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CHAPTER 7

Analysis of presence 
or absence of species

Analysis of presence or absence 
of species

In the previous chapter, we saw how species counts 
data can be analysed. In this chapter, we describe 
how data can be analysed that simply indicate 
whether a species is present in certain sites or 
absent. As for the analysis of species counts data, 
the data are analysed for one species at the time. 

Analysis of presence or absence 
by cross-tabulations
As in the previous chapter, we will use a dataset 
that was collected in Panama, containing 
information on the abundance of Faramea 
occidentalis. This dataset also has observations 
for the environmental variables precipitation 
(quantitative), altitude (quantitative), age (ordinal) 
and geology (categorical). The dataset is provided 
in the previous chapter. 

Imagine that you had a hypothesis that age had 
an influence on the chance that species Faramea 
occidentalis was present on a site. We treat age as a 

categorical variable – since it is an ordinal variable, 
we can choose whether we treat it as quantitative 
or categorical variable in subsequent analysis.

In a cross-tabulation analysis, you first need to 
count the number of sites of each category where 
the species occurs, and the number of sites where 
the species does not occur. You obtain these results 
by doing a cross-tabulation of species presence-
absence with the age categories:

  
         c1 c2 c3
  FALSE  5  6 12
  TRUE   9  5  6

In the table, the rows indicate whether the species 
is absent (FALSE, based on the test whether the 
abundance > 0) or present (TRUE, based on the 
same test whether the abundance was > 0). The 
columns represent the three age categories. This 
table is a cross-tabulation or a contingency table. 
The cells in the table are counts of the number 
of observations within the specified categories of 
rows and columns.

We can also present these results graphically as 
in Figure 7.1.

Figure 7.1  Observed frequencies for the presence and 
absence of Faramea occidentalis on three categories 
of age.
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You can see that for sites of age category 1, the 
species occurs in 9 of 14 (14 = 5 +9) cases. Similarly, 
the species occurs in 5 of 11 sites of age category 2, 
and 6 of 18 sites of age category 3. For age category 
1, we can use this information to calculate that the 
species has 9 / 14 × 100% = 64% chance of being 
present when the site is of age category 1. Using 
the same method, we can use the information to 
calculate a chance of 5 / 14 × 100% = 36% of 
being absent on sites of age category 1. From the 
table we can therefore calculate the chance that 
the species is present or absent on sites of a certain 
category, if sites are selected randomly. When we 
also calculate the chances for the other categories, 
we can calculate the following table:

Chances Age 
category 
1

Age 
category 
2

Age 
category 
3

Chance that the 
species is present 
(%)

64.3 45.5 33.3

Chance that the 
species is absent 
(%)

35.7 54.5 66.7

To find out whether the proportions are 
significantly different from each other, you can 
use a Chi-squared test. The result that you obtain 
will be:

       Pearson’s Chi-squared test
data:  cross 
X-squared = 3.0393, df = 2, p-value = 0.2188

This result shows that there is no evidence 
that differences in proportions exist between the 
three age categories. The significance level of P = 
0.2188 indicates that there is a large chance that 
the differences in proportions are an effect from the 
random sampling of the sites from the survey area. 

The Chi-squared test is limited in several ways. 
First of all, it is a test and is therefore not explicit 
in providing estimated or predicted values (the 
chances that were calculated earlier are not 
generated by the Chi-squared test). Secondly, the 
Chi-squared test can only be used to analyse the 
effect of a single categorical variable. Finally, the 
test is based on some assumptions that may not 
be reasonable. 

The conditions for the Chi-squared test to be 
reliable are that the expected frequencies (expected 
when there is no relationship between the two 
variables that generated the crosstab) are not too 
small. How are the expected frequencies calculated 
and how do we evaluate whether some expected 
values are too small? The expected frequencies 
are calculated by multiplying the chance that the 
species is present or absent by using frequencies 
from the entire dataset with the number of sites 
of each age category. For the entire dataset of 43 
sites, species presence was observed in 20 (=9 + 5 
+ 6) sites or 46.5% (20 / 43 × 100%) of all sites. 
The number of sites that are expected to contain 
the species for age category 1, when there is no 
relationship between age and presence-absence, is 
therefore 0.465 × 14 (=9 + 5) = 6.51. The expected 
frequencies can be calculated for each combination 
of presence-absence and age category as:  

              c1       c2       c3
  FALSE 7.488372 5.883721 9.627907
  TRUE  6.511628 5.116279 8.372093

The condition for the Chi-squared test to provide 
reliable results is that all the expected frequencies 
should be larger than 5 (a less strict condition 
is that more than 20% of expected frequencies 
should be larger than 5, but none should be 
smaller than 1). Since all expected frequencies 
are larger than 5, we can rely on the Chi-squared 
test to have provided a reliable result. The Chi-
squared test actually estimates the probability that 
the measured and expected frequencies will be the 
same for the survey area. 
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Another criticism of the Chi-squared test is that it 
ignores the ordering of the age categories – the table 
above showed that there is a trend of decreasing 
chance of encountering the species when the age 
of the plot is greater, but the Chi-squared test does 
not investigate the ordering of the age categories.

