde o traçado do gasoduto perpassa. Dentro destas bacias foram identificadas as subbacias interceptadas pelo gasoduto, onde os dados de vazão e uso da água pela população foram analisados.

Buscando uma melhor apresentação do item de Recursos Hídricos na região de interesse do empreendimento, foram realizados mapeamentos na escala 1:100.000 (Desenho 2330-00-EIA-DE-1005 - Mapa de Regiões Hidrográficas e 2330-00-EIA-DE-2009-00 - Mapa de Recursos Hídricos, no Caderno de Mapas do EIA, Volume I e II), englobando toda a Área de Influência Indireta, que corresponde a cinco quilômetros para cada lado da diretriz do duto. Neste detalhamento, foram identificados os canais fluviais interceptados pelo gasoduto e listados em quadros para identificação e análise.

Coordenador. Técnico:

152/178

II.5.1 - Meio Físico

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

II.5.1.5.1 - Considerações Iniciais

Os rios têm um papel muito importante no modelado da paisagem, uma vez que são os principais agentes geomorfológicos. Atuam como agentes erosivos esculpindo vales e cânions, transportando seus sedimentos e formando planícies aluviais, deltas e tabuleiros litorâneos (Guerra & Marçal, 2006).

Os rios são agrupados em redes de drenagens as quais vão constituir as chamadas Bacias Hidrográficas ou Bacias de Drenagem, que são caracterizadas por uma área da superfície terrestre que drena água, sedimentos e materiais dissolvidos, para um determinado ponto de um canal fluvial (Coelho-Netto, 1998). A bacia hidrográfica é o recorte espacial mais utilizado para o planejamento, gestão e ordenamento dos recursos hídricos, principalmente após a implementação da lei 9433/97, conhecida como "Lei das Águas". A utilização dessa unidade da paisagem para a gestão territorial se dá, principalmente, devido à visão integradora e sistêmica da bacia hidrográfica que nos permite uma gestão, também integrada dos aspectos do meio físico, biótico e socioeconômico.

Para a gestão de recursos hídricos, o Plano Nacional de Recursos Hídricos (PNRH, 2005) utiliza-se da divisão de regiões hidrográficas, subdivididas em bacias hidrográficas e subbacias que correspondem a trechos das bacias principais, em nível escalar mais detalhado. Nesta divisão o território brasileiro é decomposto em doze "regiões hidrográficas" que pode ter como base a divisão da bacia hidrográfica ou de um conjunto de bacias (Figura II.5.1-52). O conceito de região hidrográfica considera parte do espaço territorial brasileiro compreendido por uma bacia, grupo de bacias ou sub-bacias hidrográficas contíguas com características naturais, sociais e econômicas homogêneas ou similares, com vistas a orientar o planejamento e gerenciamento dos recursos hídricos.

Coordenador. Técnico.

II.5.1 - Meio Físico 153/178

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

Figura II.5.1-52 - As 12 Regiões Hidrográficas do Brasil, da Divisão Hidrográfica Nacional (Resolução nº 32 do CNRH, 2003), com detalhe para o gasoduto em vermelho. Fonte: Modificado de Bases do PNRH, 2005. A versão ampliada da ilustração encontra-se no Mapa de Regiões Hidrográficas (2330-00-EIA-DE-1005)

Destas regiões hidrográficas, segundo a Divisão Hidrográfica Nacional, o Gasoduto do Pará passará apenas em parte da Região Hidrográfica Tocantins-Araguaia e parte da Região Hidrográfica do Atlântico Nordeste Ocidental, descritas a seguir.

II.5.1.5.2 - Caracterização da Região Hidrográfica do Tocantins - Araguaia e Região Hidrográfica do Atlântico Nordeste Ocidental

A Região Hidrográfica Tocantins - Araguaia possui uma área de 967.059 km² (11% do território nacional) e abrange os estados de Goiás (26,8%), Tocantins (34,2%), Pará (20,8%), Maranhão (3,8%), Mato Grosso (14,3%) e o Distrito Federal (0,1%). Grande parte situa-se na região Centro Oeste, desde as nascentes dos rios Araguaia e Tocantins, na Serra dos Caiapós até a sua confluência, e daí, para jusante, adentra na Região Norte até a sua foz (MMA, 2006).

Segundo o MMA (2006) a Região Hidrográfica Tocantins - Araguaia está dividida em três (3) subdivisões ou unidades hidrográficas (sub 1), sendo elas: Araguaia, Tocantins Alto e Tocantins Baixo. Estas se desmembram em mais 18 (dezoito) subdivisões (sub 2). Destas, sete são interceptadas pela diretriz do duto dentro da AII, sendo elas: Baixo Araguaia (Araguaia 05), Estreito do Araguaia (Tocantins 07), Tucuruí (Tocantins 08), Guamá, Acará. Baixo Tocantins

Coordenador. Técnico:

154/178 II.5.1 - Meio Físico

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

(Tocantins9) e Foz do Tocantins (Desenho 2330-00-EIA-DE-1005-00 - Mapa de Regiões Hidrográficas), no Caderno de Mapas do EIA, Volume I.

Por sua vez, a Região Hidrográfica Atlântico Nordeste Ocidental possui uma área de 254.100 km² e abrange os estados do Maranhão (91%) e uma pequena porção do Pará (9%). Esta Região Hidrográfica apresenta uma vasão média de 2.514 m³/s, cerca de 1% da vazão média observada no País. Segundo o PNRH esta região foi dividida em nove (9) subdivisões ou unidades hidrográficas que são: Gurupi, Pericumã, Litoral do Pará 1, Litoral do Pará 2, Turiaçu, Itapecuru, Litoral do Maranhão 1, Munim e Mearim (Desenho 2330-00-EIA-DE-1005-00 - Mapa de Regiões Hidrográficas, no Caderno de Mapas do EIA, Volume I).

Nesta Região Hidrográfica do Atlântico Nordeste-Ocidental, o empreendimento passará apenas na subdivisão do Gurupi, que possui uma área de 12.128 km² e extensão de 800 km. A densidade demográfica média da sub-bacia Gurupi é de aproximadamente 9%. Esta sub-bacia corresponde a segunda mais urbanizada da Região Hidrográfica Atlântico Nordeste Ocidental, com taxa de 72%.

O Gasoduto do Pará, de sul para norte, sairá da Região Hidrográfica Tocantins-Araguaia, pelas subdivisões Tucuruí, baixo Araguaia, Estreito do Araguaia e Guamá. Após este ponto, o duto sairá da Região Hidrográfica Tocantins-Araguaia, cruzando o divisor de águas para a Região Hidrográfica do Atlântico Nordeste Ocidental, dentro da subdivisão do rio Gurupi, de onde retornará a Região Hidrográfica Tocantins-Araguaia e passará nas unidades hidrográficas Guamá, Acará, baixo Tocantins e Foz do Tocantins. Para melhor análise, os dados de vazão de cada um desses trechos foi organizado no Quadro II.5.1-25, com os valores de vazão média (Qm) e vazão com permanência de 95%(Q95), apresentados a seguir:

Quadro II.5.1-25 - Subdivisões das Regiões Hidrográficas do Tocantins-Araguaia e do Atlântico Nordeste Ocidental

Região Hidrográfica	Subdivisão Hidrográfica Sub 1	Subdivisão Hidrográfica Sub 2	Denominação da Subdivisão Hidrográfica	Área (km²)	O _m (m ³ /s)	Q ₉₅ (m ³ /s)
		Sub 2 Tocantins 08	Tucuruí	68.281	972,19	183,1
		Sub 2 Guamá	Guamá	49.637	817,19	136
	Tocantins Baixo -	Sub 2 Acará	Acará	29.960	494,40	
Região Hidrográfica do	Sub1	Sub 2 Tocantins 09	Baixo Tocantins	6.220	85,39	16,1
Tacantins-Araguaia		Sub 2 Foz Tocantins	Foz Tocantins	12.327	184,59	65,9
	Tocantins Alto	Sub2 Tocantins 07	Estreito do Araguaia	70.797	1202,4	280,6
	Araguaia	Araguaia 05	Baixo Araguaia	36.160	0516,6	212,4
Região Hidrográfica do Atlântico Nordeste Ocidental	Gurupi	Gurupi	Gurupi	34.997	523,3	111,91

Fonte: adaptado de SRH/MMA (2005).

Coordenador: Técnico:

II.5.1 - Meio Físico 155/178

^{*} Sendo Q_m = Vazão média e Q₉₅ = Vazão com permanência de 95%.

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

II.5.1.5.3 - Caracterização das Principais Drenagens da Área de Influência

O Gasoduto do Pará atravessará diversos corpos hídricos de regime perene. Em época de estiagem, o regime hidráulico de alguns cursos pode diminuir, tornando o volume caudal baixo, o que pode caracterizar estes cursos como intermitentes.

De acordo com o levantamento de campo e o mapeamento, o quadro a seguir identifica e caracteriza os regimes hidráulicos de todos os corpos d'água atravessados pelo traçado do duto em estudo (Quadro II.5.1-26 e Quadro II.5.1-27). Um diagrama com as principais drenagens atravessadas pelo gasoduto está representado na Figura II.5.1-53 e a espacialização da rede hidrográfica em detalhe está representada no Desenho 2330-00-EIA-DE-1005-00 - Mapa de Regiões Hidrográficas, no Caderno de Mapas do EIA - Volume I.

