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CHAPTER 1

Sampling

Sampling
Choosing a way to sample and collect data can be 
bewildering. If you find it hard to decide exactly 
how it should be done then seek help. Questions 
about sampling are among the questions that are 
most frequently asked to biometricians and the 
time to ask for assistance is while the sampling 
scheme is being designed. Remember: if you go 
wrong with data analysis it is easy to repeat it, but 
if you collect data in inappropriate ways you can 
probably not repeat it, and your research will not 
meet its objectives.

Although there are some particular methods 
that you can use for sampling, you will need to 
make some choices yourself. Sample design is the 
art of blending theoretical principles with practical 
realities. It is not possible to provide a catalogue of 
sampling designs for a series of situations – simply 
too much depends on the objectives of the survey 
and the realities in the field.

Sampling design has to be based on specific 
research objectives and the hypotheses that you 
want to test. When you are not clear about what 
it is that you want to find out, it is not possible to 
design an appropriate sampling scheme.

Research hypotheses
The only way to derive a sampling scheme is to 
base it on a specific research hypothesis or research 
objective. What is it that you want to find out? 
Will it help you or other researchers when you 
find out that the hypothesis holds true? Will the 
results of the study point to some management 
decisions that could be taken?

The research hypotheses should indicate the 3 
basic types of information that characterize each 
piece of data: where the data were collected, 
when the data were collected, and what type of 
measurement was taken. The where, when and 
what are collected for each sample unit. A sample 
unit could be a sample plot in a forest, or a farm in 
a village. Some sample units are natural units such 
as fields, farms or forest gaps. Other sample units 
are subsamples of natural units such as a forest 
plot that is placed within a forest. Your sampling 
scheme will describe how sample units are defined 
and which ones are selected for measurement. 

The objectives determine what data, the variables 
measured on each sampling unit. It is helpful to 
think of these as response and explanatory variables, 
as described in the chapter on data preparation. 
The response variables are the key quantities that 
your objectives refer to, for example ‘tree species 
richness on small farms’. The explanatory variables 
are the variables that you expect, or hypothesize, 
to influence the response. For example, your 
hypothesis could be that ‘tree species richness on 
small farms is influenced by the level of market 
integration of the farm enterprise because market 
integration determines which trees are planted and 
retained’. In this example, species richness is the 
response variable and level of market integration 
is an explanatory variable. The hypothesis refers 
to small farms, so these should be the study units.  
The ‘because…’ part of the hypothesis adds much 
value to the research, and investigating it requires 
additional information on whether species were 
planted or retained and why. 
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Note that this manual only deals with survey data. 
The only way of proving cause-effect relationships 
is by conducting well-designed experiments 
– something that would be rather hard for this 
example! It is common for ecologists to draw 
conclusions about causation from relationships 
founding surveys. This is dangerous, but inevitable 
when experimentation is not feasible. The risk of 
making erroneous conclusions is reduced by: (a) 
making sure other possible explanations have been 
controlled or allowed for; (b) having a mechanistic 
theory model that explains why the cause-effect 
may apply; and (c) finding the same relationship 
in many different studies. However, in the end 
the conclusion depends on the argument of the 
scientist rather than the logic of the research 
design. Ecology progresses by scientists finding 
new evidence to improve the inevitably incomplete 
understanding of cause and effect from earlier 
studies.

When data are collected is important, both to 
make sure different observations are comparable 
and because understanding change – trends, or 
before and after an intervention – is often part of 
the objective. Your particular study may not aim 
at investigating trends, but investigating changes 
over time may become the objective of a later 
study. Therefore you should also document when 
data were collected.

This chapter will mainly deal with where data 
are collected. This includes definition of the 
survey area, of the size and shape of sample units 
and plots and of how sample plots are located 
within the survey area.

Survey area
You need to make a clear statement of the survey 
area for which you want to test your hypothesis. 
The survey area should have explicit geographical 
(and temporal) boundaries. The survey area 
should be at the ecological scale of your research 
question. For example, if your research hypothesis 

is something like ‘diversity of trees on farms 
decreases with distance from Mount Kenya 
Forest because seed dispersal from forest trees is 
larger than seed dispersal from farm trees’, then 
it will not be meaningful to sample trees in a 
strip of 5 metres around the forest boundary and 
measure the distance of each tree from the forest 
edge. In this case we can obviously not expect to 
observe differences given the size of trees (even if 
we could determine the exact distance from the 
edge within the small strip). But if the 5 m strip 
is not a good survey area to study the hypothesis, 
which area is? You would have to decide that on 
the basis of other knowledge about seed dispersal, 
about other factors which dominate the process 
when you get too far from Mt Kenya forest, and 
on practical limitations of data collection. You 
should select the survey area where you expect to 
observe the pattern given the ecological size of 
the phenomenon that you are investigating.