Analysis of presence or absence 
through binomial GLM
We can investigate the same hypothesis that there 
is an influence of age category on the presence-
absence of Faramea occidentalis with a binomial 
GLM with logit link. 

As we saw in the previous chapter, a GLM is 
defined by the variance function and the link 
function. When we define the variance and link 
functions, we assume that these functions are 
realistic descriptions for the dataset that we are 
investigating.

The logit link is defined as: 
logit(µ) = log( µ / (1 – µ) ) =  a + b1 × x1 + b2 × 

x2 + b3 × x3 + …

The logit link function is one way of guaranteeing 
that the predicted values will be between 0 and 
1, which is appropriate since we want to predict 
probabilities of presence of Faramea occidentalis 
which also are between 0 and 1. In the previous 
chapter where we analysed counts, we used a log 
link that ensured that the predicted values were 
larger than 0, but not that the predicted values 
were smaller than 1.

By investigating the hypothesis with a GLM, 
we overcome some of the shortcomings of 
the Chi-squared test: the GLM will provide 
predictions, and several explanatory variables can 
be analysed – including quantitative variables. 
Not all shortcomings of the Chi-squared test are 
overcome, however: the large sample assumptions 
are still needed for the tests of the GLM to provide 
realistic results.

The binomial GLM with logit link investigating 
the influence of age on presence-absence yields the 
following results:

glm(formula = Faramea.occidentalis > 0 ~ Age.cat, family = binomial(link = logit), 
    data = faramea, na.action = na.exclude)

Coefficients:
            Estimate Std. Error z value Pr(>|z|)  
(Intercept)   0.5878     0.5578   1.054   0.2920  
Age.catc2    -0.7701     0.8233  -0.935   0.3496  
Age.catc3    -1.2809     0.7491  -1.710   0.0873 .
---
Signif. codes:  0 `***’ 0.001 `**’ 0.01 `*’ 0.05 `.’ 0.1 ` ‘ 1 

(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 59.401  on 42  degrees of freedom
Residual deviance: 56.322  on 40  degrees of freedom
AIC: 62.322

Analysis of Deviance Table
Terms added sequentially (first to last)
        Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL                       42     59.401          
Age.cat  2    3.079        40     56.322     0.214 
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The results of the GLM first show the coefficients 
that were calculated. As for the analysis of counts 
data, the first category is not included explicitly 
in the results. The results for the first category 
correspond to the intercept, however.

As we saw in the previous chapter, it is a bit 
complicated to directly calculate the expected 
values from the estimations of the coefficients. The 
reason is that the inverse link function needs to 
be calculated to obtain the expected values. In the 
case of the logit link, the inverse logit is calculated 
as y  = exp(x)/(1+exp(x)). However, the program 
that fits the model should be able to provide 
the predicted values. Here we obtain following 
predictions for the three categories: 0.64, 0.45 and 
0.33. You could calculate these results yourself by 
using the inverse logit as in the box below.

You can see that you obtain the same predictions 
with the GLM as the chances for presence of the 
species that we calculated earlier. For example, the 
chance of presence for sites with age category 2 is 
calculated in both instances to be 45.5%. 

The large significance level values estimated 
for the regression coefficients indicate that there 
is no evidence for significant differences between 
the predicted chances, however. The ANOVA 
table provides similar information by estimating 
a large significance level (P = 0.21). The ANOVA 
table also provides important information on the 
deviance that is explained: the model only explains 
3.079 or 5.2% of total or null deviance (59.401).  

The Chi-squared test of the ANOVA table is 
a test for the same pattern that was tested at the 

beginning of this chapter by the Chi-squared test 
for the contingency table. You could check that 
the explained deviance (3.079) is very similar to 
the Chi-squared statistic (3.039) – calculating the 
deviance is actually another method for analysing a 
cross-tabulation (called a G-test in some manuals). 
What is important is that both the ANOVA and 
the earlier Chi-squared test estimate a similar 
significance level (P = 0.214 and P = 0.2145), 
leading to the same conclusion of no evidence for 
an influence of age on the presence-absence. You 
can also see the limitations of the Chi-squared test 
– it is as if you ignore all other results from the 
GLM.

The results from the model can also be analysed 
graphically as in Figure 7.2. Because the observed 
values are either 0 (absence) or 1 (presence), the 
figure is not very informative and mainly shows 
the predicted chances for presence of the species 
for each age category. The wide overlap between 
the 95% confidence intervals shows that there is 
no evidence for an effect of age.

As with all regression models, the binomial 
GLM makes various assumptions about the data. 
Whether you can trust the results depends on 
whether these assumptions are realistic. 

