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CHAPTER 6

Analysis of counts of trees

Analysis of counts of trees
One way by which patterns in the species matrix can 
be analysed is to analyse for each species separately. 
In this manual, we describe two methods by which 
species can be analysed separately: (i) analysing 
the counts obtained throughout the survey; and 
(ii) analysis of species presence-absence data. The 
latter method is described in the next chapter.

This section describes the analysis of species 
abundance as the number of individuals. The 
methods could also be used to analyse the total 
number of individuals per site, or the total 
number of species per site. Other measures of 
species abundance such as cross-sectional area or 
cover percentages could also be analysed. 

Regression models are introduced and used in 
this chapter. They are a basis for much statistical 
analysis and there is much that could be said about 
them. Here we can only point in few directions.

What is a regression model?
Regression analysis is a method by which the 
pattern in one response variable is predicted from 
the pattern of one or several explanatory variables. 
The better the predictions explain the pattern, the 
better the model represents the data.

Imagine that you want to analyse the influence 
of elevation (the explanatory variable) on the 
abundance of a certain Acacia species (the 
response variable). To analyse the relationship, 
you measured the abundance of the species and 
the elevation on 11 sample plots, taking samples 
at regular elevation intervals of 100 m in between 
500 and 1500 m. If you want to examine the 

relationship between abundance and elevation, 
then start by plotting the data and looking for a 
pattern. If there appears to be a linear relationship 
between elevation and abundance, then you could 
describe this relationship with a linear regression 
model (we will see that many types of regression 
models exist). The linear regression model will 
model the relationship between elevation and 
abundance as a straight line. To predict the 
position of the straight line, the linear regression 
model will estimate the parameters a and b of the 
following regression model: Abundance = a + b × 
elevation + deviation. Once the parameters a and 
b are estimated, the straight line that predicts the 
expected abundance for a specific elevation can be 
calculated. The performance of the model can be 
measured by how well it describes the variation 
in abundance. When the differences between 
the measured abundance and the predicted 
abundance are small, then the variance explained 
by the model will be large. It is also possible to test 
the hypothesis of no relationship. The significance 
level (P) is sometimes used to decide whether there 
is evidence for a relationship or not.

Figure 6.1 gives examples of observations and 
predictions from a linear regression model for 
four species. The variance explained by the model 
decreases from Species 1 to Species 4, which can be 
observed from the larger differences between the 
observed abundances (circles) and the predicted 
abundances (straight line). The significance level 
for the test of no relationship between elevation 
and abundance also increases from Species 1 
to Species 4. For Species 4, there is no evidence 
for a linear relationship between elevation and 
abundance (P = 0.14) 
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Figure 6.1  Observed values (circles) and linear regression model predictions (lines) for the relationship between 
elevation and abundance of four species measured on 11 sites. Variance explained by the regression model is 100%  
for Species 1 (P < 0.001),  90% for Species 2 (P < 0.001), 53% for Species 3 (P = 0.01) and 23% for Species 4 
(P = 0.14). In each case, visual investigation of the graphs indicated that the linear regression is a sensible model to 
use. If it were not (for example, the possible relationships were curved), then the values that were calculated for P 
would be wrong.

A regression model makes a clear differentiation 
between an explanatory variable and a response 
variable. You need to specify which variable is the 
response variable. Regression models considered 
here only have one response variable.

Using a simple method of 
analysing species data: linear 
regression
Regression analysis is a method by which the 
pattern in one response variable (or dependent 
variable) is modelled based on the patterns 
observed in one or several explanatory variables 
(or independent variables or predictor variables).

Imagine that we want to investigate the abundance 
of species Faramea occidentalis of the forest surveys 
conducted in Barro Colorado Island of Panama 
(Condit et al. 2000; Pyke et al. 2001). Table 6.1 
shows part of the data that were collected for the 
species. We used a subset of the 1-ha plots that 
belonged to larger sample plots (sites with coding B, 
C or S), since otherwise the larger plots would have 
dominated the dataset (see the discussion on mixed 
models in section: generalized mixed models). The 
observations on abundance are shown in the same 
table as the environmental matrix (Table 6.1). 
Typical for ecological surveys are the many zeros 
observed for the species abundance. Note the 
missing data for environmental variables for sites 
p40 and p41 – a good statistical program will 
remove these observations when fitting the model.
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Site Precipitation Elevation Age Age.cat Geology Faramea.occidentalis
B0 2530.0 120 3 c3 Tb 14
B49 2530.0 120 3 c3 Tb 7
p1 2993.2 20 2 c2 Tc 0
p2 3072.0 100 3 c3 Tc 0
p3 3007.4 180 1 c1 Tc 2
p4 2999.8 180 1 c1 Tc 1
p5 2414.3 40 2 c2 Tgo 0
p6 2393.7 30 2 c2 Tgo 0
p7 2438.4 60 1 c1 Tgo 2
p8 2455.5 50 3 c3 pT 0
p9 2889.3 410 3 c3 pT 0
p10 2529.3 90 3 c3 Tcm 9
p11 2515.5 60 3 c3 Tcm 7
p12 2496.8 10 2 c2 Tbo 1
p13 2576.3 55 2 c2 Tcm 2
p14 2534.7 60 3 c3 Tcm 5
p15 2455.0 70 3 c3 Tgo 0
p16 2501.8 160 3 c3 pT 3
p17 2470.6 120 3 c3 pT 0
p18 2510.8 58 2 c2 Tcm 3
p19 2687.7 160 1 c1 pT 0
p20 2657.5 160 1 c1 pT 0
p21 2411.4 110 1 c1 Tgo 12
p22 2513.7 180 1 c1 Tb 42
p23 2247.5 30 2 c2 Tc 15
p24 2279.8 50 2 c2 Tc 7
p25 2334.3 110 2 c2 pT 0
p26 2251.9 50 2 c2 pT 0
p27 2305.1 180 1 c1 Tl 4
p28 2293.7 160 1 c1 Tl 22
p29 1968.5 100 1 c1 Tb 8
p30 2096.3 180 1 c1 Tb 0
p31 3291.7 343 3 c3 pT 0
p32 3293.1 363 3 c3 pT 0
p33 3615.3 600 3 c3 pT 0
p34 3106.8 210 3 c3 pT 0
p35 4001.7 830 3 c3 pT 0
p36 3029.4 200 3 c3 pT 0
p37 3133.9 600 3 c3 pT 0
p38 2517.4 810 1 c1 pT 0
p39 2400.5 660 1 c1 pT 0
p40 NA NA NA NA NA 0
p41 NA NA NA NA NA 0
C1 1887.5 50 1 c1 pT 1
S0 3026.4 140 2 c2 Tc 0

Table 6.1  Values of environmental variables and the abundance of Faramea occidentalis for various forest plots in 
Panama (NA indicates missing data)



74     CHAPTER 6

Since we want to investigate a hypothesis about 
the relationship between precipitation and the 
abundance of Faramea occidentalis, it is good 
data practice to start with a graph that shows 
the observations. Figure 6.2 provides this graph. 
When you have a closer look at the graph, then 
you notice that sites with precipitation above 
3010 mm have none of the trees. Only two sites 
have some trees in between 2600 and 3000 mm.  
Below 2600 mm, some sites did not have the 
species, but many do. We can also spot some sites 
with abundances that are very high compared to 
the other abundances. The initial investigation of 
the graph shows that it is worthwhile to further 

Figure 6.2  Observed values 
(circles) of the abundance 
of Faramea occidentalis on 
precipitation.

investigate whether there is a linear relationship 
between precipitation and the species, since we 
could see a decreasing trend in abundance with 
increasing precipitation. The initial investigation 
also shows that a linear regression model will not 
explain all variance, as wherever a straight line 
is placed some observations would not be well 
predicted because of their scatter. Precipitation 
can therefore not be the only explanatory variable 
for differences in abundance.

A linear regression analysis with precipitation 
as the explanatory variable for differences in 
abundance provides the following results:

lm(formula = Faramea.occidentalis ~ Precipitation, data = faramea, 
    na.action = na.exclude)

Residuals:
    Min      1Q  Median      3Q     Max 
-6.5606 -4.1558 -1.6295  0.8387 37.4855 

Coefficients:
               Estimate Std. Error t value Pr(>|t|)  
(Intercept)   16.742059   7.328442   2.285   0.0276 *
Precipitation -0.004864   0.002738  -1.777   0.0830 .