If the research hypothesis was more general, for 
example ‘diversity of trees on East African farms 
decreases with distance from forests because more 
seeds are dispersed from forest trees than from farm 
trees’, then we will need a more complex strategy 
to investigate it. You will certainly have to study 
more than one forest to be able to conclude this 
is a general feature of forests, not just Mt Kenya 
forest.  You will therefore have to face questions 
of what you mean by a ‘forest’. The sampling 
strategy now needs to determine how forests are 
selected as well as how farms around each forest 
are sampled. 

A common mistake is to restrict data collection 
to only part of the study area, but assume the 
results apply to all of it (see Figure 1.1). You can 
not be sure that the small window actually sampled 
is representative of the larger study area.

An important idea is that bias is avoided. Think 
of the case in which samples are only located in 
sites which are easily accessible. If accessibility 
is associated with diversity (for example because 
fewer trees are cut in areas that are more difficult 
to access), then the area that is sampled will not 
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be representative of the entire survey area. An 
estimate of diversity based only on the accessible 
sites would give biased estimates of the whole 
study area. This will especially cause problems if 
the selection bias is correlated with the factors that 
you are investigating. For example, if the higher 
diversity next to the forest is caused by a larger 
proportion of areas that are difficult to access and 
you only sample areas that are easy to access, then 
you may not find evidence for a decreasing trend 
in diversity with distance from the forest. In this 
case, the dataset that you collected will generate 
estimates that are biased since the sites are not 
representative of the entire survey area, but only 
of sites that are easy to access.

The sample plots in Figure 1.1 were selected 
from a sampling window that covers part of the 
study area. They were selected using a method 
that allowed any possible plot to potentially 
be included. Furthermore, the selection was 
random. This means that inferences based on 
the data apply to the sampling window. Any 
particular sample will not give results (such as 
diversity, or its relationship with distance to 
forest) which are equal to those from measuring 
the whole sampling window. But the sampling 
will not predispose us to under- or overestimate 
the diversity, and statistical methods will generally 
allow us to determine just how far from the ‘true’ 
answer any result could be. 
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Figure 1.1  When you sample within a smaller window, you may not have sampled the entire range of conditions of 
your survey area. The sample may therefore not be representative of the entire survey area. The areas shown are 
three types of landuse and the sample window (with grey background). Sample plots are the small rectangles.
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Size and shape of sample units or 
plots
A sample unit is the geographical area or plot on 
which you actually collected the data, and the 
time when you collected the data. For instance, 
a sample unit could be a 50 × 10 m2 quadrat (a 
rectangular sample plot) in a forest sampled on 9th 

May 2002. Another sample unit could be all the 
land that is cultivated by a family, sampled on 10th 

December 2004. In some cases, the sample plot 
may be determined by the hypothesis directly. If 
you are interested in the influence of the wealth 
of farmers on the number of tree species on their 
farm, then you could opt to select the farm as the 
sample plot. Only in cases where the size of this 
sample plot is not practical would you need to 
search for an alternative sample plot. In the latter 
case you would probably use two sample units 
such as farms (on which you measure wealth) and 
plots within farms (on which you measure tree 
species, using the data from plots within a farm to 
estimate the number of species for the whole farm 
to relate to wealth).

The size of the quadrat will usually influence 
the results. You will normally find more species 
and more organisms in quadrats of 100 m2 than 
in quadrats of 1 m2. But 100 dispersed 1 m2 plots 
will probably contain more species than a single 
100 m2 plot. If the aim is not to find species but 
understanding some ecological phenomenon, then 
either plot size may be appropriate, depending on 
the scale of the processes being studied.