The quasi-binomial model was developed for 
situations where one of the assumptions of the 
binomial model does not hold – that the dispersion 
equals 1. As we saw in the previous chapter, 
for our type of data the dispersion parameter is 
an indication of how randomly individuals are 
distributed. A dispersion parameter of 1 means 

Expected values: 

Age category x: inverse logit(intercept + coefficient for age category x) 

Age category 1: inverse logit(0.5878+0) = 
     exp(0.5878+0) / (1 + exp (0.5878+0) ) = 0.6428602

Age category 2: inverse logit(0.5878-0.7701) =
     exp (0.5878-0.7701) / (1 + exp (0.5878-0.7701) ) = 0.4545508

Age category 3: inverse logit(0.5878-1.2809) =
     exp (0.5878-1.2809) / (1 + exp (0.5878-1.2809) ) = 0.3333438
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Figure 7.2  Predicted values (horizontal lines) for the binomial GLM with logit link of the presence-absence of 
Faramea occidentalis on age category. Dashed lines are 95% confidence intervals for the mean.

glm(formula = Faramea.occidentalis > 0 ~ Age.cat, family = quasibinomial(link = logit), 
    data = faramea, na.action = na.exclude)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-1.4350  -1.0008  -0.9005   1.0979   1.4823  

Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept)   0.5878     0.5783   1.016    0.316
Age.catc2    -0.7701     0.8536  -0.902    0.372
Age.catc3    -1.2809     0.7767  -1.649    0.107

(Dispersion parameter for quasibinomial family taken to be 1.075000)

    Null deviance: 59.401  on 42  degrees of freedom
Residual deviance: 56.322  on 40  degrees of freedom
AIC: NA

Analysis of Deviance Table

        Df Deviance Resid. Df Resid. Dev      F Pr(>F)
NULL                       42     59.401              
Age.cat  2    3.079        40     56.322 1.4322 0.2508

that the individuals are randomly distributed over 
the sample units. When dispersion is not 1, the 
GLM will estimate significance levels that are not 
realistic. A quasi-binomial GLM will estimate the 
same regression coefficients as the binomial GLM, 
but will estimate the dispersion parameter and 

use this dispersion parameter to provide different 
estimates of standard errors and significance 
levels.

The quasi-binomial GLM with logit link 
investigating the influence of age on presence-
absence yields the following results:
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When we compare the results from the quasi-
binomial GLM with the binomial GLM, we can 
see that the quasi-binomial model estimated the 
dispersion parameter to be 1.075. Since there is a 
small difference between 1.075 and 1, there will 
not be any substantive difference in conclusions 
whether the dispersion is fixed as 1 as in the 
binomial, or estimated as in the quasibinomial. It 
is possible to test whether the estimated dispersion 
is different from 1, and perhaps infer something 
on the clumpiness of the distribution on the 
basis of the results. However, such tests have the 
usual problems: they depend on the validity of 
the models assumed, and the results depend on 
both the sample size and the dispersion. Probably 
a better approach is to first think whether 
overdispersion is likely given the source of the 
data, and pay careful attention when it is. Then 
check whether the results differ in substance 
between the two models. If interest is really into 
the extent to which the distribution is clumped, 
regular or random, then there are better methods 
which focus on this aspect.

Since the dispersion parameter was estimated 
to be very close to one, only small differences in 
the estimated significance levels can be observed 
(for instance P = 0.25 in the ANOVA instead 
of P = 0.21) and both models lead to the same 
conclusions. Note that it is a good practice to 
check for the difference between the results of 
the binomial and the quasi-binomial GLM. 
A disadvantage of the quasi-binomial GLM 
implemented here is that it does not calculate the 
Akaike Information Criterion (AIC), which can 
be used for model selection (see previous chapter 
and below: binomial GLM with several explanatory 
variables). An advantage of the quasi-binomial GLM 
is that it provides better estimates of significance 
level when the dataset has a dispersion parameter 
that is more different from 1. 

Binomial and quasi-binomial GLM 
with continuous variables
We have seen so far that analysis of a binomial or 
quasi-binomial GLM with logit link provides a 
more comprehensive analysis of frequencies than 
the Chi-squared test (which is only a test) and 
that estimation is explicit in the GLM. Another 
advantage of the GLM approach is that the 
explanatory variables can either by continuous or 
categorical. 

To analyse a cross tabulation with continuous 
explanatory variables with a Chi-squared test, 
you need to derive a categorical variable from the 
continuous variable. You need to define several 
categories, for instance a category for altitude < 200 
m and another category for altitude > 200 m. These 
categories need to be defined by the researcher, and 
there is no procedure that can tell you how these 
categories should be defined. With the binomial 
GLM, you do not need to make this decision. 
More importantly, when the relationship between 
the explanatory variable and the response variable is 
not a stepwise function but a gradual change, it is 
better to model the gradual change. The binomial 
GLM will accommodate gradual changes for a 
continuous variable, which often provides a more 
realistic model. 

We can for example model the presence and 
absence of Faramea occidentalis based on the 
precipitation of a site with a quasi-binomial GLM 
with logit link. The results that you will obtain are 
shown in the box on the next page.

You could notice that we used a quasi-binomial 
model. The dispersion parameter is estimated to be 
0.987, very close to 1. Both the binomial and the 
quasi-binomial GLM therefore lead to the same 
conclusions. 