Residual standard error: 7.57 on 41 degrees of freedom
Multiple R-Squared: 0.07149,   Adjusted R-squared: 0.04885 
F-statistic: 3.157 on 1 and 41 DF,  p-value: 0.08303

Analysis of Variance Table

Response: Faramea.occidentalis
              Df  Sum Sq Mean Sq F value  Pr(>F)  
Precipitation  1  180.91  180.91  3.1569 0.08303 .
Residuals     41 2349.51   57.31                  

---
Signif. codes:  0 `***’ 0.001 `**’ 0.01 `*’ 0.05 `.’ 0.1 ` ‘ 1
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What do these results mean? We will take you 
step-by-step through the output to indicate the 
interpretation.

The formula shows that in this model, the 
number of trees of Faramea occidentalis is the 
response variable (at the left of the ~) and 
precipitation is the explanatory variable (at the 
right of the ~).

This formula is R language for the model that 
we fitted. This model has the form of:

Faramea occidentalis = a + b × precipitation + deviation

In this model, the values for Faramea occidentalis 
and precipitation are the variables of Table 6.1, 
with observed values for each site, except p40 and 
p41.

The a and b parameters are the coefficients 
or parameters of the model. The software will 
estimate values for these coefficients. Another 
name for parameter a is the intercept and for b 
is the slope. Once you have the estimates of the 
coefficients, then you can calculate the predicted 
or expected value for each site, based on the 
explanatory variables. You can then calculate the 
predicted abundance of a + b × 2530 for site B0 
(since precipitation at B0 is 2530 mm), and a + 
b × 2993.2 for site p1 (since precipitation at p1 is 
2993.2 mm).

Imagine for instance that the model estimated 
that coefficient a = 1 and coefficient b = 
0.02. In this case, we expect an abundance of 
1 + 0.02 × 2530 = 51.6 for site B0 and an 
abundance of 1 + 0.02 × 2993.2 = 60.864 for 
site p1. In case the model calculated a = 0 and 
b = 0.01, then we expect 25.3 for site B0 and 
29.932 for site p1. 

The model will be estimated in a way that the 
predicted values will be as close as possible to the 
observed values. The residual is the difference 
between the observed and the predicted value. For 
the model that calculated an expected abundance 
of 51.6 for site B0, the residual is thus 14 – 51.6 
= –37.6. The model is estimated in a way that will 
minimize the sum of the squared residuals.

Next in the output after the model, the distribution 
of residuals is provided. The information gives the 
minimum, maximum and first and third quartile 
of the residuals (check chapter 2 how these statistics 
are calculated). These values allow getting a quick 
view of the quality of the model. The smaller the 
residuals are, the better the quality of the model. 
We can especially notice the large maximum 
value of 37.4855. Checking how residuals are 
distributed for a good model is discussed in further 
detail below (section: checking the residuals of the 
linear model).

Next in the output, we get the estimated values 
of the coefficients. The model estimated values 
of 16.742059 for coefficient a and –0.004864 
for coefficient b. These coefficients allow you to 
calculate the predicted abundance. For site B0, 
this means that the predicted abundance equals 
16.742059 – 0.004864 × 2530 = 4.43, and the 
residual equals 14 – 4.43 = 9.57.

The standard errors describe the precision with 
which parameters are estimated. The t values and 
probability values were calculated to test whether 
the coefficients could be equal to 0. 

The test for the coefficient for precipitation, b, 
is built on the idea that behind the sample data is a 
relationship between abundance and rainfall, that 
we could find exactly if we took a large enough 
sample of sites. The test examines the hypothesis 
that the underlying value of b in this hypothetical 
model is zero. The low (but not small) value of 
P = 0.083 can be interpreted as providing some, 
but not strong, evidence that the regression 
coefficient is not zero.

Statistical significance tests such as this t-test are 
widely used and useful in analysis of experimental 
and observational data. However they are also 
often misunderstood and hence misused. All 
statistical tests depend on assumptions about the 
data (even so-called ‘non-parametric’ tests) which 
can be phrased as a model. In most cases the model 
describes some pattern, relationship or differences 
which are of interest. Many of the tests carried out 
examine whether the data support the notion of 
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a relationship, or whether the data are consistent 
with a simpler (‘null’) model in which there are 
no differences or relationships.  The tests look at 
how ‘likely’ the observed data are if the underlying 
null model describes the real world. If the data 
are likely to occur even in the absence of the 
hypothesized relationship, they do not support the 
hypothesis. If, on the other hand, they are unlikely 
to occur if the null model is true, this is taken as 
evidence that the null model does not reflect the 
real world, and some relationship or differences 
exist. The significance level (P) is the measure 
of ‘how likely’. A low significance level, close to 
zero, is interpreted as the data not supporting 
the null hypothesis. A larger significance level is 
interpreted as no evidence in the data against the 
null hypothesis.

Three common problems with using statistical 
significance tests are:
1. Not realizing that the tests' results depend entirely 

on the statistical models behind the tests being 
realistic and suitable for the data. It is therefore 
necessary to understand what these models are 
and how to check if they are appropriate.

2. Not understanding that the significance level 
P provides a measure of ‘strength of evidence’. 
There is no cut-off value above which we can 
say ‘not significant’, even though, for historical 
reasons, the value of P=0.05 is still sometimes 
treated that way.

3. Neither the null or alternative models are 
demonstrated to be ‘true’ by the results of a test. 
As a simple example, a test may compare diversity 
in two land uses. If there is ‘no significant 
difference’ it does NOT mean that diversity 
does not differ between land uses. It means your 
data have not been sufficient to demonstrate a 
difference. This might be because there is no 
difference, or it might be because your data are 
not adequate for detecting the differences which 
are there. 
Regarding the last point, there are methods 

available to help decide if you have sufficient data 

to detect the sort of effects you are interested in. 
A ‘power analysis’ can be carried out, or effects 
estimated together with a confidence interval. Ask 
a biometrician for help!

The multiple R-squared value gives the fraction 
of variance that is explained by the model. If this 
fraction is close to 1, then the model explains 
almost all of the variance. This means that the 
residuals will be very small, and the predicted 
and observed values will be close together. The 
multiple R-squared is thus an expression of the 
goodness-of-fit or quality of the model (under 
the assumption that the measured values were 
realistic). For this model, the value of R-squared 
= 0.071 (or 7.1%) means that the model only 
explains a small fraction of the total variance.

The adjusted R-squared value adjusts the 
multiple R-squared value to the degrees of 
freedom of the regression model. The purpose of 
the correction is to enable comparisons between 
regressions with different datasets, but some 
researchers have found out that the statistic is not 
very good at doing that. We are also of the opinion 
that the adjusted R-squared value provides little 
extra information than provided by the multiple 
R-squared value and the results of the F-test 
(discussed in the next paragraph). 

The F statistic tests whether there is no evidence 
that the model explains some of the variance. 
You could notice also that the significance level 
(P = 0.08) is the same as for the coefficient of 
precipitation given earlier. This is to be expected 
since the model had only one explanatory 
variable.

Finally, an analysis of variance or ANOVA table 
is given. Analysis of variance and generalizations of 
it, are widely used in assessing and understanding 
statistical models. They are basic statistical tools 
which you will need to become familiar with and 
perhaps refer to a more detailed text. Dalgaard 
(2002) contains a simple description of the ideas 
and the tools within R software. Analysis of 
variance arises from thinking of statistical analysis 
and modelling as trying to explain variation in the 
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response variable. If there was no variation (all the 
values of the response equal) there is no analysis 
to do. If the response is related to an explanatory 
variable, x, then variation in x will lead to variation 
in the response. Hence a relationship may ‘explain’ 
some of the variation. If the explanatory variable 
is a category or grouping variable, it explains 
variation in the response if the values of the 
response within a group tend to be more similar 
than those in different groups. 

The ANOVA table splits up the total variance in 
the response into components that are explained 
by each explanatory variable and a residual. This is 
calculated through sums-of-squares that are then 
divided by the degrees of freedom, resulting in a 
mean square. Mean squares are actually variances, 
since this is the way by which variance is calculated. 
ANOVA tables give important information on 
the magnitudes of variance explained by the 
explanatory variables. The magnitude of variance is 
an expression of the importance of the explanatory 
variable in explaining the linear pattern of the 
response variable. 