The shape of the quadrat will often influence 
the results too. For example, it has been observed 
that more tree species are observed in rectangular 
quadrats than in square quadrats of the same area. 
The reason for this phenomenon is that tree species 
often occur in a clustered pattern, so that more 
trees of the same species will be observed in square 
quadrats. When quadrats are rectangular, then the 
orientation of the quadrat may also become an 
issue. Orienting the plots parallel or perpendicular 
to contour lines on sloping land may influence 

the results, for instance. As deciding whether trees 
that occur near the edge are inside or outside the 
sample plot is often difficult, some researchers find 
circular plots superior since the ratio of edge-to-
area is smallest for circles. However marking out a 
circular plot can be much harder than marking a 
rectangular one. This is an example of the trade off 
between what may be theoretically optimal and 
what is practically best. Balancing the trade off is a 
matter of practical experience as well as familiarity 
with the principles.

As size and shape of the sample unit can 
influence results, it is best to stick to one size and 
shape for the quadrats within one study. If you 
want to compare the results with other surveys, 
then it will be easier if you used the same sizes 
and shapes of quadrats. Otherwise, you will need 
to convert results to a common size and shape of 
quadrat for comparisons. For some variables, such 
conversion can easily be done, but for some others 
this may be quite tricky. Species richness and 
diversity are statistics that are influenced by the 
size of the sample plot. Conversion is even more 
complicated since different methods can be used to 
measure sample size, such as area or the number of 
plants measured (see chapter on species richness). 
The average number of trees is easily converted 
to a common sample plot size, for example 1 ha, 
by multiplying by the appropriate scaling factor. 
This can not be done for number of species or 
diversity. Think carefully about conversion, and 
pay special attention to conversions for species 
richness and diversity. In some cases, you may not 
need to convert to a sample size other than the one 
you used – you may for instance be interested in 
the average species richness per farm and not in 
the average species richness in areas of 0.1 ha in 
farmland. Everything will depend on being clear 
on the research objectives.

One method that will allow you to do some easy 
conversions is to split your quadrat into sub-plots 
of smaller sizes. For example, if your quadrat is 40 
× 5 m2, then you could split this quadrat into eight 
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5 × 5 m2 subplots and record data for each subplot.  
This procedure will allow you to easily convert to 
quadrat sizes of 5 × 5 m2, 10 × 5 m2, 20 × 5 m2 and 
40 × 5 m2, which could make comparisons with 
other surveys easier.

Determining the size of the quadrat is one of the 
tricky parts of survey design. A quadrat should be 
large enough for differences related to the research 
hypothesis to become apparent. It should also 
not be too large to become inefficient in terms 
of cost, recording fatigue, or hours of daylight. 
As a general rule, several small quadrats will give 
more information than few large quadrats of 
the same total area, but will be more costly to 
identify and measure. Because differences need 
to be observed, but observation should also use 
resources efficiently, the type of organism that is 
being studied will influence the best size for the 
quadrat. The best size of the quadrat may differ 
between trees, ferns, mosses, butterflies, birds 
or large animals. For the same reason, the size 
of quadrat may differ between vegetation types. 
When studying trees, quadrat sizes in humid 
forests could be smaller than quadrat sizes in semi-
arid environments.

As some rough indication of the size of the sample 
unit that you could use, some of the sample sizes 
that have been used in other surveys are provided 
next. Some surveys used 100 × 100 m2 plots for 
differences in tree species composition of humid 
forests (Pyke et al. 2001, Condit et al. 2002), or 
for studies of forest fragmentation (Laurance et al. 
1997). Other researchers used transects (sample 
plots with much longer length than width) such as 
500 × 5 m2 transects in western Amazonian forests 
for studies of differences in species composition 
for certain groups of species (Tuomisto et al. 
2003). Yet other researchers developed methods 
for rapid inventory such as the method with 
variable subunits developed at CIFOR that has a 
maximum size of 40 × 40 m2, but smaller sizes 
when tree densities are larger (Sheil et al. 2003).

Many other quadrat sizes can be found in other 
references. It is clear that there is no common 
or standard sample size that is being used 
everywhere. The large range in values emphasizes 
our earlier point that there is no fixed answer to 
what the best sampling strategy is. It will depend 
on the hypotheses, the organisms, the vegetation 
type, available resources, and on the creativity of 
the researcher. In some cases, it may be worth 
using many small sample plots, whereas in other 
cases it may be better to use fewer larger sample 
plots. A pilot survey may help you in deciding 
what size and shape of sample plots to use for 
the rest of the survey (see below: pilot testing of 
the sampling protocol). Specific guidelines on 
the advantages and disadvantages of the various 
methods is beyond the scope of this chapter (an 
entire manual could be devoted to sampling 
issues alone) and the best advise is to consult a 
biometrician as well as ecologists who have done 
similar studies.