As in the regression results that we saw earlier, 
regression coefficients are provided for the 
explanatory variable. We can see that there is 
evidence that precipitation has an effect, since the 
significance level calculated for the coefficient is 
low (P = 0.0172). We can also infer that there is 
an effect of precipitation from the low significance 
level of the ANOVA table (P = 0.005).
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glm(formula = Faramea.occidentalis > 0 ~ Precipitation, family = quasibinomial(link = 
logit), data = faramea, na.action = na.exclude)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-1.7303  -1.0431  -0.3289   1.1157   1.7268  

Coefficients:
               Estimate Std. Error t value Pr(>|t|)  
(Intercept)    6.948352   2.828347   2.457   0.0183 *
Precipitation -0.002721   0.001095  -2.484   0.0172 *

(Dispersion parameter for quasibinomial family taken to be 0.9878437)

    Null deviance: 59.401  on 42  degrees of freedom
Residual deviance: 50.561  on 41  degrees of freedom
AIC: NA

Analysis of Deviance Table

              Df Deviance Resid. Df Resid. Dev      F   Pr(>F)   
NULL                             42     59.401                   
Precipitation  1    8.841        41     50.561 8.9494 0.004682 **

---
Signif. codes:  0 `***’ 0.001 `**’ 0.01 `*’ 0.05 `.’ 0.1 ` ‘ 1

Figure 7.3  Observed values (circles) and predicted values (connected by line) for the quasi-binomial GLM model 
of the presence-absence of Faramea occidentalis on elevation. Dashed lines are 95% confidence intervals for the 
mean.
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The predictions of the model can be shown 
graphically as well. Figure 7.3 provides the observed 
and the predicted values.

You can see the merit of the logit link in not 
predicting values outside of the interval with 0 and 
1 as boundaries. By using the logit link, the GLM 
model does not predict values that we do not expect. 
The plot of the observations is more informative for a 
continuous than for a categorical variable: you could 
observe now that the species was never observed 
at the highest precipitation levels, and that it was 
never not observed at the lowest precipitation levels. 
At intermediate levels, the species was sometimes 
observed. This pattern is modelled as an S-shaped 
curve, which provides a reasonable fit to the data.

Another advantage of the binomial and quasi-
binomial GLM with logit link is that several 
explanatory variables can be investigated. An example 
is provided later in this chapter.

Binomial GAM with several 
explanatory variables

As for the regression models for count data, you 
can also fit a Generalized Additive Model (GAM) 
using the same variance and link functions that are 
used in a GLM. The GAM allows estimation of a 
smooth relationship between the response and a 
quantitative explanatory variable. The smoothing 
function will generate a curve that can flow more 
freely in between the data than a straight line.

When we calculate a quasi-binomial GAM 
with logit link for the presence and absence of 
Faramea occidentalis using smoothing functions 
of precipitation and elevation, and the categorical 
variables geology and age category, then we 
obtain the following results:

Family: quasibinomial 
Link function: logit 

Formula:
Faramea.occidentalis > 0 ~ s(Precipitation) + Geology + Age.cat + 
    s(Elevation)

Parametric coefficients:
              Estimate  std. err.    t ratio    Pr(>|t|)
(Intercept)    -382.04      8.204     -46.57    < 2.22e-16
  GeologyTb     30.746      314.9    0.09764    0.92287
 GeologyTbo     14.571  2.499e+04   0.000583    0.99954
  GeologyTc     891.93       20.1      44.37    < 2.22e-16
 GeologyTcm       15.3       3795   0.004032    0.9968
 GeologyTgo     7.3746      1.204      6.126    9.6953e-07
  GeologyTl     137.55  1.114e+04    0.01234    0.99023
  Age.catc2    -103.74       1434   -0.07235    0.9428
  Age.catc3    -88.072      2.189     -40.23    < 2.22e-16

R-sq.(adj) =      1   Deviance explained =  100%
GCV score = 5.0022e-06   Scale est. = 3.4996e-06  n = 43

Analysis of deviance table

Parametric Terms:
                df       chi.sq     p-value
Geology          6       1986.4     < 2.22e-16
Age.cat          2       1618.3     < 2.22e-16

Approximate significance of smooth terms:
                        edf       chi.sq     p-value
s(Precipitation)      2.917       2252.5     < 2.22e-16
    s(Elevation)          1       1499.4     < 2.22e-16
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The quasi-binomial GAM with logit link 
indicates that all explanatory variables contribute 
to explaining the deviance in the presence-absence 
of the species. The edf indicate the estimated 
degrees of freedom for the smoothing functions. 
The fact that 3 degrees of freedom are estimated 
for precipitation shows that a complex pattern was 
modelled for this explanatory variable. 