Quadro II.5.1-26 - Característica dos corpos hídricos cortados pelo duto (Fuso 22)

Rio Nome	OBS	Regime	E	N
Afluente do Igarapé Pau Grande		Rio permanente	797355	9843000
Igarapé Uribaca		Rio permanente	798892	9841551
Rio Guamá	Margem direita	Rio permanente	800980	9838258
Rio Guamá	Margem esquerda	Rio permanente	800974	9836373
Igarapé Jacarequara		Rio intermitente	800881	9829212
Afluente do Rio Guamá		Rio intermitente	800545	9826965
Igarapé Genipaúba		Rio permanente	799423	9824907
Afluente do Igarapé Jutiqui		Rio intermitente	795014	9819663
Afluente do Igarapé Jutiqui	Nascente	Rio intermitente	793971	9818477
Afluente do Igarapé São Domingos		Rio intermitente	790315	9815686
Rio Acará	Margem esquerda	Rio permanente	787988	9813718
Rio Acará	Margem direita	Rio permanente	788266	9814089
Igarapé Itapecurú		Rio permanente	787736	9813381
Afluente do Rio Acará		Rio intermitente	786766	9812188
Rio Moju	Margem direita	Rio permanente	784807	9811653
Rio Moju	Margem esquerda	Rio permanente	784151	9811747
Afluente do Igarapé Cabresto		Rio permanente	776948	9812735
Afluente do Igarapé Cabresto		Rio permanente	775925	9813007
Afluente do Igarapé Cabresto		Rio permanente	774781	9813119
Igarapé Cabresto		Rio permanente	774389	9813153
Afluente do Igarapé Guajaraúna	Nascente	Rio permanente	772647	9813250
Igarapé Guajaraúna		Rio permanente	770656	9813375
Igarapé Curuperé		Rio permanente	766139	9814224
Afluente do Rio Itaporanga ou Tauaporanga		Rio permanente	764344	9814448
Igarapé Guajará		Rio permanente	761403	9816189
Igarapé Pau-Amarelo		Rio permanente	757756	9818923
Igarapé Japiim		Rio permanente	756542	9820034
Igarapé Tauá		Rio permanente	753728	9822683

Coordenador: Técnico:

156/178

II.5.1 - Meio Físico

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

Rio Nome	OBS	Regime	E	N
Igarapé Itapecurú		Rio permanente	789055	9803811
Igarapé Mirindeua	Nascente	Rio intermitente	792104	9799210
Afluente do Igarapé Morcego		Rio permanente	792132	9794569
Igarapé Morcego		Rio permanente	792130	9794394
Igarapé Itapiocaba		Rio permanente	796407	9789593
Afluente do Igarapé Açu		Rio intermitente	799535	9780714
Afluente do Rio Acará		Rio Permanente	800492	9777831
Afluente do Rio Acará		Rio Permanente	800833	9775692
Rio Acará	Margem esquerda	Rio Permanente	801904	9772668
Rio Acará	Margem direita	Rio permanente	801983	9772497
Afluente do Igarapé Arapiranga-Açu		Rio permanente	804009	9762626
Afluente do Igarapé Arapiranga-Açu		Rio permanente	804191	9761936
Igarapé Arapiranga-Açu		Rio permanente	803915	9759178
Afluente do Rio Mariquita		Rio intermitente	805900	9753997
Nascente do Igarapé Tira-Saia		Rio intermitente	807154	9752568
Afluente do Rio Mariquita		Rio permanente	809694	9749675
Afluente do Rio Acará-Mirim		Rio permanente	811532	9747870
Afluente do Rio Acará-Mirim		Rio intermitente	813526	9745647
Afluente do Rio Acará-Mirim		Rio permanente	815333	9743485
Rio Acará-Mirim	Margem esquerda	Rio permanente	815638	9743053
Rio Acará-Mirim	Margem direita	Rio permanente	815699	9742966
Afluente do Rio Acará-Mirim		Rio permanente	817035	9741071
Igarapé Itabocal		Rio permanente	817562	9740324
Braço do Igarapé Itabocal		Rio intermitente	819775	9737187
Braço do Igarapé Água Branca	Nascente	Rio intermitente	821119	9735280
Igarapé Água Branca		Rio permanente	822109	9732602
Igarapé do Cravo		Rio permanente	822804	9728199
Braço do Igarapé Patauateua		Rio permanente	823542	9722467
Igarapé Patauateua		Rio permanente	823820	9721124
Igarapé Braço		Rio permanente	824199	9718461
Afluente do Rio Tomé-Açu	Nascente	Rio intermitente	824588	9715643
Braço do Igarapé Braço	Nascente	Rio intermitente	824740	9714544
Afluente do Rio Tomé-Açu	Nascente	Rio intermitente	824903	9713359
Afluente do Rio Tomé-Açu		Rio intermitente	825315	9710379
Afluente do Rio Tomé-Açu		Rio intermitente	827622	9702954
Afluente do Rio Tomé-Açu		Rio intermitente	828806	9700826
Braço do Igarapé Anaanai ou Goiabal		Rio intermitente	829841	9700031
Braço do Igarapé Anaanai ou Goiabal		Rio permanente	831462	9698931
Igarapé Ananai ou Goiabal		Rio permanente	833187	9697751
Igarapé Estirão		Rio intermitente	778529	9812417
Afluente do Igarapé Jacarequara		Rio permanente	801033	9830115
Afluente do Igarapé Guajaraúna	Nascente	Rio permanente	773866	9813204
Afluente do Igarapé São Domingos		Rio intermitente	791035	9816152
Afluente do Rio Guamá		Rio permanente	800492	9834820
Afluente do Rio Guamá		Rio permanente	800579	9835124
Afluente do Igarapé Açu	Nascente	Rio intermitente	798534	9783881
Rio Mariquita		Rio permanente	809735	9749628
Afluente do Córrego da Lontra		Rio intermitente	832562	9436989

Coordenador: Técnico:

II.5.1 - Meio Físico 157/178

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

Rio Nome	OBS	Regime	E	N
Afluente do Córrego da Lontra		Rio intermitente	831282	9436770
Afluente do Córrego Santa Helena		Rio permanente	828002	9434924
Afluente do Córrego de Santa Helena		Rio intermitente	825684	9432772
Afluente do Córrego de Santa Helena		Rio intermitente	824522	9431712
Afluente do Córrego Jatobá		Rio permanente	822894	9430371
Afluente do Córrego do Martírio	Nascente	Rio intermitente	819800	9429430
Afluente do Córrego do Martírio		Rio permanente	818064	9429006
Afluente do Córrego do Martírio		Rio permanente	817836	9428950
Afluente do Lago do Martírio		Rio intermitente	814660	9427373
Curso deságua em área inundada		Rio permanente	811853	9425243
Afluente do Rio Tocantins	Área inundada	Rio permanente	808666	9422003
Rio Tocantins	Margem direita	Rio permanente	807439	9421516
Rio Tocantins	Margem esquerda	Rio permanente	806451	9421011
Afluente do Rio Tocantins	Área inundada	Rio permanente	804950	9420357
Afluente de Rio Tocantins	7 i ca manada	Rio permanente	802950	9419578
Afluente do Rio Tocantins		Rio permanente	797826	9417637
Afluente do Rio Tocantins Afluente do Rio Tocantins		Rio permanente	797172	9417366
Afluente do Rio Tocantins Afluente do Rio Tocantins		•	794909	
Afluente do Rio Tocantins Afluente do Rio Tocantins		Rio permanente		9416429
		Rio intermitente	794241	9416153
Afluente do Córrego dos Porcos		Rio permanente	781555	9410705
Afluente do Rio Araguaia		Rio intermitente	776923	9407914
Afluente do Rio Araguaia		Rio intermitente	776585	9407609
Rio Araguaia	Margem direita	Rio permanente	769301	9400768
Rio Araguaia	Margem esquerda	Rio permanente	768985	9399977
Rio Água Branca		Rio permanente	765458	9398143
Córrego Fortuoso		Rio intermitente	758444	9395832
Afluente do Rio Ubá		Rio intermitente	741232	9393947
Afluente do Rio Barbeiro		Rio intermitente	733291	9390400
Afluente do Rio Taurizinho		Rio intermitente	729153	9387681
Rio Taurizinho		Rio permanente	728194	9387143
Afluente do Rio Taurizinho		Rio intermitente	725253	9386059
Afluente do Rio Taurizinho		Rio intermitente	724172	9385761
Afluente do Rio Taurizinho		Rio intermitente	722303	9385230
Afluente do Rio Taurizinho		Rio intermitente	719588	9384886
Afluente do Rio Taurizinho		Rio intermitente	717741	9386952
Afluente do Rio Taurizinho		Rio intermitente	717032	9388082
Afluente do Rio Taurizinho		Rio intermitente Rio intermitente	716301	9389910
Afluente do Rio Taurizinho Afluente do Rio Taurizinho		Rio intermitente	715971 714670	9390806
Grota do Feijão		Rio intermitente	714370	9394120 9397930
Afluente do Córrego dos Porcos		Rio permanente	781394	9410600
Afluente do Corrego dos Porcos		Rio permanente	781171	9410462
Afluente do Corrego dos Porcos Afluente do Rio Araguaia		Rio intermitente	767464	9398573
Rio dos Veados		Rio permanente	756118	9394982
Afluente do Rio Ubá		Rio permanente Rio intermitente	744118	9394982
Rio Ubá		Rio permanente	742124	9394088
Afluente do Rio Ubá		Rio intermitente	738485	9393387
Afluente do Rio Ubá		Rio intermitente	797355	9843000
Afluente do Rio Oba	Nascente	Rio intermitente	798892	9841551
ATTACHE GO NO TOURIZITIO	Nusconto		7 700 72	7071331