Simple random sampling
Once you have determined the survey area and 
the size of your sampling units, then the next 
question is where to take your samples. There are 
many different methods by which you can place 
the samples in your area. 

Simple random sampling involves locating 
plots randomly in the study area. Figure 1.2 gives 
an example where the coordinates of every sample 
plot were generated by random numbers. In this 
method, we randomly selected a horizontal and 
vertical position. Both positions can be calculated 
by multiplying a random number between 0 
and 1 with the range in positions (maximum 
– minimum), and adding the result to the 
minimum position. If the selected position falls 
outside the area (which is possible if the area is 
not rectangular), then a new position is selected.
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Figure 1.2  Simple random sampling by using random numbers to determine the position of the sample plots. Using 
this method there is a risk that regions of low area such as that under Landuse 1 are not sampled.

Figure 1.3  For simple random sampling, it is better to first generate a grid of plots that covers the entire area such 
as the grid shown here.
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Simple random sampling is an easy method to 
select the sampling positions (it is easy to generate 
random numbers), but it may not be efficient in 
all cases. Although simple random sampling is the 
basis for all other sampling methods, it is rarely 
optimal for biodiversity surveys as described next. 
Simple random sampling may result in selecting 
all your samples within areas with the same 
environmental characteristics, so that you can not 
test your hypothesis efficiently. If you are testing a 
hypothesis about a relationship between diversity 
and landuse, then it is better to stratify by the 
type of landuse (see below: stratified sampling). 
You can see in Figure 1.2 that one type of landuse 
was missed by the random sampling procedure. 
A procedure that ensures that all types of landuse 
are included is better than repeating the random 
sampling procedure until you observe that all 
the types of landuse were included (which is not 
simple random sampling any longer).

It may also happen that the method of using 
random numbers to select the positions of 
quadrats will cause some of your sample units to 
be selected in positions that are very close to each 
other. In the example of Figure 1.2, two sample 
plots actually overlap. To avoid such problems, 
it is theoretically better to first generate the 
population of all the acceptable sample plots, 
and then take a simple random sample of those. 
When you use random numbers to generate the 
positions, the population of all possible sample 

plots is infinite, and this is not the best approach. 
It is therefore better to first generate a grid of 
plots that covers the entire survey area, and then 
select the sample plots at random from the grid. 

Figure 1.3 shows the grid of plots from which 
all the sample plots can be selected. We made 
the choice to include only grid cells that fell 
completely into the area. Another option would 
be to include plots that included boundaries, 
and only sample the part of the grid cell that falls 
completely within the survey area – and other 
options also exist.

Once you have determined the grid, then 
it becomes relatively easy to randomly select 
sample plots from the grid, for example by giving 
all the plots on the grid a sequential number and 
then randomly selecting the required number 
of sample plots with a random number. Figure 
1.4 shows an example of a random selection of 
sample plots from the grid. Note that although 
we avoided ending up with overlapping sample 
plots, some sample plots were adjacent to each 
other and one type of landuse was not sampled.

Note also that the difference between selecting 
points at random and gridding first will only be 
noticeable when the quadrat size is not negligible 
compared to the study area. A pragmatic solution 
to overlapping quadrats selected by simple 
random sampling of points would be to reject 
the second sample of the overlapping pair and 
choose another random location.
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Figure 1.5  Systematic sampling ensures that data are collected from the entire survey area.

Figure 1.4.  Simple random sampling from the grid shown in Figure 1.3.
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Systematic sampling
Systematic or regular sampling selects sample 
plots at regular intervals. Figure 1.5 provides 
an example. This has the effect of spreading the 
sample out evenly through the study area. A square 
or rectangular grid will also ensure that sample 
plots are evenly spaced.

Systematic sampling has the advantage over 
random sampling that it is easy to implement, 
that the entire area is sampled and that it avoids 
picking sample plots that are next to each other. 
The method may be especially useful for finding 
out where a variable undergoes rapid changes. 
This may particularly be interesting if you sample 
along an environmental gradient, such as altitude, 
rainfall or fertility gradients. For such problems 
systematic sampling is probably more efficient – 
but remember that we are not able in this chapter 
to provide a key to the best sampling method.