The significance level values provided by the 
ANOVA table also relate to tests about the 
parameters of an underlying model being zero. 
We can see once again that this significance level 
is the same as the significance level calculated by 
earlier tests (P = 0.08), indicating some, but not 
strong, evidence that precipitation contributes to 
explaining abundance.

The results of the model can also be analysed in 
a graphical way. Since the linear regression model 
fits a straight line that attempts to get as close as 
possible to the observed values, we can compare 
the predictions with the actual observations. 
Figure 6.3 shows this comparison. The dashed 
lines added to Figure 6.3 show where we are 95% 
certain that the regression line is. The dotted 
line of Figure 6.3 corresponds to the area where 
we expect that 95% of the new observations will 
be (actually where we expect where the first new 
observation will be 95% of cases, conditional on 
the value of precipitation for this observation). 
These lines are constructed from the probability 
distribution functions that are assumed to have 
generated the data.

Figure 6.3  Observed values (circles) and predicted values (connected by line) for the linear regression model of 
the abundance of Faramea occidentalis on precipitation. The dashed lines show the 95% confidence interval for the 
mean, the dotted line the upper 95% prediction interval for new observations.
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Checking the residuals of the 
linear model
Some of the plots that you can request from a 
decent statistical package are diagnostic plots. 
These plots help you in evaluating whether some 
of the assumptions behind the regression analysis 
are realistic, and hence whether it is safe to accept 
the results of regression model or not.

What could be the problem? The problem is that 
a linear regression analysis, like any other statistical 
analysis method, makes several assumptions 
about the data to arrive at its results. The most 
important assumptions are that the effects from 
various explanatory variables are additive and that 
there are linear relationships between explanatory 
variables and response variables – in essence that 
the formula of the regression model makes sense. 
Second-order assumptions are that the observations 
are independent and that the variance of the 

residuals is constant. A third-order assumption is 
that the residuals are normally distributed.

A regression analysis can be seen as a model that 
determines how much pattern can be filtered from 
a dataset. This concept can be described as:

Data = pattern + residuals

The residuals are the part of the data that were 
not modelled. Simple regression analysis makes 
the assumption that no systematic patterns can 
be observed in the residuals. If the residuals show 
some patterns, then the model has not explained 
all the predictable variance.

Since residuals should not show patterns, some 
diagnostic plots therefore investigate patterns in 
the residuals. One method is to plot the residuals 
against the predicted values as shown in Figure 6.4 
in the two plots on the left-hand side. You can see 
that the spread of residuals increases with increasing 
levels of the predicted value. The assumption of 

Figure 6.4  Diagnostic plots for a linear regression model.
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constant variance is not very realistic. As seen in 
chapter 2 (Figure 2.3), a variable that is normally 
distributed will result in a straight line in a Q-Q 
plot. This provides another method for checking 
the residuals, since residuals are expected to be 
normally distributed. The Q-Q plot that is shown 
on the upper right-hand side shows that residuals 
are not normally distributed.

The Cook’s distance graph (lower-right) shows 
observations that have an important influence 
on the results. If site p22 was removed from the 
dataset, then different results would be obtained. 
How such observations can be handled is discussed 
in further detail at the end of this chapter.

The model assumes the residuals are just 
random, unpredictable deviations. Biodiversity 
data are collected in space, so an obvious pattern 
to look for is coherent geographical variation not 
accounted for by the environmental variables in 
the model. This can be investigated graphically 
by using the spatial location of the sample plot as 
the plotting positions. There should not be any 
spatial pattern that you can observe, for instance 
having negative residuals in the north and positive 
residuals in the south, or patches of high and low 
residuals. This is important to check since the 

model assumes that all patterns in abundance can 
be explained by precipitation.

One method of investigating spatial patterns 
in the residuals is to directly plot the residuals 
using the spatial coordinates of each sample plot 
(Figure 6.5a). A more sophisticated method of 
investigating the spatial distribution of residuals 
is to construct a trend-surface that models the 
changes in the residuals over the spatial coordinates. 
The trend-surface will model the changes in the 
response variable (the residuals) as a landscape 
with hills and valleys for higher and lower values 
of the variable, respectively (Figure 6.5b). The 
trend-surface model makes it easier to spot any 
trends in the residuals.

The output shows that there is a noticeable 
trend in the residuals: the residuals decrease from 
an area in the centre to areas in the north and 
south. If some explanatory variables other than 
precipitation show the same trend, then these 
could be important explanatory variables to add to 
the regression model to further explain the variance 
in abundance. On the other hand, we may have a 
patch of the species which can not be explained 
by forcing variables. Ecological models can show 
that patchy distributions can arise simply from the 

Figure 6.5 (a)  Spatial distribution of residuals of the 
linear regression model of the abundance of Faramea 
occidentalis on precipitation: sign (positive = circle, 
negative = square) and size (size of circle or square) of 
residuals at a particular spatial location (+); 

Figure 6.5 (b)  Second-order polynomial trend surface 
for the residuals.
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natural dynamics of the species and do not have to 
be driven by environmental variables.

When patterns in the residuals show that the 
assumptions of the model are unreasonable (as 
seen above), then we should look for better 
models (such as those listed later in this chapter). 
It is very important that the assumptions of 
the model apply when you want to make any 
conclusions from the results of the model.

Linear regression with a 
categorical explanatory variable
Imagine that you did not want to investigate 
the influence of altitude on abundance, but the 
influence of geology on abundance. The dataset 
includes a categorical variable (“geology”) that 
classifies sites according to various categories of rock 
types (see Chapter 2). You can construct a model in 
a similar way as done above, and you would obtain 
the following results:

lm(formula = Faramea.occidentalis ~ Geology, data = char, na.action = na.exclude)

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   0.2222     1.5552   0.143 0.887172    
GeologyTb    13.9778     3.3355   4.191 0.000172 ***
GeologyTbo    0.7778     6.7788   0.115 0.909292    
GeologyTc     3.3492     2.9390   1.140 0.261989    
GeologyTcm    4.9778     3.3355   1.492 0.144313    
GeologyTgo    2.5778     3.3355   0.773 0.444663    
GeologyTl    12.7778     4.9179   2.598 0.013494 *  

Residual standard error: 6.598 on 36 degrees of freedom
Multiple R-Squared: 0.3806,   Adjusted R-squared: 0.2774 
F-statistic: 3.688 on 6 and 36 DF,  p-value: 0.005868 

Analysis of Variance Table

Response: Faramea.occidentalis
          Df  Sum Sq Mean Sq F value   Pr(>F)   
Geology    6  963.19  160.53  3.6875 0.005868 **
Residuals 36 1567.23   43.53                    

---
Signif. codes:  0 `***’ 0.001 `**’ 0.01 `*’ 0.05 `.’ 0.1 ` ‘ 1

These results are similar as the results shown earlier 
for the continuous variable. What is different now 
is that the model includes a categorical explanatory 
variable.  A coefficient is estimated for each level 
of the categorical variable.

The regression coefficient for the most common 
category of geology (pT) is fixed to be zero. You 
could choose to fix the coefficient for another 
category to zero, but always one coefficient needs 
to be zero. Since the regression coefficient is zero, 
it is not provided in the output. It is taken as a 
reference level against which others are compared. 

Imagine that you had a simple dataset with 
three observations on tree abundance, one for 
each level of the categorical variable Landuse. 
You fit the following model: Abundance = a + b 
× landuse1indicator + c × landuse2indicator + 
d × landuse3indicator + deviation. The landuse 
indicators are variables that have values 1 or 0. 
When a site has landuse1, then landuse1indicator 
= 1, landuse2indicator = 0 and landuse3indicator 
= 0 for this site. If you observed 6, 7 and 8 trees 
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for landuse1, landuse2 and landuse3 respectively, 
then a perfect fit would be provided by estimating 
a=5, b=1, c=2 and d=3. However, another perfect 
fit would be provided by estimating a=4, b=2, c=3 
and d=4. From the infinite number of possible 
combinations, combination a=6, b=0, c=1 and 
d=2 is selected by setting b=0. 

The same choice was made in the regression 
model by opting that the regression coefficient 
of pT was fixed to be zero. For our example, we 
thus predict an abundance of 0.2222 + 0 = 0.2222 
for category pT and an abundance of 0.2222 + 
13.9778 = 14.20 for category Tb. 