Coordenador: Técnico:

158/178 II.5.1 - Meio Físico

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

Quadro II.5.1-27 - Característica dos corpos hídricos cortados pelo duto (Fuso 23)

Rio Nome	OBS	Regime	Х	Υ
Braço do Igarapé Ananai ou Goiabal		Rio intermitente	168586	9695985
Igarapé Joroca de Cima		Rio permanente	171321	9693633
Braço do Igarapé Joroca de Cima		Rio intermitente	171622	9693224
Braço do Igarapé Joroca de Cima		Rio intermitente	172920	9691322
Braço do Igarapé Joroca de Cima		Rio intermitente	172974	9691251
Afluente do Rio Capim		Rio intermitente	173536	9688631
Afluente do Rio Capim		Rio intermitente	173544	9687216
Afluente do Rio Capim		Rio intermitente	174862	9682653
Afluente do Rio Capim		Rio intermitente	175637	9681757
Afluente do Igarapé Fortaleza		Rio intermitente	177804	9679253
Igarapá Fortaleza		Rio intermitente	178814	9678086
Afluente do Rio Capim		Rio intermitente	181253	9675359
Afluente do Rio Capim		Rio intermitente	184934	9674033
Afluente do Rio Capim		Rio intermitente	185017	9673657
Rio Capim	Margem direita	Rio permanente	189731	9672805
Afluente do Rio Capim		Rio intermitente	195564	9672370
Afluente do Rio Capim		Rio intermitente	198561	9672109
Afluente do Rio Puraquequara		Rio intermitente	204683	9671582
Rio Puruquequara		Rio permanente	208314	9671365
Rio Puruquequara		Rio permanente	212014	9670820
Afluente do Rio Puraquequara		Rio intermitente	215595	9670501
Afluente do Igarapé Ciquenta e Quatro		Rio intermitente	223359	9669809
Igarapé Ciquenta e Quatro	Nascente	Rio intermitente	223985	9662256
Afluente do Rio Uraim		Rio intermitente	223095	9656878
Afluente do Rio Uraim		Rio intermitente	222868	9654028
Afluente do Rio Uraim		Rio intermitente	222771	9651259
Afluente do Igarapé Estiloso		Rio intermitente	223110	9649504
Afluente do Igarapé Estiloso		Rio intermitente	223784	9646016
Afluente do Igarapé Estiloso		Rio intermitente	224260	9643553
Braço do Igarapé Estiloso		Rio intermitente	224760	9640963
Afluente do Igarapé Estiloso		Rio intermitente	224968	9639887
Igarapé Estiloso		Rio permanente	225436	9637462
Afluente do igarapé Estiloso		Rio intermitente	226088	9634086
Afluente do Igarapé Duzentos		Rio intermitente	226988	9630130
Igarapé Duzentos e Quatro		Rio permanente	227364	9628498
Afluente do Rio Piriá		Rio intermitente	228079	9624478
Afluente do Rio Piriá		Rio intermitente	227604	9622966
Afluente do Rio Piriá		Rio intermitente	227285	9621948
Rio Piriá		Rio permanente	226396	9619118
Afluente do Rio Piriá		Rio permanente	226185	9618446
Afluente do Rio Piriá		Rio permanente	226059	9618044
Afluente do Rio Piriá		Rio permanente	225900	9617538
Afluente do Rio Piriá		Rio permanente	225851	9617381
Afluente do Braço do Rio Piriá	Nascente	Rio intermitente	224434	9612868
Braço do Rio Piriá		Rio permanente	223204	9608948
Afluente do Braço do Rio Piriá		Rio intermitente	223257	9598089

Coordenador: Técnico:

II.5.1 - Meio Físico 159/178

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

Rio Nome	OBS	Regime	Χ	Υ
Afluente do Rio Gurupizinho	Nascente	Rio intermitente	223348	9596084
Igarapé Vinte e Nove		Rio permanente	222024	9589229
Rio Gurupizinho		Rio permanente	221719	9588572
Afluente do Rio Gurupizinho		Rio intermitente	220229	9585870
Afluente do Rio Gurupizinho		Rio intermitente	219838	9583404
Afluente do Rio Gurupizinho		Rio intermitente	219740	9582029
Afluente do Rio Gurupizinho		Rio intermitente	219660	9579746
Afluente do Rio Gurupizinho		Rio intermitente	219647	9579207
Afluente do Rio Gurupizinho		Rio intermitente	219627	9578421
Afluente do Rio Gurupizinho		Rio intermitente	219603	9577462
Afluente do Rio Gurupizinho		Rio intermitente	219574	9576271
Afluente do Igarapé Febrânio		Rio intermitente	219526	9574359
Afluente do Igarapé Febrânio		Rio intermitente	219494	9572730
Afluente do Igarapé Febrânio		Rio intermitente	219487	9571142
Igarapé Febrânio		Rio permanente	219446	9569410
Afluente do Igarapé Febrânio		Rio intermitente	219148	9568278
Afluente do Igarapé Febrânio	Nascente	Rio intermitente	218632	9566321
Afluente do Igarapé Cabeludo		Rio intermitente	217878	9563458
Afluente do Igarapé Cabeludo		Rio intermitente	217389	9561602
Igarapé Cabeludo		Rio permanente	217345	9561432
Igarapé Cabeludo		Rio permanente	217295	9561242
Igarapé Cabeludo		Rio permanente	217252	9561081
Afluente do Igarapé Cabeludo		Rio intermitente	216859	9558387
Igarapé da Onça		Rio permanente	216809	9545587
Afluente do Igarapé da Onça		Rio intermitente	216930	9542798
Afluente do Igarapé da Onça		Rio intermitente	216989	9541177
Rio Concrein		Rio permanente	217118	9537498
Afluente do Rio Concrein		Rio permanente	217136	9536975
Córrego Água Suja		Rio permanente	217122	9530558
Afluente do Córrego Água Suja		Rio intermitente	218676	9528420
Córrego Água Branca		Rio intermitente	219642	9524722
Afluente do Córrego Água Azul		Rio intermitente	219080	9522103
Afluente do Córrego Azul		Rio intermitente	218709	9520152
Afluente do Córrego Azul		Rio intermitente	218887	9518918
Afluente do Córrego Água Azul		Rio intermitente	219209	9516687
Córrego Água Azul		Rio permanente	219355	9515679
Afluente do Córrego Azul		Rio intermitente	219434	9515128
Rio Itinga		Rio permanente	221329	9511582
Afluente do Rio Cajuapara		Rio intermitente	224739	9504595
Afluente do Rio Açailândia	Nascente	Rio intermitente	225412	9503021
Córrego Jatobá	Nascente	Rio intermitente	223697	9487888
Córrego Cintura Fina		Rio intermitente	222466	9477204
Córrego Perdido		Rio permanente	223603	9472115
Afluente do Córrego Perdido		Rio intermitente	221772	9469978
Afluente do Córrego Jacaré		Rio intermitente	221043	9466693
Afluente do Córrego Jacaré		Rio intermitente	221229	9467583
Afluente do Córrego Jacaré		Rio intermitente	220593	9464546
Córrego Jacaré		Rio intermitente	220141	9462065
		otototo		7.02000

Coordenador: Técnico:

160/178 II.5.1 - Meio Físico

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

Rio Nome	OBS	Regime	Χ	Υ
Afluente do Córrego Jacaré		Rio intermitente	220147	9461936
Afluente do Córrego Jacaré		Rio intermitente	220167	9461517
Afluente do Córrego Jacaré		Rio intermitente	220661	9459812
Afluente do Rio Açailândia		Rio intermitente	220971	9457066
Afluente do Rio Açailândia		Rio intermitente	220942	9455587
Afluente do Rio Açailândia		Rio intermitente	221044	9453274
Rio Açailândia		Rio permanente	220896	9452591
Afluente do Rio Açailândia		Rio intermitente	221852	9449390
Afluente do Rio Açailândia		Rio intermitente	221179	9449534
Afluente do Rio Açailândia		Rio intermitente	220101	9449496
Afluente do Rio Açailândia		Rio intermitente	218306	9449364
Afluente do Rio Açailândia		Rio intermitente	216929	9449519
Afluente do Rio Açailândia		Rio intermitente	215658	9449954
Afluente do Rio Açailândia		Rio intermitente	214196	9450379
Afluente do Rio Açailândia		Rio intermitente	209837	9450157
Afluente do Rio Ararandeua	Nascente	Rio intermitente	198902	9450395
Afluente do Rio Ararandeua		Rio intermitente	195959	9450627
Rio Ararandeua		Rio intermitente	194791	9450669
Afluente do Rio Ararandeua		Rio intermitente	193074	9449229
Afluente do Rio Ararandeua		Rio intermitente	192627	9448708
Afluente do Rio Ararandeua		Rio intermitente	191038	9447049
Córrego Jabuti		Rio intermitente	185241	9444731
Afluente do Córrego da Lontra		Rio intermitente	174956	9439500
Afluente do Córrego da Lontra		Rio intermitente	173620	9437994
Afluente do Córrego da Lontra		Rio intermitente	172327	9437593
Afluente do Córrego da Lontra		Rio intermitente	170677	9437388
Córrego da Lontra		Rio permanente	169872	9437312
Afluente do Igarapé Fortaleza		Rio intermitente	178279	9678704
Rio Capim	Margem esquerda	Rio permanente	189566	9672779
Afluente do Rio Capim		Rio intermitente	190179	9672827
Afluente do Rio Puruquequara	Nascente	Rio intermitente	218914	9670205
Afluente do Rio Piriá		Rio permanente	226375	9619052
Afluente do Braço do Rio Piriá		Rio intermitente	224125	9611883
Afluente do Igarapé Cabeludo		Rio intermitente	217761	9563012
Afluente do Igarapé Cabeludo		Rio intermitente	217218	9555417
Afluente do Córrego Perdido		Rio intermitente	221640	9469544
Afluente do Rio Ararandeua		Rio intermitente	191590	9447508
Afluente do Córrego da Lontra		Rio intermitente	168914	9437215

Coordenador: Técnico:

II.5.1 - Meio Físico 161/178

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

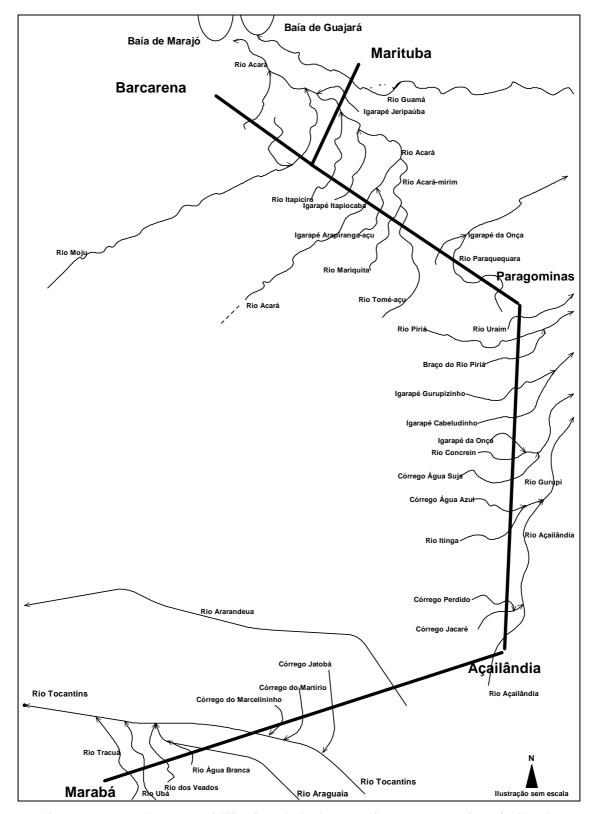


Figura II.5.1-53 - Diagrama Multifilar dos principais cursos d'água atravessados pela diretriz do Gasoduto do Pará

 Coordenador.
 Técnico:

 162/178
 II.5.1 - Meio Físico

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

Entre a confluência do Tocantins-Araguaia até a foz do rio Tocantins predominam áreas de médio potencial erosivo, devido à predominância de relevo baixo nas proximidades da foz. Sendo assim, não foram observados grandes problemas quanto a instabilidade das encostas.

Dentre os eventos críticos relacionados aos recursos hídricos, destacamos as enchentes e alagamentos, mesmo estes fazendo parte da dinâmica natural das bacias hidrográficas. No entanto, algumas ações antrópicas podem acelerar e acentuar tais eventos. Conhecer a susceptibilidade de alagamento das áreas de influência do empreendimento é importante para a escolha da localização dos dutos. Pois, os dutos quando alocados em áreas alagáveis podem se tornar um caminho preferencial das águas da chuva, resultando em erosões no seu entorno. Procurou-se, portanto, identificar os principais agentes aceleradores destes processos, as áreas mais susceptíveis aos alagamentos, assim como os períodos do ano em que ocorrem com maior frequência na região hidrográfica em questão.

Na região hidrográfica Tocantins-Araguaia o período de cheias é bem definido entre os meses de fevereiro e abril. No Rio Tocantins, o mais importante da região para o presente estudo, as maiores cheias são verificadas entre fevereiro e março.

Outro dado relevante mostra que as planícies de inundação totalizam 9% da região hidrográfica Tocantins - Araguaia. Destes, cerca de 70% compreende as áreas inundáveis na bacia do rio Araguaia e 30% corresponde às áreas na bacia do rio Tocantins.

Em geral, as cheias e inundações são induzidas em função de algumas variáveis e situações, dependendo inclusive do local onde ocorrem. Nas áreas urbanas as cheias afetam diretamente a maior parte da população e são causadas pela crescente urbanização e a conseqüente impermeabilização do solo, acrescido da disponibilização inadequada de resíduos sólidos. Nas áreas rurais as causas das enchentes estão ligadas à ausência ou ineficiência de práticas conservacionistas do solo e de combate à erosão, que agravam o assoreamento da rede hidrográfica. Além disso, a freqüente supressão da cobertura vegetal e a ocupação desordenada das planícies de inundação, que compreendem as Áreas de Preservação Permanente - APP, contribuem para tal processo. Vale ressaltar que esta mata na margem dos corpos hídricos é protegida legalmente pela Resolução CONAMA 369/2006.

Neste sentido, pode-se afirmar que a ausência ou a ineficiência de ações preventivas do uso da água e seu monitoramento são as principais causas das enchentes e alagamentos.

Coordenador: Técnico:

II.5.1 - Meio Físico 163/178

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

Com relação à bacia do Gurupi, exitem poucos dados fluviométricos disponíveis, constando apenas uma estação em operação. Esta estação, denominada Alto Bonito, localiza-se no rio Gurupi, junto à ponte da BR-316 que liga Belém a São Luís.

As áreas susceptíveis à inundação e alagamento sujeitas à dinâmica de oscilação do lençol freático, bem como os biótopos existentes na área de influência estão espacializados no Desenho 2330-00-EIA-DE-2009-00 - Mapa de Recursos Hídricos, no Cadeno de Mapas do EIA, Volume II.

II.5.1.5.4 - Condições de Proteção dos Corpos d'água

A mata ciliar é a cobertura vegetal que ocupa as margens dos corpos hídricos, sendo fundamental para a proteção dos mesmos. Esta tem a função de controlar a entrada e o armazenamento da água subterrânea. As raízes da vegetação, assim como a estrutura dos horizontes do solo facilitam a percolação da água no perfil. A parte aérea da cobertura florestal também influencia na dinâmica de infiltração das águas, uma vez que parte da água que atinge o solo é interceptada pelos seus componentes folhas, galhos e troncos, retardando e diminuindo o impacto das gotas da chuva no solo. Estes fatores são importantes porque mantém um equilíbrio dinâmico na recarga da água ao subsolo e consequentemente no abastecimento dos corpos hídricos, mesmo em períodos secos.

As áreas cobertas por mata ciliar foram identificadas, mapeadas (Desenho 2330-00-EIA-DE-3003-00 - Mapa de Uso e Cobertura Vegetal, no Caderno de Mapas do EIA, Volume III) e analisadas, principalmente as localizadas no entorno do traçado do duto. Para facilitar a interpretação dos dados, o traçado foi dividido em 3 partes: (1) Linha Tronco Açailândia - Marabá, com 214 km; (2) Ramal 1 Açailândia - Barcarena, com aproximadamente 481 km e (3) Ramal 1a Acará - Marituba, de aproximadamente 43 km:

Linha Tronco Marabá - Açailândia

Na linha tronco que liga Marabá à Açailândia há pouca presença de vegetação em estágio sucessional avançado, predominando pastagens e eucaliptais na área de influência do gasoduto. No ponto em que o traçado do duto atravessa o Rio Araguaia, nas proximidades da cidade de São Domingos do Araguaia, a mata ciliar é quase nula. O mesmo ocorre na travessia do rio Tocantins, próximo à cidade de São Sebastião do Tocantins. Após estes pontos, a próxima travessia de grande importância a ser mencionada é a passagem do duto próximo à cabeceira do rio Açailândia. Este rio, que abastece a cidade homônima, atualmente é utilizado de forma intensiva

 Coordenador:
 Técnico:

 164/178
 II.5.1 - Meio Físico

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

para a irrigação e para o uso animal, contendo poucos remanescentes florestais em suas nascentes. Após estes pontos não foi encontrado corpo hídrico com grande relevância neste trecho.