Figure 1.6  Random selection of sample plots from a grid. The same grid was used as in Figure 1.5.

You could use the same grid depicted in Figure 
1.5 for simple random sampling, rather than the 
complete set of plots in Figure 1.3. By using this 
approach, you can guarantee that sample plots will 
not be selected that are too close together. The 
grid allows you to control the minimum distance 
between plots. By selecting only a subset of sample 
plots from the entire grid, sampling effort is 
reduced. For some objectives, such combination 
of simple random sampling and regular sampling 
intervals will offer the best approach. Figure 1.6 
shows a random selection of sample plots from the 
grid depicted in Figure 1.5.

If data from a systematic sample are analysed 
as if they came from a random sample, inferences 
may be invalidated by correlations between 
neigbouring observations. Some analyses of 
systematic samples will therefore require an 
explicitly spatial approach.
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Figure 1.8  Stratified sampling ensures that observations are taken in each stratum. Sample plots are randomly 
selected for each landuse from a grid.

Figure 1.7.  Systematic sampling after random selection of the position of the first sample plot.
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Another problem that could occur with systematic 
sampling is that the selected plots coincide with a 
periodic pattern in the study area. For example, 
you may only sample in valley bottoms, or you may 
never sample on boundaries of fields. You should 
definitely be alert for such patterns when you do 
the actual sampling. It will usually be obvious if a 
landscape can have such regular patterns.

Systematic sampling may involve no 
randomization in selecting sample plots. Some 
statistical analysis and inference methods are not 
then suitable. An element of randomization can 
be introduced in your systematic sampling by 
selecting the position of the grid at random. 
Figure 1.7 provides an example of selecting sample 
plots from a sampling grid with a random origin 
resulting in the same number of sample plots and 
the same minimum distance between sample plots 
as in Figure 1.6.

Stratified sampling
Stratified sampling is an approach in which 
the study area is subdivided into different 
strata, such as the three types of landuses of the 
example (Landuse 1, Landuse 2 and Landuse 3, 
figures 1.1-1.9). Strata do not overlap and cover 
the entire survey area. Within each stratum, a 
random or systematic sample can be taken. Any 
of the sampling approaches that were explained 
earlier can be used, with the only difference that 
the sampling approach will now be applied to 
each stratum instead of the entire survey area. 
Figure 1.8 gives an example of stratified random 
sampling with random selection of maximum 10 
sample plots per stratum from a grid with random 
origin.

Stratified sampling ensures that data are 
collected from each stratum. The method will also 
ensure that enough data are collected from each 
stratum. If stratified sampling is not used, then a 
rare stratum could be missed or only provide one 
observation. If a stratum is very rare, you have a 

high chance of missing it in the sample. A stratum 
that only occupies 1% of the survey area will be 
missed in over 80% of simple random samples of 
size 20.

Stratified sampling also avoids sample plots 
being placed on the boundary between the strata 
so that part of the sample plot is in one stratum 
and another part is in another stratum. You could 
have noticed that some sample plots included the 
boundary between Landuse 3 and Landuse 2 in 
Figure 1.7. In Figure 1.8, the entire sample plot 
occurs within one type of landuse.

Stratified sampling can increase the precision 
of estimated quantities if the strata coincide with 
some major sources of variation in your area. 
By using stratified sampling, you will be more 
certain to have sampled across the variation in 
your survey area. For example, if you expect that 
species richness differs with soil type, then you 
better stratify by soil type.

Stratified sampling is especially useful when 
your research hypothesis can be described in 
terms of differences that occur between strata. For 
example, when your hypothesis is that landuse 
influences species richness, then you should stratify 
by landuse. This is the best method of obtaining 
observations for each category of landuse that will 
allow you to test the hypothesis.

Stratified sampling is not only useful for testing 
hypotheses with categorical explanatory variables, 
but also with continuous explanatory variables. 
Imagine that you wanted to investigate the 
influence of rainfall on species richness. If you 
took a simple random sample, then you would 
probably obtain many observations with near 
average rainfall and few towards the extremes of 
the rainfall range. A stratified approach could 
guarantee that you take plenty of observations at 
high and low rainfalls, making it easier to detect 
the influence of rainfall on species richness.