The interpretation of the results is analogous 
to the interpretation of regression model with a 
quantitative explanatory variable. For example, 
there is evidence that sites with geology Tb contain 
more of the species than sites of geology pT since 
a low significance level was estimated (P < 0.001). 
There is no evidence that sites of geology Tbo 

contain more trees than sites of geology pT since a 
high significance level was estimated (P = 0.909).

The multiple R-squared value shows that the 
model explains 38% (0.3806) of variance. The 
significance level of the F-test indicates that the 
model provides evidence for a linear relationship 
between geology and abundance (P = 0.0058). 
The ANOVA table provides the same information 
since we only had one explanatory variable.

The graphical presentation of the model is 
given in Figure 6.6. The observed values are 
presented as circles, the predicted values for each 
category of geology by the full lines. You could 
check that the predicted values correspond to 
those calculated earlier based on the regression 
coefficients. In this simple case they are actually 
just the means for each category. The dashed 
and dotted thick lines show where we are 95% 
certain that the average and next value for each 
category will be.

Figure 6.6  Observed values (circles) and predicted values (full line) for the linear regression model of the 
abundance of Faramea occidentalis on geology. The dashed lines show the 95% confidence interval for the mean, 
the dotted lines the 95% prediction interval for new observations.
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Using generalized models when 
the residuals of a linear regression 
are not normally distributed: 
the Poisson, quasi-Poisson and 
negative binomial models
Generalized linear models (GLM) were invented 
to deal with situation where observations are not 
normally distributed or where other aspects of 
the linear regression model are not appropriate. 
They fit a wider, more general class of models 
that can cope with other situations. In the case of 
counts data, you know that values should never 
be negative, but a simple linear regression model  
provides no guarantee that you would obtain 
such results. For instance, in Figure 6.3 you can 
see that the model predicts negative abundances 
when precipitation is larger than 3500 mm. This 
is not a realistic result, as we know that abundance 
can not be negative. By choosing the appropriate 
GLM, you will only obtain realistic values. 

There are many types of GLM that can be 
constructed. A GLM is characterized by two 
functions. One function (the link function) 
describes how the mean of the response variable 
depends on the linear predictors (the explanatory 
variables). The second function (the variance 
function) captures how the variance of the 
response variable depends on the mean. The same 
information is usually provided by the following 
formulae (µ: mean of the response variable y; x: 
explanatory variable; a, b: regression coefficients; 
var: variance; : dispersion parameter):

Link function: g(µ) = a + b1 ×  x1 +  b2  ×  x2  +  b3  ×  x3 + …

Variance function: var(y) =  × V(µ)

The types of GLM that are shown here use 
the log link and the Poisson, quasi-Poisson and 
negative binomial variance functions. These are 
types of GLM that are sometimes appropriate for 
counts data.

The Poisson GLM (with log link) is the 

As with a continuous variable, we should proceed 
with checking diagnostic plots for the patterns in 
the residuals. In this manual, the diagnostic plots 
will only be given for the first regression analysis in 
order to save some space, however. Remember to 
always check the diagnostic plots for a regression 
analysis.

Transforming the response 
variable when the residuals are  
not normally distributed
One way of overcoming the problem with the 
increasing variance of residuals for larger values of 
the response variables is to transform the response 
variable. Some common transformations used 
with count data are the logarithmic transformation 
and the square-root transformation. These 
transformations are not tricks that hide the actual 
patterns, but are useful tools to reveal patterns.

The major disadvantage of using transformations 
is that you are not modelling the patterns of the 
observations that you made, but patterns of the 
transformed observations. When you interpret 
your results, you are actually interpreting the 
transformed observations. In some cases, you may 
not feel comfortable in interpreting transformed 
observations. In other cases, such interpretation 
can seem logical. For instance, the pH scale to 
measure acidity is actually a logarithmic scale.

Note that the log transformation can not be used 
if the response variable includes zeros. Log(0) is 
not defined. A practical solution in such cases is to 
calculate the transformed value of n as log(n+1) or 
log(n+0.1) instead of log(n). The results depend on 
what is added, introducing a certain arbitrariness 
to the analysis.

Because of the problems with transformations, 
we advise to use more modern approaches to 
data analysis such as the GLM methods that are 
introduced immediately below.
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simplest GLM model to use. It uses a logarithmic 
link function (log(µ)) and a Poisson variance (var(y) 
= µ).

When you use this type of GLM on the Faramea 
occidentalis abundance data used earlier, then you 
obtain the results shown below.

The results are similar to those from a linear 
regression, but with some important differences. 

When we look at the output, then we first 
get the model. The difference with the linear 
regression is that the variance and link functions 
are mentioned.

The coefficients that are provided next are the 
coefficients that were calculated for the model. 
You can use these coefficients again to calculate 
the expected abundance of Faramea occidentalis 
at a given precipitation. The coefficients predict 
the logarithm of the abundance, however, 
since a log link was used. Thus, to know the 
expected abundance, you need to take the anti-
logarithm. For site B0 with precipitation of 
2530 mm, the predicted abundance thus equals  

exp(5.6668474 – 0.0017098 × 2530) = 3.82.
The output continues with mentioning that the 
dispersion parameter was taken to be 1, which 
means that the model assumed that var(y) = µ. 
This is one of the assumptions that the Poisson 
model makes. This is what would be expected if 
the individuals were randomly located in space. 
When individuals are clumped, the dispersion 
parameter will be larger than 1 (var(y) =  × µ 
with  > 1). When individuals are more regularly 
distributed than random, the dispersion parameter 
will be smaller than 1.

The null and residual deviances are similar 
to the total variance and residual variance of a 
simple linear model. If the difference between 
them is large, the model will explain much of 
the variance (deviance). If the difference is small, 
then the model is not very effective in explaining 
the response variable. In our case, the model only 
explains ((414.81 – 357.67) / 414.81) or 13.7% 
of total deviance. We can thus use the null and 
residual deviance to calculate a parameter that can 

glm(formula = Faramea.occidentalis ~ Precipitation, family = poisson(link = log), 
    data = faramea, na.action = na.exclude)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-4.0071  -2.6373  -1.4418  -0.1339  11.0835  

Coefficients:
                Estimate Std. Error z value Pr(>|z|)    
(Intercept)    5.6668474  0.6047651   9.370  < 2e-16 ***
Precipitation -0.0017098  0.0002478  -6.901 5.18e-12 ***

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 414.81  on 42  degrees of freedom
Residual deviance: 357.67  on 41  degrees of freedom
AIC: 431.55

Analysis of Deviance Table

              Df Deviance Resid. Df Resid. Dev      F    Pr(>F)    
NULL                             42     414.81                     
Precipitation  1    57.14        41     357.67 57.142 4.054e-14 ***

---
Signif. codes:  0 `***’ 0.001 `**’ 0.01 `*’ 0.05 `.’ 0.1 ` ‘ 1
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be interpreted in the same way as the multiple-R-
squared value of a simple linear regression.

The ANOVA table also does not mention 
‘variances’ but reports ‘deviances’ instead. The 
similar name already indicates that deviances can 
be interpreted in the same way as the variances of a 
GLM. Although the model is not very efficient in 
explaining the abundance of Faramea occidentalis, 
there is evidence that precipitation explains 
some of the deviance since the F-test has a small 
significance level (P < 0.001). Note that evidence 
for explaining some of the deviance does not mean 
that much deviance is explained. It is therefore 
necessary to check for both the significance level (to 
judge whether there is an effect) and the deviance 
explained (to judge how important the effect is). 
You could check that the deviance explained by 
precipitation and the residual deviance sum up to 
the null deviance.

The graphical representation of the model is 
provided in Figure 6.7. You can see once more 

Figure 6.7  Observed values (circles) and predicted values (connected by line) for the Poisson GLM with log link of 
the abundance of Faramea occidentalis on precipitation.

that there is big difference between the actual 
abundances and the modelled abundances, or large 
residual deviance.

You could verify that the Poisson model will 
never predict negative values. You can see that 
predictions for elevations above 3500 mm are still 
positive, contrary to the simple linear model that 
we saw before. This is a good feature of such model 
for count data, such as abundances of species. 
Therefore, if you know that your data are counts, 
it is often better to use a suitable GLM rather than 
a linear model.