Since our dataset was quite small, all deviance 
was explained, and the significance level values 
that were estimated were ridiculously small, we 
need to treat the results with caution. We expect 

that the model overfitted the data, although it is 
hard to see with presence-absence data and several 
variables. We therefore opted to analyse the dataset 
further with a GLM in the next section to find 
out whether there was further evidence for the 
complex pattern between presence-absence and 
the quantitative variables. An alternative approach 
would have been to fix the degrees of freedom 
for the smoothing terms in a GAM, forcing the 
curve to be smoother and not have such a complex 
shape. The results with 2 degrees of freedom for 
precipitation and elevation look more reasonable:

Family: quasibinomial 
Link function: logit 

Formula:
Faramea.occidentalis > 0 ~ s(Precipitation, k = 2, fx = T) + 
    Geology + Age.cat + s(Elevation, k = 2, fx = T)

Parametric coefficients:
              Estimate  std. err.    t ratio    Pr(>|t|)
(Intercept)    -77.189      39.05     -1.976    0.057364
  GeologyTb     1.4079      1.286      1.094    0.28250
 GeologyTbo     31.498       1023    0.03078    0.97565
  GeologyTc     24.648       9.48        2.6    0.014332
 GeologyTcm     28.945      396.8    0.07294    0.94234
 GeologyTgo    -2.0587       2.03     -1.014    0.3187
  GeologyTl     13.802      634.6    0.02175    0.9828
  Age.catc2      -16.9      88.73    -0.1905    0.85022
  Age.catc3    -4.1095       1.93     -2.129    0.041593

R-sq.(adj) =  0.695   Deviance explained = 75.8%
GCV score = 0.70325   Scale est. = 0.49064   n = 43

Analysis of deviance table

Parametric Terms:
                df       chi.sq     p-value
Geology          6       8.8875     0.21822
Age.cat          2       4.5391     0.12083

Approximate significance of smooth terms:
                        edf       chi.sq     p-value
s(Precipitation)          2       6.2923     0.057491
    s(Elevation)          2       3.8408     0.16414
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Binomial GLM with several 
explanatory variables

As already shown for the GAM, it is possible to 
analyse several explanatory variables together in a 
GLM – this was also shown in the previous chapter.

Based on the results of the quasi-binomial GAM 
with logit link that showed curved relationships 

glm(formula = Faramea.occidentalis > 0 ~ Precipitation + I(Precipitation^2) + 
    Geology + Age.cat + Elevation + I(Elevation^2), family = binomial(link = logit), 
    data = faramea, na.action = na.exclude)

Deviance Residuals: 
       Min          1Q      Median          3Q         Max  
-2.031e+00  -2.753e-02  -2.107e-08   8.387e-02   1.977e+00  

Coefficients:
                     Estimate Std. Error z value Pr(>|z|)
(Intercept)        -1.137e+02  8.737e+01  -1.302    0.193
Precipitation       1.006e-01  7.594e-02   1.324    0.185
I(Precipitation^2) -2.223e-05  1.644e-05  -1.352    0.176
GeologyTb           1.401e+00  1.718e+00   0.815    0.415
GeologyTbo          2.962e+01  1.075e+04   0.003    0.998
GeologyTc           1.266e+01  8.055e+00   1.572    0.116
GeologyTcm          2.642e+01  4.153e+03   0.006    0.995
GeologyTgo         -1.270e+00  2.709e+00  -0.469    0.639
GeologyTl           1.792e+01  7.274e+03   0.002    0.998
Age.catc2          -9.695e+00  1.024e+01  -0.946    0.344
Age.catc3          -2.983e+00  2.458e+00  -1.214    0.225
Elevation           8.701e-02  1.161e-01   0.749    0.454
I(Elevation^2)     -4.493e-04  5.293e-04  -0.849    0.396

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 59.401  on 42  degrees of freedom
Residual deviance: 17.376  on 30  degrees of freedom
AIC: 43.376

Analysis of Deviance Table

Model 1: Faramea.occidentalis > 0 ~ 1
Model 2: Faramea.occidentalis > 0 ~ Precipitation + I(Precipitation^2) + 
    Geology + Age.cat + Elevation + I(Elevation^2)
  Resid. Df Resid. Dev Df Deviance      F    Pr(>F)    
1        42     59.401                                 
2        30     17.376 12   42.025 3.5021 3.298e-05 ***

between elevation, precipitation and the presence-
absence of Faramea occidentalis, we fitted a second-
order polynomial model for the quantitative 
variables (see previous chapter). The results of the 
binomial GLM with logit link of the presence-
absence of Faramea occidentalis on geology, age 
category and the second-order polynomials of 
precipitation and elevation are:
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Terms added sequentially (first to last)

                   Df Deviance Resid. Df Resid. Dev P(>|Chi|)
NULL                                  42     59.401          
Precipitation       1    8.841        41     50.561     0.003
I(Precipitation^2)  1    0.722        40     49.838     0.395
Geology             6   21.144        34     28.694     0.002
Age.cat             2    7.605        32     21.089     0.022
Elevation           1    2.837        31     18.252     0.092
I(Elevation^2)      1    0.876        30     17.376     0.349