The main disadvantage of stratified sampling is 
that you need information about the distribution 
of the strata in your survey area. When this 
information is not available, then you may need 
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to do a survey first on the distribution of the 
strata. An alternative approach is to conduct 
systematic surveys, and then do some gap-filling 
afterwards (see below: dealing with covariates and 
confounding).

A modification of stratified sampling is to use 
gradient-oriented transects or gradsects (Gillison 
and Brewer 1985; Wessels et al. 1998). These 
are transects (sample plots arranged on a line) 
that are positioned in a way that steep gradients 
are sampled. In the example of Figure 1.8, you 
could place gradsects in directions that ensure 
that the three landuse categories are included. 
The advantage of gradsects is that travelling time 
(cost) can be minimized, but the results may not 
represent the whole study area well. 

Sample size or the number of 
sample units
Choosing the sample size, the number of sampling 
units to select and measure, is a key part of planning 
a survey. If you do not pay attention to this then 
you run two risks. You may collect far more data 
than needed to meet your objectives, wasting time 
and money. Alternatively, and far more common, 
you may not have enough information to meet 
your objectives, and your research is inconclusive. 
Rarely is it possible to determine the exact sample 
size required, but some attempt at rational choice 
should be made.

We can see that the sample size required must 
depend on a number of things. It will depend on 
the complexity of the objectives – it must take more 
data to unravel the complex relationships between 
several response and explanatory variables than it 
takes to simply compare the mean of two groups. It 
will depend on the variability of the response being 
studied – if every sample unit was the same we only 
need to measure one to have all the information! 
It will also depend on how precisely you need to 
know answers – getting a good estimate of a small 
difference between two strata will require more data 
than finding out if they are roughly the same.

If the study is going to compare different strata 
or conditions then clearly we need observations 
in each stratum, or representing each set of 
conditions. We then need to plan for repeated 
observations within a stratum or set of conditions 
for four main reasons:
1. In any analysis we need to give some indication 

of the precision of results and this will depend on 
variances. Hence we need enough observations 
to estimate relevant variances well.

2. In any analysis, a result estimated from more data 
will be more precise than one estimated from 
less data. We can increase precision of results by 
increasing the number of relevant observations. 
Hence we need enough observations to get 
sufficient precision.

3. We need some ‘insurance’ observations, so that 
the study still produces results when unexpected 
things happen, for example some sample units 
can not be measured or we realize we will have 
to account for some additional explanatory 
variables.

4. We need sufficient observations to properly 
represent the study area, so that results we hope 
to apply to the whole area really do have support 
from all the conditions found in the area.

Of these four, 1 and 2 can be quantified in 
some simple situations. It is worth doing this 
quantification, even roughly, to make sure that 
your sample size is at least of the right order of 
magnitude.

The first, 1, is straightforward. If you can 
identify the variances you need to know about, 
then make sure you have enough observations to 
estimate each. How well you estimate a variance 
is determined by its degrees of freedom (df), and 
a minimum of 10 df is a good working rule. Get 
help finding the degrees of freedom for your 
sample design and planned analysis.

The second is also straightforward in simple 
cases. Often an analysis reduces to comparing 
means between groups or strata. If it does, then the 



     SAMPLING     13  

Two-sample t test power calculation 

              n = 16.71477
          delta = 1
             sd = 1
      sig.level = 0.05
          power = 0.8
    alternative = two.sided

 NOTE: n is number in *each* group

mathematical relationship between the number 
of observations, the variance of the population 
sampled and the precision of the mean can be 
exploited. Two approaches are used. You can either 
specify how well you want a difference in means to 
be estimated (for example by specifying the width 
of its confidence interval), or you can think of the 
hypothesis test of no difference. The former tends 
to be more useful in applied research, when we are 
more interested in the size of the difference than 
simply whether one exists or not. The necessary 
formulae are encoded in some software products. 

An example from R is shown immediately 
below, providing the number of sample units (n) 
that will provide evidence for a difference between 
two strata for given significance and power of the 
t-test that will be used to test for differences, and 
given standard deviation and difference between 
the means. The formulae calculated a fractional 
number of 16.71 sample units, whereas it is not 
possible in practice to take 16.71 sample units per 
group. The calculated fractional number could 
be rounded up to 17 or 20 sample units. We 
recommend interpreting the calculated sample size 
in relative terms, and concluding that 20 samples 
will probably be enough whereas 100 samples 
would be too many. 