A quasi-Poisson GLM is very similar to a Poisson 
model (as the name suggests), but uses a different 
variance function. This model is better when the 
dispersion is not close to 1, an assumption that is 
used by the Poisson model (see above). The quasi-
Poisson makes the assumption that dispersion is not 
1 and fits a dispersion parameter to the dataset.

When you fit a quasi-Poisson GLM (with log 
link) to our data, then you obtain the result shown 
on the next page.
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glm(formula = Faramea.occidentalis ~ Precipitation, family = quasipoisson(link = log), 
    data = faramea, na.action = na.exclude)

Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-4.0071  -2.6373  -1.4418  -0.1339  11.0835  

Coefficients:
                Estimate Std. Error t value Pr(>|t|)  
(Intercept)    5.6668474  2.2452852   2.524   0.0156 *
Precipitation -0.0017098  0.0009199  -1.859   0.0703 .

(Dispersion parameter for quasipoisson family taken to be 13.78382)

    Null deviance: 414.81  on 42  degrees of freedom
Residual deviance: 357.67  on 41  degrees of freedom
AIC: NA

Analysis of Deviance Table

              Df Deviance Resid. Df Resid. Dev      F  Pr(>F)  
NULL                             42     414.81                 
Precipitation  1    57.14        41     357.67 4.1456 0.04824 *

---
Signif. codes:  0 `***’ 0.001 `**’ 0.01 `*’ 0.05 `.’ 0.1 ` ‘ 1

When you compare the output of the quasi-
Poisson with the output of the Poisson model, 
then you can see that the regression coefficients 
and the deviance are the same. What is different 
are the standard errors and significant levels of 
the tests. For the Poisson model, the significance 
level for the coefficient for precipitation is small 
(P < 0.001), whereas for the quasi-Poisson model 
it is larger (P = 0.07) and indicates some, but not 
strong evidence for an effect. By not assuming that 
the dispersion parameter was 1 as in the Poisson 
model, we thus reach different conclusions that 
there is only some (not strong!) evidence for an 
effect of precipitation on abundance. Since the 
dispersion parameter was estimated to be 13.78, 
there is an indication that the individuals are 
not randomly distributed, but are clumped. The 
analysis of the residuals (Figure 6.4) also indicated 
that individuals could be clumped. In such 
situations, it is more appropriate to use the quasi-
Poisson than the Poisson model. Since the results 
of a model will depend on the assumptions that 
the model makes, you should try to ensure that 

the assumptions are realistic. When the model 
makes unrealistic assumptions, you will not be 
able to reach reliable conclusions.

Notice that the significance levels for the effect 
of precipitation are not quite the same for the t-
test for the regression coefficient (P = 0.07) and 
the F-test of the ANOVA table (P = 0.048). They 
are based on different approximations. However, 
qualitatively they are the same: both suggest 
evidence for precipitation having an effect. Do 
not use P = 0.05 as a cut-off between significant 
and non-significant results, but use P as a scale for 
measuring evidence. In this case both probabilities 
suggest some but not strong evidence against 
the null hypothesis of no precipitation effect. 
However both results depend on the model being 
appropriate, and a look at observed and predicted 
values, or the residuals, shows that this may be 
doubtful.

The graphical representation of the model is 
provided in Figure 6.8. When you compare this 
figure with Figure 6.7, then you will see that 
the only features that are different are the wider 
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confidence intervals (dashed lines) in Figure 6.8, 
reflecting the large estimated dispersion parameter, 
compared with the inappropriately fixed value of 
1 in Figure 6.7. 

The negative binomial GLM is another model 
that can be used for situations where dispersion is 
higher than 1, or where individuals are clumped 
and not randomly distributed. Since organisms 
often show a clumped distribution, this model will 
often be suitable for ecological research. Whereas 
the quasi-Poisson model does not correspond 
to a known statistical distribution, the negative 
binomial model is one of several statistical models 
that model clumping. The negative binomial 
model is a model with one parameter more than 
the Poisson model, the parameter theta or k. 
This parameter models the clumping in the data, 
ranging from zero to infinity. Values of theta close 
to zero indicate clumping, whereas larger values 
indicate distribution that is more random. An 
infinite value of theta gives a Poisson distribution 
with dispersion equal to one.

When you fit a negative binomial GLM (with log 
link) to the same data that we used before, then you 

Figure 6.8  Observed values (circles) and predicted values (connected by line) for the quasi-Poisson GLM with log 
link of the abundance of Faramea occidentalis on precipitation.

will obtain the result shown on the next page.
You can see that the output is similar to the 

outputs of the Poisson and quasi-Poisson models. 
The model coefficients are different for the negative 
binomial GLM, however. As for the Poisson model, 
there is evidence that precipitation has an effect 
on abundance since a small significance level is 
calculated for the coefficient for precipitation and 
in the ANOVA table (P < 0.001). By modelling 
clumping directly rather than by a second-order 
assumption as in the quasi-Poisson GLM, we thus 
obtain a different result.

We can see that a small value was estimated for 
theta (0.3057), since it can theoretically range 
from zero to infinity. This provides evidence that 
individuals are clumped.

Figure 6.9 provides the graphical presentation 
of the results of the negative binomial model (with 
log link). You can see that the model predicts very 
large abundance at lower precipitation levels. 
Since the observed abundances at the lowest 
precipitation levels are not the highest, we should 
be sceptical about these results – remember that 
the residuals should not show any patterns.
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glm.nb(formula = Faramea.occidentalis ~ Precipitation, data = faramea, 
    na.action = na.exclude, maxit = 5000, init.theta = 1, link = log)

Deviance Residuals: 
     Min        1Q    Median        3Q       Max  
-1.59806  -1.19031  -0.58758   0.03517   2.12815  

Coefficients:
                Estimate Std. Error z value Pr(>|z|)    
(Intercept)   11.2726451  2.4981876   4.512 6.41e-06 ***
Precipitation -0.0039579  0.0009817  -4.032 5.54e-05 ***

(Dispersion parameter for Negative Binomial(0.3057) family taken to be 1)

    Null deviance: 47.240  on 42  degrees of freedom
Residual deviance: 36.357  on 41  degrees of freedom
AIC: 178.21

              Theta:  0.3057 
          Std. Err.:  0.0915 

Analysis of Deviance Table

              Df Deviance Resid. Df Resid. Dev      F    Pr(>F)    
NULL                             42     47.240                     
Precipitation  1   10.883        41     36.357 10.883 0.0009706 ***

---
Signif. codes:  0 `***’ 0.001 `**’ 0.01 `*’ 0.05 `.’ 0.1 ` ‘ 1

Figure 6.9  Observed values (circles) and predicted values (connected by line) for the negative binomial GLM with 
log link of the abundance of Faramea occidentalis on precipitation.



88     CHAPTER 6

Using generalized additive models

Generalized additive models (GAM) are more 
general than GLM. They are based on smoothing 
– they fit a model that can follow the pattern in 
the data more closely. Because of this smoothing, 
the relationships with the explanatory variables 
are not linear any longer. A smoothing function 
is a line that flows more freely between the 
observations than a straight line. Returning to 
the symbolic description of the assumptions 
that we used for a GLM, the variance function 
remains the same, but the explanatory variables 
part of the model changes into:

Link function: g(µ) = a + b1 × x1 + b2 × x2 + s1(x3) 
+ s2(x4)  +…

The functions s1 and s2 are smooth functions of 
x that are defined in a way which allows a lot of 
flexibility in the curve. 

We fit a negative binomial GAM  (with log link) 
again to the count data of Faramea occidentalis 
using precipitation as an explanatory variable, 
which produces the result shown below.

You may notice that no coefficient is provided for 
precipitation. The output provides a significance 
test for precipitation, however, using another 

Family: Negative Binomial(0.4417) 

Link function: log 

Formula:
Faramea.occidentalis ~ s(Precipitation)

Parametric coefficients:
              Estimate  std. err.    t ratio    Pr(>|t|)
(Intercept)    0.55676     0.3582      1.554    0.12797

Approximate significance of smooth terms:
                        edf       chi.sq     p-value
s(Precipitation)      1.959       14.393     0.0020351

R-sq.(adj) =  0.0461   Deviance explained = 31.1%
GCV score = 1.1264   Scale est. = 1.0489    n = 43

type of test (with P = 0.002). This means that 
precipitation plays a significant role in explaining 
abundance, and should be left in the model. The 
edf indicates the estimated degrees of freedom of 
the smoothing function – these degrees of freedom 
are similar to the order of the polynomial model 
(see what a polynomial model is in section: using 
several explanatory variables at the same time).