Single term deletions

                   Df Deviance    AIC    LRT   Pr(Chi)    
<none>                  17.376 43.376                     
Precipitation       1   20.871 44.871  3.495 0.0615481 .  
I(Precipitation^2)  1   21.441 45.441  4.065 0.0437749 *  
Geology             6   40.674 54.674 23.298 0.0007025 ***
Age.cat             2   24.799 46.799  7.423 0.0244364 *  
Elevation           1   18.020 42.020  0.645 0.4220785    
I(Elevation^2)      1   18.252 42.252  0.876 0.3492853 
---
Signif. codes:  0 `***’ 0.001 `**’ 0.01 `*’ 0.05 `.’ 0.1 ` ‘ 1 

The main reason for having conducted the analysis 
is to select variables that meaningfully contribute to 
explaining the deviance, with special focus on the 
second-order polynomial terms of precipitation2 
and elevation2. We saw in the previous chapter 
that one of the criteria that can be used for 
selecting variables is the Akaike Information 
Criterion (AIC). Models with a smaller AIC are 
preferred over models with larger AIC. The type-
II ANOVA provides a column with the AIC. We 
can see that the AIC for elevation2 is smaller than 
the model where this variable is included (42.252 
< 43.376). Based on these results, a model where 
elevation2 is not included will provide a better 

combination of simplicity (fewer variables) and 
explained deviance, provided that the way that the 
AIC calculates the combination is the best way. 
The analysis of the AIC indicates what caused our 
problem with the first GAM results: the GAM 
sacrificed simplicity to explain all the deviance 
– this is not necessarily the best model. Because 
of the smaller AIC, we excluded elevation2 from 
further analysis. The results of type-II ANOVA 
for the quasi-binomial GLM with logit link of 
the presence-absence of Faramea occidentalis on 
geology, age category, elevation and the second-
order polynomial of precipitation now indicated 
that all variables could be kept in the model (see 
next page):
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glm(formula = Faramea.occidentalis > 0 ~ Precipitation + I(Precipitation^2) + 
    Age.cat + Geology + Elevation, family = quasibinomial(link = logit), 
    data = faramea, na.action = na.exclude)

Deviance Residuals: 
       Min          1Q      Median          3Q         Max  
-2.253e+00  -6.919e-02  -2.107e-08   1.639e-01   1.839e+00  

Coefficients:
                     Estimate Std. Error t value Pr(>|t|)  
(Intercept)        -8.178e+01  5.183e+01  -1.578   0.1247  
Precipitation       7.501e-02  4.577e-02   1.639   0.1114  
I(Precipitation^2) -1.655e-05  9.835e-06  -1.683   0.1024  
Age.catc2          -8.156e+00  5.234e+00  -1.558   0.1293  
Age.catc3          -1.890e+00  1.363e+00  -1.387   0.1753  
GeologyTb           1.846e+00  1.324e+00   1.395   0.1730  
GeologyTbo          2.551e+01  9.106e+03   0.003   0.9978  
GeologyTc           9.729e+00  4.800e+00   2.027   0.0513 .
GeologyTcm          2.531e+01  3.519e+03   0.007   0.9943  
GeologyTgo         -3.601e-01  1.696e+00  -0.212   0.8333  
GeologyTl           1.839e+01  6.435e+03   0.003   0.9977  
Elevation          -1.179e-02  1.330e-02  -0.887   0.3820  
---
Signif. codes:  0 `***’ 0.001 `**’ 0.01 `*’ 0.05 `.’ 0.1 ` ‘ 1 

(Dispersion parameter for quasibinomial family taken to be 0.7169455)

    Null deviance: 59.401  on 42  degrees of freedom
Residual deviance: 18.252  on 31  degrees of freedom
AIC: NA

Analysis of Deviance Table

Model 1: Faramea.occidentalis > 0 ~ 1
Model 2: Faramea.occidentalis > 0 ~ Precipitation + I(Precipitation^2) + 
    Age.cat + Geology + Elevation
  Resid. Df Resid. Dev Df Deviance      F    Pr(>F)    
1        42     59.401                                 
2        31     18.252 11   41.149 5.2178 0.0001320 ***

Terms added sequentially (first to last)

                   Df Deviance Resid. Df Resid. Dev       F    Pr(>F)    
NULL                                  42     59.401                      
Precipitation       1    8.841        41     50.561 12.3310 0.0013893 ** 
I(Precipitation^2)  1    0.722        40     49.838  1.0076 0.3232568    
Age.cat             2    0.991        38     48.847  0.6911 0.5085612    
Geology             6   27.758        32     21.089  6.4528 0.0001718 ***
Elevation           1    2.837        31     18.252  3.9577 0.0555415 . 
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Single term deletions
                   Df Deviance F value     Pr(F)    
<none>                  18.252                      
Precipitation       1   21.469  5.4648 0.0260342 *  
I(Precipitation^2)  1   21.969  6.3138 0.0173944 *  
Age.cat             2   28.606  8.7932 0.0009443 ***
Geology             6   40.748  6.3681 0.0001904 ***
Elevation           1   21.089  4.8193 0.0357555 * 

---
Signif. codes:  0 `***’ 0.001 `**’ 0.01 `*’ 0.05 `.’ 0.1 ` ‘ 1 

We showed the results for the quasi-binomial 
model as this model estimated dispersion to be 
0.71. As we saw before, the regression coefficients 
and deviances of the ANOVA tables are the same 
for the binomial and quasi-binomial models, 
but the estimated significance levels will be 
different.