Ramal 1: Açailândia - Barcarena

Logo no início do segundo trecho, nas proximidades da cidade de Açailândia-PA, a mata ciliar já se encontra mais preservada, com mais de 50 metros de cada lado da margem do Rio Açailândia. Mais adiante, seguindo o traçado, os rios nas proximidades do município de Dom Eliseu-PA, o mesmo rio apresenta de pouca a nenhuma mata ciliar. Na maior parte deste trecho os corpos hídricos atravessam áreas com cultivos agrícolas. Esta paisagem vai mudando em direção ao município de Ulianópolis-PA, onde os rios voltam a apresentar uma mata ciliar relevante, assim como nas proximidades de Paragominas-PA.

Próximo à cidade de Paragominas-PA, o traçado do duto dobra para Oeste e logo atravessa o Rio Puraquequara, cuja mata ciliar encontra-se bem preservada. Ao chegar ao Rio Capim, que no trecho onde passa o duto tem aproximadamente 160 metros de largura, chega a ter mata ciliar de 300 metros para cada margem. O Rio Tomé-Açu e seus afluentes também não apresentam problemas quanto a preservação de suas matas ciliares. No trecho em que o traçado atravessa este rio, que tem cerca de 114 metros de largura, a mata ciliar é bem densa, tanto na margem voltada para sudeste como na margem voltada para noroeste. O Rio Acará, com 143 metros de largura no trecho que o traçado do duto atravessa, apresenta mata ciliar bastante descontínua, com trechos em bom estado e outros sem mata ciliar, como é o caso do segmento onde passa o duto. A mata ciliar apresenta boa conservação quando o traçado passa pelo Rio Moju, onde a mata ciliar é bastante densa e bem larga em ambas as margens.

Ramal 1a: Acará - Marituba

Neste trecho o traçado passa por dois rios grandes, o Acará e o Guamá, ambos apresentando mata ciliar em bom estado de conservação.

Vale ressaltar o cuidado que se deve ter tanto na implantação como na operação do gasoduto para que tais atividades não degradem a estrutura e a composição da mata ciliar nem tampouco afete sua função na sustentabilidade do ecossistema.

Coordenador: Técnico:

II.5.1 - Meio Físico 165/178

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

II.5.1.5.5 - Usos da Água e Fontes Poluidoras

A disponibilidade hídrica da Região Hidrográfica do Tocantins-Araguaia é de 13.624 m³/s na vazão média e a vazão específica média correspondem a 14,84 l/s/km², o que lhe faz ser a segunda maior região hidrográfica brasileira em termos de disponibilidade hídrica. Na subdivisão Tocantins Baixo (sub-1 da Região Hidrográfica Tocantins-Araguaia), onde passará o duto, a vazão específica passa a ser 15,74 l/s/km² (o maior valor das 3 subdivisões).

Por sua vez, na subdivisão hidrográfica do Gurupi, dentro da Região Hidrográfica do Atlântico Nordeste Ocidental, a disponibilidade hídrica é de 523,3 m³/s na vazão média e a vazão específica máxima em 1986 correspondeu a 46,3 l/s/km².

O Quadro II.5.1-28 mostra a disponibilidade hídrica por habitante nas subdivisões do Tocantins Baixo e Gurupi. Este resultado se dá pelo coeficiente entre a vazão média e a população.

Quadro II.5.1-28 - Disponibilidade Hídrica por habitante das subdivisões Tocantins Baixo, Tocantins Alto, Araguaia e Gurupi

Região Hidrográfica	Subdivisão Hidrográfica-Sub 1	Subdivisão Hidrográfica-Sub 2	Q _m (m ³ /s)	População (hab)	Disponibilidade Hídrica (m³/hab.ano)
		Tucuruí	0972,2	478.299	64.099,8
	Tocantins Baixo	Guamá	0817,1	620.411	41.533,6
		Acará	0494,4	279.588	55.765,4
Região Hidrográfica do Tocantins-Araguaia		Baixo Tocantins	0085,4	179.543	14.998,9
7 agadia		Foz Tocantins	0184,6	901.472	6.457,6
	Tocantins Alto	Estreito do Araguaia	1202,4	698.296	54.301,9
	Araguaia	Baixo Araguaia	0516,6	436.017	37.360,8
Região Hidrográfica do Atlântico Nordeste Ocidental	Gurupi	Gurupi	523,3	798.643	20.664,32

Fonte: MMA, 2006

Com estes dados podemos observar que todas as subdivisões apresentam uma rica disponibilidade hídrica, com exceção da sub 2 Foz Tocantins, que apesar da alta densidade demográfica, ainda apresenta uma disponibilidade hídrica suficiente, com 6.457,6 m³/hab.ano.

Quanto à qualidade da água e às principais fontes poluidoras na região hidrográfica Tocantins-Araguaia, os principais problemas referem-se à mineração, ao lançamento de esgotos domésticos e à contaminação por fontes difusas. Sendo que a poluição por esgoto doméstico ocorre localizada nas proximidades dos centros urbanos.

 Coordenador:
 Técnico:

 166/178
 II.5.1 - Meio Físico

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

Com relação a bacia do rio Gurupi, subdivisão Gurupi, é importante ressaltar que as atividades do garimpo, somadas às do pólo guseiro e madeireiro, têm acelerado o compromentimento de suas nascentes.

De acordo com o MMA (2006), o parâmetro de oxigênio dissolvido, medido nas estações fluviométricas em 2003 dá aos corpos hídricos da região hidrográfica Tocantins-Araguaia, tal qual a subdivisão hidrográfica de Gurupi (região hidrográfica do Atlântico Nordeste Ocidental), as Classes 1 e 2 (Resolução CONAMA, nº 357/2005), o que corresponde à águas de boa qualidade. Apenas os rios da região próxima a Marabá (centro urbano) apresentou baixo teor de oxigênio dissolvido, enquadrando-os na classe 4.

Também é importante apresentarmos o balanço hídrico entre a disponibilidade e a demanda. A demanda de água corresponde à vazão de retirada para usos consultivos. O MMA (2006) para determinar o balanço entre disponibilidade e demanda calculou a razão entre o total de demanda (retiradas) da sub2 e duas de suas vazões, a média e a de permanência em 95% do tempo (respectivamente Q_m e Q_{95}), assim como apresentado no Quadro II.5.1-29.

Quadro II.5.1-29 - Balanço entre demanda e disponibilidade hídrica para vazão média e de permanência nas subdivisões Tocantins Baixo, Tocantins Alto e Araguaia (região hidrográfica do Tocantins-Araguaia e Gurupi, na região hidrográfica do Atlântico Nordeste Ocidental

Subdivisão Hidrográfica 1	Subdivisão Hidrográfica 2	Demanda Total (m³/s)	Q _m (m ³ /s)	Q ₉₅ (m ³ /s)	Dem./Disp. 1 (%)	Dem./Disp. 2 (%)
	Tucuruí	1,	11006,1	183,	0	1
	Guamá	1,	817,	136,	0	1
Tocantins Baixo	Acará	0	494,	46	0	1
	Baixo Tocantins	0,	11091,5	16	0	2
	Foz Tocantins	1,	13624,0	65	0	3
Tocantins Alto	Estreito do Araguaia	3,	4527,0	280,	0	1
Araguaia	Baixo Araguaia	2,	5506,9	212,	0	1
Gurupi	Gurupi	1	523,3	111,9	0	

Fonte: MMA (2006)

Dem= Demanda (total das vazões de retirada para usos consultivos)

Disp 1 = Disponibilidade (Vazão média de longo período acumulada de montante para jusante)

Disp 2 = Disponibilidade (vazão com permanência de 95%)

Ainda segundo o MMA (2006), foi verificado que destas demandas de água na região hidrográfica Tocantins-Araguaia, predominam os seguintes usos: irrigação (47%), criação de animal (28%), urbano (17%), rural (4%) e industrial (4%) como mostra o **Gráfico II.5.1-11**.

Coordenador. Técnico:

II.5.1 - Meio Físico 167/178

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

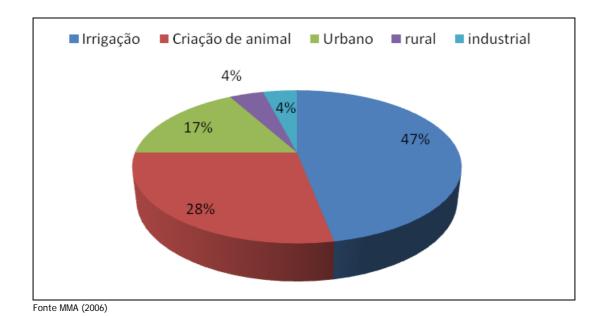


Gráfico II.5.1-11 - Percentual de usos na Região Hidrográfica Tocantins-Araguaia

Por sua vez, a região hidrográfica do Atlântico Nordeste Ocidental, especificamente na subdivisão de Gurupi, apresenta o uso majoritário da água para consumo urbano. Nesta subdivisão há uma disputa direta pelo uso da água entre o consumo urbano e o uso animal, com 33% e 31% respectivamente. Em terceiro lugar aparece a demanda industrial, com 23%, em quarto a rural, com 7% e em quinto a irrigação, com 6%. O Gráfico II.5.1-12 exemplifica estes dados.