Sample size in each stratum
A common question is whether the survey should 
have the same number of observations in each 
stratum. The correct answer is once again that it 
all depends. A survey with the same number of 
observations per stratum will be optimal if the 
objective is to compare the different strata and 
if you do not have additional information or 
hypotheses on other sources of variation. In many 
other cases, it will not be necessary or practical to 
ensure that each stratum has the same number of 
observations.

An alternative that is sometimes useful is to 
make the number of observations per stratum 
proportional to the size of the stratum, in our 
case its area. For example, if the survey area is 
stratified by landuse and one category of landuse 
occupies 60% of the total area, then it gets 60% of 
sample plots. For the examples of sampling given 
in the figures, landuse 1 occupies 3.6% of the 
total area (25/687.5), landuse 2 occupies 63.6% 
(437.5/687.5) and landuse 3 occupies 32.7% 
(225/687.5). A possible proportional sampling 
scheme would therefore be to sample 4 plots in 
Landuse 1, 64 plots in Landuse 2 and 33 plots in 
Landuse 3.

One advantage of taking sample sizes 
proportional to stratum sizes is that the average 
for the entire survey area will be the average of 
all the sample plots. The sampling is described as 
self-weighting. If you took equal sample size in 
each stratum and needed to estimate an average 
for the whole area, you would need to weight each 
observation by the area of each stratum to arrive at 
the average of the entire area. The calculations are 
not very complicated, however.
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rainfall are said to be confounded.
The solution in such cases is to attempt to 

break the strong correlation. In the example 
where landuse is correlated with rainfall, then 
you could attempt to include some sample plots 
that have another combination of landuse and 
rainfall. For example, if most forests have high 
rainfall and grasslands have low rainfall, you may 
be able to find some low rainfall forests and high 
rainfall grasslands to include in the sample. An 
appropriate sampling scheme would then be to 
stratify by combinations of both rainfall and 
landuse (e.g. forest with high, medium or low 
rainfall or grassland with high, medium or low 
rainfall) and take a sample from each stratum. If 
there simply are no high rainfall grasslands or low 
rainfall forests then accept that it is not possible 
to understand the separate effects of rainfall and 
landuse, and modify the objectives accordingly.

An extreme method of breaking confounding 
is to match sample plots. Figure 1.9 gives an 
example.

The assumption of matching is that 
confounding variables will have very similar 
values for paired sample plots. The effects from 
the confounding variables will thus be filtered 
from the analysis.

The disadvantage of matching is that you will 
primarily sample along the edges of categories. 
You will not obtain a clear picture of the overall 
biodiversity of a landscape. Remember, however, 
that matching is an approach that specifically 
investigates a certain hypothesis.

You could add some observations in the middle 
of each stratum to check whether sample plots at 
the edges are very different from sample plots at 
the edge. Again, it will depend on your hypothesis 
whether you are interested in finding this out.

Some researchers have suggested that taking 
larger sample sizes in larger strata usually results 
in capturing more biodiversity. This need not 
be the case, for example if one landuse which 
happens to occupy a small area contains much of 
the diversity. However, most interesting research 
objectives require more than simply finding the 
diversity. If the objective is to find as many species 
as possible, some different sampling schemes 
could be more effective. It may be better to use 
an adaptive method where the position of new 
samples is guided by the results from previous 
samples.

Simple random sampling will, in the long run, 
give samples sizes in each stratum proportional to 
the stratum areas. However this may not happen 
in any particular selected sample. Furthermore, 
the strata are often of interest in their own right, 
and more equal sample sizes per stratum may be 
more appropriate, as explained earlier. For these 
reasons it is almost always worth choosing strata 
and their sample sizes, rather than relying on 
simple random sampling.

Dealing with covariates and 
confounding
We indicated at the beginning of this chapter that 
it is difficult to make conclusions about cause-
effect relationships in surveys. The reason that 
this is difficult is that there may be confounding 
variables. For example, categories of landuse could 
be correlated with a gradient in rainfall. If you 
find differences in species richness in different 
landuses it is then difficult or impossible to 
determine whether species richness is influenced 
by rainfall or by landuse, or both. Landuse and 
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Figure 1.9  Matching of sample plots breaks confounding of other variables.