One important pattern that you can observe in 
the results is that none of the significance values 
for the regression coefficients are small. Only the 
coefficient for the category of geology Tc has a 
significance level (P=0.0513) that is smallish. 
Despite the fact that there is no evidence 
from the significance levels of the regression 
coefficients, the model explains most of the 
deviance. Moreover, we used the AIC to select 
those variables that meaningfully contributed to 
explaining the deviance. 

What is going on? The reason for the difference 
between the regression and ANOVA results is 
that we have few observations for most categories 
of geology. This pattern is depicted in Figure 7.4. 
As we saw at the beginning of this chapter with 
analyses for cross-tabulations, we will not get 
reliable results when the number of observations 
is very small for one category (technically, when 
the expected frequencies are very small). For 
category Tbo there was only one observation, 
whereas only two categories had more than 5 
observations. Moreover, most categories are 
dominated either by presence or absence, which 

made it easier to obtain correct predictions. For 
example, by predicting for Tbo, Tcm and Tl 
that the species is present, all predictions will 
be correct. One of the problems with these data 
is that the model does not allow that predicted 
values are exactly 1 or exactly 0. Another problem 
is that since we only have 1 observation for Tbo, 
2 observations for Tl and 5 observations for Tcm, 
we do not have any information to infer that the 
same predictions will be valid for the entire survey 
area – the sample size is simply too small. The 
sample size is even too small for pT, although it 
is dominated by sites where the species is absent. 

Figure 7.4  Observations of the presence-absence of 
Faramea occidentalis categorized by geology.
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The fact that the small sample sizes and the similar 
observations within the categories of geology 
lead to a majority of correct predictions (and 
also a large amount of explained deviance since 
predicted and observed probabilities for presence 
were close), the other explanatory variables only 
needed to explain the odd cases such as the two 
sites with presence of the species on geology pT. 
This implies that sample size was also small for the 
other explanatory variables, so that significance 
levels for the regression coefficients were large.

In conclusion, we saw that the various models 
that we fitted explained most of the deviance, but 
that we do not have sufficient information to infer 
that similar patterns would be observed for the 
entire survey area. The sample size is simply too 
small. One possible solution could be to collapse 
some categories of geology into a smaller number 
of categories. This can only meaningfully be 
done if there is a logical method for combining 
the various categories. To further analyse the 
influence of geology on presence-absence with the 
present categories, we need to add new sites to the 
dataset. 

Always think whether your analysis objective 
is realistic given the data you have. With a small 
number of presence-absence observations, can you 
expect to be able to detect and estimate the effects 
of 7 geology types as well as the complex, curved 
relationships with precipitation and elevation? 

Choice of the best model
As seen at the end of the previous chapter, the most 
important criterion that you could use to choose 
between different models is the level to which 
the assumptions of the models are realistic. We 
investigated the residuals of the models that were 
used for count data to check the reliability of the 
regression models. With presence-absence data, 
the residuals are more difficult to investigate given 
that the observations were either 0 or 1. There is 

actually no standard method for investigating the 
residuals for presence-absence data.

You may also favour models with a good balance 
between explanatory power and simplicity. Some 
tests (such as the AIC) may be used to help you in 
selecting the model with the best balance.

However, it is not possible to provide tests or a 
procedure that will always select the one and only 
best model. The ecologist or biodiversity scientist 
needs to check (partially on non-statistical 
grounds) whether a particular model provides 
the best answer for the research hypothesis. The 
model with the largest AIC is not always the best 
in explaining a particular pattern. For example, 
when results of previous research efforts are also 
considered, a model with a slightly smaller AIC 
may be judged to be better for the particular 
study. All statistical models are approximations 
and simplifications of ecological patterns, rather 
than ‘correct’ descriptions of biological processes. 
So the purpose of modeling has to be considered 
along with statistical evidence when choosing 
between alternatives. For example, if average rate 
of response to a continuous explanatory variable is 
needed, a straight line model may be appropriate 
even if a curvature is statistically significant.

By having analysed the same dataset using the 
species counts as response variable in the previous 
chapter and transforming the counts to presence-
absence in this chapter, we saw that the analysis 
lead to different conclusions. Since a different 
response variable was used, this was not a complete 
surprise. The different response variable was a 
transformation of the other response variable, 
however. The different results therefore showed 
that the transformation had an important effect, 
and that a different pattern prevailed. This simply 
means that count and presence-absence data do 
not necessarily follow the same pattern. If you 
are interested in investigating both patterns, then 
you need to record species counts and not simply 
presence or absence. Again this should follow from 
the initial hypotheses that you had.
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Doing the analyses with the menu options of Biodiversity.R
Load the datasets Panama species.txt and Panama environmental.txt, and make them the species and 
environmental datasets, respectively. Give them the names “spec” and “faramea”.