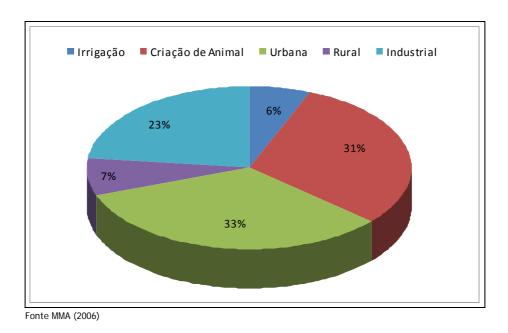


Gráfico II.5.1-12 - Percentual de usos na Região Hidrográfica do Atlântico Nordeste Ocidental, na subdivisão Gurupi

 Coordenador:
 Técnico:

 168/178
 II.5.1 - Meio Físico

TRANSPORTADORA DE GÁS DO PARÁ

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00 GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

II.5.1.6 - Patrimômio Espeleológico

II.5.1.6.1 - Prospecção Exocárstica e Mapeamento (A)

Com base na compilação de informações constantes dos Bancos de Dados do CECAV/ICMBio, CODEX-Redespeleo Brasil, CNC-SBE e GEM, não foram identificadas cavidades na Área de Influência Indireta do empreendimento, conforme representada no Desenho 2330-00-EIA-DE-2010-00 - Mapa de Potencialidade e Ocorrência Espeleológica, no Caderno de Mapas do EIA, Volume II.

No período compreendido entre 16 e 24 de novembro de 2009, foi realizada a campanha de campo para prospecção exocárstica ao longo da diretriz gasoduto. Para esta prospecção foram seguidos os parâmetros descritos no Termo de Referência para Levantamento do Patrimônio Espeleológico, disponibilizado pelo CECAV (CECAV, 2007).

Contudo, não foram identificadas e localizadas feições geomorfológicas propensas à formação de cavidades naturais ao longo da Área Diretamente Afetada - ADA e da Área de Influência Direta - AID do empreendimento.

O relacionamento dos aspectos referentes aos indícios paleontológicos são apresentados no item II.5.1.2.4.2.5 - Unidades Litoestratigráficas e Potencial Paleontológico.

II.5.1.6.2 - Procedimentos para o Levantamento das Cavidades Existentes (B)

Para a caracterização das cavidades naturais da AII e AID do Gasoduto do Pará foram utilizadas informações dos bancos de dados pertencentes ao Centro Nacional de Estudo, Proteção e Manejo de Cavernas - CECAV/ICMBio, ao Cadastro Nacional de Cavernas da Sociedade Brasileira de Espeleologia - CNC/SBE, ao Cadastro Nacional de Cavernas da Redespeleo Brasil - CODEX/Redespeleo, e ao Grupo Espeleológico de Marabá (GEM).

Tais informações, em conjunto com os dados geológicos e de unidades litológicas, permitiram a caracterização das condições regionais em relação à formação de cavidades naturais. Os dados geológicos existentes, relacionados às unidades litológicas mapeadas, também contribuíram para nortear os levantamentos das cavidades naturais em campo, conforme sugerido no Termo de Referência para o Levantamento do Patrimônio Espeleológico, expedido pelo CECAV/ICMBio.

Cabe lembrar que o Termo de Referência mensionado é genérico, sendo utilizado para todos os empreendimentos. De acordo com o Termo de Referência genérico utilizado, foram realizadas prospecções exocársticas na AID do gasoduto, da mesma forma que na ADA, não tendo sido

Coordenador: Técnico:

II.5.1 - Meio Físico 169/178

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

localizadas feições cársticas e/ou pseudo-cársticas a uma distancia mínima de 250m da faixa de servidão da mesma.

II.5.1.6.3 - Considerações Iniciais

As cavidades naturais são formadas em terrenos onde as unidades geológicas são propensas ao seu desenvolvimento, tais como rochas calcárias, areníticas e quartzíticas.

Estas cavidades ditas naturais podem ser divididas segundo sua natureza geológica e de acordo com o seu processo de formação.

Segundo Ford e Williams (1989), os relevos cársticos são feições elaboradas pelos processos de dissolução, corrosão e abatimento, sendo os relevos pseudocársticos os originados por outros processos. Em seu processo de formação, as rochas calcárias, calcárias magnesianas e dolomíticas, sofrem dissolução cárstica, causada pela infiltração da água em seus poros, fissuras e fendas, graças à alta porosidade e permeabilidade do sistema.

Em áreas de litologia quartzítica, com foliação xistosa e devido a esta característica da rocha, o processo de formação das cavernas se dá pela ação de percolação/infiltração das águas pluviais ou pela ação das águas fluviais e de afloramento do lençol freático, moldando formas nos substratos rochosos.

Já em locais onde a litologia é representada por arenitos, as cavidades são formadas a partir do desgaste erosivo de fraturas e erosão eólica, esculpindo formas e reentrâncias nas paredes rochosas.

Geomorfologicamente, as feições de reconhecimento superficial no relevo das cavidades espeleológicas, são representadas pelos sumidouros, dolinas, uvalas e campos de lapiás, além das aberturas das cavernas, também denominadas "bocas" (Kohler, 2001). Na paisagem, os terrenos com geologia propensa à formação de cavernas, apresentam relevo, denominado como "ruiniforme", já que se assemelha a ruínas.

Na área atravessada pelo Gasoduto do Pará, a cobertura geológica é representada essencialmente por litologias areníticas, não apresentando, portanto, propensão à formação de cavernas.

Coordenador: Técnico:

170/178

| Il.5.1 - Meio Físico

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

II.5.1.6.4 - Considerações Finais

Apesar de não haver cavidade natural apresentada neste diagnóstico com base nos bancos de dados consultados, as informações constantes dos mesmos estão passíveis de não apresentarem atualização de forma constante e continuada, o que implica na possível existência de outras cavidades naturais ou mesmo de natureza espeleológica existente na Área de Influência Indireta - AII, uma vez que a prospecção exocárstica foi realizada apenas na Área de Influência Direta - AID e na Área Diretamente Afetada - ADA, gasoduto.

Desta forma, havendo a existência de cavidades naturais ou mesmo de natureza espeleológica na AID e ADA, ou em distância menor que 250m da diretriz da mesma, conforme ditames para prospecção espeleológica exocárstica emitido pelo CECAV/ICMBio, serão tomadas as providências cabíveis para o atendimento legal com vistas à proteção do patrimônio espeleológico e natural da região atravessada pelo empreendimento em questão.

II.5.1.7 - Sismologia

II.5.1.7.1 - Caracterização dos Aspectos Sismológicos (A)

O levantamento sismológico da área de influência do gasoduto do Pará foi realizado visando à caracterização da sismicidade e suas relações com a tectônica, de forma a obter a avaliação do potencial sísmico da região.

A caracterização dos aspectos sismológicos foi realizada com base no levantamento, análise e recompilação do histórico de sismicidade natural e induzida, utilizando os dados dos principais observatórios e estações sismográficas existentes (UNB, IAG/USP, IPT) no período de 1820 a 2009.

Nessa listagem, a hora local é a oficial brasileira (de Brasília). As coordenadas geográficas informadas são as do epicentro, quando foi possível determiná-lo, ou da localidade mais afetada, ou da principal localidade onde o sismo foi sentido. O erro na determinação dos epicentros foi estimado de acordo com os dados macrossísmicos disponíveis, levando-se em conta que o epicentro está na região de maior intensidade. A ausência de um valor para o erro de epicentro indica que não existiam dados para tal estimativa.

Coordenador: Técnico:

II.5.1 - Meio Físico 171/178

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

II.5.1.7.2 - Considerações Gerais

A maior parte dos terremotos ocorre ao longo de estreitas faixas que dividem a litosfera em aproximadamente 12 grandes regiões, as chamadas placas litosféricas. Nas bordas das placas litosféricas ocorre um grande acúmulo de esforços pela interação entre elas, originando os terremotos quando esses esforços ultrapassam o limite de ruptura das rochas.

No interior das placas, os esforços normalmente não são suficientes para gerar uma grande quantidade de terremotos. É o que ocorre, por exemplo, no Brasil. Situado no meio da placa Sul-Americana, que vai da região dos Andes, a oeste, até o centro do oceano Atlântico Sul, a leste, o Brasil está longe das bordas e, portanto, distante dos grandes terremotos. Os tremores no País são reflexos de fortes terremotos ocorridos principalmente na Cordilheira dos Andes, no Chile, e também pela reativação e movimentação de falhas geológicas antigas. De qualquer forma, a probabilidade de o Brasil ser atingido por um terremoto catastrófico é remota.

Os sismos de foco profundo, no extremo oeste do Brasil, pertencem ao tectonismo profundo causado pela interação das placas Sulamericana e de Nazca, não produzindo grandes efeitos em superfíce. De acordo com o banco de dados sismológicos (catálogo de sismos atualizado por Marcelo Assumpção até 2008 - Departamento de Geofísica da Universidade de São Paulo) para o período entre os anos de 1820 e 2008 a grande parte dos sismos brasileiros é de pequena magnitude (<5mb) e ocorrem a baixa profundidade (<30 km) e, por isso, são sentidos até poucos quilômetros do epicentro. Poucos sismos, registrados ou sentidos, chegaram a alcançar intensidades da ordem de VI/VII em superfície (isto é, sentidos, na zona epicentral, por todos e provocando pequenos danos materiais em construções de má qualidade).