Pilot testing of the sampling 
protocol
The best method of choosing the size and shape of 
your sample unit is to start with a pilot phase in 
your project. During the pilot phase all aspects of 
the data collection are tested and some preliminary 
data are obtained.

You can evaluate your sampling protocol after 
the pilot phase. You can see how much variation 
there is, and base some modifications on this 
variation. You could calculate the required sample 
sizes again. You could also opt to modify the shape, 
size or selection of sample plots.

You will also get an idea of the time data collection 
takes per sample unit. Most importantly, you 
could make a better estimation of whether you 
will be able to test your hypothesis, or not, by 
already conducting the analysis with the data that 
you already have.

Pilot testing is also important for finding out 
all the non-statistical aspects of survey design and 
management. These aspects typically also have an 
important effect on the overall quality of the data 
that you collect.
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Examples of the analysis with the command options of Biodiversity.R 
See in chapter 3 how Biodiversity.R can be loaded onto your computer.

To load polygons with the research areas:
area <- array(c(10,10,15,35,40,35,5,35,35,30,30,10), 
dim=c(6,2))

landuse1 <- array(c(10,10,15,15,30,35,35,30), dim=c(4,2))

landuse2 <- array(c(10,10,15,15,35,30,10,30,30,35,30,15), 
dim=c(6,2))

landuse3 <- array(c(10,10,30,35,40,35,5,10,15,30,30,10), 
dim=c(6,2))

window <- array(c(15,15,30,30,10,25,25,10),dim=c(4,2))

To plot the research area:
plot(area[,1], area[,2], type=”n”, xlab=”horizontal position”, 
ylab=”vertical position”, lwd=2, bty=”l”)

polygon(landuse1)

polygon(landuse2)

polygon(landuse3)

To randomly select sample plots in a window:
spatialsample(window, method=”random”, n=20, xwidth=1, 
ywidth=1, plotit=T, plothull=T)

To randomly select sample plots in the survey area:
spatialsample(area, method=”random”, n=20, xwidth=1, ywidth=1, 
plotit=T, plothull=F)

To select sample plots on a grid:
spatialsample(area, method=”grid”, xwidth=1, ywidth=1, 
plotit=T, xleft=10.5, ylower=5.5, xdist=1, ydist=1)

spatialsample(area, method=”grid”, xwidth=1, ywidth=1, 
plotit=T, xleft=12, ylower=7, xdist=4, ydist=4)
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To randomly select sample plots from a grid:
spatialsample(area, method=”random grid”, n=20, xwidth=1, 
ywidth=1, plotit=T, xleft=10.5, ylower=5.5, xdist=1, ydist=1)

spatialsample(area, method=”random grid”, n=20, xwidth=1, 
ywidth=1, plotit=T, xleft=12, ylower=7, xdist=4, ydist=4)

To select sample plots from a grid with random start:
spatialsample(area, method=”random grid”, n=20, xwidth=1, 
ywidth=1, plotit=T, xdist=4, ydist=4)

To randomly select maximum 10 sample plots from each type of landuse:
spatialsample(landuse1, n=10, method=”random”, plotit=T)

spatialsample(landuse2, n=10, method=”random”, plotit=T)

spatialsample(landuse3, n=10, method=”random”, plotit=T)

To randomly select sample plots from a grid within each type of landuse. Within each landuse, the grid 
has a random starting position:

spatialsample(landuse1, n=10, method=”random grid”, xdist=2, 
ydist=2, plotit=T)

spatialsample(landuse2, n=10, method=”random grid”, xdist=4, 
ydist=4, plotit=T)

spatialsample(landuse3, n=10, method=”random grid”, xdist=4, 
ydist=4, plotit=T)

To calculate sample size requirements:
power.t.test(n=NULL, delta=1, sd=1, sig.level=0.05, power=0.8, 
type=”two.sample”)

power.t.test(n=NULL, delta=0.5, sd=1, sig.level=0.05, 
power=0.8, type=”two.sample”)

power.anova.test(n=NULL, groups=4, between.var=1, within.var=1, 
power=0.8)

power.anova.test(n=NULL, groups=4, between.var=2, within.var=1, 
power=0.8)

To calculate the area of a polygon:
areapl(landuse1)
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