Figure 6.10 provides the graphical 
representation of the model. You can see that 
the model now predicts the highest abundance 
at low precipitation with a gradual decrease 
in abundance until a precipitation of around 
3250 mm, followed by precipitation levels where 
no abundance is expected. You can see that the 
fitted line is no longer straight, but is more 
flexible in following the data. If such smooth 
patterns exist in your data, but you can not find 
a simple mathematical model to describe them, 
a smoothing curve may be appropriate. The 
figure hints that abundance could be lower for 
precipitation levels beyond the lower limit of the 
precipitation that was recorded, since the optimal 
abundance is predicted around 2100 mm. Since 
it is dangerous to extrapolate, the best way for 
testing this would be to add some sites that were 
sampled at lower precipitation levels.
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Using several explanatory 
variables at the same time

In the previous models, we only used one explanatory 
variable for each model. We can use several 
explanatory variables at the same time, however. 
Such regression is called a multiple regression. You 
can construct models that use several (or all) of the 
explanatory variables that you have – an example is 
provided later in this chapter.

You can also construct models that use new 
explanatory variables that were derived from 
existing explanatory variables. The first example 
of multiple regression is of the second category. 
The explanatory variables that will be used are 
the precipitation and precipitation squared. 
Precipition2 is easily calculated by squaring each 
value of precipitation – for site B0 the value for 
precipitation2 = 25302 = 2530 × 2530 = 6400900. 
When you add square or higher order powers of 

Figure 6.10  Observed values (circles) and predicted values (connected by line) for the negative binomial GAM (with 
log link) of the abundance of Faramea occidentalis on precipitation.

existing variables, then you are fitting a polynomial 
model. A second-order polynomial model includes 
powers of original variable until the second order, 
a fourth-order polynomial model includes powers 
of the original variable until the fourth order 
(thus variable, variable2, variable3 and variable4). 
If we are investigating the relationship between 
precipitation and abundance with a second-order 
polynomial model, we fit the coefficients a, b and 
c of the polynomial model: Abundance = a + b × 
precipitation + c × precipitation2 + deviation. 

By constructing a polynomial model, you can 
fit curved lines. Using polynomial models thus 
provides an alternative approach to fitting curved 
relationships than the smoothing approach shown 
earlier. 

A negative binomial GLM (with log link) of 
the abundance of Faramea occidentalis using the 
second-order polynomial of precipitation gives the 
result shown on the next page.
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glm.nb(formula = Faramea.occidentalis ~ Precipitation + I(Precipitation^2), 
    data = faramea, na.action = na.exclude, maxit = 5000, init.theta = 1, link = log)

Deviance Residuals: 
     Min        1Q    Median        3Q       Max  
-1.47623  -1.27733  -0.40550   0.08838   1.82770  

Coefficients:
                     Estimate Std. Error z value Pr(>|z|)  
(Intercept)        -3.124e+01  1.708e+01  -1.829   0.0674 .
Precipitation       2.872e-02  1.346e-02   2.133   0.0329 *
I(Precipitation^2) -6.214e-06  2.642e-06  -2.352   0.0187 *

(Dispersion parameter for Negative Binomial(0.364) family taken to be 1)

    Null deviance: 53.418  on 42  degrees of freedom
Residual deviance: 36.043  on 40  degrees of freedom
AIC: 175.51

              Theta:  0.364 
          Std. Err.:  0.114 

Analysis of Deviance Table

Model 1: Faramea.occidentalis ~ 1
Model 2: Faramea.occidentalis ~ Precipitation + I(Precipitation^2)
  Resid. Df Resid. Dev Df Deviance      F    Pr(>F)    
1        42     53.418                                 
2        40     36.043  2   17.376 8.6878 0.0001686 ***

Terms added sequentially (first to last)

                   Df Deviance Resid. Df Resid. Dev       F    Pr(>F)    
NULL                                  42     53.418                      
Precipitation       1   12.336        41     41.083 12.3359 0.0004443 ***
I(Precipitation^2)  1    5.040        40     36.043  5.0397 0.0247732 *  

---
Signif. codes:  0 `***’ 0.001 `**’ 0.01 `*’ 0.05 `.’ 0.1 ` ‘ 1

When you compare the output to previous 
outputs, then you could notice that the results 
are very similar to those of the other GLMs. The 
difference is that two coefficients are provided for 
precipitation and precipitation2, and also two rows 
are provided in the ANOVA table. Precipitation2 
is mentioned as I(Precipitation^2). The 
reason is that otherwise the model would calculate 
the sum of (precipitation + precipitation2) and 
treat this sum as a single explanatory variable – it 
is just a particularity of the statistical software 
that we used (I() is a function that isolates the 
variable). There is evidence that both precipitation 
and precipitation2 explain the abundance, since 
significance level values are low for both variables 
(for example P = 0.018 for precipitation2). 

Therefore both explanatory variables can be left 
in the model.

The ANOVA table provides similar evidence 
that both precipitation and precipitation2 explain 
the abundance, since the estimated probabilities 
are small (P < 0.05). As there are two variables, the 
ANOVA table splits the total of the deviance that is 
explained by the model (explained deviance = null 
deviance – residual deviance = 53.418 – 36.043 
= 17.375) into the deviance that is explained by 
precipitation (12.336) and the additional deviance 
that is explained by precipitation2 (5.040). You 
could easily check that the sum of both deviances 
adds up to the total deviance that is explained.

Note that the ANOVA table indicates that the 
variables were added sequentially. This means 
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that first the deviance that was explained by 
precipitation was calculated. After calculating that 
deviance, the additional deviance that is explained 
by precipitation2 is calculated. If you would change 
the order, then you would obtain different values 
for deviance. The reason that the sequence will 
alter the results is that there is correlation between 
the variables (or the variables are not orthogonal). 
Because of the correlation, some of the deviance 
that would be explained by a variable will be 
explained by a variable that was added into the 
model earlier – once some deviance was explained, 
it can not be explained again. For a polynomial 
model, it makes sense to order variables in order 
of increasing power as shown in the example, and 
not to add precipitation2 before precipitation.

The ANOVA table also listed a comparison 
between the null model and the model with both 
variables. This is the GLM alternative to the F-test 
of a simple linear regression, and it also calculates 
the significance of the complete model. 

Figure 6.11 shows the graphical representation 
of the model. When you compare this figure 

with Figure 6.10, then you will notice that a 
similar shape of curve is obtained for the expected 
values. In this case, however, a clear optimum 
in predicted abundance can be seen that occurs 
around a precipitation of 2300 mm. At lower or 
higher precipitation levels, a lower abundance is 
predicted. The reason for this pattern is that a 
second-order polynomial model in combination 
with a log scale will fit a unimodal distribution (at 
a linear scale, second-order polynomial models are 
rarely useful as they fit a parabola). Many species 
have unimodal distributions, since there is only a 
certain range of conditions under which the species 
occur. Such window where the species occurs can 
be caused by environmental conditions that are too 
harsh (too hot, too cold, too dry, too few nutrients, 
…), or by competition with species that are better 
adapted to some types of conditions. Since species 
often have unimodal distributions, a second-order 
polynomial model will often be the model that 
will best describe the actual distribution of species 
abundances. In such situations, the assumption 
of a unimodel distribution will be appropriate. 

Figure 6.11  Observed values (circles) and predicted values (connected by line) for the negative binomial GLM of the 
abundance of Faramea occidentalis on the second-order polynomial of precipitation.
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Note however that the second order polynomial 
will always give a symmetrical unimodal response. 
The fact that the fitted response is of that shape 
is determined by the model type. Whether it fits 
your data well still needs examining.

In multiple regression models, the explanatory 
variables that are used do not have to be 
polynomials of the same variable. The result 
shown on the next page was obtained by using 
the categorical variables age and geology, and the 
second-order polynomials for the quantitative 
variables precipitation and elevation to explain 
abundance with a negative binomial GLM with 
log link.