O catálogo de sismos do Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo - IAG mostra que, no século XX, foram registradas centenas de sismos com epicentro no Brasil, com magnitudes atingindo até 6,6 na escala *Richter*, como o terremoto registrado em Mato Grosso, em 1955.

A maior parte desses sismos, porém, não ultrapassa magnitude 4,0 (Figura II.5.1-54) e, normalmente, acarretam poucos efeitos observáveis na superfície.

 Coordenador:
 Técnico:

 172/178
 II.5.1 - Meio Físico

Ecology Brasil

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

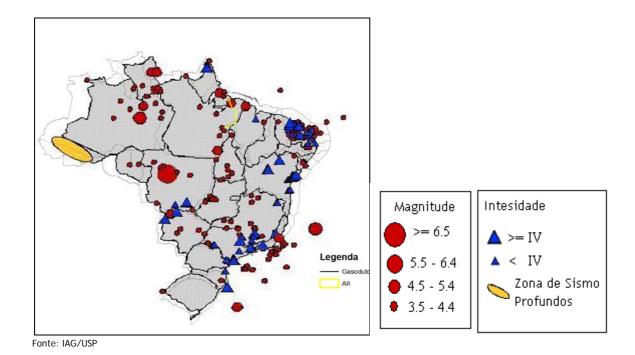


Figura II.5.1-54 - Mapa com dados sobre sismos com magnitude 3.0 ou mais, ocorridos no Brasil, desde a época da colonização, até 1996. As informações mais antigas, indicadas por triângulos, são chamadas históricas, e foram obtidas após um longo e minucioso trabalho de pesquisa em bibliotecas, livros, diários e jornais. Os dados dos epicentros, indicados por círculos, são relativamente mais novos e foram obtidos por equipamentos sismográficos

II.5.1.7.3 - Aspectos Sismológicos da Área de Estudo

Além das informações contidas no catálogo de sismos do IAG, a caracterização da sismicidade natural (tectônica) da região é baseada, também, nos dados observacionais de sismicidade existentes na base de dados sísmicos criada, mantida e atualizada pelo Observatório Sismológico (SIS) da Universidade de Brasília (UnB). Esta análise abrange a caracterização sismotectônica da região.

O arcabouço estrutural da área de influência do empreendimento é composto pelas Províncias Estruturais Parnaíba (Almeida et al. 1977; Hasui et al. 1984a) e Tocantins (Almeida et al.1977). Localizada ao longo das regiões norte e nordeste do Brasil, englobando os estados do Pará, Maranhão, Piauí e Tocantins, a Província Estrutural Parnaíba é caracterizada pelo predomínio de rochas sedimentares e vulcâncias não deformadas, com presença de rochas pré-cambrianas aflorantes em janelas erosivas e tectônicas em meio à cobertura sedimentar. Por sua vez, a Província Tocantins é representada na área de influência do empreendimento, no Pará, pelo segmento norte do Cinturão Paraguai-Araguaia (Almeida et al. 1981).

Coordenador: Técnico:

II.5.1 - Meio Físico 173/178

GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

O baixo índice de atividade sísmica da região pode estar relacionado à condição de se situarem em região intraplaca; distribuição irregular e incompleta da rede sismográfica brasileira; e à densidade demográfica baixa de grande parte da área em estudo. Quando detectados, os eventos sísmicos parecem ocorrer, preferencialmente, na faixa de dobramentos Paraguai-Araguaia, ou em regiões remobilizadas pelo ciclo Brasiliano.

No que se refere à sismicidade induzida, as obras de engenharia podem provocar pequenos tremores. Entretanto, para que ocorram sismos induzidos, o estado de tensões já deve se encontrar próximo à ruptura, visto que as tensões introduzidas por obras de engenharia são, em geral, muito pequenas ou mesmo desprezíveis. Do total de sismos ocorridos na região, muitos deles não foram instrumentados. Este fato restringe a correlação com a geologia, uma vez que os sismos relatados têm localização imprecisa. Entretanto, com os dados disponíveis, é possível considerar de baixa a moderada sismicidade natural. A atividade sísmica nessa região está concentrada, principalmente na micro-região de Tucuruí/ PA, onde os eventos sísmicos são na sua maioria de magnitude moderada (mb < 4,0) e causam intensidades também moderadas (< V MM). Dos sismos registrados nesta região, alguns foram comprovadamente deflagrados pelo reservatório da UHE Tucuruí, que devido ao fenômeno de sismicidade induzida por reservatório (SIR) registrou repetidos eventos devido ao acréscimo de peso provocado pela água do reservatório sobre o arcabouço geológico. Estes "ciclos repetitivos" de TIR (Terremotos Induzidos por Reservatórios) foram instrumentalizados nos anos de 1995 (m_R = 3,4) e 1998 (m_R = 3,6).

II.5.1.7.3.1 - Listagem de Sismos

A listagem apresentada no Quadro II.5.1-30 é uma síntese de todas as informações relevantes relativas a cada evento sísmico ocorrido nos Estados do Pará, Maranhão e Tocantins, reunidas e atualizadas de 1820 a 2009. A caracterização dos aspectos sismológicos foi realizada com base no levantamento, análise e recompilação do histórico de sismicidade natural e induzida, utilizando os dados dos principais observatórios e estações sismográficas existentes, principalmente da UNB - Universidade de Brasília e IAG /USP - Instituto de Astronomia, Geofísica e Ciências Atmosféricas da Universidade de São Paulo.

Coordenador: Técnico:

174/178

II.5.1 - Meio Físico

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

Quadro II.5.1-30 - Lista de sismos ocorridos nos Estados do Pará, Maranhão e Tocantins (1860 - 2009)

Ano	M/D	H/M/S	LAT.	LONG.	ERR.	UF	PROF.	MAG	T.	CA	INT	LOCAL
1864	nov/23	1430	-2.53	-44.30	0	MA	0.	3.2	4	С	4,5	Sao Luís
1864	dez/27	5	-2.53	-44.30	0	MA	0.	0.0	-1	С	-	Sao Luís
1871	4/mai	430	-3.40	-44.35	0	MA	0.	3.7	4	С	5,6	Itapicuru-M.
1871	jun/14		-2.53	-44.30	0	MA	0.	0.0	-1	С	-	Sao Luís
1905	3/dez	19	-2.53	-44.30	0	MA	0.	0.0	-1	С	-	Sao Luís
1909	dez/23		-2.41	-44.42	0	MA	0.	3.0	4	С	4	Alcantara
1974	dez/18	93112	-4.00	-43.00	300	MA	0.	3.6	1	- 1	-	Maranhão
1980	nov/29	10500	-3.10	-43.30	100	MA	0.	3.1	1	- 1	-	Urb.Santos
1981	1/jun	195158	-5.44	-53.40	50	MA	0.	3.4	1		-	João Lisboa
2008	4		-05.81	-46.14	5	MA	0.			C 3-	4	Grajau
2009	nov/26	225545	00.76	-43.00	20	MA	05.	4.0	1	- 1	-	Platafcontin.
1860	7/dez		-0.86	-48.13	0	PA	0.	0.0	-1	С	-	Vigia
1883	ago/27	20	-2.01	-54.10	0	PA	0.	0.0	-1	С	-	Monte Alegre
1922			-1.92	-55.50	0	PA	0.	0.0	-1	С	-	Obidos
1946	10/jul	2025	-1.44	-48.48	0	PA	0.	2.8	4	С	3,4	Belém
1970	1/dez	44308	-1.32	-48.48	30	PA	0.	4.5	2	В	6,6	Belém
1977	8/fev	174552	-0.08	-49.97	30	PA	0.	4.8	0	I	-	N.I.Marajó
1980	out/18	2141	-0.40	-49.80	50	PA	0.	3.1	1	- 1	-	Marajó
1980	11/mai	12242	-5.80	-50.30	70	PA	0.	3.5	1	- 1	-	Sul Do Pará
1980	11/dez	212305	-8.07	-50.24	20	PA	0.	4.7	2	С	5	Redenção
1980	nov/14	33820	-2.83	-49.13	300	PA	0.	2.8	1	- 1	-	
1981	set/15	42612	-1.60	-53.00	100	PA	0.	3.9	1	ı	-	Almeirim
1983	12/abr	71757	-3.17	-50.57	20	PA	0.	3.7	1	I	-	130km Nw Tucuruí
1984	1/mai	103010	-1.10	-50.32	20	PA	0.	3.0	1	ı	-	São Miguel
1984	fev/20	181828	-1.16	-50.49	20	PA	0.	3.0	1	I	-	São Miguel
1984	mai/21	32247	-4.20	-50.60	100	PA	0.	2.0	1	I	-	Tucuruí
1984	nov/21	201523	-6.90	-50.70	20	PA	0.	3.7	1	I	-	Gradaus
1984	dez/16	725	-4.10	-50.90	30	PA	0.	2.2	1	I	-	Tucuruí
1985	dez/19	1423	-3.85	-50.48	100	PA	0.	2.4	1	I	-	Tucuruií
1986	ago/22	192004	-4.00	-51.20	200	PA	0.	2.0	1	I	-	Altamira/Tuc
1986	dez/28	160915	-3.60	-54.60	200	PA	0.	3.1	1	I	-	Pacoval
1987	out/14	10819	-2.43	-55.15	50	PA	0.	3.5	1	I	-	Tumucumaque
1987	12/nov	91740	-6.80	-51.20	50	PA	0.	3.0	1	I	-	S.Felix Xingu
1987	dez/15	112241	-4.80	-50.45	50	PA	0.	2.5	1	1	-	Serra Carajás
1988	jan/19	234136	-0.40	-49.90	100	PA	0.	3.8	1	I	-	Chaves
1989	nov/26	112126	-0.24	-49.86	20	PA	0.	4.0	1	I	3,4	Chaves
1993	nov/18	152246	-5.30	-50.43	80	PA	0.	3.9	1	ı	-	Serracarajás
1997	mai/17	232801	-7.14	-51.25	10	PA	0.	3.2	1	I	-	S.Felix Xingu
1998	fev/26	131629	-3.95	-49.64	20	PA	0.	3.1	1	ı	-	Tucuruí
1998	fev/27	65757	-3.95	-49.64	20	PA	0.	3.1	1	- 1	-	Tucuruí
1998	3/fev	62651	-3.86	-49.63	20	PA	0.	3.5	0	I	4,5	Tucuruí
1998	ago/27	142357	-9.46	-50.49	50	PA	0.	3.2	1	- 1	-	Pq.Nac.Arag.
1998	10/set	80313	-8.73	-54.57	50	PA	0.	3.5	1	ı	-	S. Cachimbo
2002	out/27	202325	-08.03	-49.78	80	PA	0.	3.7	1	I	-	Ne Redencão
2003	nov/15	2027	-08.34	-50.04	20	PA	0.	3.9	1	I	-	Con.Araguaia
2007	jun/21	140	-03.77	-49.67	20	PA	0.			C 2-	3	Tucuruí