Data > Import data > from text file… (Panama species.txt)

Enter name for data set: spec

Data > Import data > from text file… (Panama environmental.txt)

Enter name for data set: faramea

Biodiversity > Community Matrix > Select community data set…

Data set: spec

Biodiversity > Environmental Matrix > Select environmental data set…

Data set: faramea

These are the original datasets, to use the reduced datasets that will be analysed, remove the sites where 
there is missing information on the variable “Analysed”.

Biodiversity > Community matrix > Remove NA from environmental data set…

Select variable: Analysed

As an alternative, load the dataset Faramea.txt, and make it both the species and environmental dataset 
(as both the species and environmental information is in the same dataset).

Data > Import data > from text file… (Faramea.txt)

Enter name for data set: faramea

Biodiversity > Community Matrix > Select community data set…

Data set: faramea

Biodiversity > Environmental Matrix > Select environmental data set…
Data set: faramea

To analyse presence or absence by cross-tabs:
 Biodiversity > Analysis of species as response > Species presence-absence as response…

Model options: crosstab

Response: Faramea.occidentalis

Explanatory: Age.cat
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To calculate a generalized linear regression model (GLM):

Biodiversity > Analysis of species as response > Species presence-absence as response…

Model options: binomial model

Response: Faramea.occidentalis

Explanatory: Age.cat

print summary

print anova

Plot options: diagnostic plots

Plot variable: Age.cat

Plot options: term plot

Plot options: effect plot

Model options: quasi-binomial model

To calculate a generalized additive regression model (GAM):

Biodiversity > Analysis of species as response > Species presence-absence as response…

Model options: binomial model

Response: Faramea.occidentalis

Explanatory: s(Precipitation) + Geology + Age.cat + s(Elevation)

print summary

To calculate a GLM with several explanatory variables:

Biodiversity > Analysis of species as response > Species presence-absence as response…

Model options: binomial model

Response: Faramea.occidentalis

Explanatory: Precipitation + I(Precipitation^2) + Geology + Age.cat + Elevation + 
I(Elevation^2)

print summary

print anova
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Doing the analyses with the command options of Biodiversity.R 
Load the datasets Condit species.txt and Condit environmental.txt. Give them the names “spec” and 
“faramea”. Alternatively, load the dataset Faramea.txt and give it the name “faramea”.

spec <- read.table(file=”D://my files/Condit species.txt”)
attach(spec)
faramea <- read.table(file=”D://my files/Condit environmental.

txt”)
faramea <- read.table(file=”D://my files/Faramea.txt”)
attach(faramea)

To analyse presence or absence by cross-tabs:

faramea$Faramea.occidentalis<<- spec$Faramea.occidentalis
table1 <- table(Faramea.occidentalis>0, Age.cat)
Presabs.1 <- chisq.test(table1)
Presabs.1
Presabs.1$observed
Presabs.1$expected

To calculate a generalized linear regression model (GLM):

Presabs.model2 <- glm(formula = Faramea.occidentalis>0 ~ 
Age.cat, family = binomial(link=logit), data = faramea, 
na.action = na.exclude)

summary(Presabs.model2)
anova(Presabs.model2,test=’F’)
predict(Presabs.model2, type=’response’, se.fit=T)
null.model <- glm(formula = Faramea.occidentalis>0 ~ 1, 

family = binomial(link=logit) , data = faramea, na.action = 
na.exclude)

anova(null.model, Presabs.model2, test=’Chi’)
plot(Presabs.model2)
termplot(Presabs.model2, se=T, partial.resid=T, rug=T, 

terms=’Age.cat’)
plot(effect(‘Age.cat’, Presabs.model2))
Presabs.model3 <- glm(formula = Faramea.occidentalis>0 ~ Age.

cat, family = quasibinomial(link=logit) , data = faramea, 
na.action = na.exclude)

Presabs.model4 <- glm(formula = Faramea.occidentalis>0 ~ 
Elevation, family = quasibinomial(link=logit) , data = 
faramea, na.action = na.exclude)
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To calculate a generalized additive regression model (GAM):

Presabs.model5 <- gam(formula = Faramea.occidentalis>0 ~ 
s(Precipitation) + Geology + Age.cat + s(Elevation), family 
= quasibinomial(link=logit) , data = faramea, na.action = 
na.exclude)

summary(Presabs.model5)

To calculate a GLM with several explanatory variables:

Presabs.model6 <- glm(formula = Faramea.occidentalis > 0 ~ 
Precipitation + I(Precipitation^2) + Geology + Age.cat + 
Elevation + I(Elevation^2), family = binomial(link = logit) 
, data = faramea, na.action = na.exclude)

summary(Presabs.model6)
anova(Presabs.model6,test=’Chi’)
drop1(Presabs.model6, test=’Chi’)
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