Note first that although it is technically possible 
to construct models that include many different 
explanatory variables, that models should 
correspond to hypotheses about the influence of 
an explanatory variable on the response variable. 
The choice of explanatory variables that are 
measured in the first place should be based on 
such hypotheses, which should be realistic or 
plausible relationships that reflect what we know 
of ecology.

We analysed age as if it was a categorical variable. 
Since age is an ordinal variable, we could also have 
analysed it as if it was a quantitative variable (see 
Chapter 2). We analysed age as a categorical variable 
since an analysis with age as a quantitative variable 
indicated that there was no evidence that age had 
an effect (see how to interprete ANOVA tables 
lower in this section and check for yourself with a 
model where age is a quantitative variable). 

As we saw in the outputs of other models, the 
formula and the distribution of residuals is provided 
first, followed by the regression coefficients.

Again we can see one regression coefficient 
for the continuous variables (precipitation, 
precipitation2, elevation and elevation2), and 
regression coefficients for all but one of the levels 
of the categorical variables (age and geology). We 
can see that small significance levels were estimated 
for the majority of variables.

The negative binomial model calculated a 

parameter theta that indicates that individuals are 
clumped since it is not large (4.08).

The model now explains most of the deviance in 
the data, with an explained deviance of ((210.25-
36.28)/210.25) or 82.7% of total deviance. For an 
ecological model, the explained deviance is very 
high.

Different to the previous outputs is that two 
types of ANOVA tables are given. The second 
one is a type-II ANOVA, which is based on 
deletions of variables from the model. The type-
II ANOVA lists the residual deviance for several 
models where one variable was deleted. You can 
verify that the deviance of 41.278 when elevation2 
is removed from the model (as provided by type-
II ANOVA) corresponds to the residual deviance 
of 41.278 after precipitation, precipitation2, 
geology, age and elevation were added to the 
model (as given by type-I ANOVA). The type-II 
ANOVA investigates whether there is evidence 
that removing one variable would result in a 
significantly lower deviance that is explained by the 
simplified model. For a normal (type-I) ANOVA 
that we showed earlier, the sequence by which the 
variables are listed in the model may influence the 
results of the ANOVA. This will be only the case 
if the variables are correlated. This is not the case 
for a type-II ANOVA, where the sequence will not 
influence the results. We advise to only use a type-
II ANOVA when there is no logical order in which 
the variables should be entered in the model. 

Analysing ANOVA tables for models with 
several explanatory variables may especially be 
useful when searching for alternative models for 
the same dataset. When we look at the effect of deleting 
age from the model, we can see that the more complex 
model explains more deviance (has less residual 
deviance: 36.280 – 48.396 = -12.116 or -5.7%), but 
the simpler model uses one variable less. Which 
model is better? This will depend partially on 
what you value more, a higher percentage of 
deviance that can be explained, or a higher degree 
of simplicity in your model. There are some 
statistical criteria that allow choosing between 



ANALYSIS OF COUNTS OF TREES     93  

glm.nb(formula = Faramea.occidentalis ~ Precipitation + I(Precipitation^2) + 
    Geology + Age.cat + Elevation + I(Elevation^2), data = faramea, 
    na.action = na.exclude, maxit = 5000, init.theta = 1, link = log)

Deviance Residuals: 
      Min         1Q     Median         3Q        Max  
-2.908282  -0.590816  -0.008352   0.136604   2.446988  

Coefficients:
                     Estimate Std. Error z value Pr(>|z|)    
(Intercept)        -8.800e+01  1.775e+01  -4.957 7.14e-07 ***
Precipitation       7.277e-02  1.438e-02   5.060 4.20e-07 ***
I(Precipitation^2) -1.514e-05  2.931e-06  -5.165 2.40e-07 ***
GeologyTb           2.752e+00  6.374e-01   4.318 1.57e-05 ***
GeologyTbo          3.422e+00  1.754e+00   1.951 0.050999 .  
GeologyTc           5.018e+00  9.283e-01   5.405 6.48e-08 ***
GeologyTcm          2.683e+00  7.106e-01   3.776 0.000159 ***
GeologyTgo         -9.910e-02  8.894e-01  -0.111 0.911288    
GeologyTl           1.593e+00  7.763e-01   2.052 0.040217 *  
Age.catc2          -3.230e+00  9.734e-01  -3.318 0.000906 ***
Age.catc3          -2.162e+00  7.652e-01  -2.825 0.004727 ** 
Elevation           4.973e-02  2.613e-02   1.903 0.057029 .  
I(Elevation^2)     -2.387e-04  1.102e-04  -2.167 0.030248 *  

(Dispersion parameter for Negative Binomial(4.0754) family taken to be 1)

    Null deviance: 210.25  on 42  degrees of freedom
Residual deviance:  36.28  on 30  degrees of freedom
AIC: 152.99

              Theta:  4.08 
          Std. Err.:  2.39

Analysis of Deviance Table

Model 1: Faramea.occidentalis ~ 1
Model 2: Faramea.occidentalis ~ Precipitation + I(Precipitation^2) + Geology + 
    Age.cat + Elevation + I(Elevation^2)

  Resid. Df Resid. Dev Df Deviance      F    Pr(>F)    
1        42     210.25                                 
2        30      36.28 12   173.97 14.497 < 2.2e-16 ***

Terms added sequentially (first to last)

                   Df Deviance Resid. Df Resid. Dev       F    Pr(>F)    
NULL                                  42    210.246                      
Precipitation       1   41.361        41    168.885 41.3610 1.266e-10 ***
I(Precipitation^2)  1   24.410        40    144.475 24.4098 7.787e-07 ***
Geology             6   80.851        34     63.624 13.4752 2.383e-15 ***
Age.cat             2   17.732        32     45.892  8.8660 0.0001411 ***
Elevation           1    4.614        31     41.278  4.6143 0.0317067 *  
I(Elevation^2)      1    4.998        30     36.280  4.9976 0.0253821 * 

Single term deletions

                   Df Deviance     AIC F value     Pr(F)    
<none>                  36.280 150.986                      
Precipitation       1   67.045 179.750 25.4393 2.059e-05 ***
I(Precipitation^2)  1   70.773 183.479 28.5223 8.902e-06 ***
Geology             6  106.457 209.163  9.6716 6.123e-06 ***
Age.cat             2   48.396 159.102  5.0095   0.01327 *  
Elevation           1   39.930 152.636  3.0186   0.09257 .  
I(Elevation^2)      1   41.278 153.983  4.1326   0.05100 .  

---
Signif. codes:  0 `***’ 0.001 `**’ 0.01 `*’ 0.05 `.’ 0.1 ` ‘ 1
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two models. These criteria use different methods 
of penalizing extra deviance explained with extra 
explanatory variables. These are very similar to 
ANOVA in comparing whether the extra deviance 
explained by model 1 is significantly higher than 
the deviance explained by model 2. One of such 
criteria uses the AIC (or Akaike Information 
Criterion). A model with a lower AIC has a better 
combination of simplicity and explained deviance 
– provided that you agree with the way that 
simplicity and explained deviance are weighted 
by the AIC. The type-II ANOVA table provides 
the AIC for the most complex and all models with 
one deleted variable. We can see that the most 

complex model has the lowest AIC (150.986) of 
all the models, which suggests that all variables 
should be included in the model (although it is 
a probably worth again to remind you that we 
assume that only variables were measured for 
which there was a prior hypothesis that they could 
explain abundance).

Figure 6.12 plots the predicted abundance 
against precipitation. We can see in this figure that 
a complex pattern occurs, since the abundance is 
now regressed against all the explanatory variables. 
We therefore do not see the effect of precipitation 
only, but of the other variables as well. We can see 
that the observed abundances are predicted better.

Figure 6.12  Observed values (circles) and predictions (lines) for the negative binomial GLM with log link of the 
abundance of Faramea occidentalis on geology, age category and the second-order polynomials of precipitation and 
elevation.
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We can check the predictions for an explanatory 
variable in isolation by using a termplot. Figure 6.13 
provides the termplot for age for the last model 
that we fitted. The full lines show the abundance 
that is predicted by the model coefficients. We 
can see that lower abundance is predicted for age 
categories 2 and 3, since the confidence intervals 
do not overlap with the confidence interval for age 
category 1. We can also see that the deviance that 
is explained by age is relatively small by comparing 
the difference between the predicted abundance 
and the actual abundance. Another feature of the 
data is that the lowest abundance is predicted for 
age category 2. Updating our model by using 
age as a continuous variable shows that there is 
no evidence that age has an effect – we can not 
assume that there is a straight line that will fit the 
effect of age on abundance. Allowing for different 
predicted abundances for each age category 
provides a better fit to our data.