Coordenador: Técnico:

II.5.1 - Meio Físico 175/178

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

Ano	M/D	H/M/S	LAT.	LONG.	ERR.	UF	PROF.	MAG	T.	CA	INT	LOCAL
1988	ago/30	154020	-6.09	-47.96	30	TO	0.	3.5	1	- 1	5	Araguatins
1989	1/jul	30113	-11.62	-48.11	40	TO	0.	3.8	1	- 1	-	Natividade
1990	ago/21	51241	-11.79	-48.27	30	TO	0.	3.5	1	- 1	5	Natividade
1990	ago/21	54152	-11.91	-48.25	30	TO	0.	3.6	1	- 1	5	Natividade
1995	mar/20	121258	-12.27	-49.32	50	TO	0.	2.6	1	I	-	Figueiropol.
1995	jun/21	25743	-10.79	-48.34	20	TO	0.	2.9	1	- 1	-	P. Nacional
1996	5/jan	124353	-12.57	-48.05	20	TO	0.	2.7	1	I	-	S.Stocantins
1996	out/19	105609	-12.36	-49.31	50	TO	0.	2.5	1	1	-	Alvorada
1996	nov/13	233908	-12.26	-50.11	60	TO	0.	3.4	1	I	-	Gurupi
1997	ago/24	55904	-11.10	-50.61	10	TO	0.	3.1	1	1	-	S.F.Araguaia
1998	4/nov	172453	-11.02	-48.48	50	TO	0.	3.9	0	I	-	Pto.Nacional
1999	dez/16	50821	-11.65	-47.80	50	TO	0.	3.4	1	- 1	-	Natividade
2000	4/dez	72634	-12.27	-48.84	80	TO	0.	3.1	1	I	4,5	S.V.Nativid.
2000	set/13	73951	-12.02	-49.85	30	TO	0.	3.4	1	- 1	-	Gurupi
2002	mai/18	122212	-09.92	-49.00	0	TO	0.	3.1	1	I	-	Prox. Pium
2002	mai/19	55718	-10.03	-49.63	0	TO	0.	3.0	1	- 1	-	Prox. Pium
2003	jul/14	90838	-12.64	-47.68	30	TO	0.	3.6	1	I	-	Parana
2003	jul/14	91537	-12.64	-47.62	30	TO	0.	3.0	1	- 1	-	Parana
2006	fev/28	81840	-13.04	-48.43	30	TO	0.	2.7	1	I	5	Palmeirópolis
2009	4/mar	33951	-11.65	-48.61	30	TO	05.	3.2	1	- 1	-	Peixe
2009	4/mar	40227	-11.65	-48.61	30	TO	05.	2.5	1	I	-	Peixe
2009	4/mar	50212	-11.65	-48.61	30	ТО	05.	2.8	1		-	Peixe

Fonte: Informação obtida do geólogo Assumpção (2008). - Legenda: M/D - Mês/Dia; H/M/S - Hora/Minuto/Segundo; LAT - Latitude; LONG - Longitude; ERR - Erro; UF - Unidade de Federação; PROF. - Profundidade; MAG - Magnitude; T - Tipo do método; CAT - Categoria; INT - Intensidade (Mercalli Modificada).

A coluna M/D informa o mês e o dia de ocorrência do sismo. A coluna HMS informa a hora o minuto e o segundo da ocorrência do abalo sísmico. As coordenadas geográficas (colunas LAT e LONG) são as do epicentro, quando foi possível determiná-lo, ou da localidade mais afetada, ou da principal localidade onde o sismo foi sentido. O erro (coluna ERRO) na determinação dos epicentros foi estimado de acordo com os dados macrossísmicos disponíveis, levando-se em conta que o epicentro está na região de maior intensidade. A ausência de um valor para o erro de epicentro indica que não existiam dados para tal estimativa.

As magnitudes mb (coluna MAG) foram calculadas ou estimadas por um dos seguintes métodos (Tipo T):

Tipo Método

0: mb telessísmico;

1: mR, estimativa de mb com estações regionais;

2: média de valores de mb e mR;

 Coordenador:
 Técnico:

 176/178
 II.5.1 - Meio Físico

TRANSPORTADORA DE GAS DO PARA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00 GASODUTO DO PARÁ
Estudo de Impacto Ambiental - EIA

3: mb estimado pela área afetada;

4: estimativa aproximada de mb pela Intensidade Máxima (INT), supondo que INT corresponda à maior intensidade observada, e supondo profundidade focal de poucos quilômetros: mb = 1,21 + 0,45 INT (ASSUMPÇÃO e BURTON, 1982).

Os eventos sísmicos foram classificados em cinco categorias (CAT), dependendo da quantidade e qualidade das informações disponíveis:

A: sismo com dados macrossísmicos que permitem construir mapa de isossistas e determinar o epicentro com boa precisão;

B: sismo com dados que permitem determinar a área afetada, avaliar intensidades e determinar um epicentro aproximado;

C: sismo com informações certas sobre suas ocorrências, permitindo às vezes avaliar intensidades. A área afetada e o epicentro podem não estar bem determinados;

D: evento sísmico duvidoso, isto é, há dúvidas quanto ao local, data ou mesmo sobre a confiabilidade da fonte utilizada;

I: dado instrumental, quando só são disponíveis registros sismográficos sem dados macrossísmicos.

A coluna INT é a intensidade do sismo na escala Mercalli Modificada (MM) correspondente à maior intensidade observada de que se tem notícia.

NOTA: A magnitude é uma escala que mede "tamanhos" relativos dos sismos e está relacionada à energia total das vibrações emitidas pelo foco sísmico. Tal escala foi desenvolvida por um sismólogo americano - Richter em 1935.

A intensidade sísmica é uma simples classificação dos efeitos causados pelas vibrações sísmicas, como sensações causadas nas pessoas, danos em construções. A escala mais usada de intensidade é de Mercalli Modificada de doze graus (MM).

A magnitude não deve ser confundida com escala de intensidade, usada para expressar a violência das vibrações em um determinado lugar.

Muitas vezes os dados e informações obtidos historicamente não foram registrados por instrumentos e sim por narrativas de moradores. Nesse caso emprega-se a escala de intensidade.

Coordenador: Técnico:

II.5.1 - Meio Físico 177/178

GASODUTO DO PARÁ

Estudo de Impacto Ambiental - EIA

2330-00-EIA-RL-0001-00 Julho de 2010 - Rev. nº 00

II.5.1.7.4 - Considerações Finais

Do total de sismos ocorridos e registrados na região onde se insere o empreendimento, muitos não foram instrumentados. O Mapa de Sismicidade ilustra tais eventos sísmicos ocorridos. Entretanto, com os dados disponíveis, é possível considerar uma média da sismicidade natural na região, com magnitude sísmica entre 2 e 4 graus na escala Richter.

A partir das informações compiladas, pode-se admitir que a sismicidade na região em estudo, do ponto de vista da Engenharia Civil (construção de linhas de transmissão, termelétricas e dutos), é pouco significativa.

 Coordenador:
 Técnico:

 178/178
 II.5.1 - Meio Físico

ANEXOS DO ITEM II.5.1 - MEIO FÍSICO

ANEXO II.5.1-1 - RELATÓRIO FOTOGRÁFICO