Figure 6.13  Observed values (circles) and predicted values (lines) for the termplot for age category for the negative 
binomial GLM with log link of the abundance of Faramea occidentalis on geology, age category and the second-
order polynomials of precipitation and elevation. The rugplots show the distribution of the x and y values by adding 
a random term for values that are tied (for example, there are only three categories of age but the rugplots show the 
number of observations within each category).

Generalized Mixed Models
A lot more could be said about the models that we 
utilized already. The scope of this manual is too 
limited, however, to cover these models in more 
detail. For example, all the models here assume 
that the random residuals are uncorrelated. This 
might often be unreasonable, for example if a 
hierarchical sampling and measurement scheme 
were used. Mixed models have been developed for 
such situations (Quinn and Keough 2002). 

The original dataset that we analysed here 
actually also had been sampled and measured in a 
hierarchical way (with 50 B sites), but we avoided 
the problem by only using the first and last sampled 
B site to remove the dominance of those sites in 
the dataset. We opted for this approach as this 
avoided the need for mixed models, and because 
the original dataset mixed data from different types 
of sample plots, something discussed in chapter 2. 
This type of practical approach to overcoming a 
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statistical analysis problem is important. The final 
result may not be optimal if it does not use all 
available data, but it is clear and valid.

Choice of the best model
The most important criterion to guide you when 
you are given a choice between various models 
is that the assumptions of the models need to 
be realistic. We showed that the residuals of the 
models were used to check the reliability of the 
regression models, which guided us towards 
generalized linear models. 

You may also favour models with a good balance 
between explanatory power and simplicity. Some 
tests (such as the AIC) may be used to help you in 
selecting the model with the best balance.

Analysing diversity
The examples that we provided in this chapter were 
for the number of trees of a particular species for 
each site. You can do the same analysis for the total 
number of species per site, or for the total number 
of trees per site. The methodology is exactly the 
same as the response variable is again calculated 
as a count of the number of objects found in each 
site, only that it is not the count of the trees of 
a single species but the count of the number of 
species or the total number of trees.

You could also perform the same calculations 
for a measure of diversity (see chapter on diversity) 
that was calculated for each site.

All these other calculations are possible, in 
principle. You will need to do diagnostic tests (as 
with the previous models) to check whether the 
assumptions of the model were met. In case that 
this is the case, then you can rely on the results.
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Doing the analyses with the menu options of Biodiversity.R

Load the datasets Panama species.txt and Panama environmental.txt, and make them the species and 
environmental datasets, respectively. Give them the names “spec” and “faramea”.

Data > Import data > from text file… (Panama species.txt)
 Enter name for dataset: spec
Data > Import data > from text file… (Panama environmental.txt)
 Enter name for dataset: faramea
Biodiversity > Community Matrix > Select community dataset…
 Data set: spec
Biodiversity > Environmental Matrix > Select environmental dataset…
 Data set: faramea

These are the original datasets, to use the reduced datasets that will be analysed, remove the sites where 
there is missing information on the variable “Analysed”.

Biodiversity > Community matrix > Remove NA from environmental dataset…
 Select variable: Analysed

As an alternative, load the dataset Faramea.txt, and make it both the species and environmental dataset 
(as both the species and environmental information is in the same dataset).

Data > Import data > from text file… (Faramea.txt)
 Enter name for dataset: faramea
Biodiversity > Community Matrix > Select community dataset…
 Data set: faramea
Biodiversity > Environmental Matrix > Select environmental dataset…
 Data set: faramea

To calculate a linear regression model:
Biodiversity > Analysis of species as response > Species abundance as response…
 Model options: linear model
 Response: Faramea.occidentalis
 Explanatory: Precipitation
 print summary
 print anova
 Plot options: diagnostic plots
 Plot variable: Precipitation
 Plot options: diagnostic plots
 Plot options: term plot
 Plot options: effect plot
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To calculate a generalized linear regression model (GLM):
Biodiversity > Analysis of species as response > Species abundance as response…
 Model options: Poisson model
 Response: Faramea.occidentalis
 Explanatory: Precipitation
 print summary
 print anova
 Model options: quasi-Poisson model
 Model options: negative binomial model

To calculate a generalized additive regression model (GAM):
Biodiversity > Analysis of species as response > Species abundance as response…
 Model options: gam model
 Response: Faramea.occidentalis
 Explanatory: s(Precipitation)
 print summary

To calculate a multiple regression model:
Biodiversity > Analysis of species as response > Species abundance as response…
 Model options: negative binomial model
 Response: Faramea.occidentalis
 Explanatory: Precipitation + I(Precipitation^2)
 print summary
 print anova
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Doing the analyses with the command options of Biodiversity.R 

Load the dataset Faramea.txt and give it the name “faramea”.
faramea <- read.table(file=”D://my files/Faramea.txt”)

To calculate a linear regression model:
Count.model1 <- lm(Faramea.occidentalis ~ Precipitation,   

data=faramea,  na.action=na.exclude)

summary(Count.model1)

fitted(Count.model1)

predict(Count.model1, interval=’confidence’)

residuals(Count.model1)

shapiro.test(residuals(Count.model1))

ks.test(residuals(Count.model1), pnorm)

anova(Count.model1,test=’F’)

Count.model2 <- lm(Faramea.occidentalis ~ Age.cat, 
data=faramea, na.action=na.exclude)

levene.test(residuals(Count.model2), na.omit(faramea)$Age.cat)

To plot a linear regression model:
plot(Count.model1)

termplot(Count.model1, se=T, partial.resid=T, rug=T, 
terms=’Precipitation’)

plot(effect(‘Precipitation’, Count.model1))

To check for the spatial distribution of residuals:
surface.1 <- residuals.surface(Count.model1, na.omit(faramea), 

‘UTM.EW’, ‘UTM.NS’, gam=F, npol=1, plotit=T, bubble=F, 
fill=F)

surface.2 <- residuals.surface(Count.model1, na.omit(faramea), 
‘UTM.EW’, ‘UTM.NS’, gam=F, npol=2, plotit=T, bubble=F, 
fill=F)

surface.2 <- residuals.surface(Count.model1, na.omit(faramea), 
‘UTM.EW’, ‘UTM.NS’, gam=F, npol=2, plotit=T, bubble=T, 
fill=F)

surface.gam <- residuals.surface(Count.model1, 
na.omit(faramea), ‘UTM.EW’, ‘UTM.NS’, gam=T, npol=2, 
plotit=T, bubble=F, fill=T)

summary(surface.1)

anova(surface.1)

correlogram(surface.1, nint=10)

summary(surface.gam)
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To calculate a generalized linear regression model (GLM):
Count.model3 <- glm(formula = Faramea.occidentalis ~ 

Precipitation, family = poisson(),data=faramea, 
na.action=na.exclude)

summary(Count.model3)

anova(Count.model3,test=’F’)

predict(Count.model3, type=’response’, se.fit=T)

Count.model4 <- glm(formula = Faramea.occidentalis ~ 
Precipitation, family = quasipoisson(), data=faramea, 
na.action=na.exclude)

Count.model5 <- glm.nb(Faramea.occidentalis ~ Precipitation, 
maxit = 5000, init.theta = 1, data=faramea, na.action=na.
exclude)

To calculate a generalized additive regression model (GAM):
Count.model6 <- gam(Faramea.occidentalis ~ s(Precipitation), 

family=poisson(), data = na.omit(faramea))

summary(Count.model6)

predict(Count.model6, type=’response’, se.fit=T)

To calculate a multiple regression model:
Count.model7 <- glm.nb(Faramea.occidentalis ~ Precipitation 

+ I(Precipitation^2), maxit = 5000, init.theta = 1, 
data=faramea, na.action=na.exclude)

summary(Count.model7)

anova(Count.model7, test=’F’)

Anova(Count.model7, type=’II’, test=’Wald’)

vif(lm(Faramea.occidentalis ~ Precipitation + 
I(Precipitation^2), data=faramea, na.action=na.exclude)
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